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Abstract—Falls are a major health concern for the elderly as
it threatens their livelihood and independence. Nearly 50% of the
older adults, aged over 65 years old, fall in a span of 5 years, with
62% sustaining injuries and 28% extensive protracting injuries.
This paper presents a high accuracy contactless falls detection
framework based on channel state information extracted from
software-defined radios. The aim is to develop a system capable
of detecting whether an individual subject is present within the
sensing area, or if the subject is falling, and, finally, if the
subject is performing one of three other activities, including
sitting, standing, and walking. The results showed a promising
detection accuracy of 95.6% and 98%, using the 10-fold cross-
validation and train-test split methods, based on the Random
Forest classifier, respectively. Furthermore, we present a real-
time analysis of the system to highlight its capability to detect,
analyze, and report falls in real-time.

Index Terms—Falls detection, Channel State information, Ma-
chine learning, Random Forest

I. INTRODUCTION

Falls are the second leading cause of unintentional injury
deaths worldwide [1], as well as a major cause of distress,
pain, injury, loss of confidence and loss of independence. In
England, around a third of people aged 65+ and around half
of the people aged 80+ fall at least once a year [2].

Detecting the falls can be life-saving, especially if the per-
son becomes unconscious or immobilized. Several technolo-
gies have been investigated for fall detection, such as multi-
sensor-based [3], radar-based [4], wearables [5], [6], vision-
based [7]–[9], and using Channel State Information (CSI) [10]
systems. However, some drawbacks and limitations exist that
needs to be addressed. For example, vision-based systems raise
several privacy challenges. Wearable systems have to be on the
user, which can be restricting and uncomfortable, and radar-
based systems can be complicated and costly to install. Other
systems such as [10] developed a fall detection system based
on CSI; however, their system relied on the use of multiple
transceivers, each having more than a single antenna.

In this paper, a contactless fall detection system using
CSI extracted from Software Defined Radio (SDR) devices
is proposed. We chose to use CSI in our fall detection system
because CSI systems do not suffer from the aforementioned
drawbacks. I.e. they are contactless and not costly since

they can be set up using a single WiFi router which is
commonly available in each household. Moreover, CSI from
Commercial Off-The-Shelf (COTS) WiFi devices have been
successfully used for minute movement recognition, such as
gesture recognition [11] and keystroke tracking [12].

The falls, amongst other activities, are detected and clas-
sified using a Machine Learning (ML) algorithm, particularly
the Random forest classifier. The algorithm was trained on data
collected after conducting an experiment using the Universal
Software Radio Peripheral (USRP) devices, working as SDRs,
as highlighted in Section II. The contributions presented in this
paper are as follows:

1) Multiple-activities and fall detection system, with high
classification accuracy, using a single antenna transmit-
ter and a single antenna receiver.

2) Individual occupancy monitoring - Identifying whether
the subject is performing an activity, falling, or if the
room is empty.

3) Capability of the framework to detect the falls in real-
time by measuring and analyzing fall detection classifi-
cation time.

The rest of the paper is structured as follows: Section II
presents and discusses the data collection technique, experi-
mental setup including the hardware and software components,
and the analysis techniques; Section III presents the results and
a discussion of them; Finally, the paper is concluded in section
IV.

II. METHODOLOGY

The system consists of hardware and software components
for data collection, training, and system testing.

A. Data Collection

We chose to create our dataset in this work to have more
control over the setup configuration parameters. The data
was collected by performing the action (activity) in between
transmitting and receiving USRP devices, as depicted in Fig.
1, which also shows the main system components.

The activities chosen for this work are Falling, Walking,
Sitting, and Standing. These activities were the main focus
because they are the most common activities performed by



Fig. 1. Hardware data collection setup. The USRP X300 was used as the
transmitter (Tx), the X310 was used as the receiver (Rx) and both USRPs
utilized the VERT2450 omnidirectional antenna. The USRPs were operating
at 5.00GHz and were connected, individually, to Personal Computers (PCs)
via a 1G Small Form-Factor Pluggable (SPF) connector. The PCs were
running Ubuntu 16.04 on an Intel(R) Core (TM) i7-7700 3.60GHz with
16GB of RAM.

one person in a closed environment. To create the dataset, the
CSI for the aforementioned activities were generated by using
the system setup mentioned earlier in a 3m × 3m room at
the James Watt South building of the University of Glasgow,
where there is an active ethical application. The USRP devices
were placed at two opposite corners in the room at 45° angle,
and the activities were performed between them, as shown
in Fig. 1. The created dataset consisted of 5 classes Falling,
Walking, Sitting, Standing, and Empty, where every class had
50 samples with ≈ 1200 feature each. The Empty class was
the CSI for an empty room.

B. Training and Testing Algorithm

The ML algorithm used in this work is the Random Forest
with 10-fold cross-validation and the train-test split methods.
It was used because of its superiority over other algorithms,
namely K-Nearest Neighbours (KNN) and Support Vector
Machine (SVM) in similar cases, as per a previous study
conducted by the authors [13]. The Random Forest algorithm
establishes and utilizes a collection of decision trees to predict
the output based on features learnt during training [14].

C. Evaluating the Framework’s Real-time Performance

We have modelled the framework as a single queue with a
deterministic inter-arrival rate λ(1/s) [15], that depends on
the duration of the fall and the USRP sampling rate. The
time taken by the system to detect a fall is represented as the
queue service time µ(1/s), which is a random variable that
can be assumed to follow an exponential distribution, as will
be validated in Section III. The number of servers here is one,
since we have one server where the detection is performed.
Thus the framework is modelled as a D/M/1 queue.

To measure the framework’s performance and responsivity,
we have used the queue model to evaluate its delay time. The
mean delay time (E[T ]), accommodates the queuing time (W )
and the service time (S), as follows,

E[T ] = E[S] + E[W ], (1)

where E[.], is the expectation operator. The service time is
calculated using E[S] = 1/µ. Hence, the expected delay is
[16],

E[T ] =
1

µ
+

β

µ(1− β)
, (2)

where β for deterministic inter-arrival time can be obtained
using Lambert W function (W ) [17], as follows:

β = −ρW
(
− eρ

−1

ρ−1

)
, (3)

where ρ refers to the server utilization, that is,

ρ =
λ

µ
.

In the performed experiment, the detection time (service
time) was measured for 50 falls, then averaged to find their
median, to minimize the effect of any outliers. The inter-arrival
time was set to 3 s to ensure that the activity occurs and the
change in the CSI is observed. It is worth mentioning that in
3 s, the number of CSI readings is 1200 samples.

III. RESULTS AND DISCUSSION

To highlight the contributions outlined earlier in Section I,
this section presents two sets of results. The first will evaluate
the classification accuracy of the ML model, with emphasis on
the fall detection, through a 10-fold cross-validation and the
train-test split methods, based on the Random Forest classifier.
The second will present a method to compute and analyse the
time taken to classify the activity in real-time once the model
is built.

A. Fall Detection Accuracy

To evaluate the system’s capability to detect falls when they
happen, all 250 samples, representing the 5 classes, were used
to build one data set. On this data set, and as mentioned
earlier, two experiments were performed to test the strength
of the ML model. The first was the Random Forest 10-fold
cross-validation which showed a high accuracy of 95.6%. The
second experiment was a train-test split where 20% of the data
were taken as “unseen testing data.” The remaining 80% were
used to train the ML model. The results of the train-test split
method reported 98% accuracy. The confusion matrices for
both experiments were generated to look closer at each class
and evaluate the system’s performance, see Fig. 2.

The confusion matrices presented in Fig. 2 show the results
of the 10-fold cross-validation and train-test split experiments.
Both matrices show the number of samples correctly classified
and the ones that were misclassified. In Fig. 2a, that is, the
confusion matrix for the 10-fold cross-validation, the two best
performing classes are the Empty and the Falling, with accura-
cies of 100% and 98%, respectively. The recorded accuracies
show that the system can differentiate, with high accuracy,
between an empty room and a subject falling in it. What
further strengthens the system and the ML model is the inter-
class variation from the presence of three more classes, that is,
Sitting, Standing, and Walking. However, the misclassification



Fig. 2. (a) 10-fold Cross Validation, (b) Train-Test Split. Confusion matrix
for all five classes with the Random Forest algorithm.

was slightly higher with those three classes, and the recorded
accuracies were 92%, 92%, and 94%, respectively.

In Fig. 2b, the results further support the strength and
capability of the system to detect, amongst other activities, if
the subject has fallen. As per the presented confusion matrix,
the trained ML model managed to classify with an accuracy
of 100% the “unseen testing data” from the first four classes
and misclassified a single sample from the Walking class, as
Standing.

To shed some light on the previously reported misclassifi-
cations, as per the confusion matrices, Fig. 3 shows the CSI
captures of the five classes Falling, Walking, Sitting, Standing,
and Empty. Although the variation in patterns is quite clear,
showing the distinct features within each class/activity, some
of the features, represented by the CSI data, have similar
patterns as can be seen in parts of the plot. Given the
limited number of samples collected for this experiment, this
similarity in the patterns can mean that the ML model will
confuse samples that belong to one class, with another. This
is potentially the reason for the misclassification presented in
the confusion matrix; however, further investigation is needed
through more data collection.

B. Real Time Detection Performance

Initially we started by validating the exponential service
time assumption. Fig. 5, shows the histogram of the measured
detection time, showing that the falls detection time follows an
exponential distribution. In particular, the measurements show
that even for 50 data points the distribution is observable, thus
we can verify the assumption.

Next, we measured the average detection time. Fig. 4 shows
the detection time for the 50 iterations. We can observe that
the majority of the falls were detected in less than 0.079 s.
Nevertheless, an outlier exists in the tested data points. Hence,
the median was used to evaluate the expected detection time.

The delay time calculated using Equation (2) gives us a
value of 0.073 64 s. Thus we can conclude that the framework
can detect falls in real-time. In particular, the framework can
detect in less than 0.1 seconds and with high accuracy.
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Fig. 3. Channel State Information for the five classes.

Fig. 4. Measured detection time for all of the 50 Falling samples.
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Fig. 5. Histogram of the measured falls detection time.

IV. CONCLUSIONS AND FUTURE WORK

This paper presented an AI-enabled contactless sensing sys-
tem for presence, activity, and falls detection. The accuracies
reported by the Random Forest 10-fold cross-validation 95.6%
and the train-test split method 98% are promising and show
the potential of the proposed framework to play a vital role
in in-home activity monitoring and falls detection systems.
Moreover, the real-time analysis of the falling data has shown
that the system can also detect falls in real-time. The steps
to follow involve recreating the environment from this paper
and collecting more data whilst introducing further inter-class
variations, adaptation of transfer learning, and implementing
the system such that classification is performed in real-time.
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