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Abstract  

To effectively interact with the environment, we must estimate the reliability or ‘precision’ of what 

we perceive. Assessing our confidence in our senses depends on metacognitive monitoring 

mechanisms in the brain, which many think are influenced by contextual information and prior 

beliefs. However, it remains unclear whether and how our brains generate these ‘beliefs about 

precision’, and how they influence confidence, awareness and behaviour. This thesis provides an 

insight into these questions. 

The thesis is arranged as follows. After reviewing the relevant literature in Chapter 1, Chapter 2 

describes empirical and computational work testing the influential theory that the mind is ‘Bayesian’ 

– the idea that agents form expectations about precision and use these to guide confidence and 

awareness. In each experiment, participants acquired probabilistic expectations about the likely 

strength of upcoming signals, while making confidence (Exps 1-2) or subjective visibility ratings 

(Exp 3). Computational modelling (Exp 4) revealed that the effects of these expectations on 

awareness could be well-explained by a predictive learning model that infers the precision 

(strength) of current signals as a weighted combination of incoming evidence and top-down 

expectation. These results suggest that agents do not only ‘read out’ the reliability of information 

arriving at their senses, but also take into account prior knowledge about how reliable or ‘precise’ 

different sources of information are likely to be. 

Chapter 3 investigated the neural mechanisms underpinning the formation and use of 

expectations about precision. After adapting and piloting the paradigm used in Chapter 2 (Exp 5) 

we conducted a 3T functional magnetic resonance imaging (fMRI) experiment to investigate the 

how sensory uncertainty is represented in the brain (Exp 6). Using multivariate pattern decoding, 

we found representations of sensory uncertainty in the insula, which critically were also modulated 

by expectations about precision. One possibility is that the insula plays a role in encoding 

‘precision prediction errors’ needed to form the expectations about precision seen in Chapter 2.  

In Chapter 4 we investigated whether the ‘expected precision’ mechanisms identified in previous 

chapters generalise from the visual domain to our perception of speech – and how these 
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mechanisms may be connected to unusual hallucination-like experiences. Across two studies 

(Exps 7 & 8) we find that expectations about precision can similarly bias subjective impressions of 

spoken voices. Moreover, we find some evidence that those prone to hallucinations relied less on 

these contextual cues when estimating the reliability of the sensory world. This result suggests that 

the fundamental cognitive and neural mechanisms identified in previous chapters could be 

disrupted in psychotic illness.  

In Chapter 5 we investigated how expectations about precision influence one aspect of 

metacognitive control: the control of evidence accumulation (Exp 9). And in Chapter 6 we 

investigated how representations of sensory uncertainty more generally control another aspect of 

metacognitive control: seeking information (Exps 10 & 11). Chapter 7 provides a Discussion. 
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Chapter 1: Introduction  

Bayesian models of the mind suggest that successful perception, action and cognition depend on 

estimating uncertainty. For example, tracking the uncertainty of our perceptual systems allows us 

to engage in sophisticated forms of monitoring and control. Imagine you are driving your car as the 

sun begins to set. As the sunlight wanes, the information landing at your senses becomes less 

reliable, leading to less accurate percepts. Importantly, by tracking these changes in sensory 

reliability, we can act in ways that optimise perception and action. For example, we might turn on 

the headlights to make things clearer.  

Psychologists and neuroscientists have often thought about this kind of uncertainty monitoring 

through Bayesian models and the idea of precision. Bayesian accounts assume that agents track 

the uncertainty of their own internal states by tracking the noise or variability in different parts of 

their cognitive machinery. The concept of precision features prominently in Bayesian theories of 

perception, decision-making, and metacognition.  

In this Introduction, I outline some examples of how the idea of precision has been applied in 

different cognitive domains, before pinpointing a key unanswered question in this domain. In 

particular, current models assume that agents can form ‘beliefs about precision’ and these beliefs 

influence how cognition and behaviour unfolds. Testing this idea is the central focus of this thesis – 

and the Introduction closes with an outline of the thesis, and how different elements help us to 

answer this question. 

1.1. Precision in Bayesian models of perception 

Bayesian models of perception propose that individuals estimate the precision of sensory inputs 

and use these estimates to prioritize information from the most reliable sources during the 

combination process (Ernst & Banks, 2002; Yon & Frith, 2021). Ernst and Banks (2002) 

demonstrated this in a study where participants performed a task judging the height of bars using 

visual and tactile information. By introducing noise to the visual signals, the researchers showed 

that participants relied on vision when noise was low but shifted to touch when visual noise 

increased. A maximum-likelihood model supported these findings, showing that participants 
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adjusted sensory weights based on the reliability of each channel, favouring the more precise input 

(i.e., more weight was given to visual signals when noise was low, and vice versa when noise was 

high). 

This account has also been used to explain multisensory illusions such as the ventriloquist effect, 

where the perceived location of a sound is biased towards concurrent visual information, which 

leads people to believe that a ventriloquist’s voice seems to belong to the puppet (Alais & Burr, 

2004). Here researchers demonstrated that when visual stimuli are clear and precisely localised, 

they tend to dominate auditory stimuli, whereas when the visual stimuli were blurred and less 

reliable, auditory cues dominate. This process aligns with this the model proposed by Ernst and 

Banks (2002), where the brain weights sensory inputs based on their relative reliability. This idea of 

combining multiple sensory signals based on precision or reliability of the independent signals 

forms the basis of many theories of perception and has since been demonstrated to be a cross-

species phenomenon (Fetsch et al., 2012; Sheppard et al., 2013). 

Precision also features heavily in models of perceptual decision-making but in this case, instead of 

combining two streams of sensory information, it has been proposed that bottom-up sensory 

information is combined with top-down expectations about what we are likely to perceive (de Lange 

et al., 2018; Yon, 2021; Yon & Frith, 2021). For example, in a desert during a sandstorm our 

incoming visual information is likely to be ambiguous or imprecise (Yon & Frith, 2021). You can 

generate more reliable inferences of what shapes are in front of you by incorporating prior 

knowledge (or expectations) into your perceptual processes (e.g., that shape is more likely to be a 

camel because camels live in the desert, rather than the shape being a polar bear). The weight 

given to these two sources of information depends on how reliable or ‘precise’ these two streams 

of information are likely to be (Yon & Frith, 2021), with expectations being relied on more when 

sensory information is unreliable or ambiguous. Such mechanisms of precision-weighted decision-

making have been extensively supported by behavioural and neuroimaging data (Kok et al., 2013; 

Lawson et al., 2021; Pinto et al., 2015).  

Mechanisms of precision-weighted inference have also inspired theories of unusual experiences 

and atypical cognition (Corlett et al., 2019; Davies et al., 2018; Yon & Frith, 2021). For example, a 
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prominent explanation of hallucinations in psychosis suggests that such experiences arise because 

patients hold inappropriate beliefs about the relative precision of incoming sensory signals and top-

down predictions, leading to a disproportionately strong weight on prior expectations when 

perceiving the world (the ‘Strong Priors’ theory - Corlett et al., 2019). If the precision of our senses 

is deemed imprecise or unreliable, then we may tend to rely on our expectations. However, if these 

expectations do not match reality, yet are dominating our perceptual processes, this may lead to 

unusual experiences such as hallucination. Hallucinations can be experienced by healthy 

individuals, not just those with a clinical diagnosis (Corlett et al., 2019). The ‘Strong Priors’ theory 

offers a possible mechanism for atypical cognition not just for those with a clinical diagnosis, but 

across the spectrum of individuals who encounter such experiences (Corlett et al., 2019; Davies et 

al., 2018; Powers et al., 2016). 

1.2. Precision in Bayesian models of metacognition 

In a similar vein, Bayesian models of metacognition have suggested that explicit feelings of 

confidence about what we are perceiving are generated by reading out the uncertainty or precision 

in sensory circuits – such that we are more confident when our sensory representations are less 

noisy (Geurts et al., 2022; Mamassian, 2016). This has been demonstrated in behavioural work by 

Desender and colleagues (2018) where experimental conditions in a perceptual decision-making 

task were matched in terms of accuracy but differed in participant’s subjective evaluation of their 

accuracy (i.e., their confidence ratings). Results revealed that greater variability or ambiguity in 

sensory evidence not only impaired performance accuracy but also led to a disproportionately 

larger decrease in subjective confidence ratings, above and beyond that seen in accuracy (see 

also Boldt et al., 2017).  

Geurts and colleagues (2022) build on these findings with their neuroimaging work. Using 

psychophysics and functional magnetic resonance imaging (fMRI), they were able to decode 

probability distributions from neural population activity in the human visual cortex and found that 

subjective confidence correlated with the precision of the decoded distributions, with higher 

confidence levels being reported when sensory evidence was more precise. Taken together, these 

studies suggest that sensory precision tracking is an important mechanism in metacognitive 
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judgements. However, some researchers argue that the computations underlying confidence are 

more complex than a simple ‘read out’ of evidence strength (Aitchison et al., 2015; Fleming & Daw, 

2017; Meyniel et al., 2015; Sanders et al., 2016). 

1.3. An untested assumption – beliefs about precision? 

An important shift in contemporary Bayesian models is the idea that precision is not estimated on 

incoming evidence alone. Recent accounts also assume that agents form probabilistic beliefs 

about how precise information is likely to be, and these expectations are incorporated into 

precision estimates (Friston, 2018). Allowing precision to decouple from momentary reality in this 

way has allowed researchers to develop a myriad of explanations for diverse aspects of 

experience and awareness. For example, the Strong Priors theory, based in Bayes theorem, 

suggests that inappropriately strong beliefs about the imprecision of sensory signals (relative to 

expectations) could lead to unusual and distressing experiences like hallucinations (Corlett et al., 

2019). 

Forming beliefs about precision would help agents to estimate uncertainty – which may often be 

difficult to compute (Yon & Frith, 2021). Combining incoming evidence with expectations about 

precision based on past experience could optimise metacognitive monitoring of perception. For 

example, we may expect based on past experience that putting on our glasses will improve the 

fidelity of incoming visual signals. Since this expectation often comes true, incorporating this prior 

knowledge into our beliefs will improve our estimates of perceptual precision. However, while 

combining expectations and incoming signals to estimate precision will usually be adaptive, such a 

process will also lead to errors when expectation and reality diverge (Figure 1.1). For example, if 

we mistakenly leave the house with an old pair of glasses that have the wrong prescription, we 

may believe that putting on our glasses will improve perceptual precision more than it truly does – 

leading us to overconfidence in our perceptual abilities, with potentially serious consequences as 

we take our car for a spin. 

This idea of expected precision has become increasingly embedded in theoretical models of the 

Bayesian brain. For example, recent models of hierarchical predictive coding suggest that our brain 
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also entertains a kind of ‘shadow hierarchy’ alongside the primary information streams – with 

separate neural populations encoding beliefs about the precision of ascending evidence and 

descending predictions at different hierarchical levels (Friston, 2018). Indeed, computational 

models based on these frameworks have relied on the concept of expected precision to explain 

perception (Kanai et al., 2015) and to model false perceptual inferences (Parr et al., 2018). 

However, while we can potentially explain various aspects of perception and metacognition by 

assuming agents form beliefs about precision, we do not currently know how or whether 

expectations about perceptual precision are actually formed. There is extant evidence that agents 

can predict their decision confidence in a variety of settings (e.g., Boldt et al., 2019; Daniel & 

Pollmann, 2012; Fleming et al., 2016; Guggenmos et al., 2016), but this does not necessarily entail 

that agents track or form predictions about the reliability or precision of incoming signals. Without 

evidence that precision is indeed learned and inferred, it may be premature to use this framework 

to explain diverse aspects of cognition in health and disease.  
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Figure 1.1 – Expectations bias precision estimation: Contemporary Bayesian models suggest 

that we estimate the precision of our senses by combining incoming evidence with prior expectations 

about how reliable signals are likely to be. This is usually a good idea but could lead to biases when 

expectation and reality diverge. For example, if we pick up the wrong pair of glasses, we may expect 

our vision to improve (red) but the actual signals sampled by vision may remain noisy and imprecise 

(blue). If we combine this expectation and evidence, we may thus erroneously infer that our vision is 

more reliable than it truly is (pink). 

 

1.4. Thesis outline 

This thesis provides an insight into these questions. First, Chapter 2 describes empirical and 

computational investigations testing the influential idea of ‘expected precision’. Here we describe 

novel perceptual decision-making tasks, where cues manipulate an observer’s expectations about 

precision (signal strength). This task or variations of it are employed throughout the experiments of 

this thesis. In this chapter, I describe how these expectations bias perceptual confidence 

(Experiments 1 & 2) and subjective visibility ratings (Experiment 3) such that observers were more 

confident, and stimuli appeared more vivid, when stronger signals were expected. We find this bias 

in subjective awareness can be captured by a computational model (Study 4) which assumes that 

Signal Strength (precision)
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agents form expectations about the signals they are likely to encounter in different contexts and 

infer the strength (precision) of sensory signals by combining these expectations and incoming 

evidence from the senses. Taken together, these results support the idea that we estimate the 

precision of our senses by combining current sensory evidence with expectations about how 

precise this evidence is likely to be.  

Chapter 3 investigates the neural mechanisms underpinning the formation and use of these 

expectations about precision. After adapting and piloting the paradigm used in Chapter 2 

(Experiment 5) we conducted a 3T functional magnetic resonance imaging (fMRI) experiment to 

investigate the how sensory uncertainty is represented in the brain and where these 

representations are influenced by expectations (Experiment 6). Using multivariate pattern 

decoding, we found representations of sensory uncertainty in the insula, which critically were also 

modulated by expectations about precision. One possible interpretation of our findings is that the 

insula plays a role in encoding ‘precision prediction errors’ needed to form the expectations about 

precision described in Chapter 2. 

Chapter 4 investigates whether the ‘expected precision’ mechanisms identified in previous 

chapters generalise from the visual domain to our perception of speech – and how these 

mechanisms may be connected to unusual hallucination-like experiences. Across two studies 

(Experiments 7 & 8) we find that expectations about precision can similarly bias subjective 

impressions of spoken voices. In these experiments we also tested the theory put forward by 

Corlett and colleagues (2019), that inappropriately strong beliefs about the imprecision of sensory 

signals (relative to expectations) could lead to unusual and distressing experiences like 

hallucinations. We find some evidence that those prone to hallucinations relied less on contextual 

cues when estimating the reliability of the sensory world. This result suggests that the fundamental 

cognitive and neural mechanisms identified in previous chapters could be disrupted in psychotic 

illness. 

While preceding chapters demonstrate that expectations about precision bias participant’s 

metacognitive monitoring (confidence) of perceptual decisions, Chapters 5 and 6 explores whether 

such expectations can also influence metacognitive control behaviours (i.e., the implementation of 
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behavioural strategies intending to optimise cognitive performance). In Chapter 5 (Experiment 9) 

we investigated how the metacognitive control behaviour of evidence accumulation (i.e., time taken 

to sample ongoing sensory signals), was influenced by expectations about precision. This 

experiment found marginal support for the idea that we slow down to accumulate more information 

when we expect the sensory world to be more ambiguous– however, this difference did not reach 

statistical significance.  

In Chapter 6 I describe some investigations of how sensory uncertainty itself (rather than expected 

precision) may influence another form of metacognitive control, information seeking (Experiments 

10 and 11). In these experiments participants were offered the chance to have a secondary look at 

the visual stimulus before committing to their final choice. Results revealed that sensory 

uncertainty drives information seeking behaviour, in that participants were significantly more likely 

to opt for a second look at the stimulus when faced with ambiguous sensory evidence compared to 

strong sensory evidence – even when these differences in ambiguity are separated from decision 

difficulty.  

Chapter 7 provides a discussion of the important themes from each chapter. Overall, our results 

provide strong support for influential Bayesian models of cognition, showing that agents combine 

incoming evidence with prior expectations to estimate the precision of their senses (both vision and 

hearing) and we identify computational and neural mechanisms that elucidate how these 

processes take place. While there remain some unanswered questions about the role of these 

expectations in metacognitive control behaviours, overall, this thesis provides support for a 

widespread but untested tenet of influential Bayesian models of metacognition. It reveals that 

expectations about precision play an important role in shaping how the sensory world appears and 

how much we trust our senses. 
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Chapter 2: Expectations about precision bias metacognition and awareness 

2.1. Introduction  

Here we investigate whether agents form beliefs about the reliability of incoming sensory signals, 

and whether these beliefs influence perceptual metacognition in the way that contemporary 

Bayesian models propose. In particular, we tested the idea that agents form probabilistic beliefs 

about how precise information is likely to be, and that these expectations are incorporated into 

precision estimates (Friston, 2018).  

Participants completed a perceptual decision-making task, judging the direction of moving dots. 

Crucially, probabilistic cues manipulated expectations about signal strength across trials, such that 

observers could expect motion clouds to be strong or weak. To pre-empt our results, across three 

experiments we found that these expectations biased perceptual confidence (Experiments 1 & 2) 

and subjective visibility ratings (Experiment 3) such that observers were more confident, and 

stimuli appeared more vivid, when stronger signals were expected. We find this bias in subjective 

awareness can be captured by a computational model which assumes that agents form 

expectations about the signals they are likely to encounter in different contexts and infer the 

strength (precision) of sensory signals by combining these expectations and incoming evidence 

from the senses. 

Taken together, these results support the idea that we estimate the precision of our senses by 

combining current sensory evidence with expectations about how precise this evidence is likely to 

be. This provides support for a widespread but untested tenet of influential Bayesian models of 

metacognition: revealing that expectations about precision influence how the sensory world 

appears and how much we trust our senses. 

 

2.2. Experiment 1  

Experiment 1 tested whether participants form expectations about the reliability of incoming 

signals, and how these beliefs influence perceptual metacognition. Participants completed a 

perceptual decision-making task, judging whether clouds of dots moved left or right. Importantly, 
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probabilistic cues signalled whether sensory signals would likely be strong or weak. We probed 

how expectations established by these cues biased perceptual confidence. 

 

2.2.1. Methods 

Participants 

Thirty-four participants (21 female, 13 male, mean age= 33.9 years, SD= 8.45) were recruited via 

Prolific. All participants reported normal or corrected vision and no history of psychiatric or 

neurological illness. This sample size was selected to provide 80% power to detect at least a 

medium-sized effect (Cohen's dz= 0.5). This value was not explicitly guided by prior work (unlike 

Experiments 2 and 3). All experiments were approved by the Research Ethics Committee at 

Goldsmiths, University of London. 

Participants who failed to complete at least 90% of trials across the training and test phase were 

excluded. Participants were considered outliers if their individual effects (i.e., condition-wise 

differences in accuracy or confidence) were >2.5SDs away from the sample mean. We identified 

outliers based on participant’s condition-wise effects (rather than specific condition means or trial-

level data). Outliers were winsorized to values 2.5 SDs away from the mean for inferential 

statistics, rather than adjusting raw datapoints. The same was true for all experiments. For 

Experiment 1 no participants were excluded and only one condition-wise effect for confidence 

scores was winsorized. Data patterns and their statistical significance were unchanged by this 

adjustment. 

 

Procedure 

Participants completed an online perceptual decision-making task programmed in PsychoPy 

(Peirce et al., 2019), discriminating patterns of moving dots and reporting confidence in their 

perceptual choices (see Chapter 1, figure 1). Each trial began with a fixation cross (500 ms) before 

the presentation of a dot motion stimulus (300 ms). In each motion cloud, a proportion of dots was 

programmed to move coherently left or coherently right, while the remaining dots moved in random 
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directions. After a blank screen (700 ms) participants gave a combined report of their perceptual 

decision (left or right) and confidence level (confident or guess) on a four-point scale. 

Critically, probabilistic cues (colours) allowed observers to form expectations about the strength of 

motion signals on each trial, allowing us to investigate how such expectations bias perceptual 

confidence. For example, for a given observer when fixation cross and stimulus dots appeared in 

green, motion clouds were likely to have low coherence (i.e., 4% motion coherence - weak signals, 

see Figure 2.1). In contrast, when stimuli appeared in blue, motion clouds were likely to have high 

coherence (i.e., 52% motion coherence - strong signals). Colour mappings were counterbalanced 

across participants and participants were not explicitly informed about the association between the 

probabilistic cues and signal strength. 

The experiment comprised 560 trials (see Figure 2.1). The first 160 trials acted as an initial training 

phase to establish expectations about colour cues. Here participants experienced perfectly 

deterministic mappings between colour and coherence e.g., every blue stimulus was programmed 

to be a strong signal, and every green stimulus was programmed to be a weak signal.  

Participants then completed a 400-trial test phase. Half of these trials were identical to what 

participants experienced during training, where the colour cues were followed by the predicted 

signal strength (e.g., the colour cue associated with strong signals was followed by objectively 

strong motion). However, our key trials of interest in this phase were the remaining half of medium 

probe trials. On these trials, participants received the same colour cues but received an objective 

perceptual signal of medium strength (28% motion coherence). Given objective signal strength is 

identical on these trials, any differences in objective accuracy or subjective confidence on these 

trials must reflect effects of expectations about signal strength. 
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Figure 2.1 – Experimental task: (a) Participants completed a motion perception task, judging the direction 

of brief motion clouds and reporting confidence in their decision. Colour cues manipulated expectations 

about the strength of motion patterns for each trial, e.g., if stimuli were blue participants could expect high 

motion coherence. (b) On medium probe trials in Experiment 3 the perceptual decision was replaced by a 

visibility scale. (c) Illustration of ‘motion coherence’: in each stimulus, a proportion of dots was programmed 

to move left or right (white arrows) while the remainder of dots moved in random directions (red arrows). 

Manipulating the proportion of coherent dots changes the strength of the motion signal. (d) Example 

timecourse of trials across the experiment: The training phase consisted of perfectly deterministic mappings 

between colour and coherence. During the test phase half of the trials were identical to those shown during 

training, whereas the other half paired the same colour cues with objective perceptual signals of medium 

strength.  
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2.2.2. Results  

We investigated how actual and expected precision altered perception and metacognition by 

computing measures of objective and subjective performance from perceptual choices and 

confidence ratings. Objective perceptual sensitivity was measured by calculating the proportion of 

correct decisions (accuracy) and d’. We also looked at reaction times on these trials. To capture 

subjective aspects of metacognition, we calculated ‘confidence level’ i.e., the proportion of 

decisions participants report with high rather than low confidence. We also calculated meta-d’ and 

Mratio as complementary measures of metacognitive sensitivity and efficiency – measuring how 

closely subjective confidence ratings (‘confident’ or ‘guess’) track decision accuracy, and whether 

this changes while controlling for differences in task performance (Maniscalco & Lau, 2012). We 

computed d’, meta-d’ and Mratio using the non-hierarchical variant of the HMeta-d toolbox 

(Fleming, 2017). Inferential tests used an alpha level of .05, and non-significant results were 

qualified with equivalent Bayesian analyses. These yielded Bayes Factors (BF) that quantified 

evidence for an effect (H1) over evidence for the null (H0). Conventionally BF10 <.33 denotes 

moderate evidence in support of a null effect.  

First, we compared perception and metacognition on trials where motion signals were objectively 

stronger or weaker. Unsurprisingly, perceptual decisions were more accurate when signals were 

objectively stronger (mean accuracy = 0.939, mean d’ = 3.672) than when they were objectively 

weaker (mean accuracy = 0.564, mean d’ = 0.349; accuracy – t(33)= 21.606, p<.001, dz=3.705; d’- 

t(33)= 18.061, p<.001, dz= 3.097). Participants also reported higher confidence in perceptual 

decisions when objective signal strength was strong (mean = 0.843) compared to when signals 

were objectively weak (mean = 0.341, t(33) = 11.200, p<.001, dz = 1.921). 

However, our key question concerns how expected precision alters perception and metacognition. 

This can be evaluated by comparing our test trials where participants expect strong or weak 

signals – but receive objectively identical medium coherence stimuli. These comparisons revealed 

that participants were more confident in their decisions on expect strong trials – mean (SEM) = 

0.71 (0.042) – than expect weak trials (mean (SEM) = 0.64 (0.045), t(33)= 3.015, p= .005, dz= 

0.517, see Figure 2.2).  
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Importantly, this difference in confidence arose even though objective perceptual accuracy and d’ 

scores did not significantly differ between these conditions (accuracy: t(33)= 0.913, p= .368, dz= 

0.156, BF10 = 0.270; d’: t(33)= 0.194, p= .847, dz= 0.033, BF10 = 0.187, respectively, see Figure 

2.3). There was also no difference in reaction time (t(33)= 1.257, p= .217, dz=0.216, BF10 = 0.378). 

There was also no significant difference in meta-d’, nor Mratio, between conditions (meta-d’: mean 

for expect weak trials = 2.05, mean for expect strong trials = 2.312, t(33)= 1.544, p=.132, 

dz=0.265, BF10 = 0.539; Mratio: mean for expect weak trials = 0.94, mean for expect strong trials = 

0.962, t(33)= 0.146, p= .884, dz=0.025, BF10 = 0.186) – suggesting that expectations about 

precision induce a metacognitive bias, rather than altering the discriminability of introspective 

states. 
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Figure 2.2 - Expected precision alters metacognition and awareness: Participants reported 

significantly higher confidence (Experiments 1 and 2) and higher visibility ratings (Experiment 3) on 

‘expect strong’ trials. Error bars represent 95% within-subject confidence intervals. 
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Figure 2.3 – Expected precision does not alter objective sensitivity: Perceptual sensitivity (d’) 

was unaffected by probabilistic cues. Error bars represent 95% within-subject confidence intervals.  

 

2.2.3. Discussion  

Experiment 1 suggests that expectations about signal strength bias perceptual metacognition, such 

that perceptual confidence is exaggerated when participants expect more precise (i.e., high 

coherence) motion signals – even if such strong signals do not actually ensue. This is consistent 

with Bayesian theories that suggest we form expectations about the precision of sensory signals 

(Friston, 2018), which in turn shape beliefs about the reliability of the senses (Yon & Frith, 2021). 
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2.3. Experiment 2 

Experiment 1 found evidence consistent with the Bayesian idea that expectations about signal 

strength bias perceptual metacognition. This inference was based on the fact that perceptual 

confidence differed for objectively identical stimuli according to whether the observer expected a 

strong or weak signal, while perceptual and metacognitive sensitivity remained unchanged. 

In Experiment 1 these medium ‘test’ stimuli were chosen as the midpoint of coherence (28%) 

between weak (4%) and strong (52%) signals participants experienced throughout the task. While 

this makes the medium test stimuli the objective intermediate point between the signals, in 

Experiment 1 such stimuli were found to not be intermediate in terms of decision difficulty. In 

particular, accuracy on medium test trials (mean = 0.872) was more similar to decision accuracy 

with strong (mean = 0.939) rather than weak signals (mean = 0.564).  

This discrepancy is potentially important for understanding the underlying mechanism at play in 

Experiment 1. For example, it is possible that expecting strong signals actually improves the 

sensitivity of metacognition, such that participants are better able to detect their correct decisions, 

rather than directly inducing a confidence bias (as has been suggested in prior work - Sherman & 

Seth, 2021). When accuracy is near ceiling, an improvement in metacognitive sensitivity may 

appear to induce a bias in overall confidence – since accurate insight will lead to higher confidence 

ratings.  

This alternative explanation seems unlikely given that Experiment 1 found expectations biased 

perceptual confidence but did not significantly alter metacognitive sensitivity (meta-d). However, to 

ensure the reliability of these effects and to rule out this alternative explanation we ran Experiment 

2. Experiment 2 was a pre-registered replication of Experiment 1 with one key change: the 

coherence of medium probe trials was lowered to ensure participants would no longer approach 

ceiling on decision accuracy. If expectations about precision directly bias confidence, Experiment 2 

should replicate the findings of Experiment 1 – finding expectations about signal precision induce a 

bias in confidence ratings but leave metacognitive sensitivity unaffected. 
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2.3.1. Methods  

Participants  

For Experiment 2, thirty-four new participants (15 female, 19 male, mean age = 37.3, SD = 9.28) 

were recruited via Prolific. This sample size was selected to provide 80% power to detect effects at 

least as large as those found in Experiment 1 (effect of expectation on confidence level - dz = 

0.517). The same exclusion and outlier identification procedures were used as in Experiment 1. No 

participants were excluded, and winsorization was applied to one participant’s condition-wise effect 

in the confidence level comparison – though this adjustment did not affect data patterns or their 

significance. 

 

Procedure and Paradigm  

Experiment 2 used the same procedure and paradigm as Experiment 1, except the coherence 

level of the middle signal strength trials was decreased from 28% to 16% motion coherence. 

 

2.3.2. Results  

The same measures from Experiment 1 (accuracy, d', reaction times, confidence, meta-d' and 

Mratio) and statistical analyses were also employed for Experiment 2.  

Experiment 2 replicated the results of Experiment 1. Again, participants were more accurate when 

signals were objectively stronger (mean accuracy = 0.945, mean d’ = 3.761) than when they were 

objectively weaker (mean accuracy = 0.567, mean d’ = 0.339; accuracy – t(33)= 20.444, p<.001, 

dz= 3.506; d’- t(33)=18.177, p<.001, dz= 3.117). Participants also reported higher confidence in 

perceptual decisions when objective signal strength was strong (mean = 0.800) compared to when 

signals were weak (mean = 0.294, t(33)= 10.332, p<.001, dz = 1.772).  

More importantly, participants reported higher confidence on expect strong trials (mean (SEM) = 

0.46 (0.042) compared to expect weak trials (mean (SEM) = 0.42 (0.041), t(33)= 2.114, p=.042, 

dz= 0.362, see Figure 2.2).  
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Again, these differences in confidence were obtained even though there was no significant 

difference in accuracy (t(33)= 0.118, p=.907, dz= 0.020, BF10 = 0.185) or d' between conditions 

(t(33)=0.161, p= .873, dz= 0.028, BF10 = 0.186; see Figure 2.3). There were also no differences in 

reaction times (t(33)= 1.146, p= .260, dz= 0.196, BF10 = 0.335). Critically, while this change in 

confidence level was replicated, expectations about signal precision had no significant effect on 

metacognitive sensitivity (meta-d: mean for expect weak trials = 1.121, mean for expect strong 

trials = 1.092, t(33)= 0.261, p= .796, dz = 0.045, BF10 = 0.190), nor metacognitive efficiency 

(Mratio: mean for expect weak trials = -69.349, mean for expect strong trials = 24.659, t(33)= 

0.998, p= .326, dz= 0.171, BF10 = 0.291). 

 

2.3.3. Discussion  

Experiment 2 replicated the results of Experiment 1 – again finding that observers are biased to 

feel more confident in perceptual choices when stronger signals are expected. These effects are 

consistent with Bayesian models that assume agents form beliefs about the precision of incoming 

signals and use these expectations to guide perceptual metacognition. Importantly, Experiment 2 

also rules out the possibility that these effects arise because of changes in metacognitive 

sensitivity rather than bias. 

However, this is not the only interpretation. An alternative possibility is that this bias in confidence 

arises because agents form expectations about their performance in different contexts, rather than 

expectations about the precision of evidence per se. For example, previous work has found that 

agents readily form beliefs about the difficulty of different tasks even in the absence of explicit 

feedback – and can use these global performance estimates to guide decisions about which goals 

to pursue (Rouault et al., 2019). Indeed, recent results suggest that these kinds of expectations 

about confidence and task difficulty may also directly bias prospective and retrospective decision 

confidence (Boldt et al., 2019; Van Marcke et al., 2022). Under this alternative way of thinking, 

effects in our experiments may be generated by metacognitive mechanisms which track the fact 

that decisions tend to be more accurate in one colour context than another. Learning about the 

probability of being correct could also bias decision confidence (Fleming & Daw, 2017), even if 
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agents are not learning or forming expectations about the clarity or precision of incoming signals – 

but simply learn that they feel more confident in some contexts rather than others, without learning 

why. 

To evaluate this alternative possibility, we ran Experiment 3 – testing more directly whether 

observers acquire expectations about precision, and whether these expectations shape inferences 

observers make about the strength and clarity of incoming sensory signals. 

 

2.4. Experiment 3 

Experiments 1 and 2 found that participants reported higher confidence in perceptual decisions 

when expecting strong signals. Such biases could be driven by changes in apparent signal 

strength – such that when the participant is expecting a stronger signal, they overestimate the 

precision of incoming sensory information, leading to exaggerated feelings of confidence. However, 

as noted above, this effect could also reflect participants forming a confidence bias which is 

unrelated to signal precision – for example, learning that decisions tend to be easier in the blue 

context rather than the green context, without tracking signal strength to learn this.  

Experiment 3 was conducted to determine whether learning in our paradigm biases the apparent 

reliability of perceptual signals, rather than inducing a generic confidence bias. To this end, we 

replaced confidence ratings with a more direct assay of apparent signal strength – the subjective 

clarity of the visual motion. 

 

2.4.1. Methods  

Participants  

For Experiment 3, sixty-two new participants (36 female, 26 male, mean age = 35.4, SD = 7.52) 

were recruited via Prolific, using the same selection criteria as Experiment 1 and 2. The sample 

size was chosen to provide 80% power to detect effects at least as large as those seen on 

confidence level in Experiment 2 (Cohen’s dz = 0.362). The experiment used the same exclusion 
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and outlier identification criteria as Experiments 1 and 2. No participants were excluded. 

Winsorization was applied to one participant’s condition-wise effect (in the visibility rating 

comparison), but this did not alter statistical patterns or their significance.  

 

Procedure and Paradigm  

Participants completed the same task used in Experiment 1 with two critical changes. The 

metacognitive report was removed entirely, such that participants only reported motion direction 

(left or right) and never rated decision confidence. On the critical medium probe trials in the test 

phase, participants did not make judgements about motion direction. Instead, a visibility scale 

appeared post-stimulus, asking participants to judge “how clear was that motion cloud?” on a 

continuous scale ranging from ‘completely random’ to ‘completely clear’ (see Figure 2). Ratings 

from this scale were used as an index of subjective awareness, providing an assay of how clear (or 

‘precise’) visual signals appeared. Importantly, removing the perceptual decision on these trials 

means that participants must make an estimate about the sampled signal, rather than estimating 

the correctness of an explicit choice. 

The overall structure of the experiment remained the same as Experiments 1 and 2, except the 

number of training phase trials was increased to 200. During the test phase, the visibility scale was 

displayed on all medium probe trials instead of the perceptual decision. To prevent participants 

from learning that the visibility scale was only presented on trials where the objective signal 

strength was truly intermediate, the scale was also presented on 10% of the high and low 

coherence trials in the test phase. 

 

2.4.2. Results  

As in Experiments 1 and 2, perceptual decisions were more accurate when signals were 

objectively stronger (mean accuracy = 0.972, mean d’ = 3.911) compared to when they were 

objectively weaker (mean accuracy = 0.562, mean d’ = 0.326; accuracy – t(61)= 55.718, p<.001, 

dz=7.076; d’- t(61)= 41.220, p<.001, dz= 5.235). Participants also reported higher subjective 
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visibility ratings when objective signal strength was strong (mean = 0.74) compared to when 

signals were weak (mean = 0.417, t(61) = 15.236, p<.001, dz= 1.935). 

Critically, analyses also revealed that expectations about precision altered visibility ratings, even 

when objective signal strength was matched. Observers reported that medium strength stimuli 

appeared more vivid when stronger signals were expected - mean (SEM) = 0.6 (0.015) – 

compared to when signals were expected to be weak - mean (SEM) = 0.582 (0.015), t(62) = 3.673, 

p<.001, dz= 0.467 (see Figure 2.2). 

 

2.4.3. Discussion  

It was unclear from Experiments 1 and 2 whether this learning manipulation causes participants to 

form expectations about signal strength or expectations about performance confidence. In 

Experiment 3 participants rated the subjective clarity of motion, rather than reporting decision 

confidence. Here we found that observers were biased to rate identical motion clouds as seeming 

clearer when more precise signals were expected. This is consistent with the possibility that our 

learning manipulation causes observers to form expectations about perceptual precision which 

alter how strong signals appear to be. These changes in apparent signal quality can also plausibly 

explain why decision confidence is higher when stronger signals are expected. 

 

2.5. Study 4 - Computational Modelling 

Experiment 3 found that stimuli appeared more vivid when the observers expected stronger 

signals. Such an effect could arise if subjective vividness reflects an inference of signal strength, 

which observers form by combining the bottom-up sensory evidence with top-down predictions 

about how strong or ‘precise’ sensory evidence is likely to be in a given context (Friston, 2018; Yon 

& Frith, 2021). We used computational modelling to evaluate this possibility. 

In our model agents learn and make inferences about the signals they encounter in different 

contexts throughout the task. On each trial, observers receive a stimulus with a certain signal 

strength – ranging from completely random motion to completely coherent motion in one direction. 
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As a first step, we assume the model has access to these stimulus energies trial-by-trial. We 

estimated the motion energy in each stimulus by calculating the horizontal motion component of 

each moving dot (given by the cosine of the motion angle). Averaging these motion components 

across all dots in the display yields an estimate of signal strength bounded between 1 (all dots 

move coherently in one direction) and 0 (no motion signal at all). While the motion signal present 

on any given trial is strongly determined by its programmed coherence (i.e., higher coherence 

clouds tend to have stronger signals), there can still be substantial variability between motion 

clouds with the same programmed coherence – depending on how the random dots in the cloud 

behave. 

Our model assumes that agents use these samples of motion energy to learn expectations about 

the likely signal strengths in the two cue contexts (i.e., blue context and green context), which in 

turn shape estimates about signal strength on a given trial. The model implements this by 

assuming that an inference of signal strength (inference) on trial t is produced by computing a 

weighted average of the sampled sensory evidence (evidence) and prior expectation (prior), where 

wprior and wevidence are the respective weights applied to expectations and evidence in this 

combination:  

inferencet = wprior(prior
t
)+ wevidence(evidencet) 

wevidence= 1- wprior 

In this equation there is only one free parameter – wprior – which controls the relative impact that 

prior expectation and current evidence have on internal estimates of signal strength. If wprior  = 1, 

the observer’s current belief about signal strength is entirely determined by their previous 

experience in this context, ignoring the present stimulus entirely. In contrast, if wprior = 0 internal 

beliefs about signal strength are entirely driven by the quality of the current stimulus and past 

experience is discarded. 

Importantly, the model iteratively combines learning and inference, such that once a belief about 

signal strength has been formed on trial t this becomes the new prior for that context on trial t+1. 

This is analogous to iterative Bayesian updating schemes where prior and evidence are combined 



39 
 

at one timepoint to form a posterior, which becomes the new prior for the next timepoint, and so on. 

Importantly, this means that wprior  also effectively acts as a learning rate parameter. For values of 

wprior  closer to 0, expectations for trial t + 1 are driven mostly by signals experienced on trial t. In 

contrast, for values of wprior  closer to 1, predictions are more strongly driven by the accumulation 

of past experiences rather than current evidence. This dual role for the parameter wprior  in 

inference and learning is reminiscent of hierarchical Bayesian models of message passing in the 

brain, which assume a common parameter simultaneously determines how strongly prior 

knowledge is weighted when making inferences and how stubborn these prior hypotheses are in 

the face of new data (Friston, 2018; Yon et al., 2019). Indeed, under certain assumptions this 

learning model can be shown to be equivalent to models of Bayesian inference, where the 

combination of prior and evidence is controlled by the (estimated) precision of each information 

source (see Supplementary Modelling).  

This process yields a trajectory of beliefs about signal strength that integrates past experience and 

current evidence – controlled by the parameter wprior  (see Figure 2.4).  

The final step in the model turns trial-wise beliefs about signal strength into ratings on the visibility 

scale. This is achieved by taking the internal inference of signal strength on a given trial and 

passing this through a logistic function of the form: 

rating= 
1

1+e-(bconst+bslope(inferencet))
 

This transfer function in the model reflects our assumption that agents form beliefs about signal 

strength that they communicate in potentially noisy or biased ways. This accords with ideas from 

metacognition research (Bang et al., 2020; Guggenmos, 2022) or reinforcement learning 

(Lockwood & Klein-Flügge, 2021) where decisions and actions reflect a noisy transfer of an internal 

belief into an overt choice. This function produces a continuous rating of motion vividness bounded 

between 0 (completely random) and 1 (completely clear), controlled by two parameters – bslope and 

bconst. bslope determines the gradient of the function mapping internal estimates of signal strength to 

visibility ratings – such that higher values indicate a tight mapping between beliefs and ratings, and 



40 
 

lower values indicate a noisier translation from inferences to ratings (b – beta). The bconst parameter 

is a constant value, that captures idiosyncratic biases to give high or low visibility ratings 

irrespective of current inferences about signal strength.  

To investigate whether this three-parameter model could capture empirical patterns seen in 

Experiment 3, for each participant we simulated belief trajectories for values of wprior  ranging 

between 0 and .999 and subsequently found values of bslope and bconst that best predicted the 

empirical visibility ratings participants gave on medium strength test trials. Maximum likelihood 

estimation of the logistic transfer function allowed us to identify the combination of best-fitting 

parameters that minimised the deviance between model and data (i.e., maximised model 

evidence). 

Identifying the best fitting parameters for each participant allows us to simulate how the model 

behaves in the experiment, and to investigate whether the model reproduces the observed 

empirical effects. Analysing simulated data in the same way as real data found that the model 

reproduced the key result of Experiment 3 – yielding higher subjective visibility ratings on medium 

test trials when stronger rather than weaker signals were expected (t61 = 7.366, p<.001, dz = 

0.935; see Figure 2.4). Moreover, we found a strong correlation between the size of the empirical 

effect for each participant and the size of this effect predicted by the model – r = 0.731, p<.001.  

Analysing parameter values allowed us to examine which aspects of the model contribute to its 

ability to reproduce these empirical effects. We found a strong relationship between values of 

parameter wprior and the empirical effect observed for each participant in Experiment 3 – r = 0.363, 

p=.004 – suggesting that those participants who showed the largest effects of expectations about 

signal strength were those the model estimated to be placing the greatest weight on prior 

knowledge (see Figure 2.4). 

  



41 
 

 

Figure 2.4- Modelling precision learning: (a) Our model assumes that observers form inferences about 

signal strength by computing a weighted combination of incoming evidence and past experiences. This 

generates a trajectory of beliefs about signal strength across trials (left). Our model assumes when 

observers are probed to rate the visibility of a stimulus, they pass this momentary belief through a mapping 

function to generate a rating (right). Dashed line in left panel denotes transition from training phase to test 

phase. (b) Analysing simulated data in the same way as real data found that the model reproduced the key 

result of Experiment 3 – the model rates stimuli as being more visible when stronger signals should be 

expected (left). There was a strong correlation between the model weight on prior experience (wprior) and the 

empirical bias observed for each participant (higher values = stronger bias). Red lines display best linear fit 

and confidence bounds. 
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2.6. General discussion  

Influential theories suggest that the mind is Bayesian – computing the uncertainty or precision of 

internal representations to guide perception, action, and cognition. In particular, Bayesian accounts 

of metacognition propose that we build representations of perceptual confidence by estimating the 

precision of representations in our sensory systems (Geurts et al., 2022). However, an important 

recent shift in Bayesian frameworks has been the emerging idea that precision estimates are not 

simply ‘read out’ from sensory systems but formed by combining incoming evidence with learned 

expectations about how reliable sensory evidence is likely to be. This idea has been and continues 

to be very influential across the cognitive sciences but has not been directly tested (Yon & Frith, 

2021). Here we tested this possibility by manipulating participant’s expectations about precision 

(signal strength) and measuring how these altered perceptual metacognition and subjective 

awareness. 

Our results support the idea that agents combine incoming evidence with learned expectations to 

estimate the precision of sensory information. We found that participants reported higher 

confidence (Experiments 1 and 2) and more vivid percepts (Experiment 3) when they expected 

signals to be stronger – even though objective signal strength was identical, and objective 

perceptual performance remained unchanged. These results were complemented by 

computational modelling, which revealed such biases could be well-explained by assuming agents 

infer the precision of sensory signals by combining immediate evidence from their perceptual 

systems with expectations about how strong signals are likely to be (Friston, 2018; Yon & Frith, 

2021).  

These results have important implications for our understanding of metacognition and perceptual 

monitoring. One influential conceptualisation defines metacognitive states as those that represent 

uncertainty in our overt and covert decisions (Pouget et al., 2016). This distinguishes 

metacognition from other kinds of meta-representation in the mind and brain (Shea, 2012). In this 

way of thinking, perceptual precision estimates are metarepresentational, because they represent 

uncertainty about the perceptual world. But under this definition, they are not strictly 

‘metacognitive’, as they do not directly represent uncertainty in our decisions.  
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However, even if perceptual precision estimates are not metacognitive in this sense, they can still 

support important perceptual monitoring functions – allowing observers to estimate the clarity of 

their senses. Critically, these estimates of perceptual evidence strength can then form an important 

component of strictly metacognitive computations like decision confidence (Mamassian, 2016). 

Though the computations underlying confidence are more complex than a simple ‘read out’ of 

evidence strength (Aitchison et al., 2015; Fleming & Daw, 2017; Meyniel et al., 2015; Sanders et 

al., 2016), many models also assume that biases to over- or under-estimate the strength of 

sensory evidence should also translate into biases in decision confidence - as we have found in 

the present work.  

For example, normative models propose that we estimate the confidence in our perceptual 

decisions using estimates of the uncertainty in our perceptual circuits (Geurts et al., 2022). 

However, it is likely to be difficult for systems like the brain to monitor uncertainty based on 

incoming signals alone (Yon & Frith, 2021). Our results suggest metacognitive mechanisms may 

finesse this problem by incorporating prior knowledge into these computations – inferring how 

reliable our senses are by combining current evidence from our perceptual systems with 

expectations about how precise they are likely to be (Friston, 2018). This will often be adaptive 

because expectations about precision will often come true. For example, I may expect my vision to 

improve when I put on my glasses, and if I have the right prescription; this expectation is valid. 

However, relying on expectations may lead to false metacognitive inferences when prediction and 

reality do not coincide. For example, if I have picked up the wrong pair of glasses, I may expect to 

see more clearly but actually be more myopic than before. In these cases, relying too heavily on 

expected precision will lead to overconfidence and maladaptive action based on unreliable 

evidence.  

Our findings demonstrate that agents form expectations about sensory precision which directly 

alter inferences about signal quality. Previous models (Fleming & Daw, 2017) and experiments 

(Rouault et al., 2019; Sherman & Seth, 2021) have assumed that agents form metacognitive 

expectations about task performance – often conceptualised as expecting a high or low probability 

of being correct. Such ideas gel with computational accounts of metacognition, which define 
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metacognitive processes as exclusively being those involved in computing the probability that a 

decision is correct (Pouget et al., 2016). Here, we find expected precision biases perceptual 

confidence (Exps 1 and 2) but also see these expectations directly alter judgements of signal 

strength even when no decision is required (Exp 3). These results may suggest an intermediate 

stage of perceptual monitoring between lower-level perception and higher-level metacognition, 

where agents compute the strength of incoming signals rather than the accuracy of their decisions 

per se. Indeed, elegant neuroimaging work has found neural representations encoding the quality 

or vividness of sensory signals that are distinct from those encoding decision confidence (Bang & 

Fleming, 2018; Mazor et al., 2022). The results we report here are thus compatible with a view 

where expected precision alters these mid-level representations of signal quality (Yon & Frith, 

2021): directly altering how reliable signals appear to observers, which in turn biases later 

computations of decision confidence that depend on this information. 

Experiment 3 investigated whether agents genuinely form expectations about signal strength, 

rather than performance confidence alone. This was achieved by asking participants to rate 

subjective clarity of motion clouds rather than reporting decision confidence. Results showed that 

observers were biased to rate identical motion clouds as seeming clearer when more precise 

signals were expected – even when this was probed independently of any ‘decision’. Conceptually, 

it makes sense to distinguish visibility ratings from confidence ratings, since one judgement asks 

about properties of the stimulus and the other asks about properties of the decision maker (and 

indeed, the two kinds of ratings often empirically decouple - Davidson et al., 2022; Rausch & 

Zehetleitner, 2016; Skewes et al., 2021). However, it remains possible in principle that covert 

metacognitive processes may influence visibility ratings - such that a participant judges a stimulus 

is more visible because they judge they could (hypothetically) make an accurate decision about it if 

probed. Future work could assess this possibility by creating paradigms where confidence and 

visibility are more strongly decorrelated. This could be achieved by altering the base rates of 

stimuli to create conditions where participants are highly confident in their judgements about low 

visibility targets (see Sherman et al., 2015), or by varying decision boundaries orthogonally to 

stimulus strength (Bang & Fleming, 2018).  
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Our findings demonstrate that expectations shape precision estimates used at high levels of our 

cognitive architecture. We find these expectations alter confidence and awareness. However, 

Bayesian models suggest that precision estimation is important for diverse cognitive functions – 

including perception, learning and social cognition (Yon & Frith,2021). One possibility is that our 

cognitive system maintains a single representation of perceptual precision which is used to support 

all of these functions. However, we have suggested recently that different precision estimates are 

maintained at different levels of the hierarchy – and that expectations may exert a stronger 

influence on precision at higher levels (Yon & Frith, 2021). It is unclear from these findings whether 

expected precision will also change low-level perceptual inferences. It will thus be important for 

future work to establish whether expectations about precision exert a similar role on precision-

weighted inferences in other domains.  

For example, Bayesian models of multisensory integration suggest that observers combine signals 

from different modalities according to their estimated precision, lending more weight to more 

certain sensory channels (Alais & Burr, 2004; Ernst & Banks, 2002). Similarly, Bayesian models of 

prediction suggest that observers make perceptual inferences by combining incoming evidence 

with probabilistic expectations – leaning more on prior knowledge when the evidence is more 

ambiguous i.e., less precise (Olkkonen et al., 2014; Press et al., 2020; Yon, 2021). It is possible 

that the precision representations used to solve these combination problems are also shaped by 

expectations. For example, observers may learn to expect that their vision is unreliable in some 

contexts and use this expectation to control whether they rely on other senses or other kinds of 

knowledge when trying to make sense of the world around them. However, it also remains possible 

that these precision estimates are not shaped by expectations – and that low-level processes like 

perception use precision estimates that are more closely tied to the objective uncertainty of 

incoming signals rather than prior beliefs. Understanding whether and how expectations alter 

precision estimates at different levels of the cognitive hierarchy will constrain theorising about 

Bayesian models of the mind – clarifying when and whether beliefs about uncertainty detach from 

reality (Yon & Frith, 2021).  
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The current study provides strong support for influential Bayesian models of cognition, showing 

that agents combine incoming evidence with prior expectations to estimate the precision of their 

senses. These results begin to reveal the mechanisms we use to learn about uncertainty in our 

own minds and reveal that expectations about precision formed through such learning exert an 

influence on how we experience the sensory world and how much we trust our senses. 

 

2.7. Supplementary Modelling 

1. Weighted combination of point estimates 

The model in Chapter 2 assumes that agents form an estimate (or inference) of the signal strength 

at timepoint t as a weighted combination of incoming evidence and prior expectation: 

inferencet=wprior(prior
t
)+ wevidence(evidencet)   (1.1) 

Where the weights on prior and evidence are defined as: 

wprior= 1- wevidence      (1.2) 

This model, in itself, makes no particular assumptions about how prior, evidence and inference are 

represented in the mind and brain – aside from assuming that agents have access to a point 

estimate of these variables at a given point in time. By trading only in point estimates, this weighted 

combination is similar to classic models of associative learning such as the Rescorla-Wagner 

learning rule (also known as the ‘delta rule’; ((Dayan & Kakade, 2000; Rescorla & Wagner, 1972)). 

Indeed, substituting Eq 1.2 into Eq 1.1 and rearranging yields: 

inferencet= prior
t
+ wevidence(evidencet  - prior

t
)  (1.3) 

This is identical to the Rescorla-Wagner rule, where a point estimate -  inferencet - is made by 

computing a prediction error -  (evidence
t
  - prior

t
), - and using this difference value to update an 

initial expectation - prior
t
. The size of this update is controlled by wevidence, which is equivalent to 

the learning rate parameter in Rescorla-Wagner, usually denoted as α (alpha). Given this 

equivalence and Eq 1.2, one could also think of wprior   is equivalent to 1 – α.    
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2. Relationship to models of Bayesian inference 

However, while the model presented in Chapter 2 only assumes that agents form point estimates, it 

is also possible to connect these ideas to models of Bayesian inference. In particular, we could 

imagine that agents represent both the incoming evidence and their prior expectation as Gaussian 

distributions. These two Gaussian distributions are then combined together to form an inferred 

(posterior) distribution, which is also Gaussian. As shown in the figure below, each of these 

Gaussians is centred on a mean - µ (mu) - while the width of each distribution is controlled by the 

standard deviation - σ (sigma). 

 

The Bayes-optimal estimate for the inferred (posterior) distribution is given by combining the 

evidence and expectation distribution according to their precision, where precision is the inverse 

variance - 
1

σ2
. This means that more weight is given to the source of information (evidence or 

expectation) that is estimated to be most precise. In particular, the Bayes-optimal estimate for μ
infer

 

is: 

μ
infer

= wprior (μ
prior

) + wev(μ
ev

)      (2.1) 

Where: 

wprior= 

1

σ2
prior

 

1

σ2
prior

+ 
1

σ2
ev

        (2.2) 
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And:  

wev= 

1

σ2
ev

 

1

σ2
prior

+ 
1

σ2
ev

        (2.3) 

Because the denominators are the same, these weights sum to 1: 

wprior +  wev= 

1

σ2
prior

 

1

σ2
prior

+ 
1

σ2
ev

 +  

1

σ2
ev

 

1

σ2
prior

+ 
1

σ2
ev

=  

1

σ2
prior

+ 
1

σ2
ev

 

1

σ2
prior

+ 
1

σ2
ev

 = 1    (2.4) 

And so: 

wprior=1- wev          (2.5) 

Note that Eqs 2.1 and 2.5 are identical to Eqs 1.1 and 1.2 which describe our model.  

This means that it is possible to interpret the parameter wprior in our model in Bayesian terms, as 

an agent’s estimate of the precision (or confidence) of their expectations relative to the precision of 

the incoming evidence provided by the senses. Thus, if expectation and evidence are judged to be 

equally reliable  wprior = .5. In contrast, values of wprior<.5 suggest that agents believe the incoming 

evidence is more reliable than prior beliefs (and vice versa if wprior >.5). 

However, while this equivalence between Bayesian inference and our model can be shown 

mathematically, in the present work we do not directly measure or manipulate 𝜎2
𝑒𝑣 or 𝜎

2
𝑝𝑟𝑖𝑜𝑟. As 

such, any value of wprior used by an agent in our point-estimate model should be thought of as an 

as if Bayes-optimal inference (e.g., a participant whose behaviour is best fit by a value of wprior = .5 

is behaving in a Bayes-optimal fashion, if they believe incoming evidence and their prior beliefs are 

equally reliable, but we cannot verify whether this is true). 

Future work directly measuring or manipulating variables implied by  σ2
ev or σ

2
prior  (e.g., 

manipulating the uncertainty in evidence or expectations) will be important for determining whether 

we should conceptualise this kind of learning in fully Bayesian terms, rather than the simpler 

mechanics of the point estimate model described in Eqs 1.1 and 1.2.    
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Chapter 3: The neural mechanisms underpinning the formation and use of 

expectations about precision  

 

3.1. Introduction  

Chapter 2 provided support for the influential Bayesian model of metacognition which suggests that 

agents form probabilistic beliefs about how precise sensory information is likely to be and 

incorporate these expectations into perceptual precision estimates (Yon & Frith, 2021).  

In this chapter, we probed the neural mechanisms underpinning the formation and use of these 

expectations about precision. For Experiment 5, we adjusted the task used in Experiment 3 for 

optimal use within the scanner environment and replicated the results. This acted as a behavioural 

pilot for the main 3T fMRI experiment (Experiment 6), investigating which brain areas track signal 

precision and how these representations are changed by expectations. In particular, we focused on 

areas previously implicated in the encoding of objective and subjective uncertainty (Geurts et al., 

2022), including the dorsal anterior cingulate cortex (dACC), frontal pole and the insula – as well as 

visual brain regions like the middle temporal area (MT). To pre-empt our results, we find 

representations of sensory precision in the insula and MT, but only find these representations are 

modulated by expectations in the insula. Our results are consistent a possible ‘prediction error’ 

learning signal in the insula, explaining how higher-level brain regions may use our perceptual 

experiences to form and updated beliefs about precision.  

 

3.2. Experiment 5 – Behavioural pilot 

Experiment 5 acted as a behavioural pilot for the main fMRI experiment. We adapted the 

perceptual decision-making task from Experiment 3, where we asked participants to rate the clarity 

of moving dot clouds. Adaptations included the addition of coloured shape cues prior to the 

presentation of motion stimuli, the use of a circular, rather than linear, rating scale, and a change to 

the overall trial structure (see section ‘3.2.1. Procedure’ for details). These adaptations optimised 

the paradigm for use in an MRI scanner environment and orthogonalised potential confounds for 
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fMRI decoding analyses (e.g., potential confounds between motion strength and dot colour, or 

between motion strength and the sensorimotor motor features of the response). The aim of this 

behavioural pilot was to investigate whether comparable results to Experiment 3 would be found 

even with these fMRI orientated adaptations.  

 

3.2.1. Methods 

Participants 

Twenty participants (12 female, 8 male, mean age = 36.8, SD = 8.65) were recruited via Prolific. All 

participants were right-handed, reported normal or corrected vision and no history of psychiatric or 

neurological illness. All experiments were approved by the Research Ethics Committee at 

Birkbeck, University of London. 

Participants were considered outliers if their clarity ratings were >2.5SDs away from the mean. 

Outliers were winsorized to values 2.5SDs away from the mean for inferential statistics. For 

Experiment 5, seven datapoints for three participants were winsorized. Data patterns and their 

statistical significance were unchanged by this adjustment.  

 

Procedure 

Participants completed an online perceptual decision-making task programmed in PsychoPy 

(Peirce et al., 2019) adapted from Experiment 3 in Chapter 2. Participants were presented with 

clouds of up- or downwards moving dots, which they rated the clarity of from ‘completely clear’ to 

‘completely random’. Each trial began with a fixation cross surrounded by a probabilistic shape cue 

(either a coloured square or triangle - 2000ms) before the presentation of a dot motion stimulus 

(750ms – see Figure 3.1A). In each cloud, the motion angle of each dot was drawn from a normal 

distribution centred on either 0 degrees (up) or 180 degrees (down). Varying the precision (or 

width) of this distribution makes it possible to create clear stimuli (where most dots follow the paths 

close to programmed ‘mean’ – up or down) or ambiguous stimuli (where motion directions are 

relatively more random, see Figure 3.1B).  
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After a blank screen (500ms), participants had up to twenty seconds to rate the clarity of the 

motion cloud using a circular scale, similar to that used by Geurts and colleagues (2022; see 

Figure 3.1C). Participants moved a red marker around the scale using their mouse. The scale was 

tapered at one end; placing the marker at the wider end of the scale would indicate participants 

thought the motion had been ‘completely clear’, whereas markers placed towards the narrower end 

of the scale would indicate ratings of ‘completely random’ motion. Participants were encouraged to 

use the full range of the scale. To prevent participant’s clarity reports correlating with perceptual 

features of the scale, the orientation of the scale and the starting position of the response marker 

was randomised on each trial.  

As in Experiment 3, probabilistic cues (here coloured shapes) allowed participants to form 

expectations about the clarity of motion signals on each trial, allowing us to investigate how such 

expectations bias perceptual judgements. For example, a green triangle could signal that motion 

clouds were likely to be ambiguous, while a blue square could signal that motion clouds would 

likely be clear. Unlike in Chapter 2, participants were explicitly informed about the nature of these 

cue mappings at the beginning of each block, and cue mappings were flipped halfway through the 

experiment to ensure that behavioural effects were not due to any particular mapping.  

After 24 practice trials participants completed a main experiment of 384 trials. On 75% of trials 

observers experienced ‘expected’ events where the learned cues were valid (i.e., a blue square 

signalling clear motion was presented, and clear motion then followed) while on the remaining 25% 

stimuli were ‘unexpected’ (i.e., the blue square signalling coloured clear motion was followed by an 

objectively ambiguous motion). This manipulation of trial ‘expectedness’ allowed us to investigate 

how expectations about signal clarity influenced subjective clarity ratings.  
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Figure 3.1 – Experimental task (A) Participants completed a motion perception task, rating the clarity of 

motion of brief motion clouds using a randomly-oriented circular scale. Coloured shape cues (green triangle, 

blue square) were used to manipulate expectations about the clarity of motion signals for each trial, e.g., if a 

green triangle and fixation cross was shown, the upcoming motion cloud was likely to display clear motion. 

(B) Motion clouds were manipulated to either be ‘clear’ or ‘ambiguous’ by drawing the dot motions from 

distributions with different ‘precisions’. For ‘clear’ clouds, the majority of dots would move closely to ‘mean 

direction’ of the distribution (green arrows), while the remaining dots moved in more random directions (red 

arrows). For ‘ambiguous’ clouds, the majority of dots moved in more random directions away from the mean 

direction, making it difficult to decipher the overall motion direction. (C) During the ‘test phase’, participants 

would either experience ‘expected’ or ‘unexpected’ trials. For example, on an ‘expected’ trial, participants 

would see a ‘expect clear’ cue, followed by a ‘clear’ motion cloud. However, on a ‘unexpected’ trial, 

participants would see a ‘expect clear’ cue followed by an ‘ambiguous’ motion cloud. 
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3.2.2. Results 

We investigated how actual and expected precision influence subjective clarity ratings. In 

particular, we were interested in whether expectations about the precision of the incoming visual 

signals would bias clarity ratings as in Experiment 3.  

This was achieved by analysing clarity ratings with a 2 x 2 within-subjects ANOVA with factors of 

actual precision (clear, ambiguous) and expected precision (expect clear, expect ambiguous). 

Unsurprisingly, this analysis revealed a main effect of actual precision – with higher clarity ratings 

for stronger (mean = 0.732, SD = 0.08), than weaker stimuli (mean = 0.198, SD = 0.130; F(1, 19) = 

163.222, p<0.001, ηp
2 = 0.896).  

However, our key question concerns how expected precision alters subjective perceptions of 

clarity. Indeed, this analysis also revealed a main effect of expected precision – with higher clarity 

ratings on ‘expect clear’ (mean = 0.972, SD = 0.106) compared to ‘expect ambiguous’ trials (mean 

= 0.444, SD = 0.104; F(1, 19) = 8.227, p = 0.010, ηp
2 = 0.302, see Figure 3.2). There was not an 

interaction between these two factors. 
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Figure 3.2 – Expected precision alters subjective clarity ratings: Participants reported 

significantly higher clarity ratings when they expected clearer signals regardless of the objective 

signal they received (i.e., the green line is above the blue). Error bars represent 95% confidence 

intervals on the mean. 

 

3.2.3. Discussion  

We found that observers were biased to give motion clouds higher clarity ratings when more 

precise signals were expected. This is consistent with findings from Experiment 3 and also 

suggests that participants continue to form and use expectations about perceptual precision in this 

revised experimental set up. 
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3.3. Experiment 6 

In Experiment 6 we used functional magnetic resonance imaging (fMRI) to investigate the neural 

mechanisms responsible for tracking signal precision, and how these representations are 

modulated by expectations about signal precision. Here we used the same task as Experiment 5 

with some adjustments for use in the MRI scanner (see section ‘3.3.1. Procedure’ for details).  

3.3.1. Methods 

Participants 

30 new participants (22 female, 8 male, mean age = 25.03, SD = 3.64) were recruited from local 

participant databases. The same inclusion criteria and outlier management procedures were used 

as in Experiment 5, with the addition that participants be 20-35 years old. This sample included 

one replacement for a participant who was not invited to the fMRI phase after the behavioural 

training session (see below), as their data suggested they could not discriminate between clear 

and ambiguous motion clouds (i.e., no difference in clarity ratings).  

 

Procedure 

Experiment 6 was split over two days. On the first day participants familiarised themselves with the 

behavioural task. On the second day they completed a brief refresher version of the task outside 

the scanner, before completing the same task in the MRI scanner while we recorded their brain 

activity. 

 

Behavioural task  

The task was almost identical to that used in the behavioural pilot (Experiment 5) with a few 

changes to event timings to optimise it for MRI analysis – namely, participants had a shorter 

response window (2 seconds) to register their clarity rating and a randomised jitter (0.5 – 5 

seconds) was introduced between trials (see Figure 3.3 for more details). The refresher version of 



56 
 

the task, completed just before scanning, was a condensed version consisting of only 96 trials 

(75% ‘expected’ trials and 25% ‘unexpected’ trials).  

In the scanner, participants completed eight runs of 48 trials each. As in the behavioural pilot, 

participants were exposed to 75% expected and 25% unexpected trials, and coloured shape cues 

signalling that participants should expect strong or expect weak signals were flipped mid-way (i.e., 

at the beginning or Run 5). 

  

 

Figure 3.3 – Experimental task: We used the same task as Experiment 5, with small adjustments to 

response timing and inter-trial jitter to optimise fMRI data analysis.  

 

f RI acquisition and preprocessing  

Images were acquired using a 3T (Prisma) MRI scanner (Siemens, Forchheim, Germany) and a 

32-channel head coil. Functional images were acquired using an Echo Planar Imaging (EPI) 

sequence (ascending slice sequence, TR = 1.5s, TE = 35.02ms, 72 slices, voxel resolution 2mm 

isotropic). Structural images were acquired using magnetisation-prepared rapid gradient-echo (MP-

RAGE) sequence (voxel resolution: 1mm isotropic).  
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Images were pre-processed in SPM12. The first eight volumes of each participant’s data in each 

scanning run were discarded to allow for T1 equilibrium. All functional images were spatially 

realigned to the mean image and slice-time corrected. The participant's structural image was then 

co-registered to the mean functional scan and segmented to estimate forward and inverse 

deformation fields which can transform data from participant's native space into normalised space, 

and vice versa.  

 

Defining regions of interest 

We focused analyses on regions of interest (ROIs) previously implicated in the encoding of 

sensory precision and confidence judgements (see Figure 3.4). We used the same regions as 

Geurts and colleagues (2022) who found representations of objective and subjective precision in 

the dorsal anterior cingulate cortex (dACC) which is associated with environmental uncertainty 

(Behrens et al., 2007; Rushworth & Behrens, 2008), the frontal pole which is associated with 

subjective confidence (Fleming & Dolan, 2012), and the insula (which is associated with subjective 

uncertainty (Singer et al., 2009). We also added the middle temporal area (MT) as this area is 

implicated in the representation of visual motion (e.g. Born & Bradley, 2005). Bilateral masks of 

these ROIs were first created in normal space using the Neubert cingulate orbitofrontal 

connectivity-based parcellation (Sallet et al., 2013) for the dACC and the Harvard-Oxford cortical 

atlas (Desikan et al., 2006) for the frontal pole, MT and the insula. These masks were then 

transformed into each participant’s native space using the inverse deformation fields created 

during preprocessing. These participant-specific ROI masks were used in all analyses, and all 

analyses were conducted in each participant’s native space (i.e., functional data was not 

normalised). 
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Figure 3.4 – ROIs for analyses: (A) dorsal anterior cingulate cortex (dACC) which is associated 

with environmental uncertainty, (B) Frontal pole which is associated with metacognition (C) the 

insula, which is associated with monitoring uncertainty and (D) the Middle Temporal area (MT), 

which is involved in representing visual motion. 

  

3.3.2. Results 

Behavioural analyses  

First, we investigated whether expectations influenced subjective clarity ratings before and during 

scanning in the same manner as seen in Experiment 5. This analysis found the same effect of 

expected precision on clarity ratings was significant in the pre-scanning phase, with higher clarity 

ratings on expect strong (mean = 0.483, SD = 0.044) compared to expect weak trials (mean = 

0.465, SD = 0.046; F(1,26) = 27.525, p<0.001, ηp
2 = 8.256x10-4). The same effect was found 

(A) (B) 

(C) (D) 
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descriptively during scanning itself – (expect strong trials mean = 0.475, SD = 0.049; expect weak 

trials mean = 0.469, SD = 0.047) - but this did not reach significance (F(1,26) = 2.449, p = 0.130, 

ηp
2 = 0.086), which may reflect somewhat noisier behaviour when participants complete the task 

inside the scanner. However, these results broadly suggest that observers were able to track and 

use expectations about precision and integrate these into their inferences about signal clarity. 

 

f RI analyses  

We conducted multivariate decoding analyses to investigate whether each of our ROIs contained 

representations of sensory uncertainty, and whether these representations were altered by 

expectations about precision. All analyses were conducted using the TDT toolbox in MATLAB.  

First, to establish whether each ROI contained information about sensory uncertainty we 

constructed a classifier (support vector machine) which was trained to discriminate objectively 

strong trials from objectively weak trials, collapsed over expectations. This achieved initially by 

specifying a general linear model (GLM) in SPM12 which included event-related (stick) regressors 

locked to the onset of each ‘weak’ or ‘strong’ motion cloud separately in each run, alongside 

nuisance regressors capturing participant head movement, all of which were convolved with the 

canonical haemodynamic response function. Regressing this model against BOLD activity yields a 

total of 16 beta images of interest (one ‘strong’ and one ‘weak’ image, for each of the 8 scanning 

runs). These beta images are then used as training and test data for a linear SVM which learns to 

discriminate between strong and weak trials, using a leave-two-out cross-validation procedure. 

Crucially, this procedure ‘leaves out’ one run from each half of the experiment (Runs 1-4 and Runs 

5-8) to orthogonalise stimulus strength and the coloured shape cues. The classifier’s accuracy was 

calculated as the proportion of correctly classified images during the decoding steps.  

This analysis revealed that decoding of stimulus strength was above chance in the insula (mean 

decoding = 53.5%, SD = 7.592, t(29) = 2.556, p = 0.016, dz = 0.467) and area MT (mean decoding 

= 54.9%, SD = 9.242, t(29) = 2.906, p = 0.007, dz = 0.530) suggesting that were was reliable 

information about objective signal strength (i.e., the classifier could discriminate between ‘strong’ 
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and ‘weak’ signals). In contrast, decoding of objective sensory uncertainty was not significantly 

above chance in the dACC (mean decoding = 52.9%, SD = 8.967, t(29) = 1.787, p = 0.084, dz = 

0.326) or frontal pole (mean decoding = 51.640%, SD = 8.969, t(29) = 1.001, p = 0.325, dz = 

0.183) did not (see Figure 3.5). 

 

 

Figure 3.5– Insula and area MT show superior decoding accuracy of objective signal 

strength: in comparison to the dACC and FP, the insula and area MT show significantly higher 

decoding accuracy, indicating that the classifier was able to reliably discriminate between objectively 

strong and objectively weak trials in these areas. Error bars represent 95% confidence interval on 

the mean. 
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In the second phase of our analyses, we then investigated whether the representations of sensory 

uncertainty we identified in our first step were manipulated by expectations. This involved 

constructing another GLM with separate event-related regressors for expected and unexpected 

strong and weak stimuli (e.g., expected strong clouds, expected weak clouds, unexpected strong 

clouds and unexpected weak clouds). Given the fact that there were (by design) three times more 

expected than unexpected trials, to keep the signal-to-noise ratio consistent between conditions 

(and following Kok et al., 2012) we randomly divided expected events into three separate 

regressors – so that all expected and unexpected beta images were estimated from the same 

number of trials. 

With this GLM in hand, we then conducted equivalent decoding analyses discriminating ‘strong’ 

from ‘weak’ trials – but separately for expected and unexpected conditions. The logic of this 

analysis is that if representations of sensory uncertainty are altered by expectations about 

precision, decoding accuracy should differ between expected and unexpected conditions. Separate 

expected and unexpected classifiers were trained and tested again using the same leave-two-out 

cross-validation procedure. Decoding accuracy was again evaluated by averaging the proportion of 

correct classifications over decoding steps, and overall expected accuracy was estimated by 

averaging together the results from three randomly-divided expected classifiers. In the final step of 

the analysis, we compared decoding accuracy between expected and unexpected conditions in 

each of our ROIs using a paired sample t-test. 

These results revealed that there was superior decoding in the insula for ‘Unexpected’ trials (mean 

decoding = 54.3%, SD = 10.438) in comparison to ‘Expected’ trials (mean decoding = 49.9%, SD = 

6.354, t(29) = -2.300, p = 0.029, dz = -0.420). However, there was no significant difference in 

decoding accuracy between trial types in area MT (t(29) = 0.002, p = 0.998, dz = 3.982x10-4, see 

Figure 3.6).  
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Figure 3.6 – Superior decoding for unexpected trials in the insula: Results showed a significant 

difference in decoding accuracy between trial types in the insula. We found no difference in decoding 

accuracy between expected and unexpected trials in area MT. Values below 50 on this graph 

indicate decoding accuracies below chance (50%). Error bars represent 95% confidence on the 

mean. 

 

3.3.3. Discussion  

Experiment 6 found representations in the insula and area MT tracking of the sensory uncertainty 

of incoming signals. More importantly, only the insula showed modulation of these representations 

according to expectations. In particular, there was superior decoding of sensory precision on 

‘Unexpected’ trials. One possibility is that this pattern arises because the insula encodes ‘precision 
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prediction errors’ that capture the difference between the precision we are expecting and the 

precision we receive. These prediction error signals could be important for forming and updating 

expectations about signal strength, in the same way that prediction errors are thought to drive 

learning in other sensory and reward domains.  

3.4. General discussion  

In previous experiments we found that agents combine incoming evidence with learned 

expectations to estimate the precision of sensory information. However, it remained unclear how 

information about sensory precision is encoded in the brain and how representations in these 

areas are modulated by participant’s expectations about signal precision. The results of this 

chapter identify the insula as a potentially pivotal site in the brain where sensory precision is 

encoded, where representations are modulated by expectations about precision. In particular, we 

found superior decoding for stimuli with unexpected precision in comparison to expected events. 

These results could be interpreted as a form of ‘precision prediction error’ which could play an 

important role in forming and updating expectations about signal strength.  

Given that our behavioural results have previously indicated a bias towards expectations (i.e., 

when people expect more precise sensory signals, they give higher clarity ratings), one may have 

predicted that neural decoding results would have followed the same pattern (i.e., superior 

decoding for expected events). However, we find the complete opposite, with superior decoding 

accuracy for unexpected events – a possible ‘precision prediction error’ effect. Although our 

behavioural and neural results seem to be at odds with each other, with a bias in different 

directions, it is not inconceivable that results we pertain through neural decoding methods would 

manifest differently at a behavioural level. 

Our neural results could point to the possibility that the insula plays a role in encoding ‘precision 

prediction errors’ that capture the difference between precision we are expecting and the precision 

we receive, the disparity between expectation and reality. Such prediction errors could enable 

agents to represent information with higher fidelity, with higher quality representations of signals 

when they are surprising, allowing agents to update their prior expectations. This could be crucial 
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in the formation of expectations about precision that we see in Chapter 2 and the behavioural 

results earlier in this chapter. Similar kinds of ‘awareness prediction errors’ are described in models 

of subjective consciousness such as Fleming's (2020) ‘higher-order space state’ model. However, 

this is the first empirical demonstration of how and where such ‘precision prediction errors’ could 

exist.  

Researchers have already suggested that it would be difficult for the brain to monitor sensory 

uncertainty based purely on incoming signals alone, and observers may thus combine incoming 

signals with expectations to form precision estimates (Friston, 2018; Yon & Frith, 2021). Our results 

bring credence to this claim, showing that information about sensory uncertainty is monitored in the 

insula and modulated by participant’s expectations about sensory precision.  

We focused our analyses on regions previously implicated in the ‘common coding’ of objective 

sensory uncertainty and subjective confidence – including the insula, alongside other prefrontal 

and cingulate regions like the frontal pole and dACC. It is noteworthy that in our studies we did not 

find representations of sensory uncertainty in prefrontal or cingulate regions – contrary to prior 

work (e.g., Geurts et al, 2022). One possibility for this inconsistency is that – in our study – 

participants were not actually required to construct confidence reports, and separate neural 

mechanisms may be involved in the representation of decision confidence and subjective visibility 

(Bang & Fleming, 2018, Mazor et al, 2022). For example, elegant neuroimaging work by Bang and 

Fleming (2018) and Mazor and colleagues (2022) has found neural representations for the 

encoding of vividness of sensory signals, which are distinct from those encoding decision 

confidence. Our analyses support these results. We only found above chance decoding of signal 

precision in the insula and area MT but no such decoding in the frontal pole and dACC. This may 

suggest that some apparent representations of perceptual precision in fact reflect representations 

that are only deployed when internal signals (like precision estimates) are translated into 

representations of decision confidence. One possible way to test this would be incorporate explicit 

decisions and confidence ratings into our paradigm – as if this explanation is correct, 

representations of confidence/uncertainty in areas like the frontal pole may then emerge (Fleming 

& Dolan, 2012).  
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Despite finding representations of signal precision in both MT and the insula, we only see that 

expectations modulate representations in the insula and not area MT. This suggests that 

expectations are formed and integrated into precision representations at higher-level processing 

stages rather than lower-level perceptual circuits. This is consistent with our empirical findings 

(e.g., in Chapter 2) that expectations about precision influence ‘high level’ features of perceptual 

decisions (like subjective confidence) but leave ‘low level’ features (like perceptual sensitivity) 

unchanged, and is also consistent with theoretical models which suggest expectations about 

precision should be more influential as we progress up the hierarchy of the mind and brain (Yon & 

Frith, 2021).  

Experiments 5 and 6 provide further support for influential Bayesian models of cognition, showing 

that agents combine incoming evidence with prior expectation to estimate the precision of their 

senses (Experiment 5), and revealing a possible locus of these predictive computations in the 

insula (Experiment 6). These results bring us one step closer to understanding the mechanisms 

involved in how to perceive the sensory world.  

Chapter 4: The role of expected precision in audition and anomalous 

perception 

 

4.1. Introduction 

In previous chapters, we have provided extensive evidence of agents monitoring, and forming 

expectations about the precision of visual stimuli (Experiments 1-5) and have also identified the 

neural mechanisms involved in such processes (Experiment 6). However, up until this point, we 

have focused solely on the visual domain. There are established Bayesian models of multisensory 

integration which suggest that observers combine signals from different modalities according to 

their estimates of precision, lending more weight to more certain sensory channels (Alais & Burr, 

2004; Ernst & Banks, 2002). These models lean heavily on the assumption that agents track signal 
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precision and form expectations about such information across all the sensory domains, however, 

this is yet to be explored (Yon & Frith, 2021).  

Understanding the nuances of how expectations alter precision estimates across the different 

sensory domains is particularly important given theoretical accounts which use this idea to explain 

unusual experiences and atypical cognition. For example, a prominent explanation of 

hallucinations in psychosis suggests that these unusual experiences arise because patients hold 

inappropriate beliefs about the relative precision of incoming sensory signals and top-down 

predictions, leading to a disproportionately strong weight on prior expectations when perceiving the 

world (Corlett et al., 2019). These accounts depend on the idea that beliefs about precision can be 

false, and this could arise if observers hold the wrong expectations about precision. However, 

theories that explain atypical cognition by appealing to atypical precision weights rely on the 

assumption that precision weights can indeed be learned. We have shown that this is possible 

across Experiments 1 to 6, but only in the visual domains. The formation of expectations about 

precision is yet to be tested across other sensory domains, such as audition (Yon & Frith, 2021) – 

which may be particularly important given that hallucinations in the auditory domain are particularly 

prevalent (Corlett et al., 2019). 

In this chapter we explored whether ‘expected precision’ mechanisms identified in previous 

chapters can be generalised to the auditory domain, specifically to our perception of speech. We 

also explored whether disruptions to such mechanisms could explain unusual experiences such as 

hallucinations. Across two experiments we adapted the visual decision-making task used in 

previous chapters to probe ‘expected precision’ in the auditory domain. Participants then also 

completed the Cardiff Anomalous Perceptions Scale (CAPS) to measure their proneness to 

hallucination-type experiences, allowing us to connect these cognitive processes to hallucination-

like phenomenology participants may experience.  

To pre-empt our results, in Experiments 7 and 8 we find comparable results to those seen in our 

visual experiments; when participants expected clear auditory signals, they reported higher clarity 

ratings for the speech stimuli. This suggests that listeners integrate expectations about the 

reliability or precision of upcoming auditory stimuli into ratings of subjective clarity. When 
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examining the relationship between participant’s reliance on their precision expectations and their 

tendency to display hallucination-type experiences, we found that there was a negative correlation 

between the two factors (but this only reached significance in Experiment 7). This reflected that 

those who are more prone to hallucination type experiences displayed a smaller Expectation 

Effect, or less of a bias towards expected clarity. This hints at a potential impairment in the 

formation and use of precision expectations in those who are more prone to hallucination-like 

experiences.  

 

4.2. Experiment 7  

Experiment 7 investigated whether listeners form and use expectations about the precision of 

incoming auditory signals to make judgements about the reliability of perceptual information.  

Participants completed a perceptual decision-making task, rating the clarity of speech stimuli as 

‘clear’ or ‘ambiguous’. As in previous chapters, probabilistic cues signalled whether sensory signals 

would likely be strong or weak. We investigated how expectations established by these cues 

biased the subjective clarity of the speech stimuli and whether effects of these expectations were 

related to participants individual hallucination-proneness.  

 

4.2.1. Methods 

Participants 

Fifty-one participants (37 female, 12 male, 2 other, mean age = 31.02, SD = 9.197) completed 

Experiment 7. All participants reported normal or corrected vision and hearing, with no history of 

psychiatric or neurological illness. Participants took part as part of a research methods lab class on 

the MSc Psychology programme. The sample size was determined by the number of students in 

the class who completed the online study within a 24-hour window. Some participants did attempt 

to take part but were not included in the final sample because datasets were incomplete (five) or 

corrupted (five). This experiment was approved by the Research Ethics Committee at Birkbeck, 

University of London. 



68 
 

For the clarity rating data, participants were considered outliers if their ratings were >2.5SDs away 

from the mean. Outliers were winsorized to values 2.5SDs away from the mean for inferential 

statistics. For Experiment 7, only 8 datapoints for 3 participants were winsorized. Data patterns and 

their statistical significance were unchanged by this adjustment.  

For the CAPS data, Mahalanobis distance values were calculated for each participant’s overall 

CAPS score. Cases with Mahalanobis distance values exceeding the critical chi-square value 

(p<.001) were considered outliers and removed from further analysis, leaving a sample of 50 

participants (36 female, 12 male, 2 other, mean age = 31, SD = 9.289). Data patterns and their 

statistical significance were unchanged by this outlier removal.  

 

Speech Stimuli 

During the task, participants were played one of four speech stimuli of either the word ‘Pie’ or ‘Tie’ 

(recorded in a male, Southern British accent). Original recordings of these words were sourced 

from Sohoglu and Davis (2020).  

The clarity of these speech stimuli was manipulated using noise-vocoding (Shannon et al., 1995). 

We used a similar noise-vocoding procedure as that used by Zoefel and colleagues (2020). Firstly, 

each word was first filtered into 16 logarithmically spaced frequency bands and the amplitude 

envelopes extracted for each band. The envelope of these frequency bands was then mixed with 

the broadband envelope of the original speech signal at proportions of 0% to 100% to give an 

envelope for each frequency band, used to modulate the noise in the respective frequency. The 

resulting signals were then re-combined to yield 100 16-/1-channel vocoded speech mixes. 

Speech stimuli with higher vocoded values had higher precision (i.e., it was easy to identify the 

spoken word), whereas stimuli with lower vocoded values had lower precision (i.e., the speech 

becomes progressively unintelligible). For full details on the vocoding process please see Zoefel 

and colleagues (2020).  

From these 100 vocoded versions of ‘Pie’ and ‘Tie’, we identified a ‘clear’ stimulus (i.e., a recording 

with a high vocoded value, 92% morph) and an ‘ambiguous’ stimulus (i.e., a recording with a low 
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vocoded value, 66% morph) were selected for use in the main experiment. All speech stimuli were 

1000ms in length.  

 

Procedure 

Experiment 7 was modelled as an auditory version of Experiment 3. Participants completed an 

online perceptual decision-making task programmed in PsychoPy (Peirce et al., 2019), rating the 

clarity of speech stimuli (Figure 4.1A). Each trial began with a silent fixation period (500ms), during 

which a white speaker symbol would be displayed on screen. This speaker symbol would alternate 

between white (silent periods) and grey (when a speech stimulus was being played). One of the 

four speech stimuli would then be played (clear pie, clear tie, ambiguous pie or ambiguous tie, 

1000ms). After another silent fixation period (500ms), participants then gave a clarity rating on a 

continuous scale ranging from ‘ambiguous’ to ‘clear’ (Figure 4.1B).  

Critically, probabilistic cues (a single beep or double beep – see Figure 4.1C) allowed listeners to 

form expectations about the clarity of the auditory signals on each trial. For example, for a given 

listener, when a single ‘beep’ was played the following speech stimuli was likely to be of low clarity 

(i.e., difficult to discern whether there was a word within the auditory stimuli). In contrast, when a 

double ‘beep’ was played, speech stimuli were likely to have high clarity (i.e., easy to discern that 

there was a word within the auditory stimuli). This allowed us to investigate how expectations about 

auditory precision biased clarity ratings. Beep mappings were counterbalanced across participants. 

The experiment comprised of 480 trials. The first 160 trials acted as an initial training phase to 

establish expectations about the beep cues. In this training phase, 90% of trials were ‘expected’ 

(e.g., listeners were expecting to hear a clear speech stimulus and were played a clear stimulus), 

and 10% were ‘unexpected’ (e.g., listeners were expecting a clear speech stimulus but were 

actually played an ambiguous one). Participants then completed a 320-trial test phase, where the 

ratio of expected/unexpected trials was adjusted to 75/25%. 

Finally, participants completed the Cardiff Anomalous Perceptions Scale (CAPS) questionnaire 

(Bell et al., 2006), which is a validated measure of perceptual anomalies, and used here as a 
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measure of hallucinations proneness. A high score on the CAPS would indicate an individual who 

experiences a high level of hallucination-type experiences.  

 

 

 

 

 

 

 

Figure 4.1 – Experimental task: (A) Participants completed an auditory perception task, judging the 

clarity of speech stimuli that could vary in their actual and expected ambiguity. (B) Participants 

moved a marker across this scale using their mouse, clicking to give their final rating of the clarity of 

the speech stimuli (C) Probabilistic beep sequences manipulated expectations about the strength (or 

clarity) of speech stimuli for each trial, e.g., if a participant heard a double beep sequence they could 

expect upcoming speech signals to be clear.  
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4.2.2. Results  

We investigated how actual and expected precision altered perception of speech stimuli by 

analysing subjective clarity ratings - taken as a measure of the subjective precision of the speech 

stimuli. In particular, we were interested in whether expectations about the precision of the 

incoming auditory signals would bias clarity ratings. We also investigated whether hallucination-

proneness was connected to how far listeners relied on their expectations when making these 

clarity judgements.  

To investigate this first question, we analysed clarity ratings across the test phase of the 

experiment using a 2 x 2 within-subjects ANOVA with factors of actual precision (clear, ambiguous) 

and expected precision (expect clear, expect ambiguous). Unsurprisingly, this analysis revealed a 

main effect of true auditory precision, with higher clarity ratings for clear speech stimuli (mean = 

0.649, SD = 0.139), than ambiguous speech stimuli (mean = 0.418, SD = 0.191; F(1, 50) = 81.254, 

p<.001, ηp
2 = 0.619). Critically, this analysis also revealed a main effect of expected precision, such 

that participants gave higher clarity ratings when they expected clearer signals (mean = 0.542, SD 

= 0.165) compared to when they expected ambiguous ones (mean = 0.525, SD = 0.165; F(1, 50) = 

9.480, p = 0.003, ηp
2 = 0.159). These factors did/didn’t interact (F(1,50) = 0.197, p = 0.659, ηp

2 = 

0.004).  

This suggests that participants did indeed form expectations about the reliability or precision of the 

upcoming auditory stimuli, and these expectations were integrated into subjective perceptions of 

clarity (see Figure 4.2). 
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Figure 4.2 – Expected precision alters subjective clarity ratings: Participants reported 

significantly higher clarity ratings when they expected stronger speech stimuli (p = 0.003). Solid dots 

with error bars represent group level means with 95% confidence intervals on the mean. Translucent 

dots show individual subjects mean clarity ratings for different trial types. 

 

To assess the extent to which people rely on their expectations to make judgements on the clarity 

of the auditory stimuli and whether this is related to participant’s hallucination-proneness, we first 

calculated individual’s ‘Expectation Effect’. This was done by calculating the difference between 

average clarity ratings on trials where listeners expected strong signals and trials where listeners 

expected weak signals. A higher Expectation Effect score would indicate that a listener is relying on 

their expectations about precision. A lower Expectation Effect score would suggest similar 

perceptual ratings irrespective of expectations, indicating that a listener is relying less on 

expectations about which signals are likely to be ambiguous or reliable.  
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We found that there was a significant negative correlation between CAPS score and Expectation 

Effect (ρ (48) = -0.318, p = 0.024), suggesting that those with a higher CAPS score (and therefore 

more prone to hallucination type experiences) displayed a smaller Expectation Effect (Figure 4.3).  

 

 

Figure 4.3 - Significant negative correlation between CAPS score and Expectation effect: This 

suggests that those participants who are more prone to hallucination-type experiences show a lower 

expectations effect.  

 

4.2.3. Discussion  

Here we find a similar pattern of results as Experiments 3-6; when listeners expected clearer 

speech stimuli, they gave higher clarity ratings than when they expected more ambiguous speech 

sounds. This again provides evidence consistent with the Bayesian idea that expectations about 

signal strength biases subjective awareness which is generalisable across visual and auditory 

domains. We also found a significant negative correlation between CAPS score (hallucination 
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proneness) and Expectation Effect – those more prone to hallucinations showed a weaker 

Expectation Effect, suggesting a potentially reduced ability to incorporate expectations about 

precision into judgements about the clarity and reliability of incoming sensory signals.  

 

4.3. Experiment 8 

Experiment 8 was exactly the same as Experient 7 but conducted with a larger sample size to 

investigate whether results from Experiment 7 were replicable.  

 

4.3.1. Methods  

Participants  

A new sample of 194 participants (100 female, 91 male, 3 other, mean age = 32.32, SD = 7.98) 

were recruited via Prolific. This sample size was selected to provide 80% power to detect at least 

the same effect size as Experiment 7 (ηp
2 = 0.159). The same exclusion and outlier identification 

procedures were used as in Experiment 7. This sample included replacements for eight 

participants who were excluded for failing to complete at least 90% of trials across the training and 

test phase. An identical approach was used for identifying and managing outliers as in Experiment 

7. No adjustments were applied in the analysing of subjective clarity ratings across conditions, but 

four extreme outliers were removed from the correlational analysis investigating connections 

between expectation effects and hallucination-proneness. No adjustments changed the 

significance of statistical patterns observed.  

 

Procedure and Paradigm  

The stimuli, paradigm and procedure were exactly the same as that used in Experiment 7.  
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4.3.2. Results  

We carried out exactly the same analysis as Experiment 7. We first compared the subjective clarity 

ratings on trials where auditory signals were objectively stronger or weaker. Again, clarity ratings 

were higher when signals were objectively stronger (mean = 0.683, SD = 0.15), than when they 

were objectively weaker (mean = 0.428, SD = 0.165; F(1, 193) = 468.807, p<0.001, ηp
2 = 0.708).  

Consistent with Experiment 7 we found that ‘expect clear’ trials elicited higher clarity ratings (mean 

= 0.569, SD = 0.154), than ‘expect ambiguous’ trials (mean = 0.542, SD = 0.162; F(1, 193) = 

16.501, p<0.001, ηp
2 = 0.079).  

These results replicate Experiment 7; suggesting that listeners integrate expectations about the 

reliability or precision of upcoming auditory stimuli into ratings of subjective clarity (Figure 4.4).  

 

 

Figure 4.4 - Expected precision alters subjective clarity ratings: Similarly to Experiment 7, 

participants reported significantly higher clarity ratings when they expected stronger speech stimuli 

(p<0.001). Solid dots with error bars represent group level means with 95% confidence intervals on the 

mean. Transparent dots show individual subjects mean clarity ratings for different trial types. 
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We again assessed whether there was a relationship between participant’s ‘Expectation Effect’ and 

CAPS score. As in Experiment 7, there was a numerically negative correlation between CAPS 

score and Expectation Effect (see Figure 4.5), but this was not significant (ρ (188) = -0.018, p = 

0.807).  

 

Figure 4.5 – No relationship between CAPS score and Expectation effect: as participant CAPS 

score increases, Expectation effect decreases, however, this relationship is not significant. 

 

4.3.3. Discussion  
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7; listeners reported higher clarity ratings when they expected clearer auditory signals, in 

comparison to when they expected more ambiguous auditory signals. When looking at the 

relationship between CAPS score and Expectation Effect, although we saw the same descriptively 

negative association as seen in Experiment 7 (i.e., those with a higher CAPS score displayed a 
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4.4. General discussion  

In this chapter, we explored whether ‘expected precision’ mechanisms identified in previous 

chapters could be generalised from vision to speech perception and whether these mechanisms 

could possibly explain atypical cognition such as hallucinations. Across two experiments, we found 

that it is indeed possible for agents to form and use precision expectations about incoming speech 

stimuli i.e., when they expected clearer speech, they were more likely to give higher clarity ratings 

than when they expected ambiguous speech. These results support the idea that agents combine 

incoming evidence with learned expectations to estimate the precision of sensory information, not 

just in the visual domain but also in the auditory domain.  

Furthermore, in Experiment 7 we found a significant negative correlation between participant’s 

CAPS score and their Expectation Effect. Experiment 8 resembled this pattern of results; however, 

the pattern did not reach significance. This suggests that the fundamental cognitive and brain 

mechanisms identified in Chapters 2 and 3 could be plausibly disrupted in those who experience 

atypical cognition such as hallucinations – though more investigations are needed to test the 

robustness of this possible association. For example, future work could explore this relationship 

further by recruiting a more diverse population continuum of CAPS scores. This could be achieved 

by asking participants to complete the CAPS questionnaire first and then using their scores as a 

pre-screening method to ensure a wider range of hallucination-free and hallucination-prone 

individuals are invited back to complete the main perceptual decision-making task. Alternatively, a 

comparison could be done between healthy controls and clinically diagnosed voice hearers. 

Corlett and colleague’s (2019) ‘strong priors’ theory of hallucinations posits that those who 

experience hallucinations hold inappropriate beliefs about the relative precision of incoming 

sensory signals and top-down beliefs. This theory hinges on the idea that agents form expectations 

at different levels of the cognitive hierarchy: not only expectations about the content of their 

experiences (i.e., “I am likely to hear the word ‘Pie’ in this experiment”), but also expectations about 

the precision of incoming sensory signals (i.e., “I have heard a double beep, therefore I expect the 

next word to be clear”). At first glance, our results may seem at odds with this theory; as 

participant’s CAPS score increases their Expectation Effect decreases. However, what is important 
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to remember here is that ‘Expectation Effect’ in this instance refers to the extent to which 

participants are relying on expectations about the sensory signal itself (sensory precision prior) 

rather than forming expectations about what they are likely to experience (content prior).  

Our results hint that hallucination prone individuals could be relying less on their expectations 

about sensory precision. A failure to accurately estimate the precision in low-level sensory systems 

could mean that perceivers end up relying more on top-down perceptual priors than they ought to. 

In this respect, our findings complement the ‘strong prior’ theory of hallucinations – since those 

prone to hallucinations could allocate an inappropriate weight to ‘content expectations’ (e.g., “I 

expect to hear a voice”) because they failed to estimate precision appropriately (e.g., “I can’t trust 

what I’m hearing, so I should rely on my expectations”).  

Overall, these two experiments provide further support for influential Bayesian models of cognition, 

showing that listeners combine incoming evidence with prior expectations to estimate the precision 

of their hearing. However, more work is warranted in investigating the relationship between 

expectations about precision and unusual experiences such as hallucinations. Although we found a 

significant negative correlation between the two factors in one study, the same pattern of data did 

not reach significance in the second. Future work could explore this relationship further by looking 

at a more diverse groups of hallucinators (e.g., including clinically diagnosed voice hearers).  
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Chapter 5: Expected precision and evidence accumulation 

5.1. Introduction 

So far, work in this thesis has established that our subjective awareness is powerfully shaped by 

expectations about precision. However, an important question is whether the changes in 

perceptual awareness identified in previous chapters have consequences for metacognitive control 

– that is, adaptive behaviours which are thought to improve cognition and performance (Boldt et 

al., 2019; Boldt & Gilbert, 2022). Classical models of metacognition imagine an interconnected 

loop, where metacognitive monitoring mechanisms create subjective representations of 

uncertainty, and these representations are then used by metacognitive control mechanisms to 

coordinate overt behaviour (Nelson & Narens, 1990). A paradigmatic example of such monitoring is 

decision confidence. Metacognitive monitoring mechanisms can create feelings of confidence at 

the meta-level by tracking information in lower-level systems, and these meta-representations can 

then guide adaptive metacognitive control behaviours (Boldt et al., 2019; Boldt & Gilbert, 2022). 

Such behaviours include slowing down decisions (Yeung & Summerfield, 2012), manipulating our 

environment (Risko & Gilbert, 2016), seeking information (Desender et al., 2018) or asking for 

advice when we are uncertain (Bahrami et al., 2010; Shea et al., 2014). Our results so far suggest 

that expectations about precision can alter some kinds of metacognitive monitoring (e.g., 

subjective confidence) but is unclear whether these changes in confidence will also translate into 

changes in metacognitive control behaviour.  

In this chapter we explore whether expectations about precision can influence the metacognitive 

control behaviour of evidence sampling (i.e., how long an individual takes to evaluate a situation 

before committing to a decision). Using a similar visual decision-making paradigm to that used in 

Chapters 2 and 3, we allowed participants to control their own sampling of the perceptual stimulus 

and investigated whether participants choose to slow down and gather more information when they 

expect the sensory world to be a more ambiguous place.  
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5.2. Experiment 9  

5.2.1. Methods 

Participants 

Forty-two participants (30 female, 12 male, mean age = 35.4, SD = 8.61) were recruited via 

Prolific. All participants reported normal or corrected vision with no history of psychiatric or 

neurological illness. The sample size was selected to provide at least 80% statistical power to 

detect a medium-sized effect (Cohen dz = 0.453). This experiment was approved by the Research 

Ethics Committee at Birkbeck, University of London. 

Participants were considered outliers if their individual effects (i.e., condition-wise differences in 

RTs) were >2.5SDs away from the sample mean. Similar to experiments in Chapter 2, we identified 

outliers based on participant’s condition-wise effects (rather than specific condition means or trial-

level data). Outliers were winsorized to values 2.5SDs away from the mean for inferential statistics, 

rather than adjusting raw datapoints. For Experiment 9, four participant’s condition-wise effect for 

RTs were winsorized. Data points and their statistical significance were unchanged by this 

adjustment. 

 

Procedure 

Participants completed an online perceptual decision-making task programmed in PsychoPy 

(Peirce et al., 2019) adapted from Experiment 2. Participants were presented with clouds of right- 

or leftward moving dots and were asked to identify the overall direction of movement (i.e., left or 

right, see Figure 5.1). Each trial began with a fixation cross (500ms) before the presentation of a 

dot motion stimulus (max 5s). During stimulus presentation participants gave their response via 

keypress as to whether they thought the overall motion was to the left or right and their sampling 

time was recorded. In each motion cloud, a proportion of dots was programmed to move 

coherently left or coherently right, while the remaining dots moved in random directions.  

Probabilistic cues (colours of fixation cross and stimulus dots) were the same as those used in 

Experiment 2 – allowing participants to form expectations about the strength of motion signals on 
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each trial and allowing us to investigate how such expectations bias perceptual judgements. Colour 

mappings were again counterbalanced across participants and participants were not explicitly 

informed about the association between the probabilistic cues and signal strength.  

Like Experiment 2, the current experiment consisted of 560 trials. The first 160 acted as an initial 

training phase with perfectly deterministic mappings between colour and coherence to establish 

expectations about the cues (e.g., that ‘blue cues’ predicted clearer motion clouds). This was then 

followed by a 400-trial test phase where, like in Experiment 2, half of the trials medium probe trials. 

On these trials, participants received the same colour cues they had associated with clear or weak 

motion clouds but received an objective perceptual signal of intermediate strength (16% motion 

coherence). Given objective signal strength is identical on these trials, any differences in sampling 

times on these trials must reflect effects of expectations about signal strength – and these trials are 

the main trials of interest in analyses below.  

 

Figure 5.1 – Experimental task: Participants completed a motion perception task, deciphering the 

direction of left- or rightward moving dot cloud stimuli. Stimuli were displayed for a maximum of 5 

seconds. Once a decision had been given via keypress the experiment would automatically move onto 

the next trial and sampling times were recorded. Colour cues manipulated expectations about the 

strength of motion patterns of each trial, e.g., if stimuli were blue participants could expect high motion 

coherence.  

 

500ms
fixation
cross

Max 5s
stimulus and

response screen
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5.2.2. Results  

We investigated how actual and expected precision influenced participant’s metacognitive control 

behaviour; specifically, how long participants took to view the stimulus before committing to a 

perceptual decision.  

As expected, participants accumulated more evidence from objectively weaker motion clouds than 

objectively stronger motion clouds – with longer RTs on truly weak (mean = 0.817ms, SD = 0.303) 

compared to truly strong trials (mean = 0.551ms, SD = 0.088, t(41) = -7.272, p<0.001, dz = 0.197). 

Critically though, we evaluated whether expectations about precision also affected evidence 

sampling by analysing the difference between RTs on expect weak and expect strong, specifically 

on the medium probe trials. The difference in RTs between the two trial types did not reach 

significance (t(41) = -1.422, p=0.163, dz = 0.156, see Figure 5.2), however, we did see a 

consistent pattern across participants indicating that participants were slightly quicker to decipher 

the motion direction on expect  t  n  trials (mean = 0.683s, SD = 0.187), than on expect weak 

trials (mean = 0.696s, SD = 0.189).  
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Figure 5.2 – Expected precision does not significantly alter participant sampling time: Participants 

took slightly longer to decipher left- and rightward movement of stimuli on expect weak trials, however, 

this difference did not reach significance. Errors bars represent 95% confidence intervals on the mean. 

 

5.2.3. Discussion  

In this chapter, we investigated whether expectations about precision could influence the 

metacognitive control behaviour of evidence sampling (i.e., how long individuals take to evaluate a 

stimulus before committing to a decision). It is already well documented that metacognitive or 

confidence judgements are closely linked with metacognitive control behaviours. For example, the 

more confident an individual feels about a decision the less likely they are to seek further 

information (Desender et al., 2019), ask for advice (Bahrami et al., 2010; Shea et al., 2014) or 

delay before committing to a decision (Yeung & Summerfield, 2012). In other chapters, we have 

found evidence that confidence and subjective awareness are changed by expectations about 

precision, but it remained unclear whether these changes would also translate into changes in 
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metacognitive control behaviours (i.e., “I expect this signal to be ambiguous or weak, therefore I 

will ad ust and take more time to sample the information before committing to a decision”).  

In Experiment 9, we tested this idea by allowing participants to control how long they sampled the 

perceptual stimulus before deciding on the overall motion direction of the stimulus. Critically, 

probabilistic cues allowed participants to form expectations about the strength or precision of the 

upcoming motion stimuli. Participant’s sampling time would indicate whether they chose to slow 

down and gather more information when they expected the upcoming stimuli to be weak or 

imprecise. Our results showed that participants took marginally longer to report their decision when 

they expected weaker motion signals, in comparison to when they expected stronger signals – 

however, this pattern of results did not reach significance.  

There are at least two possible interpretations of this pattern. The first is that this result is a ‘false 

negative’, due to limited statistical power. As the pattern of results is in the predicted direction (i.e., 

participants took longer to sample sensory evidence when they expected sensory signals to be 

weak), and perhaps this experiment would benefit from a larger sample and/or employ more 

sensitive measurements of sampling time (e.g., in the lab rather than online) to improve statistical 

power.  

However, another possibility is that this is a ‘true negative’ result, and there is indeed a disconnect 

between the effects of expected precision on metacognitive monitoring and metacognitive control. 

If there is a disconnect, this may mean that the connection between subjective confidence and 

control behaviours is not as strong as usually thought. In other words, it could be possible to have 

a manipulation (like expectations) which makes an observer feel more confident, but which does 

not influence how they control their behaviour. This is precisely the question we target in the next 

chapter – where we investigate whether it is possible to dissociate the role of subjective uncertainty 

(confidence) and objective uncertainty (sensory precision) in the programming of control 

behaviours, like information seeking.  
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Chapter 6: Sensory uncertainty and information seeking  

 

6.1. Introduction 

So far, this thesis has largely focused on how expectations about precision influence metacognitive 

monitoring of perception. Throughout we have found evidence that our expectations about 

precision influence our subjective confidence and the subjective clarity of perceptual information. 

However, in the last chapter (Chapter 5) we found that these manipulations of expectation did not 

influence evidence sampling behaviour – a feature of our behaviour often thought to be connected 

to metacognitive feelings like confidence. This raises an intriguing possibility: that some kinds of 

adaptive control behaviours are largely influenced by ob ective uncertainty estimates, rather than 

subjective feelings. This would explain why changes in subjective confidence or subjective 

awareness may not always be translated into changes in adaptive control. Here, we investigate 

this in the context of information seeking. 

Humans ask questions in talks and read papers in journals to seek information. Other animals seek 

information too, like when primates look inside opaque containers before making decisions about 

which one they’d prefer. In humans and other creatures, gathering information allows us to improve 

our internal models of the outside world (e.g., “which scientific theories are true?” or “which tube 

contains a peanut?”) which in turn leads to adaptive cognition and choice.  

In humans, information seeking is generally thought to depend on explicit metacognition: 

introspective processes that subjectively monitor the uncertainty in our own mental states, like 

subjective feelings of confidence (Fleming et al., 2012; Yeung & Summerfield, 2012). Elegant 

experiments have shown that factors which manipulate subjective confidence, without changing 

objective accuracy, can also alter decisions to seek further information. For example, sampling 

more variable sensory evidence causes us to feel less confident in our perceptual decisions (Boldt 

et al., 2017; Gardelle & Mamassian, 2015), and increases the odds that we opt for a ‘clearer look’ 

at a stimulus before committing to a choice (Desender et al., 2018, 2019). The logic here is that the 
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subjective experiences of uncertainty we feel attached to our decisions are instrumental in causing 

our actions to seek information. We seek more information because we don’t feel confident.  

The close connection between subjective metacognition and information seeking in adult humans 

has inspired researchers across the cognitive sciences to use information seeking as a window 

into the metacognitive abilities of creatures and populations that cannot explicitly comment on their 

own mental states. For instance, evidence that nonhuman animals seek information in more 

ambiguous environments has been taken as evidence that these creatures can consciously 

monitor their knowledge states in the same way that adult humans can (Call & Carpenter, 2001; 

Hampton et al., 2004). At the same time, evidence that preverbal infants can seek help in the face 

of more uncertain decisions has been taken as a sign that preverbal infants “consciously 

experience their own uncertainty” (Goupil et al., 2016). 

This scientific strategy is intuitive, and there is good evidence that information seeking in infants 

and animals is genuinely sensitive to uncertainty. However, a neglected nuance in these areas is 

that our minds and brains can be sensitive to uncertainty in ways that do not entail metacognition. 

For example, Bayesian models of the brain suggest that uncertainty or ‘precision’ is a property that 

could be estimated and represented at every level of the brain’s hierarchy – but not all of these 

uncertainty representations enter into subjective awareness or are used for metacognitive control. 

For instance, there is compelling evidence that low-level multisensory integration (e.g., combining 

vision and touch) depends on computations that estimate the uncertainty in sensory signals (Alais 

& Burr, 2004; Ernst & Banks, 2002), but we are typically only aware of the result of these 

uncertainty computations (i.e., the multisensory percept) rather than the uncertainty estimates 

themselves (Deroy et al., 2016).  

The existence of such ‘subpersonal’ uncertainty estimates even in the adult human brain makes it 

possible that information seeking action could indeed be driven by uncertainty – but this may not 

involve the same uncertainty computations that generate metacognitive feelings like confidence 

(see Figure 6.1). A potential dissociation between subjective metacognition and information 

seeking would undermine the idea that information seeking necessarily reflects conscious 

introspection about a creature’s own mind. 
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Figure 6.1: Uncertainty, metacognition and information search. a) According to metacognitive 

theories there is a tight connection between information seeking and subjective metacognitive states 

(e.g., feelings of confidence about our perceptual choices). In this way of thinking, internal estimates 

of sensory evidence strength (e.g., of the kind found in the parietal cortex - Bang & Fleming, 2018) 

are one source of evidence used to construct subjective feelings of confidence (e.g., in dorsolateral 

prefrontal cortex, Shekhar & Rahnev, 2018). These subjective feelings then guide control 

behaviours, which is why we search for more information when confidence is low (Desender et al., 

2018). (b) However, an alternative possibility is that uncertainty estimates in the brain directly control 

information seeking without the involvement of introspective metacognitive computations e.g., we 

may seek information when sampled signals are less precise. If this second possibility is true, 

breaking the link between sensory uncertainty and decision confidence should reveal situations 

where sensory ambiguity drives information seeking, even if subjective confidence has not changed. 

(NB: Imagined neural locations are speculative) 

 

Here we reveal just such a dissociation. Across two experiments, we have participants make 

perceptual choices while we independently manipulated two separate kinds of uncertainty: 

uncertainty caused by sampled perceptual evidence (sensory uncertainty) and uncertainty caused 

by choice boundaries (decisional uncertainty). Across these experiments we find that it is sensory 

(and not decisional) uncertainty which drives information seeking behaviour.  
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Since subjective confidence is usually thought to be closely connected to decision difficulty, but not 

sensory uncertainty (see Bang & Fleming, 2018), this pattern suggests that information seeking 

can operate independently of the mechanisms involved in subjective metacognitive monitoring. 

This may in turn mean that some aspects of our behaviour are not controlled by subjective 

estimates of precision, contrary to what is widely assumed.  

 

6.2. Experiment 10  

Participants completed a perceptual decision-making task judging the prominent direction of 

motion in clouds of moving dots in relation to a comparison line (i.e., did the cloud move clockwise 

or counterclockwise relative to the comparison). The reference line remained on screen until 

participants registered their decision or chose to have a second look at the stimuli. Points could be 

won for correct answers or deducted for incorrect answers. Sensory and decisional uncertainty 

were manipulated independently of each other to probe which kind of uncertainty influenced the 

probability of participants seeking more information (having a second look at the stimuli).  

 

6.2.1. Methods 

Participants 

Fifteen participants (12 female, 3 male, mean age = 32.2, SD = 8.92) completed Experiment 10 – 

this sample size was chosen arbitrarily. All participants reported normal or corrected vision, with no 

history of psychiatric or neurological illness. Participants were recruited via local databases and 

tested in person at Birkbeck. The experiment was approved by the Research Ethics Committee at 

Birkbeck University of London.  

Participants were considered outliers if their probability of seeking more information was >2.5SDs 

away from the mean. Outliers were winsorized to values 2.5SDs away from the mean for inferential 

statistics. Data patterns and their statistical significance were unchanged by this adjustment.  
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Procedure 

Participants completed a perceptual decision-making task in PsychoPy (see Figure 6.2). Each trial 

began with a fixation cross (1500ms) followed by a cloud of moving dots (300ms) and a blank 

screen (700ms). These clouds were programmed to move coherently in a direction randomly 

chosen between 0 – 180 degrees (i.e., the top half of an imaginary circle). After viewing the moving 

dots, participants saw a comparison line and were required to judge whether the cloud had moved 

clockwise or counterclockwise relative to the comparison. The reference line remained on screen 

until participants registered their decision with a key press.  

In the task we independently manipulated two kinds of uncertainty: sensory uncertainty and 

decisional uncertainty. We manipulated sensory uncertainty by creating two sensory evidence 

conditions – strong and weak. Motion coherence was lower on weak trials (16 %) than on strong 

trials (48 %). We independently manipulated decisional uncertainty by using adaptive staircases to 

titrate the decision line (Leek, 2001). For easier trials, staircases targeted a level where accuracy 

would be ~70%, using a 1-up-2-down adjustment rule – meaning that if participants made two 

correct decisions in a row the reference line was drawn closer to true motion direction (making 

choices harder) while if participants made one error the line was adjusted to be drawn further 

(making choices easier). For harder conditions staircases targeted an accuracy level ~50%, 

instead using a 1-up-1-down rule – meaning that the reference line was adjusted to be harder after 

each correct choice and easier after each error. Crucially, these staircases were run independently 

for each of the four experimental conditions (Strong Easy, Strong Hard, Weak Easy, Weak Hard), 

and these staircases were left running throughout the experiment. This made it possible to create 

conditions where sensory uncertainty was decoupled from decision difficulty (e.g., by setting 

different decision boundaries for strong and weak motion clouds that would yield accuracies of 

~70% in Strong Easy and Weak Easy conditions). 

In all experiments, participants completed this perceptual task in three blocks or ‘phases’. The first 

two phases were identical in each experiment. The first was a practice block (80 trials) where 

participants were familiarised with the task, but did not gain any points for the decisions they made. 

This phase also allowed the independent adaptive staircases to converge on Easy and Hard 
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difficulty levels for each of the four conditions. In the second block (200 trials) participants were 

informed that they would now earn points for making correct decisions, and that these points would 

be used to calculate a bonus payment at the end of the experiment. In this phase, participants 

received +4 points for a correct choice and +0 points for an error. This block primarily served to 

allow us to verify that our task manipulation successfully dissociated main effects of sensory 

uncertainty and decisional uncertainty on objective task performance. 

However, the third and final block (200 trials) was the primary block of interest; here participants 

had the option to seek more information before making a choice. If participants opted to ‘look 

again’ at the stimulus, they saw the same motion stimulus (at 100% coherence) and then made the 

same discrimination decision – but for a reduced reward. Participants received +5 points for a 

correct choice made without an extra look, +2 points for a correct choice made after looking again 

or +0 points for an incorrect decision. Breaks were offered every 20 trials.  
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Figure 6.2: Experimental task and manipulations. a) Participants judged the predominant 

direction of motion in moving dot clouds and earned points for correct decisions. b) In the third phase 

of the experiment participants could seek more information (another ‘look’) before committing to a 

decision c) We independently manipulated uncertainty in the stimulus and uncertainty in the choice 

to evaluate how these distinct kinds of uncertainty influence information seeking and subjective 

confidence. 

 

a) Perceptual decision task

b) Task with information seeking (phase 3)

c) Manipulating sensory and decisional uncertainty
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6.2.2. Results  

Dissociating sensory and decision uncertainty 

Before analysing our main variable of interest (information seeking) we first evaluated whether our 

experimental design was successful in dissociating sensory uncertainty from decisional 

uncertainty. Participants first completed a practice phase to begin the adaptive staircasing, 

followed by a main block of 200 trials where participants made these perceptual decisions across 

four conditions (weak easy, weak hard, strong easy, strong hard). A 2x2 within-subjects ANOVA 

with sensory uncertainty (strong or weak visual evidence) and decisional uncertainty (easy or hard 

choice boundaries) was used to investigate this question.  

Analysing decisions in this phase of the experiment revealed that our design was successful in 

decoupling sensory and decisional uncertainty. Average accuracy was substantially higher on 

easier trials (mean = 0.720, SD = 0.081) than on harder trials (mean = 0.575, SD = 0.063) – F(1, 

14) = 57.396, p<0.001, ηp
2 = 0.804 – suggesting that our staircasing procedure was successful.  

Despite staircasing, there remained a statistically significant difference in choice accuracy between 

trials with weak (mean = 0.638, SD = 0.07) compared to strong visual evidence (mean = 0.657, SD 

= 0.074; F(1, 14) = 4.759, p = 0.047, ηp
2 = 0.254) – however, this difference was very small. 

Critically though, these two factors did not interact (F(1, 14) = 1.256, p = 0.281, ηp
2 = 0.082) – 

meaning that our experimental paradigm successfully dissociated two sources of uncertainty that 

could affect information seeking and metacognition. A full breakdown of mean and SDs for 

accuracies across trial types are given in table 6.1.  
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 Weak-Easy Weak-Hard Strong-Easy Strong-Hard 

Mean 0.703 0.572 0.736 0.577 

SD 0.08 0.059 0.081 0.067 

 

Table 6.1: Full breakdown of task accuracy means and SDs across trial types. Trials could 

either be weak or strong in terms of ‘sensory uncertainty’ and easy or hard in terms of ‘decisional 

uncertainty’, creating four unique trial types. Here we present the mean accuracy and accompanying 

SD for each of these four trial types.  

 

Sensory (not decisional) uncertainty controls information seeking 

Participants proceeded to a final block of 200 trials where they had the option to seek information. 

Before committing to a choice, observers could push a button to obtain a ‘clearer look’ at the 

stimulus (an additional stimulus presentation, where the same motion direction was shown at 

100% coherence).   

However, the more intriguing question here is what sort of uncertainty (decisional or sensory) has 

more of an impact on information seeking behaviour. If information seeking depends on an 

introspective appraisal of decision accuracy (e.g., “probability correct” – (Guggenmos, 2022; 

Pouget et al., 2016) we may expect observers to seek more information on trials where they are 

more likely to make errors. However, our analyses revealed no main effect of decision difficulty 

(easier vs harder) on information seeking decisions (F(1, 14) = 2.475, p = 0.138, ηp
2 = 0.15 – see 

Figure 6.3).  

In contrast, information seeking was strongly shaped by sensory uncertainty (F(1,14) = 9.179, p = 

0.009, ηp
2 = 0.396), with a higher probability of seeking more information on weak trials (mean = 

0.142, SD = 0.10) than on strong trials (mean = 0.087, SD = 0.072). This means that observers 

sought more information when sensory evidence was more ambiguous – even though there were 

many ambiguous stimuli where the probability of a correct decision was relatively high, and many 

clear stimuli where the probability of a correct decision was relatively low. Experiment 10 hinted at 
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a possible interaction between sensory and decisional uncertainty, but this did not reach 

significance (F(1,14) = 4.441, p=.054, ηp
2 = 0.241). 

In sum, these results show that – when sensory uncertainty and decisional uncertainty are 

decoupled – it is the ambiguity in the sampled sensory signals rather than the difficulty of the 

choice that controls information seeking action. 

 

 

Figure 6.3: Sensory (but not decisional) uncertainty controls information seeking: a) We found 

that information seeking behaviour (decisions to ‘look again’) were strongly shaped by the ambiguity 

in sensory signals, b) but not influenced by manipulations of decision difficulty (i.e., easier or harder 

decision boundaries). Hollow markers indicate sample means in each condition, and error bars 

denote 95% within-subjects confidence intervals on the difference between conditions.  

 

6.2.3. Discussion 

Here we find that information seeking behaviour is heavily influenced by sensory uncertainty, but 

not by subjective decisional uncertainty. When sensory uncertainty was high (weak or imprecise 

sensory signals), participants were significantly more likely to opt for a second look at the stimuli, in 

comparison to when sensory uncertainty was low (strong or precise sensory signals). However, 

probability of having a second look at the stimulus was not significantly affected by subjective 

decisional uncertainty. This result may accord well with results in Chapter 5, where a factor which 

a) b) 
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affected subjective uncertainty (i.e. expected precision) did not significantly influence the control of 

perceptual evidence accumulation (which could be construed as a form of ‘information seeking’ in 

its own right).  

 

 

6.3. Experiment 11  

Following Experiment 10, a replication was conducted with an increased sample size to see 

whether our initial findings were robust.  

 

6.3.1. Methods 

Participants 

A new sample of 38 participants (24 female, 14 male, mean age= 32.2, SD = 8.10) were recruited 

via Prolific. This sample size was chosen to provide at least 80% power to detect the possible 

effect of decision difficulty that did not reach significance in Experiment 10 (ηp
2 = 0.15). The same 

exclusion and outlier identification procedures were used as in Experiment 10. Data patterns and 

their statistical significance were unchanged by this adjustment.  

 

Procedure 

The stimuli, paradigm and procedure were exactly the same as that used in Experiment 10.  

 

6.3.2. Results  

We carried out exactly the same analysis as Experiment 10.   

Dissociating sensory and decisional uncertainty 

We first evaluated whether our experimental design was again successful in dissociated sensory 

uncertainty from decisional uncertainty. Again, average accuracy was substantially higher on easier 
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trials (mean = 0.683, SD = 0.115) than on harder trials (mean = 0.572, SD = 0.075; F(1, 37) = 

69.231, p<0.001, ηp
2 = 0.425 ), suggesting that our staircasing procedure was successful. We also, 

again, found a small but consistent difference in choice accuracy between trials between weak 

(mean = 0.607, SD = 0.092) compared to strong visual evidence (mean = 0.648, SD = 0.098; F(1, 

37) = 12.472, p = 0.001). These factors did not interact (F(1, 37) = 0.50, p = 0.484, ηp
2 = 0.002), 

meaning that our experimental paradigm successfully dissociated the two sources of uncertainty. A 

full breakdown of mean and SDs for accuracies across trial types are given in table 6.2.  

 

 Weak-Easy Weak-Hard Strong-Easy Strong-Hard 

Mean 0.665 0.548 0.700 0.596 

SD 0.117 0.066 0.113 0.083 

 

Table 6.2: Full breakdown of task accuracy means and SDs across trial types. Trials could 

either be weak or strong in terms of ‘sensory uncertainty’ and easy or hard in terms of ‘decisional 

uncertainty’, creating four unique trial types. Here we present the mean accuracy and accompanying 

SD for each of these four trial types. 

 

Sensory (not decisional) uncertainty controls information seeking 

Consistent with Experiment 10, we found no main effect of decision difficulty (easier vs harder) on 

information seeking decisions (F(1, 37) = 2.053 , p = 0.160 , ηp
2 = 0.005 – see Figure 6.4). Yet 

again, we found that information seeking was strongly influenced by sensory uncertainty (F(1, 37) 

= 14.546, p<0.001, ηp
2 = 0.233 ), with a higher probability of seeking more information on weak 

trials (mean = 0.087, SD = 0.104) than on strong trials (mean = 0.038, SD = 0.055). There was no 

interaction between sensory and decisional uncertainty (F(1,37) = 0.910, p = 0.346, ηp
2 = 0.002).  

These results replicate Experiment 10; suggesting that it is sensory ambiguity rather than choice 

difficulty that controls information seeking action.  
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Figure 6.4: Sensory (but not decisional) uncertainty controls information seeking: a) We found 

that information seeking behaviour (decisions to ‘look again’) were strongly shaped by the ambiguity 

in sensory signals, b) but not influenced by manipulations of decision difficulty (i.e., easier or harder 

decision boundaries). Hollow markers indicate sample means in each condition, and error bars 

denote 95% within-subjects confidence intervals on the difference between conditions.  

 

6.3.3. Discussion  

Results from Experiment 11 replicated those of Experiment 10; information seeking behaviour was 

significantly influenced by sensory uncertainty but not decisional uncertainty. When sensory 

uncertainty was high (weak or imprecise sensory information), participants were much more likely 

to opt for a second look at the stimuli, in comparison to when sensory uncertainty was low. These 

results go against the traditional idea that information seeking depends on conscious 

metacognitive computations (i.e., confidence judgements).  

 

6.4. General Discussion 

Metacognitive theories suggest there is a tight connection between information seeking and 

subjective confidence. In these theories, decisions to seek more information are driven by the 

subjective feelings of uncertainty attached to our choices. Indeed, the connection between 

a) b) 
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information seeking and explicit feelings like subjective confidence is assumed to be so strong that 

information seeking is often used by researchers in developmental psychology or comparative 

cognition as a window into the conscious introspective states of preverbal children or nonverbal 

animals. However, here we find that a manipulation usually thought to influence subjective 

uncertainty (decision difficulty) did not affect information seeking, while a more objective form of 

sensory ambiguity did (sensory uncertainty). 

This dissociation undermines the idea that information seeking necessarily depends on conscious 

metacognition computations – of the kinds that create subjective feelings of confidence. If this were 

true, factors influencing subjective confidence about our perceptual choices should also shape 

information seeking (Desender et al., 2018), but we do not see this here.  

Instead, our results are consistent with an emerging picture from computational neuroscience, 

where a variety of uncertainty estimates are stored at different levels throughout the hierarchy of 

the mind and brain, but not all forms of uncertainty are consciously accessible (Pouget et al., 2016; 

Yon & Frith, 2021). For instance, in Bayesian models, brains keep track of the uncertainty or 

‘precision’ in sensory circuits to control the integration of information across the senses (Ernst & 

Banks, 2002) or the combination of momentary evidence with existing prior beliefs (Yon, 2021). 

Our results are consistent with the idea that similar representations of sensory uncertainty might be 

used to guide information seeking action – such that humans and other animals might explore 

more in more ambiguous sensory environments – but without the involvement of explicit 

metacognition. 

Our results suggest that some kinds of uncertainty can influence information seeking without 

mediation through changes in subjective confidence, possibly utilising a pathway as outlined in 

Figure 6.1. However, this does not imply that metacognition and information seeking never interact. 

For example, it remains highly plausible that metacognitive introspection can lead us to seek more 

information before committing to a perceptual choice. Indeed, Desender and colleagues (2018) 

found that information seeking was driven more so by evidence reliability, not because the factors 

were directly connected, but because of evidence reliability’s inextricable link to confidence, which 

both feed into information seeking behaviour. More broadly there is also good evidence connecting 
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changes in subjective confidence to other forms of metacognitive control – such as changes in 

evidence accumulation (Balsdon et al., 2020), cognitive offloading (Boldt & Gilbert, 2019; Scott & 

Gilbert, 2024) and even curiosity about metacognition itself (Recht et al., 2024).  However, our 

results do call into question whether information seeking and subjective are as tightly connected as 

traditionally thought. Our results reveal a possible alternative: that uncertainty may be able to alter 

information seeking behaviour without altering explicit metacognition.   
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Chapter 7: Discussion 

This thesis has concerned influential Bayesian models of the mind. Bayesian models of perception 

suggest that observers estimate the precision of incoming evidence and use these estimates to 

decide how to combine information from different sensory systems (Ernst & Banks, 2002) or how to 

combine incoming evidence and prior expectations (Yon & Frith, 2021) – giving more weight to 

incoming signals that are currently most precise. At the same time, internal estimates of precision 

are thought to be fundamental in how the brain metacognitively monitors its own uncertainty – 

creating subjective feelings like confidence (Geurts et al., 2022). 

An important shift in contemporary Bayesian models is the idea that precision is not estimated on 

incoming evidence alone but also assumes that agents form probabilistic beliefs about how precise 

information is likely to be, and these expectations are incorporated into precision estimates 

(Friston, 2018).  

This idea of expected precision has become increasingly embedded in theoretical models of the 

Bayesian brain and often used to explain unusual experiences such as hallucinations (Corlett et 

al., 2019). Forming beliefs about precision would help agents to estimate uncertainty – which may 

often be difficult to compute (Yon & Frith, 2021) – and also optimise metacognitive monitoring of 

perception and action. However, while we can potentially explain various aspects of perception and 

metacognition by assuming agents form beliefs about precision, it was previously unclear how or 

whether expectations about perceptual precision are actually formed and the role these 

expectations play in cognition and behaviour. 

This thesis has provided important insights into these questions. In this Discussion section, I 

summarise the key findings and outline questions for future research, spread across three themes: 

fundamental mechanisms of expected precision, expected precision and atypical experiences and 

metacognitive monitoring and metacognitive control 
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7.1. Fundamental mechanisms of expected precision 

In Chapter 2, we provided the first empirical support for the idea that probabilistic expectations 

about precision influence subjective confidence and subjective awareness. Moreover, we present a 

new predictive learning model which can explain how these effects of expectations on awareness 

can arise. We extend this work in Chapter 4 to reveal comparable influences in audition as well as 

vision. Taken together, our results provide support for contemporary Bayesian models of the mind, 

and the idea that agents do not only ‘read out’ the reliability of information arriving at their senses 

but also take into account prior knowledge about how reliable or ‘precise’ information is likely to be.  

We extend this work into neural mechanisms in Chapter 3. Here we found representations of 

sensory uncertainty in the insula and area MT, but only find these representations are modulated 

by expectations in the insula. These findings point to the possibility that the insula plays a role in 

encoding ‘precision prediction errors’ that capture the difference between the precision we are 

expecting and the precision we receive. These prediction errors may be crucial in the formation of 

expectations about precision we see in Chapter 2.  

Unravelling these neural and computational mechanisms is an important area for future work. One 

possibility could be to test more explicitly the ‘prediction error’ hypothesis about the role of the 

insula in precision learning. This could be achieved by using the predictive learning model 

introduced in Chapter 2 to estimate trial-by-trial prediction errors, testing whether the error signals 

implied by the model are indeed encoded in the same insula region. It would also be valuable to 

intervene on activity in this insula region to see whether this affects the acquisition and use of 

precision expectations. This could involve the use of transcranial magnetic stimulation (TMS) to 

disrupt neural activity in this area (Bolognini & Ro, 2010), or more profitably transcranial ultrasound 

(TUS) which are more effective at targeting deeper cortical structures (Kubanek, 2018). 

Presumably, if the insula is involved in the tracking of sensory uncertainty and the formation of 

expectations about precision, disrupting the neural function here would disrupt both processes. 

This could possibly lead to lower accuracy on the task (i.e. more random ratings of subjective 

clarity) but could also prevent the acquisition of expectations about precision – abolishing the 
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effects we see in our behavioural paradigms.  

 

7.2. Expected precision and atypical experiences 

The concept of ‘expected precision’ is central to Bayesian models of atypical experiences – like 

hallucinations. In Chapter 4 we investigated whether the expected precision mechanisms identified 

in previous chapters may be connected to unusual experiences such as hallucinations. We found 

some evidence that those prone to hallucinations were less able to form or use expectations about 

sensory precision when estimating the reliability of the sensory world. A failure to accurately 

estimate the precision in low-level sensory systems could mean that perceivers end up relying on 

top-down perceptual priors more than they ought to, which could engender hallucination-like 

experiences. These findings therefore provide general support for the application of Bayesian 

ideas and ‘expected precision’ to atypical experiences – like those which characterise psychotic 

illness.  

However, associations between precision expectations and hallucinations were not consistent 

across our studies (i.e., significant in one case, and non-significant in another). There are at least 

two possible ways this line of work could be extended in future. One possibility could be to recruit a 

more diverse sample from the general population, actively stratifying the range of unusual 

experience scores (e.g., the CAPS questionnaire) to improve the sensitivity of the correlational 

analyses, capturing a wider spectrum of hallucination proneness. A second complementary 

approach would be to run the same study with a case-control design, comparing healthy controls 

and a clinical sample of voice-hearers. This could potentially reveal the extent to which expected 

precision influences perceptual awareness and how extensively the neural mechanisms we have 

identified in previous chapters are disrupted in psychotic illness.  

 

7.3. Metacognitive monitoring and metacognitive control 

In the final two chapters, we focused on whether expected precision and sensory uncertainty have 

any consequences for metacognitive control. In Chapter 5 we probed evidence accumulation 
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(sampling time). We found that participants took slightly longer to make a decision when they 

expected weak signals in comparison to when they expected strong signals – however this pattern 

of results did not reach significance. This result could possibly be a false negative, as the pattern of 

results is in the predicted direction and maybe with a larger sample and more sensitive sampling 

time measurement, this may reveal a clearer result. Alternatively, these results could be a true 

negative, and there is a disconnect between the effects of expected precision on metacognitive 

monitoring and metacognitive control. This may mean that the connection between subjective 

confidence and control behaviours is not as strong as initially thought.  

To draw a more solid conclusion about the involvement of expected precision in metacognitive 

control, future research should address the methodological suggestions outlined above (i.e., a 

larger sample size and lab-based testing to allow for more sensitive time measurement). After 

repeating the original analyses of this proposed data, drift diffusion modelling could then be 

introduced as an additional analysis. Drift diffusion modelling follows an agent’s decision-making 

process as they accumulate information over time until the process hits a certain threshold and a 

decision is ultimately made (Fudenberg et al., 2020). Such modelling techniques can yield 

measurements such as the drift rate and decision thresholds. Drift rate reflects the speed of 

evidence accumulation towards the decision threshold (Fudenberg et al., 2020). Decision 

thresholds indicate how much evidence is needed to make a decision – higher thresholds lead to 

longer sampling times and more cautious decisions (Myers et al., 2022). Identifying and comparing 

these parameters between ‘expect weak’ and ‘expect strong’ conditions in a replication of our 

evidence accumulation experiment would allow a more granular investigation of the processes 

involved in metacognitive control of continuous decisions than looking at response times alone. For 

example, decision thresholds and/or drift rates may vary between the different precision 

expectation conditions, but these possibilities cannot be disentangled looking at sampling time 

alone.  

We also investigated a second form of metacognitive control: information seeking. Our results from 

Chapter 5 raises an intriguing possibility: that some kinds of adaptive control behaviours are largely 

influenced by ob ective uncertainty estimates, rather than subjective feelings (confidence or 
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expectations). Therefore, the experiments in Chapter 6 investigated whether sensory uncertainty 

alone would influence participant’s probability of seeking information, rather than just changes in 

subjective confidence. Here we find that sensory uncertainty, but not decisional uncertainty 

significantly increases people’s probability of seeking more information to make a decision. This is 

surprising, given that decisional uncertainty is usually closely connected to subjective confidence 

and suggested that decisions to seek information and metacognitive feelings do not always rely on 

the same cognitive computations.  

One way that this possibility could be tested more directly in future work could be to combine 

metacognitive monitoring and control into a single experiment. For instance, future studies could 

extend the ‘expected precision’ conditioning task used throughout this thesis to collect both 

information seeking (‘second look’) and subjective clarity ratings simultaneously. Such an 

experimental structure would allow us to test more directly whether expectations are being formed 

to shape subjective awareness separately from shaping overt behaviour, or if awareness and 

behaviour are influenced similarly when both are probed together.  

 

7.4. Conclusion 

In sum, this thesis provides support for Bayesian models of expected precision. We provide 

behavioural evidence to support these ideas and reveal possible neural mechanisms underlying 

the process of learning and predicting precision. We also provide tentative support for theories that 

implicate aberrant expectations about precision in the genesis of unusual experiences like 

hallucinations. Though our results leave open some questions about the relationship between 

expectations, metacognitive monitoring and metacognitive control, this thesis provides important 

empirical groundwork for Bayesian theories of the mind and also suggests intriguing possibilities 

for future directions in this area of research.  
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