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We present a feature generation system designed to create audio features for supervised classification tasks. The main contribution
to feature generation studies is the notion of analytical features (AFs), a construct designed to support the representation of
knowledge about audio signal processing. We describe the most important aspects of AFs, in particular their dimensional type
system, on which are based pattern-based random generators, heuristics, and rewriting rules. We show how AFs generalize or
improve previous approaches used in feature generation. We report on several projects using AFs for difficult audio classification
tasks, demonstrating their advantage over standard audio features. More generally, we propose analytical features as a paradigm to
bring raw signals into the world of symbolic computation.
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1. Introduction

This paper addresses two fundamental questions of human
perception: (1) to what extent are human perceptual catego-
rization for items based on objective features of these items,
and (2) in these situations, can we identify these objective
features explicitly? A natural paradigm for addressing these
questions is supervised classification. Given a data set with
perceptive labels considered as ground truth, the question
becomes how to train classifiers on this ground truth so
that they can generalize and classify new items correctly,
that is, as humans would? A crucial ingredient in supervised
classification is the feature set that describes the items to
be classified. In machine-learning research, it is typically
assumed that features naturally arise from the problem
definition. However, good feature sets may not be directly
available, motivating the need for techniques to generate
features from the raw representations of objects, signals in
particular. In this paper, we claim that the generation of
good feature sets for signal-based classification requires the
representation of various types of knowledge about signal
processing. We propose a framework to demonstrate and
accomplish this process.

1.1. Concept Induction from Symbolic Data. The idea of
automatically deriving features that describe objects or
situations probably originated from Samuel’s pioneering
work on a program that played the game of checkers [1]. In
order to evaluate a position, the program needed a number
of features describing the important properties of the board
[2]. These features were designed by hand, and Samuel
considered the automatic construction of these features to be
a major goal for AI [3]. The machine-learning community
first addressed automatic feature generation through super-
vised concept induction [4–7]. Several algorithms adapted
to problem solvers were developed to automatically infer
object descriptions by combining elementary features using
construction operators. Most works in inductive concept
learning consider feature induction as a transformational
process (see [3] for a review); new features are induced by
operating on existing primitive features. The composition
operators are based on general mathematical (e.g., Boolean
or arithmetic) functions.

The next step taken in this area was to apply feature
generation to supervised classification. In this context, classi-
fiers are trained on labeled data sets based on these features.
The performance of these classifiers strongly depends on
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the feature characteristics, and a great deal of research in
machine learning has addressed how to define a “good
feature set” for a particular classification problem. Notably,
the field of feature selection has been widely studied, leading
to the development of many algorithms to selectively choose
an expressive and compact set of features out of a possibly
much larger set [8, 9]. In this field, the notions of feature
interaction [10] and feature construction have naturally
emerged, both for improving classifier performance and
for improving the comprehensibility of the classifiers, for
example, for explanation purposes. A number of feature
generation algorithms have been proposed [11], resulting
in significant improvements in performance over a range
of classification tasks, and further establishing the field in
machine learning. These works were generalized simulta-
neously by researchers in several areas. Markovitch and
Rosenstein [12] proposed a general framework for feature
generation based on a machine-learning perspective. This
framework uses a grammar for specifying construction
operators. An algorithm iteratively constructs new features
and tests them using a training set. This framework was eval-
uated using the Irvine repository of classification problems,
showing that generated features improved the performance
of traditional classifiers on various problems. An interesting
extension to this approach was applied to text categorization
[13]. Krawiec [14] proposed a similar approach from a
genetic programming perspective and performed the same
evaluation on reference databases.

Despite these favorable results, a careful examination
of the generated features in relation to the corresponding
grammars reveals that it is relatively easy to generate the
“right features” (as known by the researchers) from the
grammars. Therefore, the question remains whether this
general approach will scale up for concrete cases in which
(1) knowledge about the domain cannot be expressed as
an efficient grammar, or is otherwise “hidden” in the
construction rules, and (2) the input data are not symbols
but raw signals.

1.2. From Symbols to Signals. Earlier work addressed prob-
lems in which the object features were naturally obtained
from the problem definition. In the game of checkers, the
basic elements from which features are constructed are
the rows and columns of the board. Similarly, reference
classification problems (such as [15]) are also described by
sets of features which contain all of the relevant problem
information.

When the data to be classified consists of raw signals, the
situation changes radically. As opposed to symbolic problems
in which the data representation is naturally induced by the
problem definition, there are no “universally good” features
to represent signals.

Raw signals are not suited to the direct use by classifiers
for two reasons, size and representation. In the audio signal
domain, signals are represented as time series made up of
thousands of discrete samples. Sampling a single second of
monophonic audio at 22 kHz results in approximately 44000
16-bit values. Because of the curse of dimensionality [16],
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Figure 1: The human ear is insensitive to phase differences, making
the temporal representation of audio signals ill-suited for perceptual
coding; (a) shows the sum of two sine waves (1 kHz and 3 kHz);
(b) 3 kHz sine wave was phase shifted by pi before summation.
Although the waveforms are substantially different, the ear perceives
them as similar.

this amount of information would require an impractical
number of training samples. The representation issue poses
a larger problem: the temporal representation of signals
(amplitude varying with time) is unsuitable for perceptual
coding. For example, the superposition of two sine waves
with a phase difference produces very different signals in
the temporal domain (see Figure 1). However, since the
human ear is insensitive to phase differences [17], it will
not perceive any significant difference. In general, most
perceptive dimensions (e.g., loudness, timbre) have no
obvious signal counterpart [18].

Most of the work in signal-based classification performed
to date exploits general-purpose features which are well
known, are well understood, and have a precise mathematical
definition. Indeed, technical features for describing signals
abound in the huge body of signal processing literature; see,
for example, [19]. A limitation to these methods is that the
designer of a signal classifier has to select an adequate feature
set based on intuition. Although this step is crucial to the
design of an overall classifier, it tends to be neglected in the
literature. The manual selection of features is a source of
suboptimal solutions, and more importantly, gives the whole
process of signal classification a debatable epistemological
status. How can we interpret the performance of a classifier
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which uses manually designed features? In particular, what
happens if other features had been used instead?

Applying automated feature generation to signal clas-
sification is a promising avenue, as it may produce better
features than those designed by humans. More importantly,
feature generation replaces manual feature design by a
systematic search process. Ritthoff et al. [20] proposed to
combine feature generation and feature selection algorithms,
and applied them to the interpretation of chromatography
time series. They confirmed that generated features per-
formed better as a feature set than the raw time series data.
Recently, feature generation ideas have spread into many
domains of signal classification. Lim et al. [21] describe an
approach for hand-written Chinese character recognition, in
which high-level signal features are constructed using the
explanation-based learning (EBL) framework. The feature
construction process in EBL emphasizes the use of domain-
specific knowledge in the learning process, using expla-
nations of training examples. Similar improvements were
reported with approaches based on general image features.
In the engineering domain, Guo et al. [22] describe a feature
generation approach to fault classification. They use a small
set of transformation operators to produce features of the
raw vibration signals from a rotating machine. The same
framework was applied to breast cancer diagnosis [23] with
similar conclusions. In the biology domain, Dogan et al.
[24] describe a feature generation algorithm for analyzing
sequences, applied to splice-site reduction. Details on the
feature generation algorithm were not provided, but they
did report an improvement of around 6% compared with
traditional approaches using well-known features. Similarly,
speech prosody classification was addressed by Solorio et al.
[25], applying ideas from computer vision to the definition
of the primitive operators from which features are generated.
More recently, Eads et al. [26] generalized their earlier work
on lightning classification [27], by proposing a grammar-
based approach for generating Matalab code to extract fea-
tures from time series, similar to the work of Markovitch and
Rosenstein [12]. Krawiec and Bhanu [28] extended earlier
work [14] on coevolutionary feature generation, applying it
to 3D-object recognition using a method in which several
populations evolve simultaneously.

1.3. Audio Feature Generation. Audio classification has
received a great deal of attention due to the explosion of
electronic music distribution, and many studies have been
devoted to finding good feature sets to classify signals into
perceptual categories [29]. Most of this work addresses
the issues of feature selection, classifier parameter tuning,
and the inherent difficulty in producing reliable “ground
truth” databases for training and testing classifiers. General-
purpose feature sets have been applied to a great variety of
musical classification tasks.

Much previous work has been based on the so-called
“bag-of-frames” (BOFs) approach [30]. This approach han-
dles the signal in a systematic and general fashion, by slicing
it into consecutive, possibly overlapping frames (typically
50 milliseconds) from which a vector of short-term features

is computed. These vectors are then aggregated, and fed
to the rest of the chain. The temporal succession of the
frames is usually lost in the aggregation process (hence
the “bag”), and Aucouturier and Pachet [31], Aucouturier
[32] showed that preserving the order does not generally
improve the performance. First, a subset of available features
is identified using a feature selection algorithm. Then, the
feature set is used to train a classifier from a database of
labeled signals (training set). The classifier is then tested
against another database (test set) to assess its performance.
The BOF approach is the most natural way to compute a
signal-level feature (e.g., at the scale of one entire song).

The BOF approach is highly successful in the music
information retrieval (MIR) community, and has been
applied to virtually every possible musical dimensions:
genre classification [33, 34]; instrument classification [35,
36]; percussion instrument classification [37, 38]; audio
fingerprinting [39]; noise classification [40]. It has also been
applied to identification tasks, such as vocal identification
[41] and mood detection [42]. The BOF approach achieves a
reasonable degree of success on some problems. For instance,
speech music discrimination systems based on BOF yield
almost perfect results [43], as do carefully designed music
genre classifiers. However, the BOF approach has limitations
when it is applied to more difficult problems. Although
classification difficulty is hard to define precisely, it can
be observed that problems involving classes with a smaller
degree of abstraction are usually much more difficult than
others. For instance, we have noticed that genre classification
works well to differentiate between abstract, large categories
(Jazz versus Rock), but its performance degrades for more
precise classes (e.g., Be-bop versus Hard-bop). For such
difficult problems, the systematic limitations of BOF, referred
to as glass ceilings [44], immunize it to all known techniques
for improving classifier performance (e.g., feature selection,
boosting, parameter tuning).

The realization that general purpose features do not
always represent relevant information in signals from diffi-
cult classification problems was at the origin of the develop-
ment of extractor discovery system (EDS), probably the first
audio feature generation system [45, 46]. This paper provides
a survey of the most important technical contributions
of this work regarding current feature generation studies,
and reports on its applications to several difficult audio
classification problems.

Recently, researchers have recognized the importance of
deriving ad hoc domain-specific features for specific audio
classification problems. For instance, Mörchen et al. [47,
48] performed an extensive study of a large set of bag-of-
frames features that were obtained from a cross-product of
general short-term features using several temporal aggre-
gation methods. The result was a space of about 40,000
features. Their systematic evaluation showed that some of
these features could improve the performance of a music
genre classifier, compared with features used in the literature.

An interesting approach to audio feature generation, with
similar goals to EDS, was pursued in parallel by Mierswa
and Morik [49], based on earlier work on time series feature
generation [20]. They proposed a framework for extracting
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domain-dependent “method trees”, representing ad hoc
features for a time series. They applied their framework
to music genre classification and reported an improvement
over approaches that use off-the-shelf audio features [50].
The proposed method trees are essentially BOF features
constructed from basic audio operators, with the addition of
a complexity constraint (method trees are designed to have
polynomial complexity). Using this method, Schuller et al.
[51] reported an improvement in classifier performance in
the domain of speech emotion recognition.

In this paper, we describe two contributions to the field
of signal feature generation, with an emphasis on the most
important aspects for successfully generating “interesting”
audio features. First, we describe a generic framework,
EDS, which has been specialized for the generation of
audio features and is used for supervised classification and
regression problems. This framework uses analytical features
to generally represent audio features. The framework bears
some similarities with other feature generation frameworks
such as those by Markovitch and Rosenstein [12] and
Mierswa [50]. Notably, EDS uses genetic programming
as a core generation algorithm to explore the function
space. However, it differs from other work in signal feature
generation in that it was specifically designed to integrate
knowledge representation schemes about signal processing.
Specifically, we graft type inference, heuristics, and patterns
onto analytical features (AFs) to control their generation.
Second, we describe several projects using EDS to solve
difficult audio classification tasks, thereby extending the
usual scope of examples used in the literature. We report on
the main results achieved, and emphasize the lessons learned
with these experiments.

2. Analytical Features

In this section, we introduce the notion of analytical features
(AFs), which represent a large subset of all possible digital
signal processing functions having an audio signal as input.
We also introduce the algorithms that generate and select AFs
for supervised classification and for regression problems.

2.1. Origin. Previous work in musical signal analysis has
addressed the automatic extraction of accurate high-level
music descriptors. Scheirer’s tempo algorithm ([52], see
Figure 2) is a prototypical example of a complex function
implementing a high-level musical feature (the tempo) from
a raw music signal (taken from a CD). This example clearly
shows that the design of a good audio feature involves engi-
neering skills, signal processing knowledge, and technical
know-how. The initial motivation for EDS originated from
the observation that manually designing such a descriptor is
costly, yet to a large extent it could be automated by a search
algorithm. In fact, a careful examination of Scheirer’s seminal
tempo paper reveals that many of the design decisions for the
tempo extractor were arbitrary, and could be automated and
possibly optimized. By examining other high-level feature
extractors, it could be seen that there are general patterns in
the way features are constructed. These observations have led
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Figure 2: The tempo extractor from Scheirer [52] is a typical
example of a high-level audio feature.

to the design of a system that automates the construction of
high-level features in the context of supervised classification
tasks. The key issue was not so much the algorithm, but
rather the encoding of the necessary knowledge to guide this
search.

An important source of inspiration was the automated
mathematician (AM) system [53]. This system invented
mathematical conjectures based on a set of primitive opera-
tions which were gradually combined using a set of powerful
and general heuristics. Although AM was a milestone in
AI, the a posteriori analysis by Lenat and Feigenbaum [54]
revealed that it had deep limitations, as summarized in the
famous quote, “machines only learn at the fringe of what they
already know” [55]. Indeed, AM and related systems could
explore only the fringe of the set defined by the initial basic
operators. However, AM’s success led to the development
of genetic programming [56], which is a general method
to search function spaces using genetic search [57], and
is systematically used in feature generation systems. AM
tutorial reconstruction by Haase [58] emphasized a crucial
aspect of AM that is at the heart of EDS’ design, notably the
concept of “representational density”. The foundations of this
concept are that syntactic constructions should be optimally
“interesting”, as the system will only concretely explore forms
which are relatively easy to generate. This remark was made
during the last days of AM, when it was noticed that no
interesting conjectures could be invented after the initial
frenzy of mathematical discoveries were made; this is the so-
called “AM malaise”.

The driving force behind the design of EDS and of
our primitive audio operators is that the generated features
should be optimally interesting (statistically) and simple
(syntactically). To this end, the feature generation should
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exploit a large amount of knowledge about signal processing,
as was demonstrated by Scheirer’s tempo example. Without
this knowledge, the feature space generated would be too
small to contain interesting features, or would include
features which are only superficially better than well-known
ones. Moreover, some kernels (e.g., Boolean or arithmetic)
embedded in classifiers (such as support vector machines,
SVMs) are able to automatically reconstruct implicit feature
combinations at the training phase [59]. These may incor-
porate domain-specific knowledge [60], and they eliminate
the need for an extra and costly feature generation phase.
Therefore, the primary task for feature generation is the
construction of features containing in-depth signal informa-
tion that cannot be extracted or reconstructed otherwise.
This “representational density” argument was translated
into a series of important extensions to the basic genetic
programming algorithm. These are described in the next
section, beginning with the definition of our core concept:
analytical features.

2.2. Analytical Features: A Subset of All Possible Audio Digital
Signal Processing Functions. Analytical Features (AFs) are
expressed as a functional term, taking as only argument the
signal as an input (represented here as x). This functional
term is composed of basic operators, and its output is a
value or vector of values that is automatically typed from
the operators using a dimensional type inference system. The
feature’s value is designed to be directly fed to a classifier,
such as a SVM, using a traditional train/test process.

AFs depart from approaches based on heterogeneous
data types and operations, such as that of Mierswa [50],
who distinguishes between basis transformations, filters,
functions, and windowing. In contrast, AFs are designed
with these simplicity constraints: (1) only one composition
operation is used (functional composition), and (2) AFs
encompass the whole processing chain, from the raw signal
to the classifier. The processing chain includes in particular
windowing operations, which are crucial for building signal
features in a BOF approach [49]. As explained above, a
signal of substantial length (say, more than a few hundred
milliseconds) is frequently sliced into frames rather than
being treated as a single time series. Features are then
extracted for each frame, and the resulting vector set is
aggregated using various statistical means, such as statistical
moments or Gaussian mixture models [47].

These operations are all included in the definition of
an AF, through a specific operator Split. For instance, the
following AF (1) computes the mel-frequency cepstrum
coefficients (MFCC) of successive frames of length 100
(samples) with no (0) overlap, and then computes the
variance of this value vector:

Variance (MFCC (Split (x, 100, 0))). (1)

This uniform view on windowing, signal operators, aggrega-
tion operators, and operator parameters introduces a great
deal of flexibility in feature generation. It also simplifies
the entire generation phase by eliminating the choice of
specific windowing or aggregation parameters. Note that AF

are not, by design, limited to BOF features (i.e., statistical
reductions of short-term features), nor are they limited to
polynomial-complexity features as are other feature genera-
tion approaches [49]. AFs can express arbitrary signal func-
tions, and might not make obvious sense. For instance, the
following AF (2) computes a complex expression involving a
low-pass filter, whose cutoff frequency is itself computed as
the maximum peak of the signal spectrum:

MaxPos(FFT(Split(FFT(LpFilter(x,MaxPos(FFT(x))),

100, 0))),
(2)

where FFT indicates a fast Fourier transform. To be manip-
ulated efficiently, each AF is associated with a dimensional
type, inferred automatically by a type inference system.
These types, introduced in the next section, form the basis
for implementing random function generators, for defining
powerful heuristics, and for guiding the search through
feature patterns.

It is important to note that AFs, by definition, do not
capture all possible digital signal processing (DSP) functions
that could be used as audio features, that is, that reduce
a signal to a lower-dimensional vector. For instance, most
programs written using an imperative programming style
cannot be expressed as AFs. It is difficult to give a precise
semantic definition of the space covered by AFs (this is an
interesting avenue of research currently being investigated).
As we will see below, Scheirer’s tempo extractor can be
reasonably well represented as an AF, as well variations about
this feature. But it is easy to devise other DSP functions
which cannot be expressed as AFs. We chose to restrict our
investigation to AFs for a number of reasons.

(1) The space of “reasonable size” AFs is huge, and likely
contains features which are sufficiently good for the
problem at hand. The number of AFs of size (number
of operators) less than 10 is estimated to 1020

[61], even without accounting for the combinatorial
exploration of operator parameters.

(2) Thanks to their homogeneity and conceptual sim-
plicity, AFs can be easily typed, which eases the
implementation of control structures (e.g., heuristics,
function patterns, and rewriting rules), as explained
below. Without these control structures, the gen-
eration can only superficially improve on existing
features. Consequently, AFs are a good compromise
between BOF features, as generalized by Mierswa
[50], and arbitrary DSP programs [26], whose auto-
matic generation is notoriously difficult to control.

(3) Many non-AF functions can be approximated by
AFs or by sets of AFs. We give an example in
Section 3.1.2, where EDS is used as a regression
classifier to approximate a known audio feature that
is not included in the basic operator set.

2.3. A Dimensional Type Inference System. The need for
typing functions is well known in genetic programming
(GP), and ensures that the generated functions are at least
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syntactically correct. Different typing systems have been
proposed for GP, including strong typing [62], which explic-
itly represents the “programming” types (floats, vectors, or
matrix) of the inputs and outputs of functions. However,
for this application, programming types are superficial and
are not needed at the AF level. For example, the operator
absolute value (Abs) can be applied to a float, a vector, or a
matrix; this polymorphism provides needed simplicity in the
function expression. However, we do need to distinguish how
AFs handle the signals in terms of their physical dimensions,
since knowledge about DSP operators naturally involves
these dimensions. For instance, audio signals and spectrum
can both be seen as float vectors from the usual typing
perspective, but they have different dimensions. A signal
is a time-to-amplitude function, whereas a spectrum is a
frequency-to-amplitude function. It is important for the
heuristics to be represented in terms of physical dimensions
instead of programming types.

Surprisingly, to our knowledge, there is no type inference
system for describing the physical dimensions of signal
processing functions. Programming languages such as Mat-
lab or Mathematica manipulate implicit data types for
expressing DSP functions, which are solely used by the
compiler to generate machine code. In our context, we need
a polymorphic type inference system that can produce the
type of an arbitrary AF from its syntactic structure. The
design of a type inference system has been well addressed
in theoretical computer science [63]. The choice of the
primitive types is again determined by the representational
density principle, in which the most used types should be
as simple as possible so that heuristics and patterns can
be expressed and generated easily. Accordingly, we define a
primitive type system and type inference rules to apply to
each operator in the next section.

2.3.1. Basic Dimensional Types. In the current version of
EDS, we have chosen a dimensional type system based on
only three physical dimensions: time “t”, frequency “f ”, and
amplitude or nondimensional data “a”. All of the AF data
types can be represented by constructing atomic, vector, and
functional types out of primitive types.

“Atomic” types describe the physical dimension of a
single value. For instance:

(i) position of a drum onset in a signal: “t”,

(ii) cut-off frequency of a filter: “f ”,

(iii) amplitude peak in a spectrum: “a”.

“Functional” types represent data of a given type, which yield
a dimension of a different type. The target type is separated
from the data type using the “:” notation. For instance,

(i) audio signal (amplitude in time): “t : a”,

(ii) spectrum (amplitude in frequency): “ f : a”.

“Vector” types, notated “V”, are special cases of functions
used to specify the types for homogeneous sets of values. For
instance,

(i) temporal positions of the autocorrelation peaks of an
audio signal: “Vt”

(ii) amplitudes of autocorrelation peaks: “Va”.

Vector and functional notations can be combined. Currently
the type system is restricted to two-dimensional constructs.
For instance:

(i) a signal split into frames: “Vt : a”,

(ii) autocorrelation peaks for each frame: “VVa”

(iii) types like “VVVa” are currently not implemented.

Note that this notation is equivalent to the traditional
notation of type inference, where “:” is notated “→ ” and “V”
is notated “[]”. Also, there are many ways to represent DSP
function dimensions. For instance, the physical dimension
of frequency is the inverse of time, and we could use a
dimension system with exponents so that “f ” is replaced
by “t−1”. However, this involves a more complex type
inference system (e.g., the type of Energy would be a2).
More importantly, we did not identify knowledge (heuristics
or patterns) that would require such a detailed view of
dimensions. But our choice is arbitrary and has limitations,
as discussed in Section 4. Hereafter, in this paper, the word
“type” will mean “dimensional type”.

2.3.2. Typing Rules. For each operator, we define typing rules
so that the type of its output data is a function of its input
data types. For instance, the Split operator transforms

(i) a signal (“t : a”) into a set of signals (“Vt : a”);

(ii) a set of time values (“Vt”) into multiple sets of time
values (“VVt”).

These rules are defined for each operator, so that arbitrary
functions types can be inferred automatically by the type
inference system. For instance, the following AF is typed
automatically as follows (types are written as a subscript):

Min a(Max Va(Sqrt Vf:a(FFT Vf:a(Split Vt:a(x t:a,1024))))).
(3)

(In traditional type notation: Mina( Max[a] ( Sqrt[ f−>a]

(FFT [f−>a](Split [t−>a] ( xt−>a,1024)))).) This AF yields an
amplitude value “a” from a given input signal x of type “t : a”.

Equipped by a type system, EDS can support constructs
for pattern-based generators, heuristics, and rewriting rules.
These are described in the following sections.

2.4. The AF Generation Algorithm. AFs are generated with
a relatively standard function search algorithm. The main
goal is to quickly explore the most promising areas of the
AF space for a given problem. Like many feature generation
approaches, our AF generation algorithm is based on genetic
programming [56], one of the most convenient methods to
search a function space. The general framework is illustrated
in Figure 3. It bears some similarity with the framework
proposed by Markovitch and Rosenstein [12], and other
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Figure 3: The architecture of AF generation. AFs are evaluated
individually using a wrapper approach. AFs are selected for the next
population using a syntactic feature selection algorithm.

frameworks proposed since in the literature, such as Mierswa
and Morik [49]. As described in Section 2.2, AFs are designed
specifically to support a series of mechanisms that represent
operational knowledge about signal processing operators
(see Section 2.5). From a machine-learning perspective, most
feature generation frameworks use a wrapper approach to
evaluate generated features on the training set. Our approach
also differs in the way that AFs are evaluated (individually
in our case), and in how AF populations are successively
selected using a feature selection algorithm based on the
syntactic structure of AFs, as described in the next section.

2.4.1. Main Algorithm. The algorithm works on audio
description problems composed of a database containing
labeled audio signals (numeric values or class labels). The
algorithm builds an initial population of AFs, and then tries
to improve them through the application of various genetic
transformations. The precise steps followed by the algorithm
are the following:

(1) build an initial population P0 using random AFs,
possibly constrained by patterns,

(2) compute the fitness of each AF in the population. This
fitness depends on the nature of the problem and
other criteria, as explained in Section 2.4.3,

(3) if (Stop Condition): STOP, then RETURN the best
AFs,

(4) else, select the AFs with the highest fitness, and apply
transformations to them to create a population Pi+1,

(5) return to step (2) and repeat.

Arbitrary stop conditions can be specified. For example, a
stop condition can be defined as a conjunction of several
criteria.

(i) The maximum number of iterations is reached. The
search stops automatically after N populations.

(ii) The fitness of the population converges and ceases to
improve. That is, the fitness of the best function of
population Pi = the fitness of the best function of
population Pi−N , and this condition occurs after, say,
N = 5 unimproved populations.

(iii) An optimal AF is found. That is, the fitness is
maximal.

2.4.2. Genetic Operations. New populations are created by
applying genetic transformations to the best fitted functions
of the current population. These operations are relatively
standard in genetic programming. In addition to selection,
five transformations are used in EDS: cloning, mutation,
substitution, addition, and crossover.

(i) Cloning maintains the tree structure of a function and
applies variations to its constant parameters, such as
the cut-off frequencies of filters or the computation
window sizes. For example,

Sum(Square(FFT(LpFilter(Signal, 1000 Hz))))
can be cloned as

Sum(Square(FFT(LpFilter(Signal, 800 Hz)))).

(ii) Mutation removes a branch of a function and replaces
it with another composition of operators of the same
type. For example,

Sum(Square(FFT(LpFilter(Signal,1000 Hz))))
can be mutated into

Sum(Square(FFT(BpFilter(Normalize(Signal),
1100 Hz,2200 Hz)))).

(iii) Substitution, a special case of mutation, replaces a
single operator with a type-wise compatible one. For
example,

Sum(Square(FFT(LpFilter(Signal,1000 Hz))))
can be replaced by:

Sum(Square(FFT(BpFilter(Signal,1100 Hz,
2200 Hz)))).

Substitution typically corresponds to what a sound
engineer would do when replacing a low-pass filter by a
band-pass filter (see example above). Mutation, on the other
hand, corresponds to a more general principle: replacing
an elementary task by a more complex process, or the way
around.

(i) Addition adds an operator to form a new root of the
feature. For example,

Sum(Square(FFT(Signal))is an addition of
Square(FFT(Signal)).



8 EURASIP Journal on Audio, Speech, and Music Processing

(ii) Crossover cuts a branch from a function and replaces
it with a branch cut from another function. For
example,

Sum(Square(FFT(Autocorrelation(Signal))))
is a crossover between

Sum(Square(FFT(LpFilter(Signal, 1000 Hz))))
and Sum (Autocorrelation(Signal)).

In addition to the genetically transformed functions, the new
population contains a set of new randomly generated AFs,
thereby ensuring its diversity and introducing new opera-
tions to the population evolution. Random AF generators are
described in Section 2.5.2.

The distribution of the features in a population is as
follows: 25% are randomly generated; 10% are clones (of
the features kept from the previous generation); 10% are
mutations; 10% are additions; 10% are crossovers; 10% are
substitutions; 25% are random.

2.4.3. Evaluation of Features and Feature Sets. The evaluation
of features is a delicate issue in feature generation, as it
is well-known that good individual features may not form
a good feature set when they are combined with others,
due to feature interaction. In principle, only feature sets
should be considered during the search process, as there is no
principled way to guarantee that an individual feature will be
a good member of a given feature set. The approach taken
by Markovitch and Rosenstein [12] is conservative in this
sense, as feature interaction is considered up-front during the
search. However, they point out that there is both a risk to
narrowing the search and a high evaluation cost.

With experience based on our experiments with large-
scale feature generation, we chose another option in EDS,
in which we favor the exploration of large areas of the AFs
space. Within a feature population, the features are evaluated
individually. Feature interaction is considered during the
selection step used to create new populations.

Individual Feature Evaluation. There are several ways to
assess the fitness of a feature. For classification problems,
the Fisher Discriminant Ratio [64] is often used because it
is simple to compute and reliable for binary classification
problems. However, it does not adapt to multiclass problems,
in particular those with nonconvex distributions of data. To
improve feature evaluation, we chose a wrapper approach
to feature selection [65]. In this approach, features are
evaluated using an SVM classifier built during the feature
search, and there is a 5-fold cross-validation on the training
database. The fitness is assessed from the performance of a
classifier built with this unique feature. As we often deal with
multiclass classification (not binary), the average F-measure
is recommended to assess the classifier’s performance [66].
However, as training databases are not necessarily balanced
class-wise, the average F-measure can be artificially high.
Therefore, the fitness in EDS is defined by an F-measure
vector (one F-measure per class) of the wrapper classifier.
For regression problems, we use the Pearson correlation

coefficient [67]. Other methods also could be applied, such
as a wrapper approach with a regression SVM.

Note that training and testing an SVM classifier on a
single scalar feature require little computation time. Indeed,
the fitness computation is generally much faster than the
actual feature extraction.

Feature Set Evaluation: Taking Advantage of the Syntactic
Form of AFs. After a population has been created and each
feature has been individually evaluated, we need to select a
subset of these features to be retained for the next population.
Any feature selection algorithm could be used for this
purpose, such as InfoGain [68]. However, feature selection
algorithms usually require a calculation of redundancy
measures, for example, by computing correlations of a
feature’s values across samples [9]. As our features are all
AFs, we can take advantage of their syntactic expression to
efficiently compute an approximate redundancy measure.
This is possible because syntactically similar AFs have
(statistically) correlated value series [69]. Also, our algorithm
considers the performance of features in each class, rather
than globally for all classes.

Finding an optimal solution in a problem requires
a costly multicriteria optimization. As an alternative, we
propose a low-complexity algorithm as a one-pass selection
loop. First the best feature is selected, and then the next
best feature that is not redundant is iteratively selected,
continuing until the required number of features is reached.
The algorithm cycles through each class in the problem,
and accounts for the redundancy between a feature and the
currently built feature set, using the syntactic structure of the
feature. The algorithm is stated (in its simplest form) as in
Algorithm 1.

The syntactic correlation (s-correlation) between
two features is computed based on their syntactic form.
This not only speeds up the selection, but also forces the
search algorithm to find features with a greater diversity of
operators. S-correlation is defined as the tree edit-distance
[70] between two AFs. The edit distance uses specific edit
operation costs, taking into account the AF’s types. More
precisely, the cost of replacing operator Op1 by Op2 in an
AF is

if Op1 = Op2 return 0

else if (type(Op1) == type (Op2)) return 1

else return 2

To yield a Boolean s-correlation function, we compute the
edit distance for all pairs of features in the considered set
(the AF population in our case), and get the maximum
(max-s-distance) values for these distances. S-correlation
is defined as

s-correlation (f,g) :

return tree-edit-distance (f,g)

≤ 1/2∗max-s-distance

With this procedure, our mechanism can efficiently evaluate
individual features, allowing the exploration of a larger fea-
ture space. It also ensures a syntactic diversity within feature
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FS← {}; the feature set to build

For each class C of the classification problem
S← {non-selected features, sorted by decreasing performance wrt C};
For each feature F in S

If (F is not s-correlated to any feature in FS)
FS← FS + {F}; Break;

If (FS contains enough features) break;
Return FS;

Algorithm 1

populations. A comparison of this feature selection scheme
with an information-theoretic approach was performed for
the Pandeiro study, described in Section 3.3.

The syntactic correlation is used for the feature selection,
after the generation process. Using the syntactic correlation
during the generation is an open problem that is not
investigated in this article.

2.5. Function Patterns and Function Generators . Genetic pro-
gramming traditionally relies on the generation of random
functions to create the initial population and to supplement
the population at each iteration. However, relying on ran-
dom generation only, our experiments showed that feature
generation algorithms only explore a superficial region of
the search space, and do not find really novel features in
many cases. This limitation can be overcome by providing
specific search strategies to the system based on the designer’s
intuitions about particular feature extraction problems.

2.5.1. Patterns. To perform specific search strategies, we
constrain the random generation so that the system explores
specific areas of the AF space. Although there is no known
general paradigm to extract relevant features from the
signal, the design of such features usually follows regular
patterns. One pattern consists of filtering the signal, splitting
it into frames, applying specific treatments to each frame,
and aggregating the results to produce a single value. This
occurred in the beat tracking system described by [52]. That
system includes an expansion of the input signal into several
frequency bands, followed by a treatment of each band, and
concluded with an aggregation of the resulting coefficients
using various aggregation operators, ultimately yielding a
float value representing (or strongly correlated to) the tempo.

To represent this kind of knowledge, we introduce the
notion of function pattern. A function pattern is a regular
expression denoting subsets of AFs that correspond to
a particular building strategy. Syntactically patterns look
like AFs, with the addition of regular expression operators
such as “!”, “?”, and “∗”. Patterns make use of types to
specify the collections of targeted AFs in a generic way.
More precisely (the current system uses additional regular
expression tokens not described here, notably to control the
clarity of operators):

(i) “? τ” stands for one operator whose type is τ,

(ii) “∗ τ” stands for a composition of several operators,
all of which have types τ,

(iii) “! τ” stands for several operators whose final type is
τ (the types of the other operators are arbitrary).

For instance, the pattern “! a” represents all scalar AFs, for
example, Zcr(x), and the pattern “! Va” represents all scalar
vector patterns, for example, Mfcc(split(x, 521).

The following pattern represents a construction strategy
which abstracts the tempo extractor strategy investigated
manually by Scheirer [52]:

? a ( ! Va (Split(∗ t : a(x)))). (4)

This pattern can be paraphrased as follows.

(1) “Apply some signal transformations in the temporal
domain” (∗ t : a).

(ii) “Split the resulting signal into frames” (Split).

(iii) “Find a vector of characteristic values, one for each
frame” (! Va).

(iv) “Find one operation that aggregates a unique value
for the entire signal” (? a).

It can be instantiated by the following concrete AFs (5):

Sum a (Square Va(Mean Va(Split Vt : a(HpFilter t : a
(x t : a, 1000 Hz), 100))))

Log 10 a(Variance a (NPeaks Va(Split Vt : a
(Autocorrelation t : a(x t : a), 100), 10))).

(5)

Another typical example of a pattern, referred to as the BOF
pattern, is

(BOF) ? a(? Va(Hanning(Split(x, 512, 0.5)))).

This pattern imposes a fixed windowing operation with a
Hanning filter, on successive frames of 512 samples with a
50% overlap, and then allows one operation to be performed
for each frame (either in the temporal or spectral domain).
This is followed by an aggregation function, which is
typically a statistical reduction (including operators such
as Mean, Variance, Kurtosis, and Skewness). This pattern
corresponds approximately to the set of about 66 000 features
described and explored manually by Mörchen et al. [47].
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It is difficult to propose patterns corresponding exactly to
the method proposed by Mierswa [50], due to lack of
information about their system. However, it is likely that
their “method trees” could be reasonably approximated by
one or several AF patterns.

Another interesting example of a pattern is the BOBOF
pattern, in which windowing of various sizes is chained
together to produce a nonlinear aggregation method from
the short-term feature vectors:

(BOBOF) ? a(? Va(Hanning(Split(? Va(Hanning
(Split(x, 512, 0.5)))), 1024))).

Another pattern example is more complex:

(Another) ! Vt(! f : a(? t : a(x))).

It consists of transforming the signal to the spectral domain
and back to the temporal domain, eventually yielding a time
series. This pattern may be instantiated by the following AFs:

PeakPos Vt(FFT t : a(FFT f : a(Hanning t : a

( x t : a )))) or

PeakPos Vt(FFT t : a(Triangle f : a(FFT f : a(Arcsin t : a

(x t : a)))).

Patterns are used by AF generators to generate correspond-
ingly random AFs. The systematic generation of all possible
concrete AFs for a given pattern is a difficult task, but
is probably not needed. Instead, we designed a random
generator that generates a given number of AFs satisfying a
given pattern, as described in the following section.

2.5.2. Pattern-Based AF Generators. Most patterns can, in
principle, generate arbitrarily complex features. For several
reasons, we generate only simple features from a given
template, that is, the features should use the fewest possible
type transitions and should not be too long. The generated
features are kept simple since the subsequent genetic opera-
tions will later introduce complexity into them.

Technically, the main problem is the pattern “! τ”,
because it allows arbitrary type transitions. In its first
phase, our algorithm rewrites the pattern to an explicit type
transition, so that the final pattern no longer contains “! τ”.
Each “! τ” has an input type given by its child and an output
type τ. The explicit type transition is found by computing the
shortest type transition path between the input and output
types. This shortest path algorithm uses a type transition
table that contains all of the valid type transitions (some type
transitions are not possible for a given operator library).

For instance, the pattern ! Vt(! f : a(? t : a(x))) will be
rewritten as ∗ Vt(∗ t : a(∗ f : a(? t : a(x))) since no single
operator in the default library can transform a structure of
type f : a into a vector of type Vt. In other words, the shortest
path from f : a to Vt in the type transition graph is f : a →
t : a → Vt.

Once the pattern is rewritten in this form, it can be
completed by randomly drawing operators corresponding to

each variable type. For the case of “∗ τ”, a random number
n of operators between 1 and 10 are drawn first, followed by
n operators that are randomly drawn and chained together.

2.5.3. Heuristics. Most of the approaches used for feature
generation have been purely algorithmic. Genetic program-
ming is applied as the search paradigm, and generates
functions from primitive operators. The current literature
lacks descriptions about the details of the search sessions
produced. It appears that only relatively “simple” features are
generated, considering the information given in the primitive
attributes, the construction process [50], or in the grammars
[12].

Our AF framework does not behave in this way. Based on
random generation and the genetic transformation operators
as a search paradigm, our observations show that AFs rarely
converge to really interesting features, unless these features
are found quickly within the very first iterations of the search.

Another observation is that real world problems
described in the literature only partially reuse the proposed
frameworks (see, e.g., the text application by Gabrilovitch
and Markovitch [13], the work of Markovitch and Rosensein
[12], the application by Mierswa [50], or the speech emotion
classification by Schuller et al. [51]). This indicates that more
than frameworks is needed to build effective features, namely,
heuristics.

We introduce explicit heuristics to guide the search.
These heuristics represent know-how about signal processing
operators. Heuristics can promote a priori interesting func-
tions, or eliminate obviously noninteresting ones. They are
a vital component of EDS, as they were in AM. A heuristic
in EDS is a function that gives a score to an AF, ranging
from 0 (forbidden) to 10 (very recommended). The score
is determined prior to the AF’s effective construction and
integration into a population. These scores are systematically
used when EDS builds a new AF, to select the candidates
from all of the possible operations. In the current version
of EDS, these heuristics were designed and implemented
manually. The most interesting and powerful heuristics are
the following.

(i) Control the Structure of the Functions. AFs can in principle
have arbitrarily complex forms, including the form for the
arguments of operators (see AF (2) in Section 2.2). However,
it is rare that a very complex function is needed to compute
the value of a scalar argument (e.g., the cut-off frequency for
a high-pass filter). A heuristic can be used instead, where x
is the input signal, and Branch represents the sub-AF of the
argument of a HpFilter operator, considered as a potential
argument for HpFilter

! a(HpFilter(! t : a(x), Branch)=>Max(0, 5−Size(Branch)).

The resulting AF will be scored 5 if Branch is a constant
operator, 4 if its length is 1, and so on.

(ii) Avoid Bad Combination of Operations. There are specific
combinations of operators that we know are not of interest.
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For instance, multiple high-pass filters can be avoided using
the heuristic

! a(Split(Split(! t : a(x), ! a))) => 1.

This heuristic considers two consecutive Split operations to
be a bad composition. Note that this heuristic differs from
rewriting rules, which will simply combine filters.

(iii) Range Constant Parameter Values. Some heuristics con-
trol the range of parameter values for some operators. For
example, the following heuristic

! a(Envelope(! − a(x), Cst < 50 frames) => 1 governs the

size of the window when computing an envelope

(Cst represents a constant value), and

! a(Hpfilter(x, Cst < 100 Hz)) => 1

governs the cut-off frequency value of a filter.

(iv) Avoid Too Many Operator Repetitions. It is frequently
useful to compute the spectral representation of a signal
(FFT in concrete cases). In signal processing, it is also
common for an operation to be repeated twice. For instance,
MFCC coefficients can be seen as a “double FFT” of a
signal. However, it seems unlikely that three consecutive
applications of the FFT could generate interesting data.
This idea is easily represented as a heuristic, and can be
programmed explicitly using the number of occurrences of
a given operator (e.g., FFT). The pattern can be written as:
! a( FFT(! t : a(FFT(! f : a(FFT(! t : a(x))))) => 1.

(v) Avoid Too Many Type Repetitions. The ideas above
can be applied to types instead of concrete operators. In
particular, we wish to disregard compositions containing
several (i.e., more than 3) operators of the same type, in
particular when this type is scalar. For instance, expressions
like (Abs(Sqrt(Log(Sqrt( . . . contain many repetitions of
operators of type “a”, and are probably less interesting to
explore than AFs with a more balanced distribution of types:

? a(? a(? a(! t : a(x)))) => 1.

(vi) Favor Particular Compositions. There are recommended
compositions of operators; for example, it is useful to apply
a windowing function to each frame after a Split:

! a(Split (Hanning(! t : a(x)))) => 8.

Note that this heuristics can be generalized to any operator
which does not alter the type of its input (usually a signal,
“t:a”).

All of these heuristics can be considered as a manual
bootstrap that makes the system operational. Ideally, these
heuristics could be learned automatically by a self-analysis
of the system. Some work has begun in this domain (see
Section 4).

2.5.4. Rewriting Rules. Rewriting rules simplify functions
prior to their evaluation and speed up the search. Rewriting
rules are rudimentary representations of DSP theorems.
Unlike heuristics, they are not used by the genetic algorithm
to favor combinations, but they do impact the search by

(i) avoiding the need to compute a function multiple
times with different but equivalent forms. For exam-
ple,

Correlation(x, x) => Autocorrelation(x), or

HpFilter(HpFilter(x, a), b) => HpFilter(x, max(a, b));

(ii) reducing the computational cost. For example, Par-
seval’s equality ([71], see below) avoids computing a
possibly costly FFT of a signal.

The rules are triggered iteratively using a fixed-point algo-
rithm until a normal form is obtained [72]. The confluence
of our rule set has not been proven, but is likely to occur as
symmetry was avoided. Here are the most useful rewriting
rules used by EDS:

(i) Abs(Abs(X)) => Abs(X),

(ii) Hpfilter (X , 0) = X ,

(iii) Envelope (X , 1) = X ,

(iv) Envelope(Abs(X), w) => Envelope(X , w),

(v) Abs(FFT(X)) => FFT(X),

(vi) Abs(Square(X)) => Square(X),

(vii) (Parceval) Mean(FFT(Square(X)) = Sum(Square
(X)),

(viii) Var(X) = Mean(Square(X−Mean(X))) = Mean
(Square(X)−Square(Mean(X)),

(x) Max(Autocorr(X)) = Sum(Square(X)) = Autocorr
(X)(0) = E(X).

2.5.5. Computation of AFs. In contrast to most approaches
in feature generation, AFs are not computed in isolation,
but are computed globally for a whole population. This
approach reduces the number of computations by exploiting
the redundancies between features in each population. When
a population is generated, a tree representing the set of
all AFs is also generated. Each subsequent set of operators
is then computed once (for each sample in the training
set), using a bottom-up evaluation of the population tree.
The increase in computational efficiency ranges from a
factor of 2 to 10, depending on the patterns used and the
population variability and size. This computation can be
easily distributed to several processors.

2.6. Basic Operators: The “General” Library. The design of
the primitive operators is essential, but this topic has yet not
been addressed in the feature generation literature. Currently
this choice must be done by the user, for example, by the
use of a grammar. This choice is complex because many
of the features generated by traditional techniques can now
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be produced systematically by kernel-based classifiers. For
instance, features generated by Boolean or simple mathemat-
ical expressions can be easily reconstructed using Boolean
kernels [73]. Conversely, the representational density princi-
ple suggests that generated features should be kept as simple
as possible, analytically. Operators should therefore embody
signal characteristics that are useful for general purpose
feature construction. For instance, a “filter” operator that
applies to any signal will be useful. Conversely, too specific
operators will not lead to interesting constructions. An
operator such as “log-attack-time” is not relevant outside of
specific attack detection applications, so it was not included.
A mathematical “plus” operator is also problematic, as it will
generate an exponential growth in the feature space size and
will be difficult to control.

Here follows a description of operators in the basic
version of EDS. Note that a signal is considered as a vector
of values (following the time/amplitude representation). In
the following descriptions, we generally use the term “vector
of values”. We use “signal” only when it makes the description
clearer.

Abs: the absolute value

Arcsin: the arc-sinus

AttackTime: the duration of the attack of a signal does a low-
pass filter at 50 Hz and then computes the duration
in seconds of the attack (the attack is for amplitudes
between 20% and 80% of the max value of the signal)

Autocorrelation: the autocorrelation of a signal computed
using the FFT

Bandwidth: the width of the highest peak at a percent
threshold of the peak; the threshold is a parameter of
this operator

BarkBands: computes the sums of amplitudes in filtered
Bark bands covering the whole spectrum (all bands
have the same size in terms of Bark pitches)

Bartlett: applies a Bartlett filter

Blackman: applies a Blackman filter

BpFilter: band-pass filter

Centroid: the Centroid of a vector of values

Chroma: computes the average of amplitudes of a signal in
filtered pitch-bands covering the whole spectrum; all
bands have the size of one pitch, and all pitches are
wrapped onto a single octave

Correlation: correlation computed using FFT

dB: dB scale: 20 × log10(x)

Differentiation: the first derivative of a vector of values:
the vector containing the differences of successive
elements in the input vector

Division: divides every value by a constant parameter

Envelope: the outline of the signal. It is a signal that connects
all the peaks of the input signal. We calculate it using
the Hilbert transform

FFT: the discrete Fourier transform of a signal, based on
FFTW

FilterBank: bandpass filters the signal across n band of
equals width

Flatness: measures the flatness of a signal

Hamming: applies a Hamming filter

Hann: applies a Hann filter

Hanning: applies a Hanning filter

HarmSpectralCentroid: the Harmonic spectral Centroid is
computed as the average over of the instantaneous
harmonic spectral Centroid within a running window.
The instantaneous spectral Centroid is computed as
the amplitude (linear scale) weighted mean of the
harmonic peaks of the spectrum

HarmSpectralDeviation: the Harmonic Spectral Deviation
is the average of the instantaneous harmonic spectral
deviation within a running window. The instanta-
neous harmonic spectral deviation is the spectral devi-
ation of amplitude (logarithmic scale) components
from a global spectral envelope

HarmSpectralSpread: the harmonic spectral spread is the
average of the instantaneous harmonic spectral spread
within a running window. The instantaneous har-
monic spectral spread is the amplitude (linear scale)
weighted standard deviation of the harmonic peaks
of the spectrum, normalized by the instantaneous
harmonic spectral centroid

HarmSpectralVariation: the harmonic spectral variation is
the mean of the instantaneous harmonic spectral vari-
ation. The instantaneous harmonic spectral variation
is the normalized correlation between the amplitude
(linear scale) of the harmonic peaks of two adjacent
frames

HFC: the high-frequency Content: taken across a sig-
nal spectrum. It characterizes the amount of high-
frequency content in the signal (the magnitudes of the
spectral bins are added together, after mutliplying each
magnitude by the bin “position” (proportional to the
frequency))

HpFilter: high-pass filter

Integration: the cumulated sum of values of a vector

Inverse: 1/x

IQR: the Interquartile range of a vector of values: the
difference between the percentile at 75% and the
percentile at 25%
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Length: the number of items in a vector

Log10: log10(x)

LpFilter: low-pass filter

Max: the maximal value of any vector of values

MaxPos: the index of the maximal value of a vector

Mean: the mean value of a vector

Median: the median value of a vector

MelBands: computes the sums of amplitudes in filtered Mel
bands covering the whole spectrum (all bands have the
same size in terms of Mel pitches)

Min: the minimal value of a vector

Mfcc0: the Mel-Frequency Cepstral coefficients of a signal,
including the coefficient 0 (the energy)

Mfcc: the Mel-Frequency Cepstral coefficients of a signal

Multiplication: multiplication by a constant

Normalize: normalizes a signal

Nth: the value of the nth item in a vector

PeakPos: returns the positions of all the peaks of a signal

Percentile: for a vector v of values, of length l , and a
parameter p ∈ [0, 1], sorts the values of v in increasing
order, and returns the value at position p× l (rounded
if p × l is not an integer)

Pitch: the pitch of a signal computed using the spectral
multiplication method

PitchBands: computes the sums of amplitudes in filtered
pitch bands covering the whole spectrum

Power: for a parameter n , returns xn

Range: difference between the max and min values of a
vector of values

RemoveSilentFrames: takes a list of frames and returns the
list without the silent frames (frames with only 0s)

RHF: the ratios of High-Frequencies of a signal: the sum of
the squares of the high frequency half of the spectrum
divided by the sum of the squares of the low frequency
half of the spectrum

RMS: Root Mean Square, the mean energy of the signal

SpectralCentroid: the first moment of the spectrum: the
brightness of the sound

SpectralDecrease: measures the decrease of the spectrum
energy with perceptive criteria

SpectralFlatness: measures the similarity of the spectrum to
a white noise

SpectralKurtosis: smoothness of the spectrum compared to
a Gaussian distribution (4th moment)

SpectralRolloff: frequency under which most of the energy
is found in the spectrum (rough approximation of the
cut frequency between harmonic signal and noise)

SpectralSkewness: the dissymmetry of the sprectrum com-
pared to a Gaussian distribution (3rd moment)

SpectralSpread: the spread of the spectral energy around the
Centroid

Split: splits the input signal in constant-size frames (size is
specified as an argument); returns the list of frames

SplitOverlap: idem Split, except with overlapping; the over-
lapping factor is a parameter

Sqrt: the squared-root of a value

Square: the square of a value

Sum: the sum of the values in a vector

Triangle: applies a triangle filter to a signal

Variance: the first statistical moment

ZCR: the zero-crossing rate of a signal

Harmonicity: the degree of acoustic periodicity, also called
harmonics-to-noise ratio (HNR); see Praat, [74]

LTAS: the long-term average spectrum; see Praat, [74].

3. Experiments

Many experiments were conducted with the EDS system
to evaluate the extent that interesting AFs are found for
difficult audio classification tasks. Several systematic studies
are reported by Zils [46], including the detection of a
singing voice in polyphonic recordings, the classification of
musical instruments, and the classic problem of music genre
classification. Music genre classification has received a lot of
attention in music information retrieval research. Although
it has been shown that existing large-scale music taxonomies
are inconsistent with each other [75], several works have
addressed the problem of automatic classification for small-
scale genre taxonomies based on the acoustic properties of
music signals (see, e.g., [33]). As are most music classification
systems, published music genre classifiers are based on
statistical aggregation of short-term features of signals.
Because of its relative simplicity, four-genre classification has
become a textbook case for signal classification research.
The problem also provides a typical example in which AFs
are useful. Zils [46] reports an improvement due to the
use of AFs over known BOF features in four-class genre
classification; the four easily distinguishable musical genres
are Dance, Hip-Hop, Symphonic Classical, and Pop/Rock
(see Table 1). Similarly, Mierswa [50] reports good results,
although no comparison was made with other approaches
on the same data set.
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Table 1: Performance of AFs generated for a four-class music genre problem [46].

Perf train Perf test Feature

Best features
REF 58% 53% Variance(Bandwidth(Envelope(FFT(Split(x, 250)), 50), 10))

EDS 61% 64% Log(Range(SpectralSpread(Hann(Split(Blackman(x), 153)))))

Best classifiers
REF 79% 80% Multilayer perceptron (23 features, 3 layers)

EDS 82% 80% kNN (25 features, 8 neighbors)

However, it should be noted that in all cases, the features
found by Zils [46] or by Mierswa [50] fall into the category of
BOF features. We do not think that music genre classification
is an interesting example for deriving more complex features,
because current systems (including our own approach)
already achieve about 80% performance; the remaining error
is mostly due to the difficulty of defining the “ground truth”
precisely.

Applications in less studied domains were also per-
formed. Interestingly, initial attempts to apply EDS to chord
recognition problems showed reasonable performance, but
without improvement over existing approaches [76]. Subse-
quent comparative studies using an improved version of the
basic operator library were performed on f0 estimation and
chord recognition problems [77]. These studies showed that
EDS is able to match and occasionally surpass traditional
ad hoc approaches which are known to be particularly
efficient and difficult to improve. A study concerning urban
sounds analysis considered the use of AFs for hierarchical
classification [78], and similarly concluded that there are
advantages of AFs over standard methods. For movie
remastering, Monceaux et al. [79] showed that perceptive
descriptors built with AF could be used to automate the
tedious task of audio upmixing. All of these studies reported
substantial improvements in classification using AFs over
state-of-the-art audio features.

In the following sections, we describe the results obtained
with AFs on several difficult audio classification tasks, and
report on the most salient aspects of these studies.

3.1. Artificial Experiments. In this section, we describe two
artificial experiments aimed at situating AFs empirically in
the space of “known” features. The first problem demon-
strates that a single AF can perform better than a hundred
known, generic features. The second experiment shows the
reverse, that AFs can approximate a known feature.

3.1.1. The Pink Noise Experiment. The problem we consider
here, briefly sketched by Pachet and Zils [80], consists of
detecting a sinus waveform in a given frequency range
(say, 0–1000 Hz), mixed with a powerful colored noise in a
separate frequency range (1000–2000 Hz). Since the colored
noise is the most predominant characteristic of the signal, we
show that generic features are unable to detect the isolated
sinus. For instance, examining the spectrum of a 650 Hz
sinus mixed with a 1000–2000 Hz colored noise (Figure 4),
the peak of the sinus is visible but not predominant; thus it is
hard to extract automatically with general spectral features.
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Figure 4: (a) A spectrum of a 650 Hz sinus mixed with 1000–
2000 Hz colored noise. (b) A spectrum of a 650 Hz sinus mixed with
1000–2000 Hz colored noise, prefiltered by a 1000 Hz low-pass filter.

Of course, this problem is easy to solve manually
with knowledge of how these signals are constructed.
Prefiltering can be applied to cut off most of the colored
noise frequencies, allowing the sinus to emerge from the
spectrum. Figure 4 shows the sinus peak emerging when the
signal is low-pass filtered, thus it becomes easier to extract
automatically.

Although simple, this problem cannot be adequately
solved using generic features. This is demonstrated in the fol-
lowing experiment. We build a database of sinus plus colored
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Figure 5: Results of the Pink noise experiment. The plain line is the
performance of AFs, and the dotted line is the reference features.
One AF is enough to solve the problem perfectly, whereas a feature
set of dimension 100 with generic features cannot. The difference is
even more drastic for smaller feature sets.

noise with varying values for the sinus (from 0 to 1000 Hz).
Each signal is labeled with the corresponding frequency of
the sinus. We then train two regression classifiers for this task.
The first one (called REF) is trained with a “generic feature
set” and contains features taken from the Mpeg-7 audio
standards; it has dimensions varying from 1 to 100 (details in
[61]). The second one (called EDS) is trained with AFs built
specifically for this problem. EDS explored about 40 000 AFs
to find an almost optimal AF for this problem, using the most
general pattern “! a”. The result is illustrated in Figure 5.
This shows clearly that one analytical feature (dimension 1)
can solve the problem almost perfectly, whereas a full set of
generic features (dimension 100) cannot. The best analytical
feature found by EDS is the following:

(A) MaxPos(FFT(Integration(BpFilter
(Hamming(x), 10, 500)))).

This AF (A) is easy to interpret, and does almost exactly what
should be done in this case, although probably not in the
simplest way. Its fitness (Pearson coefficient) is .99. The most
likely human feature, based on knowledge of the database
creation process, would be something like

(H) MaxPos(FFT (LpFilter (x, 1000))).

This theoretically perfect feature is also good (fitness = 0.87),
but it has a slightly lower fitness than (A). This shows
incidentally that the best features are in practice not always
the most justified, mathematically.

3.1.2. Approximating a Known Feature. The second exper-
iment assesses how well AFs can approximate a known
feature, which is not expressible directly, using the operator
library. To this end, we chose an audio feature called
“spectral compactness”, with an implementation available

from the jAudio feature extraction library [81]. This feature
is described as follows (p. 603, ibid.): “Compactness is
closely related to Spectral Smoothness as defined by McAdams
[82]. The difference is that instead of summing over partials,
compactness sums over frequency bins of an FFT. This provides
an indication of the noisiness of the signal.”

We do not know the details of the implementation
of this feature, nor the feature’s precise definition, but
they are not needed here. The aim of this experiment is
to see how “reachable” this feature is, using the set of
generic features and using AFs. Because spectral features
are known to be correlated, and because MFCC coefficients
are known to well represent spectral information in general,
we conducted several experiments to show that spectral
compactness is not easily reached from other known sets
of generic features. We used a database of 2500 percussion
sounds described by Roy et al. [83]. We used patterns
“! a”, “! f (! V f (! f : a(! t : a(x))))”, and the usual BOF
pattern “? a(? Va(Hanning(Split(x, 512, 0.5))))”. The results
are illustrated in Figure 6.

We can see that the performance gain of analytical
features increases as the size of the feature set decreases,
with a spectacular result from single features (84% versus
43%). Additionally, Figure 6 shows that AFs outperform all
the specific feature sets considered here: general spectral
features, MFCC, and the entire set of general features! EDS
produced the following analytical feature, an instantiation of
the pattern “! f (! V f (! f : a(! t : a(x))))”:

Abs f (Sum f (Integration V f

(PeakPos V f (FFT f :a(HpFilter t:a

(Derivation t:a(x t:a), 3969)))))).

This AF yields a correlation coefficient of 0.79. This is an
interesting result, since it contains operators that explicitly
appear in the definition of spectral compactness (see above).
However, EDS produced an even better analytical feature,

(EDS) Abs(Centroid(Hanning(Variance(Derivation(Split

(x, 882)))))),

whose correlation with spectral compactness is over 0.84. As
a comparison, the best reference feature identified is

(BestRef) HarmonicSpectralDeviation(Hanning(x)).

3.2. Perceived Intensity. One of the first problems addressed
by EDS was the perceived energy problem (also called the
subjective intensity problem). Perceived energy relates to the
relative energy levels that listeners intuitively attribute to
different songs played at the same volume level. For example,
a punchy punk-rock song with loud saturated guitars and
screaming voices sounds relatively “more energetic” than,
say, an acoustic guitar ballad with a soft voice. To model
this subjective impression, users were asked to label musical
extracts of various genres with the “energy felt”, independent
of the listening volume [84]. We collected more than 2600
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Figure 6: (a) A performance comparison of analytical versus
reference features, for various feature set dimensions. AFs perform
better, and the improvement is more important for feature sets of
small dimension. (b) A comparison of various regression classifiers
to approximate the “spectral compactness” feature. The best AF
yields a performance of 85%. It outperforms (1) the best reference
feature (43%); (2) a feature set with 6 general spectral features
(19%); (3) the 10 first MFCC (38%); and (4) the whole set of
reference features of dimension 100 (83%). A set with the 100 best
AFs further improves the correlation up to 90%.

answers, about 12-13 answers per title. A consensus for the
perceived intensity value was found for each title, using a
process that eliminated extreme values, assigned a numeric
value to each energy level (normalized between 0 for “Low”
and 1 for “Very High”), and computed the mean value
from this normalized data. To evaluate the relevance of
this intensity value, we computed the standard deviation
of the results for all of the listeners. For 200 titles (98%),
the standard deviation was less than the distance between
two successive categories (0.33), so the mean value was
assumed to be a correct evaluation of the intensity. The
remaining 2% of titles were removed from the database,
as their intensity was considered to be too indefinite to be
evaluated automatically. The resulting intensity values were
used as ground truth to train EDS and to perform feature
selection. We proceeded the same way on a second series of

perceptive tests, building a 200-title database to test the AFs
and classifiers.

A statistical analysis of these tests showed that musical
energy is a consensual concept, that is, most users perceive
the same energy for the same songs, with a 10% statistical
variance. We then built two labeled databases of 200 signals,
each of length 5 s and at 11025 Hz; one database was used for
training and the other was used for testing. The results are
shown in Table 2.

We then proceeded to compare three different feature
sets. The first set was obtained from 30 low-level Mpeg-7
descriptors, extracted from Herrera et al. [85]. The second
set was composed of manually derived AFs based on our
“intuition” about perceived intensity, in which the intensity
is related to the tempo, or more generally, to energy
variations of the signal. Several new features were built out
of intuitive concepts. Using the template of Scheirer’s tempo
extractor [52], we manually designed AFs describing the
signal energy variations. We then correlated these features
with the perceptive tests. The strongest correlated AF was
found (by hand) to be

(hand) Log(Variance(Derivation(Energy(x))))

with a correlation of 0.57 with the perceptive tests. This
AF relates to the amplitude and frequency of the signal’s
raw energy. As a comparison, the tempo that was extracted
automatically with Scheirer’s method yielded a correlation of
0.55.

The third set of AFs was derived automatically by EDS
using the AF BOF pattern (see Section 2.5.1). After evolving
over 22 populations, 100% of the AFs created by EDS were
found to perform better than the best Mpeg-7 features on
the training database. They also yielded 91% accuracy on the
test database.

The best AF found by EDS was:

(BestEDS) Square (Log10 (Mean (Min (FFT (Split

(x, 4009))))))

with a fitness (Pearson correlation coefficient) of 0.744 on
train, and 0.812 on test.

It is interesting to examine how EDS yielded its best
AFs. At first, EDS found AFs close to the Mpeg7 low-level
descriptors, but it eventually improved upon them with
various types of preprocessing. For instance, EDS found:

(Mpeg7) Mean(SpectralSkewness(Split(x, 4410))),

which yielded a fitness (Pearson correlation) of 0.60. Then,
EDS found AFs which were close to the empirically dis-
covered Scheirer-inspired feature, although they had been
improved with additional operators. The AF with the
strongest correlation was:

(Empirical) Mean(Log(Variance(Split(Derivation

(Square(x)),1)))),
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with a correlation coefficient of 0.64. Finally, EDS found
really novel features, such as:

(newEds) Sqrt(Min(Sum(FFT(Split(x, 1))))),

which yielded a fitness of 0.69, as well as the best feature
shown above (BestEDS).

Interestingly, these findings (notably feature Mpeg7) were
confirmed by a larger-scale manual study by Sandvold and
Herrera [86], using a traditional feature selection approach
(by definition,they could not find the other features found by
EDS). To conclude our study, we evaluated the performances
of classifiers built with the optimal combination of the
resulting AFs. After running a final selection, EDS retained 24
features to use in the final energy classifier. The best method
found was a kNN that yielded a score (accuracy) of 78.2% on
train, and 85.1% on test. It combined both Mpeg7 and the
best AFs found by EDS. The model error of this best classifier
was 11.3%. Considering the 10% variance on the perceptive
tests, we believe that EDS found a virtually optimal model
for this problem. The performances of these classifiers are
compared in Table 2.

The study of perceived energy was an interesting one,
since it demonstrated that EDS can outperform any available
general-purpose feature set, and because the results were
confirmed by a later manual study.

3.3. Classification of Pandeiro Sounds. Analytical audio fea-
tures can naturally be used to classify instrument sounds.
Some small-scale studies were reported by Zils [46] for
instrument databases, again demonstrating improvements
using AFs compared with general-purpose features. How-
ever, the limitation to these kinds of study is the difficulty
of building reference ground truth databases [87]. As a
consequence, any deficiencies in these classifiers cannot be
attributed with certainty to their features. Some studies have
addressed the sub-problem of drum sound classification,
for which the ground truth issue is less salient; however,
since the use of traditional feature sets results in excellent
performance, this suggests that the problem is not a very
difficult one [38].

Again, the difficulty becomes apparent when we consider
lower-level abstractions. For instance, tabla transcription
[88] appears to be more difficult than general drum sound
identification. An interesting study was performed on the
focused but difficult problem of pandeiro sound classifica-
tion [83, 89].

This study was motivated by the design of interactive
music systems that are controlled in real time by percussive
instruments. The pandeiro is a Brazilian percussion instru-
ment that is able to produce six categories of sounds (see
Figure 7). The problem addressed in our study was to classify
pandeiro sounds in each of these six categories, using only
the attack portion of the signal. Because the playing modes
of the pandeiro, and therefore the six categories of sound, are
well known, the ground truth problem becomes irrelevant
and we can focus on the feature generation.

 

 

Figure 7: The gestures that produce the six basic Pandeiro sounds
(tung, ting, tchi, tr, PA, pa).
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Figure 8: A full sound and its attack portion. The attack is defined
by an amplitude threshold: when the amplitude goes above the
threshold, the attack begins, and when it eventually goes under, the
attack ends. In practice, we consider 128 samples after the beginning
of the attack, that is, about 3 milliseconds.

The classification of complete sounds was reported by
Roy et al. [83] and was shown to be a relatively easy task.
However, the application targeted is an interactive music
system. Therefore, we need to classify pandeiro sound in real-
time, or at least within a few milliseconds, so no interruption
can be perceived during the interaction. As a consequence,
we cannot use complete sounds to classify a stroke, as
they last approximately 150 milliseconds. Instead, we try to
classify from the first 3 milliseconds (or 128 samples, at
44 100 Hz) of each sound.

For this study, we recorded a database of 2448 complete,
isolated Pandeiro sounds that were produced by the same
instrument during different sessions. The 2448 samples were
equally distributed (408 per class).

We extracted the attack portion of the sounds so that
the attack lies in the middle of the considered sample (see
Figure 8, [89]).

To assess the efficiency of AFs, we compared them to
results obtained with a reference feature set (a complete list
of the reference features is given by [83]). This set includes
features commonly used in audio signal classification tasks,
notably the Mpeg-7 audio list, and Chroma, which is often
used for music analysis [90]. We systematically evaluated the
performance of two classifiers: one built with the reference
set, the other built with the AFs found by EDS using the set
of basic operators defined in Section 2.6.
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Table 2: The performances for the perceived intensity classifiers using various feature sets.

Method Correlation Model error

Random (mean value for all titles) 0.18 21%

Best MPEG7 feature [(SpectralSkewness (x)] 0.56 16.9% ± 1.5%

MPEG7 feature combination 21 features selected 0.87 12.1% ± 1.9%

Best EDS feature [Sqrt(Min(Sum(FFT(Split(x, 1 sec)] 0.68 14.5% ± 1.8%

EDS + MPEG7 combination 18 features selected 0.89 11.3% ± 1.8%

Each evaluation experiment was divided into two parts.
In the first part, classifiers were trained with the training
database and tested with the test database. The databases
were divided so that two-thirds were used for training and
one-third for testing. The samples were chosen at random
to avoid artifacts, such as those caused by the evolution of
the membrane during the recording session, or by small
variations in the player gestures. In the second part of
the experiment, classifiers were trained and tested on the
test database only, using 10-fold cross-validation in which
each classifier was trained on 9/10 of the test database, and
its precision was evaluated on the remaining 1/10. This
operation was repeated 10 times using random draws. The
objective of this double experiment was to demonstrate that
the advantages of using AFs do not depend on the conditions
of the experiments. The use of cross-validation using only the
test database is further supported since EDS uses the training
database to evaluate the analytical features; reusing it to train
the classifiers could introduce biases.

Finally, we also evaluated the signal itself (128 samples)
as a feature (this is possible here only because these attack
signals are very short). This was done to confirm that the raw
signal is not a good feature, and also to provide a point of
comparison for the other experiments.

We used an SVM with a default polynomial kernel. EDS
was used fully automated to create and select AFs. The
patterns used included the following simple patterns (we
deliberately avoided the Split operator, since the samples are
very short):

(i) “! a(! t : a(x))”,

(ii) “! a(! Va(! t : a(x)))”.

We ran the genetic search until the improvements in the fea-
ture fitness converged. EDS evaluated about 50,000 features.
Because attacks are small signals, only 17 reference features
could be computed and evaluated, with a total dimension of
the feature set equal to 90. We therefore selected 90 AFs out
of the AFs found by EDS on the attack. We present results
obtained for various sizes of the feature sets, ranging from 1
to 90. This is an important aspect for real time applications.
As seen in Figure 9, EDS finds not only better features, but
also feature sets with a smaller dimension.

Again, AFs found by EDS improve the classification per-
formance. AFs are superior to general features, in particular
for small feature sets; three AFs perform as well as the 50 best
general features.

For the experiments reported in Table 3, the feature
selection algorithm used is based on syntactical properties
of analytical features. Other feature selection schemes,
such as Information Gain Ratio (IGR), yield to the same
results. However, for feature sets of small dimensions, the
performance of IGR decreases substantially (this result is
discussed in [91]).

The performance gain due to analytical features for
small feature sets is advantageous, especially for real time
applications. Table 3 shows that three AF features yield a
better precision than 50 reference features. These features are:

Abs (Log10 (Percentile (Square (BpFilter(x,764,3087)), 64)))

Centroid (MelBands (Derivation (HpFilter

(Power (Normalize(x), 3), 100)), 6))

Abs (Sum (Arcsin (Mfcc (Hann(HpFilter( x,19845)), 20)))).

3.4. Classification of Animal Sounds. A pioneering large-scale
study was conducted concerning the automatic classification
of companion dog barks, using machine learning algorithms
[92]. The goal of this study was to determine whether specific
but speaker-independent (so-to-speak) acoustic features
of barks were encoded in different “barking situations”.
Previous studies have showed that humans have the ability
to categorize various barks that they hear and to associate
them with the appropriate emotional content [93]. They
also showed that humans with different dog experience
levels show similar trends in categorization of the possible
inner state of the given barking dog. Another study showed
that human perception of the motivational state of dogs is
influenced by acoustic parameters in the barks [94]. In con-
trast, humans show only modest accuracy in discriminating
between individual dogs by hearing their barks [95].

The database consists of barks of the Mudi breed
individuals recorded from 14 individuals. The total sample
size of barks is 6646, categorized in 6 different situations:
“stranger”, “fight”, “walk”, “alone, “ball”, and “play”. AFs were
investigated as to their performance for training and testing
six-category classifiers on this database. An interesting aspect
of this study is that we used an external library [74] to
complement the basic operator library. The recognition of
dog barks requires the analysis of specific signal features,
similar to the features used routinely in human speech
recognition. Spectral operators used in speech recognition,
such as MFCCs, are included in the basic EDS library,
but others are not, such as formants, which are specific to
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Table 3: Results obtained for the attack problem. Reference refers to a reference feature set of MPEG7 audio features. AF refers to analytical
features generated with EDS. Feature sets of smaller dimensions are subsets of the feature sets of dimension 90, constructed using our feature
selection algorithm based on AF syntactical structure. Signal refers to the signal used as a feature set, for comparison.

Feature
Feature set dimension

90 75 50 25 15 10 5 3 2 1

Reference [33, 91] [33, 69] [31, 37] [15, 51] [31, 43] [20, 91] [1] [7, 69] [12, 16] [56]

AFs 94,5 94 93,3 91,4 91,4 89 89,5 88 80,1 69,2

Signal 77.7 76.9 73.3 64.1 64.2 60 59.2 58.1 57.5 44

(i) SpectralRolloff (derivation(x))
(ii) SpectralFlatness (square(x))
(iii) Sqrt(RHF(derivation(Abs(derivation(x)))))
(iv) Rms(SpectralSkewness(split(x, 512)))
(v) Abs(max(SpectralFlatness(split(x, 256))))
(vi) Mean (formant (1, x))
(vii) Deviation (harmonicity (x))

Figure 9: The best AFs found for dog bark classification, using
operators borrowed from speech recognition. Note their relative
syntactic simplicity, and the use of different window sizes.
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Figure 10: An AF based classifier outperform humans at dog-
independent bark recognition tasks.

speech. We used the BOF patterns “! a(! t : a(Split(x)))” and
“! a(! t : a(x))”. With this extension of the basic operator
library, the best AFs found by EDS were the (admittedly
relatively simple) following Figure 7.

The most interesting conclusion of this study was that
the automatic classifier could reliably discriminate between
individual dogs while humans could not [95], as shown
in Figure 10. This was the main difference between the
performances of the machines and humans.

This supports the concept that there are individual
differences in dog barks, but humans are not able to
recognize them easily. Incidentally, this study (discussed in
detail in Molnár et al. [92]) provides a new perspective
for understanding animal communication. There may be
“hidden” acoustic features in animal sounds that could
eventually be identified. Similar issues have been raised
regularly by behavioral scientists of all sorts, for example in
the study of bird songs [96].

4. Discussion

The traditional view of feature generation, inspired by
supervised concept induction, is that the performance of
classifiers can be boosted if the “natural” features are not
expressive enough. In this context, feature generation is
an additional method for improving classifier performance,
along with feature selection, kernel parameter tuning, and
boosting. The situation is different when the items to classify
are raw signals, as no “natural” features are known a priori.
However, there is a huge body of technical knowledge
about particular signals types (e.g., audio) and particular
operators. For the most part, the link between signals
and features for a particular classification task is still
performed heuristically and manually in the signal pro-
cessing research community. Here we introduce analytical
features, in association with a feature generation scheme
that produces feature sets adequate for arbitrary supervised
audio classification problems. For efficiency, the generation
of AFs exploits explicit knowledge representation constructs,
notably heuristics, rewriting rules, and function patterns, all
based on the AF dimensional typing system. We have shown
that AFs improve classifier performance on concrete and
difficult classification problems. More importantly, they fill
the gap between the body of scientific knowledge about audio
signals, and the feature identification problem inherent to all
signal classification tasks. In this respect, AFs represent the
knowledge-based counterpart of feature generation studies.

However, the use of analytical features raises several open
issues, related to the very nature of signals.

(i) The operators considered so far were chosen by
studying existing and efficient features designed manually.
However, it cannot be assumed that these operators are
the best ones. More cognitively plausible operators could
substantially improve the performance of generated features.
One possibility is to design operators by taking inspiration
from the model of the cochlea, as suggested by Pressnitzer



20 EURASIP Journal on Audio, Speech, and Music Processing

and Gnansia [18], as a way to evolve more biologically
grounded features. Another possibility is to manipulate
lower-level, sample-based operators, for instance, by using
data flow models of signal processing functions [97]. Finally,
for applications dealing with psychologically high-level
classes like musical genre, operators explicitly dealing with
long-term properties of the signal that are not expressible
through statistical moments should be investigated in more
detail. Finally, the intrinsic limitation of AFs compared with
more general programs can be overcome by allowing the
system to create new operators on the fly. For instance, a
classifier achieving good performance on different problems
could be abstracted into a new operator, and then reused on
other problems.

(ii) We do not know much about the topology of
the AF space. How can we define similarity measures for
AFs? Are there clusters or hubs in this space? How can
we infer feature properties (fitness) from their syntactic
representation? Preliminary work has started to address these
issues [69], but much remains to be done before the space
can be better understood mathematically, and before we can
possibly predict the usefulness of generated features.

(iii) To date, the set of heuristics (and rewriting rules) is
hand-coded. Ideally, this knowledge about signal processing
operators and functions would be gained automatically by
the system, similar to AM’s Mathematical inventions. To do
so, the system needs to be able to design experiments, assess
their interestingness, and infer general properties from them.
This would allow the system to constantly update its body
of knowledge autonomously. Such an autotelic automated
researcher is currently being investigated, bootstrapping off
the problems and results found from the study of EDS.

(iv) As predicted by Lenat’s observations [54], it appears
that EDS, like other feature generation systems, eventually
reaches the fringe of the AF space, although it certainly
does not explore all of it. This phenomenon (most AFs
are similar after a certain point) may be related to the
intrinsic brittleness of systems built upon a finite set of basic
operators. A way to increase the potential performance of
feature generation is to open the system so that it exploits
information or knowledge produced “outside”, for example,
knowledge available online, in an e-science perspective.
Technically, this requires a different design of the operator
library and of the type system onto which everything is
grafted. The use of tags as substitutes for operator types is
an interesting avenue of research. Tags have already proven
to be efficient for indexing knowledge implicitly expressed in
online scientific papers, most of which are not fully exploited
(or even read).

Whereas supervised concept induction is primarily used
as a tool for optimizing the performance of problem solvers
(starting with Samuel’s checkers), the AF construct allows the
transition of symbolic problems to signal-based problems.
This transition offers a practical way to investigate two
fundamental questions of human perception: (1) to what
extent is human perceptual categorization of items based
on objective features of those items, and (2) in those cases,
can we identify these features explicitly? Analytical features
do not provide a definitive answer to these two questions

in general. However, by performing a systematic search in
large function spaces, this approach lessens the impact of
arbitrarily chosen feature sets on classifier performance. As
such, they provide a promising avenue to address these
issues, as has been illustrated in the audio domain, but also,
we think, in all other domains of human categorization.
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