
Applying direct manipulation interfaces to
customizing player character behaviour

Marco Gillies1

1 Department of Computer Science, University College London,
Malet Place, London WC1E 6BT, UK

m.gillies@cs.ucl.ac.uk
http://www.cs.ucl.ac.uk/staff/m.gillies

Abstract. The ability to customize a players avatar (their graphical represen-
tation) is one of the most popular features of online games and graphical chat
environments. Though customizing appearance is a common ability in most
games, creating tools for customizing a character’s behaviour is still a diffi-
cult problem. We propose a methodology, based on direct manipulation, that
allows players to specify the type of behaviour they would like in a given
context. This methodology is iterative, with the player performing a number
of different customizations in different contexts. Players are also able to con-
tinue customizing their character during play, with commands that can have
long term and permanent effects.

1 Introduction

Avatars are a vital part of any online game. The graphical representation of a
player is the essential element that presents their persona to the rest of the commu-
nity. Players can develop a deep bond and association with their avatar. For this
reason, creators of online games have dedicated a lot of attention to the appearance
and animation of avatars. It has also recently been pointed out[29] that allowing
avatars some autonomous behaviour can greatly enhance their realism, for example
by giving them complex body language that would be too difficult for a player to
control in real time. This autonomous behaviour allows the avatar to produce ap-
propriate responses to the behaviour of other players without the player having to
control every movement, for example, looking at another player’s avatar when they
talk. If a player is to truly form a bond with their avatar then they must be able to
customize it to create the persona they want to project, this is one of the most popu-
lar features of on-line worlds[6]. Current games largely restrict customization to
graphical appearance, however, if an avatar is to present a consistent persona it
should also be possible to customize their behaviour to make it consistent with
their appearance.

Creating user-friendly tools for customizing characters is a challenging problem.
When customizing the appearance of a character the player can pretty much see the
whole effect of their changes in a single view, maybe having to rotate the view

occasionally. However, autonomous behaviour involves responding to different
events in the world and therefore requires the character to respond very differently
in different contexts. This means that a player cannot simply judge whether they
have created the character they want by quickly looking at a single view, or even a
moderately sized sequence of views. What is needed is an iterative process of re-
finement of a character. We propose a methodology that involves iterative design
of a character. Players may design their characters before joining a game by editing
their behaviour in a number of different contexts. However, they can also refine the
behaviour while playing using real-time customization.

Another problem with customizing behaviour is that autonomous behaviour sys-
tems are typically controlled by a large number parameters. The effect of these
parameters on behaviour can be complex and, as described above, highly depend-
ent on context. This means that directly editing these parameters can be highly
unintuitive for players. To solve this problem we take inspiration from the highly
successful “Direct Manipulation” paradigm of human computer interaction. Direct
manipulation enables people to interact with software by directly editing the end
result rather than the internal parameters that produce this result. Our methodology
allows players to directly specify the behaviour that the characters should produce
in a given context, while the software infers appropriate parameters. Typically
specifying behaviour in a single context underconstrains the values of parameters.
This means that players must edit behaviour in a number of different contexts,
however, doing so in all possible contexts would be very time consuming, if possi-
ble at all, certainly not something that can be required of people playing games in
their leisure time. This leads us back to the need for an iterative methodology that
allows players to specify just as much as they feel they need at a given time, while
allowing them to refine the behaviour at a given time.

2 Related Work

This work builds on a long tradition of character animation. The lower level as-
pects focus on body animation in which there has been a lot of success with tech-
niques that manipulate pre-existing motion data, for example that of Glei-
cher[10,20], Lee and Shin[14] or Popović and Witkin[31]. However, we are more
interested in higher level aspects of behaviour control. This is a field that brings
together artificial intelligence and graphics to simulate character behaviour. Re-
search in this area was started by Reynolds[26] whose work on simulating birds'
flocking behaviour has been very influential. Further important contributions in-
clude the work of Badler et al. on animated humans[1]; Tu and Terzopolous' work
on simulating fishes[27]; Blumberg and Galyean's “Silas T. Dog'”[3], Perlin and
Goldberg's “IMPROV” system[23] and the work of Gratch, Johnson and
Marsella[12,19]. We mostly deal with non-verbal communication, which is a major
sub-field of behaviour simulation with a long research history including the work
of Cassell and her group[4,5,29]; Pelachaud and Poggi[22] and Guye-Vuillème et
al. [11]. The two types of behaviour we are using are gesture which has been stud-
ied by Cassell et al.[4] and posture which has been studied by Cassell et al. [5] and

by Bécheiraz and Thalmann[2]. Vihljàlmsson[28] has applied this type of autono-
mous non-verbal behaviour to avatars for on-line games.

Most of the work described above deals with the algorithms for simulating be-
haviour rather than tools for designing behaviour. Of the work on tools, most has
focused on using markup languages to specify the behaviour of characters and
avatars, for example the APML language[7]. However, though markup languages
are an important step towards making it easier to specify behaviour they are a long
way from the usability of graphical tools. There have also been tools for designing
the content of behaviour, for example designing gestures[11], however, these tools
do not address the autonomous aspects, i.e. how to decide which behaviour to per-
form in a given context. Del Bimbo and Vicario[8] have worked on specifying
autonomous behaviour by example, but their work was restricted to vehicles and
was not applied to human-like characters. Pyandath and Marsella[25] use a linear
inference system to infer parameters of a Partially Observable Markov Decision
Process used for multi-agent systems. This inference system is similar to ours,
however, they do not discuss user interfaces. In the field of robotics Scerri and
Ydrén[21] have produced user friendly tools for specifying robot behaviour. They
use a multi-layered approach, with programming tools to design the main sections
of the behaviour and graphical tools to customise the behaviour. They were work-
ing with soccer playing robots and used a graphical tool based on a coach's tactical
diagrams to customise their behaviour. Their multi-layered approach has influ-
enced much of the discussion below. Our own approach to specifying behaviour
has been influenced by work on direct manipulation tools for editing other graphi-
cal objects, for example the work on free form deformations by Hsu, Hughes and
Kaufman[30] and Gain[13].

3 Method Overview

As described in the introduction we are proposing an iterative methodology for
customising and refining the behaviour of a character. A player starts by selecting a
context and viewing the character’s behaviour in this context. They may change
this behaviour by selecting from a menu of possible actions (which can be com-
bined and blended together). This choice of behaviour is used to determine a suit-
able choice of parameters for the character. The parameters must be such that they
will produce the chosen behaviour in the given context. It is likely that many dif-
ferent sets of parameters will produce the same behaviour in that one context so the
effect of choosing behaviour is not to identify a single set of parameters but to put
a number of constraints on the possible parameter values. These constraints are
solved using linear programming to produce a set of parameters. After choosing
behaviour in a single context the system is likely to be highly under-constrained,
and the parameters chosen might not be appropriate in different contexts. The
player must, therefore, repeat the processes, putting the character in a number of
different contexts. Each time a new behaviour is chosen for a new context more
constraints are added and the whole set of constraints are solved for. As the num-
ber of contexts is potentially very large the player should not be expected to edit

every single context or to completely finish the process of editing their character
before starting play. Instead they should be able to update the character to correct
any behaviour they find to be wrong during play. Players can do this by returning
to the original customnisation tool after a session of play, but this looses some of
the immediacy of correcting a problem as it occurs. We therefore provide a second
interface, which allows players to continue customising during play in a way that is
integrated with the real time control methods.

4 Behaviour Generation

The Demeanour architecture is used to generate behaviour for our avatars[17,18],
figure 1 shows the behaviour generation method. The basic components of the
behaviour system are parameters and variables. Parameters vary between charac-
ters and are the element that determines the difference in behaviour between differ-
ent avatars. Examples might be, how friendly an avatar is or how often it nods
when listening to another avatar. Variables, on the other hand, changes with differ-
ent contexts. Some variables, context variables, are determined solely by external
contextual factors, for example the behaviour of other characters. Parameters and
variables are combined together to create new, internal variables, which represent
the current state of the avatar, for example, whether it is angry or whether it likes
the avatar it is talking to.

Some variables are used as outputs that driven the animation system. There are
two mains ways of combining parameters and variables. The first is by addition
and multiplication, which is often used to combine context variables with weight-
ing parameters. Variables and parameters can also be combined by if-then-else
rules that set the value of a variable to that of one of two option variables depend-
ing on the value of a boolean condition variable:

Figure 1. an overview of the behaviour gen-
eration process. The black arrows show the
behaviour generation process and the grey
arrows show the inference process that de-
termines parameters from animation.

Figure 2. The profiles stack
containing a number of
loaded contextual profiles

otherwisex

axifxx c

2

1

The animated behaviour is generated using a set of basic pieces of motion, each of
which represents and action such as a gesture. The basic motions are interpolated
using a quaternion weighted sum technique similar to Johnson's[15]. Each weight
is determined by the value of an output parameter. Many motions can be continu-
ously interpolated, e.g. leaning forward, however, others are more all-or-nothing,
for example it makes no sense to cross your arms 50%. Therefore some motions
are classed as discrete and can only have weights of 0 or 1. In this case the corre-
sponding variable is thresholded so that values over 0.5 give a weight of 1.

5 Profiles

The behaviour of avatars can be controlled by using profiles[16]. A profile is a set
of parameter values that are loaded together. Profiles are used as a means of cus-
tomising a character, with the profile determining the behaviour of a character.
They can also provide contextual variation, with different profiles being loaded in
different contexts (see [16] for more details), and for regulating real time interac-
tion, as described in section 6. This means an avatar will have a number of profiles
loaded at any given time. They are stored in a stack as shown in figure 2. The base
of the stack is always the main profile that contains the context independent cus-
tomisations of a character, as described in section 5. Above this, a number of con-
text dependent profiles are loaded. At the top are two profiles that are used to store
results of user interaction, the temporary and conversation profiles, as described in
section 6. When a new context profile is loaded it is added above all the previously
loaded profiles in the stack but below the temporary and conversation profiles.
Profiles higher up the stack will override profiles lower in the stack, so recently
loaded profiles override older ones and user input overrides other profiles.

6 Off-line Customisation

This initial stage of customization will happen before the player starts playing the
game through a first off-line editing state. The player can select contexts in which
to view their avatars behaviour and then edit that behaviour. The behaviour is ed-
ited by selecting from a menu of actions such as gestures and head nodding. Action
can either be discrete (you are either doing them or you are not, e.g. crossing your
arms) or continuous (you can do them to a greater or lesser degree, e.g. leaning
backward). The interface contains buttons which can select discrete actions and
sliders to vary the degree of continuous actions. The user interface is shown in
figure 3. The user first sets the context for a behaviour, which is itself expressed as

Figure 3. A sequence of edits using the tool from the action based specification ex-
ample. The the user initially specifies context (in this case that the avatar is in a bad
mood). The initial behaviour (image 1, left to right, top to bottom) is neutral as there
have been no edits (for clarity, in these examples neutral behaviour is merely a con-
stant rest posture). The user then specifies some hostile behaviour and submits it (2).
The system has set the general hostile parameter so the avatar produces hostile
behaviour in a new context (3). The user removes this behaviour to specify a neutral
context (4), thus reducing the contexts in which hostile behaviour is produced, so in
the next context (a political discussion) neutral behaviour is generated (5). The user
adds gesturing and submits (6). The final two images show results after these edits,
the avatar in a bad mood discussing politics produces both gesturing and hostile
behaviour (7). The final image has the same context as the original edit, showing that
the same type of behaviour (hostile) is successfully reproduced, but that the exact
behaviour is different (8).)

discrete or continuous variables that are edited by buttons and sliders. The user
may then view the resulting animation and if they are unhappy with it they may go
to an editing screen to change the animation. When they are happy with this they
submit the animation. The resulting set of actions is used to generate a number of
linear constraints which are then solved for to updated the parameters of the avatar,
as described in section 8. The player can then repeat the process by choosing an
new context and editing the behaviour if it is not suitable. Figure 3 gives an exam-
ple of a sequence of edits.

7 Real time customisation

The problem with using off-line customization for something as context de-
pendent as character behaviour is that, after editing, the player cannot be sure that
their avatar will behave as they want it too in all context. Even after a relatively
long period of customization, they are likely to find incorrect behaviour when they
actually use the avatar during play. For this reason we propose that players should
also be able to continue customizing their character during play. This means that
the initial effort is reduced, allowing players to start playing the game quickly. It
also means that customization and correction of errors are situated in play so that
players are able to specify the real behaviour they want at that time, rather than
specifying behaviour for a hypothetical situation. It is likely to be easier for a user
to know what behaviour is appropriate when actually engaged in a conversation
than to think about it abstractly during an off-line customisation step.

Demeanour also contains a real-time control system where users can determine
the affective state of their character through a number of commands as described in
Gillies, Crabtree and Ballin[17]. So as to minimize the effort of controlling a char-
acter the control system should be well integrated with the rest of the game con-
trols. As we are looking at conversational behaviour we have produced a control
system that is integrated with the type of text-chat interface that is commonly used
in on-line games (shown in figure 4). As well as typing the text that they are speak-
ing players can also enter textual commands that control the behaviour of a charac-
ter. These might be emoticons, e.g. :-) , which can control high level parameters
such as the mood of a character, but they can also be direct requests for a particular
action, enclosed in asterisks, e.g. *arms crossed*. When a player enters this com-
mand their avatar performs the action, but the action is also used to infer appropri-
ate parameter for the character. A set of constraints is generated as described in
section 8, these constraints are added to those from previous customizations, and
solved for to generate new parameters.

When a player enters a command it not clear how long they intend a change of
state to last, for example an increase in friendliness might have a very short scope,
just the length of the current utterance or it might indicate a permanent positive
attitude to the person being talked to. Demeanour uses character profiles to allow
users to choose between four different scopes for a change of state:

 Temporary changes lasting for a limited period, disappearing after a time out.
 Changes lasting for the whole length of the current conversations
 Permanent changes to the attitude toward the conversational partner
 Permanent changes to the character's main profile.

Initially, when a player types a command that changes a parameter value, it is
stored in temporary profile. This temporary profile is deleted after a short period of
time and all the edits it contains are deleted. Thus the default scope for edits is that
they are temporary. However, when a temporary profile is present (i.e. after the
user sends a command) a button appears in the text chat interface allowing the user
to save the profile. If the user clicks this button the temporary profile is saved into

a conversation profile (as shown in figure 2), which has a longer scope lasting for
the entire conversation. When temporary edits are saved into the conversation
profile they are merged.

At the end of the conversation the user can merge the resulting edits into a per-
manent profile that is used in all future interactions. This can be to the character's
main profile which controls its behaviour and is the chief method of customising a
character. Users can also merge the conversation profile into a contextual profile
for their conversational partner, thus developing the relationship between the char-
acters during interaction.

Figure 4 The text chat interface

8 Inferring Parameters from Behaviour

The main technical requirement for this user interface is the ability to use a number
of examples of behaviour to generate constraints which are then solved for a suit-
able set of parameter values for the avatar’s behaviour. To be more exact, each
example is a tuple <ai,ci> containing a context for behaviour ci and an animation
specified by the user ai, which is the behaviour of the avatar in that context. The
output of the method is a set of parameters. Each example tuple provides a con-
straint on the possible values of the parameters. We must solve for these con-
straints using a method that makes it simple to add new constriants, as the editing
methods is iterative users will continually be solving and adding new constraints.
The method must also be fast enough to solve in real time, if the tools is to be us-
able. This is simplified by the fact that the parameters and variables are combined
together using linear summation, meaning that all relationships between variables,
and therefore constriants are linear. This allows us to use Linear Programming[24]
to solve for the constriants. Linear programming mimimizes a linear expression
subject to to a number of linear equality and inequality constraints:

0

0

ii

iiii

xe

ydtosubjectxc

where the x,y,z are variables and the c,d,e are constant coefficients. We form con-
straints from the characters behaviour and internal parameters as described in the
next sections. We then minimize the sum of all parameters values using a simplex
linear programming method[24]. This minimization solves for the parameters while
keeping their values as low as possible (to avoid extreme behaviour).

8.1 Constraints from Action Specifications

As described in section 6, the action-ased interface allows user to specify the ava-
tar's behaviour using buttons and sliders to give weights for each action (0 or 1 in
the case of discrete actions). When a animation is submitted these weights are used
to form linear constraints. For a continuous motion the weight of the motion (wi)
should be equal to the corresponding output variable (vi) so we add the constraint vi
- wi = 0. In the case of discrete actions we are less certain: if the wi is 0 we know
that vi is less than 0.5, otherwise it is greater, so we add an inequality constraint:

10

005.0

i

ii

w

wifv

8.2 Constraints from Internal Variables

With this initial set of constraint we then start to form new constraints based on
internal variables and parameters. Any variable will depend on other variables and
parameters. A variable v1 depends on another variable v2 if v2 is used to calculated

v1 via addition and multiplication, v2 is a condition or option in an if-then-else rule
that is used to calculate v1, or v1 depdends on a third variable that recursively de-
pends on v2. If a variable only depends on context variables and not parameters it
has a constant value in a given context so it is a known (ki) variable in the current
constraint. Parameters, and variables that depend on parameters, are unknowns (ui).
We must form constraints on all unknowns. We start with the constraints that are
given by the animations, each of these contain at least one output variable. Each
variable v may take one of 4 forms. If it is a parameter it is an unknown and no
further constraints are added. If it is a constraint variable it is a known and has a
constant value (this is not allowed for an output variable). If it depends on other
variables and parameters by addition and multiplication we add a linear constraint.
To ensure that it is soluble we ensure that in each multiplication, only one term is
an unknown. Thus the equation for the variable is of the form:

i j
ji kuv

We can evaluate all knowns to calculate the coefficients of each unknown and
rearrange to get a constraint:

i

ii vcuc 00

If the variable depends on other variables by an if-then-else rule the condition
variable is a known so we can evaluate it and know which the option variable vi
that v depends on, we can just add a constraint v - vi = 0. The newly added con-
straints will have introduced new variables, and we recursively add new constraints
for these until we are only left with knowns and parameters, at which point we
perform the minimization as described above.

9 Conclusion

This paper has proposed a methodology for customizing avatars in on-line games.
This methodology is based on Direct Manipulation in that players choose the con-
crete behaviour that they want their character to perform in a given context and
linear programming is used to infer an appropriate set of parameters for the charac-
ter from the chosen behaviour. This methodology is readily extensible to both off-
line customization, and real-time customization during play. The second feature
allows players to gradually adapt their character and to customize their character in
a way that is situated in play. We are currently planning a user trial involving long
term use of the system to evaluate its effectiveness.

We have used linear programming as it is a fast inference method. This means
that it is usable in an interactive interface such as the one we are proposing, and
remains usable for our real-time customization method. However, using linear
programming does limit our behaviour systems to linear ones, which can limit the
complexity of the behaviour produced. With the type of interface we propose, there
is always likely to be a trade off between complexity behaviour and speed of infer-

ence, but more work is needed to determine the ideal balance, and therefore an
appropriate inference method. More complex machine learning models, such as
neural networks or Bayesian networks can give more powerful results at a greater
computational cost. An even more powerful method would be to use an arbitrary
parameterised algorithm to generate behaviour and then use a numerical optimisa-
tion method to determine parameter value. This would be extremely flexible but
may well by computationally intractable.

It is also important to compare our method with other interface styles. We have
also experimented with a reinforcement learning method in which users do not
directly specify behaviour, instead they judge behaviour that is suggested by the
system[9]. Our feeling, after initial experimentation, is that the task of judging
behaviour is easier for an untrained user than specifying behaviour, but that rein-
forcement learning involves the user viewing a very large number of behaviours to
produce a good result, which may make it impractical. We will conduct user trials
to understand the issues better.

Acknowledgements

This work was sponsored by BT plc. I would like to thank the former members of
the BT Radical Multimedia Lab for their help and support on this work, in particu-
lar Amada Oldroyd (in particular for the use of her avatars), Jon Sutton (for his
advice on on-line chat worlds), Daniel Ballin and Barry Crabtree. I would also like
to thank the members Virtual Environments and Computer Graphics Group at
University College London, and in particular Mel Slater.

References

1. Badler, N., Philips, C., and Webber, B.: Simulating Humans: Computer Graphics, Ani-
mation and Control Oxford University Press (1993)

2. Bécheiraz, P. and Thalmann, D.: A Model of Nonverbal Communication and Interper-
sonal Relationship Between Virtual Actors In: Proceedings of the Computer Animation
'96 IEEE Computer Society Press (1996) 58-67

3. Blumberg, B. and Galyean, T.: Multi-Level Direction of Autonomous Creatures for
Real-Time Virtual Environments In: ACM SIGGRAPH (1995) 47-54

4. Cassell, J., Bickmore, T., Campbell, L., Chang, K., Vilhjálmsson, H., and Yan, H.:
Embodiment in Conversational Interfaces: Rea In: ACM SIGCHI ACM Press (1999)
520-527

5. Cassell, J., Vilhjálmsson, H. H., and Bickmore, T.: BEAT: the behavior expression
animation toolkit In: ACM SIGGRAPH (2001) 477-486

6. Cheng, L., Farnham, S., and Stone, L.: Lessons Learned: Building and Deploying Vir-
tual Environments (2002)

7. DeCarolis, B., Pelachaud, C., Poggi, I., and Steedman, M.: APML, a markup language
for believable behaviour generation (2004) 65-87

8. Del Bimbo, Alberto and Vicario, Enrico: Specification by-Example of Virtual Agents'
Behavior IEEE transactions on visualtization and Computer Graphics 1:4(1995) 350-360

9. Friedman, D. and Gillies, M.: Teaching Characters How to Use Body Language In:
Intelligent Virtual Agents (2005)

10. Gleicher, Michael: Motion Editing with Space Time Constraints In: symposium on
interactive 3D graphics (1997) 139-148

11. Guye-Vuilléme, A., T.K.Capin, I.S.Pandzic, Magnenat-Thalmann, N., and D.Thalmann:
Non-verbal Communication Interface for Collaborative Virtual Environments The Vir-
tual Reality Journal 4)(1999) 49-59

12. J.Gratch and S.Marsella: Tears and Fears: Modeling emotions and emotional behaviors
in synthetic agents In: 5th International Conference on Autonomous Agents (2006)

13. James, Gain: Enhancing spatial deformation for virtual sculpting (2000)
14. Jehee, Lee and Sung, Yong Shin: A Hierarchical Approach to Interactive Motion Editing

for Human-like Figures In: ACM SIGGRAPH (1999) 39-48
15. Johnson, M. P.: Exploiting Quaternions to Support Expressive Interactive Character

Motion (2003)
16. M.Gillies, I.B.Crabtree, and D.Ballin: Customisation and Context for Expressive Behav-

iour in the Broadband World BT Technology Journal 22:2(1-4-2004) 7-17
17. Marco, Gillies, Barry, Crabtree, and Daniel, Ballin: Expressive characters and a text chat

interface In: Patrick, Olivier and Ruth, Aylett (ed): AISB workshop on Language,
Speech and Gesture for Expressive Characters (2004)

18. Marco, Gillies and Daniel, Ballin: Integrating autonomous behavior and user control for
believable agents In: Third international joint conference on Autonomous Agents and
Multi-Agent Systems (2004)

19. Marsella, S. C., Johnson, W. L., and LaBore, C.: Interactive Pedagogical Drama In: the
proceedings of the 4th international Conference on Autonomous Agents (2000) 301-308

20. Michael, Gleicher: Comparing Constraint-Based Motion Editing Methods Graphical
Models :63(2001) 107-134

21. Paul, Scerri and Johan, Ydrén: End User Specification of RoboCup Teams (2000)
22. Pelachaud, C. and Poggi, I.: Subtleties of facial expressions in embodied agents Journal

of Visualization and Computer Animation. 13(2002) 287-300
23. Perlin, K. and Goldberg, A.: IMPROV: A System for Scripting Interactive Actors in

Virtual Worlds In: Proceedings of SIGGRAPH 96 ACM SIGGRAPH / Addison Wesley
(1996) 205-216

24. Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T.: Numerical Reci-
pes in C Cambridge University Press (1992)

25. Pynadath, D. V. and Marsella, S. C.: Fitting and Compilation of Multiagent Models
through Piecewise Linear Functions In: the International Conference on Autonomous
Agents and Multi Agent Systems (2004) 1197-1204

26. Reynolds, Craig W.: Flocks, Herds, and Schools: A Distributed Behavioral Model In:
ACM SIGGRAPH (1987) 25-33

27. Tu, X. and Terzopoulos, D.: Artificial Fishes: Physics, Locomotion, Perception, Behav-
ior In: ACM SIGGRAPH (1994) 43-49

28. Vilhjalmsson, H.: Animating Conversation in Online Games In: M.Rauterberg (ed):
Entertainment Computing ICEC Springer (2004) 139-150

29. Vilhjálmsson, H. H. and Cassell, J.: BodyChat: Autonomous Communicative Behaviors
in Avatars In: second ACM international conference on autonomous agents (1998)

30. William, M. Hsu, John, F. Hughes, and Henry, Kaufman: Direct manipulation of free-
form deformations In: Proceedings of the 19th ACM SIGGRAPH annual conference on
Computer graphics and interactive techniques ACM Press (1992) 177-184

31. Zoran, Popovi and Andrew, Witkin: Physically Based Motion Transformation In: ACM
SIGGRAPH (1999) 11-20

