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1 Introduction

In recent years, multi-agent systems (MASs) have received increasing attention in the artificial
intelligence community. Research in multi-agent systems involves the investigation of autonomous,
rational and flexible behaviour of entities such as software programs or robots, and their interaction and
coordination in such diverse areas as robotics (Kitano et al., 1997), information retrieval and
management (Klusch, 1999), and simulation (Gilbert & Conte, 1995). When designing agent systems,
it is impossible to foresee all the potential situations an agent may encounter and specify an agent
behaviour optimally in advance. Agents therefore have to learn from, and adapt to, their environment,
especially in a multi-agent setting.

In this panel report, we combine several different perspectives, and review some key contributing
influences. The report begins with a discussion of just why learning is considered by many to be a
crucial characteristic of intelligent agent systems. In the following section, the features of different
learning algorithms, and their potential impact on multi-agent systems, are discussed, such as ways of
achieving multi-agent learning, the applicability of off-line learning methods and a discussion of the
pros and cons of reactive, logic-based and social learning methods.

2 The relationship between machine learning and MAS research

Even though machine learning (ML) has been studied extensively in the past, learning research has
been mostly independent of agent research and only recently has it received more attention in
connection with agents and multi-agent systems (Huhns & Weiss, 1998; Imam, 1996; Sen, 1996; Sen,
1998; Weiss & Sen, 1996; Weiss, 1997; Weiss, 1998; Weiss, 1999). This is in some ways surprising,
because the ability to learn and adapt is arguably one of the most important features of intelligence
(Russell & Norvig, 1995; Huhns & Singh, 1998).

Intelligence implies a certain degree of autonomy which in turn requires the ability to make
independent decisions. Thus agents have to be provided with the appropriate tools to make such
decisions. In most dynamic domains a designer cannot possibly foresee all situations that an agent
might encounter and therefore the agent needs the ability to adapt to new environments. This is
especially true for multi-agent systems, where in many cases global behaviour emerges rather than
being pre-defined. Consequently, learning is a crucial part of autonomy and thus should be a major
focus of agent and multi-agent research.

At one level, agents and multi-agent systems can be viewed as yet another application domain for
machine-learning systems, admittedly with its own challenges. Research taking this view is mostly
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reduced to applying existing (single-agent) learning algorithms more or less directly to (single) agents
in a MAS setting. Consequently, multi-agent learning is only seen as an emergent property. Even
though this could be interesting from a MAS point of view, it does not seem overly challenging for ML
research. Nevertheless, this is the direction most learning research for MAS has been following.

Alternatively, multi-agent systems pose the problem of distributed learning, i.e. many agents
learning separately to acquire a joint hypothesis. Existing learning algorithms have been developed for
single agents learning separate and independent hypotheses. Once the learning process is distributed
amongst several learning agents, such learning algorithms require extensive modification, or
completely new algorithms need to be developed. In distributed learning, agents need to cooperate and
communicate in order to learn effectively, and these issues are being investigated extensively by MAS
researchers, but to date they have received only little attention in the areas of learning.

Overall, collaboration between MAS and ML researchers would be highly beneficial for both
research areas, and certainly both communities can learn from each other. Fortunately, this seems to
be a view that is gaining popularity, judging by the growing interest of agent researchers in ML and
vice versa.

3 Aspects of agent learning

We are discuss three particular issues about multi-agent learning. We start off with some considerations
about what the term multi-agent learning means, and the difference between isolated or emergent
multi-agent learning and coordinated multi-agent learning. In the next two subsections, different
design options are presented, namely on-line vs. off line, reactive vs. logic-based learning algorithms,
and social learning algorithms inspired by animal learning.

3.1 Single-agent learning vs multi-agent learning

To date, most learning algorithms have been developed from a single-agent perspective. How
effectively can such algorithms be used in a multi-agent setting? According to Stone and Veloso
(1998), single-agent learning focuses on how one agent improves its individual skills, irrespective of
the domain in which it is embedded. That is, we cannot talk about multi-agent learning if what an agent
learns neither affects nor is affected by other neighbouring agents.

But can an agent situated in a multi-agent environment learn a hypothesis that does not affect or is
not affected by other agents? Even if an agent is not explicitly aware of other agents, it perceives them
as part of the environment and their behaviour will be part of the hypothesis learned. It does seem
possible to achieve coordinated group behaviour with pure single-agent learning (Sugawara & Lesser,
1993). Past research (Mundhe & Sen, 2000) has even shown that certain levels of awareness of other
agents can hurt performance.

On the other hand, single-agent learning might not always yield an optimal performance in multi-
agent environments and there may be domains where coordinated multi-agent learning is a more
natural metaphor and improves the effectiveness. Even though there is a difference in learning
strategies depending on the level of awareness of other agents and coordination, it is an open question
as to whether higher levels will automatically yield better performance.

3.2 On-line and off-line learning methods

On-line (or incremental) learning algorithms, such as backpropagating neural networks or (in some
way) reinforcement learning, have been used to compute new hypotheses incrementally as soon as a
new training example becomes available. On the other hand, off-line learning methods induce a
hypothesis from a set of training examples presented to the algorithm at a single time point. Obviously,
on-line algorithms are better suited for multi-agent systems where agents need to update their
knowledge constantly, but nevertheless it would be desirable to be able to use the large and powerful
class of off-line learning algorithms as well. In order to do this, an agent needs to collect a set of
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training examples and then decide at some time point to compute (or re-compute) a hypothesis. The
major problems to be solved are: which training examples to collect (and what format they should
have) and at which time point to execute the learning algorithm. The details of both decisions will
mostly depend on the application domain, but one general principle could be that off-line learning is
executed as soon as the current hypothesis turns out to be wrong in a number of cases above a given
threshold.

One example of the application to MAS of off-line learning methods, such as inductive logic
programming, is presented in the next subsection. The specific advantage here is the ability to
incorporate domain knowledge into the learning process.

4 Learning techniques

In this section we discuss the application of reactive, logic-based and social learning techniques to
MAS.

4.1 Logic-based learning and reactive learning

In reactive systems, the overall behaviour emerges from the interaction of the component behaviours.
Instead of designing protocols of coordination or providing agents with complex (BDI-like; see Rao
& Georgeff, 1992) recognition models, individuals are assumed to work on value-based information
(such as the distance they must keep from their neighbours) that produces social behaviour. Since
internal processing is avoided, these techniques allow the agent systems to respond to the changes in
their environment in a timely fashion. In Q-learning, reactive agents are given a description of the
current state and have to choose the next action so as to maximise a scalar reinforcement received after
each action. The task of the agent is to learn from indirect, delayed reward, to choose sequences of
actions that produce the greatest cumulative rewards.

As a side effect, agents are stripped of domain knowledge that is essential for making the right
decision in complex, dynamic scenarios. We cannot reduce an agent’s repertoire to situation-action
rules, nor simulate complex social interactions (markets, conflicts and the like) assuming that agents
do not have any domain knowledge of their environment. In order to display high-level behaviour,
agents need to abstract their experience into concepts. An agent who lives without this ability must
constantly invest precious energy in reacting to external stimuli. The entity that can conceptualise can
turn experience into knowledge and husband vital resources until they are required.

Even though they are mainly off-line techniques, knowledge-based learning techniques such as
explanation-based learning (EBL) and inductive logic programming (ILP) are suitable tools for
overcoming the limitations of reactive learning systems.

EBL (Carbonell et al., 1990) has been widely used in artificial intelligence to speed up the
performance of planners. Generally speaking, the agents are concerned with improving the efficiency
of the problem-solver rather than acquiring new knowledge. Obviously, problem-solvers, when
presented with the same problem repeatedly, should not solve it the same way and in the same amount
of time. On the contrary, it seems sensible to use general knowledge to analyse, or explain, each
problem-solving instance in order to optimise future performance. This learning is not merely a way
of making a program run faster, but a way of producing qualitative changes in the performance of a
problem-solving system. In short, EBL extracts general rules from single examples by generating an
explanation of why the system succeeded or failed, and generalising it. This provides a deductive
(rather than statistical) method for turning first-principles knowledge into useful, efficient, special-
purpose expertise. The learned rules enable the planner to make the right choice if a similar situation
arises during subsequent problem-solving.

In contrast to EBL methods, ILP (Muggleton & de Raedt, 1994) computes a hypothesis based on
external and initially unknown circumstances. Generally, relying exclusively on EBL-generated rules
can turn out to be impractical in real-world domains in which agents work with incomplete knowledge,
and thus ILP is an important addition to the system’s effectiveness. ILP methods compute an inductive
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hypothesis with the help of training data (positive and negative examples) and background knowledge.
Agents collect training examples based on executed actions and plans and their outcome. This, together
with the domain knowledge base and a target predicate (e.g. success or failure) forms the basis of the
inductive learning process which computes a hypothesis (i.e. a definition of the target predicate) that
can be used in subsequent planning. Target predicates are given by the system designer. Once a certain
number of training examples are classified incorrectly (i.e. the agent makes a certain number of
mistakes in its predictions of action outcomes) a new hypothesis will be computed based on the
extended training set.

Estlin (1998) has shown how EBL and ILP techniques can be combined in single-agent domains.
The combination of EBL and ILP to produce optimal results in dynamic, complex multi-agent systems
is currently being studied (Alonso & Kudenko, 1999; Kudenko & Alonso, 2000).

4.2 Social learning

In the remainder of the paper, influences from artificial intelligence and biology are discussed and
several potential learning mechanisms are outlined. These mechanisms can be seen as an alternative to
the logic-based approaches discussed above.

Consider a persistent multi-agent system, where new agents enter a world already populated with
experienced agents. In one sense, a new agent begins with a blank slate, as it has not yet had an
opportunity to learn about its environment (although it may of course be “hard-wired” with behaviours
that will probably turn out to be useful). However, a new agent may not need to find out everything
about the environment for itself; it may well be possible to benefit from the accumulated learning of
the population of more experienced agents.

This situation could characterize highly autonomous software agents operating on the internet, for
example. A new agent has not yet learned which search engine to try first, or which auction site offers
the best bargains. But the situation described also matches the learning problem facing a new-born
animal, especially an animal that belongs to a social species like our own. In biology, learning in multi-
agent systems has been studied for some time under the heading social learning. There may be lessons
in the biological literature for those who are interested in engineering effective multi-agent systems.

An important difference between artificial agents and animals is that in the former case we can often
enforce a completely cooperative scenario, where what is good for one agent is good for them all (i.e.
a common utility function). Although cooperation occurs in many animal species, the potential for
conflict is never absent, because of the competition between self-replicating genes at the heart of the
evolutionary process. Indeed, much of the recent work in evolutionary biology has been about conflicts
of interest between individuals and how those conflicts are resolved. So cooperative social learning
may be easier to maintain, and simpler to understand, in a population of software agents than it is in
a real species. However, conflicts of interest will be relevant if agents are operating in an environment
with potentially malicious competitors, as will be true on the internet, for example. Social learning in
such a case could involve the added complication of making sure that your “teacher” is not attempting
to deceive you in order to further its own interests.

Questions that biologists ask about social learning – or any other behaviour – include “why?” and
“how?” (Tinbergen, 1963). These are also referred to as questions of function and mechanism
respectively. Translated into engineering terms, these questions become: when would you want to
include social learning abilities in a multi-agent system, and how should you do it?

We will deal with the “why?” or “when?” question first. In recent years there has been some
progress towards understanding the adaptive value of social learning. Models of cultural transmission
(Cavalli-Sforza & Feldman, 1981; Boyd & Richerson, 1985), within-generation transmission (Laland
et al., 1993; 1996), and what economists call herding behaviour (Banerjee, 1992; Bikhchandani et al.,
1998) help to delineate the conditions under which it will be advantageous for individuals to learn from
others rather than finding things out for themselves. Some of the conclusions are rather
straightforward; for example, social learning is more likely to evolve when the costs of individual,
trial-and-error learning are high. So, in situations where a mistake by a naive animal could mean death,
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perhaps through eating a poisonous plant or failing to run from a predator, we are more likely to find
young animals learning from the behaviour of others. The equivalent for a software agent might be a
situation where mistakes are financially costly for the agent’s owner.

A more interesting finding is that social learning will be selected when the rates of change in the
environment, considered either spatially or temporally, are at intermediate levels (Laland et al., 1996).
The logic is as follows: in an environment that changes very slowly, hard-wired strategies (i.e.
genetically transmitted information) will enable the animal to respond appropriately. If the
environment changes very quickly, the animal must learn for itself based on local conditions – social
learning will be inadequate because the naive animal would be trying to learn from another whose
experience of the world was no longer relevant. Thus, in deciding whether or not to build a capacity
for social learning into a group of software agents, we should first examine the speed at which their
environment changes.

4.2.1 Mechanisms for social learning
Turning to the question of mechanism: there are many ways in which one agent might learn from the
behaviour of another. In the social learning literature, there has long been a focus on imitation (Galef,
1988), i.e. the goal-directed copying of another’s behaviour. However, as Tomasello (1996) points out,
true imitation is a complex process that seems to involve not only perceiving and reproducing the
bodily movements of another, but understanding the changes in the environment caused by the other’s
behaviour, and finally being able to grasp the “intentional relations” between these, i.e. knowing how
and why the behaviour is supposed to bring about the goal. Much of the work on imitation has been
short on specifics about the underlying mechanisms.

We will instead consider a range of simpler mechanisms that could easily be implemented in a
robotic or software agent. It has long been recognised within fields like artificial life that complex
global phenomena can arise from simple local rules, and this is precisely what is happening in many
social learning contexts: individuals follow a simple rule (e.g. “stay close to your mother”) and, in
combination with some form of learning, this gives rise to an apparently sophisticated social learning
system at the group level. From the point of view of building learning abilities into artificial agents,
simple mechanisms have obvious advantages in terms of robustness and design cost.

Contagious behaviour is exemplified by a rule such as “if others are fleeing, flee also”. The idea is
that the stimuli produced by the performance of a particular behaviour serve as triggers for others to
behave in the same way. For instance, consider an animal that is “wired up” such that the characteristic
sound of a conspecific moving rapidly causes it to do likewise. In a group of these animals, any
stimulus that causes one of them to flee will lead to a chain reaction of rapid movements. Note that
this does not involve real learning, and is merely a reactive system, but could nevertheless produce
adaptive social behaviour. Possible examples of contagious behaviour include flight responses,
movement in flocks or schools and chorusing by birds and dogs (Galef, 1988). Laughing and yawning
are excellent examples of contagious behaviour in humans (Provine, 1996).

Stimulus enhancement (also called local enhancement) is what happens when animals obey a rule
like “follow someone older than you, and then learn from whatever happens”. For example, if you
follow your parents everywhere, and your parents sometimes eat chocolate, we do not need to postulate
a capacity for genuine imitation to explain the fact that you develop a liking for chocolate. Perhaps you
sample chocolate pieces dropped by your parents; you then learn that chocolate-eating is good. A
simple behavioural tendency – in this case, following a conspecific – combines with the capacity for
learning and results in the potential transmission of acquired behaviours. Aisner and Terkel (1992)
have shown that stimulus enhancement accounts for the acquisition of a novel feeding behaviour in
black rats.

Observational learning. If we add slightly more sophisticated learning abilities to stimulus
enhancement, we get observational learning. The algorithm involved is approximately “pay attention
to what others are doing or experiencing, and if the results for them appear to be good or bad then learn
from this”. Mineka and Cook’s work (1988) on fear acquisition in monkeys illustrates the idea: the
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authors took naive, lab-raised rhesus monkeys and allowed them to observe an experienced conspecific
reacting fearfully to the presence of a snake. The observers, previously indifferent to snakes, rapidly
acquired a persistent fear of them. It is easy to see that in the wild, this sort of learning could result
in the transmission of acquired fears. All that needs to be assumed is that the monkeys have evolved
both an innate ability to recognize the cues associated with fear on the part of a conspecific (such as
grimacing and retreating), and the tendency to learn to fear a co-occurrent stimulus (i.e. the snake).

Observational learning can also exist in a simpler form; explicit evaluation of the conspecific’s
experience as good or bad may be omitted. For example, Norway rats will develop a marked preference
for a novel food that they smell on the breath of a conspecific (Galef, 1996). We might say that the first
rat, the observer, learns that the new food is good because it observes positive consequences for the
second rat, the demonstrator. That is, the observer notes that the demonstrator is still alive to tell the
tale after eating a new and potentially toxic substance. It turns out, however, that the rats are not
sensitive to the consequences of eating poisonous foods: they do not learn that a food is bad if the
demonstrator has become ill after eating it; in fact they develop a preference as usual. So the rats’
heuristic is simply “pay attention to what others are eating and do likewise”. Noble, Todd and Tuci (in
press) simulated this phenomenon, and showed that given certain assumptions about the rats’
environment (e.g. the lethality of poison and the behaviour of sick animals), their failure to evaluate
the demonstrator’s health is not a mistake, but is actually an adaptive strategy.

Matched-dependent behaviour. Species such as rats and pigeons can readily be trained to
discriminate, e.g. to press one bar when a red light is on and to press another for a green light. Miller
and Dollard (1941) showed that this sort of learning was equally possible when the behaviour of
another animal served as the discriminative stimulus; they trained rats to follow a leader left or right
at a maze junction. Thus simple reinforcement learning can result in social learning if the
contingencies are right. There is no implication that the follower understands the leader’s intentions,
nor even that the follower is aware of the match between the leader’s behaviour and its own.

Along similar lines, Skinner (1953) suggested that a wild pigeon could learn through trial and error
that scratching in a field was likely to be rewarding (i.e. likely to result in ingesting food) if other
pigeons could be seen scratching there. In fact the pigeon need not even observe others feeding;
learning a correspondence between hidden food and the evidence of feeding, such as scratch marks,
would amount to the same thing. The general point is that contagious behaviour may sometimes be
learned.

Cross-modal matching. Vocal mimicry by birds is often held to be a special case of social learning:
because the original stimulus and the animal’s response are in the same sensory modality, a relatively
simple pattern-matching mechanism could account for the phenomenon. In contrast, copying the
movements of another animal requires cross-modal matching; the observer must be able to translate the
visual input associated with another’s movements into appropriate motor outputs. Consider that there
is no trivial link between the sight of watching someone else scratch their nose, and the experience of
scratching your own nose.

None of the simple mechanisms discussed so far requires an ability to perform cross-modal
matching. Even though processes like contagious behaviour or learned copying could mean that the
sight of one animal doing X was a sufficient stimulus for another animal to do X, there is no suggestion
of a systematic ability to copy movements. However, imagine an animal that was able to identify the
movements of others and to map them to movements of its own muscles. If such an ability was
combined with observational learning, we would get the behavioural rule “if someone else moves their
head (or forelimb or tail and so on) thus or so, make the same movement yourself”. As with
observational learning, the rule might be conditional on positive outcomes for the observed animal.
Work on “mirror neurons” in monkeys (Gallese & Goldman, 1998) and humans (Iacoboni et al., 1999)
is highly suggestive that, at least in primates, direct mappings may exist between movements seen and
movements performed. Meltzoff’s findings (1996) on the imitative powers of very young infants also
point to an innate ability to perform cross-modal matching in humans.
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5 Conclusion

Learning ability is a crucial feature of intelligent agents, especially when faced with a multi-agent
environment. We have presented a few of the issues involved in applying ML algorithms to MAS. We
believe that there is still a lot of work to be done in the merging of the two disciplines.

Moreover, the question of using complex cognitive agents versus simple reactive ones is still a
matter of debate. We have presented two major approaches representing both sides. Logic-based agents
have the advantage of being able to naturally incorporate domain knowledge in the learning process,
while artificial life approaches can be based on evidence from biology (e.g. a nest of rats, a flock of
birds or a troop of monkeys), and much can already be achieved with such simple mechanisms.
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