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causing major financial or reputational damage. High-profile cases include Google’s AI algorithm
for photo classification mistakenly labelling a black couple as gorillas in 2015 (Gebru 2020 In The
Oxford handbook of ethics of AI, pp. 251–269), Microsoft’s AI chatbot Tay that spread racist, sexist
and antisemitic speech on Twitter (now X) (Wolf et al. 2017 ACM Sigcas Comput. Soc. 47, 54–64
(doi:10.1145/3144592.3144598)), and Amazon’s AI recruiting tool being scrapped after showing bias
against women. In response, governments are legislating and imposing bans, regulators fining
companies and the judiciary discussing potentially making algorithms artificial ‘persons’ in law.
As with financial audits, governments, business and society will require algorithm audits; formal
assurance that algorithms are legal, ethical and safe. A new industry is envisaged: Auditing and
Assurance of Algorithms (cf. data privacy), with the remit to professionalize and industrialize AI,
ML and associated algorithms. The stakeholders range from those working on policy/regulation to
industry practitioners and developers. We also anticipate the nature and scope of the auditing levels
and framework presented will inform those interested in systems of governance and compliance
with regulation/standards. Our goal in this article is to survey the key areas necessary to perform
auditing and assurance and instigate the debate in this novel area of research and practice.

1. Introduction
With the rise of artificial intelligence (AI), legal, ethical and safety implications of its use are becoming
increasingly pivotal in business and society. We are currently entering a new phase of the ‘digital
revolution’ in which privacy, accountability, fairness, bias and safety are becoming research priorities
and debate agendas for engineering and the social sciences [1,2].

Like the ‘Big Data’ wave, we conceptualize this new phase of algorithmic decision-making and
evaluation (Big Algo) using the 5V’s methodology [3]:

— Volume: as resources and know-how proliferate, soon there will be ‘billions’ of algorithms.
— Velocity: algorithms making real-time decisions with minimal human intervention;
— Variety: from autonomous vehicles to medical treatment, employment, finance, etc.;
— Veracity: reliability, legality, fairness, accuracy and regulatory compliance as critical features.
— Value: new services, sources of revenue, cost-savings and industries will be established.

While in the last decade the focus was on ‘data protection’, there has now been a shift towards
‘algorithm conduct’. As a result, new technologies, procedures and standards will be needed to ensure
that ‘Big Algo’ is an opportunity and not a threat to governments, business and society at large.

We conceptualize algorithm auditing as the research and practice of assessing, monitoring and
assuring an algorithm’s safety, legality and ethics by embedding appropriate socio-technical interven-
tions to manage and monitor risks it may be associated with. This practice encompasses current
research in areas such as AI fairness, explainability, robustness and privacy, as well as matured topics
of data ethics, management and stewardship. As with financial audits, governments, business and
society will eventually require algorithm audits, that is, the formal assurance that algorithms are legal,
ethical and safe. In a snapshot, figure 1 outlines the dimensions and examples of activities that are part
of algorithm auditing. We define each one below.

— Development: the process of developing and documenting an algorithmic system.
— Assessment: the process of evaluating the algorithm’s behaviour and capacities.
— Mitigation: the process of servicing or improving an algorithm’s outcome.
— Assurance: the process of declaring that a system conforms to predetermined standards, practices

or regulations.

A new industry, Auditing and Assurance of Algorithms and Data, is envisaged, with the remit to
professionalize and industrialize AI, ML and associated algorithms. As with financial audits, we
envisage that algorithm auditing will increasingly become a legal requirement as the AI regulatory
landscape continues to evolve. However, granular technical knowledge is required to underpin these
regulatory and legal frameworks seeking to promote AI auditing and assurance to ensure they are
appropriate, robust and actionable.
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Our goal with this article is to further the discourse in this novel area of algorithm audits, par-
ticularly with a view to contributing to, and challenging, emerging AI policy debates. We start by
presenting a high-level overview of the key components that cover algorithm auditing in §3, namely
algorithms, verticals of auditing, levels of access and mitigation. In §§4–7, we then provide a deeper
exploration of algorithms, the verticals identified in §3, the seven levels of access defined in the
literature and mitigation strategies for each risk vertical. We end with an overview of assurance
processes concerning general and sector-specific processes, governance processes and how risks can
be monitored, as well as discussing the potential for certification and insurance before we suggest
avenues for further exploration. The purpose of this article is to (i) conceptualize a novel frame-
work for conducting audits and mitigating risks; (ii) contribute to, and challenge, emerging policy
debates emerging in this space; and (iii) inspire conversation around best practices for algorithm
auditing among multidisciplinary stakeholders including academics, AI developers and deployers and
regulators.

2. Key components of algorithm auditing
In this section, we describe the key parts encompassing algorithm auditing, namely the algorithm
as the centrepiece of the process, the main verticals of auditing, ways to perform auditing and
what happens subsequently, and finally, possible outcomes of auditing, namely algorithm assurance
processes.

2.1. Object of audit: algorithms
An algorithm is a finite sequence of well-defined, computer-implementable instructions, typically to
solve a class of problems or to perform a computation [4]. The key constituents of an algorithm are

— Data: input, output and simulation environment;
— Model: objective function, formulation, parameters and hyperparameters; and
— Development: design, documentation, building process and infrastructure and open-source

libraries

In the 1980s and 1990s, expert systems—designed to simulate human decision-making using vast
knowledge bases to solve problems [5]—were mainly in vogue and the main concern in relation to
quality assurance was restricted to Development and Model aspects [6]. We should also mention that

+ Data

+ Pre-processing

+ Modelling

+ Post-processing

+ Production

+ Robustness

+ Explainability

+ Privacy

+ Bias

+ Surrogate

    Explanations

+ Anonymization

+ Synthetic data

+ Risk rating

+ Certification

+ Best practices

+ Insurance

Development Assessment

MitigationAssurance

Figure 1. Dimensions and examples of activities that are part of algorithm auditing.
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the focus during that period was more on accuracy and computational cost. Since the turn of the
century, this paradigm has shifted—with most industrial applications of AI now relying on machine
learning [7,8]. This shift towards sub-symbolic approaches (based on statistical learning methods) over
symbolic representation [9] has added a new source of risk, namely Data (with model and data aspects
interacting in a much more complex way than before), to the quality assurance process; discussions
are now broadly around bias and discrimination, interpretability and explainability, privacy, with a
reduced focus on performance and resilience of early systems.

2.2. What to audit: verticals of algorithm auditing
We conceptualize five stages underpinning the development aspect of algorithms [10–12] (see table 1):

— Data and task setup: collecting, storing, extracting, normalizing, transforming and loading data.
Ensuring that the data pipelines are well structured, and the task (regression, classification,
etc.) has been well specified and designed. Ensuring that data and software artefacts are well
documented and preserved.

— Feature pre-processing: selecting, enriching, transforming and engineering a feature space.
— Model selection: running model cross-validation, optimization and comparison.
— Post-processing and reporting: adding thresholds, auxiliary tools and feedback mechanisms to

improve interpretability, presenting the results to key stakeholders and evaluating the impacts of
the algorithmic system on the business.

— Productionizing and deploying: passing through several review processes, from IT to business, and
putting in place monitoring and delivery interfaces. Maintaining an appropriate record of in-field
results and feedback.

Although these stages appear static and self-containing, in practice they interact in a dynamic
fashion, not following a linear progression but a series of loops, particularly in between pre-processing
and post-processing.

In table 1, we also list how each stage interacts with four key risk verticals, in line with some of the
principles outlined by the European Commission in their white paper on AI excellence and trust [13],
which we explore further in §5:

— Privacy: quality of a system to mitigate personal or critical data leakage.
— Fairness/bias: quality of a system to avoid unfair treatment of individuals or organizations.
— Explainability (and interpretability): quality of a system to provide decisions or suggestions that can

be understood by their users and developers.
— Robustness: quality of a system to be safe, not vulnerable to tampering.

In a similar fashion to the stages, each risk vertical—while appearing to be self-contained—also
exhibits interdependencies. Though research on each vertical is mostly conducted in silos, there is
growing consensus in the scientific and industry communities about the trade-offs and interactions
between them. For example, accuracy, a component of robustness, may need to be traded for lowering
any existing outcome metric of bias [14], making the model more explainable may affect a system’s
performance and privacy [15,16], improving privacy may affect ways to assess adverse impacts of
algorithmic systems [17] and so on. Optimization of these features and trade-offs will depend on
multiple factors, notably the use-case domain, the regulatory jurisdiction, the risk appetite and values
of the organization implementing an algorithm.

2.3. Ways to audit: levels of access for auditing
There are different levels of access that an auditor has during its investigation of an algorithm (see
table 2). In scientific literature and technical reports, the prevalent common practice has been to
categorize the knowledge about the system in two extremes: ‘white-box’ and ‘black-box’. In fact, the
spectrum regarding the knowledge of a system is more of a continuum of ‘shades of grey’ than this
simple dichotomy. This additional nuance allows for a richer exploration of the technologies available
for assessment and mitigation, as well as the right level of disclosure that a certain business feels
comfortable, or indeed might be legally required, to engage in.
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Hence, we can identify seven levels of access that an auditor can have to a system. It ranges from
the highest level, that is, ‘white-box’, where all the details encompassing the model are disclosed, to
the lowest level, that is, ‘process-access’ where only indirect observation of a system can be made.
The levels in between are set by limiting access to the components behind the learning process (e.g.
knowledge of the objective function, model architecture, training data, etc.). Level 7 contains all the
assessment, monitoring and mitigation strategies of lower levels, with the report getting less detailed
and accurate as levels decrease. Therefore, analysis and techniques requiring Level 7 cannot be used at
Level 6 without proper assumptions and acceptable levels of inaccuracy.

2.4. After audit: mitigation strategies
Feedback received as an output of the audit interventions can be made to improve an algorithmic
system’s outcome across the key verticals and stages. The more access to an algorithmic system,
the more targeted, technical, diverse and effective will be the mitigation strategy. Table 3 lists possi-
ble interventions when ‘white-box’ access is provided. When the access available is lower than the
‘white-box’ level, some stages and procedures are omitted from this table (e.g. data and task setup or
productionizing and deploying).

2.5. Outcome of audit: assurance processes
The broader outcome of an auditing process is to improve confidence or ensure trust in the underlying
system and then capture that through some certification mechanism. After assessing the system and
implementing mitigation strategies, the auditing process assesses whether the system conforms to
regulatory, governance and ethical standards. Providing assurance, therefore, needs to be understood
from an interdisciplinary perspective, and measures need to be taken so that an algorithm’s trustwor-
thiness can be exhibited. Below, we list key measures that embody the assurance process.

— General and sector-specific assurance: broad national regulation and standards (provided by
organizations such as the National Institute of Standards and Technology (United States), the
Information Commissioner’s Office (United Kingdom) and the European Union’s AI Act) with
sectoral frameworks, such as in financial services (e.g. SEC, FCA, etc.), health (e.g. NIH, NHS,
etc.) and real estate (e.g. RICS, IVS, USPAP).

— Governance: from two aspects, namely technical assessments (robustness, privacy, etc.) and
impact (risk, compliance, etc.) assessments.

— Unknown risks: discussing risk schemes and highlighting ‘red teaming’, which is used to mitigate
unknown risks.

— Monitoring interfaces: outlining risk assessments and the use of ‘traffic-light’ user-friendly
monitoring interfaces.

— Certification: numerous ways in which certification may occur, such as certification of a system or
AI engineers.

Table 1. Interrelation between development stage and auditing verticals.

stage explainability robustness fairness/bias privacy

data and task setup
data collection and

labelling data accuracy population balance DPIA

feature pre-processing dictionary of variables feature engineering fair representations data minimization

model selection model complexity model validation fairness constraints differential privacy

post-processing and
reporting auxiliary tools adversarial testing bias metric assessment model inversion

productionizing and
deploying

interface and
documentation

concept drift
detection and
continuous
integration

real-time monitoring of
bias metrics

rate-limiting and
user’s queries
management
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— Insurance: a subsequent service to emerge as a result of assurance maturing.

Regulators face a growing challenge in both supervising the use of these algorithms among the
sector(s) that they oversee and the use of algorithms in their own regulatory process via RegTech
(Regulatory Technology) [18] and SupTech (Supervisory Technology) [19]. There are some other ‘soft’
aspects, related to the governance structure underpinning the development. These are related to
defining an algorithm’s goals (e.g. what does it aim to achieve? How does it serve those it is making
decisions about?). These could compose a statement of intention whereby the designer sets out a
position statement in advance indicating what it is that the algorithm is supposed to do. This could
facilitate judging whether the algorithm has performed as intended.

3. Algorithms
For completeness, this section unpacks algorithms across three domains: computational statistics (e.g.
Monte Carlo methods), complex systems (e.g. agent-based systems) and AI and ML (e.g. artificial
neural networks). While there may be some debate over the terminology, we find this classification
helpful to distinguish between relatively well-established methods and more cutting-edge technolo-
gies.

— Computational statistics: computationally intensive statistical methods.
— Complex systems: systems with many interacting components whose aggregate activity is

nonlinear and typically exhibit hierarchical self-organization under selective pressures.
— AI algorithms: mimicking a form of learning, reasoning, knowledge and decision-making.

(i) Knowledge or rule-based systems
(ii) Evolutionary algorithms

(iii) Machine learning.

3.1. Computational statistics
Computational statistics models refer to computationally intensive statistical methods including
resampling methods (e.g. bootstrap and cross-validation), Monte Carlo methods, kernel density
estimation and other semi- and non-parametric statistical methods and generalized additive models
[20,21]. Examples include:

Table 3. Interrelation between development stage and mitigation strategies for ‘white-box’ access level.

stage explainability robustness fairness/bias privacy

data and task setup
dictionary of variables

and datasheets

collecting targeted
data, reframing
loss function alternative data sources anonymization

feature pre-processing
avoiding excessive

feature engineering feature squeezing synthetic data
dimensionality

reduction

model selection
by-design interpretable

models adversarial training counterfactual fairness federated learning

post-processing and
reporting LIME, SHAP

high confidence
predictions and
confidence
intervals calibrated odds

model inversion
mitigation

productionizing and
deploying recourse interface ‘circuit-breaking’ monitoring panels

rate-limiting and
user’s queries
management
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— Resampling methods: a variety of methods for doing one of the following: (i) estimating the
precision of sample statistics using subsets of data (e.g. jack-knifing) or drawn randomly from
a set of data points (e.g. bootstrapping); (ii) exchanging labels on data points when performing
significance tests (e.g. permutation tests); (iii) validating models by using random subsets (e.g.
repeated cross-validation);

— Monte Carlo methods: a broad class of computational algorithms that rely on repeated random
sampling to approximate integrals, particularly used to compute expected values (e.g. options
payoff) including those meant for inference and estimation (e.g. Bayesian estimation, simulated
method of moments);

— Kernel density estimation: a set of methods used to approximate multivariate density functions
from a set of datapoints; it is largely applied to generate smooth functions, reduce outlier effects
and improve joint density estimations, sampling and derive nonlinear fits;

— Generalized additive models: a large class of linear models widely used for inference and predictive
modelling (e.g. time series forecasting, curve-fitting, etc.);

— Regularization methods: calibration techniques used to minimize loss and prevent overfitting and
underfitting to make a model more generalizable. Regularization methods are increasingly used
as an alternative to traditional hypothesis testing and criteria-based methods, for allowing better
quality forecasts with many features.

3.2. Complex systems
A complex system is any system featuring a large number of interacting components (e.g. agents,
processes, etc.) whose aggregate activity is nonlinear (not derivable from the summations of the
activity of individual components) and typically exhibits hierarchical self-organization under selective
pressures [22,23]. Examples include:

— Cellular automata: a collection of cells arranged in a grid, such that each cell changes state as a
function of time according to a defined set of rules that includes the states of neighbouring cells;

— Agent-based models: a class of computational models for simulating the actions and interactions
of autonomous agents (individual or collective entities such as organizations or groups) with a
view to assessing their effects on the system as a whole;

— Network-based models: a complex network is a graph (network) with non-trivial topological
features—that do not occur in simple networks such as lattices or random graphs but often
occur in graphs modelling of real systems

— Multi-agent systems: this subarea focuses on formulating cooperative–competitive policies for a
multitude of agents with the aim of achieving a given goal; this topic has significant overlap with
reinforcement learning and agent-based models.

3.3. AI and machine learning
There are broadly two classes of AI algorithms, which might be termed: static algorithms—traditional
programs that perform a fixed sequence of actions; and dynamic algorithms—that embody machine
learning and evolve. It is these latter ‘intelligent’ algorithms that present complex technical challenges
for testing and verification, which will impact and demand further regulation.

These algorithms span three main communities:

— Knowledge-based or heuristic algorithms (e.g. rule-based): where knowledge is explicitly
represented as ontologies or IF–THEN rules rather than implicitly via code [5].

— Evolutionary or metaheuristics algorithms: a family of algorithms for global optimization
inspired by biological evolution, using population-based trial and error problem solvers with a
metaheuristic or stochastic optimization character (e.g. genetic algorithms, genetic programming,
etc.) [24,25]

— Machine learning algorithms: a type of AI program with the ability to learn without explicit
programming and can change when exposed to new data; mainly comprising supervised (e.g.
support vector machines, random forest, etc.), unsupervised (e.g. K-means, independent compo-
nent analysis, etc.) and reinforcement learning (e.g. Q-learning, temporal differences, gradient
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policy search, etc.) [7,8]. Russell & Norvig [26] provide an in-depth view of different aspects of
AI.

ML first subdivides into:

— Supervised learning: Given a set of inputs/independent variables/predictors x and out-
puts/dependent variables/targets y, the goal is to learn a function f(x) that approximates y. This
is accomplished by supervising f(x), that is, providing it with examples (x1, y1), …, (xn, yn) and
feedback whenever it makes mistakes or accurate predictions.

— Unsupervised learning: Given several objects/samples x1, …, xn, the goal is to learn a hidden map
h(x) that can uncover a hidden structure in the data. This hidden map can be used to ‘compress’
x (also known as dimensionality reduction) or to assign to every xi a group ck (also known as
clustering or topic modelling).

— Reinforcement learning: Given an environment formed by several states s1, s2, …, sn, an agent, and
a reward function, the goal is to learn a policy π that will guide an agent’s actions a1, a2, …, ak
through the state space so as to maximize rewards.

Figure 2 provides an illustration of these key learning paradigms. Suppose a database of financial
reports is available; if some of them have been historically labelled as positive and negative, we can
leverage this to automatically tag future documents. This can be accomplished by training a learner in
a supervised fashion. If these documents were unstructured, and spotting relations or topics is the goal
(political events, economic data, etc.), a learner trained in an unsupervised manner can help uncover
these hidden structures and relationships. Also, these documents can characterize the current state of
the capital markets. Using that, a learner can decide which actions should be taken to maximize profits,
hedge against certain risks, etc. By interacting and gaining feedback from the environment, the learner
can reinforce some behaviours to avoid future losses or inaccurate decisions.

In addition to that, deep learning, adversarial learning, transfer and meta-learning are advanced
new techniques enhancing supervised, unsupervised and reinforcement learning. They are not only
powering new solutions and applications (e.g. driverless vehicles, smart speakers, etc.), but they are
making the resolution of previous problems cheaper, faster and more scalable. They tend also to be
more opaque, making the issue of auditing and assurance more challenging. The second subdivision is

— Deep learning: deep learning algorithms attempt to model high-level abstractions in data by
using multiple processing layers, with complex structures or otherwise, composed of multiple
nonlinear transformations. Hence, the mapping function we are attempting to learn can be
broken down into several compositional operations f(x) = f1 ∘ f2 ∘ f3 ∘  ⋯ ∘ fn(x). Various deep
learning architectures such as deep neural networks, convolutional deep neural networks, deep
belief networks and recurrent neural networks have been applied to fields like computer vision,
automatic speech recognition, natural language processing, audio recognition and bioinformatics
where they have been shown to produce state-of-the-art results on various tasks [27,28].

— Adversarial learning: adversarial machine learning is a technique employed in the field of machine
learning that attempts to ‘fool’ models through malicious input. More formally, assume a given
input x associated with a label c and a machine learning model f such that f(x) = c, that is, f can
perfectly classify x. We consider x∗ an adversarial example if x∗ is indistinguishable from x andf(x) ≠ c. Since they are automatically crafted, these adversarial examples tend to be misclassified
more often than is true of examples that are perturbed by noise [29,30]. Adversarial examples
can be introduced during the training of models, making them more robust to attacks from
adversarial agents. Typical applications involve increasing robustness in neural networks, spam
filtering, information security applications, etc. [31].

— Transfer/meta-learning: these two learning paradigms are tightly connected, as their main goal
is to encapsulate knowledge learned across many tasks and transfer it to new, unseen ones.
Knowledge transfer can help speed up training and prevent overfitting and can, therefore,
improve the obtainable final performance. In transfer learning, knowledge is transferred from a
trained model (or a set thereof) to a new model by encouraging the new model to have similar
parameters. The trained model(s) from which knowledge is transferred is not trained with this
transfer in mind, and hence the task it was trained on must be very general for it to encode
useful knowledge with respect to other tasks. In meta-learning, the learning method (learning
rule, initialization, architecture, etc.) is abstracted and shared across tasks, and meta-learned
explicitly with transfer in mind, such that the learning method generalizes to an unseen task.
Concretely, often in transfer learning a pre-trained model is moved to a new task [32,33], while
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in meta-learning a pre-trained optimizer is transferred across problems [34–36]. In both cases, the
usual approach is to learn a deep neural network that can be reused later, usually by stripping
some of its terminal layers and creating an encoder–decoder to match the input and output for a
task. See figure 3 for a visual representation.

4. Main verticals of algorithm auditing
In computer science, there is a growing engineering expertise overlapping with the digital ethics space
[37]. Issues of explainability, fairness, privacy, governance and robustness are now popular research
themes among AI researchers—an area that falls under the umbrella of ‘trustworthy AI’ [1]. From an
engineering point of view, we believe that the most mature and impactful criteria are:

— Performance and robustness: systems should be safe and secure, not vulnerable to tampering or
compromising the data they are trained on.

— Bias and discrimination: systems should avoid unfair treatment of individuals or groups.
— Interpretability and explainability: systems should provide decisions or suggestions that are

understandable by their users, developers and regulators.
— Algorithm privacy: systems should be trained following data minimization principles as well as

adopt privacy-enhancing techniques to mitigate personal or critical data leakage.

The next subsections will deal with each one of these criteria.

4.1. Performance and robustness
Performance and robustness,  as  a  technical  concept,  is  closely  linked to  the  principle  of
prevention of  harm [38].  Systems should neither  cause  nor  exacerbate  harm or  otherwise
adversely  affect  human beings.  This  entails  the  protection of  human dignity  as  well  as  mental
and physical  integrity,  by  ensuring that  the  automation of  decisions  and processes  does  not
adversely  impact  human wellbeing and opportunities.  For  example,  it  has  been argued that  the
automation of  fairness  is  inherently  unfair  [39]  and is  not  something that  can be  achieved under
current  laws,  particularly  in  the  EU,  where  fairness  is  judged on a  case-by-case  basis.  Preventing

Supervised Learning

Unsupervised Learning

Reinforcement Learning

U
n

g
ro

u
p

ed

d
at

a
G

ro
u

n
d

 t
ru

th

Action

Environment

Learner Learner

Action

Reward
State

Negative

Positive

Learner

New data

Prediction

Topic BTopic A

Learner

Figure 2. Main learning paradigms of machine learning.
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harm can also  entail  consideration of  the  natural  environment  and the  living world,  as  well  as
weighing up whether  processes  can be  automated [40].

Most of the legal basis is established by the interaction between regulatory agencies, professional
associations and industry trade groups, where standards, rules and codes of conduct are created:

— Finance: SEC, FCA, FSB, BBA and BIS
— Power systems: FERC and IEEE
— Electrical appliances: NIST, Nat Fire Protection Association and state legislation
— Automotive sector: National Transportation Safety Board and Soc Auto Engineers

Algorithm performance and robustness are characterized by how effectively an algorithm can be deemed
as safe and secure, not vulnerable to tampering or compromising the data it is trained on. We can rate
an algorithm’s performance and robustness using four key criteria [38]:

— Resilience to attack and security: AI systems, like all software systems, should be protected against
vulnerabilities that can allow them to be exploited by adversaries, such as data poisoning,
model leakage or the infrastructure, both software and hardware. This concept is linked with
the mathematical concept of adversarial robustness [41], that is, how would the algorithm have
performed in the worst-case scenario? Mathematically, this can be expressed as:

Adversarial risk1: E x,  y ∼ p maxδ ∈ Δ x L y;f x + δ ≈ meanx, y ∈ Dval maxδ ∈ Δ x L y;f x + δ .

— Fallback plan and general safety: AI systems (and the associated infrastructure) should have
safeguards that enable a fallback plan in case of problems. Also, the level of safety measures
required depends on the magnitude of the risk posed by an AI system. This notion is strongly
associated with the technical concept of formal verification [42], which in broad terms means: does
the algorithm attend the problem specifications and constraints? (e.g. respect physical laws). One
way to express this mathematically is

Verification bound1: ℙ F x;f x ≤ 0 ≈  
# F xnom;f x ≤ 0|Sin xnom,  δ | .

— Accuracy: pertains to an AI system’s ability to make correct judgements, for example, to cor-
rectly classify information into the proper categories, or its ability to make correct predictions,
recommendations or decisions based on data or models. Accuracy as a general concept can be
quantified by estimating the expected generalization performance [43], which means that in general
the question of ‘how well does the algorithm work?’ is asked (e.g. in 7 out of 10 cases, the algorithm
makes the right decision). Typically, the expected generalization performance can be expressed
by the following formula:
Expected loss1: E x,  y ∼ p L y;f x ≈ meanx, y ∈ Dval L y;f x .

1L: loss function; E: expectation operator; y: output variable; x: input variable; f(x): algorithm prediction/decision; p: sampling
distribution of (x, y); Dval: holdout set of (x, y); Δ(x): set of feasible perturbations (δ) of x; F: specification mapping x and f(x) in
a real number, if F(x; f(x)) ≤ 0 then we say it is satisfied; Sin(xnom, δ): the set of all input x that are at most δ distant from xnomSin xnom, δ = x: x − xnom ∞ ≤ δ ; ℙ: probability measure.
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— Reliability and reproducibility: a reliable AI system is one that works properly with a range of
inputs and in a range of situations, while reproducibility describes whether an AI experiment
exhibits the same behaviour when repeated under the same conditions. This idea is tied with
the software engineering concept of continuous integration [44], that is, is the algorithm auditable?
(e.g. reliably reproduce its decisions).

4.2. Fairness, bias and discrimination
Fairness as an ideal has been present in different manifestos and charters throughout history, gradually
amplifying its outreach across the population, most notably in the UN Universal Declaration of Human
Rights (1948). Most of the legal bases were developed after multiple public demonstrations, civil rights
movements, etc. and are in many situations set or upheld at constitutional levels. We can mention
a few across different countries. United States: Civil Rights Act (1957 and 1964), Americans with
Disability Act (1990); United Kingdom: Equal Pay Act (1970), Sex Discrimination Act (1975), Race
Relations Act (1976), Disability Discrimination Act (1995) and Equality Act (2010); and those enshrined
in the constitutions of France, Germany, Brazil and many other countries. Indeed, it suffices to say that
notions of fairness appeal to substantive value claims rooted in differing philosophical approaches and
traditions—as such there are often ambiguous interpretations of the word ‘fairness’.

In AI and ML, there are multiple sources of bias that explain how an automated decision-making
process becomes unfair, where the majority of these relate to the training data and are a particular
problem for systems trained on real-world data [38]:

— Systemic or historical biases: ML systems reflect bias existing in the old data caused by human and
societal biases (e.g. recruitment).

— Feedback loops: future observations confirm predictions made, which creates a perverse, or
self-justifying feedback loop (e.g. police records).

— Limited features: features may be less informative or reliably collected for minority group(s).
— Sample size disparity: training data coming from the minority group are much less than those

coming from the majority group.
— Proxies: even if protected attributes are not used for training a system, there can always be other

proxies of the protected attribute (e.g. neighbourhoods).

To diagnose and mitigate bias in decision-making, we first need to differentiate between individual
and group level fairness. (i) Individual: seeks for similar individuals to be treated similarly. (ii) Group:
splits a population into groups defined by protected attributes and seeks for some measure to be
equal across groups. There are multiple ways to translate these concepts mathematically [45–47]; and
deciding which definition to use must be done in accordance with governance structures and on a
case-by-case basis. Also, within group fairness, it is possible to distinguish between the aim of equality
of opportunity and outcome. For example, using features extracted from a video interview to make
recommendations about employability.

— Equality of opportunity worldview says that individuals are treated equally and given the same
opportunities irrespective of their subgroup membership. A mathematical definition that is often
used is the average odds difference [48]:

(4.1)AOD =  12  FPRgroup A − FPRgroup B + TPRgroup A − TPRgroup B ,

with FPR and TPR representing the false and true positive rates, respectively. The underscored
groups A and B reflect the conditioning of FPR and TPR to a given subset of the population
analysed (e.g. group A could represent young individuals and group B adult individuals).

— Equality of outcome worldview says that the extracted features should be related to ability rather
than subgroup membership. In other words, scores across groups should be equal if ability
across groups is equal. Statistical parity difference (SPD) [48] is generally the most adopted form
to represent this idea symbolically:
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(4.2)SPD =
P(ŷ = 1 |group A)P(ŷ = 1 |group B)

≈
Freq(ŷ = 1 |group A)Freq(ŷ = 1 |group B)

,

with Freq representing the empirical frequency of positive/yes/etc. predictions ŷ made by the
model.

We can also list variations of both, like equal reliability (UK-CDEI, 2021). Calibration is also capable
of perpetuating pre-existing biases. It should be noticed that fairness could be interpreted radically
differently in different environments and countries, and, hence, one deployment of a given algorithm
may encounter several different fairness measurement barriers. Finally, it is perhaps worth noting that
it is not mathematically possible to construct an algorithm that simultaneously satisfies all reasonable
definitions of a ‘fair’ or ‘unbiased’ algorithm [45].

4.3. Interpretability and explainability
Being able to provide clear and meaningful explanations is crucial for building and maintaining users’
trust in automated decision-making systems [49]. This means that processes need to be transparent, the
capabilities and purposes of systems openly communicated, and decisions—to the extent possible—
explainable to those directly and indirectly affected. Without such information, a decision cannot be
duly contested [38]. The ultimate user benefits from being able to contest decisions, seek redress and
learn through user–system interaction; the developer also benefits from a transparent system by being
able to ‘debug’ it, uncover unfair decisions and from knowledge discovery.

Hence, the capabilities and purpose of algorithms should be openly communicated, and decisions
be easily explainable to those directly and indirectly affected. These must be done in a timely manner
and adapted to the expertise of the stakeholder concerned (e.g. layperson, regulator or researcher). In
the United States, credit scoring has a well-established right to explanation legislation via the Equal
Credit Opportunity Act (1974). Credit agencies and data analysis firms such as FICO comply with this
regulation by providing a list of reasons (generally, at most four per interpretation of regulations).
From an AI standpoint, there are new regulations that give the system’s user the right to know why
a certain automated decision was taken in a certain form—Right to an Explanation—EU General Data
Protection Regulation (2016).

In the context of AI and ML, explainability and interpretability are often used interchangeably,
although they are distinct [50]. Algorithm interpretability is about the extent to which a cause and effect
can be observed within a system and the extent an observer is able to predict what will happen,
for a given set of input or algorithm parameters. Algorithm explainability is the extent to which the
internal mechanics of an ML (deep learning) system are explainable in human terms. In simple terms,
interpretability is about understanding the algorithm mechanics (without necessarily knowing why);
explainability is being able to explain what is happening in the algorithm.

There are multiple approaches to generate and provide explanations based on an algorithmic
decision-making system. Figure 4 presents the types and levels of explainability: model-specific and
agnostic, global and local [51,52]. Below, we unwrap these concepts, as well as outline some technical
solutions.

Intrinsic: With intrinsic explainability, a model is designed and developed in such a way that it is
fully transparent and explainable by design. In other words, an additional explainability technique is
not required to be overlaid on the model in order to be able to fully explain its workings and outputs.

Post-facto: With post-facto explainability, a mathematical technique is applied to the outputs of any
algorithm including very complex and opaque models in order to provide an interpretation of the
decision drivers for those models.

Global: This facet focuses on understanding the algorithm’s behaviour at a high/dataset/populational
level. The typical users are researchers and designers of algorithms since they tend to be more
interested in the general insights and knowledge discovery that the model produces rather than
specific individual cases.

Local: This facet focuses on understanding the algorithm’s behaviour at a low/subset/individual
level. The typical users of local explanations are individuals being targeted by an algorithm, as
well as members of the judiciary and regulators trying to make a case about potential discrimina-
tion.
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It is important to note that the explainability requirements may be different for different regions
and different use cases. This means that the same approach may not be applicable in all contexts of
deployment of a given algorithm.

4.4. Algorithm privacy
From the principles level, privacy is closely linked to the principle of prevention of harm [38]; systems
can cause or exacerbate adverse impacts owing to asymmetries of power or information, such as
between employers and employees, businesses and consumers or governments and citizens. Prevent-
ing harm demands bespoke data governance that covers the quality and integrity of the data used, its
relevance considering the domain in which the algorithm will be deployed, its access protocols, and the
capability to process data in a manner that protects privacy. It is possible to group these issues in two
key areas:

— Privacy and data protection: systems must guarantee privacy and data protection throughout a
system’s entire lifecycle [53,54]. This includes the information initially provided by the user and
the one generated about the user over the course of their interaction with the system. Finally,
protocols governing data access should be put in place, outlining who can access data and under
which circumstances [55].

— Model inferences: the security of any system is measured with respect to the adversarial goals and
capabilities that it is designed to defend against. In this sense, one needs to provide information
about (i) the level of access the attacker might have (‘black-box’ or ‘white-box’), (ii) where the
attack might take place (inference or training) and (iii) passive versus active attacks [56].

Therefore, the risk assessment of algorithm privacy can be disentangled in ‘data’, ‘algorithm’ and the
interaction between both components. Below, we outline the key methods available to assess risks
coming from each of these elements.

— Data: the standard procedure to assess risks in this vertical is the Data Protection Impact
Assessment [57]. This procedure has been legally formalized in many jurisdictions, such as in
the European Union, United Kingdom, Canada, California and Brazil. In the United Kingdom, as
shown in figure 5, a qualitative rating can be provided depending on the perceived level of data
protection. Another vector is data poisoning [58], where an attacker maliciously manipulates the
training data in order to affect the algorithm’s behaviour.

— Algorithm: the key attack vector in this component is inferring model parameters and building
‘knock-off’ versions of it. To assess vulnerability, the auditor could apply techniques that aim to
extract a (near-)equivalent copy or steal some functionalities of an algorithm [59–61].
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Figure 4. Types and levels of algorithm explainability.
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— Data–algorithm interaction: the attack vectors in this component are inferring about members
of the population or members of the training dataset through interactions with the algorithm.
Attacks such as statistical disclosure [62], model inversion [63], inferring class representatives
[64], membership and property inference [65–67] are different criteria that can be applied to an
algorithm to assess levels of vulnerability.

4.5. Interactions and trade-off analysis
As depicted by figure 6, risk verticals are not independent of each other—they overlap and interact.
For example, debiasing procedures affect the model performance, global and local interpretation and,
potentially, data minimization aspects. Having a clear understanding of what will be traded as a
consequence of improvements in one vertical is becoming less of a technological concern and gradually
more of a requirement across a wide array of guidelines [38,68,69]. Above all, it presents growing
evidence that in the emerging area of trustworthy AI, hardly is there a solution, only trade-offs to be
managed. Though the practicalities of trade-off analysis demand context, nonetheless some general
explorations, roadmaps and guidelines can still be issued and performed. We explore some of these
below.

Explainability versus robustness (accuracy): one that has been extensively explored by different authors
and organizations [69,70] is the interpretability versus accuracy trade-off—sometimes also presented as
explainability versus performance trade-off. Figure 7 shows a typical depiction that can be found in many
documents and papers. Prima facie, that is, looking only at the model function forms and training,
the depiction is broadly accurate. However, such depiction is highly debatable in the light of data
science practice since it could be that a linear model is the most accurate model, but owing to massive
pre-processing performed (e.g. nonlinear features, etc.), the explainability level has been drastically
reduced.

Fairness versus robustness: another trade-off well explored in the literature is fairness (in the form of
algorithm bias) and robustness (in the form of algorithm performance) [71,72,73]. Figure 8 explores a typical
chart about this trade-off. Every dot represents an algorithm setup (parameters, hyperparameters,
etc.); the work of an algorithm designer is to identify the acceptable boundaries of statistical bias and
performance, for example, by adopting metrics like statistical parity and accuracy. These boundaries
can be identified by liaising with business and end users, and by analysing best practices, standards
or regulations commonly adopted in the field of application. In the example depicted in figure 8, the
boundaries are set for −0.1 and 0.1 for bias (statistical parity), and the minimum acceptable perform-
ance of 0.53. From that, we can draw the region of algorithm configurations (or even models) that
dwells within such limits. In this case, only three configurations are feasible from a fairness versus
robustness point of view.

Explainability versus privacy: prima facie, the easier it is to interpret a model, the harder it is to
conceal information or its judgement. Hence, at first sight, interpretability and privacy are negatively
related. However, being able to explain a model’s internal workings such as via feature importance
charts can aid with data minimization [74], a key pillar of algorithm privacy. Using figure 9 as an
example, if we set a threshold of 0.025 to the feature importance metric, we can reduce the number
of variables being used from 20 to only 8. Knocking-off variables ease the explanation of model
judgements and will also reinforce to the end users that their information is used in an efficient manner
but could leave the model or indeed data being more vulnerable to being reverse-engineered.

Fairness versus explainability: improving the explainability of a system as a means to achieve greater
transparency of its use acts as a positive driver to uncover inherent bias and discrimination to all
its users and designers (e.g. [75]). Figure 10a,b presents examples using feature importance charts to
understand the key drivers for a mortgage application processing algorithm. Figure 10a demonstrates
that when we break down the feature importance chart per declared sex, we discover disparities in
how the algorithm is making its judgement—even though we have not included this information as
an input to the model. Loan amount and particularly applicant income are significantly more relevant
variables for female applicants than for male. We can perform a similar analysis, such as in figure 10b,
where a permutation importance method was used on the disparate impact metric (male–female) to
construct the feature importance chart. We uncover that there are disparities, as perceived in figure 10a,
particularly with the loan purpose, type and applicant income.

Interaction between all verticals: there are a few charts that can be crafted to display components of
each vertical. Figure 11 displays one of such, where the key goal is to identify relevant variables and
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undertake data minimization. Relevant variables are defined as having a high impact on an algorithm
performance (accuracy) and a low impact on an algorithmic bias (average odds difference)—both can
be estimated by permutation importance using each as the loss metric. The variables J and K are key
variables, meeting both criteria; the variables G and H could be eliminated since they do not affect
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much the model performance. Having this global understanding of an algorithm’s behaviour will
become an unprecedented component to build and enhance the trustworthiness of an algorithm.

Two other interactions are worth briefly mentioning:

— Robustness versus privacy: both criteria are strongly connected, with techniques coming from the
privacy literature like adversarial testing [56] percolating to robustness, and defence mechanisms
built by the robustness [76] community looping back.

— Privacy versus fairness: respect for privacy and fairness within the same system introduces the
question of trade-offs between the two values. From the perspective of privacy, particularly in
cases of personal data, the further a system is to anonymity the more ‘private’ it can be said to be.
Conversely, in the case of fairness, the concern is that systems perform equally for all protected
attributes and, as such, systems need to be as transparent as possible for fairness to be assured.
The tension between privacy and fairness becomes apparent, where a greater degree of privacy is
likely to come at the price of fairness concerns [77].

Notwithstanding the critical nature of trade-off analysis, it should be noted that the intersection of all
these areas is often impossible to achieve and not always desirable. Trade-offs should be seen as a way
of finding an operational profile that is consistent with the needs of the application, rather than some
abstract goal that needs to be achieved for a notion of ‘completeness’. We also note that while many
of these trade-offs require a technical approach, achieving an equilibrium can be supported by the
establishment and implementation of robust governance processes. For example, the explainability of a
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system can be supported by ensuring that there are comprehensive documentation practices to support
the explainability of model development and specifications without affecting performance [78].

4.6. Future investigations
One of the key challenges is to define what risks should be prioritized and measured. This could be
solved on a case-by-case basis; however, a roadmap or toolkit could be developed to provide business
users and developers with the right recommendations and areas to focus on. In this perspective, future
investigations could look at, given a specific algorithm, how to:

— Define the appropriate vertical or risks that should be prioritized as well as the right control
levels for them.

(i) Bias and discrimination, such as when the algorithm will affect individuals or groups.
(ii) Performance and robustness, such as when the algorithm can cause financial and reputational

damage by not being statistically accurate or brittle.
(iii) Interpretability and explainability, such as when the lack of understanding of the decisions

being made, suggestions being provided, or recourse is needed.
(iv) Privacy, such as when the possibility of leakage of intellectual property or private

information is a feasible event.
— Monitor metrics and recommend interventions depending on the phase, information provided

and the type of project involved.
(i) Development/procurement phase: provide recommendations of useful tools and techniques to

include so that risks can be mitigated and avoided.
(ii) Deployment phase: request information about performance, bias and other metrics that are

needed to assure that the risks are under control.

5. Levels of access for auditing
As previously discussed, the level of access that an auditor has during an investigation of an algorithm
can vary. While the common practice in scientific literature and technical reports is to categorize
the knowledge about the system in two extremes, ‘white-box’ and ‘black-box’, we contest that the
spectrum about the knowledge of a system is more of ‘shades of grey’, that is, a continuum, than this
simple dichotomy. This additional nuance allows a richer exploration of the technologies available for
assessment and mitigation, as well as the right level of data disclosure that a certain business feels
comfortable to engage.

Hence, we can identify seven levels of access that an auditor can have to a system (table 2). It
ranges from ‘process-access’ where only indirect observation of a system can be made to ‘white-box’
where all the details encompassing the model are disclosed. The levels in between are set by limiting
access to the components behind the learning process (e.g. knowledge of the objective function, model
architecture, training data, etc.).

This categorization has the following two monotonic properties:

— Detail: accuracy and richness increase with levels.
— Concealment: information concealed decreases with levels.

In what follows, we explore the trade-off: detail and concealment (figure 12). It is worth mentioning
that Level 7 access allows all the analysis of the above levels, simply because we have full access to
the algorithm. Conversely, analysis and techniques requiring Level 7 cannot be used at Level 6 without
proper assumptions. Hence, Level 7 contains all the assessment, monitoring and mitigation strategies
of upper levels, with the report getting less detailed and inaccurate as levels increase.
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5.1. Level 7: ‘white-box’ auditing
In the ‘white-box’ setup, the auditor knows all the details encompassing the model: architecture or
type f, learning procedure and task objectives L, parameters θ, output y and input x data used to train
and validate the model and the access to perform predictions f(.).

This level of access, identical to the access that the system developer and business user have, allows
the auditor to provide accurate and richer feedback. Accurate because the whole assessment can be
performed using the actual system and based on fewer or no assumptions, and richer because the
number of tests and recommendations that can be made range from the actual model selection to
training, bias mitigation, validation and security. It would be easier to assess mitigation strategies and
provide actual information that can be more easily documented by the developers.

This level of access is more appropriate for internal auditors or in-house consultants since this
would demand an additional level of disclosure that may require non-disclosure, intellectual property
sharing, data sharing, etc. agreements in place.

5.2. Level 6: learning goal
In the learning goal setup, the auditor knows most of the details encompassing the creation and
purpose of the predictive system: learning procedure and task objectives L, parameters θ, output y and
input x data used to train and validate the model and the access to perform predictions f(.).

From a modelling point of view, the auditor knows how to refit/re-learn the model using the actual
incentives/objective function that it was trained on L(fθ(x),y), but without knowing the model f is
family (e.g. kernel method) or components (e.g. number of neurons).

This level of access allows the auditor to investigate an almost accurate picture of the system,
without necessarily infringing on much of the intellectual property. The feedback has a high degree of
detail, with information on the model complexity, stress-testing and trade-off analysis of bias, privacy
and loss being able to be performed without little to no assumptions. This level of access is enough to
perform automated internal and external auditing since the human involvement after setting up the
APIs and environments is considerably low.

5.3. Level 5: parameter manipulation
In the parameter manipulation setup, the auditor can recalibrate/reparametrize the model but has no
information on its type or family, and what is the incentives/objective function it was built on. Hence,
the auditor has access to parameters θ, output y and input x data used to train and validate the model,
and the access to perform predictions (.).

This  level  explicitly  allows the  auditor  to  perform stability  and perturbation analysis  on
the  model  fθ.  Hence,  it  can provide reasonable  feedback,  particularly  covering areas  of  how
stable  the  system is  performing,  its  judgements  and the  explanations  being provided.  Also,
it  would allow the  auditor  to  assess  the  risk  of  functionality  stealing from a  privacy point
of  view.  This  level  of  access  is  relatively  straightforward to  implement  via  an API  and can
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Figure 12. Information concealed versus feedback detail trade-off curve.
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be easily  automated for  external  auditing.  The level  of  information known about  the  model
nature  is  relatively  low,  allowing low infringement  of  intellectual  property  or  disclosures  of
another  nature.  In  addition,  since  the  auditor  can reparametrize  the  model,  and based on certain
assumptions,  the  auditor  can in  practice  retrain  the  model.

5.4. Level 4: outcome access (‘grey-box’)
In the outcome access level, the auditor has the capacity to make predictive calls with the model
using the actual training data and to compare it with outcome/output/target information. Therefore,
the auditor has access to output y and input x data used to train and validate the model and the access
to perform predictions (.).

This setup is deemed by some authors as ‘black-box’ since the auditor does not know the parame-
ters and architecture of the model. From a modelling perspective, a host of techniques are available to
assess and operate at this level, most of them under the umbrella of ‘model-agnostic’ procedures (e.g.
cross-validation, Shapley values, etc.).

Since there are higher levels of non-access, we deem this level as ‘grey-box’ since some information
is still known to the auditor. With the available access and based on a few assumptions, the auditor can
perform concept drift analysis, investigate the accuracy of explanations, perform inversion attacks and
check bias from an equality of opportunity point of view (e.g. equal odds difference). The auditor can
also build baseline or competitor models to f.

Depending on the specifics, this yields a high to medium level of detail in the final feedback
provided. From this level onwards, apart from data-sharing agreements, there is a little to no need to
share intellectual property or development details. The level of automation that can be achieved and
implemented makes it possible to perform most analyses quicker and possibly in real time.

5.5. Level 3: training data access
In the training data access setup, the auditor has the capacity to make predictive calls with the model
using the actual data that has been used to train and validate it but cannot compare the predictions
with the actual data. That is, the auditor has only access to input x data used to train and validate the
model and the access to perform predictions f(.).

The absence of outcome information y makes the problem of assessing the generalization behaviour
of a model hard, particularly to assess its performance. Since only the predictions f(x) are available,
some analysis can still be performed, like computing bias from an equality of outcome perspective (e.g.
disparate impact), property and membership inference or creating surrogate explanations. Synthetic
data, near the actual distribution of the input x, can be generated, allowing for an investigation of the
model’s brittleness to gradual changes in the distribution.

5.6. Level 2: model access (‘black-box’)
In the model access level, the auditor has the possibility to make predictive calls with the model but
without having any information about the actual distributions of the training data. Some metadata
could be shared, for example, the name of the variables, types, ranges, etc. Therefore, the auditor has
only access to perform calls in f(.) using some artificial input x∗.

This level of access entails the least amount of information disclosed to the auditor since no
data-sharing agreements are needed. The level of automation that can be achieved is very high since
only API access is needed to perform the analysis. Most of the quantitative analysis performed is
centred around an adversary setup, resembling the work of threat models performed in the privacy
space. Adversarial attacks, adversarial evaluation of bias and discrimination (fairness), extracting
feature relevance and partial dependency explanations and different forms of privacy attacks (under
the umbrella of statistical disclosure) are typical analyses that could be performed.

5.7. Level 1: process access
In the process access setup, the auditor has no direct access to the algorithm, with its investigations and
interventions occurring during the model development process. With the impossibility of performing
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calls at the model f, the auditor depends on checklists that can be partially qualitative and quantita-
tive information. General and sector-specific guidelines issued by regulators and other governmental
bodies supplemented by a combination of company/application-specific could form the body of the
assessment. Probably for low-stakes and low-risk applications, this level of disclosure and feedback
detail might be the most appropriate.

We believe that the above level of access scheme can be used by regulators and standard bodies
in the context of balancing proprietary respect and risk, where context and sector sensitivities will be
critical in deciding the level of access required.

5.7.1. Future investigations

One of the key challenges is to specify which types of processes would be in play at each of these
levels. For example, for each level, how much interaction would the auditor need with the company
being audited? One can imagine that for the deepest level of auditing, it may be necessary to first
interview the key people in the company to ascertain their desires and goals for the operational
parameters of the algorithms. Conversely, for the lowest level of auditing, simple checklists and
self-assessment forms may be sufficient. Perhaps also, automated tooling running over data and
algorithms to produce high-level analysis.

On a more methodological dimension, it is difficult for those with limited technical knowledge, such
as a non-technical executive or regulator, to assess which is the right level of auditing/oversight needed
for a given algorithm. A roadmap or toolkit could be employed to set the right level of oversight
needed for the AI application being developed or acquired:

— ‘Checklist level’: when the risks are low, and no oversight is needed.
— ‘Black-box level’: when the risks are low-medium and little oversight is needed.
— ‘Grey-box level’: when the risks are medium and some oversight is needed.
— ‘White-box level’: when the risks are medium to high and full oversight is necessary.

To this end, there are emerging legislative requirements for algorithm audits, including the Digital
Services Act (DSA) in the European Union and Local Law 144 in New York City. Although implicit,
each law sets minimum requirements for the level of access that auditees must grant auditors, which
auditees can choose to go beyond for a more comprehensive audit. Indeed, these two laws take very
different approaches to algorithm auditing, with the DSA requiring only process access (Level 1),
where auditors are required to assess the risk mitigation processes put in place by online platforms,
while Local Law 144 requires outcome access only (Level 4) to measure subgroup differences in
outcomes. Codifying audits in legislation in this manner ensures that the level of access is not left to the
discretion of those without the deep technical knowledge required to conduct an audit, maximizing the
value of the audit and legal compliance.

6. Mitigation strategies
Mitigation strategies are a set of techniques employed to address issues highlighted in the assessment
part of algorithm auditing. They consist of specific procedures that can be used in conjunction
to enhance an algorithm’s performance and solve issues like algorithm debiasing or establishing
surrogate explanations. To some extent, they act as ‘add-ons’ to certain stages of model development,
and hence demand retraining and reassessment of the model—figure 13 establishes this feedback loop.
We can highlight two types of mitigation procedures:

— Human: all procedures that involve how algorithm developers design, collaborate, reflect and
develop algorithms. These procedures can involve (re)training, impact assessment, etc.

— Algorithm: all methodologies that can be applied to improve an algorithm’s current outcome.

These approaches are not in conflict and one solution may end up using both procedures in concert.
In this section, we explore mainly the mitigation strategies that can be employed to improve an
algorithm’s robustness, explainability, privacy and fairness.
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Performance and robustness: each technical criterion listed in §4.1 embodies several technical
mitigation strategies (table 4). These technical strategies can aid the analyst in measuring the expected
generalization performance, detecting concept drifts, avoiding adversarial attacks and having best
practices in terms of systems development and algorithm deployment.

Explainability and interpretability: most interpretability and explainability enhancing strategies
concentrate on processing and post-processing stages (table 5). We can split the procedures mainly into
the model-specific and model-agnostic axis, with all model-specific approaches being able to provide
global and local explanations by design (in-processing). Model-agnostic procedures act as a post hoc
‘wrapper’ around an algorithm, with some techniques only focusing on local explanations (e.g. LIME)
or global explanations (e.g. partial dependency plots). The mitigation strategies need to consider the
use case domain and level of risk, the organization’s risk appetite, all applicable regulations and laws
and values/ethical considerations.

Bias and discrimination: regardless of the measure used, algorithm bias can be mitigated at different
points in a modelling pipeline: pre-processing, in-processing and post-processing [48]. Table 6 presents
a snapshot of different methodologies to mitigate bias in AI systems.

Algorithm privacy: from an engineering standpoint, there are emerging privacy-enhancing techni-
ques to mitigate personal or critical data leakage. These techniques can act in different moments of
the system development: (i) during the pre-processing stage by feature selection, dataset pseudo-ano-
nymization and perturbation; (ii) during in-processing by using federated learning, differential privacy
and model inversion mitigation; and (iii) deployment by implement rate-limiting and user’s queries
management. Table 7 presents these methods and key references.

6.1. Future investigations
On the mitigation point generally, one assumes that the auditor would recommend the mitigation
procedures that would need to be applied in order to address identified issues. Perhaps they would
recommend a range of options or require a given mitigation mechanism to be performed. Different
levels would demand different timelines and activities. Figure 13 fleshes out the general perspective,
but one could explore in more detail what could be done on different levels, such as

— Level 7: ‘white-box’ level
(i) starts with an interview for goals and context with the development and business team;

(ii) deep dive to examine the system with the development team;
(iii) write a report with the details of the system and the business problem it is aiming to solve

as well as recommendations to improve it;
(iv) mitigation strategies are implemented, and the system is re-developed;
(v) another audit is performed to assure that the key performance metrics are attained.

— Level 1: ‘checklist’ level

• Data and Task

• Pre-processing

• Modelling

• Post-processing

• Deployment

• Robustness

• Privacy

• Fairness

• Explainability

• Anonymization

• Synthetic Data

• Surrogate Explanations

• Training

Development Assessment Mitigation

Figure 13. Feedback loop: from model development, assessment and mitigation, to redevelopment, reassessment and re-mitigation.
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(i) starts with a self-assessment performed by the team developing the system;
(ii) depending on the stage of development and verticals to be prioritized, recommendations

of interventions or metrics are reported;
(iii) a final documentation is issued with possible monitoring and checkpoints for further

assessment.

Table 4. Mapping technical criteria and solutions for algorithm robustness and performance.

criterion technical solution

expected generalization performance

• cross-validation [43]: k-fold-cv, leave-one-out, etc.
• covariance-penalty [20]: Mallow’s Cp, Stein unbiased risk estimator
• concept drift [79,80]: gradual mitigation, abrupt correction and pre-emptive

detection

adversarial robustness
• evasion attacks: fast gradient sign method [81], DeepFool [82], etc.
• defence: label smoothing [76], variance minimization [83], thermometer

encoding [84], etc.

formal verification
• complete: satisfiability modulo theory [85,86], mixed integer programming [87],

etc.
• incomplete: propagating bounds [88], Lagrangian relaxation [89], etc.

reliability and reproducibility

• code versioning: Git (Github), Mercurial (BitBucket), etc.
• reproducible analysis: Binder, Docker, etc.
• automated testing: Travis CI, Scrutinizer CI, etc.

Table 5. Modelling stage and different technical solutions for algorithm explainability and interpretability.

stage/method technical solution

in-processing/model-specific

• rule-based explanations: decision trees, rule-induction methods
• model’s coefficients: linear regression, linear discriminant analysis
• nearest prototype: k-nearest-neighbour, naive Bayes

post-processing/model-agnostic

• surrogate explanations: LIME [90], explainable boosting machines [91], PIRL [92]
• perturbation: gradient-based attribution methods [93], permutation Importance [94],

SHAP [95]
• simulation analysis (what-if?): counterfactual explanations and algorithmic recourse

[96,97]

Table 6. Modelling stage and different technical solutions for algorithm bias and discrimination.

stage technical solution

pre-processing

• reweighing subjects [98]
• oversampling minority groups [99]
• disparate impact remover [72]
• learning fair representations [100]

in-processing

• adversarial debiasing [101]
• fairness constraint [73,102]
• counterfactual fairness [103]

post-processing
• calibrated equality of odds [104]
• reject option classification [98]
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7. Assurance processes
The broader outcome of an auditing process is to improve confidence or ensure trust in the underly-
ing system. After assessing the system and implementing mitigation strategies, the auditing process
assesses whether the system conforms to regulatory, governance and ethical standards. However, it
should be noted that this declaration does not necessarily mean that the system is compliant with other
relevant laws depending on whether they were included in the framework used to inform the audit.
Indeed, the focus of the audit could be compliance with a particular standard or code without taking
into consideration other wider laws.

Providing assurance, therefore, needs to be understood through different dimensions and steps
need to be taken so that the algorithm can be shown to be trustworthy.

Figure 14 outlines the steps towards assurance: combining governance and impact assessments
with audit and technical assessment; finding equivalent standards and regulations in the sector/end-
application; generating a document/audit trail that will feed into certification and insurance as part of
assurance. We expand each point in the forthcoming subsections.

7.1. General and sector-specific
The satisfaction of a particular standard—e.g. certification, auditability, etc.—will become mandatory.
We read this from the growing calls for AI, ML and associated algorithms to be responsibly devel-
oped and appropriately governed [13,68,112]. We anticipate that standards will be both general and
sector-specific:

— General standards: the guidance (which may or may not be legally codified) will encompass
broad dimensions such as privacy, explainability, safety and fairness, and these will be set by
institutions and bodies with non-sector specific remits (e.g. the UK’s Information Commissioner’s
Office). Developments in this space are becoming more concrete. For instance, in the publica-
tion of ‘Explaining Decisions Made with AI’, the Information Commissioner’s Office and The
Alan Turing Institute [69] advise on how organizations can explain the processes, services and
decisions delivered or assisted by AI to those that are affected by such decisions—the guidance
outlines explanations in terms of who is responsible, data choices and management, fairness
considerations, safety and impact. The International Organization for Standardization (ISO)
and the International Electrotechnical Commission (IEC) have made the Artificial Intelligence
Standard ISO/IEC 22989, which provides guidance on technologies such as natural language
processing and computer vision and provides a comprehensive list of definitions to promote the
development of a shared vocabulary freely available to the public. Furthermore, EU standards
bodies CEN-CENELEC have been tasked with the development of standards to support the
implementation of the EU AI Act over the next few years.

— Sector standards: sector-specific guidance already exists, which addresses idiosyncrasies of
application. For example, the UK’s Financial Conduct Authority is leading in the debate on
standardizing AI systems in financial services [113], the UK’s Care Quality Commission in ML
development for medical diagnostic services [114], USA’s Department of Defence in the defence
space [115]. In addition to sector-specific regulators issuing guidance, sectors themselves are
developing their own standards and approaches to best practice. Recruitment is an example of

Table 7. Modelling pipeline and different technical solutions for algorithm privacy.

stage technical solution

pre-processing

• data minimization by dim reduction [74]
• dataset (pseudo-)anonymization [105]
• dataset perturbation [106]

in-processing

• federated learning [107,108]
• differential privacy [109,110]
• model inversion mitigation [63]
• data poisoning defence [111]

deployment
• rate-limiting
• user’s query management
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this [116]. Application-specific standards, like the USA’s NIST for Facial Recognition [117], are a
promising avenue.

7.2. Governance
Governance can be divided into two broad streams, namely technical and non-technical:

— Non-technical governance: concerns systems and processes that focus on allocating decision
makers, providing appropriate training and education, keeping the human-in-the-loop and
conducting social and environmental impact assessments. The issue of accountability and
sector-specific particularities dominate the current debate; here, what is being referred to is

(i) who will be liable if something goes wrong (processor, controller and user), that is, the
allocation of responsibility;

(ii) what current legislation like GDPR, financial regulations, etc. have to say on a case-by-case
basis; and

(iii) differences between countries and economic blocks.
Within this context, there is also a literature on algorithmic impact assessments, which
calls for doing a data protection impact assessment when algorithms are used [118–121].
Additionally, there are calls for AI impact assessments that address issues of human rights
and social and environmental concerns (EU-HLEG, 2018) [122].

— Technical governance: concerns systems and processes that render the activity of the technology
itself accountable and transparent. This touches upon ethical-by-design and technical auditing
(involving the creation of quantitative metrics for tracing and tracking decisions, making the
technologies accessible for verification and accountability). The main dimensions of technical
auditing that will be explored are given in [13]:

(i) Robustness and performance: systems should be safe and secure, not vulnerable to tampering
or compromising—including the data they are trained on. Key concepts in this dimension
are resilience to attack and security, fallback plan and general safety, accuracy/performance
and reliability and reproducibility.

(ii) Bias and discrimination (fairness): systems should use training data and models that account
for bias in data, to avoid unfair treatment of certain groups. By bias we mean, for example,
yielding more false positives to a group in relation to another (young people versus older
people, etc.). Key sources of bias include tainted or skewed examples, limited features,
sample size disparity and proxies to protected attributes.

(iii) Explainability and interpretability: systems should provide decisions or suggestions that can
be understood by their users and developers. Key techniques in this space are individ-
ual/local explanations, population/global explanations, model-agnostic and model-specific
interpretations.

Governance & Impact

Assessments

Audit/Technical

Assessment

Documentation/Audit Trail

Recruitment

Financial

Services

Standards/Regulation

Insurance

Certification

Health

Figure 14. Diagram outlining the steps towards assurance: combining governance and impact assessments with audit and technical
assessment; finding equivalent standards and regulations in the sector/end-application; generating a document/audit trail that will
feed into certification and insurance as part of assurance.
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(iv) Privacy: systems should be trained following data minimization principles as well as adopt
privacy-enhancing techniques to mitigate personal or critical data leakage. Key concepts in
this area are data protection, quality, accuracy, integrity and access to data and decisions.

7.3. Monitoring interfaces
A risk-based approach, as observed in the European Commission’s white paper on AI and the German
Data Ethics Commission [123], outlines two distinct notions of risks:

— Sectoral: where high risk is identified with respect to things such as healthcare, transport, energy
and parts of the public sector (e.g. asylum, social security and employment services).

We note that all these sectors have the commonality of human impact, that is, whether a service,
instruction, decision, etc. impacts a human user and citizen. This is a broad, abstract and blanketed
approach, that is highly likely to result in two things: (i) risk aversion and (ii) autonomous systems
becoming a high-cost venture. For example, a simple healthcare booking chatbot can become economi-
cally unfeasible because it falls under healthcare. Similarly, in the context of high-risk high-reward, a
risk-based approach based upon sector will discourage potentially high-positive impact algorithmic systems
(e.g. medical applications of AI have significant risk and lifesaving potential). As such, we believe this
will stifle innovation.

— Use: the second notion of risk introduced is that ‘where use means that significant risk is likely to
arise (risk of injury, death or significant material or immaterial damage)’.

A concern with this categorization of risk is that it is unclear how unintended consequences can be
assessed. We argue that risk can be thought of in terms of known and unknown risks and technical and
non-technical risks (presented in ‘risk matrix’ table 8) [124].

Given the problems referred to above and the vagueness of ‘risk’ in these calls, drawing from
industry precedence, intuitive performance dashboard stop-light interfaces have been proposed. These
will facilitate monitoring of performance over time [1,125], with green, amber and red representing
high performance, satisfactory performance and poor performance, respectively. Furthermore, from a
regulatory and standards standpoint, the UK’s Information Commissioner’s Office has a colour-coded
‘Assurance Rating’ for data (figure 5). A stop-light system can be used in several ways, like in the
deployment phase where green, amber and red can be read in terms of how a system is performing
in accordance with the purpose of its deployment. Within the context of assurance and audit the
respective colours can be read in terms of high-performing/compliant (green), low-performing/compli-
ant (amber) and non-compliant (red).

7.4. Unknown risks
Foundational to safety is that steps should be taken and procedures in place that prevent harm. This
preventative approach requires that risks are anticipated in order to ensure that the chances of them
occurring are mitigated, and if they do occur, then the impact is minimal. In order to do this, risk
assessments are performed. In the context of the above, we can think of two kinds of risk assessment:

— Technical audits: conducted in the development phase and for live monitoring.
— Impact assessments: conducted before deployment and to design mitigation strategies.

Note that in table 8, the known technical and non-technical risks are covered by audit and impact
assessment; this leaves unknown technical and non-technical risks, and one approach to address these
is through ‘red teaming’ algorithms [1]:

— Red teaming: a systematic attempt to probe, expose flaws and weaknesses in a system, proc-
ess, organization etc., both technical and non-technical, is undertaken. The ‘red team exercise’
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assumes the persona of a hostile agent, with the hope that in exposing thereunto unanticipated
weaknesses, that is, unknown risks, the risk mitigation can be improved.

Although there will still be unknown risks, it is hoped that best practices can be established through
such activities; notwithstanding proprietary issues, this can be facilitated through knowledge transfer
(via publication of methods to probe ‘attack’ and mitigate) [1].

7.5. Certification
Certification is part of the assurance process that confirms that a system, process, organization, etc.
satisfies a particular standard. It is typically intertwined with regulatory requirements. However,
certification can also be granted by industry bodies or other recognized authorities. We read certifica-
tion as a final ‘stamp’ or confirmation, which can be achieved by providing evidence and proving that
a system, process and organization have satisfied a given set of standards. Certification may come in a
number of forms, including:

— Certification of a system: here, likely in line with national regulatory and standard bodies, the use
of AI, that is, the systems and governance, may be certified as trustworthy or responsible. This
may be akin to the granting of an organizational licence.

— Sector-specific certification: here, it is possible that sector standard bodies and regulators issue their
own sector-specific certification.

— Certification of a responsible agent: good practice and industry standards within the context of data
protection have led to the position of a ‘data protection officer’, and, by analogy, something akin
to a ‘responsible AI Officer’ may emerge. These officers may be certified.

— Certification of algorithm engineers: here, the AI engineers may be certified, for example, by being
granted a license by or admission into an accreditation organization (cf. trade association).

Another possibility is that certification may be issued for specific aspects of a system; here certifications
for robustness, explainability, privacy and bias and discrimination may be issued.

7.6. Insurance
Closely related to assurance is the insurance of algorithms. It is possible that this will become a
significant risk mitigation requirement for companies engaged in automation and as such a significant
market for insurers. We envision that this will align closely with explainability and algorithm auditing
in accordance with regulations and standards. Pricing such contracts will demand an understanding of
the risks involved in each vertical of the algorithm system (robustness, bias, etc.) as well as indemnity
insurance for high-risk sectors or high-risk end applications.

7.7. Future investigations
Certification is a topic that demands a section of its own. Questions related to: should one certificate
be issued for the whole process or parts of the system? What could be shared with third parties to
declare that the algorithms have been audited and verified? This brings us to the area of certificating
authorities—who they are and what are their roles? How do they (if at all) differ from the auditor?

Table 8. Risk matrix outlining concerns and mitigation between technical/non-technical dimensions and known/unknown risks.

audit and impact assessment known unknown

technical
bias/fairness; safety; explainable; accessibility;

data protection; trails; verification;
comprehensibility

breakdown/robustness; nature of
hack (theft; DOS)

non-technical
governance; oversight; whistle blowing;

lack of education (education/training);
authorization

trust; reputational; psychological and
social impact; loss of skills
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Accountability roles are a topic that also demands another section, separating the obligations of each
of the players in the supply chain—the one that commissions the algorithm, the designer, the coder,
the tester, the operator and so on. One can use analogies such as a comparison with the general
product safety regulations, where the obligations are primarily on the manufacturer of goods, but the
distributor and retailers have lesser but serious obligations to ensure safety.

8. Final remarks
This work is a first step towards understanding the key components underlying algorithm auditing.
We provide a list of definitions and a taxonomy since this area is a combination of research done
mostly in silos, such as bias and discrimination, robustness, explainability and privacy. Translating
concepts such as accountability, fairness and transparency into engineering practice is non-trivial,
with its impact perceived in design choices, algorithms to be used, delivery mechanisms and built
infrastructure. This demands a full integration with respect to governance structures with real-time
algorithm auditing.

We foresee that a new industry is emerging, Auditing and Assurance of Data and Algorithms, with
the remit to professionalize and industrialize AI, ML and associated algorithms. Since the magnitude
of the challenge will increase year-on-year for the foreseeable future, this industry will increasingly
demand human capital (AI/digital ethicists and data scientists), RegTech-inspired solutions and
business models [126] and (thought-)leadership from concerned regulators, politicians, NGOs and
academics.

Below, we highlight related questions (which have not been covered extensively in this article):

— AI, ML and algorithm ethics: with the proliferation of AI research and deployment, along with
high-profile cases of harm, awareness of the social impact and ethical implications of AI has risen
to the fore. What is now referred to as ‘AI ethics’ or ‘trustworthy AI’ or ‘responsible AI’ is the
body of literature that has resulted because of this consciousness and debate [127]. The field of
AI ethics has undergone three broad phases [128]: principles, ethical-by-design approach, and
indeed the current phase, which is concerned with the need to standardize and operationalize
the AI ethics discipline.

— Legal status of algorithms: there is a growing discussion regarding algorithms and the law, in
particular, concerns regarding fairness and automation [40] in the judiciary concerning the
‘status of algorithms in law’. In law, as we know, companies have the rights and obligations of a
person. Algorithms are rapidly emerging as artificial persons: a legal entity that is not a human
being but for certain purposes is legally considered to be a natural person [2]. The argument
is that since algorithms are doing or intermediating business (agency) with humans, companies
and even other algorithms they also need to have the status of an artificial person in law.

Finally, to reiterate, there is a growing demand for a tool that could assist procurement, information
security and internal developers of AI applications to self-assess a solution and flag if:

— They are performing low-risk applications and should go ahead.
— They are performing medium-risk applications and should provide more information and

implement mitigation strategies.
— They are performing high-risk applications and should go through a review process before

deploying their solution across business.

We posit that the proposed instrument for this evaluative purpose is algorithm auditing. It is our
contention that algorithm auditing, as an integral facet of AI risk management, is poised for exponen-
tial growth in the forthcoming decade. This trajectory aligns seamlessly with the increasing emphasis
on, and concomitant regulatory and legal imperatives pertaining to, the comprehensive management
of risks associated with AI applications.
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