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A striking feature of the autistic disorder is the co-occurrence of intellectual, social 

and communicative deficits with enhanced abilities in specific areas (Frith, 1989). 

This effect is seen in its most extreme form in autistic savants, who show domain 

specific abilities that stand in marked contrast to their intellectual and social 

impairments (Miller,1989). Music is one domain within which such savant talent 

develops and it also appears that a preference for music can be found amongst 

many non-savant persons with autism (Kanner, 1943;Rimland & Hill, 1984). In a 

recent questionnaire survey carried out at the Elliot House Diagnostic Centre 

(National Autistic Society, UK), subjects’ responses indicated that for 40% of a 

sample of 200diagnosed individuals music was an area of special interest (Wing, 

personal communication).From theoretical accounts of non-social cognition in autism, 

predictions about specifically musical cognition may be drawn. The Executive 

Dysfunction account of autism has typically sought to explain diagnostic features as 

arising from deficits in regulating behaviour through planning, monitoring, inhibition 

and attention (Hughes & Russell, 1993; Hughes, Russell, & Robbins, 1994; Ozonoff, 

Pennington,& Rogers, 1991; Prior & Hoffman, 1990;Turner, 1999). Generally, this 

theory has not been invoked to explain splinter or savant skills. However, an 

exception is the suggestion made by Mottron, Peretz, Belleville, and Rouleau (1999) 

that absolute pitch ability (AP), as found in musical savants and some non-savant 

children with autism (Heaton, Hermelin, & Pring, 1998), might be related to deficits in 

executive functions. In support of this, these authors presented findings from a case 

study of an autistic musical savant who showed deficits on tests of cognitive flexibility 

and planning. On tests of musical cognition, AP was confirmed and perception of 

musicalc ontours (short melodies), presented in transposed and non-transposed 

versions, showed no abnormalities. Weak Central Coherence theory (WCC) 

(Frith,1989; Happé, 1999) directly addresses the question of splinter and savant skills 

in autism. It proposes that autism is characterised by a cognitive style, which biases 

processing in favour of local features at the expense of global, context-dependent 
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meaning or Gestalt (Happé, 1999) and predicts that enhanced performance will be 

found on tasks where good featural processing conveys an advantage. Two other 

theories, proposed by Plaisted (2001) and Mottronand Burack (2001), also offer 

some explanation forwhy superior performance on specific tasks should be seen in 

autism. Plaisted proposes that individuals with autism show heightened sensitivity to 

unique elements and reduced sensitivity to shared elements in stimuli arrays, 

resulting in both superior discrimination ability and difficulties in categorization and 

generalisation. The theory outlined by Mottron and Burack proposes reduced 

efficiency in domain general, higher-level cognitive mechanisms and over-

development of low-level modules dedicated to the processing of perceptual 

information. Thus both of these theories predict highly efficient processing of low-

level perceptual information. 
 
From theoretical accounts of non-social cognition and Burack (2001), also offer some 

explanation for in autism, predictions about specifically musical why superior 

performance on specific tasks should cognition may be drawn. The Executive 

Dysfunction be seen in autism. Plaisted proposes that individuals account of autism 

has typically sought to explain with autism show heightened sensitivity to unique 

diagnostic features as arising from deficits in regu-elements and reduced sensitivity 

to shared elements lating behaviour through planning, monitoring, in stimuli arrays, 

resulting in both superior disinhibition and attention (Hughes & Russell, 1993; 

crimination ability and difficulties in categorisation Hughes, Russell, & Robbins, 1994; 

Ozonoff, Pen-and generalisation. The theory outlined by Mottron nington, & Rogers, 

1991; Prior & Hoffman, 1990; and Burack proposes reduced efficiency in domain 

Turner, 1999). Generally, this theory has not been general, higher-level cognitive 

mechanisms and invoked to explain splinter or savant skills. However, over-

development of low-level modules dedicated to an exception is the suggestion made 

by Mottron, the processing of perceptual information. Thus both Peretz, Belleville, 

and Rouleau (1999) that absolute of these theories predict highly efficient processing 

of pitch ability (AP), as found in musical savants and low-level perceptual information. 

some non-savant children with autism (Heaton, Within the musical domain, superior 

detail pro-Hermelin, & Pring, 1998), might be related to deficits cessing has been 

observed in autism. For example, in executive functions. In support of this, these au-

Applebaum, Egel, Koegel, and Imhof (1979) compared three musically naive autistic 
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children and three normally developing musically experienced children on their ability 

to sing back musical stimuli ranging from one to four tones in atonal configurations. 

Responses were rated for pitch, rhythm and duration and it was found that the 

children with autism performed as well or better than their more intelligent and 

musically experienced controls. Mottron, Peretz, and Menard (2000) presented adult 

subjects with autism and normal development with pairs of musical contours (9-tone 

melodies) for same/different discrimination. The contours were transposed (different 

pitches) and untransposed (same pitches) in contour-maintaining and contour-

violating conditions.  
 
The findings from the study revealed no group differences in levels of performance 

with transposed contours, indicating normal relational processing, but better 

discrimination of changes in contour-maintaining untransposed pairs in the autism 

group. However, Heaton, Pring, and Hermelin (2001) presented children with autism 

and age-and intelligence-matched controls with similar untransposed contour-

maintaining and contour-violating 6-tone melodies, and here no group differences 

emerged. It seems probable that differences in findings between the two studies 

might reflect developmental differences (children/adults) in processing capacities 

and/or differences in stimuli length. In longer, untransposed melodies, information 

about the absolute pitches of tones becomes more accessible (Edworthy, 1985), 

although the detection of such differences is not reliant on absolute pitch ability. 

Intervallic relationships are modified in these types of melodies, so whilst pitch 

direction remains constant, pitch distance between adjacent tones is modified and 

can be detected using relational pitch processing. In one study, Heaton et al. (2001) 

asked children with autism and controls to judge the pitch direction of small (1–4 

semitones), medium (5–8 semitones) and large (9–12 semitones) pitch intervals. 

Although there were no between group differences in medium and large pitch interval 

conditions, the children with autism showed significantly better performance with 

small pitch intervals than controls. Thus, enhanced on-line processing of perceptual 

elements or features is well established within the musical domain in autism. 

However, one finding suggests that in addition, other mechanisms, for example long-

term pitch memory, distinguish the musical information processing of those with and 

without autism. In a pitch discrimination and memory task carried out by Heaton et al. 

(1998), groups of musically naive autistic and normally developing children were 
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presented with 4 pitches and 4 word fragments for pairing with animal pictures. 

Recall was tested 2 ½ minutes and 7 days after exposure. Whilst both groups of 

children showed similar levels of performance pairing animal pictures and word 

fragments, performance with pitch stimuli was significantly higher in the autism group. 

Indeed, children with autism remembered more tone/picture pairs one week after 

initial exposure than controls did after 2 ½ minutes. Research indicates that in normal 

populations there are qualitative changes in the way that pitch information is 

processed through development (Trehub, Schellenberg, & Hill, 1997). Saffran and 

Griepentrog (2001) presented 8-month-old infants and adults with statistical learning 

tasks that relied on the extraction of absolute or relative pitch cues, and found a 

primary reliance on absolute pitch cues in infants and relative pitch cues in adults. 

However, although there is a developmental decline in reliance on absolute pitch 

cues, they can be accessed by adults under certain conditions. For example, Levitin 

(1994) and Halpern (1989) found that musically untrained adults could represent the 

absolute pitches of well-known songs. Similarly, speakers of tone languages like Thai 

and Mandarin represent words at precise pitch levels (Deutsch, Hanthorn, & Dolson, 

1999). However, this capacity for absolute pitch memory is proposed to be distinct 

from the special ability known as absolute pitch (Levitin, 1994; Saffran & Griepentrog, 

2001), where specific labelled pitches can be identified without reference to an 

external standard (Baggaley, 1974; Levitin, 1994).  
 
Studies investigating brain structure and function in populations with and without AP 

have confirmed the existence of differences at the neurological level. For example, 

Schlaug, Jancke, Huang, and Steinmetz (1995) found that musicians with AP 

showed stronger leftward planum temporale asymmetry than musicians and non-

musicians without this ability. Zatorre, Perry, Beckett, Westbury, and Evans (1998) 

also found enlarged leftward planum temporale volumes and in their study this 

correlated with performance on a pitch-naming task. In this latter investigation 

positron emission tomography was also used to measure cerebral blood flow during 

performance of pitch and interval naming tasks in AP possessors and non-

possessors. On pitch-naming tasks activation of auditory cortical areas was found in 

both groups, but unlike non-possessors, AP subjects also showed activation of the 

left posterior dorsolateral frontal cortex. However, activation of this area was seen in 

both groups on the interval-naming task. Pitch interval names are acquired during the 
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course of musical training and their identification does not require stable 

representations of individual tones as they are characterised by pitch distances 

between tones. On the interval-naming task AP non-possessors also showed 

changes in CBF in the right inferior frontal region, suggesting the maintenance of 

pitch information in auditory short-term memory. AP possessors did not show this 

pattern of activation and Zatorre et al. suggest that AP possessors may not need to 

access working memory for interval judgements because they can classify individual 

tones within intervals by name. Thus these authors suggest that AP may reflect an 

ability to retrieve an arbitrary association between a stimulus attribute (a pitch) and a 

verbal label. However, they also cite evidence showing that interference of verbal 

rehearsal does not disrupt note naming in AP possessors, thereby suggesting that for 

them, other sensory codes for pitches are available.  
 
Absolute pitch ability is extremely rare in normal populations, being found in only 1 in 

10,000 individuals (Tacheuchi & Hulse, 1993). However, such ability has been 

reported in all the musical savants in the extant literature (Miller, 1989; Mottron et al., 

1999). Miller’s (1989) description of a young musical savant who clearly 

demonstrated AP ability prior to the acquisition of note names supports Zatorre et 

al.’s proposal that pitches can be mediated by non-verbal codes. Possible 

implications of such an ability in individuals with the complex patterns of social, 

intellectual and often sensory deficits seen in savants are difficult to quantify, 

although Miller (1989) has provided a convincing account of how AP might facilitate 

musical development in these individuals. Certainly the possession of AP has been 

shown to convey an advantage that goes beyond the ability to remember and name 

individual tones. For example, musical savants are frequently able to name or 

reproduce tones embedded in complex note clusters. This was first reported in the 

mid-nineteenth century in a description of the musical savant Thomas Wiggins 

(reported in Southall, 1983) and more recently, Miller (1989) has confirmed this 

experimentally. In his study, musical savants and normal controls with AP showed 

very similar high levels of chord reproduction despite wide variations in age, 

intelligence and musical training. In contrast, significantly poorer performance was 

seen in a control group of normal young adults with at least 8 years of piano tuition 

and relative pitch. It thus appears, as Miller suggests, that AP ability has important 
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consequences for some aspects of musical cognition, in this case chord 

disembedding.  
 
In neural network accounts of musical perception, chords occupy a hierarchically 

higher position than the individual notes of which they are comprised (for example, 

Bharucha, 1991). In some types of chords the relationship between tones and 

overtones creates powerful ‘fusion’ effects (for discussion, see Cross, 1997); for 

example, tonic triads include the third and fifth degrees of the scale and these are 

represented in the harmonics of the tone that provides the root of the chord. Thus, 

whilst comprising three individual notes, they are powerfully coalescing musical 

Gestalts that function primarily to provide harmonic information (Krumhansl, 

Bharucha, & Kessler, 1982). However, individuals with AP both with and without 

autism are able to unpack these Gestalt configurations in order to access individual 

component tones (Miller, 1989). Interestingly, the ability to disembed individual 

elements from within visual Gestalts has been noted in autistic individuals both with 

and without savant skills (Pring, Hermelin, & Heavey, 1995; Shah & Frith, 1983, 

1993; Happé, 1996). Thus the question to be asked in the present investigation is 

whether exceptional chord disembedding might be seen in non-savant individuals 

with autism.  
 
The hypothesis for the following experiments is that children with autism will be able 

to decompose musical chords in order to identify individual component tones. The 

rationale for the experiments is that AP ability and exceptional chord disembedding 

have been noted in musical savants (Miller, 1989); the savant syndrome is closely 

associated with autism (Rimland & Hill, 1984; Young, 1995); individuals with autism 

show a predisposition towards featural processing (Happe´, 1999) and possess good 

pitch discrimination (Heaton et al., 1998; Mottron et al., 2000), pitch memory and 

labelling (Heaton et al., 1998).  
 

Experiment 1: Investigating pitch memory and labelling  

Method  

Participants. All participants were attending a specialist provision for children with 

autistic spectrum disorders. For entry to this school, diagnosis according to standard 
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clinical criteria is necessary. Fourteen children aged between 7 years, 9 months and 

15 years (Mean: 10 years, 9 months) participated in experiments 1 and 2. Their 

scores on the Raven’s Matrices ranged between 87 and 147 (Mean 108) and their 

scores on the Peabody Picture Vocabulary Test ranged between 56 and 126 (Mean 

93). Thirteen of these children and two additional children participated in experiment 

3. In this study children were aged between 7 years, 3 months and 14 years, 9 

months (Mean 10 years). Scores on the Raven’s Matrices ranged between 99 and 

147 (Mean 107) and scores on the Peabody Picture Vocabulary ranged between 56 

and 126 (Mean 92). Two of the children with autism had verbal IQ scores of 56 and 

the individual scores for the rest of the sample fell approximately within the normal 

range. As the experimental tasks included both verbal and non-verbal components, 

two control groups were included. The children in the two control groups were 

matched to the autistic children on an individual basis for chronological age, gender, 

and either performance on the Peabody Picture Vocabulary Test (Group 2) or the 

Raven’s Matrices (Group 3). Two of the children in the verbal IQ-matched control 

group attended a school for children with moderate learning difficulties and the 

remaining children attended mainstream schools.  

Musical experience. In order to control for any potential effects of music/aural training 

in the studies, children and teachers were questioned about music lessons and those 

who had undergone formal musical training, in the form of extended periods of 

individual instrumental or singing lessons, were excluded.  

 
Stimuli. The musical tones used in the experiment were D4, F#4, A4 and D5 and they 

were presented on a Casiotone 202 electronic keyboard (acoustic piano setting) by 

the experimenter. The keyboard was out of the child’s view. Each of the tones was 

presented in conjunction with a picture of a different animal. The pictures were taken 

from the Snodgrass and Vanderwart (1980) Picture Norms Set and represented a 

mouse, a camel, an owl and a rabbit.  

 
Procedure. The procedure was adapted from that used in an earlier study into pitch 

memory (Heaton et al., 1998). Four notes were presented in a quasi-randomised 

order over 48 trials. The 48 trials were randomised in such a way that the child heard 

each particular tone and was shown its associated picture 12 times during the total 

procedure, that is, four times in each of the following main blocks. For the first block 
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of 16 training trials, the four animal pictures were placed together in front of the child. 

The child was asked to name each of the animal pictures and was told after the 

naming response that this animal had a favourite note. The tone was then sounded 

while the experimenter pointed to the appropriate animal picture. During the second 

block of 12 trials, the animal pictures were removed, thus focusing concentration on 

the auditory stimuli alone. Before each tone was sounded, the experimenter told the 

child ‘this is the note that the (owl, mouse, camel or rabbit) likes best’. Following this, 

the procedure used for the first 16 trials was repeated in the last 16-trial block. This 

part of the procedure served to establish associations between a tone and its label.  

 
Pitch identification. After the familiarisation session, the child was engaged in 

conversation about an unrelated topic for a period of 2 ½ minutes. The four animal 

pictures were then placed together before the child. The previously presented tones 

were sounded over 16 trials in a quasi-randomised order, so that every tone was 

heard four times. The child was asked to respond to each sounded tone by pointing 

to the animal ‘that liked this note best’, and their responses were recorded.  

Results  

The means and standard deviations for correct identification of tone/animal pairs are 

shown in Table 1.  
 
The data was subjected to Analysis of Variance and revealed a highly significant 

effect of group (F(2;39) = 7.79, p < .001), with the children with autism performing at 

a significantly higher level than those in the two matched control groups, for whom 

performance levels were very similar. These findings will be considered in the 

discussion below.  
 

Table 1: Means and standard deviations for the correct identification of tone/animal pairs 

 Mean SD 
Autism group 11.21 4.67 
VIQ matched controls 6.50 3.06 
Non-verbal matched controls 6.21 3.35 
 
Maximum score = 16. 
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Experiment 2: Disembedding familiar labelled tones from within 

musical chords  

Method  

Stimuli. The stimuli were 4 alternative versions of a D major tonic triad each of which 

were presented four times. The chords comprised three of the four tones (D3, F#3, 

A3 and D4) to which the subjects had been familiarised, together with their 

associated animal pictures in Experiment 1. The 16 chords were presented, in 

randomised order, on a Casiotone 202 electronic keyboard (acoustic piano setting) 

by the experimenter. The keyboard was out of the child’s view.  

 
Procedure. In Experiment 1, participants had been exposed to tone/animal pairs and 

after three familiarisation blocks correct responses had been recorded (Table 1). 

Experiment 2 began immediately after this and began with the presentation of a 

further familiarisation block. The children remained seated at the table on which the 

four animal pictures were arranged and were again exposed to each of the 

animal/tone pairings over 16 trials. After this familiarisation block was completed the 

children were told that they were going to listen to groups of three animal notes. The 

experimenter gave the following instructions: ‘I am going to play three of the animal 

notes together, and I am going to leave one out. Can you point to the animal whose 

note is missing?’ The subjects’ responses were recorded.  

 

Results  

The means and standard deviations for correct identification of the tone/animal 

missing from chords are shown in Table 2.  

 
A one-way Analysis of Variance was carried out on the data and revealed a 

significant effect of group (F(2;39) = 3.97, p < .027), with children with autism 

performing at a higher level than controls.  
 
The findings from this experiment suggest that children with autism are better able 

than controls to use pre-exposed and labelled pitch representations in an analytical 

task that requires the mental segmentation of musical chords. The question to be 

asked in the following study is whether this ability will persist when pre-exposure and 
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cueing are reduced. Thus, when not cued towards individual tones, perception of the 

chord’s Gestalt qualities might reduce the autistic children’s tendency towards 

featural processing.  
 

Table 2: Means and standard deviations for the correct identification of tone/animal pairs 
excluded from musical chords 

 Mean  SD 
Autism group 7.50 4.83 
VIQ matched controls 4.28 3.02 
Non-verbal matched controls 3.71 3.40 
 
Maximum score = 16. 
 

Experiment 3: Disembedding unlabelled tones from within musical 

chords  

Method  

Stimuli. Twenty-four chords (12 major and 12 minor) were used in each of the 

experimental conditions and were randomised across modality (major/minor) and 

across keys. As in experiment 2, the chords were tonic triads comprising the first, 

third and fifth degrees of the scales of the given keys. Comparison notes were the 

first, third or fifth degrees of the scales of the given keys (correct) or the second, 

fourth or sixth degrees of the scales of the given keys (incorrect). Chords were 

presented on a Casiotone 202 electronic keyboard (acoustic piano setting) by the 

experimenter.  

 

Procedure. Simultaneous training phase: Children were shown a picture of an 

elephant that was then placed face down. They were then shown real or modified 

segments of the picture and were asked ‘is this a piece of the elephant picture you 

just saw?’ Sequential training phase: Here presentation of the whole picture was pre-

ceded by exposure to the three correct segments. There were 24 trials in each of 

these phases and feedback was given after each incorrect response.  

 

Simultaneous experimental phase: Children were told that the task was to be 

repeated using music and were instructed to listen to chords followed by individual 

tones. They were required to state whether or not the individual tone was part of the 

 10



chord that preceded it. There were 24 trials and feedback was given on the first four 

only. Sequential experimental phase: Here, the sounding out, in ascending order, of 

the individual notes that comprised the chord preceded presentation of chords. Again 

the children were required to state whether or not the individual tone was part of the 

chord that preceded it. There were 24 trials and feedback was given on the first four 

only. Presentation of the two experimental conditions (simultaneous and sequential) 

was randomised within groups. Correct and incorrect responses were recorded by 

the experimenter.  

Results  

The means and standard deviations for correct comparison of target tones with 

chords are shown in Table 3.  

Table 3: Means and standard deviations for the subject’s correct comparison of target tones 
with simultaneous and sequentially presented consonant chords 

 Simultaneous condition Sequential condition 
 Mean SD Mean SD 
Autism group 15.53 3.56 16.13 5.09 
VIQ matched controls 13.67 2.02 14.60 3.46 
Non-verbal matched controls 14.07 2.19 14.73 2.60 
 
Maximum score = 24. 
 

An Analysis of Variance with condition (simultaneous/sequential) as the within group 

factor and group as the between group factor was carried out on the data. The 

analysis failed to reveal a significant effect of group (F(2;42) = 1. 46, n.s.), condition 

(F(1) = 2.46, n.s.), or group × condition (F(2) = .05, n.s.). As these findings failed to 

show superior dis-embedding ability in the autism group, further analyses were 

carried out.  

 

In order to determine chance levels of performance within groups, binomial tests 

were carried out on the data. It was found that performance was above chance level 

for 60% of individuals in group 1 (autism), 47% in group 2 (VIQ-matched controls) 

and 53% in group 3 (Non-VIQ-matched controls) (p < .05).  

 
In a second analysis, scores for correctly identified target tones that were the same 

as those embedded in the chords were compared to correctly identified tones that 

 11



were different to those embedded in the chords. The means and standard deviations 

for these same/different identifications are shown in Table 4.  

 

An analysis of variance was carried out with correct identification (same/different) as 

the within subjects factor and diagnosis (autism/controls) as the between subjects 

factor. There was no significant effect of group (F(2.42) = 1.64, n.s.), but there was a 

trend towards statistical significance for condition (F(1) = 1.64, p < .06), indicating 

better identification of different targets. There was no significant effect of group 

condition.  

 

Discussion  

 
The findings from these experiments provide only partial support for the experimental 

hypothesis in that chord disembedding superiority in autism appears to be highly 

dependent on the type of experimental paradigm used. However, the findings clearly 

show that there are qualitative differences in the way that autistic and normally 

developing children represent and process pitch information. In experiment 1 the 

children with autism showed significantly better retrieval of individual labelled tones 

than controls and in experiment 2 they showed better disembedding of these pre-

exposed tones from musical chords. In experiment 3, where tones were not pre-

exposed and retrieval labels were not provided, no group differences emerged and 

the autism group, like controls, succumbed to the Gestalt qualities of the chords.  

 

Table 4: Means and standard deviations for subject’s correct identification of same (embedded) 
and different (not embedded) target tones 

 Same target Different target 
 Mean SD Mean SD 
Autism group 15.26 4.25 16.40 5.15 
VIQ matched controls 12.99 4.13 14.60 3.48 
Non-verbal matched controls 13.46 3.90 15.33 3.69 
Maximum score = 24. 
 
In experiment 1 task performance was dependent on pitch memory. It was suggested 

in the introduction that AP ability may not necessarily depend on learned verbal 

codes, and both neurological findings (Zatorre et al., 1998) and reports of AP ability 

prior to the acquisition of verbal labels (Miller, 1989) provide support for this 

suggestion. Experimental evidence suggests that individuals with AP do not 
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remember sounds of pitches, but instead identify tones and remember pitch names 

(Tacheuchi & Hulse, 1993). The participants in the present investigation had not 

undergone musical training and did not possess pitch labels. However, the paradigm 

used in this study provided retrieval cues, thereby allowing individuals without AP as 

currently defined (Baggaley, 1974; Levitin, 1994) to demonstrate the existence of 

stable representations for specific musical tones.  

 
In experiment 2 the experimental method focused attention on the component tones 

within the chords and made retrieval easier by providing tone labels. However, 

normally developing controls were still unable to access the tones within the chords 

and significant group differences emerged. Task success in this experiment 

depended upon three cognitive operations. First, representations for pitch/animal 

pairs had to be formed and stored in long-term memory. Secondly, the presented 

chord had to be segmented into its component parts in order that the third cognitive 

operation, identifying the fourth missing component, could be carried out. Thus task 

performance depended on associate learning and both long-and short-term memory 

capacities. In a recent investigation into memory functions in autism (Minshew & 

Goldstein, 2001), associate-learning and short-term memory were found to be intact. 

In addition, difficulties on delayed recall tasks tended to emerge when test materials 

increased in semantic complexity, thus suggesting that delayed recall may not in 

itself be impaired. Whilst it thus becomes evident that cognitive mechanisms 

essential to good performance on the reported tasks are unimpaired in autism, 

superior long-term memory encoding and retrieval of pitch information in the autism 

group remain unexplained. The pitch encoding and retrieval difficulties experienced 

by normally developing controls in experiments 1 and 2 might be considered with 

reference to data from non-AP possessors reported by Zattorre et al. (1998). Tones 

presented for associate learning (as in experiment 1), if rehearsed in short-term 

auditory memory, are highly susceptible to interference from subsequently presented 

tones. Sequential presentation of chords would have a similarly disrupting effect. 

However, individuals with AP who appear to be less reliant on auditory working 

memory are correspondingly less susceptible to such interference effects. Taken 

together, the findings from experiments 1 and 2 show that in autism pitch 

representations are more accessible and stable than is normally the case so that task 

performance more nearly resembles that of individuals with AP (Miller, 1989).  
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In experiment 3, when subjects were presented with tonic triads in simultaneous and 

sequential conditions for disembedding, no group differences emerged. Although 

exceptional chord disembedding is found in individuals with savant talents (Miller, 

1989) and musical splinter skills (Heaton, 1998; Heaton, Pring, & Hermelin, 1999), 

and good visual disembedding has been well documented in autism (Shah & Frith, 

1983, 1993), such enhanced abilities were not seen in experiment 3. This task 

proved to be fairly difficult, although more than half of the participants were able to 

perform at levels that were significantly above chance. However, the same/different 

analysis showed that all subjects tended to experience greater difficulty identifying 

same target tones (embedded) than different target tones (not embedded). It may 

then be the case that any good performance observed did not rest on disembedding 

ability, but instead reflected a capacity to identify different notes that sounded 

dissonant or harmonically incongruent in comparison to the previously heard chord.  

 
In Shah and Frith’s (1993) study children with autism and controls were presented 

with segmented and unsegmented block designs for reconstruction. Whilst the good 

performance of the children with autism was not facilitated by pre-segmentation of 

designs, this was the case for the control children. Experiment 3 included a condition 

(sequential) in which component tones were sounded out prior to presentation of 

chords and comparison target tones; however, performance was no better here than 

on the simultaneous condition where no pre-segmentation of chords had occurred. In 

many visual disembedding tasks (i.e., Shah & Frith, 1993) parts and wholes remain 

perceptually available during task performance and this contrasts with the current 

tasks in which stimuli were auditory and sequential in nature. In the first experiment 

presented here, 71% of the children with autism were able to form stable 

representations for tone/animal pairs and for 43% these could be retrieved from 

chords in experiment 2. Although the control children performed at low levels on 

experiments 1 and 2, where task performance was dependent on the ability to 

represent and retrieve pitch/animal pairs, their performance on experiment 3, where 

memory demands were reduced, improved and equalled that of the children with 

autism. Thus, whilst the findings presented here do not provide evidence for 

generally enhanced auditory disembedding ability in autism, they do show that such 

abilities can be sustained under conditions in which heavy demands are made on 
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long-term pitch memory. The findings of superior pitch encoding and recall in autism 

will now be considered within the context of our current understanding of the 

development of pitch processing mechanisms in normal populations.  

 
It has long been held that there is a sensitive period for the acquisition of AP. In 

support of this are studies showing correlations between the early onset of musical 

training and the probability of possessing AP, and higher success rates for younger 

than older children on AP training programmes (see Tacheuchi & Hulse, 1993, for 

review). However, evidence for AP in neonates has led Saffran and Griepentrog 

(2001) to outline an alternative unlearning hypothesis that offers a persuasive 

account of early pitch development across music and language domains. At the 

earliest stages of development infant attention is focused primarily on contour 

information (for experimental evidence see Trehub, Shellenberg, & Hill, 1997); 

absolute pitch cues are less salient but are accessed when contour information is 

unavailable, as was the case in Saffran and Griepentrog’s statistical learning task. 

This early ability to represent contour indicates that ‘rough-grained’ relative pitch (RP) 

processing mechanisms are in evidence. However, many distinct melodies share 

similar contours and melody discrimination and memory requires finer-grained levels 

of analysis. The development of the ability to represent pitch distance allows the 

infant to map precise intervals between tones and in combination with pitch direction 

provides for more detailed melody representations. In music, pitch is organised in 

discrete intervals along octaves and these form the scales of the different musical 

keys. Thus, the development of relative pitch processing mechanisms allows the 

organisation of pitch information and the subsequent representation and processing 

of higher-level harmonic information. An inability to develop relative pitch processing 

would place serious constraints on musical perception and cognition, for example, 

disallowing recognition of melodies in transposition. As previously suggested, adults 

with AP are frequently reported as having experienced increased exposure to music 

early in development and it appears that this has served to stabilise AP 

representations which then coexist alongside the more mature RP processing 

abilities (Trehub et al., 1997).  

 

The autistic musical savant with AP described by Mottron et al. (1999) showed 

deficits on tests of cognitive flexibility and these authors suggest that AP may 
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stabilise in musical savants because such a deficit might create a predisposition 

towards the repetitive and inflexible processing of information within domains of 

interest. Thus, neurological abnormalities expressed at behavioural levels are 

proposed to account for AP ability in savants. Of relevance here are reports of 

atypical auditory information processing in autism. For example, many children show 

extreme sensitivity to a variety of environmental sounds (Bauman, 1999) and 

lateralisa tion abnormalities at the auditory periphery have been noted (Khalfa et al., 

2001). Mu¨ller et al. (1999) used positron emission tomography to investigate 

patterns of activation in response to auditory information and found atypical 

functional asymmetry for both language and pitch stimuli in their autism group. In 

response to pitch stimuli, the autism group, unlike controls, showed activation of the 

left anterior cingulate gyrus. They also showed reduced bilateral superior temporal 

and cerebellar activations in comparison to controls.  

 

It is noteworthy that developmentally atypical patterns of auditory attending are 

frequently reported in autism. For example, both clinical (Clancy & McBride, 1969; 

Kanner, 1943; Prior & Gajzago, 1974; Rutter, 1968) and experimental (Klin, 1991) 

evidence suggests that young autistic children often fail to show a preference for 

speech above other types of auditory stimuli. Of particular relevance to the current 

investigation is Blackstock’s (1978) finding of an autism-specific preference for 

musical over verbal stimuli. Difficulties in processing stimuli with high levels of 

semantic complexity, for example language (Minshew & Goldstein, 2001), might 

influence the development of such a preference. It may then be the case that even in 

the absence of a domain-specific interest, as seen in musical savants, the reduced 

salience of language, if operating at early stages in development, creates conditions 

in which other types of auditory information become more important and are more 

intensively processed.  

 

Previously cited evidence strongly suggests that the acquisition of AP ability is 

constrained developmentally; however, sensitive periods for the development of 

specific processing mechanisms cannot be assumed to follow a normal 

developmental trajectory in those with neurodevelopmental disorders. For example, 

individuals with Williams syndrome have been found to be able to acquire note 

names in adulthood, whilst in normal populations such potential abilities are lost by 
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approximately 6 years (Lenhoff, Perales, & Hickok, 2001). The findings from the 

experiments described here strongly suggest that in autism, as in Williams syndrome, 

the potential to acquire or stabilise AP ability has a longer duration than seen in 

normal development.  

 
A major strength of the theoretical accounts of autistic cognition outlined in the 

introduction is that they attempt to explain enhanced performance on specific tasks. 

However, theories proposing enhanced on-line processing of perceptual information 

fail to account for the findings presented here, as enhanced task performance 

(experiments 1 and 2) is best explained by superior recall of pitch information and 

intact paired-associate learning and working memory. In experiment 3, where 

enhanced perceptual discrimination abilities, as proposed by Mottron and Burack 

(2001) and Plaisted (2001), might be expected to advantage autistic subjects, no 

group differences emerged.  

 

Happé’s (1999) suggestion that autistic cognition is characterised by a tendency 

towards featural processing and exemplar encoding provides the clearest link 

between autistic cognition and what is known about the acquisition or stabilisation of 

AP ability in normal populations. In the AP training technique developed by Oura and 

Eguchi (1981), young children’s attention was focused on individual tones within 

three-note chords and sequential musical material was avoided. Thus detail-focused 

processing of musical material, within a specified developmental time frame, was 

promoted and led to the stabilisation of AP. It is thus proposed that a cognitive bias 

towards featural processing as outlined by Happé (1999) is an important factor in 

predisposing AP in autism. It may also be the case that the reduced salience of 

language and the weaker operation of developmental constraints against AP 

stabilisation are important contributory factors. However, whilst behavioural data 

allows important insights into pitch processing in autism, neurological investigations 

might well provide the clearest evidence for similarities and differences between 

normally developing individuals with AP and those with autism that show exceptional 

pitch labelling and memory. Such investigations are currently being planned.  
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