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Improving Forecasts of Geomagnetic Storms with 
Evolved Recurrent Neural Networks 

Derrick T. Mirikitani, Lahcen Ouarbya, Lisa Tsui, and Eamonn Martin 

Abstract- Recurrent neural networks (RNNs) have been used 
for modeling the dynamics of the Dst index. Researchers have 
experimented with various inputs to the model, and have found 
improvements in prediction accuracy using measurements of the 
interplanetary magnetic field (1M F) taken from the Advanced 
Composition Explorer satellite. The output of the model is the 
one hour ahead forecasted D st index. Previous models have 
used gradient information, usually gradient descent, for opti
mization of RNN parameters. This paper uses the 1M F inputs 
(that have been found to work well) to the RNN and uses a 
Genetic algorithm for training the RNN. The proposed model is 
compared to a model used in operational forecasts which relies 
on solar wind data and 1M F parameters, as well as a model 
which uses 1M F data only. Both of the comparison models 
were trained with gradient descent. A series of geomagnetic 
storms that so far have been difficult to forecast are used to 
evaluate model performance. It is shown that the proposed 
evolutionary method of training the RNN outperforms both 
models which were trained by gradient descent. 

I. INTRODUCTION 

RECURRENT Neural Networks are some of the leading 
models used for prediction of geomagnetic storms 

[18], [19], [21]. The majority of the research in recurrent 
neural network based geomagnetic storm forecasting has 
focused on experimenting with various input quantities to 
the RNN to minimize forecast errors of the D st index. This 
paper focuses on the training algorithms used for estimating 
the RNNs weights. Previous work in the area has relied on 
gradient based optimization [19], [21] which is susceptible 
to becoming trapped in local minima on the error surface, 
leading to suboptimal solutions. We propose the use of a 
genetic algorithm for estimation of recurrent neural network 
(RNN) parameters [4] rather than the gradient based method 
used exclusively in previous papers. Genetic algorithms use 
stochastic search operators, such as mutation and crossover, 
which allows the algorithm to move, from inside a local 
minima across a ridge to an even lower local minima with 
no more difficulty than descending directly into the local 
minima itself [16]. Genetic algorithms are efficient opti
mization procedures as they are able to reduce the forecast 
errors of the model monotonically. This study found that the 
use of the genetic algorithm can lead to improved out of 
sample performance on Dst forecasting tasks over models 
estimated with gradient descent. In the following sub-section 
we provide an overview of geomagnetospheric distrubances 
and a brief review of neural forecasting of geomagnetic 
storms. 

All authors are with the Department of Computing, Goldsmiths College, 
University of London, New Cross, London, UK (email: {D.T.Mirikitani, 
l.ouarbya}@gold.ac.uk). 

The paper is organized as follows: Section II reviews 
geomagnetic storms, and neural network forecast models 
of the D st index. Section III provides an overview of the 
Elman RNN, including a description of the architecture used 
in this paper. Section IV outlines the Genetic Algorithm used 
to estimate the weights of the RNN. Section V provides the 
results of a numerical simulation of the proposed model, and 
compares the results to those of other established models. 
Finally, Section VI concludes the paper. 

II. GEOMAGNETIC STORMS 

The magnetosphere is a magnetic field surrounding the 
Earth that shields and deflects charged particles emitted from 
the Sun from hitting the Earth. The sun also has a magnetic 
field, however the Sun's magnetic field is much more com
plex than the Earth's. It is well known that the variation in the 
Sun's magnetic field influences the structure of the magnetic 
field surrounding the Earth [2], [6], [12]. An Interplanetary 
Magnetic Field (1M F) is formed when the solar wind
expands the reach of the Sun's magnetic field, which can 
extend to hit Earth's magnetic field. The 1M F can cause
energetic particles to enter into the Earth's magnetic field 
which results in magnetospheric disturbances. Disruption of 
the magnetosphere takes place when a transfer of energy 
from the solar wind opposes the Earth's magnetic field. 
A magnetospheric storm occurs if this transfer of energy 
persists for several hours [12]. 

Geomagnetic storms can have many negative effects on 
Earth resulting in widespread problems and damage to elec
tric power grids, gas pipelines, power generation facilities, 
and Global Positioning System (GPS) disruption. Forecasting 
the earth's magnetic field can provide vital information about 
the intensity of future magnetospheric disturbances. At mid
latitudes, these magnetic storms are measured in relation to 
the horizontal component of the Earth's magnetic field [12]. 
The mean of this horizontal component is used to form an 
index known as the D st index. There have been various 
studies that have shown a correlation between the value 
of the D st index and the magnetic storm's intensity [8], 
[13], where the more negative the Dst index the greater 
the intensity of the magnetic storm. The physical interaction 
between the 1M F and the magnetosphere takes place at
the magnetopause boundary where a detailed understanding 
of this interaction is not yet fully understood. Previous re
searchers have built non-parametric predictive models based 
on recurrent neural networks (RNNs) to model this interac
tion [18], [21]. 
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Fig. 1. the Elman recurrent neural network 

Previous work in modeling the relationship 
between 1M F and D st with RNNs have relied heavily
on first-order gradient based methods for parameter 
estimation of the model [17], [21] which has resulted in 
long training times, uncertain convergence, and possibly 
vanishing gradients. In this paper we investigate solutions 
to this problem through the use of the genetic algorithms 
for RNN training [4]. The advantage of our approach is 
a framework based on global search strategies resulting 
in superior convergence and accurate forecasts. The 
main results of the paper are as follows: 1) a stochastic 
global search strategy for RNN parameter estimation for 
D st forecasting, 2) improved forecast accuracy over 
previously demonstrated results. 

III. THE ELMAN RECURRENT NEURAL NETWORK 

In this study, the recurrent architecture known as the 
Elman network (RNN) [7] is chosen as previous studies have 
found successful results with RNNs. Feed-forward networks 
are not considered in this study due to poor performance 
in modeling the recovery phase dynamics [9]. This is most 
likely due to the limitation of the feed-forward architecture, 
i.e. limited temporal memory, bounded by the dimension of
the input window. 

The Elman network is essentially a feed forward multi 
layer perceptron with a context layer. The context layer 
copies the hidden layer activations and feeds it back in to 
the hidden layer one time step later. This simple addition 
allows for temporal processing due to the circular flow of 
information. 

Elman networks have been used in many applications for 
processing time series data [1]. Various studies have found 
that the Elman network is able to outperform the feed
forward network on time series forecasting tasks [10]. 

A system of difference equations can be used to compute 
the hidden layer activation: 

(1) 

The above equation describes the operation of the k-th hidden 
network node at time t. The activation function g(.,.) is a
nonlinear sigmoidal function of the input vector Ut and the
context vector St-1. The network output is computed via 

where St is the vector of hidden activations

St = [8(1),8(2), ... , 8(k), ... ,8(H)] 

and the context vector 

_ [(1) (2) (k) (H)] _ Ct - c ,c , ... , c , ... ,C - St-1

(2) 

(3) 

(4) 

is a vector of previous states, where H is the number of
hidden neurons. 

Figure 1 provides a diagram of the Elman network with 
bias term b(l) and a single network input Ut. To simplify
notation, the function Zt Ci) is introduced to represent the
bias, input, or context activation. 

i=O 
1 <;.i<;.L 
L+1<;.i<;.L+H 

(5) 

In the hidden layer, each neuron computes its activation 8�k)

via the following equation: 

L+H 
s�k) = L Zt (j)w(k,j) 

j=O 
L L+H 

= b(l)U/k,O) + L u/k,j)u�j) + L u/k,i)C�i-L)

j=l i=L+1 
(6) 

(7) 

where the bias weight is w(k,O), the input weights are w(k,j)
for 1 <;. j <;. L, and the context weights are w(k,i) for 1 <;.i <;.
L+ H which connect the corresponding past i-th hidden node
output to the current state input. The activation functions 0"0 
are sigmoidal nonlinearities 

0" ( a) = 1/ (1 + exp( -a)) (8) 

which map the input a from R into a bounded interval n = 
(0,1) of length Inl = 1 where ncR. 

The network output is a combination of the sum of the 
states multiplied by the corresponding weights along with 
the bias. The sum is passed through the activation function 
to yield the network output: 

y, � a (o(O)v/O)+ � w�j).'ij)) � a (f (,, ») (9)

 



The output bias and corresponding weight is given by b(O) 
and w(O) respectively. The hidden to output node weights
wij) connect the states of the network to the output node Yt. 
The total number of weights in the model is m = H + 1 + 
(H + I + 1) x H. The overall network model thus becomes
a highly nonlinear function h(Wt, "t) of the weights Wt and
inputs "t. 

dt = h(Wt, "t) + Et 
= Yt + Et (10) 

where the noise Et is assumed to be independent zero
mean Gaussian with variance (J� which is unknown: Et rv 

N(O, (J� ) . 

IV. EVOLUTIONARY TRAINING OF THE RNN

The D st forecasting literature has relied on gradient 
descent optimization for estimation of model parameters 
(weights) of the RNN. To compute the gradient of the cost 
function with respect to each model parameter in neural 
networks, backpropagation is commonly used [22], [23]. 
However, there are drawbacks to the gradient based ap
proach to training RNNs; vanishing gradients [3], [15], high 
computational complexity [24], local minima [3], [5]. These 
problems make gradient based training difficult and most 
likely leads to poor out of sample forecasts. Global search 
strategies such as genetic algorithms [14] are known to be 
effective in addressing these limitations. 

Genetic algorithms (GAs) are stochastic global optimiza
tion procedures inspired by the process of evolution found 
in nature [11], [16]. Unlike gradient descent learning which 
iteratively improves a single solution (i.e. one RNN weight 
vector), the GA maintains population of individuals (i.e. a 
set of RNN weight vectors) that effectively samples the error 
surface at multiple points. The maintenance of a population 
allows the GA to be less susceptible to getting trapped in a 
local minima than gradient based methods. 

As evolution works on populations of individuals, the 
algorithm starts off by randomly generating a population of 
chromosomes (RNNs). Each chromosome in the population 
represents an RNN which can compute a solution to the fore
casting problem. Genetic algorithms can promote learning or 
adaptation in RNNs through evolution of the RNN model pa
rameters (i.e. RNN weights). This is typically accomplished 
by encoding the RNN model parameters into chromosome 
like structures where each weight represents a gene on the 
chromosome. The evolutionary process favors solutions that 
carry higher relative fitness. In the genetic algorithm, it is the 
chromosomes with higher fitness that are more likely to be 
selected for reproduction, leading to the survival of organ
isms with fitter characteristics in the next generation. Here we 
favor individuals which have lower error (higher fitness) on 
the training set (in-sample data). Inspired by our understand
ing of evolution in nature, each genotype (weight vector) is 
transformed into its phenotypical representation (the RNN) 
and evaluated on the in-sample data to assess its fitness. The 
individuals (genotypes) which perform better, i.e. have lower 

error on the in-sample data are given a higher fitness than 
those which do not perform as well. The higher fitness trans
lates into a higher probability to be selected for reproduction. 
Roulette wheel selection is used to probabilistic ally choose 
the parents that will create the offspring that survive in the 
next generation. The offspring are created by applying the 
standard genetic operators, crossover and mutation, on the 
probabilistic ally selected parents. The evolutionary operators 
of crossover and mutation are invoked on two selected 
parents to produce new offspring. The crossover operator 
takes two parents and produces two offspring by cutting 
and concatenating chromosome segments from both parents. 
After selecting a random position on the chromosome, both 
parents chromosomes are cut and the front portion of the 
first parent's chromosome is appended to the rear portion of 
the second parents chromosome, and the front portion of the 
second parent's chromosome is spliced to the rear portion 
of the first parent's chromosome. The mutation operator can 
then be applied to the offspring. During mutation, one of 
the alleles on the chromosome is randomly changed to a 
new value. The offspring are then placed into a population 
representing the next generation. Performing these steps over 
multiple generations tends to lead to successive populations 
of increasing fitness, converging toward the globally optimal 
solution. 

The genetic algorithm for training RNNs can be summa
rized as follows: 

1) Randomly generate the initial population of chromo
somes.

2) Compute the fitness of each member of the population
by running each RNN over the training data and mea
suring the error. 

3) If at least one of the members of the population have
higher fitness (lower MSE) than the predetermined
requirements then stop. Otherwise, continue on to the
next step.

4) Copy the chromosome with the highest fitness into the
population of the next generation (elitism).

5) Continue to fill the population of the next generation
by applying the selection operator to select the parents
and then apply the genetic operators of crossover and
mutation.

6) Go to step 2

Through these steps, the genetic algorithm finds a set of 
weights that minimizes the error between the training targets 
and the network output. 

A. Fitness Function 

The fitness function is a fundamental component of the
GA, which is used to distinguish the useful solutions from 
less useful solutions in a population. Each chromosome in the 
population is evaluated by transforming each chromosome 
into an RNN, i.e. each weight in the chromosome is placed 
into its corresponding position in the RNN connectivity 
graph. Then, the training set is fed into the RNN and the 
one step ahead forecasts from the RNN are measured for 

 



accuracy. The accuracy of each RNN is measured via the 
MSE error function: 

T 

E(i) = � 2)d�i) - Yk)2 (11) 
k=l 

which takes the ditlerence between the output of the 
'ith RNN d�i) at data point k and the corresponding target Yk.
The differences are squared, and the sum of these differences 
is computed and averaged over the length T of the training 
set. 

B. Cross Over 

Crossover is the mechanism by which genetic information
from two selected parents is recombined to from new otl
spring with potentially better fitness. It is thought that by 
recombining genetic information from fit individuals, even 
fitter offspring can be generated. Through crossover, the 
search becomes focused toward regions of higher fitness. 
Crossover is implemented by selecting two parent chromo
somes to form two children. A point on the chromosome 'i rv 

U(l, n-l), is randomly drawn from the uniform distribution
which demarcates where the cutting and swapping of genetic 
material will take place. 

Given two selected chromosomes C 1 = (ci , ... , cr )  and
C 2 = (c§ , ... , c� ) , the genetic splicing takes place via:

(12) 

resulting in two new individuals for the next generation. 

C. Mutation 

The mutation operator promotes diversity in the popula
tion, allowing for exploration of areas of the search space not 
bounded by the population. Given a chromosome chosen for 

. C
' { 1 It} . i h h mutatIOn, 1 = C1, ... , C1 ' 

a pomt C on t e c romosome 
is chosen from the uniform distribution 'i rv U(l, n). Mutation
of the gene ci happens by adding by a Gaussian random 
number T rv N(O, 0' ) to itself:

(13) 

and then replacing the new gene c�ew with the old gene ci. 

V. EXPERIMENTAL RESULTS

The performance on out of sample data of the proposed 
algorithm and both Lundstedt's algorithm [19], [20] and 
the Edda algorithm are provided in this section. The model 
proposed by Lundstedt et. aI., uses an 1M F component (bz) 
and solar wind parameters (n, v) as inputs to the RNN to 
forecast the D st index. The Edda algorithm proposed by 
Pallocchia et. al. [21], uses the same recurrent neural ar
chitecture as in Lundstedt (i.e. an RNN), and uses the 
same gradient based optimization scheme as in Lundstedt. 
The ditlerence between the Edda algorithm and Lundstedt's 
algorithm is in the inputs to the RNN. The Edda algorithm 
omits the solar wind measurements because they were found 
to be unreliable during geomagnetic storms (solar wind data 
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Fig. 2. prediction of Dst from July 13th - July 19th 2000. 

is collected through satellite based sensors that tend to mal
function during geomagnetic storms). The Edda algorithm 
uses instead the IMF parameters b, by and bz which are 
measured from the ground [21]. 

The inputs for Lundstedt's algorithm were transformed 
in the following way: u(1)(t) = bz(t)/30, U(2)(t) = 

n(t)/80 - 1, U(3)(t) = v(t)/400 - 1.5. The output of 
Lundstedt's RNN was scaled by Dst(t + 1) = 1 50y(t) -
100 [20]. The inputs to the Edda algorithm were transformed 
by the following formula: u(l)(t) = bz(t)/4 4.7, u(2)(t) = 

(b(t))2/(4 8.2)2, u(3)(t) = (by(t))2/(34.4)2 , and the output
of the RNN was scaled by Dst(t + 1) = y(t) 38 7 [21]. 
The proposed genetic algorithm trained RNN uses the same 
transformed inputs and scaled output as the Edda algorithm. 

The training set was constructed from 8 storms from the 
dates of 01-01-1998 to 07-12-2001. To speed up training, 
the quiet periods were largely omitted. The evolutionary 
algorithm was allowed to run until there was an average of 
lOnT error per hour. 

In the following subsections, the performance of the pro
posed model is compared to the Lund and Edda models on 
a variety of storms including a severe storm and two double 
storms. 

A. Storm J, Severe Storm 

Figure 2 illustrates the performance of the models on out
of sample data of a storm which occurred between the dates 
of July 13th and July 19th 2000. The blue line represents 
the Kyoto Dst index values. The black line represents the 
one hour ahead forecasts from the Lund model, the red line 
represents the one hour ahead forecasts from the Edda model, 
and the green line represents the one hour ahead forecasts 
from the proposed model. 

The storm starts off with three large compressions before 



dropping severely to -300 nT. The Dst index recovers 
quickly at first but then at around -150 nT, the storm's 
recovery begins to slow and takes nearly 80 hours for 
the Dst index to reach normal levels. 

All three models are unable to capture the initial three 
compressions. However, once the D st index starts dropping 
off, all three models are able to recognize that the storm 
is beginning. The forecasts are nearly identical for the first 
few hours of the initial phase (the drop in D st) of the 
storm. The Lund algorithm is the first model to deviate from 
the D st index. It begins to diverge when the D st index 
passes -200 nT. After a few hours the Lund algorithm begins 
to predict the storm is going into the recovery phase and starts 
to forecast increasing Dst values. The Edda and the proposed 
model (RNN-Genetic) continue to forecast accurate values of 
the downward phase of the storm. The first few hours of the 
recovery phase of the storm are forecasted accurately by both 
the Edda and the proposed model. The divergence between 
the two models begins at approximately 78 hours into the 
storm, at a point when the recovery of the storm begins 
to slow down. Both models begin to overstate the recovery 
phase, with the Edda model producing less accurate values 
than the proposed model. The forecast errors of each model 
on the first storm are given in the second row of Table 1. 
The proposed RNN-Genetic model significantly outperforms 
the Lund model and has slightly lower forecast errors than 
the Edda model. 

B. Storm 2, Double Storm 

Figure 3 presents the forecasts of the three models on a
double storm that occurred between August 9th and August 
16th 2000. The storm starts off with an initial decrease in 
the Dst index, but a recovery begins when the Dst index 
hits around -100 nT. The recovery is short lived, and after 
about 16 hours, the Dst index begins to decrease sharply 
until reaching nearly -238 nT. Once hitting its minimum, 
the storm begins an immediate recovery, with the Dst index 
rapidly climbing to a value of nearly -60 nT before slowing. 
From this point, it takes the storm an additional 80 hours 
before a full recovery is made. 

The Lund model severely underestimates the first and 
second drop in the Dst index. The Lund model also over
estimates the recovery phase of the storm, between hours 
60 and 120 in Figure 3. The Edda algorithm (red line) 
accurately predicts the initial drops of the two storms. How
ever, it underestimates the recovery phase of both storms. 
The proposed model, the RNN-Genetic (green line) has 
similar behavior to the Edda model in modeling the drop 
of both storms. The difference between the two models 
becomes more apparent in the recovery phase of the storms. 
The RNN-Genetic model provides a slightly more accurate 
estimation of the recovery phase of both storms as shown 
by the green line in Figure 3. The third row of Table 1 
shows the performance of the three models in terms of 
root mean squared error (RMSE). The proposed algorithm 
(RNN -Genetic) outperforms the gradient based algorithm of 
Lund in all phases of the storm resulting in significantly less 
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errors. The proposed model also outperforms the Edda model 
mainly during the recovery phase of the storms resulting in a 
reduction in forecast errors over the Edda model. It may be 
worth pointing out that the Lund model outperforms the Edda 
model in this example, but the proposed model, although 
similar in behavior to the Edda algorithm outperforms both 
models on this storm. 

C. Storm 3, Severe Double Storm 

Figure 4 presents the final storm of the experimental
section which occurred between the dates of March 30th -
April 5th 200 l. Before the downward phase of the storm, 



TABLE I 

PERFORMANCE OF RNN MODELS ON OUT OF SAMPLE DATA 

Type Lund RMSE Edda RMSE Genetic RMSE 
Storm 1 52.90 20.78 17.45 
Storm 2 21.72 22.31 13.37 
Storm 3 56.21 21.28 15.91 

there are two initial compressions that take place. The 
second compression is followed immediately by a decrease in 
the Dst index to a value of around -375 nT. The Dst index 
then rebounds sharply to nearly -210 nT before shifting 
directions back downwards to a second minimum of about 
-280 nT. This minimum is followed by a characteristic
recovery phase, rapid in the beginning, but gradually slowing
down toward the end of the storm.

All models fail to capture the first compression, but the 
Lund and Edda models have a very slight upward spike 
representing the second compression. The proposed RNN
Genetic model fails to represent these compressions. All 
three models accurately represent the initial moments of the 
downward movement of the storm. However, the Lund model 
begins the rebound in Dst far too early at a value near -200 
nT. As the descent in D st progresses, the Edda model also 
begins its rebound nearly 75 nT too early while the proposed 
model continues its descent before rebounding just past -350 
nT. The rebounds of both the Edda and the proposed model 
are similar but the Edda model overshoots on the second dip 
in the Dst. Figure 3 highlights how the genetic algorithm 
reproduces a better representation of the target line of the 
storm compared to both the Lund and Edda algorithms. In 
the final row of Table 1, the performance of all models in 
terms of RMSE are presented for the severe double storm. 

VI. FUTURE WORK AND CONCLUDING REMARKS

This paper provides a method to improve forecast models 
of the D st index through the use of 1M F data and
genetic algorithms for training RNN models of geomag
netic storms. It was found that the genetic algorithm can 
reduce forecast errors of the Dst index in comparison to 
similar models trained with gradient based methods [1], 
[19]. It is thought that global stochastic search has led 
to the reduction in D st forecast errors of the RNN as it 
is less susceptible to local minima, and avoids vanishing 
gradients common in the computation of RNN derivatives [3]. 
This paper offers an alternative to gradient based learning 
for RNN based D st forecasting. 

Although RNNs have become popular forecast models 
of the Dst index [1], [19], [21], nearly all research has 
utilized gradient based training algorithms for estimation 
of RNN parameters. This paper looked into an alternative 
method for estimating model parameters. The results have 
shown that forecast errors can be reduced through evolu
tionary RNN training. However, evolution only worked on 
the weights of the neural network, and not on the topology, 
the inputs, the delays between inputs, etc. Future work will 
look into whether optimized architectures can also lead to 
improvements in forecasting the Dst index. 
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