
Mirikitani, Derrick T.; Ouarbya, Lahcen; Tsui, Lisa and Martin, Eamonn. 2012. ’Improving Fore-
casts of Geomagnetic Storms with Evolved Recurrent Neural Networks’. In: IEEE 10th Interna-
tional Conference on Cybernetic Intelligent Systems (CIS). London, United Kingdom 1 - 2 Septem-
ber 2011. [Conference or Workshop Item]

https://research.gold.ac.uk/id/eprint/6809/

The version presented here may differ from the published, performed or presented work. Please
go to the persistent GRO record above for more information.

If you believe that any material held in the repository infringes copyright law, please contact
the Repository Team at Goldsmiths, University of London via the following email address:
gro@gold.ac.uk.

The item will be removed from the repository while any claim is being investigated. For
more information, please contact the GRO team: gro@gold.ac.uk

Improving Forecasts of Geomagnetic Storms with
Evolved Recurrent Neural Networks

Derrick T. Mirikitani, Lahcen Ouarbya, Lisa Tsui, and Eamonn Martin

Abstract- Recurrent neural networks (RNNs) have been used
for modeling the dynamics of the Dst index. Researchers have
experimented with various inputs to the model, and have found
improvements in prediction accuracy using measurements of the
interplanetary magnetic field (1M F) taken from the Advanced
Composition Explorer satellite. The output of the model is the
one hour ahead forecasted D st index. Previous models have
used gradient information, usually gradient descent, for opti
mization of RNN parameters. This paper uses the 1M F inputs
(that have been found to work well) to the RNN and uses a
Genetic algorithm for training the RNN. The proposed model is
compared to a model used in operational forecasts which relies
on solar wind data and 1M F parameters, as well as a model
which uses 1M F data only. Both of the comparison models
were trained with gradient descent. A series of geomagnetic
storms that so far have been difficult to forecast are used to
evaluate model performance. It is shown that the proposed
evolutionary method of training the RNN outperforms both
models which were trained by gradient descent.

I. INTRODUCTION

RECURRENT Neural Networks are some of the leading
models used for prediction of geomagnetic storms

[18], [19], [21]. The majority of the research in recurrent
neural network based geomagnetic storm forecasting has
focused on experimenting with various input quantities to
the RNN to minimize forecast errors of the D st index. This
paper focuses on the training algorithms used for estimating
the RNNs weights. Previous work in the area has relied on
gradient based optimization [19], [21] which is susceptible
to becoming trapped in local minima on the error surface,
leading to suboptimal solutions. We propose the use of a
genetic algorithm for estimation of recurrent neural network
(RNN) parameters [4] rather than the gradient based method
used exclusively in previous papers. Genetic algorithms use
stochastic search operators, such as mutation and crossover,
which allows the algorithm to move, from inside a local
minima across a ridge to an even lower local minima with
no more difficulty than descending directly into the local
minima itself [16]. Genetic algorithms are efficient opti
mization procedures as they are able to reduce the forecast
errors of the model monotonically. This study found that the
use of the genetic algorithm can lead to improved out of
sample performance on Dst forecasting tasks over models
estimated with gradient descent. In the following sub-section
we provide an overview of geomagnetospheric distrubances
and a brief review of neural forecasting of geomagnetic
storms.

All authors are with the Department of Computing, Goldsmiths College,
University of London, New Cross, London, UK (email: {D.T.Mirikitani,
l.ouarbya}@gold.ac.uk).

The paper is organized as follows: Section II reviews
geomagnetic storms, and neural network forecast models
of the D st index. Section III provides an overview of the
Elman RNN, including a description of the architecture used
in this paper. Section IV outlines the Genetic Algorithm used
to estimate the weights of the RNN. Section V provides the
results of a numerical simulation of the proposed model, and
compares the results to those of other established models.
Finally, Section VI concludes the paper.

II. GEOMAGNETIC STORMS

The magnetosphere is a magnetic field surrounding the
Earth that shields and deflects charged particles emitted from
the Sun from hitting the Earth. The sun also has a magnetic
field, however the Sun's magnetic field is much more com
plex than the Earth's. It is well known that the variation in the
Sun's magnetic field influences the structure of the magnetic
field surrounding the Earth [2], [6], [12]. An Interplanetary
Magnetic Field (1M F) is formed when the solar wind
expands the reach of the Sun's magnetic field, which can
extend to hit Earth's magnetic field. The 1M F can cause
energetic particles to enter into the Earth's magnetic field
which results in magnetospheric disturbances. Disruption of
the magnetosphere takes place when a transfer of energy
from the solar wind opposes the Earth's magnetic field.
A magnetospheric storm occurs if this transfer of energy
persists for several hours [12].

Geomagnetic storms can have many negative effects on
Earth resulting in widespread problems and damage to elec
tric power grids, gas pipelines, power generation facilities,
and Global Positioning System (GPS) disruption. Forecasting
the earth's magnetic field can provide vital information about
the intensity of future magnetospheric disturbances. At mid
latitudes, these magnetic storms are measured in relation to
the horizontal component of the Earth's magnetic field [12].
The mean of this horizontal component is used to form an
index known as the D st index. There have been various
studies that have shown a correlation between the value
of the D st index and the magnetic storm's intensity [8],
[13], where the more negative the Dst index the greater
the intensity of the magnetic storm. The physical interaction
between the 1M F and the magnetosphere takes place at
the magnetopause boundary where a detailed understanding
of this interaction is not yet fully understood. Previous re
searchers have built non-parametric predictive models based
on recurrent neural networks (RNNs) to model this interac
tion [18], [21].

hidden layer

inpuilir)xr

wh t weights to the output node

wih t' Wih t weights to the hidden nodes

Ch t previous states (context nodes)

U 1 t inputs and b bias

Fig. 1. the Elman recurrent neural network

Previous work in modeling the relationship
between 1M F and D st with RNNs have relied heavily
on first-order gradient based methods for parameter
estimation of the model [17], [21] which has resulted in
long training times, uncertain convergence, and possibly
vanishing gradients. In this paper we investigate solutions
to this problem through the use of the genetic algorithms
for RNN training [4]. The advantage of our approach is
a framework based on global search strategies resulting
in superior convergence and accurate forecasts. The
main results of the paper are as follows: 1) a stochastic
global search strategy for RNN parameter estimation for
D st forecasting, 2) improved forecast accuracy over
previously demonstrated results.

III. THE ELMAN RECURRENT NEURAL NETWORK

In this study, the recurrent architecture known as the
Elman network (RNN) [7] is chosen as previous studies have
found successful results with RNNs. Feed-forward networks
are not considered in this study due to poor performance
in modeling the recovery phase dynamics [9]. This is most
likely due to the limitation of the feed-forward architecture,
i.e. limited temporal memory, bounded by the dimension of
the input window.

The Elman network is essentially a feed forward multi
layer perceptron with a context layer. The context layer
copies the hidden layer activations and feeds it back in to
the hidden layer one time step later. This simple addition
allows for temporal processing due to the circular flow of
information.

Elman networks have been used in many applications for
processing time series data [1]. Various studies have found
that the Elman network is able to outperform the feed
forward network on time series forecasting tasks [10].

A system of difference equations can be used to compute
the hidden layer activation:

(1)

The above equation describes the operation of the k-th hidden
network node at time t. The activation function g(.,.) is a
nonlinear sigmoidal function of the input vector Ut and the
context vector St-1. The network output is computed via

where St is the vector of hidden activations

St = [8(1),8(2), ... , 8(k), ... ,8(H)]

and the context vector

_ [(1) (2) (k) (H)] _ Ct - c ,c , ... , c , ... ,C - St-1

(2)

(3)

(4)

is a vector of previous states, where H is the number of
hidden neurons.

Figure 1 provides a diagram of the Elman network with
bias term b(l) and a single network input Ut. To simplify
notation, the function Zt Ci) is introduced to represent the
bias, input, or context activation.

i=O
1 <;.i<;.L
L+1<;.i<;.L+H

(5)

In the hidden layer, each neuron computes its activation 8�k)

via the following equation:

L+H
s�k) = L Zt (j)w(k,j)

j=O
L L+H

= b(l)U/k,O) + L u/k,j)u�j) + L u/k,i)C�i-L)

j=l i=L+1
(6)

(7)

where the bias weight is w(k,O), the input weights are w(k,j)
for 1 <;. j <;. L, and the context weights are w(k,i) for 1 <;.i <;.
L+ H which connect the corresponding past i-th hidden node
output to the current state input. The activation functions 0"0
are sigmoidal nonlinearities

0" (a) = 1/ (1 + exp(-a)) (8)

which map the input a from R into a bounded interval n =
(0,1) of length Inl = 1 where ncR.

The network output is a combination of the sum of the
states multiplied by the corresponding weights along with
the bias. The sum is passed through the activation function
to yield the network output:

y, � a (o(O)v/O)+ � w�j).'ij)) � a (f (,, ») (9)

The output bias and corresponding weight is given by b(O)
and w(O) respectively. The hidden to output node weights
wij) connect the states of the network to the output node Yt.
The total number of weights in the model is m = H + 1 +
(H + I + 1) x H. The overall network model thus becomes
a highly nonlinear function h(Wt, "t) of the weights Wt and
inputs "t.

dt = h(Wt, "t) + Et
= Yt + Et (10)

where the noise Et is assumed to be independent zero
mean Gaussian with variance (J� which is unknown: Et rv

N(O, (J�) .

IV. EVOLUTIONARY TRAINING OF THE RNN

The D st forecasting literature has relied on gradient
descent optimization for estimation of model parameters
(weights) of the RNN. To compute the gradient of the cost
function with respect to each model parameter in neural
networks, backpropagation is commonly used [22], [23].
However, there are drawbacks to the gradient based ap
proach to training RNNs; vanishing gradients [3], [15], high
computational complexity [24], local minima [3], [5]. These
problems make gradient based training difficult and most
likely leads to poor out of sample forecasts. Global search
strategies such as genetic algorithms [14] are known to be
effective in addressing these limitations.

Genetic algorithms (GAs) are stochastic global optimiza
tion procedures inspired by the process of evolution found
in nature [11], [16]. Unlike gradient descent learning which
iteratively improves a single solution (i.e. one RNN weight
vector), the GA maintains population of individuals (i.e. a
set of RNN weight vectors) that effectively samples the error
surface at multiple points. The maintenance of a population
allows the GA to be less susceptible to getting trapped in a
local minima than gradient based methods.

As evolution works on populations of individuals, the
algorithm starts off by randomly generating a population of
chromosomes (RNNs). Each chromosome in the population
represents an RNN which can compute a solution to the fore
casting problem. Genetic algorithms can promote learning or
adaptation in RNNs through evolution of the RNN model pa
rameters (i.e. RNN weights). This is typically accomplished
by encoding the RNN model parameters into chromosome
like structures where each weight represents a gene on the
chromosome. The evolutionary process favors solutions that
carry higher relative fitness. In the genetic algorithm, it is the
chromosomes with higher fitness that are more likely to be
selected for reproduction, leading to the survival of organ
isms with fitter characteristics in the next generation. Here we
favor individuals which have lower error (higher fitness) on
the training set (in-sample data). Inspired by our understand
ing of evolution in nature, each genotype (weight vector) is
transformed into its phenotypical representation (the RNN)
and evaluated on the in-sample data to assess its fitness. The
individuals (genotypes) which perform better, i.e. have lower

error on the in-sample data are given a higher fitness than
those which do not perform as well. The higher fitness trans
lates into a higher probability to be selected for reproduction.
Roulette wheel selection is used to probabilistic ally choose
the parents that will create the offspring that survive in the
next generation. The offspring are created by applying the
standard genetic operators, crossover and mutation, on the
probabilistic ally selected parents. The evolutionary operators
of crossover and mutation are invoked on two selected
parents to produce new offspring. The crossover operator
takes two parents and produces two offspring by cutting
and concatenating chromosome segments from both parents.
After selecting a random position on the chromosome, both
parents chromosomes are cut and the front portion of the
first parent's chromosome is appended to the rear portion of
the second parents chromosome, and the front portion of the
second parent's chromosome is spliced to the rear portion
of the first parent's chromosome. The mutation operator can
then be applied to the offspring. During mutation, one of
the alleles on the chromosome is randomly changed to a
new value. The offspring are then placed into a population
representing the next generation. Performing these steps over
multiple generations tends to lead to successive populations
of increasing fitness, converging toward the globally optimal
solution.

The genetic algorithm for training RNNs can be summa
rized as follows:

1) Randomly generate the initial population of chromo
somes.

2) Compute the fitness of each member of the population
by running each RNN over the training data and mea
suring the error.

3) If at least one of the members of the population have
higher fitness (lower MSE) than the predetermined
requirements then stop. Otherwise, continue on to the
next step.

4) Copy the chromosome with the highest fitness into the
population of the next generation (elitism).

5) Continue to fill the population of the next generation
by applying the selection operator to select the parents
and then apply the genetic operators of crossover and
mutation.

6) Go to step 2

Through these steps, the genetic algorithm finds a set of
weights that minimizes the error between the training targets
and the network output.

A. Fitness Function

The fitness function is a fundamental component of the
GA, which is used to distinguish the useful solutions from
less useful solutions in a population. Each chromosome in the
population is evaluated by transforming each chromosome
into an RNN, i.e. each weight in the chromosome is placed
into its corresponding position in the RNN connectivity
graph. Then, the training set is fed into the RNN and the
one step ahead forecasts from the RNN are measured for

accuracy. The accuracy of each RNN is measured via the
MSE error function:

T

E(i) = � 2)d�i) - Yk)2 (11)
k=l

which takes the ditlerence between the output of the
'ith RNN d�i) at data point k and the corresponding target Yk.
The differences are squared, and the sum of these differences
is computed and averaged over the length T of the training
set.

B. Cross Over

Crossover is the mechanism by which genetic information
from two selected parents is recombined to from new otl
spring with potentially better fitness. It is thought that by
recombining genetic information from fit individuals, even
fitter offspring can be generated. Through crossover, the
search becomes focused toward regions of higher fitness.
Crossover is implemented by selecting two parent chromo
somes to form two children. A point on the chromosome 'i rv

U(l, n-l), is randomly drawn from the uniform distribution
which demarcates where the cutting and swapping of genetic
material will take place.

Given two selected chromosomes C 1 = (ci , ... , cr) and
C 2 = (c§ , ... , c�) , the genetic splicing takes place via:

(12)

resulting in two new individuals for the next generation.

C. Mutation

The mutation operator promotes diversity in the popula
tion, allowing for exploration of areas of the search space not
bounded by the population. Given a chromosome chosen for

. C
' { 1 It} . i h h mutatIOn, 1 = C1, ... , C1 '

a pomt C on t e c romosome
is chosen from the uniform distribution 'i rv U(l, n). Mutation
of the gene ci happens by adding by a Gaussian random
number T rv N(O, 0') to itself:

(13)

and then replacing the new gene c�ew with the old gene ci.

V. EXPERIMENTAL RESULTS

The performance on out of sample data of the proposed
algorithm and both Lundstedt's algorithm [19], [20] and
the Edda algorithm are provided in this section. The model
proposed by Lundstedt et. aI., uses an 1M F component (bz)
and solar wind parameters (n, v) as inputs to the RNN to
forecast the D st index. The Edda algorithm proposed by
Pallocchia et. al. [21], uses the same recurrent neural ar
chitecture as in Lundstedt (i.e. an RNN), and uses the
same gradient based optimization scheme as in Lundstedt.
The ditlerence between the Edda algorithm and Lundstedt's
algorithm is in the inputs to the RNN. The Edda algorithm
omits the solar wind measurements because they were found
to be unreliable during geomagnetic storms (solar wind data

50 .-.-------------------------------,

o

-50

f=" -100

E.
1ii o -150

-200

- Lu nd
-250 - Edda

-- RNN-Genetic
-300 1---_.--------,.--------,�:.......,;--��=-=;K=YO= tO=D=;S=t =�

o 20 40 60 80 100 120 140 160

Time (Hours)

Fig. 2. prediction of Dst from July 13th - July 19th 2000.

is collected through satellite based sensors that tend to mal
function during geomagnetic storms). The Edda algorithm
uses instead the IMF parameters b, by and bz which are
measured from the ground [21].

The inputs for Lundstedt's algorithm were transformed
in the following way: u(1)(t) = bz(t)/30, U(2)(t) =

n(t)/80 - 1, U(3)(t) = v(t)/400 - 1.5. The output of
Lundstedt's RNN was scaled by Dst(t + 1) = 1 50y(t) -
100 [20]. The inputs to the Edda algorithm were transformed
by the following formula: u(l)(t) = bz(t)/4 4.7, u(2)(t) =

(b(t))2/(4 8.2)2, u(3)(t) = (by(t))2/(34.4)2 , and the output
of the RNN was scaled by Dst(t + 1) = y(t) 38 7 [21].
The proposed genetic algorithm trained RNN uses the same
transformed inputs and scaled output as the Edda algorithm.

The training set was constructed from 8 storms from the
dates of 01-01-1998 to 07-12-2001. To speed up training,
the quiet periods were largely omitted. The evolutionary
algorithm was allowed to run until there was an average of
lOnT error per hour.

In the following subsections, the performance of the pro
posed model is compared to the Lund and Edda models on
a variety of storms including a severe storm and two double
storms.

A. Storm J, Severe Storm

Figure 2 illustrates the performance of the models on out
of sample data of a storm which occurred between the dates
of July 13th and July 19th 2000. The blue line represents
the Kyoto Dst index values. The black line represents the
one hour ahead forecasts from the Lund model, the red line
represents the one hour ahead forecasts from the Edda model,
and the green line represents the one hour ahead forecasts
from the proposed model.

The storm starts off with three large compressions before

dropping severely to -300 nT. The Dst index recovers
quickly at first but then at around -150 nT, the storm's
recovery begins to slow and takes nearly 80 hours for
the Dst index to reach normal levels.

All three models are unable to capture the initial three
compressions. However, once the D st index starts dropping
off, all three models are able to recognize that the storm
is beginning. The forecasts are nearly identical for the first
few hours of the initial phase (the drop in D st) of the
storm. The Lund algorithm is the first model to deviate from
the D st index. It begins to diverge when the D st index
passes -200 nT. After a few hours the Lund algorithm begins
to predict the storm is going into the recovery phase and starts
to forecast increasing Dst values. The Edda and the proposed
model (RNN-Genetic) continue to forecast accurate values of
the downward phase of the storm. The first few hours of the
recovery phase of the storm are forecasted accurately by both
the Edda and the proposed model. The divergence between
the two models begins at approximately 78 hours into the
storm, at a point when the recovery of the storm begins
to slow down. Both models begin to overstate the recovery
phase, with the Edda model producing less accurate values
than the proposed model. The forecast errors of each model
on the first storm are given in the second row of Table 1.
The proposed RNN-Genetic model significantly outperforms
the Lund model and has slightly lower forecast errors than
the Edda model.

B. Storm 2, Double Storm

Figure 3 presents the forecasts of the three models on a
double storm that occurred between August 9th and August
16th 2000. The storm starts off with an initial decrease in
the Dst index, but a recovery begins when the Dst index
hits around -100 nT. The recovery is short lived, and after
about 16 hours, the Dst index begins to decrease sharply
until reaching nearly -238 nT. Once hitting its minimum,
the storm begins an immediate recovery, with the Dst index
rapidly climbing to a value of nearly -60 nT before slowing.
From this point, it takes the storm an additional 80 hours
before a full recovery is made.

The Lund model severely underestimates the first and
second drop in the Dst index. The Lund model also over
estimates the recovery phase of the storm, between hours
60 and 120 in Figure 3. The Edda algorithm (red line)
accurately predicts the initial drops of the two storms. How
ever, it underestimates the recovery phase of both storms.
The proposed model, the RNN-Genetic (green line) has
similar behavior to the Edda model in modeling the drop
of both storms. The difference between the two models
becomes more apparent in the recovery phase of the storms.
The RNN-Genetic model provides a slightly more accurate
estimation of the recovery phase of both storms as shown
by the green line in Figure 3. The third row of Table 1
shows the performance of the three models in terms of
root mean squared error (RMSE). The proposed algorithm
(RNN -Genetic) outperforms the gradient based algorithm of
Lund in all phases of the storm resulting in significantly less

0

-20

40

-60

-80

f=' -100
.S-
Ui -120
0

-140

-160

-180 --Lund
- Edda

-200 -- RNN-Genetic
-220 -KyotoDst
-240

0 20 40 60 80 100 120 140 160

Time (Hours)

Fig. 3. prediction of Dst from August 9th - August 16th 2000.

0

-50

-100

f=' -150

.S-
Ui -200
0

-250

-300 --Lund
- Edda

-350 --RNN-Genetic
-KyotoDst

-400
0 20 40 60 80 100

Time (Hours)

Fig. 4. prediction of D st from March 30th - April 5th 2001.

errors. The proposed model also outperforms the Edda model
mainly during the recovery phase of the storms resulting in a
reduction in forecast errors over the Edda model. It may be
worth pointing out that the Lund model outperforms the Edda
model in this example, but the proposed model, although
similar in behavior to the Edda algorithm outperforms both
models on this storm.

C. Storm 3, Severe Double Storm

Figure 4 presents the final storm of the experimental
section which occurred between the dates of March 30th -
April 5th 200 l. Before the downward phase of the storm,

TABLE I

PERFORMANCE OF RNN MODELS ON OUT OF SAMPLE DATA

Type Lund RMSE Edda RMSE Genetic RMSE
Storm 1 52.90 20.78 17.45
Storm 2 21.72 22.31 13.37
Storm 3 56.21 21.28 15.91

there are two initial compressions that take place. The
second compression is followed immediately by a decrease in
the Dst index to a value of around -375 nT. The Dst index
then rebounds sharply to nearly -210 nT before shifting
directions back downwards to a second minimum of about
-280 nT. This minimum is followed by a characteristic
recovery phase, rapid in the beginning, but gradually slowing
down toward the end of the storm.

All models fail to capture the first compression, but the
Lund and Edda models have a very slight upward spike
representing the second compression. The proposed RNN
Genetic model fails to represent these compressions. All
three models accurately represent the initial moments of the
downward movement of the storm. However, the Lund model
begins the rebound in Dst far too early at a value near -200
nT. As the descent in D st progresses, the Edda model also
begins its rebound nearly 75 nT too early while the proposed
model continues its descent before rebounding just past -350
nT. The rebounds of both the Edda and the proposed model
are similar but the Edda model overshoots on the second dip
in the Dst. Figure 3 highlights how the genetic algorithm
reproduces a better representation of the target line of the
storm compared to both the Lund and Edda algorithms. In
the final row of Table 1, the performance of all models in
terms of RMSE are presented for the severe double storm.

VI. FUTURE WORK AND CONCLUDING REMARKS

This paper provides a method to improve forecast models
of the D st index through the use of 1M F data and
genetic algorithms for training RNN models of geomag
netic storms. It was found that the genetic algorithm can
reduce forecast errors of the Dst index in comparison to
similar models trained with gradient based methods [1],
[19]. It is thought that global stochastic search has led
to the reduction in D st forecast errors of the RNN as it
is less susceptible to local minima, and avoids vanishing
gradients common in the computation of RNN derivatives [3].
This paper offers an alternative to gradient based learning
for RNN based D st forecasting.

Although RNNs have become popular forecast models
of the Dst index [1], [19], [21], nearly all research has
utilized gradient based training algorithms for estimation
of RNN parameters. This paper looked into an alternative
method for estimating model parameters. The results have
shown that forecast errors can be reduced through evolu
tionary RNN training. However, evolution only worked on
the weights of the neural network, and not on the topology,
the inputs, the delays between inputs, etc. Future work will
look into whether optimized architectures can also lead to
improvements in forecasting the Dst index.

REFERENCES

[1] E. Amata, G. Pallocchia, G. Consolini, M. F. Marcucci, and 1. Bertello.
Comparison between three algorithms for dst predictions over the 2003-
2005 period. Journal of Atmospheric and Solar-Terrestrial Physics, 70,
496-502, 2008.

[2] W. T. Axford and C .0. Hines. A unifying theory of high-latitude
geophysical phenomena and geomagnetic storms. Can. J. Phys. 39,
1433-1464, 1961.

[3] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependen
cies with gradient descent is difficult. IEEE Transactions on Neural
Networks, 5(2), 157166, 1994.

[4] A. Blanco, M. Delgado, M.e. Pegalajar. A real-coded genetic algorithm
for training recurrent neural networks. Neural Networks. 14, 93-105,
2001.

[5] e. M. Bishop. Neural Networks for Pattern Recognition. Oxford Uni
versity Press, 1995

[6] J. W. Dungey. Interplanetary magnetic field and the auroral zones. Phys.
Rev. Lett. 26, 47-48, 2000.

[7] J. L. Elman. Finding Structure in Time. Cognitive Science, 14, 179-211,
1990.

[8] e. J. Farrugia, M. P. Freeman, L. F. Burlaga, R. P. Lepping, and
K. Takahashi. The earth's magnetosphere under continued forcing -
Substorm activity during the passage of an interplanetary magnetic
cloud. 1. Geophys. Res. 98, 7657-7671, 1993.

[9] H. Gleisner, H. Lundstedt, and P. Wintoft. Predicting Geomagnetic
Storms From Solar-Wind Data Using Time-Delay Neural Networks.
Ann. Geophys. 14, 679-686, 1996.

[10] R. Gencay, and T. Liu. Nonlinear modeling and prediction with feed
forward and recurrent networks. Physica D, 108(1),119-134, 1997.

[II] D. E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning Addison-Wesley Pub. Co. 1989.

[12] W. D. Gonzales, J. A. Joselyn, Y. Kamide, H. W. Kroehl, G. Rostoker,
B. T. Tsurutani, and Y. M. Vasyliunas. What is a geomagnetic storm?
J. Geophys. Res. 99, 5771-5792, 1994.

[13] J. T. Gosling, D. J. McComas, J. L. Phillips, S. J. Bame. Geomagnetic
activity associated with earth passage of interplanetary shock distur
bances and coronal mass ejections. J. Geophys. Res. 96, 7831-7839,
1991.

[14] J N. D. Gupta and R. S. Sexton. Comparing backpropagation with a
genetic algorithm for neural network training. Omega, 27(6),679-684,
1999

[15] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber. Gradient
flow in recurrent nets: the difficulty of learning long-term dependencies.
In S. C. Kremer and J. F. Kolen, editors, A Field Guide to Dynamical
Recurrent Neural Networks. IEEE Press, 2001.

[16] J. H. Holland. Adaptation in natural and artificial systems MIT Press
Cambridge, MA, USA, 1992.

[17] H. Lundstedt. Neural Networks and prediction of solar-terrestrial
effects. Planet. Space Sci. 40, 457-464, 1992.

[18] H. Lundstedt and P. Wintoft. Prediction of geomagnetic storms from
solar wind data with the use of a neural network. Ann Geophys. 12,
19-24, 1994.

[19] H. Lundstedt, H. Gleisner, and P. Wintoft. Operational forecasts of the
geomagnetic Dst index. Geophys. Res. Lett. 29, 34-1-34-4, 2002.

[20] Lund Space Weather Center, http://www.lund.irf.se/rwc/
dst/models/

[21] G. Pallocchia, E. Amata, G. Consolini, M. F. Marcucci and T. Bertello.
Geomagnetic Dst index forecast based on IMF data only. Ann Geophys.
24, 989-999, 2006.

[22] P. J. Werbos. Beyond Regression: New Tools for Prediction and
Analysis in the Behavioral Sciences. PhD thesis, Harvard University,
1974.

[23] P. J. Werbos, Backpropagation Through Time: What it does and how
to do it, Proceedings of the IEEE 78, 1550-1560, 1990

[24] R. J. Williams and D. Zipser. Gradient-based learning algorithms
for recurrent networks and their computational complexity. In Back
propagation: Theory, Architectures and Applications. Hillsdale, NJ:
Erlbaum, 1994

