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SUMMARY

Evolutionary theories claim that dance and music have evolved as collective rituals for social bonding and 

signaling. Yet, neuroscientific studies of these art forms typically involve people watching video or sound re-

cordings alone in a laboratory. Across three live performances of a dance choreography, we simultaneously 

measured real-time dynamics between the brains of up to 23 audience members using mobile wet-electrode 

EEG. Interpersonal neural synchrony (INS) in the delta band (1–4 Hz) was highest when performers directly 

interacted with audience members (breaking the fourth wall) and varied systematically with the dancers’ 

movements and artistically predicted and actual continuous engagement. In follow-up studies using video 

recordings of the performance, we show that audience brain synchrony and engagement are highest 

when dance is experienced live and together. Our study shows that the ancient social functions of the per-

forming arts are preserved in engagement with contemporary dance.

INTRODUCTION

Across the world, live performances of theater, dance and music 

attract large and growing numbers of visitors.1–3 The phenome-

non and experience of live events have been discussed from 

both theoretical4–6 and empirical perspectives,7,8 yet a cognitive 

neuroscience approach to understanding the appeal of live 

events is difficult, as traditional data collection and analysis 

methods are based on the repetition of multiple short experi-

mental trials in a laboratory context. Two specific features of 

live events are particularly challenging from a neuroscience 

perspective. Firstly, live performances are physically live in that 

they are unique, non-reproducible, and can only be experienced 

once in the exact same way.9–11 Secondly, performances are so-

cially live in that they are typically experienced in groups.5,12,13

Neuroimaging studies have only recently started to focus on 

live social interactions, but with a few exceptions are typically 

limited to two people,14 rather than the large groups that attend 

a live event.

Dance and music have evolved as participatory perfor-

mances12,15–19 and rituals20 that communicate or facilitate group 

affiliation.21–23 Contemporary dance makers often explicitly 

reference the spiritual and ritualistic origins of dance by fore-

grounding altered states of consciousness, non-linear narrative, 

participation, improvisation, or immersion as core aesthetic and 

creative features.10,24–26 Dance communicates nonverbal infor-

mation through movement,13,27 and evokes synchronized brain 

activations in individual spectators. Social interactions might 

also drive higher engagement of audiences in live28–31 or 

streamed32 music concerts, but it is unknown to what extent 

communication of performance content (movement, music, or 

artistic intentions) depends on performance context (physical 

and social liveness).

Existing neurocognitive research on engagement with tempo-

ral art forms (dance, music or film) typically involves measuring 

continuous brain activity from individuals watching video or 

sound recordings alone in a lab.33–39 Synchrony of brain activity 

between individuals across time has been proposed as an index 

of shared attentional engagement while watching emotionally 

arousing or engaging video clips or film scenes with both 

EEG40 and fMRI.39,41–43 Indeed, greater EEG brain synchrony 

predicts superior memory recall and is diminished by distraction 

from external tasks.44,45 From a joint attention perspective on 

engagement, brain synchrony reflects neural processing 
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similarities of a shared stimulus, rather than a genuinely shared 

affective experience.46 Dikker et al.47 show that students’ brain 

synchrony, measured as alpha coherence, relative to others in 

a classroom, increases with the students’ individual arousal. In 

this study, we deploy the joint attention account of engagement 

to better understand the role of liveness for the experience of 

dance. We commissioned a dance performance titled Detective 

Work, created by choreographer Seke Chimutengwende in 

collaboration with dance artist Stephanie McMann, which incor-

porates elements of theater and music as well as moments of 

direct interaction with the audience.48 Across three live perfor-

mances, we collected simultaneous mobile EEG recordings 

from up to 23 audience members (Final N = 59) and measured 

their interbrain synchrony in relation to (a) continuous objective 

features of the performance: dancer acceleration and distance, 

lighting and soundtrack (b) subjective ratings of audience 

engagement as predicted by the choreographer, performer, 

and the dramaturg and (c) the audience’s breathing synchrony. 

More detailed information on the artistic process of making De-

tective Work is available from https://neurolive.info/ 

Performance-1. To assess the role of both physical and social liv-

eness, we also conducted a series of follow-up studies where 

people watched a video recording of the dance performance on 

their own in a laboratory setting, or together as a group in the 

dance studio or a cinema.

We addressed three main research questions. Firstly, by col-

lecting mobile EEG from large groups during live and screened 

dance performances, we tested whether audience brain syn-

chrony can capture continuous engagement with the perfor-

mance. In contrast to previous EEG work in this area, we take 

a data-driven approach that retains the temporal information of 

the dance performance and does not make a priori assumptions 

about what EEG frequency bands are relevant to attentional 

engagement (i.e., alpha). Secondly, we explored whether audi-

ence brain synchrony is temporally coupled to the dynamic fea-

tures of the live performance and reflects communication be-

tween dancers and audience members. Thirdly, we tested 

whether continuous and summative engagement and brain syn-

chrony during the live performances are higher compared to 

watching a recording of the same performance alone in the lab 

or together with others.

RESULTS

We collected data for three live performances (hereafter P1, P2, 

P3), three cinema screenings (hereafter S1, S2, S3), a dance stu-

dio screening, and a lab study. The sample size for individual 

cinema screenings did not allow for a group-based time- 

resolved analysis of brain synchrony; therefore, we only report 

pairwise analyses of delta phase locking and delta/alpha EEG 

power for this study. All EEG data for the studio screening 

were lost due to a data streaming issue (see Figure 1D and 

Table S1 for an overview of datasets and summary of results). 

Additionally, we collected predicted and actual continuous 

engagement ratings for the video of P3 from artists and an inde-

pendent sample of viewers in an online follow-up study. We 

report summative engagement collected immediately after the 

performance for all live and recorded versions of Detective Work.

First, we show that summative engagement was highest af-

ter watching the dance performances live and together, 

compared to all screenings and the lab study. Secondly, com-

mon sources of EEG signal variation across time and audience 

members were most pronounced in the EEG delta band for all 

three live performances. Thirdly, using correlational and 

granger-causality analyses we relate audience brain syn-

chrony to dynamic performance features and show that in-

ter-brain synchrony systematically varies with both the artists’ 

predicted and the viewers’ actual continuous engagement. 

Fourth, we show that delta-band INS was reduced if people 

watched a video of the performance alone in the lab. 

Finally, comparing high and low engagement sections of all 

live performances, the cinema screening, and the lab study, 

we show that EEG alpha/delta power is lowest and delta 

phase locking is highest when dance is watched with other 

people.

Engagement after the performance is highest when 

experiencing dance live and together

A direct comparison of summative engagement ratings between 

live performance audience members and viewers in the lab, 

cinema, and studio screenings reveals that watching live dance 

together was more engaging than watching recorded versions of 

Detective Work together or alone (see Figure 2). We observed 

significant differences in responses for ‘‘Absorption (‘I was ab-

sorbed in the performance’)’’ (H(3) = 13.13, pFDR = 0.03), ‘‘Atten-

tion (The performance held my attention)’’ (H(3) = 18.15, pFDR = 

0.01), ‘‘Curiosity (At any moment during the performance, I was 

curious what would happen next)’’ (H(3) = 16.73, pFDR = 0.01), 

‘‘Heightened Senses (Attending the performance heightened 

my senses and made me acknowledge my immediate surround-

ings more vividly)’’ (H(3) = 14.72, pFDR = 0.02), and ‘‘Bonded with 

performers (To what extent did you relate to, or feel bonded with 

one or both of the performers?)’’ (H(3) = 12.04, pFDR = 0.04). Post- 

hoc tests showed that watching the live show was associated 

with experiencing a stronger bond to the performers, greater ab-

sorption, and greater attention compared to watching a video 

recording in the lab (U = 1032, pFDR = 0.01; U = 1049, pFDR = 

0.02; U = 1023.5, pFDR = 0.03), the studio screening (U = 

874.5, pFDR = 0.02; U = 980.5, pFDR = 0.004; U = 1055.5, 

pFDR = 0.0004), and the cinema screening (U = 355, pFDR = 

0.01; U = 383.5, pFDR = 0.02; U = 422, pFDR = 0.01). Watching 

the live performances also led to greater awareness of the imme-

diate surroundings and increased curiosity as to what would 

happen next compared to the lab study (U = 1181, pFDR = 

0.001; U = 1213.5, pFDR = 0.0004). Summative engagement 

immediately after the performance, therefore, depended on 

both physical (live vs. recorded) and social (watching together 

or alone) liveness.

In an open-ended question prompting the most memorable 

moments of the performance, spectators were most likely to 

remember a performance section in which both dancers directly 

looked and smiled at individual audience members (‘‘Unison’’ 

section, see Figure 1A). This differed significantly between the 

four performance contexts (χ2 = 23.5, p < 0.001). More than 

half of all audience members mentioned the ‘‘Unison’’ section af-

ter watching the performance together live (51.47%) with more 
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frequent reporting for the live compared to studio screening 

(22.22%, χ2 = 11.6, p < 0.001), and the lab screening (17.86%, 

χ2 = 16.3, p < 0.001), but not the cinema screening (43.48%, 

p = 0.41). There was a significantly higher proportion of remem-

bering the Unison section for the lab compared to the cinema 

screening (χ2 = 10.7, p = 0.001). These findings suggest a rela-

tionship between engagement and memory for specific events 

of the performance, highlighting the importance of direct social 

interactions between performers and spectators for audience 

engagement.

Live dance performances evoke audience brain 

synchrony in the EEG delta-band

To identify a neural correlate of continuous audience engage-

ment with live dance, we computed audience brain synchrony 

using correlated component analysis (CCA, Dmochowski 

et al.40; Parra et al.45). Compared to other measures of inter-

personal neural synchrony (INS), such as phase lag value, 

general linear models, coherence, and inter-subject correla-

tions,49,50 CCA provides a group-based and data-driven 

approach to computing INS that allows to reduce the 

Figure 1. Overview of experimental design and analysis method 

(A and B) Images of two sections of Detective Work rated as more (A) or less (B) engaging. More images and information are available on www.neurolive.info/ 

Performance-1. Images by Hugo Glendinning. 

(C) Experimental set-up and stage/seating position of audience members. 

(D) Datasets: we report EEG and questionnaire data for 3 live performances, a lab study, and questionnaire data for two collective screening studies. 

(E) Overview of methods and dynamic analysis of interpersonal neural synchrony (INS).
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complexity of our data (1h recordings of 23 participants multi-

plied by 32-electrode EEG arrays) without making arbitrary as-

sumptions about specific frequency windows or electrode 

locations.

For each performance (P1, P2, and P3), we extracted the first 

three correlated components (hereafter C1, C2, and C3). These 

components reflect correlations in EEG activity between partic-

ipants across time that maximize the ratio of between-to within- 

participant covariance. Time-resolved CCA was computed in 

five-second windows with an 80% overlap for the entire dura-

tion of the performance. Across all performances, C1 captured 

the highest amount of covariance in audience frequency-band 

EEG activity (beta, alpha, theta, delta; Figure 3). Cluster-based 

permutation tests identified significant regions of timepoints in 

the four frequency-bands relative to the 95th percentile of syn-

chrony values from corresponding randomized EEG datasets. 

Across all performances, components in the delta-band 

showed the highest number of significant clusters (C1Delta; 

P1: 17 clusters, P2: 40 clusters, P3: 91 clusters). The length 

of clusters in seconds was also greater for the delta frequency 

band (see Table S2). A chi-squared test of independence for 

each performance showed a statistically significant association 

between frequency band and number of significant clusters for 

Component 1 (P1: χ2 (3, 3216) = 21.83, p = 0.0001; P2: χ2 (3, 

3160) = 70.31, p < 0.0001; P3: χ2 (3, 3283) = 170.13, 

p < 0.0001). Pairwise χ2 tests of significant timepoint clusters 

between all four frequency bands indicated more significant 

time-points for delta compared to other frequency bands (see 

Table S3). Component 1 in the delta band (C1delta) also ex-

plained the most covariance across components and fre-

quency bands. Overall, in Performance 1 (P1), C1Delta explained 

26.82% of the group covariance, C2Delta explained 13.43%, 

Figure 2. Post-performance questionnaire ratings for audiences in the Live (N = 57), lab (N = 28), Cinema Screening (N = 57), and Studio 

Screening (N = 24) conditions 

The Studio Screening and Lab experiments presented an unedited version of the video recording, whereas the Cinema Screening presented a professionally 

edited video. Statistically significant non-parametric comparisons with Mann-Whitney U tests between independent audience groups for the live performance 

versus two group screenings and the lab study are denoted by ***pFDR < 0.001, **pFDR < 0.01, *pFDR < 0.05.
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Figure 3. Time- and frequency-resolved correlated components analyses (Delta, Theta, Alpha, Beta) for live performances P1, P2, P3, and the 

laboratory condition where individual viewers watched a video of P3. CCA time series are smoothed by selecting the median value in 60-s 

windows 

Vertical lines indicate time-points (seconds) when C1delta is greater than the 95th percentile of INS calculated from 1,000 randomized datasets 

INS was most pronounced in the delta band across all three performances and the lab condition. Topographical plots indicate the spatial distribution of synchrony 

component C1delta. Red/blue colors indicate the direction of correlation (positive/negative) with C1delta and EEG activity in that region.
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and C3Delta explained 11.32%. This pattern was replicated 

across both P2 (C1Delta = 41.56%, C2Delta = 9.93%, C3Delta = 

7.1%) and P3 (C1Delta = 41.92%, C2Delta = 10.07%, and 

C3Delta = 8.62%).

To provide an even stronger control for spurious correlations 

not linked to the unfolding performance, we collected active 

eyes-open Resting-State (RS) EEG from audience members 

immediately before they entered the performance space (P1: 

n = 15/20, P2: n = 15/18, P3: n = 17/21). RS data were recorded 

individually at the end of EEG preparation in a shared space. 

Repeating 2.5-min segments of RS data were then used as a 

baseline for C1Delta calculated on segments of the same duration 

for the whole performance. For P3, 9 out of 21 choreographic 

sections were statistically significant (Wilcoxon signed-ranks, 

pFDR < 0.05), with higher C1delta for the performance compared 

to C1RS Figure S1. For P2, segment 16 was higher for the Perfor-

mance than for RS (pFDR = 0.023; (gray shaded sections 

in Figure S1A)). P1 showed the opposite pattern with the 

C1RS > Performance for all segments (pFDR < 0.05), due to unex-

pectedly high INSDelta in the baseline condition. In sum, while INS 

was most prominent in the delta frequency band across all three 

performances, P2 and P3 emerged as the performances with the 

highest synchrony, relative to both circularly shifted and resting 

state data. These results are in keeping with measures of data 

quality and synchronization (see Data/Methods S1 and 

Figure S7).

While the strength of INS relative to both baseline measures 

varied across the three performances, we did not observe any 

differences in summative audience engagement immediately af-

ter viewing. Audience members were generally engaged and en-

joyed watching all three performances (N = 57, data missing for 

two participants). Twenty-eight questionnaire responses were 

given on a Likert scale of 1–7 from Disagree to Agree (e.g., ‘‘I en-

joyed the performance’’: M = 5.14, SD = 1.48, ‘‘I was absorbed in 

the performance’’: M = 5.01, SD = 1.58, ‘‘The performance held 

my attention,’’ M = 4.72, SD = 1.58). None of the questionnaire 

ratings differed between performances (pFDR > 0.91).

Artistic intentions align with continuous audience 

engagement

To test if watching dance indeed involves communication be-

tween dance artists and the audience, we computed correlations 

between the artist’s continuous ratings of predicted audience 

engagement and actual engagement ratings from viewers in an 

independent online study, based on a video of the third perfor-

mance of Detective Work (https://youtu.be/RivFBmqJxzA).

We collected ratings from three core members of the artistic 

team: the choreographer, the second performer, and the drama-

turg. In the context of contemporary dance works like Detective 

Work, one of the dramaturg’s tasks is to emulate the audience’s 

point of view, anticipating and shaping how artistic intentions 

are realized during the creation process. This is particularly impor-

tant for Detective Work, since the choreographer also performs in 

the work himself and therefore cannot experience the work from a 

3rd person perspective. We therefore predict positive correlations 

between the predicted engagement ratings of the choreographer 

and the dramaturg, as well as between the dramaturg, the chore-

ographer, and spectators of Detective Work. Alignment between 

intended and actual engagement would indicate effective 

performer-spectator communication.13,51

Comparing all three members of the artistic team, a correlation 

matrix of these ratings with a median rolling window of 180 s 

(2.5 min) showed that the choreographer and dramaturg (rho = 

0.77) provide more similar ratings than the choreographer and 

the performer (rho’s = 0.22, 0.30; all p’s < 0.0001). Additionally, 

we collected continuous ratings of engagement from a separate 

online sample watching the video of performance 3 (N = 23, to 

match the sample size of the live EEG audience and scoring 

high on observational dance experience (M > 5)). The median on-

line audience ratings of actual engagement correlated signifi-

cantly with the choreographer’s ratings of predicted engage-

ment (rho = 0.55, p < 0.001), see Figure 4A for correlations 

between actual and predicted engagement.

Finally, performance sections with C1Delta significantly higher 

than the resting state (Perf. > RS) were also more engaging to 

watch (M = 0.46, SD = 0.30) (Figure 4B) compared to sections 

not significantly different from the resting state (Perf. = RS; 

M = 0.51, SD = 0.31; Figure S1A). This comparison was statisti-

cally significant across all timepoints (z = 261995013.0, 

p < 0.0001), with Perf. > RS showing higher engagement ratings 

(Mdn = 0.52, SE = 0.002) compared to Perf. = RS seconds 

(Mdn = 0.43, SE = 0.002).

Across all three performances (see Figure S1B), and in keep-

ing with the analysis of memorable moments above, C1Delta 

was highest in one specific section of the choreography where 

both performers interacted with the audience through a direct 

and sustained exchange of gaze (‘‘Unison’’ section). C1Delta dur-

ing the Unison section is also significantly higher than during the 

resting state for two out of three performances. Together our 

findings show that engagement across all three performances 

reflects dynamic artistic intentions that were shaped during the 

creative process of Detective Work. Moreover, choreographic 

sections with high and low predicted and actual engagement rat-

ings map onto sections with higher and lower delta band INS, 

respectively, and reflect social interactions between performers 

and spectators.

Artistic intentions and performance features predict 

delta band interpersonal neural synchrony

To better understand the relationship between specific aspects 

of the performance, audience experience, and the time 

course of C1Delta, we quantified several continuous audiovisual 

features of the performance to predict INS over time. Perfor-

mance features include spectral power and beat clarity of the 

soundtrack (extracted from the video), stage lighting (recorded 

from a light diode on stage), movement acceleration (recorded 

from wrist accelerometers) and distance between dancers on 

stage (extracted from a camera filming the stage from the ceiling; 

see STAR Methods), and respiration synchrony of the audience 

members (calculated using the same CCA method). Except for 

movement acceleration, spectral power for all performance fea-

tures was well outside the delta frequency band (see Figure S2). 

We used univariate Granger causality analyses to identify pair-

wise predictive relationships between these performance fea-

tures and C1Delta. The same analysis was applied to the random-

ized brain synchrony component (C1random) based on 1,000 
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repetitions of randomized circularly shifted EEG data, for each 

performance. A univariate approach is more appropriate for 

our data, as it takes into account the qualitatively different nature 

of our performance predictors, which could affect INS at 

different timescales. Multivariate approaches optimize the rela-

tive contribution of many predictors at a specific time-lag and 

are typically used to model temporal relationships of brain activ-

ity recorded from different electrodes or brain areas. Conceptu-

ally, the multivariate nature of individual performance features is 

captured by the choreographer’s predictive ratings of 

engagement.

All performance feature time-series and the choreographer’s 

predicted engagement ratings met the condition of stationarity 

according to the Augmented Dickey-Fuller test (p’s < 0.05), 

except for stage lighting, which was differenced prior to analysis. 

Granger Causality tests with C1Delta or Crandom as the outcome 

variable were performed for each individual predictor time-series 

from one to 15-s lags. Across all three performances, the chore-

ographer’s ratings of the audience’s collective attentional 

engagement were the most significant (p-value) and most 

consistent (number of significant lags) predictor of audience 

brain synchrony. Following FDR correction for multiple pairwise 

comparisons, the performer’s ratings for P2 emerged as the 

strongest predictor and was significant across lags 2–5 

(pFDR < 0.01) and 7–15 (pFDR < 0.05), followed by Dancer Dis-

tance from lags 2–5 and 7–10 (pFDR < 0.05) (see Figure 5). Before 

correcting for multiple comparisons, P1 and P3 showed a rela-

tionship between INS and Choreographer Performer Rating 

(P1: lag 4, p = 0.003, lag 5, p = 0.008, lag 3, p = 0.008, and lag 

2, p = 0.02; P3: lag 4, p = 0.001, lag 3, p = 0.004 at, and lags, 

2, 5, p = 0.005), followed by Dancer Acceleration (P1: lag 15, 

p = 0.009; P3: lag 2, p = 0.008; lag 3, p = 0.009; lag 7, p = 

0.01). Across all three performances, tests with C1random showed 

no statistically significant results compared to the true analysis 

(distributions of p-values for C1delta and C1random are presented 

in Figure S3).

Greater INS could result from tighter alignment of spectators’ 

brains to the unfolding performance features (phase synchrony), 

heightened arousal (amplitude synchrony), or a combination of 

both. However, Granger-causality tests with mean time-resolved 

audience delta- and alpha-band EEG power for P3 as the 

outcome variable (instead of C1delta) and the same performance 

features as predictors showed no significant relationships before 

corrections for multiple comparisons (all p’s > 0.9). Further, there 

was no granger-causal relationship between EEG power and 

C1Delta (p’s > 0.13). This indicates that mean EEG power is not 

sensitive to the choreographer’s intentions in the same manner 

as audience INS.

Delta-band activity is associated with breathing patterns; 

however, an additional set of Granger Causality tests with Respi-

ration Synchrony as the outcome, and the choreographer ratings 

and performance features as Granger-causing predictors 

showed no significant relationships from lags of 1– 15 s (uncor-

rected p’s > 0.06).

Delta-band interpersonal neural synchrony is reduced if 

people watch a video of the performance alone in the lab

Audience brain synchrony might not only depend on engage-

ment with the dynamic features of the performance but also on 

the live performance context. In a lab study where individual 

audience members watched a video of P3 on their own, 

INSDelta was reduced relative to experiencing P3 live (see 

Figure 6). Applying the same analysis pipeline as for the live per-

formances, we found that the delta frequency band also ex-

plained the greatest amount of variance between individuals in 

the lab setting (C1Delta = 40.12%, C2Delta = 11.29%, C3Delta = 

10.82%, see Figure 3), with 108 statistically significant timepoint 

clusters based on the 95th percentile of CCA values from ran-

domized data. Importantly, mean audience C1Delta during the 

live performance (M = 0.03, SD = 0.03) was significantly higher 

than for the lab setting (M = 0.02, SD = 0.02; t(6458) = − 13.95, 

p < 0.0001), but across both live and lab contexts the temporal 

structure of C1Delta was preserved. Moreover, the difference be-

tween live and lab conditions was most pronounced for the most 

engaging sections (group comparisons of C1Delta between live 

and lab showed 12/21 significant segments pFDR < 0.05; shaded 

segments in Figure 6). For 11 segments, INSDelta > Lab INSDelta, 

whereas in one segment (42.5–45 min) the Lab INSDelta was 

significantly higher than Live INSDelta. Experiencing the dance 

performance live and together was therefore associated with 

Figure 4. Continuous engagement ratings 

(A) Scatterplots of relationships between artistic team and online audience continuous ratings with Spearman’s rho reported 

The ratings of the Choreographer and the Dramaturg showed the highest correlations. The dramaturg’s role during the creative process is to emulate the au-

dience’s perspective. 

(B) For P3, performance sections with delta band synchrony significantly higher than in the resting state were also continuously rated as more engaging by an 

independent online sample matched for dance experience. Violin plots depict the distribution of ratings, with inner boxplot and median value. Wilcoxon-signed 

rank test; ***p < 0.0001.
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larger differences in brain synchronization between audience 

members over the course of the performance.

Amplitude and phase-dependent EEG correlates of 

watching dance together

Comparing the live performances to the lab study does not 

dissociate social liveness (experiencing Detective Work alone 

vs. together) from physical liveness (watching the live show vs. 

watching a video recording, see Figure 1D and Table S1). More-

over, CCA does not separate phase and amplitude-based audi-

ence brain synchrony. We computed delta phase locking value 

(PLVDelta) and alpha/delta EEG power for the most and least 

engaging sections for all live performances (live group), the 

cinema screening (recorded group), and the lab study (recorded 

Figure 5. Relationships between performance features and audience interpersonal neural synchrony 

(A) Time-course of audience INSDelta for P2 with significant Granger-causal variables, Choreographer Rating (green) and Dancer Distance (orange), across the 

entire performance duration. A moving median 60-s window is applied to time-series for visualization purposes. (B) Heatmaps depict FDR corrected p-values 

from pairwise Granger causality tests with interpersonal neural synchrony INSDelta as the outcome variable for Performances 1, 2, and 3 (P1, P2, P3). ** 

pFDR < 0.01, * pFDR < 0.001, Δ puncorrected < 0.01. All performance features for each of the three live performances are viewable as an interactive plot from: laura-rai. 

github.io/neurolive-DW/index.html.
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group) to dissociate the influence of dynamic performance con-

tent (high vs. low engagement) from the influence of performance 

context (live vs. screening vs. lab).

A linear mixed effects model on pairwise PLVDelta, with contin-

uous engagement (high versus low), performance context (live, 

cinema and lab), region (occipital versus central) and their respec-

tive interactions as fixed factors showed that delta phase among 

spectators was more tightly coupled during high engagement 

sections (β = 0.03, t = 12.41, p < 0.001), particularly across occip-

ital regions (β = 0.012, t = 2.43, p = 0.02). There was a significant 

interaction between engagement and performance context for 

Lab versus P3 (β = 0.01, t = 2.23, p = 0.03), Lab versus Cinema 

(β = -0.03, t = 4.55, p < 001), and marginally for Lab versus P2 

(β = 0.01, t = 1.96, p = 0.05), with higher PLVDelta for the live and 

cinema screening audiences during high engagement sections 

compared to the Lab, and vice versa for low engagement sections 

(see Figure S5), but no significant differences between cinema 

screening and the live performances. The intra-class coefficient 

for random effects suggested a small influence of participant 

pair (max. ICC = 0.027). Pairwise distance of seating positions be-

tween audience members did not affect PLVDelta (see Figure S5).

A linear mixed effects model with EEG power as the 

outcome variable, and frequency band (delta, alpha), 

engagement (high vs. low), and performance context (live, 

lab and cinema), and their respective interactions as fixed fac-

tors revealed that delta was higher than alpha power (β = 0.77, 

t = 10.59, p < 001) but there was no main effect of engage-

ment. Both frequency bands were higher in the lab 

(recorded-alone) than during the cinema screening and the 

live performances (live-together and recorded-together, P1- 

Lab (β = − 0.58, t = − 2.2, p = 0.03), P2-Lab (β = − 0.79, 

t = − 2.91, p = 0.004), and Cinema-Lab (β = − 0.58, 

t = − 2.04, p = 0.02), but did not differ between live perfor-

mances and cinema screening (see Data/Methods S1 for full 

analyses of PLV and EEG power). In sum, both PLVDelta and 

alpha/delta EEG power were sensitive to social context, that 

Figure 6. Comparison of INS for the experience of P3 live or in the lab 

Highlighted segments in grey indicate Live Performance INSDelta > Lab INSDelta, except for the final highlighted segment when Lab INSDelta > Live INSDelta 

(pFDR < 0.05). Group comparisons between laboratory and live conditions were conducted on 2.5-min sections of the performance. The analysis pipeline was 

identical for laboratory and live data analysis. Viewers were matched for dance experience. Topographical plots indicate the spatial distribution of synchrony 

component C1Delta for each 2.5-min segment in the live and laboratory conditions.
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is, either higher (Delta PLV) or lower (alpha/delta power) when 

dance was watched together live or in the cinema than alone 

in the lab.

DISCUSSION

Our study reveals a neural correlate of continuous audience 

engagement with dance that is sensitive to both performance 

content (artistic intentions and dance movement) and perfor-

mance context (social/physical liveness). Across three live 

dance performances, we show that inter-brain synchrony among 

groups of audience members was greatest in the delta frequency 

band (1–4 Hz). Dynamic fluctuations in audience brain synchrony 

track the dancers’ movements, the choreographer’s intentions, 

and continuous audience engagement. A close relationship be-

tween predicted and actual engagement ratings shows that 

experiencing dance indeed involves communication between 

performance makers, performers, and spectators.22,23,51–53

Immediately after watching the dance performance, engage-

ment, curiosity, and felt connection with the performers were 

highest when spectators experienced dance live and together 

with others, in line with an evolutionary origin of live dance and 

music as participatory performances and collective rituals19,20

for social bonding and signaling.12,15,16,21,22,54 Watching dance 

evoked a synchronized brain response in the audience, which 

was most pronounced among co-present spectators, but did 

not necessarily differ in trajectory between the experience of 

live and recorded versions of the dance performance. In other 

words, watching dance together and live heightened people’s 

engagement with the performances and their felt connection 

with performers, but effective communication of non-verbal 

expressive intentions through movement13,27,55,56 occurred dur-

ing both live and screened versions of Detective Work.

Delta band and joint attention

What drives brain synchrony in the delta-frequency band? On 

the one hand, existing joint attention EEG studies in educa-

tion47,57 or music,58,59 suggest neural correlates primarily in the 

alpha band.60 On the other hand, fMRI studies on brain syn-

chrony while watching long, continuous and often narrative 

videos or films alone in the lab reveal neural correlates of 

engagement that occur at very slow frequencies, below 

1 Hz.37,61–64 Instead, our study reveals fluctuations of audience 

brain synchrony between 1 and 4 Hz as an important index of 

continuous engagement.

Delta band activity is associated with a range of cognitive pro-

cesses, including increased mind-wandering,65–67 neural align-

ment to sentences, music or movement phrases,68 rhythm or 

memory-based temporal prediction,69 watching dance with mu-

sic,70 and is sensitive to social information, including faces.71

Higher delta-band power is also associated with default mode 

network activity,72 which in turn has been linked to self-relevant 

or moving aesthetic experiences for visual art73,74 or when 

watching dance.75 We found that delta band INS was greater 

in occipital regions and was predicted by movement accelera-

tion and distance between dancers. Audience brain synchrony 

thus reflects greater attentional alignment to the dancers’ move-

ments. If dancers are positioned closer together, the audience’s 

attention is likely focused toward them, which is consistent with 

activations of the lateral occipital gyri and surrounding regions of 

the action observation network when observing social interac-

tions in dance.75–77 Delta-band INS as a correlate of individual 

or joint audience attention to the dancer’s movements is also 

consistent with comparable levels of audience brain synchrony 

across different seating positions and watching Detective Work 

together, either live or in the cinema.

Nonverbal communication between dancers and 

spectators

The consistent time course of delta band INS is particularly strik-

ing given that (a) Detective Work does not provide a linear narra-

tive that audience members can easily follow (b) dance move-

ments are partly improvised and (c) do not align to a musical 

beat. Nonetheless, we can replicate the same pattern of results 

across three independent live performances. Moreover, we 

show that engagement with Detective Work cannot easily be 

reduced to single features of the performance, such as the un-

folding musical score or the lighting design. Rather, as concep-

tualized in early empirical accounts of aesthetic experience (e.g., 

Fechner, 1876),78 it is the multi-layered combination of all ele-

ments of the live performance event that underlies audience 

engagement and is best captured by the artist’s continuous pre-

diction of continuous engagement.

Delta INS and continuous engagement were highest during 

moments of direct performer-spectator interactions, that is, 

when performers made direct eye contact with individual mem-

bers of the audience (Unison section). Importantly, within the 

context of the entire performance, the Unison section is charac-

terized by ambient sound and extremely slow non-rhythmical 

movements, further supporting the idea that it is the socially 

interactive dimension of this section that drives audience 

engagement and not the saliency of low-level visual or auditory 

performance elements. Interestingly, engaging audience mem-

bers via direct gaze breaking the fourth wall – was effective 

across performance contexts, although lower when a dance 

recording was watched alone. Breaking the fourth wall is a 

widely used performative device to engage audiences in the-

ater,79–81 stand-up comedy,82,83 live music concerts29,82,84 and 

on television, suggesting that direct social interactions are a 

powerful tool to engage audiences across live and screened 

performances.

The role of performance context: Live vs. screening vs. 

lab

Existing research on brain synchrony and engagement with 

dance, music or film typically involves recorded stimuli, including 

TV shows or ads,85,86 political speeches,42 music,87 film or movie 

clips,37,39,40,61 or speech88 but do not involve any actual experi-

ence sharing between people, or co-presence between per-

formers and spectators. Based on our findings we propose a 

model of engagement with dance performances (Figure 7) that 

distinguishes between performance content and context on 

the one hand, and continuous and summative engagement on 

the other hand. Delta INS reflects artistically directed, dynamic 

individual or joint attention to the performance content, modu-

lated by performance and social context. Collectively viewing 
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dance produces larger differences between moments of 

focused and dispersed joint attention by increasing audience 

arousal levels.

We acknowledge that there are large stimulus differences be-

tween lab, cinema, and live studies and between high and low 

engagement sections, yet we argue that it is the presence of 

other people that appears to drive differences between perfor-

mance contexts, for both moments of high and low engagement 

alike. Although we do not directly compare the effect of watching 

the edited and the unedited video collectively, the relatively lower 

summative engagement in the studio screening compared to the 

cinema screening suggests that the purpose and effect of video 

editing may be to mimic the live experience, potentially synchro-

nizing Delta PLV during high engagement sections and desynch-

ronizing it during low engagement sections.

Brain activity, head, and eye movements

It is possible that delta band synchrony in our study partly re-

flects synchrony in people’s gaze and heading direction or other 

movement artifacts; however, after pre-processing, very few 

outliers and only up to 3% of data needed to be excluded from 

the INS analysis (see STAR Methods). Madsen and Parra44

showed that saccade rate, but not head velocity, is coupled 

with EEG activity, and correlates between individuals watching 

videos sequentially in a laboratory. Similarly, Griffiths et al.89

showed that ERP correlates of head movement direction with 

a latency of ∼1 s are dissociable from electro-muscular activity 

and acceleration of the head. While our experimental set up 

does not allow us to completely remove the influence of head 

or eye movements, we clearly show that delta band INS is mean-

ingfully related to the dancer’s movements and to predicted and 

actual engagement. Any contribution of the spectator’s move-

ments to our findings is therefore not simply an artifact but re-

flects synchronized audience behavior that is aligned to the un-

folding performance. Moreover, we can replicate the temporal 

structure of delta band INS across three live performances, in 

which people’s eye and head movements will vastly differ be-

tween seating positions. Yet, shorter physical distance between 

seating positions does not result in greater INS. Most impor-

tantly, however, we replicate our findings in a controlled lab envi-

ronment in which any movement is minimal as participants 

watch a video on the screen.

Conclusion

Our study presents a novel and ambitious interdisciplinary 

approach to studying the evolutionary functions and origins of 

the performing arts by combining artistic and scientific co-pro-

duction with large-scale real-world neuroscience studies and a 

series of carefully controlled follow-up studies in different con-

texts. Distinct phase and amplitude-based EEG correlates high-

light the relative importance of performance content and context 

for engagement with dance. Our findings show that audience 

engagement is measurable as artistically directed brain syn-

chrony in the delta frequency band aligned to the performers’ 

movements. Audience brain synchrony is most pronounced dur-

ing social interactions between dancers and spectators and 

when dance is experienced together rather than alone. The 

evolutionary ancient social functions of participatory perfor-

mances are thus relevant to and preserved in cultural engage-

ment with live contemporary dance.

RESOURCE AVAILABILITY

Lead contact

Requests for further information and resources should be directed to and will 

be fulfilled by the lead contact, Guido Orgs (guido.orgs@ucl.ac.uk).

Materials availability

No new materials (i.e., reagents) were created in the process of this human 

study.

Data and code availability

• Data: EEG data are available on the University College London Data Re-

pository: https://rdr.ucl.ac.uk/articles/dataset/Dataset_of_mobile_EEG_ 

recordings_from_audiences_watching_a_live_dance_performance_ 

Detective_Work_/28508744/1.

Figure 7. A model of EEG correlates of continuous and summative engagement with live dance performances that proposes distinct neural 

correlates for tracking performance content (delta INS) and performance context (alpha/delta power)
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• Code: Analysis scripts are available on Open Science Framework: 

https://osf.io/uz573.

• Additional analyses of the results are provided in Data S1/Methods S1: 

Tables S1–S4; Figures S1–S10, and analysis related to Figure 7.
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100. Pérez, A., Carreiras, M., and Duñabeitia, J.A. (2017). Brain-to-brain 

entrainment: EEG interbrain synchronization while speaking and 

listening. Sci. Rep. 7, 4190. https://doi.org/10.1038/s41598-017- 

04464-4.

101. Brown, A.S., and Novak-Leonard, J.L. (2007). Assessing the Intrinsic Im-

pacts of a Live Performance (WolfBrown). https://www.wolfbrown.com/ 

mups_downloads/Impact_Study_Final_Version_full.pdf.
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STAR★METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

For the live performances, participants (total N = 69) were recruited via the Siobhan Davies Studios website by purchasing a ticket for 

the performance event Detective Work and opting-in to participate in the EEG/wearable sensors component of the study. The final 

EEG sample after data exclusion was 59 (P1, n = 20; P2, n = 18; P3, n = 21). Nine datasets were lost due to technical errors, and one 

dataset was rejected due to loss of LSL markers/photoresistor signal. All participants provided informed consent prior to taking part 

in the study as approved by the Research Ethics and Integrity sub-committee of Goldsmiths, University of London and University 

College London (protocol number ICN-VW-03-092024A).

The final live performance EEG audience samples’ age (P1: M = 43.27, SD = 16.79; P2: M = 34.13, SD = 16.47; P3: M = 33.94, 

SD = 9.09), and dance experience (Gold-DSI; Participatory (P1: M = 5.41, SD = 1.1; P2: M = 5.26, SD = 1.55; P3: M = 5.24, 

SD = 1.29) and Observational (P1: M = 5.25, SD = 1.18; P2: M = 4.92, SD = 1.63; P3: M = 5.37, SD = 1.06)) did not differ between 

performances (H = 4.5, p = 0.12; H = 0.39, p = 0.82; H = 0.53, p = 0.77). Gender was reported as follows: P1: 13 female, 4 male, 

1 non-binary; P2: 6 female, 4 male, 4 non-binary, 1 other; P3: 10 female, male, 1 non-binary, 1 other.

The cinema screening was conducted at Goldsmiths University and comprised three showings of the edited video version of Per-

formance 3 to three independent audiences. Overall, 57 participants (38 female, 3 non-binary, 13 male) with a mean age of 30.83 

(SD = 11.56) and completed the same questionnaire as the audiences of the live performances. The cinema group reported lower 

dance experience compared to the live audience (Participatory: M = 4.54, SD = 0.95, U = 520, p < .001; Observational: M = 4.19, 

SD = 0.97; U = 448, p < .001). Some devices in the cinema screening did not receive Lab Streaming Layer markers, or the photo-

resistor signal was too noisy to align recordings, resulting in a reduced EEG sample size (N = 28; Screening 1 n = 7; Screening 2 

n = 13, Screening 3 n = 8; see Figure S7C).

The studio screening was conducted at Siobhan Davies Studios on the 17th November 2024. 24 participants (18 female, 1 non- 

binary, 5 male) were recruited via Siobhan Davies Studios, social media, and via UCL with a mean age of 34.08 (SD = 12.65), and 

were matched for dance experience with the live audience group (Participatory: M = 5.09, SD = 0.91, U = 718, p = 0.17; Observational: 

M = 5.34, SD = 1.08, U = 584.5, p = 0.86). They completed the same questionnaire as the previous groups. All EEG data for the studio 

screening were lost due to a data streaming issue.

The laboratory-based experiment was conducted at the Max Planck Institute for Empirical Aesthetics in Frankfurt am Main, Ger-

many. The participants (N = 28) were matched to the EEG participants from the live Performance 3 in terms of their age (U = 291, 

p = 0.96) and previous dance experience (PDE: U = 256.5; ODE: U = 285.5, p = 0.06), resulting in a comparable sample (age: 

M = 39.43, SD = 19.9; PDE: M = 5.0, SD = 0.9, p = 0.24; ODE: M = 4.9, SD = 1.0). Each participant (22 female, 6 male) provided written 

informed consent before taking part in the study, which was approved by the Ethics Council of the Max Planck Society.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

University College London Research Data Repository This paper https://rdr.ucl.ac.uk/articles/dataset/ 

Dataset_of_mobile_EEG_recordings_ 

from_audiences_watching_a_live_dance_ 

performance_Detective_Work_/28508744/1

Software and algorithms

MATLAB R2021b/2023a Mathworks https://www.mathworks.com

Correlated Components Analysis Parra et al.45 https://www.parralab.org/isc/

Jamovi v2.2.5 Jamovi https://www.jamovi.org

Statsmodels v0.13.5 https://www.statsmodels.org/v0.10.2/index.html

Gorilla Experiment Builder Anwyl-Irvine et al.90 https://www.gorilla.sc

Prolific Academic Prolific https://www.prolific.co

EEGLAB Delorme and Makeig91 https://eeglab.org/

Other

Custom analysis scripts This paper https://osf.io/ursmc/
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METHOD DETAILS

Information sheets explaining the background and procedure of the study were provided on the booking website and attached to an 

online questionnaire sent to participants in advance of the performance. Advertising material for the performance events were pre-

sented in posters on the Goldsmiths University campus, other universities, and arts/theatre venues in the London area. The event was 

also advertised online via social media promotions and mailing lists.

Detective Work was performed across three evenings to three different audiences. Each evening, 23 EEG participants and 18 non- 

EEG audience members had booked tickets to the event. EEG participants were allocated an arrival time for set-up on the perfor-

mance evening (18:00, 18:30, or 19:00), with the performance scheduled to take place from 19:30 to 20:30. The set-up procedure 

took place in a dedicated room with 7–8 other participants at a time. EEG setup took approximately 30 minutes and was performed 

by two research assistants at a time (see Figure S8), including (i) the completion of a pre-performance questionnaire, (ii) EEG prep-

aration/impedance check, (iii) application of the respiration belt, (iv) a short resting-state recording, and (v) the assembly of the equip-

ment (amplifier, tablet, Sensebox) in a backpack.

After EEG setup, spectators were seated in the performance space in a staggered manner and in pairs, according to their arrival 

time and were provided with a box beside their chair to hold the EEG backpack. Following the performance, participants were in-

structed to remain in their seats to complete a post-performance questionnaire. Each performance was attended by roughly equal 

number of spectators wearing EEG and spectators without EEG.

For the cinema and studio screening experiments, audiences were seated in tiered rows in front of a large screen on which the 

edited (cinema) or unedited (studio) video of Performance 3 were projected, respectively (see Figure S8). Following the screening, 

participants competed the post-questionnaire.

For the lab-based EEG experiment, participants were seated approximately 70 cm from the screen in an electrically shielded EEG 

chamber with dimmed lighting and watched the unedited video of P3. The video, captured from a static wide-angle perspective, was 

presented in its full length using PsychoPy software. EEG data were collected using a Brainproducts system equipped with 64 active 

electrodes placed in the 10/10 international placement system. The EEG preparation was set up with an impedance of less than 20 

kOhm for each electrode and recorded at 1000 Hz. Participants were able to adjust the volume of the loudspeakers themselves 

before starting the experiment.

Materials

Detective Work

Detective Work is a contemporary dance performance commissioned for this research project48 (a full length edited video of P3 is 

available at: https://youtu.be/RivFBmqJxzA). It was created and performed by choreographer Seke Chimutengwende in collabora-

tion with dance artist Stephanie McMann and investigates choreography as a process of making and solving mysteries. The audi-

ences encounter two performers wearing suits that can evoke associations with detectives as portrayed in television or film. 

Throughout the choreography, performers use notions of searching and re-searching as a source for both improvised and set move-

ment material. The piece is arranged in 21 short choreographic sections (see Figure 6) that contrast markedly with each other in their 

atmosphere and movement dynamics, often abruptly shifting from one to the next. These choreographic sections are often repeated 

several times, but with slight variations or reconfigurations in loose analogy to the principle of counterpoint often employed in musical 

composition. The piece utilized set movement phrases, in addition to improvised sections, and theatrical techniques, such as making 

direct eye contact with the audience.

During two months of a co-productive creation process with the artistic and scientific teams we identified five specific performance 

features of particular research focus in Detective Work: the movement and location of the two performers on stage, the music sound-

track composed for the performance, as well as lighting design. We quantified these primarily audio-visual features for each of the 

three performances, in addition to continuous ratings of engagement and predicted attentional engagement, from a separate group 

of participants, the two dance performers (including the choreographer) and the dramaturg respectively, and audience breathing 

synchrony.

QUANTIFICATION AND STATISTICAL ANALYSIS

Performance soundtrack

The performance soundtrack was composed and performed by Jamie McCarthy (available here: https://soundcloud.com/jamie- 

mccarthy-1/sets/detective-work). Acoustic and musical features of the performance soundtrack were automatically extracted using 

the MIR toolbox.92 Two features representing music dynamics and rhythm were extracted temporally using default windows and 

overlaps. Root mean square energy can be used as an index of perceived loudness and was computed by taking the root average 

of the square of the amplitude over 50ms windows with 50% overlap. Pulse clarity is an index of beat strength and was calculated 

over 5 second windows with 10% overlap. Data were interpolated to match the 1 Hz sampling rate of the remaining feature time- 

series.
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Dancer movement acceleration and distance

Raw acceleration data in the form of x, y, and z coordinates were obtained from mBient sensors (MetaMotionR from MBIENTLAB 

INC, San Francisco, CA, USA) worn on the wrists of each performer. Data were first resampled to 20 Hz using the interpl function 

in MATLAB so that the difference in time between each datapoint was consistently 0.05s throughout the entire time-series. Move-

ment acceleration was calculated for each wrist sensor by taking the root summed square, and combined acceleration was calcu-

lated from the median acceleration between the two performers.

The Euclidean distance between the two performers’ position on stage was calculated using the formula sqrt((personA_x - person-

B_x).̂2 + (personA_y - personB_y).̂2), where x and y refer to the coordinates of the dancers’ position on the stage during each frame of 

a scene. These positions were obtained by a researcher manually tracking the centre point on the floor between each dancer’s feet 

using the recorded video. These coordinates were then adjusted to account for the mapping between the perspective of the camera 

and the floorplan. Data were interpolated and averaged over 5-second windows with 80% overlap to match the CCA calculations 

(Figure S9).

Performance lighting

Luminance was extracted by converting a wide-shot video of the live performances to grey scale and averaging pixel luminance for 

each frame. The luminance time-series was interpolated to match the 1-second resolution of the time-resolved inter-subject 

correlations.

Respiration acquisition

Respiratory activity was measured using a respiration belt placed on the abdomen at the point of maximal expansion during inhala-

tion. The respiration belt was connected to the eego amplifier via an auxiliary channel of the Sensebox adapter and data were 

sampled at 500 Hz. The raw respiration belt signal was extracted for each subject and down-sampled to 250Hz, outliers outside 

a moving median of 0.5 second intervals were replaced with the surrounding average, and data were smoothed over a 1 second in-

terval using a Savitzky-Golay filter (Power et al., 2020). Audience respiration synchrony was calculated using the same inter-subject 

correlations method as the EEG.44,45 (see below) .

Data synchronisation

A key consideration for our study was the synchronisation of EEG data for multiple participants outside a laboratory setting. Accurate 

time synchronisation between subjects is essential for offline data analysis of responses to naturalistic stimulus events. In the current 

study, EEG file recordings were timestamped with the Windows clock time when the recording was started. As Windows clocks drift 

across time and this can differ between devices, all devices were manually forced to synchronise with the Windows internet time 

server prior to each performance evening. Automated and manual markers were sent using Lab Streaming Layer (LSL) from a sepa-

rate Windows laptop across a local network to all EEG devices. Each marker contained a unix timestamp of the local Windows laptop. 

Automated markers were sent every five seconds for the duration of the EEG recordings (see Figure S7A). Additionally, event markers 

denoting sections of the performance dramaturgy were manually sent by a member of the research team seated in the performance 

space.

As a second and independent method of data alignment, we synchronized all EEG using light sensors to a black out at the start and 

end of each performance. A custom-built photoresistor was connected to the auxiliary channel of the SenseBox adapter and 

attached outside each participant’s backpack. Finally, to align EEG data with the performer’s movements, EEG recordings were 

synchronised to the mBient sensors using the photoresistors and the onboard mBient light sensors before and after the perfor-

mances (Figures S7A and S10). Change points in the photo-resistance signal at the onset of the first blackout were identified using 

the MATLAB function ischange. For each EEG recording, the first linear change in the slope of the photo-resistance signal was iden-

tified (i.e., the red circles in Figure S10B). Each participant’s data were then shifted towards the reference change point that mini-

mised the difference between remaining change points.

EEG acquisition

Live performance EEG data were recorded using eegoTM sports systems (ANT-Neuro, The Netherlands), with 32 Ag/AgCl channel 

wireless electrodes on WavegaurdTM original caps. Electrodes were located according to the standardised 10/10 international place-

ment system. Conductive gel (OneStep Cleargel) was applied in the electrode holders, using blunt tip syringes (ref for syringes). Dur-

ing EEG preparation, scalp impedances were monitored to be below 20 kΩ. EEG recordings were sampled at 500Hz, with CPz as the 

online reference channel. Data were acquired locally with eego system software (eemagine Medical Imaging Solutions GmbH, Berlin, 

Germany) on Windows Surface Pro tablets connected to each amplifier. Following data acquisition, the raw EEG data were exported 

to. cnt format.

Laboratory EEG data were recorded using a Brain Products EEG system with 64 active EEG electrodes on ActiCAPs. Electrodes 

were arranged in a 10/10 configuration and impedances were kept below 20 kOhm during preparation. The recordings were pre-

sented on a 24-inch computer monitor (BenQ, 144Hz, 24 inches, 1920x1080) with Neumann studio monitors in a sound-proof and 

electrically shielded EEG chamber. EEG recordings were sampled at 1000 Hz using BrainVision Recorder (version 1.23.0003) and 

EEG triggers were sent for later synchronisation.
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EEG pre-processing

Existing multi-bran EEG studies almost exclusively use wireless systems with saline- or dry-electrodes, for example Chabin et al.58

use 14-channel systems, as do Dikker et al.47 Wet-electrode systems provide more signal reliability particularly in longer recordings, 

and in slower frequencies. Our systems additionally provide higher resolution (24 bit) and sampling frequency (here, 500 Hz), which 

improves the accuracy and temporal resolution of the recorded data. A comparison of mobile EEG systems using the Categorisation 

of Mobile EEG (CoME) Scheme, shows that eego sports was rated in the top 3 for system specification, which is a marker of high 

signal quality.93,94 For the Performance EEG recordings (∼50 minutes), data were first high pass filtered at 1 Hz. Next, data was 

down sampled to 250Hz. To eliminate artifacts corresponding to muscle and eye activity as well as other noise disturbances such 

as electrode contact loss, we made use of independent component analysis (ICA) (Comon 1994) as implemented in EEGLAB (default 

extended InfoMax). Independent components were inspected by a team of researchers (LR, SAH, HL) and were marked as artifacts 

based on a combination of topography, time-series, and power spectrum visualisations in EEGLAB, and the IC Label classifier.95 An 

average number of 16.25 (SD = 4.34) ICA components were removed from each dataset manually to keep the physiological integrity 

of the data (see https://osf.io/mkf4n). Compared to trial-based EEG studies, we reject a relatively large number of components per 

participants, due to the fact that over the course of an uninterrupted recording of 1 hour, some artifacts only occur a few times. A small 

number of bad channels were interpolated (M = 0.23, SD = 0.62). Next, data were low pass-filtered at 44 Hz, and then re-referenced to 

the average. As a validity check of data quality, the percentage of ‘good’ data was calculated using Artifact Space Reconstruction 

(ASR) by subjecting post-processed datasets to the clean_rawdata plugin in MATLAB. The percentage of data retained after 

removing ‘bad’ samples with 1 second windows and 66% overlap provided an indication of data quality, as described by Delorme 

et al.96 The mean percentage of good data was > 95% for each performance (P1: M = 96.32, SD = 3.04; P2: M = 95.72, SD = 2.74; P3: 

M = 95.25, SD = 3.71).

Following the procedure of Dmochowski et al.,40 EEG outlier samples were identified per dataset and channel as those exceeding 

four standard deviations of their respective channel. Outlier samples, along with 40ms segments before and after each outlier were 

set to zero values. The percentage of unique zero-value samples per performance and frequency band were very low (see Table S3). 

The duration of outlier data removed for the entire 55-minute performance was as short as 30 seconds and never exceeded 6 minutes 

in total (Percentage data removed across all three performances for delta M (SD) = 2.45% (1.03); theta = 3.22% (1.47); alpha = 5.66 

(2.2); beta = 6.88 (2.07)).

Datasets were temporally aligned using two independent signals. First, using Lab streaming Layer (LSL) we used a regular 5s signal 

stream to mark a ‘heartbeat’ throughout the duration of the performance. This helps us to identify common points at the beginning 

and end of the performance. Secondly, signals from custom-made photoresistor circuits connected to each amplifier were used to 

align the data streams directly using common changes in lighting – specifically, the blackouts at the start of each performance. If LSL 

markers were not received by a device, the photoresistor signal was used as temporal reference point for aligning data - this was 

necessary for 8 data sets. For P1, 6 datasets were shifted so that the final maximum variability between photoresistor signal inflection 

points was 24 ms, for P2 the maximum variability was 54 ms, and for P3, 18 ms. These maximum offsets limit the effective sample 

rate, f, of two signals being compared, and according to Nyquist will dictate the maximum frequency of the signals as f/2. The largest 

offset (P2) equates to an f of 18 Hz, which means we can confidently assess synchrony across the delta, theta and low alpha bands for 

that performance. In dataset P3 however, with an f of 55 Hz, we can additionally study between-device synchrony across the alpha 

and low beta bands.

The pre-processing of the laboratory data followed the same steps as described for the live performances. During ICA, an average 

of 21.07 (SD = 4.65) components out of a total of 61 components per subject were rejected. Interpolation of the remaining bad chan-

nels was minimal (M = 0.07, SD = 0.26). For the following comparative analysis, the corresponding channels were selected (Fp1, Fp2, 

F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, POz, O1, Oz, O2), resulting in a 

total of 29 channels. One electrode position was lost due to misalignment of the standard electrode placements between the two 

different systems used (Fpz is not available in Brain-Vision’s actiCAP 64-channel layout).

Brain synchrony: Correlated components analysis (CCA)

We chose group-based correlated components analysis (CCA45) to compute INS between all audience members across the entire 

duration of all three live performances, the lab study, and separately for delta, theta, alpha and beta frequency bands. INS was then 

compared to two baseline conditions. Firstly, against 1000 iterations of randomized, circularly shifted data, as recommended by 

Parra et al.45; such that component values for clusters of time-points outside the 95th percentile of randomly permuted CCA analyses 

were considered statistically significant. Secondly, INS while watching the performance was compared to repeated segments of a 

2.5-minute active resting-state control condition that we collected from each participant individually before the start of the perfor-

mance using a signed-ranks test.

To investigate the temporal scale of INS between participants, EEG was bandpass filtered with a 5th order Butterworth filter across 

four frequency bands (delta: 1 – 4 Hz, theta: 4 – 8 Hz, alpha: 8 – 12 Hz, beta: 12 – 20 Hz).

CCA components reflect linear combinations of EEG electrode activity that maximize correlations between participants. The first 

three components explain the highest amount of co-variance in EEG activity across time. Time-resolved INS was calculated in 

5-second windows with 80% overlap. Code for this method is available from: https://parralab.org/resources.html and https://osf. 

io/69gfe). The CCA method was applied to data from each of the frequency filtered bands.
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To correct for multiple comparisons across time-points and frequency bands when comparing time-resolved CCA to the rando-

mised baseline, significant C1Delta values of the true analysis outside the 95th percentile of randomized analyses were first entered 

into the Binary Connected Components ‘bwconncomp’ function in MATLAB. This identifies connected adjacent time-points 

(including contiguous points within a frequency band, and points in neighbouring frequency-bands) that exceed the 95th percentile 

threshold and clusters them together. A null distribution of clusters is calculated by taking the largest cluster of timepoints in each of 

the 1000 iterations. The 95th percentile of the null cluster distribution was then used as the basis for determining statistical signifi-

cance of the true C1Delta results, as depicted in Figure 3.

Granger causality analysis

To test whether audience synchrony components showed a relationship with performance features, a Granger Causality analysis 

was conducted (code available: https://osf.io/b62d7) with the statsmodels package.97 Each performance feature (Audio Pulse 

Clarity, Audio Root Mean Square, Choreographer Ratings, Dancer Acceleration, Dancer Distance, and Respiration Synchrony) 

was entered into a pairwise test with the audience brain synchrony component ‘C1Delta’ as the outcome variable. The same analysis 

was applied to the randomised brain synchrony component based on 1,000 repetitions of CCA analysis applied to circularly shifted 

EEG data. This was conducted for all three performances. We opted to use pairwise tests as they allowed us to test each perfor-

mance feature at different time lags, for example we would not expect all features to Granger-cause C1Delta at the same lag – as would 

be the case in a multivariate autoregressive model based on model fit.

Brain synchrony: Phase locking value (PLV)

While CCA provides a data-driven approach to identify a genuinely group-based correlate of shared engagement, it does not distin-

guish between phase- and amplitude-based synchrony, nor does it allow us to incorporate pairwise relationships between audience 

members into the analysis. PLV was calculated on band-passed EEG data in the delta frequency band for each time window w (each 

sample point at 250 Hz, for the entire duration of the performance) and pair of subjects j and k according to the equation below, adapt-

ed from98 where θj and θk denote the phase of the corresponding signals sj and sk (j ̸= k) at time t, m indicates the number of partic-

ipants, T the size of w. The Hilbert transform was applied to extract the rising and falling of the signal, where the angle, i.e., the instan-

taneous phase, was taken. Then, the phase difference between the two time series data, which represents the locking of the two 

signals, was computed. Finally, these difference values were normalised into the PLV metric, by averaging over 5-second time win-

dows with a 4-second overlap (i.e., consistent with the CCA method above).

PLVj,k is a normalized index of synchronization with values in the range of 0 to 1, where 1 indicates perfect phase synchrony and 

0 indicates none99,100. PLVDelta was calculated for every possible pair of audience members for P1 (Npairs = 190), P2 (Npairs = 153), and 

P3 (Npairs = 210), for each matching between-subject electrodes in occipital and frontal regions.

PLVj;k =
1

T

∑T

t = 1

ei(θj(t;w) − θk (t;w))

Based on the CCA and continuous engagement ratings, PLV in the delta band for all live performances and the cinema screenings 

was extracted for two performance segments of interest: Pedestrian 1 (Low engagement) and Unison (High engagement), resulting in 

3-minute segments for both (Nwindows = 36, of 5-second windows for each 3 minutes). Based on the topography of CCA results, 

among 30 electrodes, six were extracted from the occipital and frontal regions: C3, C4, Cz, O1, Oz, O2 for the statistical analysis.

EEG power

Power spectral density was calculated using Welch’s method and Hanning window of length 250 points (i.e., 1 second) with 20% 

overlap for each participant averaged across channels. Alpha/delta EEG power was averaged within the same frequency regions 

as the INS analyses. For the linear mixed effects models analysis, outliers > 4 SD from the mean power were removed from analysis, 

this led to the removal of two participants’ data from the cinema screening sample.

Subjective engagement measures

Summative ratings of engagement

The post-performance questionnaire included questions adapted from Brown and Novak-Leonard,101 and others developed for the 

purposes of this study. These targeted factors such as enjoyment, captivation, social bonding, intellectual stimulation, emotional 

resonance, and a memory task. Responses were provided on a Likert scale ranging from 1 (Not at all/Disagree) to 7 (A great deal/ 

Agree). Full details of the post-performance questionnaire are reported in Lee et al.11 and attached as a supplemental information. 

Questionnaire responses were non-normally distributed overall (Shapiro-Wilks tests for lab, live, cinema, and studio screening ques-

tionnaire responses p’s < .05, except for Items 10, 11, 17 (Lab), 17, 24 (Live), 3, 7, 19 (Cinema), 2, 5, 6, 11, 14, 19, 21, 24, 26 (Studio)), 

and showed homogeneity of variances between lab, live, cinema, and studio screening comparisons (Levene’s test p’s > 0.05, with 

the exception of Items 10 & 14). For the lab study, we used a German translation of the post–performance questionnaire. An analysis 

of the factorial structure of the post-performance questionnaire is reported in Lee et al., 2024.
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Continuous ratings of predicted engagement

Both performers and the dramaturg provided continuous ratings while watching the video of Performance 3. The Choreographer- 

Performer additionally provided continuous ratings for Performances 1 and 2. They were instructed to rate the intensity of the per-

formance, taking the perspective of an audience of the live performance. Here we defined ‘intensity’ as a measure of collective atten-

tional engagement, as follows: ‘‘The intensity of the performance in this context relates to (your perception of) how different moments 

in the performance either more tightly or more loosely gather the audience’s attention into a state of shared focus. Moments of high 

intensity in the performance should synchronise the audience’s collective attention (tightly gathered), whereas moments of low in-

tensity should produce more varied patterns of audience members’ individual attentional engagement over time (loosely gathered).’’ 

The rating experiment was created and hosted online on Gorilla.90 Ratings were extracted using online mouse-tracking, y coordi-

nates represented the extent to which the performer expected there to be brain synchrony among the audience group (i.e., higher 

ratings = more expected synchrony). A moving window of 5 seconds with 80% overlap was applied to the continuous rating 

time-series for input to the Granger causality analysis.

Continuous ratings of actual engagement

A separate sample was recruited online to watch the Detective Work video and provide continuous ratings of engagement. Partic-

ipants were recruited through Prolific (www.prolific.com) and were screened with the Gold DSI observational dance experience sub- 

scale to match the live performance audience. Participants with an ODE score > 5 were invited to participate in the rating experiment 

(N = 23; mean age = 36.3; 14 female, 9 male). They were instructed to move their mouse cursor up or down according to their engage-

ment level: ‘‘When you are feeling engaged by the performance, move your mouse cursor higher on the screen. When you are not 

feeling engaged, move it down. By engagement we mean anything that makes you want to keep watching.’’

Dance experience: Goldsmiths dance sophistication index (Gold-DSI)

The Gold-DSI was designed to assess dance experience, measuring individual differences in participatory and observational dance 

experience.102 The index consists of 26 items on a continuous scale, of which 20 items relate to general dance participation (body 

awareness, social dancing, urge to dance, and dance training; e.g., ‘I find it easy to learn new movements’), and a further 6 relating to 

observation (e.g., ‘I like watching people dance’). Responses are provided on a seven-point scale ranging from Completely Disagree 

to Completely Agree). The Gold-DSI factors have shown good to very good internal validity (alphas > .79). For the Lab study, we used 

a German translation of the DSI.

ADDITIONAL RESOURCES

Pre-registration of data collection and analysis: https://aspredicted.org/w9sy9.pdf.
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