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ABSTRACT

Improvisers are often keen to assess how their performance
practice stands up to an ideal: whether that ideal is of tech-
nical accuracy or instant composition of material meeting
complex harmonic constraints at speed. This paper reports
on the development of an interface for querying and navi-
gating a collection of recorded material for the purpose of
presenting information on musical similarity, and the ap-
plication of this interface to the investigation of a set of
recordings by jazz performers. We investigate the retrieval
performance of our tool, and in analysing the ‘hits’ and
particularly the ‘misses’, provide information suggesting a
change in one of the authors’ improvisation style.

1. INTRODUCTION

Query-by-Example systems for musical search offer the
promise of rich interaction for their users with collections
of music. The purpose of a search can be goal-driven or
exploratory, while the musical content being searched can
be highly focused (as in a curated collection in a sound
archive), heterogenous and largely known to the user (a
personal collection on a user’s personal music player) or
heterogenous and largely unknown (an online music ven-
dor’s catalogue). The first Query-by-Example systems [8,
16] stored their collections in MIDI format; they admitted
audio queries (hence the ‘Query-by-Humming’ term in the
Music Information Retrieval community), and one of the
technical hurdles in those systems was a sufficiently ac-
curate transcription of the hummed input – and a search
relevance filter that could account for error from imperfect
human humming as well as from imperfect transcription
algorithms. This mode of interacting with a collection of
MIDI-encoded music is available over the web at Musi-
pedia 1 .

However, for usable systems, Query-by-Example needs
to be augmented by some means of navigating the collec-

1 http://www.musipedia.org/
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tion; typically, that navigation mode is specialized to the
particular use case enviseaged (and details of the collection
being investigated); there exist numerous interfaces and vi-
sualisations of collections (such as [9,12,17,18]) and their
use for music discovery has been discussed in tutorial ses-
sions 2 .

Achieving intuitive navigation through collections re-
quires some kind of notion of similarity (of which there
are many kinds [2]); for systems using primarily content-
based information, this means that the audio features or
descriptors must encode not only identity but one or more
similarity relationships at some level of specificity. Viewed
from this perspective, systems based on audio features for
classifying and clustering musical tracks [10, 18] or seg-
ments [1] are Query-by-Example systems, just as are more
modern implementations of the original idea (e.g. [7]).

In our work, we are interested in both small-scale and
large-scale collections, and in particular at allowing the
user to search for and retrieve fragments of tracks (rather
than track-to-track or fragment-to-track matches); in prin-
ciple if given a 5-second audio snippet as a query, we con-
sider all similarly-sized segments in the database – up to
some reasonable granularity – as potential matches. This
means that collections of even a small number of tracks
have a large number of effective database entries to be
considered. Achieving fast search through large databases
of musical content has been considered in a few applica-
tions [14, 15], including the ability to search for specific
content within a track in a manner which can still be im-
plemented efficiently [3] and can be generalized [6].

In this paper, we describe a practical use-case for ex-
ploratorily searching for fragments of audio by similarity
within a small collection. In section 2, we describe in more
detail the use case in question; in section 3, we describe
how the technology we have developed can meet this need.
Our preliminary experiments are reported in section 4, and
we draw conclusions and suggest further work in section
5.

2. CASE STUDY

It is often the case that when amateur and semi-professional
musicians hear themselves play they cringe at just how

2 e.g. http://musicviz.googlepages.com/home



far away they are from being like the professional heroes
that have influenced them. There is a sense of ‘I wish I
could sound a bit less like me and more like someone re-
ally good’. We propose to build a tool that provides a gen-
eral framework for the analysis of performance, allowing
performers to both self-analyse and also discover how they
relate to their influences.

Performers are often concerned with knowing if their
playing has improved in over a time period; whether they
can learn about their approach and technique from how
professional musicians play particular phrases; or whether
they play differently depending on the instrument, event,
ensemble, etc.

As such, we are interested in building a tool that en-
ables performing musicians to analyse certain performance
characteristics. We propose an iterative development cy-
cle where we increase the scope incrementally in terms of
what performance characteristics may be considered, the
range of media, the range of extractors, the type of searches
(point, track, catalogue) and the options which we make
available to a user in the interface. The planned function-
ality includes, but is not limited to, investigating the fol-
lowing queries:

1. How do performance characteristics of a musician
develop over time?

2. How does the performance context (e.g. home record-
ing, studio recording) affect performance character-
istics?

3. How does the ensemble (e.g. solo, duo, trio, big band)
affect performance characteristics?

4. How does the type of instrument (e.g. in the case
of piano, grand, upright, electric) affect performance
characteristics?

5. How do certain performance characteristics compare
with great musicians?

6. How do performance characteristics develop through
a single piece performance?

One of the authors is a reasonable jazz pianist (he has
received good reviews in the UK Guardian and Observer
newspapers), so we chose to focus on jazz piano perfor-
mance, with our ultimate goal as being able to ask the
question: ‘How much of a performer’s improvisation is
genuinely improvised, and how much is made from stock
patterns?’

Many jazz musicians can come up with phrases or ‘licks’
that work over chord changes but it is only the greats who
can actually approach improvisation as ‘instant composi-
tion’: where what they play is not only appropriate to the
sequence but an original passage of notes. The co-author
would ideally like to find out where the stock patterns arise
in their playing in order to remove them to free up space
for more creative improvisation.

3. TECHNOLOGY

3.1 Similarity Measurement

The necessary functionality for our application is the in-
sertion and storage of numerical audio feature information
extracted from tracks, and their subsequent searching for
similarity. These two aspects are illustrated in figure 1: in
the left panel, we schematically show a track which has
had d-dimensional audio features extracted for a number
of regions of audio. Subsequently, a user wishes to search
using a query of region length sl, so successive feature vec-
tors are concatenated (illustrated by the arrows in the left
panel) to arrive at shingled [4] feature vectors (right panel).
These shingled feature vectors are then compared against
the query by summing squared Euclidean distances, and a
retrieved list is assembled.

3.2 Interface

iAudioDB is an application developed for Mac OSX in
Objective C which provides an intuitive user interface for
the creation and exploration of feature databases. As such,
it binds directly to the audioDB libraries for creation and
querying, and employs Sonic Annotator to extract features
from files provided by the user.

Usage of iAudioDB follows a straight-forward process,
with the interface providing intuitive abstractions to pa-
rameters where possible. The first step is to create the
database itself, which is achieved via the interface in Fig-
ure 2. The user is prompted for the feature they wish to
extract, which corresponds directly to the VAMP plugin 3

which is used with Sonic Annotator, and then a selection
of parameters which are database-specific. The first two,
‘Max Tracks’ and ‘Max Length’ correspond to the number
of audio files the user expects to import into the database
and the maximum length in seconds of those tracks. The
hop size and window size, equivalent to the step and block
size detailed above, are used in conjunction with these val-
ues to determine the initial size (in bytes) of the database.
Furthermore, the chosen parameters are stored alongside
the database to remove the need to enter the settings at the
import stage.

Once created, the user imports any audio files, both
ground truth and queries. Aside from a standard file di-
alogue, there is no interface for this, as all parameters re-
quired are obtained at creation time. Multiple files may be
selected, and progress is indicated as files are imported.
At this stage, Sonic Annotator extracts feature informa-
tion as n3-serialized RDF, which is then imported into the
database. Future increments of the software will see it act-
ing as a VAMP host, allowing the use of extractors via a na-
tive library. The filenames of the audio files are preserved
alongside the unique keys of the tracks in the audioDB in-
stance, thus easing the playback process.

The query process again has an intuitive user interface,
shown in Figure 3. The user selects the audio file they wish
to use as the query, and from this the length is determined.
This length is displayed in the Query Length fields in units

3 http://vamp-plugins.org/



d

d× sl

n− sl + 1

Figure 1. Illustration of the construction of concatenated or shingled feature vectors for our search. Note that while in
principle this construction can be done for features over audio regions with temporally-varying extent and step (adjusted to
the local tempo), in this paper the step size and block size were kept constant.

Figure 2. Creating a new database in iAudioDB. The fea-
ture extractor is chosen on the left-hand side, while param-
eters related to the database and the extractor are on the
right.

of Vectors and Seconds, and both of these fields may be
customized by the user to vary the length of the query. The
fields are dynamically updated, so a change to the seconds
value reflects instantly in the vectors value. If desired, the
length may also be reset to the full duration of the query
file. Finally, the user may opt to locate multiple matches
of a query within the corpus, or to only determine the best
match per track.

Once queried, results are displayed in the main appli-
cation window (see Figure 4). By default, these are sorted
by ascending distance values, but this may be customized
by clicking the column headers. The other columns are,
from left to right, a visual indicator of the closeness of
the match (though this varies depending on extractor, so
should not be used for comparison), the unique key within
the audioDB instance, and the position in seconds at which
the query occurs in the track. Results may be played in iso-
lation from the match position, or synchronized with the
original query.

Figure 3. Querying a database in iAudioDB. The query
length is generated dynamically from the query audio file,
and may then be customized by the user.

Figure 4. Results generated from an iAudioDB query.



4. FEATURE SPACE INVESTIGATION

The first step in this investigation was to turn our attention
to one track and to focus on a single element of the tune.
This would at least give us some ground truths whereby we
could start to map out a method for getting to our ultimate
goal. The track we chose was Looking Up, written by the
late great jazz pianist Michel Petrucciani. Specifically, we
chose the following performance scenarios that would in
time enable us to look at all the issues of our case study:

1. The co-author at home using the internal microphone
of a laptop recorded three versions of Looking Up
solo on a Kawai grand piano in an informal setting.
These were stored as stereo 44100Hz WAV files.

2. The co-author again, in the same session, but record-
ing three versions of two other tracks – Ambleside
Days by John Taylor and My Romance by Rogers
and Hart. (The significance of recording these will
become clear later.) As above, these were stored as
44100Hz WAV files.

3. The co-author again, but recorded in a studio con-
text, in trio ensemble and on a Technics electric pi-
ano ten years previously.

4. The composer of Looking Up and an influence of the
co-author, Michel Petrucciani recorded in a concert
on a solo grand piano.

5. Michel Petrucciani again but in a band context on a
grand piano in a live setting.

6. Another well-regarded pianist and influence of the
co-author, Christian Jacob in a trio ensemble, a record-
ing studio with a grand piano.

To begin our iterative development cycle for this appli-
cation, we focus on one specific phrase in the tune Looking
Up (the very first phrase, an 8-note Mixolydian scale in E).
This run appears several times in the piece, though the fre-
quency and positions vary on a per-recording basis. The
co-author recorded this phrase five times in the same set-
ting as 1 and 2 above to build a library of different queries.
These query tracks were played at an even tempo, with no
missing or muffled notes.

From this set of tracks three feature databases were built,
all with a step size of 2048 samples (0.046s) and a block
size of 16384 (0.372s):

1. An MFCC feature database with 20 cepstral coeffi-
cients.

2. A constant-Q feature database with 12 bins per oc-
tave, a minimum frequency of 65.4064Hz, and a max-
imum frequency of 1046.5Hz.

3. A chromagram database with the same bins per oc-
tave and frequency range as the constant-Q database,
and a sum of squares accumulation method.
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LU1

15 x
37
59 x
86 x
162 x x

LU2

15 x x
37
59 x
107 x x

LU3

16 x x x
38
59
80 x

Table 1. Locations and comments of fragments corre-
sponding to our queries in the three single-take recordings
through a laptop microphone.

The 3 Looking Up tracks were examined to locate the
positions of the queried tune and thence act as a ground
truth. The resultant locations and notes on these instances
are shown in Table 1.

Each feature database was then queried with each of
the 5 recorded queries, with a maximum length of 20 vec-
tors (1.3s). The recordings of My Romance and Amble-
side Days were used as a boundary, with results examined
up to the first match of a track in this set, and duplicated
results were discarded. From this set, it was possible to
determine those which matched the segments in Table 1
and those which did not. Note that with queries of this
length, and with the audio features extracted every 2048
audio samples, there are over 50,000 candidate matching
points in our 9-track database; the fact that we are search-
ing for fragments of track rather than whole tracks enlarges
the problem.

The mean precision and recall values from these queries
can be seen in Table 2, and it is immediately apparent
that chromagram features produce the most useful results.
While the precision is not as high as that of the constant-Q
database the recall is significantly improved, and thus of
most benefit to this case study, where the user is looking
for a variety of similar matches rather than a small number
of exact matches.

Within the results, some notable differences between
feature performance were present. Riff instances with muf-
fled notes (15s, 59s, and 86s in Looking Up 1) were located
in 73% of queries using the chromagram database, 47%
using constant-Q, and 20% using MFCCs. Instances with
rhythm alterations (107s in Looking Up 2 and 16s in Look-
ing Up 3) were found in 100% of queries using the chroma-
gram database, 50% using constant-Q (matching the Look-



Feature Precision Recall F-Score
MFCC 0.89 0.29 0.44
Constant-Q 1.00 0.57 0.73
Chromagram 0.97 0.83 0.89

Table 2. Average precision, recall, and balanced F-score
for our queries against recordings in the same recording
environment.

ing Up 2 instance throughout), and none using MFCCs.
Finally, the chromagram and constant-Q databases were
more resilient to missing notes, matching 75% of the cases
in the former and 40% in the latter, with MFCC matching
10%. Interestingly, the riff at 162s in Looking Up 1 was
entirely unmatched, possibly due to the number of notes
missing from the melody.

As a second case, 4 performances of Looking Up by
professional jazz pianists were added to the databases: a
trio studio recording (MDI), a solo piano studio recording
(CJ), a live band recording (MP(B)), and a live solo pi-
ano recording of the same (MP(S)). The ground truth for
this collection is shown in Table 3, and the precision/recall
means for the MFCC and chromagram databases in Table
4.

As before, chromagrams provided the most useful re-
sults, with a comparatively high mean precision and re-
call. The CJ recording obtained a mean recall of 1.00
and a mean precision of 0.72, while the MDI recording
resulted in a mean recall of 0.43 and a mean precision of
1.00. MP(B) and MP(S) both obtained low recall (0.27
and 0.32 respectively) and good precision (1.00 and 0.78
respectively). Both MP(B) and MP(S) were recorded in
a live setting, which may suggest the distance from the
query, but notably the queries which didn’t match often oc-
curred in locations where the sustain pedal was employed.
The CJ recording, while in a studio, was classically precise
in terms of note velocity, timing, and consistency, with no
sustain pedal employed during the riff instances. The MDI
recording only missed matches across all queries when the
sustain pedal was used. Further investigation will examine
this characteristic more closely.

5. CONCLUSIONS

Our study, while still at a preliminary stage, is promising:
we can achieve good precision and recall for fragments of
audio, both for queries recorded under the same conditions
as the test database and for queries recorded on consumer
hardware against a database of professional studio record-
ings.

Treated as a pure retrieval task, recall performance is
perhaps not as good as might be desired; our observation
is that our audio features are not sufficiently robust to the
kinds of difference that arise in practice between the query
and the matches desired by our userbase. Enhancements
in this area would be to incorporate more aspects of de-
sired invariance [11] into our feature, such as for exam-
ple: constant-Q translations or chroma rotations to model
transposition invariance; and beat-based analysis windows
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MDI

9 x
37 x
64 x

258
285 x
310

CJ

15
40
66

250
276
300

MP(B)

17 x
43 x
70 x

342 x x
368 x x
394 x x

MP(S)

32 x x
65 x x
92 x x

202 x x
227 x

Table 3. Locations and comments of fragments corre-
sponding to our queries in the three professional-quality
recordings.

Feature Precision Recall F-Score
MFCC 0.77 0.04 0.08
Chromagram 0.80 0.51 0.62

Table 4. Average precision, recall, and balanced F-score
for our queries against the professional, studio recordings.



to incorporate tempo invariance. Because we desire to al-
low our users to search large databases of audio as well
as small ones, we wish to avoid providing invariants using
methods scaling worse than linearly with the database size
(such as dynamic time warping [14, Chap. 4] for tempo
invariance).

However, these invariants are not desired for all appli-
cations of our searching technology; in particular, when
exploring a corpus for changes in stylistic aspects of per-
formance, it is important for sufficiently different rendi-
tions not to match a query. The success of our initial ex-
periment in this respect is the observation that one appar-
ently robust characteristic of the ground truth matches in
the professionally-recorded corpus that are not found by
our current features is that they are executed in the record-
ings with the sustain pedal on (which has previously been
identified as a problem in other MIR tasks [5,10]); design-
ing a feature to cope with this would be very desirable,
but the distinction between the performance practice with
sustain and without was new information to our co-author
pianist.

We expect to go through several more design-and-test
iterations for our implementation of a user interface; known
currently-missing features include: a quasi-live interface
for rapid, experimental search; and a means for navigation
between regions [1,13]. However, we believe that what we
have already developed is good enough for a sophisticated
user to be able to explore his own performance practice, or
for a composer to use as a thesaurus. The software will be
available to download from the OMRAS website 4 shortly
after publication, and we welcome feedback from users.
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