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ABSTRACT 
Previous attempts at developing immersive versions of game 
engines have faced difficulties in achieving both overall high 
performance and preserving reusability of software developments. 
In this paper, we present a high-level VR middleware based on 
one of the most successful commercial game engines: the Unreal® 
Engine 3.0 (UE3). We describe a VR framework implemented as 
an extension to the Unreal® Development Kit (UDK) supporting 
CAVE™-like installations. Our approach relies on a distributed 
architecture reinforced by specific replication patterns to 
synchronize the user’s point of view and interactions within a 
multi-screen installation. Our performance benchmarks indicated 
that our immersive port does not affect the game engine 
performance, even with complex real-time applications, such as 
fast-paced multiplayer First Person Shooter (FPS) games or high-
resolution graphical environments with 2M+ polygons. A user 
study also demonstrated the capacity of our VR middleware to 
elicit high spatial presence while maintaining low cybersickness 
effects. With free distribution, we believe such a platform can 
support future entertainment and VR research.  

Categories and Subject Descriptors 
H.5.1 [Multimedia Information Systems]: Artificial, Augmented 
and Virtual Reality - Virtual Reality for Art and Entertainment  

General Terms 
Algorithms, Design, Performance. 

Keywords 
Immersive Display, Virtual Reality, Game Engine, Framework. 

1. INTRODUCTION AND RATIONALE 
Game engines have emerged as a unique platform providing 
increased interactivity and compelling graphics performance [10] 
[24] [28] [31]. This situation had led several researchers to 
explore the use of game engines to support high-end VR, in 
particular immersive displays such as CAVE™-like [6] systems. 
For instance, Paul Rajlich’s CAVE Quake II, developed at NCSA, 
is probably the first immersive implementation of a popular 
computer game. It has been followed by CAVE Quake III Arena, 
based on the open source Aftershock engine. Juarez et al. [19] 
have ported the CryEngine2 game engine to a CAVE™-like 

installation, through their CryVE system. However, they have 
reported average frame rates < 20 fps, which may not be sufficient 
to support a comfortable viewing and interaction experience. 
CAVEUT was originally developed at the University of Pittsburgh 
[15] and later extended to include stereoscopy [16], but its version 
of the Unreal® Engine is now out of date. BlenderCave [7] is the 
VR extension of the open-source Blender engine but its VR 
version demonstrated limited rendering performances, without 
support for dedicated I/O VR peripherals. MiddleVR [27] offers a 
VR port of the Unity Game Engine [37], but its visual 
performances do not reach that of the most advanced commercial 
game engines like the CryEngine [5] or the Unreal® Engine [38]. 
Performances achieved by game engines are the results of 
extremely complex and optimised architectures. One major 
challenge faced by this endeavor is the preservation of game 
engine performances and content synchronization within a multi-
screen stereoscopic displays, since game engine optimizations 
have not been developed with multi-screen displays in mind. 
Another important aspect of high-end multi-screen VR systems, 
not originally part of game engines, is the integration of a 
mechanism for the inclusion of tracker input and the configuration 
of individual screens. VR systems typically propose large field of 
view (multiple surrounding screens), accurate motion tracking 
(tracker devices) and depth perception (3D rendering and head 
motion parallax). One important technical requirement of a multi-
screen system is to preserve visualisation and interaction 
consistency in between screens while delivering a comfortable 
refresh rate and low end-to-end tracking latency. Multi-screen 
consistency mostly represents the preservation of the virtual 
object alignment when visualised over different focal planes (i.e. 
screens). This is especially important when the user moves an 
object across multiple screen borders via a virtual hand (such as a 
virtual weapon held by the user in a typical FPS game). 
Traditional VR frameworks implement asymmetric frustum, 
homography correction and accurate distributed object 
synchronization protocols to ensure the best visualisation 
coherence and interactivity over different screens. However, game 
engines typically do not include such features. Their complex 
architecture and implementation, as well as their proprietary 
source code and optimization, often make them very opaque to 
such transformation.  In this paper, we present CaveUDK as a 
high-level VR middleware for CAVE™-like platforms developed 
on top of a state-of-the-art game engine, Unreal® Development 
Kit (UDK) [38]. It constitutes the natural follow-up of CaveUT 
[16], while providing more advanced and generic UnrealScript 
VR Class framework and set of software tools for multi-screen 
visulisation, interaction, conversion, calibration and deployment 
(Figure 1). Here, we discuss its implementation, performances and 
reusability, where reusability refers to its extensible high-level 
class framework and the presence of conversion, calibration and 
deployment systems.  

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
VRST’12, December 10–12, 2012, Toronto, Ontario, Canada. 
Copyright 2012 ACM 978-1-4503-1469-5/12/12...$15.00. 
 

†Current Affiliation: Universität Würzburg, HCI, Germany 

137



 

 

 
Figure 1. The CaveUDK Framework (a layer of VR objects 
and tools in-between the VR hardware and the application). 

2. SYSTEM OVERVIEW 
2.1 Choice of Game Engine  
UDK is a free professional authoring toolset based on UE3, which 
is now adopted by a large development and research community. 
It has been installed on more than 1.4 million unique machines, 
and showcases numerous applications in training simulation, 
games, architecture and construction simulations [39]. Epic 
Games has allowed us to access the game engine’s C++ source 
code to gain necessary knowledge and efficiently integrate VR 
features at a low level. However, one key aspect of our approach 
was to maximize the flexibility and extensibility of the system by 
keeping a major part of the project open source via a DLL plug-in 
architecture (for tracker integration and screen calibration) and an 
open-source UnrealScript classes framework (for rapid 
development over existing or new Unreal®-based application). 
CaveUDK exposes the VR system features without requesting the 
acquisition and recompilation of the game engine source code. 

2.2  Target Hardware Platforms 
Our target platforms for CaveUDK are multi-screen, immersive 
display installations such as CAVE™. Our own CAVE™ 
platform is a four-screen cubic-shape structure of 3.0×3.0×2.25 
meters (Figure 2). Our PC cluster is composed of 5 image 
generators running Windows 7 Ultimate 64 bit, 2×Xeon E5606 
Processor (Quad Core, 2.13 GHz, 4MB Cache, 4.80 GT/s Intel®), 
12Gb DDR3 RAM 1333Mhz and 2.5GB GDDR5 NVIDIA 
Quadro 5000 with G-Sync. One of the image generators is used as 
the game server; while each of the four others are connected to a 
projector (Christie Digital Mirage S+6K SXGA+ DLP 3D) 
generating 1400×1050×100Hz. For 3D vision, the user wears 
stereoactive shutter glasses (NVIDIA Vision Pro Kit [29]), while 
stereo signals and rendering synchronisation are handled at 50 Hz 
by the NVIDIA cards and drivers). Real-time tracking is operated 
by an Intersense™ IS900 system [14] for both head and wand 
tracking, using a VRPN (Virtual Reality Peripheral Network [40]) 
server.  

3. FRAMEWORK AND FEATURES 
In order to integrate our middleware on top of the Unreal® Game 
engine, we modeled our architecture using a distributed approach, 
whereby each VR Client (game client) represents a different 
screen synchronised with the VR Server (game server) connected 
to a Tracker Server (Figure 2). Our VR framework, proposes a set 
of UnrealScript classes, called VR Objects, supporting consistent 
multi-screen visualisation (VR-Camera and VR-Head classes) and 
interactions (VR-Hand and VR-Avatar classes) in a multi-screen 
context.  These classes are internally connected to VR Trackers 
through a module, called VR Interface (C++ DLL) directly 
integrated to the game engine source code. They also implement a 
specific replication process to synchronize user’s point of view 
and interactions across all VR Clients (i.e. on all screens). We rely 
on a customized Master-Proxy object replication approach [25] 
which benefitted from the fast Unreal® network system to ensure 
position and states synchronicity.  

 
Figure 2. CaveUDK Architecture within a CAVE™-like Platform (2M+ triangles per screen on average). 
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Figure 3. VR Framework Integration and Replication. 

3.1 Visualization: VR Camera and VR Head 
Conveying depth and layout is a key element of a VR system.  In 
a multi–view projection system with a strong user centric 
paradigm such as a CAVE™, egocentric depth perception is 
simulated using binocular stereopsis and motion parallax. 
Meanwhile, creating egocentric depth perception in a multi-screen 
environment using a distributed architecture requires the 
implementation of a specific camera system.  Our VR framework 
(Figure 3) relies on a Virtual Camera Cluster [7] system to map 
the topology and geometry of a projection system to different 
game clients. The location of the Virtual Cameras running on 
each game client (i.e. VR-Camera Proxy) are synchronised with a 
virtual camera (i.e. VR-Camera Master) controlled by the user on 
the game server (Figure 3). The movements of the master camera 
are replicated on the game client, simulating the user’s motion on 
all screens. Meanwhile, each VR Client computes its own camera 
direction and viewing frustum using this origin, their respective 
display topology (i.e. Front, Left, Floor, Right screen) and head 
tracker position. Stereoscopic visualisation is achieved via 
specific graphics drivers synchronised with a 3D compatible 
projection system and glasses. We adopted the NVIDIA 3D vision 
system [30] which provides a generic and low cost solution, 
capable of adding 3D perspectives to numerous existing graphics 
applications. The implementation of motion parallax is also 
important, as it faithfully reproduces the illusion of depth by 
adding depth cues to artificial stereopsis [8] [17]. Motion parallax 
adapts each screen projection perspective to match the user’s point 
of view as he/she moves inside the CAVE™. Therefore, the 
virtual world camera position and perspective matrix need to be 
constantly adjusted for each screen to provide the correct 
viewpoint. Cameras should thus compute an asymmetric viewing 
frustum [1] as shown on Figure 4 for each screen and for each 
frame using exact location of the user’s head within the CAVE™ 
(head tracker information). A dynamic asymmetric frustum 
system allows the coverage of the entire visible volume in the VR 
scene, while preventing frustum intersections. In addition, an off-
axis projection matrix allows a comfortable 3D viewing

 
Figure 4. VR Client viewpoint using asymmetric frustum with 

head tracking (horizontal /vertical FOV in dashed lines). 

experience which notably reduce the window violation effect by 
covering a larger part of the screen for each eye [3] [33]. Our 
system supports an off axis perspective implementation as the one 
proposed by the OpenGL wrapper library, called VRGL (by 
Willem de Jonge). However, we implemented such an asymmetric 
projection matrix computation directly at the core of the game 
engine rendering system1. The VR-Head object is responsible for 
computing the asymmetric frustum and applying user head 
position offset to the VR-Camera. As the VR-Head object is 
replicated, each client has access to the exact location of the user’s 
head within the CAVE™, allowing them to perform their own 
frustum modifications. Motion parallax is then simulated by 
attaching the master VR-Camera to the head tracker with a 
combination of dynamic viewing frustum computed locally by 
each VR Client.  

Therefore, multi-screen depth perception is rendered through a 
combination of binocular stereopsis, handled by the NVIDIA 
drivers and graphics cards, and motion parallax, managed by our 
distributed camera system. Nevertheless, with a distributed 
approach, it is essential to accurately synchronise camera motions 
on the VR Clients to achieve a smooth and consistent multi-screen 
visualisation when navigating in the virtual environment. The 
mechanisms ensuring VR Client camera synchronisation are 
discussed in the Navigation-Interaction synchronisation section.  

3.2 Interaction: VR Avatar and VR Hand 
User interaction in CAVE™-like environments often resorts to the 
explicit visualization of a virtual hand supporting interaction-
navigation metaphors [33] [34].Our system supports user virtual 
representation through the VR-Hand and VR-Avatar objects. The 
VR-Hand represents the wand tracker, which is constantly 
converting the tracker physical position to its position transposed 
within the virtual world. It continuously receives tracker data from 
the VR Interface and triggers associated tracker events (button, 
analog, position and orientations updates). The VR-Hand 
facilitates high-level programming of navigation and interaction 
aspects by redefining the tracker events responses (Figure 5) and 
by using its positional data as the actual wand tracker position. It 

                                                                 
1 For confidentiality reasons, the integration of the dynamic 
frustum computations inside the game engine could not be 
discussed here.  
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thus enables developers to easily attach virtual objects to the wand 
tracker and program interaction while automatically ensuring 
synchronization across all screens. The synchronization of virtual 
hand position and orientation is explained in the following 
section.  

 
Figure 5. Example of Tracker Event Overriding in VR-Hand. 

The VR-Hand class also proposes a default mapping tracker event 
to keyboard/mouse inputs for fast conversion between desktop 
and immersive settings. The default navigation-interaction 
paradigm supported by our system is the “moving-by-pointing” 
navigation model [4] and the Virtual Hand/Ray-Casting [22] for 
interaction model. The user navigates in the virtual environment 
by pointing the wand tracker to a direction and moving the wand 
analogue stick. Consequently, the user’s avatar (VR-Avatar) on 
the game server is moving in the specified direction. The avatar 
motion is then applied to the master VR-Camera also running on 
the server. The movements of the master camera are automatically 
replicated to all game clients, simulating the user’s motion across 
all CAVE™ screens (Figure 3). To simulate user collision on 
clients, a collision cylinder is attached to the VR-Avatar proxies 
running on all individual clients. The VR-Avatar proxies are 
invisible to prevent them to appear in the CAVE™ and occlude 
the user’s vision. As previously mentioned, for motion parallax 
simulation, when the user is moving inside the CAVE™ (i.e. 
walking), the master VR-Avatar position is automatically adjusted 
to match the offset detected by the VR-Head. 

3.3 Synchronising Navigation-Interaction  
As observed in our previous versions of CaveUT [6], the native 
Unreal® replication system would generate perceptible latency/ 
jitter during motion, and object misalignment in-between screens. 
Latency and jitter have been proven to diminish performance and 
increase simulator sickness [32]. Therefore, in order to 
considerably reduce the translation and rotation latency/jitters and 
synchronize interaction, we developed our own Navigation-
Interaction replication systems i) removing native replicated 
variable aggregation and ii) forcing replication updates for certain 
data types. 

The Unreal® Engine provides a high level networking and 
replication system [36] which relies on a very flexible and rapid 
distributed object approach. It maximises the responsiveness and 
consistency of the shared virtual environment using an optimised 
UDP-based network protocol, in combination with lock-step 
prediction/correction algorithms (e.g. dead-reckoning), area of 
interest management (AOI) and data quantization (compression). 
The location/acceleration vectors and quaternions are quantized to 
single 32-bit variables before being replicated. Therefore, the data 
loss from the compression or inaccuracy from the prediction could 
lead to slight differences in terms of object spatial or animation 
state between clients. Such a lack of accuracy or delay is 
acceptable in multiplayer games, where users do not share the 
same screen. However in our multi-screen context, they are 
perceptible and so could generate multi-screen object 

misalignments, breaking multi-screen consistency and so 
compromising the immersive experience. One crucial point in 
avoiding such misalignment is to first provide accurate virtual 
camera synchronization for each screen. Subsequently, all virtual 
objects manipulated by the user should also support accurate and 
low latency replication. This is especially important when the user 
moves an object across multiple screen borders via the Virtual 
Hand (such as a virtual weapon held by the user in a FPS game). 
A slight difference in position from one screen to another could 
result in the user perceiving two or three different virtual objects 
instead of a single one.  

Therefore, our VR Object replication implementation takes 
advantage of the fast Unreal® network layer to synchronize client 
views, using a customized high-frequency network replication 
pattern for our VR-Camera, VR-Head and VR-Hand objects. The 
UnrealScript code samples (Figures 6-7-8) illustrate our 
replication pattern based on asynchronous unreliable remote 
function calls to prevent data quantization and reduce replication 
latency.  

 
Figure 6. VR-Object replication process via an asynchronous 

unreliable remote function call (in VR-Camera class). 

The replication process is handled by the VR-Camera object 
running on the server (Figure 6). For every frame (aka game tick), 
the VR-Camera evaluates if the position and rotation of the virtual 
camera, head and hand need to be updated on VR Clients (e.g. 
when the user moves the virtual hand using the wand). In case of 
discrepancies, the ServerReplicatePosition function is executed on 
the server, hence the keyword server. 

 
Figure 7.  Server function accessing game clients and 

triggering an instantaneous remote function call on clients 
(Note the uncompressed basic variables as parameter). 

This function accesses the list of player spectators (i.e. a VR 
Client registered as non-playing game client) connected to the 
server, and requests them to execute the ClientReceivePosition 
function using the master VR-Camera, VR-Head and VR-Hand 
positions as parameters (Figure 7). The ClientReceivePosition 
function is declared as a Client function, which will force the 
function to run on the game clients. Function replication in 
Unreal® is asynchronous, meaning that remote function calls are 
executed immediately rather than at the end of the game tick as 
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for replicated class variables. In addition, by passing floating 
values instead of vector and rotator variables we avoid the engine 
native data compression associated with such structures. 
Consequently, the ClientReceivePosition function is executed on 
the client as fast as possible, and maps its local copy of the VR-
Camera, VR-Head and VR-Hand to an exact match of the 
positions present on the server (Figure 8).  

 
Figure 8. Client function executed by a game client in order to 
update their own copy of the user’s camera, head and hand. 

It is important to understand that an unreliable function 
replication makes no guarantee about the ordering of the remote 
function call (similar to a UDP protocol approach). Within our 
context, where the user’s camera location and rotation need to be 
replicated at a high frequently to preserve multiscreen consistency 
and smooth navigation, using a reliable function would overload 
the network and cause latency. The reliable function guarantees 
delivery and ordering, but creates a delay due to 
acknowledgement waiting-time. Missing a replication update is 
not critical with a high refresh rate (50Hz) on a LAN. However, to 
avoid network congestion and to adapt to different hardware 
capacity, the replication frequency is adjustable from a 
configuration file (10 ms in our installation).This replication 
pattern is thus able to efficiently achieve smooth and accurate 
camera transition among multiple screens with no latency or jitter 
perceptible. It also permits the system to have a perfect multi-
screen motion synchronisation for virtual objects attached to the 
wand tracker, such as virtual hand or weapon mesh (as shown in 
Figure 12 during in our immersive game usability study).   
 

4. VR DEVELOPMENT WITH CAVEUDK 
CaveUDK provides a high-level framework of VR Object and 
software tools for rapid development of VR application on the top 
of UDK.  The following section describes its features and overall 
approach to hardware integration and software development.  

4.1 Hardware Integration and Calibration 
Because most multi-screen installations are custom-built, a VR 
Middleware should be able to adapt to different screens and 
tracker configurations. Our VRPN Client approach, directly 
integrated at the game engine level, enable to easily plug most of 
the VR devices available, while our simple screen configuration 
and homography correction supports different screen layout. The 
software calibration of the screen alignment is also essential to 
rapidly adapt the system to particular screen and projector 
configurations. The screen spatial configuration is easily handled 
via a text file specifying the coordinates of the screen corners in 
the tracker referential (Figure 9). However, to facilitate screen 
matching alignment, the system also includes a homography 
correction [2], providing a projective distortion matrix to perfectly 
match a particular screen projection geometry without manually 
adjusting the projector calibration settings and physical position 
for a perfect multi-screen alignment. 

Figure 9. Screen calibration on Workbench (homography).  

The tool delivered with the system is Homography Picker [12], 
and the homography matrix is also configured via a text file, read 
by the VR Interface. Figure 9 illustrates the porting of CaveUDK 
under Workbench-like screen configuration using an Optitrack 
V120: Trio tracker system [30]. Theoretically, CaveUDK supports 
up to 16-32 screens (Unreal Server maximum capacity), 
depending on application complexity. However, further evaluation 
should be carried to identify the actual screen limitation 
preserving application responsiveness and consistency.  

4.2 Software Development and Deployment 
4.2.1 Interaction Programming 
The reusability of the system mostly relies on the ease of 
extension of the VR framework classes and its associated tracker-
events and functions overriding. As previously demonstrated 
(Figure 5), custom interactions could be implemented by simply 
extending the VR-Hand or VR-Head classes and redefining their 
initial properties or tracker events. The redefinition of those 
classes is easily specified in the VR-Camera Class as shown on 
Figure 10. In addition, the inclusion of a high-level event system 
on the top of a high-level OO scripting language (i.e. 
UnrealScript) also constitutes a critical feature for the VR 
community in terms of rapid development and interaction 
programming. Developer can redefine their own VR object classes 
and apply them to a UDK environment using our Conversion 
System as discussed in the next section. 

 
Figure 10. Redefining Custom Classes within CaveUDK. 

4.2.2 Conversion and Integration: VR-Mutator  
Adapting the game engine ensures that the approach is generic 
and compatible with all other applications developed with the 
same game engine. An application or game developed with UDK 
should be portable with minimum effort to an immersive context 
using our approach. Consequently, we designed a non-intrusive 
conversion system making our system reusable for many existing 
VR applications without any modification. The integration of the 
VR system to an Unreal® application requires the simple addition 
of an Unreal® Mutator to the game engine launching process. The 
Unreal® Mutator system allows the modification of certain classes 
or events in an existing Unreal® game level without modifying the  
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Figure 11. Automatic Desktop (top)-Immersive (bottom) 

conversion using the VR-Mutator System. 

actual source code. Our specific CAVE™ Mutator automatically 
instantiates and activates our VR Objects within a UDK 
environment at run-time. This activation overrides the default 
camera system, activates the frustum modification and tracker 
event generation. Figure 11 illustrates the automatic porting of a 
compelling complex graphical environment (DirectX 11.0) [29] 
into an immersive version using our CAVE™ Mutator and its 
default control setting.   

4.2.3 Deployment: Cave Launcher 
Adopting a distributed approach results in the need to control 
remote game client and deploy new scripts, assets and maps to a 
group of machines before being able to connect to a game server. 
For security and anti-cheating issues, Unreal® maps and asset 
packages are digitally signed, forcing every game client to execute 
the exact same copy of the UnrealScript and environment as the 
one running on the game server. In addition, the screen calibration 
files for each client also need to be deployed with minimal effort. 
Consequently, we developed a Java-based deployment software 
tool named CaveLauncher. It automatically transfers asset 
packages and screen configuration files from the server to all 
clients at once, while enabling to remotely control the game 
clients execution. 

In sum, interactions programming, conversion and deployment of 
VR application is considerably simplified and transparent to UDK 
developer using CaveUDK framework and tools.  

5. EVALUATION 
5.1 System Performances 
Low latency is a critical feature of a VR system, as it is not only a 
negative factor in simulator sickness, but also considerably affects 
interaction [35].  Consequently, VR systems should support both 
high rendering refresh rates (>=30Hz) and high interaction 
responsiveness (<=150 ms for digital games [18]).  For 
environments of a complexity equivalent to current high-quality 
3D games rendering (200k to 2M triangles per frame), our 
immersive system reproduces similar rendering rates (≈ 50Hz) as 
normal 3D desktop configurations (Table 1). Our system only 
presents a lower frame rate (< 20 Hz) for complex layouts such as 

the last UE3 tech-demo, NightAndDay, displaying up to 6M 
triangles per frame. To measure responsiveness, we also 
performed video-based measurements of the end-to-end input 
latency using a frame-counting method as described in [9], which 
is better adapted to direct in-game measurements, but less 
accurate than the pendulum method discussed in [32]. As 
illustrated in Table 2  our results within a FPS game context (UT3 
game map over 600K and 2M polygons)  demonstrated an average 
response time of ≈ 82 ms for user interaction, which is the average 
delay between a tracker event (e.g. button pressed) and its 
associated virtual world events (e.g.  The weapon firing on all four 
CAVE™ screens). In term of Navigation latency, the movements 
inside the virtual environment triggered by the tracker analogue 
stick are slower on average (≈137 ms). The virtual hand motion 
transcribing the motion of the wand tracker inside the CAVE is 
also presenting a similar latency (≈126 ms), considering our 
Intersense IS900 tracker 4 ms latency. The difference in response 
time between firing and camera/virtual hand movement is due to 
the optimized native mechanism for firing events replication in 
UT3 (crucial element for an online multiplayer FPS), while our 
camera/virtual hand replication going through function replication 
has a lesser priority within the unreal network system. The 
difference in latency measurements between camera and virtual 
hand motion, despite relying on the same replication system, 
could be explained by the lack of accuracy of the frame counting 
method. Future work should include less error-prone measurement 
methods as discussed in [32]. However, our system 
responsiveness remains below the 150-200 ms threshold given by 
the current literature in digital games [18] and standard causal 
perception studies [26] [35]. Overall, the performance results of 
our system demonstrated the appropriateness of our VR 
framework implementation regarding rendering performance and 
end-to-end latency.  

Table 1: Comparison of desktop-immersive performances 

Map Triangles in 
Field of View 

3D Desktop 
FPS 

3D CAVE 
FPS 

DM- Deck ≈ 200-600K ≈ 50  ≈ 50 

Foliage ≈ 1500-2500K ≈ 50-45 ≈ 45-40 

NightAndDay ≈ 2500-6000K ≈  35-30 ≈  20-15 
 

Table 2: End-to-end Latency performances (Immersive) 

Interactions within UT3 
environments (3D/ 50Hz) 

Av. Frame at 220 
Hz (10 samples)   

Av. in 
ms 

Firing weapon (Button) 17.9       (σ ≈2.02) ≈82 

Move Camera (Analog) 30.1      (σ ≈ 4.43) ≈136 

Move Virtual Hand (wand) 27.7      (σ ≈ 5.36) ≈126 

5.2 User Experience 
Prolonged exposure to stereoscopic VR can lead to adverse effects 
such as cybersickness or visual discomfort, through a variety of 
mechanisms [11] [13] [21]. Therefore, we conducted 
measurements of Cybersickness in a user study comparing 
desktop and immersive version of the same FPS game: Unreal® 
Tournament 3 (UT3) as illustrated by Figure 12. Before and after 
each session, participants completed the Simulator Sickness 
Questionnaire (SSQ), developed by Kennedy et al [20]. At the end 
of each session, users were presented with the ITC-SOPI Presence 
questionnaires proposed by Lessiter et al. [23]. Amongst our 40 
participants, the different SSQ scores obtained for each of the 
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Figure 12. Immersive 3D gaming with FPS game 

(weapon attached to virtual hand – in blue). 

cybersickness components (Nausea, Oculomotor and 
Disorientation) are low (around 5-7%), giving an overall score of 
19.5% for an average exposure time of 10 min. It is important to 
note that the desktop game session revealed an average of 7.33 % 
SSQ score, creating only a 12% gap with the immersive version. 
All participants felt comfortable having completed the whole 
experiment. Meanwhile, the average of Negative Effects 
expressed in the ITC-SOPI questionnaire (mostly visual 
discomfort) increased by 23% in the immersive condition. As 
expected the immersive settings resulted in superior levels of 
Spatial Presence (+20%), Ecological Validity (+14%) and 
Engagement (+4%). A series of paired samples t-tests were 
conducted to explore whether these differences were statistically 
significant across the two experimental conditions (Desktop vs. 
CAVE™).  Results for all four subscales revealed that significantly 
higher presence related ratings were given for the CAVE™ setting 
compared with the desktop setting: Spatial Presence (t(38) = 9.51, 
p< 0.01), Engagement (t(38) = 3.59, p< 0.01), Ecological Validity 
(t(38) = 6.65, p< 0.01), while Negative Effects remained moderate 
(t(38) = 9.10, p< 0.01).  

In conclusion, the navigation-interaction replication pattern 
employed appears to provide a comfortable multi-screen 
visualization while having little impact on the performances (real-
time interaction response time and overall frame rate close to 
desktop performances).  CaveUDK is thus capable of supporting 
state-of-the-art real-world applications, providing real-time 
response, multi-screen consistency, and convincing 3D rendering. 
In addition, our preference questionnaire results also demonstrated 
a strong preference from users towards the immersive setting 
(72% of users expressed a clear preference), which is also 
confirmed by their self-reporting (“It made me feel part of the 
world, easy to get immersed”, “The immersion was so complete 
that towards the end of the second round, I forgot the walls were 
separated and just saw the environment around me”). 

6. CONCLUSIONS 
CaveUDK offers a high-level VR middleware for the rapid 
deployment of immersive applications developed with UDK. It 
brings the benefits of developing with game engines to the VR 
community: an unmatched performance/cost ratio for visual 
rendering, sophisticated built-in Physics engines and advanced 
mechanisms for environment and characters behavior. The 
reusability of our system resides in its extensible high-level class 
framework and the integration of an automatic conversion, 
calibration and deployment systems. Custom interactions can be 
implemented by simply extending our UnrealScript classes and 
redefining their initial properties or tracker events. Our 
performance benchmarks also indicated that our implementation 

does not significantly affect the baseline performance 
characteristics of the game engine, even with complex real-time 
applications such as fast-paced multiplayer FPS games and high-
resolution graphic environments (2M+ polygons). The user study 
demonstrated the capacity of the resulting system to elicit high 
spatial presence without introducing significant cyber sickness 
effects. The free, open source distribution of CaveUDK should 
open interesting perspectives for VR technology, especially 
concerning the usability and development of future immersive 
entertainment, serious games or virtual training applications.  

One important feature missing from the framework is the presence 
of a multi-screen compatible 3D head-up displays (HUD) system, 
which would allow a quick conversion of 2D Desktop HUD to 3D 
Immersive HUD and follow the user’s head position while 
adjusting  horizontal screen parallax to limit visual fatigue. This 
feature would be primarily needed for immersive gaming, which 
would constitute a natural application of our system. Further work 
also should investigate the factors of such visual fatigue, and 
explore possible solutions to reduce it such as “Dynamic Parallax 
Separation” with content-adaptive adjustment [13].    
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