
CaveUDK: A VR Game Engine Middleware
Jean-Luc Lugrin†,

Fred Charles, Marc Cavazza,
Teesside University,

 School of Computing,
 Middlesbrough, TS1 3BA
j-l.lugrin@tees.ac.uk

Marc Le Renard
ESIEA

38 rue des docteurs Calmette
et Guérin, Parc Universitaire,

Laval, 53000

marc.lerenard@esiea-ouest.fr

Jonathan Freeman,
Jane Lessiter

Psychology Department, Goldsmiths,
University of London,
London, SE14 6NW

j.freeman@gold.ac.uk

ABSTRACT
Previous attempts at developing immersive versions of game
engines have faced difficulties in achieving both overall high
performance and preserving reusability of software developments.
In this paper, we present a high-level VR middleware based on
one of the most successful commercial game engines: the Unreal®
Engine 3.0 (UE3). We describe a VR framework implemented as
an extension to the Unreal® Development Kit (UDK) supporting
CAVE™-like installations. Our approach relies on a distributed
architecture reinforced by specific replication patterns to
synchronize the user’s point of view and interactions within a
multi-screen installation. Our performance benchmarks indicated
that our immersive port does not affect the game engine
performance, even with complex real-time applications, such as
fast-paced multiplayer First Person Shooter (FPS) games or high-
resolution graphical environments with 2M+ polygons. A user
study also demonstrated the capacity of our VR middleware to
elicit high spatial presence while maintaining low cybersickness
effects. With free distribution, we believe such a platform can
support future entertainment and VR research.

Categories and Subject Descriptors
H.5.1 [Multimedia Information Systems]: Artificial, Augmented
and Virtual Reality - Virtual Reality for Art and Entertainment

General Terms
Algorithms, Design, Performance.

Keywords
Immersive Display, Virtual Reality, Game Engine, Framework.

1. INTRODUCTION AND RATIONALE
Game engines have emerged as a unique platform providing
increased interactivity and compelling graphics performance [10]
[24] [28] [31]. This situation had led several researchers to
explore the use of game engines to support high-end VR, in
particular immersive displays such as CAVE™-like [6] systems.
For instance, Paul Rajlich’s CAVE Quake II, developed at NCSA,
is probably the first immersive implementation of a popular
computer game. It has been followed by CAVE Quake III Arena,
based on the open source Aftershock engine. Juarez et al. [19]
have ported the CryEngine2 game engine to a CAVE™-like

installation, through their CryVE system. However, they have
reported average frame rates < 20 fps, which may not be sufficient
to support a comfortable viewing and interaction experience.
CAVEUT was originally developed at the University of Pittsburgh
[15] and later extended to include stereoscopy [16], but its version
of the Unreal® Engine is now out of date. BlenderCave [7] is the
VR extension of the open-source Blender engine but its VR
version demonstrated limited rendering performances, without
support for dedicated I/O VR peripherals. MiddleVR [27] offers a
VR port of the Unity Game Engine [37], but its visual
performances do not reach that of the most advanced commercial
game engines like the CryEngine [5] or the Unreal® Engine [38].
Performances achieved by game engines are the results of
extremely complex and optimised architectures. One major
challenge faced by this endeavor is the preservation of game
engine performances and content synchronization within a multi-
screen stereoscopic displays, since game engine optimizations
have not been developed with multi-screen displays in mind.
Another important aspect of high-end multi-screen VR systems,
not originally part of game engines, is the integration of a
mechanism for the inclusion of tracker input and the configuration
of individual screens. VR systems typically propose large field of
view (multiple surrounding screens), accurate motion tracking
(tracker devices) and depth perception (3D rendering and head
motion parallax). One important technical requirement of a multi-
screen system is to preserve visualisation and interaction
consistency in between screens while delivering a comfortable
refresh rate and low end-to-end tracking latency. Multi-screen
consistency mostly represents the preservation of the virtual
object alignment when visualised over different focal planes (i.e.
screens). This is especially important when the user moves an
object across multiple screen borders via a virtual hand (such as a
virtual weapon held by the user in a typical FPS game).
Traditional VR frameworks implement asymmetric frustum,
homography correction and accurate distributed object
synchronization protocols to ensure the best visualisation
coherence and interactivity over different screens. However, game
engines typically do not include such features. Their complex
architecture and implementation, as well as their proprietary
source code and optimization, often make them very opaque to
such transformation. In this paper, we present CaveUDK as a
high-level VR middleware for CAVE™-like platforms developed
on top of a state-of-the-art game engine, Unreal® Development
Kit (UDK) [38]. It constitutes the natural follow-up of CaveUT
[16], while providing more advanced and generic UnrealScript
VR Class framework and set of software tools for multi-screen
visulisation, interaction, conversion, calibration and deployment
(Figure 1). Here, we discuss its implementation, performances and
reusability, where reusability refers to its extensible high-level
class framework and the presence of conversion, calibration and
deployment systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
VRST’12, December 10–12, 2012, Toronto, Ontario, Canada.
Copyright 2012 ACM 978-1-4503-1469-5/12/12...$15.00.

†Current Affiliation: Universität Würzburg, HCI, Germany

137

Figure 1. The CaveUDK Framework (a layer of VR objects
and tools in-between the VR hardware and the application).

2. SYSTEM OVERVIEW
2.1 Choice of Game Engine
UDK is a free professional authoring toolset based on UE3, which
is now adopted by a large development and research community.
It has been installed on more than 1.4 million unique machines,
and showcases numerous applications in training simulation,
games, architecture and construction simulations [39]. Epic
Games has allowed us to access the game engine’s C++ source
code to gain necessary knowledge and efficiently integrate VR
features at a low level. However, one key aspect of our approach
was to maximize the flexibility and extensibility of the system by
keeping a major part of the project open source via a DLL plug-in
architecture (for tracker integration and screen calibration) and an
open-source UnrealScript classes framework (for rapid
development over existing or new Unreal®-based application).
CaveUDK exposes the VR system features without requesting the
acquisition and recompilation of the game engine source code.

2.2 Target Hardware Platforms
Our target platforms for CaveUDK are multi-screen, immersive
display installations such as CAVE™. Our own CAVE™
platform is a four-screen cubic-shape structure of 3.0×3.0×2.25
meters (Figure 2). Our PC cluster is composed of 5 image
generators running Windows 7 Ultimate 64 bit, 2×Xeon E5606
Processor (Quad Core, 2.13 GHz, 4MB Cache, 4.80 GT/s Intel®),
12Gb DDR3 RAM 1333Mhz and 2.5GB GDDR5 NVIDIA
Quadro 5000 with G-Sync. One of the image generators is used as
the game server; while each of the four others are connected to a
projector (Christie Digital Mirage S+6K SXGA+ DLP 3D)
generating 1400×1050×100Hz. For 3D vision, the user wears
stereoactive shutter glasses (NVIDIA Vision Pro Kit [29]), while
stereo signals and rendering synchronisation are handled at 50 Hz
by the NVIDIA cards and drivers). Real-time tracking is operated
by an Intersense™ IS900 system [14] for both head and wand
tracking, using a VRPN (Virtual Reality Peripheral Network [40])
server.

3. FRAMEWORK AND FEATURES
In order to integrate our middleware on top of the Unreal® Game
engine, we modeled our architecture using a distributed approach,
whereby each VR Client (game client) represents a different
screen synchronised with the VR Server (game server) connected
to a Tracker Server (Figure 2). Our VR framework, proposes a set
of UnrealScript classes, called VR Objects, supporting consistent
multi-screen visualisation (VR-Camera and VR-Head classes) and
interactions (VR-Hand and VR-Avatar classes) in a multi-screen
context. These classes are internally connected to VR Trackers
through a module, called VR Interface (C++ DLL) directly
integrated to the game engine source code. They also implement a
specific replication process to synchronize user’s point of view
and interactions across all VR Clients (i.e. on all screens). We rely
on a customized Master-Proxy object replication approach [25]
which benefitted from the fast Unreal® network system to ensure
position and states synchronicity.

Figure 2. CaveUDK Architecture within a CAVE™-like Platform (2M+ triangles per screen on average).

138

Figure 3. VR Framework Integration and Replication.

3.1 Visualization: VR Camera and VR Head
Conveying depth and layout is a key element of a VR system. In
a multi–view projection system with a strong user centric
paradigm such as a CAVE™, egocentric depth perception is
simulated using binocular stereopsis and motion parallax.
Meanwhile, creating egocentric depth perception in a multi-screen
environment using a distributed architecture requires the
implementation of a specific camera system. Our VR framework
(Figure 3) relies on a Virtual Camera Cluster [7] system to map
the topology and geometry of a projection system to different
game clients. The location of the Virtual Cameras running on
each game client (i.e. VR-Camera Proxy) are synchronised with a
virtual camera (i.e. VR-Camera Master) controlled by the user on
the game server (Figure 3). The movements of the master camera
are replicated on the game client, simulating the user’s motion on
all screens. Meanwhile, each VR Client computes its own camera
direction and viewing frustum using this origin, their respective
display topology (i.e. Front, Left, Floor, Right screen) and head
tracker position. Stereoscopic visualisation is achieved via
specific graphics drivers synchronised with a 3D compatible
projection system and glasses. We adopted the NVIDIA 3D vision
system [30] which provides a generic and low cost solution,
capable of adding 3D perspectives to numerous existing graphics
applications. The implementation of motion parallax is also
important, as it faithfully reproduces the illusion of depth by
adding depth cues to artificial stereopsis [8] [17]. Motion parallax
adapts each screen projection perspective to match the user’s point
of view as he/she moves inside the CAVE™. Therefore, the
virtual world camera position and perspective matrix need to be
constantly adjusted for each screen to provide the correct
viewpoint. Cameras should thus compute an asymmetric viewing
frustum [1] as shown on Figure 4 for each screen and for each
frame using exact location of the user’s head within the CAVE™
(head tracker information). A dynamic asymmetric frustum
system allows the coverage of the entire visible volume in the VR
scene, while preventing frustum intersections. In addition, an off-
axis projection matrix allows a comfortable 3D viewing

Figure 4. VR Client viewpoint using asymmetric frustum with

head tracking (horizontal /vertical FOV in dashed lines).

experience which notably reduce the window violation effect by
covering a larger part of the screen for each eye [3] [33]. Our
system supports an off axis perspective implementation as the one
proposed by the OpenGL wrapper library, called VRGL (by
Willem de Jonge). However, we implemented such an asymmetric
projection matrix computation directly at the core of the game
engine rendering system1. The VR-Head object is responsible for
computing the asymmetric frustum and applying user head
position offset to the VR-Camera. As the VR-Head object is
replicated, each client has access to the exact location of the user’s
head within the CAVE™, allowing them to perform their own
frustum modifications. Motion parallax is then simulated by
attaching the master VR-Camera to the head tracker with a
combination of dynamic viewing frustum computed locally by
each VR Client.

Therefore, multi-screen depth perception is rendered through a
combination of binocular stereopsis, handled by the NVIDIA
drivers and graphics cards, and motion parallax, managed by our
distributed camera system. Nevertheless, with a distributed
approach, it is essential to accurately synchronise camera motions
on the VR Clients to achieve a smooth and consistent multi-screen
visualisation when navigating in the virtual environment. The
mechanisms ensuring VR Client camera synchronisation are
discussed in the Navigation-Interaction synchronisation section.

3.2 Interaction: VR Avatar and VR Hand
User interaction in CAVE™-like environments often resorts to the
explicit visualization of a virtual hand supporting interaction-
navigation metaphors [33] [34].Our system supports user virtual
representation through the VR-Hand and VR-Avatar objects. The
VR-Hand represents the wand tracker, which is constantly
converting the tracker physical position to its position transposed
within the virtual world. It continuously receives tracker data from
the VR Interface and triggers associated tracker events (button,
analog, position and orientations updates). The VR-Hand
facilitates high-level programming of navigation and interaction
aspects by redefining the tracker events responses (Figure 5) and
by using its positional data as the actual wand tracker position. It

1 For confidentiality reasons, the integration of the dynamic
frustum computations inside the game engine could not be
discussed here.

139

thus enables developers to easily attach virtual objects to the wand
tracker and program interaction while automatically ensuring
synchronization across all screens. The synchronization of virtual
hand position and orientation is explained in the following
section.

Figure 5. Example of Tracker Event Overriding in VR-Hand.

The VR-Hand class also proposes a default mapping tracker event
to keyboard/mouse inputs for fast conversion between desktop
and immersive settings. The default navigation-interaction
paradigm supported by our system is the “moving-by-pointing”
navigation model [4] and the Virtual Hand/Ray-Casting [22] for
interaction model. The user navigates in the virtual environment
by pointing the wand tracker to a direction and moving the wand
analogue stick. Consequently, the user’s avatar (VR-Avatar) on
the game server is moving in the specified direction. The avatar
motion is then applied to the master VR-Camera also running on
the server. The movements of the master camera are automatically
replicated to all game clients, simulating the user’s motion across
all CAVE™ screens (Figure 3). To simulate user collision on
clients, a collision cylinder is attached to the VR-Avatar proxies
running on all individual clients. The VR-Avatar proxies are
invisible to prevent them to appear in the CAVE™ and occlude
the user’s vision. As previously mentioned, for motion parallax
simulation, when the user is moving inside the CAVE™ (i.e.
walking), the master VR-Avatar position is automatically adjusted
to match the offset detected by the VR-Head.

3.3 Synchronising Navigation-Interaction
As observed in our previous versions of CaveUT [6], the native
Unreal® replication system would generate perceptible latency/
jitter during motion, and object misalignment in-between screens.
Latency and jitter have been proven to diminish performance and
increase simulator sickness [32]. Therefore, in order to
considerably reduce the translation and rotation latency/jitters and
synchronize interaction, we developed our own Navigation-
Interaction replication systems i) removing native replicated
variable aggregation and ii) forcing replication updates for certain
data types.

The Unreal® Engine provides a high level networking and
replication system [36] which relies on a very flexible and rapid
distributed object approach. It maximises the responsiveness and
consistency of the shared virtual environment using an optimised
UDP-based network protocol, in combination with lock-step
prediction/correction algorithms (e.g. dead-reckoning), area of
interest management (AOI) and data quantization (compression).
The location/acceleration vectors and quaternions are quantized to
single 32-bit variables before being replicated. Therefore, the data
loss from the compression or inaccuracy from the prediction could
lead to slight differences in terms of object spatial or animation
state between clients. Such a lack of accuracy or delay is
acceptable in multiplayer games, where users do not share the
same screen. However in our multi-screen context, they are
perceptible and so could generate multi-screen object

misalignments, breaking multi-screen consistency and so
compromising the immersive experience. One crucial point in
avoiding such misalignment is to first provide accurate virtual
camera synchronization for each screen. Subsequently, all virtual
objects manipulated by the user should also support accurate and
low latency replication. This is especially important when the user
moves an object across multiple screen borders via the Virtual
Hand (such as a virtual weapon held by the user in a FPS game).
A slight difference in position from one screen to another could
result in the user perceiving two or three different virtual objects
instead of a single one.

Therefore, our VR Object replication implementation takes
advantage of the fast Unreal® network layer to synchronize client
views, using a customized high-frequency network replication
pattern for our VR-Camera, VR-Head and VR-Hand objects. The
UnrealScript code samples (Figures 6-7-8) illustrate our
replication pattern based on asynchronous unreliable remote
function calls to prevent data quantization and reduce replication
latency.

Figure 6. VR-Object replication process via an asynchronous

unreliable remote function call (in VR-Camera class).

The replication process is handled by the VR-Camera object
running on the server (Figure 6). For every frame (aka game tick),
the VR-Camera evaluates if the position and rotation of the virtual
camera, head and hand need to be updated on VR Clients (e.g.
when the user moves the virtual hand using the wand). In case of
discrepancies, the ServerReplicatePosition function is executed on
the server, hence the keyword server.

Figure 7. Server function accessing game clients and

triggering an instantaneous remote function call on clients
(Note the uncompressed basic variables as parameter).

This function accesses the list of player spectators (i.e. a VR
Client registered as non-playing game client) connected to the
server, and requests them to execute the ClientReceivePosition
function using the master VR-Camera, VR-Head and VR-Hand
positions as parameters (Figure 7). The ClientReceivePosition
function is declared as a Client function, which will force the
function to run on the game clients. Function replication in
Unreal® is asynchronous, meaning that remote function calls are
executed immediately rather than at the end of the game tick as

140

for replicated class variables. In addition, by passing floating
values instead of vector and rotator variables we avoid the engine
native data compression associated with such structures.
Consequently, the ClientReceivePosition function is executed on
the client as fast as possible, and maps its local copy of the VR-
Camera, VR-Head and VR-Hand to an exact match of the
positions present on the server (Figure 8).

Figure 8. Client function executed by a game client in order to
update their own copy of the user’s camera, head and hand.

It is important to understand that an unreliable function
replication makes no guarantee about the ordering of the remote
function call (similar to a UDP protocol approach). Within our
context, where the user’s camera location and rotation need to be
replicated at a high frequently to preserve multiscreen consistency
and smooth navigation, using a reliable function would overload
the network and cause latency. The reliable function guarantees
delivery and ordering, but creates a delay due to
acknowledgement waiting-time. Missing a replication update is
not critical with a high refresh rate (50Hz) on a LAN. However, to
avoid network congestion and to adapt to different hardware
capacity, the replication frequency is adjustable from a
configuration file (10 ms in our installation).This replication
pattern is thus able to efficiently achieve smooth and accurate
camera transition among multiple screens with no latency or jitter
perceptible. It also permits the system to have a perfect multi-
screen motion synchronisation for virtual objects attached to the
wand tracker, such as virtual hand or weapon mesh (as shown in
Figure 12 during in our immersive game usability study).

4. VR DEVELOPMENT WITH CAVEUDK
CaveUDK provides a high-level framework of VR Object and
software tools for rapid development of VR application on the top
of UDK. The following section describes its features and overall
approach to hardware integration and software development.

4.1 Hardware Integration and Calibration
Because most multi-screen installations are custom-built, a VR
Middleware should be able to adapt to different screens and
tracker configurations. Our VRPN Client approach, directly
integrated at the game engine level, enable to easily plug most of
the VR devices available, while our simple screen configuration
and homography correction supports different screen layout. The
software calibration of the screen alignment is also essential to
rapidly adapt the system to particular screen and projector
configurations. The screen spatial configuration is easily handled
via a text file specifying the coordinates of the screen corners in
the tracker referential (Figure 9). However, to facilitate screen
matching alignment, the system also includes a homography
correction [2], providing a projective distortion matrix to perfectly
match a particular screen projection geometry without manually
adjusting the projector calibration settings and physical position
for a perfect multi-screen alignment.

Figure 9. Screen calibration on Workbench (homography).

The tool delivered with the system is Homography Picker [12],
and the homography matrix is also configured via a text file, read
by the VR Interface. Figure 9 illustrates the porting of CaveUDK
under Workbench-like screen configuration using an Optitrack
V120: Trio tracker system [30]. Theoretically, CaveUDK supports
up to 16-32 screens (Unreal Server maximum capacity),
depending on application complexity. However, further evaluation
should be carried to identify the actual screen limitation
preserving application responsiveness and consistency.

4.2 Software Development and Deployment
4.2.1 Interaction Programming
The reusability of the system mostly relies on the ease of
extension of the VR framework classes and its associated tracker-
events and functions overriding. As previously demonstrated
(Figure 5), custom interactions could be implemented by simply
extending the VR-Hand or VR-Head classes and redefining their
initial properties or tracker events. The redefinition of those
classes is easily specified in the VR-Camera Class as shown on
Figure 10. In addition, the inclusion of a high-level event system
on the top of a high-level OO scripting language (i.e.
UnrealScript) also constitutes a critical feature for the VR
community in terms of rapid development and interaction
programming. Developer can redefine their own VR object classes
and apply them to a UDK environment using our Conversion
System as discussed in the next section.

Figure 10. Redefining Custom Classes within CaveUDK.

4.2.2 Conversion and Integration: VR-Mutator
Adapting the game engine ensures that the approach is generic
and compatible with all other applications developed with the
same game engine. An application or game developed with UDK
should be portable with minimum effort to an immersive context
using our approach. Consequently, we designed a non-intrusive
conversion system making our system reusable for many existing
VR applications without any modification. The integration of the
VR system to an Unreal® application requires the simple addition
of an Unreal® Mutator to the game engine launching process. The
Unreal® Mutator system allows the modification of certain classes
or events in an existing Unreal® game level without modifying the

141

Figure 11. Automatic Desktop (top)-Immersive (bottom)

conversion using the VR-Mutator System.

actual source code. Our specific CAVE™ Mutator automatically
instantiates and activates our VR Objects within a UDK
environment at run-time. This activation overrides the default
camera system, activates the frustum modification and tracker
event generation. Figure 11 illustrates the automatic porting of a
compelling complex graphical environment (DirectX 11.0) [29]
into an immersive version using our CAVE™ Mutator and its
default control setting.

4.2.3 Deployment: Cave Launcher
Adopting a distributed approach results in the need to control
remote game client and deploy new scripts, assets and maps to a
group of machines before being able to connect to a game server.
For security and anti-cheating issues, Unreal® maps and asset
packages are digitally signed, forcing every game client to execute
the exact same copy of the UnrealScript and environment as the
one running on the game server. In addition, the screen calibration
files for each client also need to be deployed with minimal effort.
Consequently, we developed a Java-based deployment software
tool named CaveLauncher. It automatically transfers asset
packages and screen configuration files from the server to all
clients at once, while enabling to remotely control the game
clients execution.

In sum, interactions programming, conversion and deployment of
VR application is considerably simplified and transparent to UDK
developer using CaveUDK framework and tools.

5. EVALUATION
5.1 System Performances
Low latency is a critical feature of a VR system, as it is not only a
negative factor in simulator sickness, but also considerably affects
interaction [35]. Consequently, VR systems should support both
high rendering refresh rates (>=30Hz) and high interaction
responsiveness (<=150 ms for digital games [18]). For
environments of a complexity equivalent to current high-quality
3D games rendering (200k to 2M triangles per frame), our
immersive system reproduces similar rendering rates (≈ 50Hz) as
normal 3D desktop configurations (Table 1). Our system only
presents a lower frame rate (< 20 Hz) for complex layouts such as

the last UE3 tech-demo, NightAndDay, displaying up to 6M
triangles per frame. To measure responsiveness, we also
performed video-based measurements of the end-to-end input
latency using a frame-counting method as described in [9], which
is better adapted to direct in-game measurements, but less
accurate than the pendulum method discussed in [32]. As
illustrated in Table 2 our results within a FPS game context (UT3
game map over 600K and 2M polygons) demonstrated an average
response time of ≈ 82 ms for user interaction, which is the average
delay between a tracker event (e.g. button pressed) and its
associated virtual world events (e.g. The weapon firing on all four
CAVE™ screens). In term of Navigation latency, the movements
inside the virtual environment triggered by the tracker analogue
stick are slower on average (≈137 ms). The virtual hand motion
transcribing the motion of the wand tracker inside the CAVE is
also presenting a similar latency (≈126 ms), considering our
Intersense IS900 tracker 4 ms latency. The difference in response
time between firing and camera/virtual hand movement is due to
the optimized native mechanism for firing events replication in
UT3 (crucial element for an online multiplayer FPS), while our
camera/virtual hand replication going through function replication
has a lesser priority within the unreal network system. The
difference in latency measurements between camera and virtual
hand motion, despite relying on the same replication system,
could be explained by the lack of accuracy of the frame counting
method. Future work should include less error-prone measurement
methods as discussed in [32]. However, our system
responsiveness remains below the 150-200 ms threshold given by
the current literature in digital games [18] and standard causal
perception studies [26] [35]. Overall, the performance results of
our system demonstrated the appropriateness of our VR
framework implementation regarding rendering performance and
end-to-end latency.

Table 1: Comparison of desktop-immersive performances

Map Triangles in
Field of View

3D Desktop
FPS

3D CAVE
FPS

DM- Deck ≈ 200-600K ≈ 50 ≈ 50

Foliage ≈ 1500-2500K ≈ 50-45 ≈ 45-40

NightAndDay ≈ 2500-6000K ≈ 35-30 ≈ 20-15

Table 2: End-to-end Latency performances (Immersive)

Interactions within UT3
environments (3D/ 50Hz)

Av. Frame at 220
Hz (10 samples)

Av. in
ms

Firing weapon (Button) 17.9 (σ ≈2.02) ≈82

Move Camera (Analog) 30.1 (σ ≈ 4.43) ≈136

Move Virtual Hand (wand) 27.7 (σ ≈ 5.36) ≈126

5.2 User Experience
Prolonged exposure to stereoscopic VR can lead to adverse effects
such as cybersickness or visual discomfort, through a variety of
mechanisms [11] [13] [21]. Therefore, we conducted
measurements of Cybersickness in a user study comparing
desktop and immersive version of the same FPS game: Unreal®
Tournament 3 (UT3) as illustrated by Figure 12. Before and after
each session, participants completed the Simulator Sickness
Questionnaire (SSQ), developed by Kennedy et al [20]. At the end
of each session, users were presented with the ITC-SOPI Presence
questionnaires proposed by Lessiter et al. [23]. Amongst our 40
participants, the different SSQ scores obtained for each of the

142

Figure 12. Immersive 3D gaming with FPS game

(weapon attached to virtual hand – in blue).

cybersickness components (Nausea, Oculomotor and
Disorientation) are low (around 5-7%), giving an overall score of
19.5% for an average exposure time of 10 min. It is important to
note that the desktop game session revealed an average of 7.33 %
SSQ score, creating only a 12% gap with the immersive version.
All participants felt comfortable having completed the whole
experiment. Meanwhile, the average of Negative Effects
expressed in the ITC-SOPI questionnaire (mostly visual
discomfort) increased by 23% in the immersive condition. As
expected the immersive settings resulted in superior levels of
Spatial Presence (+20%), Ecological Validity (+14%) and
Engagement (+4%). A series of paired samples t-tests were
conducted to explore whether these differences were statistically
significant across the two experimental conditions (Desktop vs.
CAVE™). Results for all four subscales revealed that significantly
higher presence related ratings were given for the CAVE™ setting
compared with the desktop setting: Spatial Presence (t(38) = 9.51,
p< 0.01), Engagement (t(38) = 3.59, p< 0.01), Ecological Validity
(t(38) = 6.65, p< 0.01), while Negative Effects remained moderate
(t(38) = 9.10, p< 0.01).

In conclusion, the navigation-interaction replication pattern
employed appears to provide a comfortable multi-screen
visualization while having little impact on the performances (real-
time interaction response time and overall frame rate close to
desktop performances). CaveUDK is thus capable of supporting
state-of-the-art real-world applications, providing real-time
response, multi-screen consistency, and convincing 3D rendering.
In addition, our preference questionnaire results also demonstrated
a strong preference from users towards the immersive setting
(72% of users expressed a clear preference), which is also
confirmed by their self-reporting (“It made me feel part of the
world, easy to get immersed”, “The immersion was so complete
that towards the end of the second round, I forgot the walls were
separated and just saw the environment around me”).

6. CONCLUSIONS
CaveUDK offers a high-level VR middleware for the rapid
deployment of immersive applications developed with UDK. It
brings the benefits of developing with game engines to the VR
community: an unmatched performance/cost ratio for visual
rendering, sophisticated built-in Physics engines and advanced
mechanisms for environment and characters behavior. The
reusability of our system resides in its extensible high-level class
framework and the integration of an automatic conversion,
calibration and deployment systems. Custom interactions can be
implemented by simply extending our UnrealScript classes and
redefining their initial properties or tracker events. Our
performance benchmarks also indicated that our implementation

does not significantly affect the baseline performance
characteristics of the game engine, even with complex real-time
applications such as fast-paced multiplayer FPS games and high-
resolution graphic environments (2M+ polygons). The user study
demonstrated the capacity of the resulting system to elicit high
spatial presence without introducing significant cyber sickness
effects. The free, open source distribution of CaveUDK should
open interesting perspectives for VR technology, especially
concerning the usability and development of future immersive
entertainment, serious games or virtual training applications.

One important feature missing from the framework is the presence
of a multi-screen compatible 3D head-up displays (HUD) system,
which would allow a quick conversion of 2D Desktop HUD to 3D
Immersive HUD and follow the user’s head position while
adjusting horizontal screen parallax to limit visual fatigue. This
feature would be primarily needed for immersive gaming, which
would constitute a natural application of our system. Further work
also should investigate the factors of such visual fatigue, and
explore possible solutions to reduce it such as “Dynamic Parallax
Separation” with content-adaptive adjustment [13].

7. ACKNOWLEDGEMENTS
Epic Games (Mark Rein) and Public VR (Jeff Jacobson) are
thanked for granted us access to the Unreal® engine source code.
Matthew Laverick provided the visuals of Figure 1. This work has
been funded (in part) by the European Commission through the
CEEDS project (FP7-ICT-258749).

8. REFERENCES
[1] Arthur, K. W. 3D Task performance using head-coupled

stereo displays. M.Sc. Thesis. University of British
Columbia, 1993.

[2] Bimber, O. and Raskar, R., 2005. Spatial Augmented Reality:
Merging Real and Virtual Worlds. AK Peters, CRC Press.

[3] Bourke, P., 1999. Calculating Stereo Pairs. URL:
http://local.wasp.uwa.edu.au/~pbourke/miscellaneous/stereog
raphics/stereorender/

[4] Bowman, D. A., Johnson, D. B. and Hodges, L. F., 1999.
Testbed evaluation of virtual environment interaction
techniques. In Proceedings of the ACM symposium on
Virtual reality software and technology (VRST '99). ACM,
New York, NY, USA, 26-33.

[5] CryENGINE®3. URL: http://mycryengine.com/

[6] Cruz-Neira, C., Sandin, D. J. and DeFanti, T. A., 1993.
Surround-screen projection-based virtual reality: the design
and implementation of the CAVE. In Proceedings of the 20th
annual conference on Computer graphics and interactive
techniques. (Anaheim, CA, USA). ACM, New York, NY,
USA, 135-142.

[7] Gascón, G., José M. Bayona, José Miguel Espadero, Miguel
A. Otaduy, 2011. BlenderCAVE: Easy VR Authoring for
Multi-Screen Displays. SIACG 2011: Ibero-American
Symposium in Computer Graphics .

[8] Hassaine, D., Nicolas S. Holliman, and Simon P.
Liversedge., 2010. Investigating the performance of path-
searching tasks in depth on multiview displays. ACM Trans.
Appl. Percept. 8, 1, Article 8 (November 2010), 18 pages.

[9] He, D., Liu, F., Pape, D., Dawe, G. and Sandin. D., 2000.
Video-Based Measurement of System Latency, International
Immersive Projection Technology Workshop, Ames IA,
USA.

143

[10] Herrlich, M., 2007. A Tool for Landscape Architecture
Based on Computer Game Technology. In Proceedings of the
17th International Conference on Artificial Reality and
Telexistence, IEEE, 264-268.

[11] Hoffman, D., Girshick, A., Akeley, K., and Banks, M., 2008.
Vergence–accommodation conflicts hinder visual
performance and cause visual fatigue. Journal of Vision,
volume 8(3).

[12] Homography Picker. URL:
https://sites.google.com/site/jeromeardouin/projects/homogra
phy-picker

[13] Hughes, J., 2011. Automatic Dynamic Stereoscopic 3D.
Game Engine Gems 2, Chapter 9, Eric Lengyel AK
Peters/CRC Press 2011, 135–149.

[14] Intersense IS 900. URL:
http://www.intersense.com/pages/20/14

[15] Jacobson, J., 2003. Using CaveUT to build immersive
displays with the unreal tournament engine and a PC cluster.
In Proceedings of the 2003 symposium on Interactive 3D
graphics. (Monterey, California, USA). ACM, New York,
NY, USA, 221-222.

[16] Jacobson, J., Le Renard, M., Lugrin, J-L. and Cavazza, M.,
2005. The CaveUT system: immersive entertainment based
on a game engine. In Proceedings of the 2005 ACM SIGCHI
International Conference on Advances in computer
entertainment technology (ACE '05). ACM, New York, NY,
USA, 184-187.

[17] Jones, J. A., Swan, J. E., Singh, G., Kolstad, E., and Ellis, S.
R., 2008. The effects of virtual reality, augmented reality,
and motion parallax on egocentric depth perception. In
Proceedings of the 5th symposium on Applied perception in
graphics and visualization (APGV '08). ACM, New York,
NY, USA, 9-14.

[18] Jörg, S., Normoyle, A. and Safonova, A., 2012. How
responsiveness affects players' perception in digital games. In
Proceedings of the ACM Symposium on Applied Perception
(SAP '12). ACM, New York, NY, USA, 33-38.

[19] Juarez, A., Schonenberg, W. and Bartneck, C., 2010.
Implementing a low-cost CAVE system using the
CryEngine2. Entertainment Computing, 1(3-4), (December
2010), 157–164.

[20] Kennedy, R., Lane, N., Berbaum, K. and Lilienthal, M.,
1993. Simulator Sickness Questionnaire: An Enhanced
Method for Quantifying Simulator Sickness. The
International Journal of Aviation Psychology, Vol. 3, Issue
3, 203-220.

[21] Lambooij, M., Fortuin, M., IJsselsteijn, W. A., &
Heynderickx, I., 2009. Measuring Visual Discomfort
associated with 3D displays. In Proceedings of SPIE, 7237,
San Jose, CA, USA.

[22] Lee, G. A., Kim, G. J. and Park, C., 2002. Modeling virtual
object behavior within virtual environment. In Proceedings
of the ACM Symposium on Virtual Reality Software and
Technology (VRST '02). ACM, New York, NY, 41-48.

[23] Lessiter, J., Freeman, J., Keogh, E., and Davidoff, J. A 2011.
Cross-Media Presence Questionnaire: The ITC-Sense of
Presence Inventory. Presence: Teleoperators and Virtual
Environments, 10:3, 282-297.

[24] Lewis, M., and Jacobson, J., 2002. Game Engines In
Scientific Research. Communications of the ACM, 45, 1,
2002, 27-31.

[25] Li, F.W.B., Lau, R.W.H., Kilis, D. and Li, L.W. F., 2011.
Game-on-demand: An online game engine based on
geometry streaming. ACM Trans. Multimedia Comput.
Commun. Appl. 7, 3, Article 19), 22 pages.

[26] Michotte, A. (1963). The perception of causality. New York:
Basic Books. Translated from the French by T. R. and
E.Miles

[27] MiddleVR. URL: http://www.imin.fr/middlevr-for-unity/

[28] Noh, S. S., Hong, S. D., & Park, J. W., 2006. Using a Game
Engine Technique to Produce 3D Entertainment Contents. In
Proceedings of the 16th international Conference on
Artificial Reality and Telexistence--Workshops (November
29 - December 01, 2006). IEEE Computer Society, 246-251.

[29] NVIDIA. URL: http://www.nvidia.com

[30] OptiTrack V120-Trio. URL:
http://www.naturalpoint.com/optitrack/products/v120-trio/

[31] Richie, A., Lindstrom, P. and Duggan, B., 2006. Using the
Source engine for Serious Games. In Proceedings of the 9th
International Conference on Computer Games: AI,
Animation, Mobile, Educational & Serious Games,
November 2006, Dublin Institute of Technology, Ireland.

[32] Steed, A., 2008. A simple method for estimating the latency
of interactive, real-time graphics simulations. In Proceedings
of the 2008 ACM Symposium on Virtual Reality Software and
Technology (VRST '08). NY, 123-129.

[33] Sherstyuk, A. and State, A., 2010. Dynamic eye convergence
for head-mounted displays. In Proceedings of the 17th ACM
Symposium on Virtual Reality Software and Technology
(VRST '10). ACM, New York,, USA, 43-46.

[34] Sutcliffe, A., Gault, B., Fernando, T. and Tan, K., 2006.
Investigating interaction in CAVE virtual environments.
ACM Trans. Comput.-Hum. Interact. 13, 2, 235-267.

[35] Teather, R.J., Pavlovych, A., Stuerzlinger, W. and
MacKenzie, I.S., 2009. Effects of tracking technology,
latency, and spatial jitter on object movement. In
Proceedings of the 2009 IEEE Symposium on 3D User
Interfaces (3DUI '09). Washington, DC, USA, 43-50.

[36] UDK Networking and Replication. URL:
http://udn.epicgames.com/Three/ReplicationHome.html

[37] Unity® Game Engine. URL: http://unity3d.com/

[38] Unreal® Development Kit (UDK). URL:
http://www.unrealengine.com/udk/

[39] Unreal® Engine Technology Awards. URL:
http://www.unrealengine.com/awards_accolades/

[40] Virtual Reality Peripheral Network (VRPN). URL:
http://www.cs.unc.edu/Research/vrpn/

144

