
In Agents Breaking Away, MAAMAW’96, W. Van de Velde and J. Perram (eds.), Lecture Notes in Artificial Intelligence,
1038, 72-85, Springer-Verlag, Heidelberg, 1996

Formalising the Contract Net as a
Goal-Directed System

Mark d'Inverno1 and Michael Luck2

1 School of Computer Science, University of Westminster, London, W1M 8JS, UK.
Email: dinverm@westminster.ac.uk

2 Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK.
Email: mikeluck@dcs.warwick.ac.uk

Abstract. In response to the problems that have arisen regarding the
terminology and concepts of agent-oriented systems, previous work has
described a formal framework for understanding agency and autonomy.
In this paper we outline the framework and re�ne it by adding further
levels of detail to develop a formal model of the Contract Net Protocol.
The model serves to make precise both the operations of nodes in the
contract net, and the state of the net at various points during the proto-
col. In particular, the nature of the dependencies between the nodes in
the net is explicated. Finally, we generalise the relationships that can be
found in the contract net which are brought out by the formalisation, and
introduce more general concepts such as cooperation and engagement.

1 Introduction

There are many threads of research in Distributed Arti�cial Intelligence but,
to a greater or lesser extent, they can be grouped under the banner either of
experimental work, or of formal, theoretical work. Recently, however, some e�orts
have been made to provide a greater harmony between these two camps, and to
integrate the complementary aspects (e.g. [19]). The current work is one such
e�ort. Previously, we have developed a principled theory of agency and autonomy
through the provision of a formal framework which de�nes and characterises
these concepts, and speci�es the relationship between them [9]. In this paper,
we re�ne that framework so that it may be applied to the Contract Net Protocol
which is very �rmly situated in the experimental camp. In so doing, we seek to
provide a bridge between the formality on the one hand and the practical work
on the other.

The current work uses the Z speci�cation language [15] which is increasingly
being used for specifying frameworks and systems in AI (e.g. [6, 11]). Z pro-
vides the modularity, abstraction and expressiveness that allows a structured
account of a computer system and its associated operations to be given at dif-
ferent levels of detail, with system complexity being added at successively lower
levels. In addition, Z schemas are particularly suitable in squaring the demands
of formal modelling with the need for implementation, by providing clear and
unambiguous de�nitions of state and operations on state which provide a ba-
sis for program development. These qualities satisfy our needs for preciseness

through formality but do not detract from our desire to remain connected to
issues of implementation.

The paper begins with a brief review of the agent hierarchy framework spec-
i�ed previously. The next section introduces the Contract Net Protocol, and
extends the formal speci�cation of the framework to cover the components of,
and relationships within, the Contract Net. Then we examine these relationships
to provide more general de�nitions of cooperation and engagement, and �nally
we very briey review related work.

2 The Agent Hierarchy

In this section, we briey review the agent hierarchy framework for agency and
autonomy. Our treatment will be sketchy and will lack many examples due to
space constraints. For full details, the reader is referred to [9]. In short, we
propose a three-tiered hierarchy of entities comprising objects, agents and au-

tonomous agents. The basic idea underlying this hierarchy is that all known
entities are objects. Of this set of objects, some are agents, and of these agents,
some are autonomous agents. Below, we de�ne what is required for each of the
entities in the hierarchy. First we must de�ne some primitives.

An action is a discrete event which changes the state of the environment. An
attribute is a perceivable feature. It is the only characteristic of the world which
is manifest.

[Action;Attribute]

A goal is a state of a�airs to be achieved in the environment. It is just a set
of attributes that describe a state of a�airs in the world:

Goal == �Attribute

A motivation is any desire or preference that can lead to the generation and
adoption of goals and which a�ects the outcome of the reasoning or behavioural
task intended to satisfy those goals. (This draws on the de�nition used by Kunda
[8].)

[Motivation]

Now we can provide a template for all the entities in the world and use it to
construct formal de�nitions and speci�cations of agency and autonomy.

An entity is something that comprises a set of attributes, a set of actions, a
set of goals and a set of motivations. This is de�ned in Z using the state schema
below that has a declarative part which contains four variables and their types.
First, attributes is the set of features of the entity. Second, capableof is the set
of actions of the entity, and is sometimes referred to as the competence of the
entity. Next, goals and motivations are the sets of goals and motivations of the
entity respectively.

Entity

attributes : �Attribute
capableof : �Action
goals : �Goal
motivations : �Motivation

The type of any schema can be considered as the cartesian product of the
types of each of its variables, without any notion of order, but constrained by
predicates.

An object is an entity with non-empty sets of actions and attributes, and no
further de�ning characteristics. The Object schema below has a declarative part
that simply includes the previously de�ned template schema, Entity . In addition,
it has a predicate part which relates and constrains those variables. This speci�es
that an object must have non-empty sets of attributes and actions. Objects are
therefore de�ned by their ability in terms of their actions, and their con�guration
in terms of their attributes. The con�guration of an object includes references
to the body of the object and its position, similar to the notion of Goodwin [6].

Object

Entity

attributes 6= f g
capableof 6= f g

Agents are just objects with certain dispositions. An object is an agent if it
serves a useful purpose either to a di�erent agent, or to itself, in which case the
agent is autonomous. Speci�cally, an agent is something that `adopts' or satis�es
a goal or set of goals (often of another). Thus if I want a robot to make me a
cup of co�ee, then the robot is my agent for making co�ee since it has adopted
my goal to make co�ee. An agent is thus de�ned in relation to its goals, and is
an instantiation of an object together with an associated goal or set of goals.

Agent

Object

goals 6= f g

An agent has or is ascribed a set of goals which it retains over any instanti-
ation. One object may give rise to di�erent instantiations of agents; an agent is
instantiated from an object in response to another agent. Agency is transient,
and an object which becomes an agent at some time may subsequently revert to
being an object.

In order to ground this goal adoption, there must be some agents which
can generate their own goals. These are autonomous agents since they are not
dependent on the goals of others. Instead of adopting goals from other agents, au-
tonomous agents possess goals which they generate themselves from motivations

which are higher-level non-derivative internal components characterising the na-
ture of the agent. However, since they are not describable states of a�airs in the
environment, motivations are distinct from goals. For example, the motivation
survival does not specify a state of a�airs to be achieved, nor is it describable
in terms of the environment, but it may (if other motivations permit) give rise
to the generation of a goal to ee from danger. The di�erence between the mo-
tivation of survival and the goal of eeing is clear, with the former providing a
reason for doing the latter.

Thus, a motivated agent is one which pursues its own agenda for reasoning
and behaviour in accordance with its internal motivation. It is this that is the
critical factor in achieving autonomy and, consequently, an autonomous agent

must necessarily be a motivated agent.
An autonomous agent is any agent which has its own set of motivations.

In other words, the behaviour of the agent is determined by both external and
internal factors. This is qualitatively di�erent from an agent with goals because
motivations are non-derivative and governed by internal inaccessible rules, while
goals are derivative and relate directly to motivations.

AutonomousAgent

Agent

motivations 6= f g

3 Formalising the Contract Net Protocol

Now we consider the Contract Net as described by Smith [13, 14, 3], which can
be distilled to the basic components described here. Essentially, a contract net

is a collection of nodes that cooperate in achieving goals which, together, satisfy
some high-level goal or task. Each node may be either a manager, who monitors
task execution and processes the results, or a contractor, who performs the actual
execution of the task.

Negotiation to undertake and satisfy tasks arises when new tasks are gen-
erated. These tasks are decomposed into sub-tasks and, when there may be
inadequate knowledge or data to undertake these sub-tasks directly, they are
o�ered for bidding by other agents. A task announcement message is broadcast,
detailing the task requirements. In response to a task announcement, agents can
evaluate their interest using task evaluation procedures speci�c to the problem at
hand. If there is su�cient interest, then that agent will submit a bid to undertake
to perform the task. The manager selects nodes using bid evaluation procedures

based on the information supplied in the bid. It sends award messages to suc-
cessful bidders who then become contractors to the manager, and who may in
turn subcontract parts of their task. The manager terminates a contract with a
termination message.

We can re�ne the framework described above to arrive at a formal speci�ca-
tion of the Contract Net Protocol which retains the structure of the framework.

First, we specify the di�erent kinds of entity from which a contract net is con-
structed, and which participate in it. A node in a contract net is just an object.

CNode

Object

A ContractAgent is any node currently involved in some task.

ContractAgent

CNode

Agent

All nodes in the net are therefore either doing nothing, or doing something, in
which case they are agents. The collection of such nodes is given in the following
schema.

AllNodes

nodes : �CNode
contractagents : �ContractAgent

contractagents � nodes

This completes the de�nition of the nodes in the net and we now need to
consider the function of the net. A manager engages contractors to perform
certain tasks. A task is de�ned to be the same as a goal, as it just speci�es a
state of a�airs to be achieved.

Task == Goal

In the next schema, we de�ne a contract to comprise a task, a manager and
a contractor. The contractor and manager must be di�erent, and the task must
be a goal of both the manager and the contractor.

Contract

task : Task
manager : ContractAgent
contractor : ContractAgent

manager 6= contractor

task 2 (manager :goals \ contractor :goals)

Now we can de�ne the set of all contracts currently in operation in the
contract net. The schema below includes AllNodes, and de�nes contracts to be
the set of all contracts currently in the net. The managers are the set of nodes
which are managing a contract and the contractors are the set of nodes which
are contracted. The union of the contractors and the managers gives the set of
contract agents.

AllContracts

AllNodes

contracts : �Contract

managers : �ContractAgent
contractors : �ContractAgent

managers = fc : Contract j c 2 contracts � c:managerg
contractors = fc : Contract j c 2 contracts � c:contractorg
managers [contractors = contractagents

We also need to introduce the notion of eligibility. A node is eligible for a task
if its actions and attributes satisfy the task requirements. We de�ne Eligibility
to be a type comprising a set of actions and attributes representing an eligibility
speci�cation. This has just the same type as an object.

Eligibility == Object

The �rst step in establishing a contract is to issue a task announcement. A
TaskAnnouncement is issued by a Sender to a set of Recipients to request bids
for a particular Task from agents with a given Eligibility speci�cation.

Sender == CNode

Recipient == CNode

TaskAnnouncement

sender : Sender
recs : �Recipient
task : Task
eligibility : Eligibility

Notice that the combination of a task together with an eligibility is, in fact,
an agency requirement.

A bid is issued from some node who describes a subset of itself in response
to an eligibility speci�cation which will be used in evaluating the bid.

Bid

cnode : CNode
eligibility : Eligibility

eligibility :capableof � cnode:capableof
eligibility :attributes � cnode:attributes

The state of the contract net can now be represented as the current set of
nodes, contracts, task announcements and bids. Each task announcement will
have associated with it some set of bids which are just eligibility speci�cations
as described above. In addition, each node has a means of deciding whether it is

capable of, and interested in, performing certain tasks (and so bidding for them).
First, we need to de�ne bool .

bool ::= True j False

ContractNet

AllContracts

bids : TaskAnnouncement��Bid
interested : CNode" Task" bool

taskannouncements : �TaskAnnouncement

taskannouncements = dom bids

The operation of a node making a task announcement is then given in
the schema below where there is a change to ContractNet , but no change to
AllContracts. A node that issues a task announcement must be an agent. Note
that the variables with a ? su�x indicate inputs to the operation. The second
part of the schema speci�es that the recipients and the sender must be nodes,
that the task must be in the sender's goals, and that the sender must not be
able to satisfy the eligibility requirements of the task alone. Finally, the task
announcement is added to the set of all task announcements, and an empty set
of bids is associated with it.

MakeTaskAnnouncement

�ContractNet

�AllContracts
m? : ContractAgent
ta? : TaskAnnouncement

m? 2 nodes

ta?:recs � nodes

ta?:sender = m?
ta?:task 2 m?:goals
: ((ta?:eligibility :capableof � m?:capableof) ^

(ta?:eligibility :attributes � m?:attributes))
taskannouncements0 = taskannouncements [fta?g
bids 0 = bids [f(ta?; fg)g

In response to a task announcement, a node may make a bid. The schema
below speci�es that a node making a bid must be one of the receivers of the
task announcement, that it must be eligible for the task, that it is interested in
performing the task, and that it is not the sender. As a result of a node making
a bid, the set of task announcements does not change, but the bids associated
with the task announcement are updated to include the new bid.

MakeBid

�ContractNet

con? : CNode
bid? : Bid
ta? : TaskAnnouncement

bid?:cnode = con?
con? 2 nodes

ta? 2 taskannouncements

con? 2 ta?:recs
ta?:eligibility :capableof � bid?:eligibility :capableof
ta?:eligibility :attributes � bid?:eligibility :attributes
interested con? (ta?:task) = True

con? 6= ta?:sender
taskannouncements0 = taskannouncements

bids 0 = bids � f(ta?; bids ta? [fbid?g)g

After receiving bids, the issuer of a task announcement awards the contract
to the highest rated bid. The node that makes the award must be the node
that issued the task announcement, and the bid that is selected must be in the
set of bids associated with the task announcement. In order to choose the best
bid, the rating function is used to provide a natural number as an evaluation
of a bid with respect to a task announcement. Thus the bid with the highest
rating is selected. After making an award, the set of all contracts is updated
to include a new contract for the particular task with the issuer of the task
announcement as manager and the awarded bidder as contractor, where the
contractor is instantiated from the old node as a new agent with the additional
task of the contract. The task announcement is now satis�ed and removed from
the system, and the set of bids is updated accordingly.

MakeAward

�ContractNet

m? : ContractAgent
ta? : TaskAnnouncement
bid? : Bid
rating : TaskAnnouncement" Bid"

m? = ta?:sender
bid? 2 bids ta?
8 b : Bid j b 2 bids ta? � rating ta? bid? � rating ta? b
contracts0 = contracts

[fmakecontract ta?:task m? (newagent bid?:cnode ta?:task)g
contractagents 0 = contractagents n fnewagent bid?:cnode ta?:taskg

[fnewagent bid?:cnode ta?:taskg
taskannouncements0 = taskannouncements n fta?g
bids 0 = bids n f(ta?; bids ta?)g

The functions makecontract and newagent are de�ned as follows.

makecontract : Task� ContractAgent�CNode�Contract

newagent : CNode"Task"ContractAgent

8 t : Task ; c : CNode; a : ContractAgent � newagent c t = a ,
a:attributes = c:attributes ^ a:capableof = c:capableof ^

a:goals = c:goals [ftg
8 t : Task ; m : ContractAgent ; c : CNode; con : Contract �

makecontract t c m = con , t 2 (m:goals) ^ m 6= c ^
con:task = t ^ con:manager = m ^ con:contractor = newagent c t

Finally, a manager can terminate a contract as speci�ed below where the
contract is removed from the set of all contracts.

Whilst the contractor will remove the task from its set of goals the manager
will not, since it will still be a contractor for that task or the monitor of that
goal. The goal is therefore removed from the goals of the contractor agent. If
this node is still an agent, there will be no change to contractagents, but if the
node previously had only one goal then it will be removed from contractagents

since it is no longer an agent.

TerminateContract

�AllContracts

m? : ContractAgent
con? : ContractAgent
t? : Task

contracts0 = contracts n fmakecontract t?m? con?g
oldagent con? t? 2 ContractAgent)

contractagents 0 = contractagents n fcon?g [foldagent con? t?g
oldagent con? t? =2 ContractAgent)

contractagents 0 = contractagents n fcon?g

The oldagent function makes an agent revert to the node it was before adopt-
ing the goal of the contract.

oldagent : CNode" Task"ContractAgent

8 t : Task ; c : CNode; a : ContractAgent � oldagent c t = a ,
a:attributes = c:attributes ^
a:capableof = c:capableof ^
a:goals = c:goals n ftg

Davis and Smith[3] also describe a single processor node in a distributed
sensing example called a monitor node which starts the initialisation as the �rst
step in net operation. If this is just another node which passes on information
to another, then it is no di�erent to the manager speci�ed above. If it generated
the goal or task to perform by itself, then it is autonomous.

Monitor

AutonomousAgent

ContractAgent

4 Cooperation and Engagement in the Contract Net

The contract net is a useful and e�ective example of applying the framework
proposed earlier because it is a concrete and well-understood system. In addi-
tion, many of the relationships that arise in the contract net can be generalised
to other goal-directed systems. In this section, we elaborate the framework de-
scribed earlier by considering cooperation and engagement, especially in the
light of the contract net example. Thus we use the contract net case-study as an
exemplar which allows us to analyse these relationships, �rst in a limited and
well-de�ned way, and then by broadening them to de�ne properties of multi-
agent systems in general (fuller details of which can be found in [10]).

We now de�ne a new agent, a server agent, which is a non-autonomous agent.

ServerAgent

Agent

motivations = f g

Just as a contract net is a collection of CNodes and ContractAgents we de�ne
the world as a collection of objects, agents, and autonomous agents.

World

objects : �Object
agents : �Agent
autoagents : �AutonomousAgent
serveragents : � ServerAgent

autoagents � agents � objects

autoagents [serveragents = agents

Whenever a node that is not autonomous adopts some goal, it is being en-

gaged. This is the normal situation in the contract net, where the nodes that
participate in a contract need not be autonomous, and the manager engages the
contractor. In a direct engagement, an agent with some goal, the client, uses
another agent, the server, to assist in achieving that goal. The server agent is
never autonomous, but the client can be either autonomous or non-autonomous.

We can modify the Contract schema so that it applies to more general sit-
uations. A direct engagement consists of a client , a server and the goal that
the server is satisfying for the client . The server and client cannot be the same
and, just as in a contract, both agents must possess the goal. The schema below
thus captures a generalised version of the information that the Contract schema,
which refers speci�cally to contract nets, contains.

DirectEngagement

goal : Goal
client : Agent
server : ServerAgent

client 6= server

goal 2 (client :goals \ server :goals)

All of the direct engagements in the world are given in the following schema
by dengagement , analogous to contracts in the earlier AllContracts schema. The
client agents of the world are all those which are the clients for some direct
engagement, and the server-agents are those which are the server agent for some
direct engagement. All these agents are a subset of the agents in the world.
Finally, we can say that an agent, c, directly engages another server-agent, s,
if, and only if, there is a direct engagement between c and s. The set of all
such relationships is given by dengages. This schema thus captures the same
information about the world as the AllContracts schema that refers speci�cally
to contract nets.

WorldEngagements

World

dengagement : �DirectEngagement
clientagents : �Agent
dengages : Agent# ServerAgent

clientagents = fd : dengagement � d :clientg
serveragents = fd : dengagement � d :serverg
fd : dengagement � d :serverg [fd : dengagement � d :clientg � agents

dengages = fe : dengagement � (e:client ; e:server)g

We can also consider the case of an agent that is contracted to perform a
task who subcontracts that task to another agent. This leads to the possibility
of an engagement chain which is a sequence of direct engagements. Thus an
engagement chain involves a goal , the autonomous client-agent that generated
the goal, autoagent , and a sequence of server-agents, chain, where each is directly
engaging the next. Note that in a contract, the autonomous agent (or monitor)
who originally generated the goal may belong to the contract net or may be
some external entity.

EngagementChain

goal : Goal
autoagent : AutonomousAgent
chain : seq 1Agent

goal 2 autoagent :goals
goal 2

S
fs : Agent j s 2 ran chain � s:goalsg

#(ran chain) = #chain

This leads to the specifying of all engagement chains in the world by engchain
in the schema below. In a contract net, engagement chains involve contracts and
subcontracts of agents, all for one task. Every engagement chain, ec, has a direct
engagement between the autonomous agent, ec:autoagent , and the �rst client,
head ec:chain, with respect to the goal, ec:goal . There must also be a direct
engagement between any two agents which follow each other in the chain with
respect to the goal.

WorldEngagementChains

WorldEngagements

engchain : �EngagementChain

8 ec : engchain; s1; s2 : Agent �
(9 d : dengagement � d :goal = ec:goal ^ d :client = ec:autoagent

^ d :server = head (ec:chain)) ^
hs1; s2i in ec:chain) (9 d : dengagement �

d :client = s1 ^ d :server = s2 ^ d :goal = ec:goal)

If an autonomous agent adopts the goal of another autonomous agent, then
we say that they are cooperating with respect to that goal. The term cooperation

is reserved for use only when the parties involved are autonomous and potentially
capable of resisting. If they are not autonomous (and not capable of resisting),
then one simply engages the other. We distinguish between these relationships
on the basis of the autonomy of the agents involved. Cooperation is a symmetric
relation between two autonomous agents, in contrast to a normal contract in the
contract net which is an engagement, an asymmetric relation between a (client)
agent and another server-agent.

Thus, a cooperation describes a goal, the autonomous agent that originally
generated that goal, and the autonomous agents who have adopted that goal
from the original agent. It is a more sophisticated relationship than normally
appears in the contract net, because it requires autonomy in all participants, a
quality which is not necessary in the simpler engagements prevalent there.

Cooperation

goal : Goal
generatingagent : AutonomousAgent
cooperatingagents : �AutonomousAgent

#cooperatingagents � 1
8 aa : cooperatingagents � goal 2 aa:goals
goal 2 generatingagent :goals

The set of all cooperations is given in the schema below by cooperations. An
agent x1 cooperates with agent x2 if, and only if, both x1 and x2 are autonomous,
one of them is the generating agent and the other is one of the cooperating agents.
In the following schema, cooperates describes the set of all such relationships.
Since the relationship is symmetric, it is equal to its own inverse.

WorldCooperations

World

cooperations : �Cooperation
cooperates : AutonomousAgent#AutonomousAgent

cooperates =
S
fa1; a2 : AutonomousAgent j

(9 c : cooperations � a1 = c:generatingagent ^
a2 2 c:cooperatingagents) � f(a1; a2); (a2; a1)gg

cooperates� = cooperates

5 Discussion

The contract net is important both because it was a signi�cant e�ort to tackle
cooperative problem solving, and because it is very de�nitely situated in the
practical and experimental camp. Moreover, it is relatively well-de�ned and un-
derstood, and hence very suitable to be used as an exemplar for the kind of
work described here. As a result, there have been several extensions proposed to
the basic contract net such as [12, 16], and there have been other attempts at
formalisation, by Werner [17], and by Wooldridge [18, 5], for example. However,
our approach di�ers markedly: �rst, we use a well-known generic speci�cation
language which ties in closely with implementation issues, and which has a very
large user base; and second, we situate our formalisation in the broader con-
text of a general framework for agency and autonomy. We are not concerned
with the development of the formalism, but with its application in a succinct
way to the abstract framework proposed, the relationships de�ned within that
framework, and to the speci�cation of concrete systems using the framework to
provide structure. Although alternative speci�cation languages such as DESIRE
[1], for example, would also have been possible, Z's qualities of encapsulation
and abstraction within a formalism used extensively in industry and academia,
for both small and large-scale systems (e.g. [2, 11, 7]) and for more theoretical
approaches to multi-agent systems (e.g. [4]), provide a more accessible method.

In this paper we have outlined previous work on constructing a formal frame-
work for autonomous agent systems, within which particular models and systems
can be speci�ed by adding further levels of detail. In that vein, we have de-
scribed the contract net protocol and speci�ed it formally, making use of the
entities de�ned and described within the framework. The contract net protocol
provides exemplars of certain commonly occurring inter-agent relationships such
as cooperation and engagement. By using the example of the contract net and
generalising the relationships found therein, we have been able to elaborate the
formal framework to include de�nitions of these general relationships, building
up a common and general language with which to discuss multi-agent systems
and models. A key feature of the work that is illustrated in this paper is the
ease with which a particular system, described in detail, can be accommodated
by the framework and used to focus further development of the theoretical un-
derpinnings of multi-agent systems.

References

1. F. Brazier, B. Dunin Keplicz, N. Jennings, and J. Treur. Formal speci�cation of
multi-agent systems: A real-world case. In Proceedings of the First International
Conference on Multi-Agent Systems, pages 25{32. AAAI Press / MIT Press, 1995.

2. I. Craig. Formal Speci�cation of Advanced AI Architectures. Ellis Horwood, 1991.
3. R. Davis and R. G. Smith. Negotiation as a metaphor for distributed problem

solving. Arti�cial Intelligence, 20(1):63{109, 1983.
4. M. d'Inverno and M. Luck. A formal view of social dependence networks. In

Proceedings of the First Australian DAI Workshop. Springer Verlag, To appear,
1996.

5. M. Fisher and M. Wooldridge. Specifying and executing protocols for cooperative
action. In S. Deen, ed., CKBS-94: Proceedings of the Second International Working
Conference on Cooperating Knowledge-Based Systems. Springer-Verlag, 1994.

6. R. Goodwin. Formalizing properties of agents. Technical Report CMU-CS-93-159,
Carnegie-Mellon University, 1993.

7. M. G. Hinchey and J. P. Bowen, editors. Applications of Formal Methods. Prentice
Hall International Series in Computer Science, 1995.

8. Z. Kunda. The case for motivated reasoning. Psychological Bulletin, 108(3):480{
498, 1990.

9. M. Luck and M. d'Inverno. A formal framework for agency and autonomy. In
Proceedings of the First International Conference on Multi-Agent Systems, pages
254{260. AAAI Press / MIT Press, 1995.

10. M. Luck and M. d'Inverno. Engagement and cooperation in motivated agent mod-
elling. In Proceedings of the First Australian DAI Workshop. Springer Verlag, To
appear, 1996.

11. B. G. Milnes. A speci�cation of the Soar architecture in Z. Technical Report
CMU-CS-92-169, School of Computer Science, Carnegie Mellon University, 1992.

12. T. Sandholm. An implementation of the contract net protocol based on marginal
cost calculations. In Proceedings of the Eleventh National Conference on Arti�cial
Intelligence (AAAI-93), pages 256{262. AAAI Press / MIT Press, 1993.

13. R. G. Smith. The contract net protocol: High-level communication and control in
a distributed problem solver. IEEE Transactions on Computers, 29(12), 1980.

14. R. G. Smith and R. Davis. Frameworks for cooperation in distributed problem
solving. IEEE Transactions on Systems, Man and Cybernetics, 11(1):61{70, 1981.

15. J. M. Spivey. The Z Notation. Prentice Hall, Hemel Hempstead, 2nd edition, 1992.
16. H. Van Dyke Parunak. Manufacturing experience with the contract net. In

M. Huhns, editor, Distributed Arti�cial Intelligence, pages 285{310. Pitman Pub-
lishing: London and Morgan Kaufmann: San Mateo, CA, 1987.

17. E. Werner. Cooperating agents: A uni�ed theory of communication and social
structure. In L. Gasser and M. Huhns, editors, Distributed Arti�cial Intelligence
Volume II, pages 3{36. Pitman Publishing: London and Morgan Kaufmann: San
Mateo, CA, 1989.

18. M. Wooldridge. The Logical Modelling of Computational Multi-Agent Systems.
PhD thesis, Department of Computation, UMIST, Manchester, UK, October 1992.

19. M. J. Wooldridge and N. R. Jennings. Formalizing the cooperative problem solving
process. In Proceedings of the Thirteenth International Workshop on Distributed
Arti�cial Intelligence, 1994.

This article was processed using the LaTEX macro package with LLNCS style

