
A Formal Architecture for the 3APL Agent
Programming Language

Mark d’Inverno�, Koen Hindriksy, and Michael Luckz

� Cavendish School of Computer Science, 115 New Cavendish Street, University of
Westminster, London W1M 8JS, UK
dinverm@westminster.ac.uk

y Dept. of Computer Science, Universiteit Utrecht, P.O. Box 80.089; 3508 TB Utrecht,
The Netherlands
koenh@cs.uu.nl

z Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
mikeluck@dcs.warwick.ac.uk

Abstract. The notion ofagents has provided a way of imbuing traditional com-
puting systems with an extra degree of flexibility that allows them to be more
resilient and robust in the face of more varied and unpredictable forms of interac-
tion. One class of agents, typically calledintelligent agents, represent their world
symbolically according to their beliefs, have goals which need to be achieved, and
adopt plans or intentions to achieve them. Now, one approach to building agents
is to design a programming language whose semantics are based on some theory
of rational or intentional agency and to program the desired behaviour of indi-
vidual agents directly using mental attitudes. Such a technique is referred to as
agent oriented programming. Arguably, the most innovative of these languages is
3APL (pronounced “triple-a-p-l”) which supports the construction of intelligent
agents for the development of complex systems through a set of intuitive con-
cepts like beliefs, goals and plans. In this paper, we provide a Z specification of
the programming language 3APL which provides a basis for implementation and
also adds to a growing library of agent techniques and features.

1 Introduction

Recently, there has been an explosion of interest in agent-based systems and the related
subfield of distributed artificial intelligence (DAI). The focus of much agent-based work
is on buildingarchitectures for intelligent agents, providing information about essential
data structures, relationships between these data structures, the processes or functions
that operate on them and the operation or execution cycle of an agent.

Deliberative Agent Systems symbolically model their environment and manipulate
these symbols in order to act. In order to modelrational or intentional agency, an ab-
straction level is chosen for the symbols such that they representmental attitudes. Most
agent systems include a deliberative architecture to support deliberative reasoning at the
mental-attitude level.

Mental attitudes used to describe and characterise the behaviour of agents include
beliefs, goals, assumptions, desires, knowledge, plans, motivations and intentions, and

are commonly grouped into three categories, informative, motivational and delibera-
tive [9]. The first refers to that which a system considers to be true about the world and
includes knowledge, beliefs and assumptions, the second to the ‘wants’ of a system in-
cluding goals, desires and motivations, and the third concerns how an agent’s behaviour
is directed and includes plans and intentions. The distinction between the second and
third categories is subtle since it is possible that a system maydesire a certain state
without planning for it, orintending it to happen.

There are several compelling reasons why agents defined using mental attitudes
might be useful. First, if an agent can be described in terms of what it knows, what
it wants and what it intends then, since it is modelled on familiar concepts, it becomes
possible for users to understand and predict its behaviour. Second, understanding the re-
lationship between these different attitudes and how they affect behaviour could provide
the control mechanism for ‘intelligent action’ in general. Third, computational agents
designed in this way may be able to interpret the behaviour of others independently of
any implementation.

Rather than defining an architecture,agent oriented programming is a paradigm for
directly programming the behaviour of agents using computational languages whose
semantics capture some theory of rational agency [14]. Typically agents have an initial
set of beliefs, goals and plans and an interpreter that details how agents should achieve
their goals given an environmental context.

1.1 The 3APL Programming Language

One such agent programming language is 3APL which supports the design and con-
struction of intelligent agents for the development of complex systems through a set of
intuitive concepts like beliefs, goals and plans. In turn, these can be used to describe
and understand the computational system in a natural way. Indeed, applications such as
personal assistants [12] are naturally seen as agents that act on behalf of their users and
in pursuit of user goals, using these concepts.

3APL supports this style of programming by means of an expressive set of primi-
tives to program agents, which consist of sets of beliefs, goals and practical reasoning
rules. Beliefs represent the issues the agent must deal with, while goals allow the agent
both to focus on what it must achieve and to represent the way in which it can achieve it.
In 3APL, goals are thus used to represent achievement goals and asplans. The practical
reasoning rules provide the agent with planning capabilities to find an appropriate plan
to achieve a goal, capabilities to create new goals to deal with a particular situation, and
capabilities to use the rules to revise a plan. The architecture for 3APL [8] is based on
thethink-act cycle, which is divided into two parts. The first part corresponds to a phase
of practical reasoning by using practical reasoning rules, and the second corresponds to
an execution phase in which the agent performs some action.

Originally, the operational semantics of 3APL was specified by means of Plotkin-
style transition semantics [7]. In this work, we provide a re-specification of 3APL in Z,
which has a number of benefits. First, it helps to get closer to a good implementation of
3APL, because of the tools available for Z which support type-checking, animation, and
so on. By specifying 3APL, we can provide a computational model that includes data
structures, operation and architecture, thereby isolating the data-types for an efficient

implementation of 3APL. Second, the process of re-specification provides a different
perspective, highlighting different aspects of the language and architecture that are not
manifested in a similar way in the transition style semantics. In carrying out this work,
we aim to provide a clearer analysis and insight into agent languages and architectures,
and add to a growing library (written in Z) of desirable and reusable agent features.

The next section introduces the basic types used to build the 3APL model, compris-
ing beliefs, actions, goals and practical reasoning rules. Then we define 3APL agents
and finally we describe their operation.

2 3APL types

Beliefs and goals are the basic types of expressions in 3APL from which rule ex-
pressions are derived. In this specification, beliefs are a subset of first order formulae
(though in principle any knowledge representation language could be used), and this
first order language is defined in the usual way. First order terms are defined by means
of given sets of constants, first order variables, and function symbols. Since the pro-
gramming language distinguishes between first order variables and variables that range
over goals, we first define a partition of the set of variables, and useFOVar to denote
the set of first order variables andGvar to denote the set of goal variables.

[Const ;Var ;FuncSym]

FOVar : PVar
GVar : PVar

FOVar \GVar = ?

FOVar [GVar = Var

The sets of all constants and function symbols are respectively denoted as[Const]
and[FuncSym]. In terms of this specification, the contents of these sets are unimpor-
tant, and we use them directly without further elaboration. A first orderterm is either
a constant, a first order variable, or a function symbol with a non-empty sequence of
terms as a parameter. The auxiliary functionfovars returns the set of all first order
variables in a (first order) term.

FOTerm ::= consthhConstii
j varhhFOVarii
j functorhhFuncSym � seq

1
FOTermii

fovars : FOTerm ! (PFOVar)

8 c : Const ; v : FOVar ; f : FuncSym; ts : seqFOTerm �
fovars (const c) = ? ^
fovars (var v) = fvg ^
fovars (functor(f ; ts)) =

S
ft : FOTerm j t 2 (rants) � fovars tg

2.1 Beliefs

Beliefs are defined by building types from the above primitives. The set of all predi-
cate symbols is denoted by[PredSym], and a beliefatom is a predicate symbol with a
(possibly empty) sequence of terms as its argument. Beliefs are then either an atom, the
negation of an atom, the conjunction of two beliefs, or the implication of one belief by
some other belief.

[PredSym]

Atom

head : PredSym
terms : seqFOTerm

Belief ::= poshhAtomii j nothhAtomii j andhhBelief � Belief ii
j implyhhBelief � Belief ii j false j true

The running example in this paper concerns a personal assistant for scheduling
meetings and other activities, which acts on behalf of its user, monitors the need to
schedule activities, and helps the user to find appropriate slots. The agent might also
provide its user with information concerning the appropriate means of transportation to
go to the location of a scheduled meeting.

Part of the knowledge representation language of a personal assistant for schedul-
ing (PAS) consists of predicates to represent, for example, the agenda of the user and
the means of transportation to get from A to B. In particular, the predicateagenda

represents the user’s agenda, with five arguments:
agenda(Activity ;Time;Duration;People;Loc)

Each variable, respectively, represents the activity scheduled (such as meetings, lunch,
etc), the date and time, the duration of the activity, the set of people involved, and
the location. For example, the PAS may have the following belief concerning the user’s
agenda, indicating that an hour meeting is scheduled for May 5th at 12:00 with John and
Peter in Utrecht:pos agenda(meeting; may5th12 : 00; 60min; fjohn; peterg; utrecht)

Other predicates includefree(Time;Length), indicating that a free slot of length
Length at timeTime, andtransport(Means ;FromLoc;ToLoc;Time;DurTrans), in-
dicating that a possible means of moving fromFromLoc to ToLoc at (date and) time
Time isMeans , and takingDurTrans time. Finally,location(Loc;Time) keeps track
of the location of the user at a particular time, which is assumed to be persistent. That
is, without information to the contrary, the location of the user at a timeT 0 after time
T will be assumed to be the same as that at timeT .

2.2 Actions

In order to achieve goals or accomplish tasks, an agent must perform actions, repre-
sented by action symbols specified in the same way as atoms.

[ActionSym]

Action

name : ActionSym
terms : seqFOTerm

A basic action used by the PAS agent is the actionins agenda for inserting items in
the belief base. The action has five associated arguments matching the arguments of the
predicateagenda, and is used to insert a particular item in the agenda. Specifically,
ins agenda(Activity ;Time;Length;People;Loc) inserts the corresponding agenda
predicate into the belief base of the PAS. For example,

ins agenda(meeting; may5th12 : 00; 60min; [john; peter]; utrecht)

inserts an hour-long meeting scheduled for May 5th with John and Peter in Utrecht in
the agenda of the agent.

At this point, a number of auxiliary functions may also be defined to return the set
of variables in an atom, a belief, or an action, and which are used in the specification of
the operation of an agent.

atomvars : Atom ! (PFOVar)
beliefvars : Belief ! (PFOVar)
actionvars : Action ! (PFOVar)

8 c : Const ; v : FOVar ; f : FuncSym; ts : seqFOTerm;
at : Atom; b1; b2 : Belief ; a : Action �

fovars (const c) = ? ^
fovars (var v) = fvg ^
fovars (functor(f ; ts)) =

S
ft : FOTerm j t 2 (rants) � fovars tg ^

atomvars at =
S
ft : FOTerm j t 2 (ranat :terms) � fovars tg ^

beliefvars (pos at) = atomvars at ^
beliefvars (not at) = atomvars at ^
beliefvars (and (b1; b2)) = beliefvars b1 [beliefvars b2 ^
actionvars a =

S
ft : FOTerm j t 2 (rana:terms) � fovars tg

2.3 Goals, Contexts and Front Contexts

In 3APL, goals are used to representboth the goalsand the plans to achieve these goals
of the agent. Goals are program-like structures that are built from basic constructs,
such as actions, and regular imperative programming constructs, such as sequential
composition and nondeterministic choice. 3APL goals can be characterised asgoals-
to-do, which are mental attitudes corresponding to plans of action to achieve a state
of affairs, orgoals-to-be, which are mental attitude corresponding to the state of affairs
desired by an agent. For example, an agent may have adopted thegoal-to-do of learning
to play the piano, and then performing at the ZB conference dinner. This might be done
in pursuit of the agent’sgoal-to-be of wanting to be a pop-star rather than an academic.

Contexts Before formally describing goals, we introduce the notion ofcontexts, which
are goals with an extra feature called ‘holes’ that act as placeholders within the struc-
ture of goals1. Contexts are well-known structures in programming language semantics,
closely related to the concept of goals, and are used to describe the operation and ar-
chitecture of 3APL agents. Use of contexts in this way differs substantially from the
transition style semantics presented in [7], which is inappropriate in this Z specifica-
tion, since it would require a recursive relationship between schemas. While contexts,
by contrast, allow us to give an elegant specification of the operation of a 3APL agent,
we must stress that their role is in thepresentation of an architecture for 3APL, rather
than in the 3APL language itself.

More precisely, acontext is either a basic action, a query goal, an achieve goal, the
sequential composition of two contexts, the nondeterministic choice of two contexts,
a goal variable or “�” which represents a place within a context that might contain
another context. In the definition below, we use the set of goal variables,GVar , to
allow a process calledgoal revision to take place as will be described later.

Context ::= bachhActionii j queryhhBelief ii j achievehhAtomii j
seqcomphhContext � Contextii j choicehhContext � Contextii j
goalvarhhGVarii j �

The�, which denotes the placeholder orhole within a context, is distinct from a
goal variable. Although both� and a goal variable are placeholders,� is a facility used
for specifying 3APL, whereas goal variables are part of 3APL itself. Five examples of
contexts are shown in Figure 1.

Goals We can now define a goal as a context without any occurrences of�. Only
the third context in Figure 1 is a goal since it contains no squares. None of the other
contexts are goals because they contain at least one occurrence of�. The auxiliary
functionsquarecount counts the occurrences of� in a context.

squarecount : Context ! N

8a : Action; b : Belief ; at : Atom; c1; c2 : Context ; gv : GVar �
squarecount(bac a) = 0 ^ squarecount(query b) = 0 ^
squarecount (achieve at) = 0 ^
squarecount (seqcomp(c1; c2)) = squarecount c1 + squarecount c2 ^
squarecount (choice(c1 ; c2)) = squarecount c1 + squarecount c2 ^
squarecount (goalvar gv) = 0 ^ squarecount � = 1

Goal == fg : Context j squarecount g = 0g

Front Contexts An important type of context, known as afront context, is used to il-
lustrate significant properties of 3APL. Front contexts are contexts with preciselyone

1 Note that our use of the termcontext is distinct from the notion of a context in such systems as
AgentSpeak(L) [13, 3], which is defined as the pre-condition of a plan.

1:choice (seqcomp (�; bac ins agenda(meeting; Time; Dur; People; Loc)));�)
2:seqcomp (seqcomp (query pos free(Time; Length);�); goalvar X)
3:goalvar X

4:seqcomp (�; bac ins(agenda(meeting; Time; Dur; People; Loc))
5:choice (seqcomp (�; bac ins(agenda(meeting; Time; Dur; People; Loc));

query (pos free(Time; Length)))

Fig. 1. Examples of Contexts

occurrence of� at the front of the context. Informally, an elementat the front of a con-
text means that an agent could choose to perform this element first, so that if a� at the
front of a context was replaced by a goal, then that goalcould be performed first, before
the remainder of the overall goal.

A front context is defined formally as either a single square, the sequential compo-
sition of a front context with a goal, or the choice (in either order) of a front context and
a goal. In Figure 1, neither Context 1, 2, nor 3 are front contexts, but both 4 and 5 are.

frontcontext : P(Context)

8 fc; fc1 : Context ; g : Goal � frontcontext (fc) ,
fc = � _
(fc = seqcomp(fc1; g) ^ frontcontext fc1) _
(fc = choice(fc1 ; g) ^ frontcontext fc1) _
(fc = choice(g ; fc1) ^ frontcontext fc1)

The typeFrontContext is the set of contexts satisfyingfrontcontext .

FrontContext == ffc : Context j frontcontext fcg

Clearly any front context has only one occurrence of a ‘hole’.

8 fc : FrontContext � squarecount fc = 1

A goal may contain both goal variables as well as first order variables. We therefore
define three functions that return the set ofall variables,goal variables andfirst order
variables, respectively, of a goal. A definition of optional and related elements can be
found in [3].

goalvars : optional [Goal] ! (PVar)
goalgvars : optional [Goal] ! (PGVar)
goalfovars : optional [Goal] ! (PFOVar)

8 g : optional [Goal]; a : Action; b : Belief
at : Atom; g1; g2 : Goal ; gv : GVar �

goalvars? = ? ^
goalvarsfbac ag = actionvars a ^
goalvarsfquery bg = beliefvars b ^
goalvars fachieve atg = atomvars at ^
goalvars fseqcomp(g1; g2)g = goalvars fg1g [goalvars fg2g ^
goalvars fchoice(g1; g2)g = goalvars fg1g [goalvars fg2g ^
goalvars fgoalvar gvg = fgvg ^
goalgvars g = (goalvars g) \GVar ^
goalfovars g = (goalvars g) \ FOVar

2.4 Practical Reasoning Rules

A 3APL agent usespractical reasoning rules not only to plan in the more conventional
sense, but also toreflect on its goals. Whilst the use of rules for planning is a familiar
concept from the literature, using rules for reflection on goals or plans is less well
known. Reflection allows an agent to re-consider one of its plans in a situation in which
the plan will fail with respect to the goal it is trying to achieve or has already failed, or
where a more optimal strategy can be pursued.

Practical reasoning rules are divided into four classes: reactive rules, which are used
not only to respond to the current situation but also to create new goals; plan-rules,
which are used to find plans for achievement goals; failure-rules, which are used to
replan when plans fail; and optimisation-rules, which can replace less effective plans
with more optimal plans. (This classification of rules was first proposed in [8].)

We introduce a type to correspond to each of these categories.

PRType ::= reactive j failure j plan j optimisation

A practical reasoning rule consists of an (optional) head, which is a goal, an (op-
tional) body which is a goal, a guard which is a belief and a type to define its purpose.
Informally, a practical reasoning rule with headg , bodyp and guardb, states that if
the agent tries to achieve goalg and finds itself in a situationb, then it might consider
replacing g by a planp as a means to achieve it. If it is aplan-rule, the goalg is of the
formachieve s wheres is a simple formula, and the rule states that to achieve goalg in
situationb, consider planp. If it is a failure-rule, theng may be any goal and the rule
states that ifg fails in situationb, consider droppingg and instead, adopting strategyp
to deal with the failure. Finally, if it is anoptimisation-rule, theng may be any goal and
the rule states that ifg is not so efficient in situationb, consider droppingg and instead,
adopting strategyp.

Formally, we define a practical reasoning rule in the schema below, in which the
conditions specify that areactive-rule has an empty head (and it can be applied when-
ever the guard is true) and that aplan-rule has an achieve goal as its head.

head = fachieve schedule(Activity; Time; DurationAct; People; Loc)g;
guard = and (pos free(Time; DurationAct); pos location(FromLoc; Time));
body = fseqcomp (seqcomp (

query (pos transport(Means; FromLoc; Loc; Time; DurationTrans));
bac ins agenda(Means; Time � DurationTrans; DurationTrans; agent; FromLoc)));
bac ins agenda(Activity; Time; Duration; People; Loc)))g

head = fseqcomp (goalvar X; bac ins(agenda(Act; Time; Dur; People; Loc)))g;
guard = neg free(Time; Dur);
body = fachieve find alternative time(Act; Time; Dur; People; Loc; AltTime)g

Fig. 2. Two Practical Reasoning Rules

PRrule

head ; body : optional [Goal]
guard : Belief
type : PRType

head = ?, type = reactive ^
thehead 2 (ranachieve) ^ body 6= ?, type = plan

Whilst there is a correspondence between the syntax of a PRrule and its purpose for
reactive and plan rules, there is none for optimisation and failure rules because it is not
possible to syntactically distinguish plans that fail or plans that can be optimised.

The first rule in Figure 2 inserts an activity in the agenda. It states that a plan to
achieve the scheduling of an activity is to find a means of transportation to the specified
location, then reserve the time needed for transport in the agenda, and finally insert the
activity itself in the agenda. This plan should only be used if the slot at timeTime of
lengthDurationAct is still free in the agenda. The second conjunct in the guard of
the rule is used to retrieve the location of the user at timeTime. Note thatFromLoc
does not occur in the head of the rule so that the binding for it must be retrieved from
the agent’s beliefs. This illustrates the two uses of a guard as specifying the situation
in which the rule might be considered by the agent and alternatively to retrieve some
parameters from the agent’s beliefs.

The second rule of Figure 2 is a revision rule that deals with failure. It states that
if the agent has a sequential goal of doing anything (denoted by the goal variableX)
followed by the goal of inserting an activity in the agenda of a user at a slot which is
not free (specified by the guard), then the agent should consider revising that goal and
replacing it with the goal of finding an alternative time for the activity.

Note that the variables that occur in the head and guard of a rule, are called the
global variables of the rule, and those that occur in the body but not in the head or
guard of the rule, are called thelocal variables. This distinction is made to separate
the local data-processing in the body from the global variables that may also be used
in other parts of a (complex) goal. In the first rule of Figure 2, the variablesMeans and
DurationTrans are local variables that can only be used in the body of the goal and

cannot transfer information to other parts of a (more complex) goal. Global variables,
however, can be used to ‘communicate with the rest of the goal’ by parameter passing.

3 3APL Agents

3.1 Agents and Mental State

An agent can be characterised by specifying its beliefs, goals, practical reasoning rules
and expertise. The main difference between these components of an agent are that the
former two sets are dynamically updated while the latter two are fixed and do not
change. We define an agent as an entity consisting of the staticexpertise andrulebase,
i.e. a set of practical reasoning rules.

Agent

expertise : PAction
rulebase : PPRrule

8a : expertise � actionvars a = ?

This differs slightly from earlier work, in that the expertise of an agent is explicitly
included as part of an agent. The predicate part of the schema indicates that the agent
is only capable of performing grounded actions, since it is not clear how to specify the
semantics of actions that contain variables. The interpretation of the instantiation of
free variables in an action as a sensing act which semantically could be specified as a
function of the environment of the agent fall outside the scope of this paper. We only
deal with the specification of the components of a single agent in this paper.

The beliefs of an agent are recorded in itsbeliefbase and the goals of an agent in its
goalbase. Together, these comprise themental state of an agent. During the execution
of an agent, its mental state is updated; the goals and beliefs of the agent are dynamic.

AgentState

Agent

beliefbase : PBelief
goalbase : PGoal

Only the mental state of the agent may change during the operation of an agent, not
the expertise or the rulebase. This is shown in the schema below by the� convention,
which indicates that some state variables change, and the� convention, which states
that the dashed variables are equal to their undashed counterparts (i.e. no state change).

�AgentState
AgentState 0

AgentState

�Agent

3.2 Initial Agent State

A 3APL agent specifies the expertise (repertoire of basic actions), and a set of practical
reasoning rules, but does not specify the initial beliefbase or goalbase of the agent,
however. The first step in the operation of an agent, therefore, is to initialise the mental
state. In the schema below,b0? andg0? denote input variables.

InitAgentState

�AgentState
b0? : PBelief
g0? : PGoal

beliefbase 0 = b0?
goalbase 0 = g0?

The operation of an agent is parameterised by two semantic notions. First, the se-
mantics of basic actions is defined by a global function,execute, which specifies that
a basic action is anupdate operator on the beliefs of the agent. For example, the basic
actionbac ins(agenda(Act; Time; Dur; People; Loc)) of a scheduling agent updates
the beliefs by inserting a new item in the agenda. Sinceexecute is a global function,
any two agents capable of performing an action are guaranteed to do the same thing
when executing that action. This is particularly important to prevent confusion when
specifying and programming agents.

execute : Action � PBelief 7! PBelief

The second semantic notion needed to specify the semantics of agents is a logical
consequence relation. The logical consequence relation determines which implications
the agent is allowed to derive from its beliefs. Formally, the consequence relation is a
relation between two sets of beliefs such that the first set of beliefs implies all the beliefs
in the second set. The logical consequence relation is also global. This makes sure that
all agents draw conclusions from their beliefs in the same way, which guarantees a
“minimal amount of global consistency”. That is, one agent will not derive the negation
of a beliefb from the same set of beliefs from which another agent derivesb.

LogCon : P(PBelief � PBelief)

4 3APL Agent Operation

4.1 Applying Practical Reasoning Rules

Practical reasoning rules provide 3APL agents with reflective capabilities. The rules can
be used to plan, revise, and create goals. The application of a rule is formally defined
in this section. The application of a ruler to a goalg results in the replacement of a
subgoalg 0 which matches with the head of ruler by the body of ruler in case the head
of the rule is non-empty. If the body of the rule is empty, the subgoal is simply dropped.
The application yields a substitution which is applied to the entire resulting goal. In

Rule:
head = fseqcomp(goalvarX; bac ins agenda(Act; Time; Dur; People; Loc)))g;
guard = negfree(Time; Dur);
body = fachievefind alternative time(Act; Time; Dur; People; Loc; AltTime)g

Bel: neg free(may5th10 : 00; 60min)

Goal:

seqcomp (seqcomp

(bac ins(agenda(train; may5th9 : 30; 30min; [john]; utrecht));
bac ins(agenda(meeting; may5th10 : 00; 60min; [john; peter]; amsterdam)));
achieve (new scheduling task))

Fig. 3. Example Scenario for Practical Reasoning Rules

Substitution:
= fX=bac ins(agenda(train; may5th9 : 30; 30min; [john]; utrecht));

Act=meeting; Time=may5th10 : 00; Dur=60min;
People=[john; peter]; Loc=amsterdamg

Guard: neg free(may5th10 : 00; 60min)

New Plan
(Goal):

seqcomp (
achieve find alternative time(meeting; may5th10 : 00; 60min;

[john; peter]; amsterdam; AltTime);
achieve (new scheduling task))

Fig. 4. Results of Applying the Rule (and Substitution)

case the head of a rule is empty only the guard of the rule needs to be derivable from
the beliefs of the agent, and a new goal (the body of the rule) is added to the goalbase
of the agent.

Consider the example in Figure 3, with the practical reasoning rule of dealing with
a failure of the scheduling of an activity, and a goal and belief as specified. Since the
belief is an instance of the guard of the rule, and the goal can be unified with the head
of the rule, the rule is applicable. Unifying the head of a rule with a (subgoal of a) goal
of an agent amounts to finding a unifier (or substitution) which, when applied to the
head of the rule and the goal makes them identical. In this example, unification yields
a most general unifier, shown in Figure 4 which, when applied to the guard of the rule,
gives the instantiated guard that is implied by the belief. Applying a rule to a subgoal
means replacing that subgoal by the body of the rule, so that the new plan that replaces
the original goal of the agent by applying the substitution, as also shown in the figure.

The example illustrates that a subgoal at the front of a goal of the agent is replaced,
rather than just any subgoal, and this is the case for all rule applications. Consequently,
the front contexts introduced earlier are very useful in specifying rule application.

Suppose thatg 0 is a subgoal of some goalg that appears at the front ofg , and
g 0 matches with the head of a ruler . The task is to find a front contextfc such that
if the subgoalg 0 is inserted for� (at the front offc), the resulting goal is identical
to g . Applying r then amounts toupdating the fc with the body of the rule. There is
a crucial difference here between inserting and updating. Inserting a goal in a front
context means substituting the goal for the� in the front context; while updating a
front context with a goal means replacing� with that goaland also committing to the

choices made (pursuing a subgoal in a choice goal means committing to the branch in
which the subgoal appears in the choice goal).

To formalise this, we define two functions, one toinsert a goal into the square of a
front context and one toupdate a front context with a goal.

Insert : (Goal � FrontContext)! Goal

8 g ; g 0 : Goal ; fc : FrontContext �
Insert (g ;�) = g ^
Insert (g ; seqcomp(fc; g 0)) = seqcomp(Insert(g ; fc); g 0) ^
Insert (g ; choice(fc; g 0)) = choice(Insert(g ; fc); g 0) ^
Insert (g ; choice(g 0 ; fc)) = choice(g 0 ; Insert(g ; fc))

Now, since a front context may be updated with the empty goal if a rule with empty
body is applied or an execution step is performed (see below), the goal types of the
functionUpdateGoal are optional goals. Note that if the front context is a choice con-
text, this commits to the branch where the� occurs. The latter branch is the one the
agent has chosen to pursue. This is different fromInsert , which left these branches
intact.

UpdateGoal : (optional [Goal] � FrontContext)! optional [Goal]

8 g : optional [Goal]; fc : FrontContext ; g 0 : Goal �
UpdateGoal (g ;�) = g ^
non � empty UpdateGoal (g ; fc))

(UpdateGoal (g ; seqcomp(fc; g 0)) =
fseqcomp(the (UpdateGoal (g ; fc)); g 0)g ^

UpdateGoal (g ; choice(fc; g 0)) = UpdateGoal (g ; fc) ^
UpdateGoal (g ; choice(g 0 ; fc)) = UpdateGoal (g ; fc)) ^

empty UpdateGoal (g ; fc))
(UpdateGoal (g ; seqcomp(fc; g 0)) = fg 0g ^
UpdateGoal (g ; choice(fc; g 0)) = ? ^
UpdateGoal (g ; choice(g 0 ; fc)) = ?)

Note that if the front context is of the formchoice (�; g) for some goalg , and the
empty goal is inserted for�, Insert yields Insert(choice (�; g)) = fgg. This is a
natural definition, but the empty goal could result with a different view on dropping a
branch from a choice goal. A rule with empty bodyprevents an agent from attempting to
execute a particular goal. If the dropped goal is a branch of a choice goal,Insert simply
removes this branch. The definition ofInsert above does not remove the alternative
branch, however, so that the choice goal thus is still not completed. If there is a reason
to remove the choice goal, then this reason should be stated in the guard of a rule which
removes the choice goal completely.

A rule isapplicable if the head unifies with a (sub)goal of the agentand the guard of
the rule follows from the agent’s beliefs. If the rule has no head, it is applicable simply
if the guard follows from the beliefbase. For a treatment of substitutions, binding and
unification please see Appendix A.

applicable : P(PRrule �Goal � (PBelief))

8 g : Goal ; r : PRrule; bb : PBelief �
non � empty r :head) (applicable(r ; g ; bb) ,

(9#; : Substitution; subg : Goal ; fc : FrontContext �
Insert(subg ; fc) = g ^ mgu((the r :head); subg) = # ^
(dom) � (beliefvars r :guard) ^
LogCon(bb; fASBelief (# z)r :guardg))) ^

empty r :head) (applicable(r ; g ; bb) ,
(9# : Substitution j (dom#) � (beliefvars r :guard) �

LogCon(bb; fASBelief # r :guardg)))

Using this definition, we can now specify the rule application. If the head of the
rule is not empty, applying the rule amounts to replacing a subgoal by the body of
the rule. Otherwise, we simply add the body of the rule to the goalbase of the agent.
Care must be taken here to avoid interference of variables occurring in rules and those
variables occurring in goals (cf. [7]. For this reason, all variables in the rule applied are
renamed to variables not occurring in the target goal. A functionRuleRename(r ;V),
which is not defined in this paper due to space constraints (but available on request from
the authors), renames the variables in the ruler so that no variable from the setV of
variables occurs in the renamed rule.

RuleRename : (PRrule � (PVar)) ! PRrule

ApplyRule

�AgentState
g? : Goal ; r? : PRrule; rr : PRrule

rr = RuleRename(r?; goalvars fg?g)
r?:type 6= reactive)

(9 fc : FrontContext ; subg : Goal � Insert(subg ; fc) = g? ^
(9#; : Substitution j (dom) � (beliefvars rr :guard) �

mgu(the rr :head ; subg) = # ^
LogCon(beliefbase; fASBelief (# z)rr :guardg) ^

beliefbase 0 = beliefbase ^
goalbase 0 = goalbase n fg?g[

ASGoal (# z) f(Insert (the(rr :body); fc))g))
r?:type = reactive)

(9 : Substitution j (dom) � (beliefvars rr :guard) �
LogCon(beliefbase; fASBelief rr :guardg) ^

beliefbase 0 = beliefbase ^
goalbase 0 = goalbase [ASGoal rr :body)

4.2 Goal Execution

The execution of a goal is specified through the computation steps an agent can perform
on a goal. A computation step corresponds to a simple action of the agent, which is

either a basic action or else a query on the beliefs of the agent. Recall that the semantics
of basic actions is given by a global functionexecute and the semantics of beliefs is
specified by theLogCon relation.

The agent is only allowed to execute a basic action or query that occurs at the front
of a goal, i.e. it is one of the first things the agent should consider doing. The notion of
front context is useful to find an action or query which the agent might execute. If there
is a front contextfc in which a basic action or query can be inserted for�, and which
results in a goal of the agent, the agent might consider executing that basic action or
query. After executing the goal, the goal needs to be updated, and this updating is the
same as updating the front context by removing�.

The execution of a basic action amounts to changing the beliefbase of the agent in
accordance with the functionexecute. The condition(a; beliefbase) 2 (domexecute)
expresses that the basic actiona is enabled, and thus can be executed.

ExecuteBasicAction

�AgentState
�Agent
g? : Goal

(9 fc : FrontContext ; a : Action j a 2 expertise ^
Insert((bac a); fc) = g? ^ (a; beliefbase) 2 (domexecute) �
beliefbase 0 = execute(a; beliefbase) ^
goalbase 0 = (goalbase n fg?g) [UpdateGoal (fg; fc))

Queries are goals to check if some condition follows from the beliefbase of the
agent. Any free variables in the condition of the query can be used to retrieve data from
the beliefbase. The values retrieved are recorded in a substitution#. A query can only
be executed if it is a consequence of the beliefbase (otherwise, nothing happens).

ExecuteQueryGoal

�AgentState
�Agent
g? : Goal

(9 fc : FrontContext ; b : Belief �
Insert(query b; fc) = g? ^
(9# : Substitution � LogCon (beliefbase; fASBelief # bg) ^
beliefbase 0 = beliefbase ^
goalbase 0 = (goalbase n fg?g) [(ASGoal # (UpdateGoal (fg; fc)))))

Executing a goal is then defined as the disjunction of these two functions.

ExecuteGoal == ExecuteBasicAction _ ExecuteQueryGoal

5 Conclusions

In this paper we have described a specification of the agent-oriented programming lan-
guage 3APL. The arguments for using Z in agent-based systems are well-rehearsed

(eg.[5,3]), and we will not re-state them here. In particular, however, Z enables a uni-
form presentation ofboth the 3APL programming languageand its architecture in a
clear and concise way. We are not familiar with any work that specifies both these as-
pects in this way, and believe that our work moves a step closer to a unified account of
agent languages and architectures.

The contribution of this work is threefold. First, we provide an operational specifi-
cation of 3APL that can be used as the basis of a subsequent implementation, so that the
transition from what might be called theory to practice is facilitated. At lower levels,
this kind of transition is demonstrated, for example, through the provision of a simple
agent simulation environment [11], and a sophisticated Jini-based development envi-
ronment [1], both based on an extensive agent framework [10]. This work addresses the
more detailed aspects involved in dealing with the transition of a fully designed sys-
tem, rather than an outline structure. Second, we allow an easy and simple comparison
of 3APL and itscompetitor systems that have been specified in a similar style such as
AgentSpeak(L) [3] and dMARS [2], as illustrated in [6]. Third, we provide an acces-
sible resource in the specification of techniques for the development of agent systems
that might not otherwise be available in a form relevant both to agent architects and
developers. This work can thus be viewed in a standalone fashion in contributing to the
understanding of 3APL on the one hand, and in using it to provide a window on the
larger area of generic agent architecture on the other.

Acknowledgements. We would like to thank Jean-Jules Meyer for many construc-
tive and helpful discussions during the preparation of this work, and the Universities of
Westminster and Utrecht for hosting and supporting the authors during their collabora-
tion.

References

1. R. Ashri and M. Luck. Agent implementation through jini. InProceedings of the Eleventh
International Workshop on Database and Expert Systems Applications. IEEE Computer So-
ciety Press, to appear 2000.

2. M. d’Inverno, D. Kinny, M. Luck, and M. Wooldridge. A formal specification of dMARS. In
Intelligent Agents IV: Proceedings of the Fourth International Workshop on Agent Theories,
Architectures and Languages, Lecture Notes in Artificial Intelligence 1365, pages 155–176.
Springer-Verlag, 1998.

3. M. d’Inverno and M. Luck. Engineering agentspeak(L): A formal computational model.
Journal of Logic and Computation, 8(3):233–260, 1998.

4. M. R. Genesereth and N. Nilsson.Logical Foundations of Artificial Intelligence. Morgan
Kaufman, 1987.

5. R. Goodwin. A formal specification of agent properties.Journal of Logic and Computation,
5(6):763–781, 1995.

6. K. Hindriks, M. d’Inverno, and M. Luck. Architecture for agent programming languages. In
ECAI 2000: Proceedings of the Fourteenth European Conference on Artificial Intelligence,
to appear 2000.

7. K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J-J. Ch. Meyer. Formal Semantics for an
Abstract Agent Programming Language. InIntelligent Agents IV: Proceedings of the Fourth
International Workshop on Agent Theories, Architectures and Languages, Lecture Notes in
Artificial Intelligence 1365, pages 215–229. Springer-Verlag, 1998.

8. K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J-J. Ch. Meyer. Control structures of
rule-based agent languages. InIntelligent Agents V, Lecture Notes in Artificial Intelligence
1555. Springer-Verlag, 1999.

9. G. Kiss. Goal, values, and agent dynamics. In G. M. P. O’Hare and N. R. Jennings (eds),
editors,Foundations of Distributed Artificial Intelligence, pages 247–268. John Wiley and
Sons, 1996.

10. M. Luck and M. d’Inverno. Structuring a Z specification to provide a formal framework
for autonomous agent systems. In J. P. Bowen and M. G. Hinchey, editors,ZUM’95: The
Z Formal Specification Notation, 9th International Conference of Z Users, Lecture Notes in
Computer Science 967, pages 48–62. Springer-Verlag, 1995.

11. M. Luck, N. Griffiths, and M. d’Inverno. From agent theory to agent construction: A case
study. InIntelligent Agents III: Proceedings of the Third International Workshop on Agent
Theories, Architectures and Languages, Lecture Notes in Artificial Intelligence, 1193, pages
49–63. Springer Verlag, 1997.

12. P. Maes. Agents that reduce work and information overload.Communication of the ACM,
37(7):30–40, 1994.

13. A. S. Rao. Agentspeak(l): BDI agents speak out in a logical computable language. In
W. Van de Velde and J. W. Perram, editors,Agents Breaking Away: Proceedings of the Sev-
enth European Workshop on Modelling Autonomous Agents in a Multi-Agent World, Lecture
Notes in Artificial Intelligence 1038, pages 42–55. Springer-Verlag, 1996.

14. Y. Shoham. Agent-oriented programming.Artificial Intelligence, 60(1):51–92, 1993.

A Substitutions

Here, we provide further details of the standard definitions of binding and unification,
described in Z. First we define a substitution. This maps variables to terms, as well as
mapping goal variables to goals. We therefore introduce a new type in order to define a
substitution which we callSubTerm.

A substitution is represented as a partial function between variables and terms since,
in general, only some variables will be mapped to a term. (Remember thatfovars is a
function that returns the variables of a term, as defined earlier, at the end of Section 4.1.)

SubTerm ::= termhhFOTermii
j goalhhGoalii

allvars : SubTerm ! (PVar)

8 t : FOTerm; g : Goal �
allvars(term t) = fovars t ^
allvars(goal g) = goalvars fgg

Substitution == f# : Var 7! SubTermg

The standard definition of a substitution is a mapping from variables to terms such
that no variable contained in any of the terms is in the domain of the mapping [4].

8# : Substitution �
(dom#) \

S
fs : SubTerm j s 2 (ran#) � allvars sg = ?

We also have the following predicate concerning substitutions.

8# : Substitution; v : Var ; s : SubTerm; t : FOTerm j (v ; s) 2 # �
(v 2 FOVar , s 2 (ranterm)) ^ (v 2 GVar , s 2 (rangoal))

A.1 Application of Substitutions

The function,ASFOVar , applies either the identity mapping to a variable if the variable
is not in the domain of the substitution, or it applies the substitution if it is in the domain.
(Note that this function is only defined for elements ofFOVar not ofGVar .)

ASFOVar : Substitution ! FOVar ! FOTerm

8# : Substitution; v : FOVar �
(v 62 (dom#))) ASFOVar # v = var v ^
(v 2 (dom#))) ASFOVar # v = term�1(# v)

We can then define what it means for a substitution to be applied to a term.

ASTerm : Substitution ! FOTerm ! FOTerm

8 t : FOTerm; f : FuncSym; ts : seqFOTerm; # : Substitution j
t = functor (f ; ts) �

t 2 ranconst) ASTerm # t = t ^
t 2 ranvar) ASTerm # t = ASFOVar # (var�1t) ^
t 2 ranfunctor) ASTerm # t =

(�new : FOTerm j �rst (functor�1new) = f ^
second (functor�1new) = map (ASTerm #) ts)

A substitution to be applied to an atom and an action.

ASAtom : Substitution ! Atom ! Atom

ASAction : Substitution ! Action ! Action

8a; a 0 : Atom; act ; act 0 : Action; # : Substitution
� ASAtom # a = a 0 , a 0:head = a:head ^

a 0:terms = map(ASTerm #)a:terms ^
ASAction # act = act 0 , act 0:name = act :name ^

act 0:terms = map(ASTerm #)act :terms

ASBelief : Substitution ! Belief ! Belief

8 b; c : Belief ; l ; a : Atom; s : Substitution �
ASBelief s (pos a) = (pos (ASAtom s a)) ^
ASBelief s (not a) = (not (ASAtom s a)) ^
ASBelief s (true) = true ^
ASBelief s (false) = false

A substitution to be applied to a goal. Remember, goals contain goal variables as
well as terms variables so as well as using all our previous definitions for substitution

application we must define what it means to apply a substitution to a goal variable. This
is considered in the final two predicates.

ASGoal : Substitution ! optional [Goal] ! optional [Goal]

8 s : Substitution; a : Action; b : Belief ; at : Atom;
g1; g2 : Goal ; gv : GVar �

ASGoal s ? = ? ^
ASGoal s fbac ag = fbac (ASAction s a)g ^
ASGoal s fquery bg = fquery (ASBelief s b)g ^
ASGoal s fachieve atg = fachieve(ASAtom s at)g ^
ASGoal s fseqcomp(g1; g2)g =

fseqcomp(the(ASGoal s fg1g); the(ASGoal s fg2g))g ^
ASGoal s fchoice(g1; g2)g =

fchoice(the(ASGoal s fg1g); the(ASGoal s fg2g))g ^
gv 62 (doms))

ASGoal s fgoalvar gvg = fgoalvar gvg ^
gv 2 (doms))

ASGoal s fgoalvar gvg = fgoal�1(s gv)g

A.2 Composition of Substitutions

Consider two substitutions� and� such that no variable bound in� appears anywhere
in � . The composition of� with �, written� z �, is obtained by applying� to the terms
in � and combining these with the bindings from� .

For example, if� = fx=A; y=B ; z=Cg and� = fu=A; v=F (x ; y ; z)g then, since
none of the variables bound in� (u; v) appear in� , it is meaningful to compose� with
�. In this case� z � = fu=A; v=F (A;B ;C); x=A; y=B ; z=Cg.

The definition is a bit convoluted though because of the typing needed top include
goal variables.

z : (Substitution � Substitution) ! Substitution

8 �; � : Substitution j
(dom�) \ ((dom�) [

S
ft : FOTerm; s : SubTerm j

(s = term t) ^ (s 2 (ran�)) � fovars tg) = ? �
� z � = (� [fx : Var ; t : FOTerm; s : SubTerm j

(s = term t) ^ (x ; s) 2 � � (x ; term (ASTerm � t))g)

A.3 Unification

A substitution is aunifier for two terms if the substitution, applied to both of them,
makes them equal.

unifyterms : P(Substitution � (Term � FOTerm))

8 t1; t2 : FOTerm; s : Substitution �
unifyterms(s ; (t1; t2)) , (ASTerm s t1 = ASTerm s t2)

A substitution is aunifier for two goals if the substitution, applied to both of them,
makes them equal.

unifygoals : P(Substitution � (Goal �Goal))

8 g1; g2 : Goal ; # : Substitution �
unifygoals(#; (g1; g2)) , (ASGoal # fg1g) = (ASGoal # fg2g)

A substitution ismore general than another substitution if there exists a third sub-
stitution which, when composed with the first, gives the second.

mg : P(Substitution � Substitution)

8#; : Substitution � mg # , (9! : Substitution � (z !) = #)

The mgu of two goals is specified as follows.

mgu : (Goal �Goal) ! Substitution

8 g1; g2 : Goal ; : Substitution � mgu (g1; g2) = ,
(unifygoals(; (g1; g2)) ^

: (9! : Substitution � (unifygoals(!; (g1; g2)) ^ (! mg))))

