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Abstract
The presentation of two sinusoidal tones, one to each ear, with a slight frequency mismatch

yields an auditory illusion of a beating frequency equal to the frequency difference between

the two tones; this is known as binaural beat (BB). The effect of brief BB stimulation on

scalp EEG is not conclusively demonstrated. Further, no studies have examined the impact

of musical training associated with BB stimulation, yet musicians' brains are often associat-

ed with enhanced auditory processing. In this study, we analysed EEG brain responses

from two groups, musicians and non-musicians, when stimulated by short presentation

(1 min) of binaural beats with beat frequency varying from 1 Hz to 48 Hz. We focused our

analysis on alpha and gamma band EEG signals, and they were analysed in terms of spec-

tral power, and functional connectivity as measured by two phase synchrony based mea-

sures, phase locking value and phase lag index. Finally, these measures were used to

characterize the degree of centrality, segregation and integration of the functional brain net-

work. We found that beat frequencies belonging to alpha band produced the most signifi-

cant steady-state responses across groups. Further, processing of low frequency (delta,

theta, alpha) binaural beats had significant impact on cortical network patterns in the alpha

band oscillations. Altogether these results provide a neurophysiological account of cortical

responses to BB stimulation at varying frequencies, and demonstrate a modulation of cor-

tico-cortical connectivity in musicians' brains, and further suggest a kind of neuronal entrain-

ment of a linear and nonlinear relationship to the beating frequencies.

Introduction
When two sinusoidal tones with a slight frequency mismatch (i.e. 200 and 210 Hz) are sepa-
rately presented to each ear, the listener perceives a beating frequency equal to the frequency
mismatch between the two tones (i.e. 10 Hz); this is termed binaural beating [1, 2]. The two
tones combined wax and wane as the two frequencies come in and out of phase with one an-
other, and this phase interference produces an amplitude-modulated standing wave, the
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binaural beat (BB). This beat is not a physical property of the presented sound but a subjective-
ly perceived auditory illusion, which has its origin in the brainstem’s superior olivary nucleus
[3, 4]. BBs are perceived for low frequency mismatch (< 100 Hz) and lower carrier frequencies
(<1 kHz) [1]; phase locking in most mammalian brains becomes less precise at carrier frequen-
cies above 1 kHz and disappears completely at frequencies above 5 kHz [5, 6].

BB stimulation is assumed to drive and evoke neuronal responses observable on scalp EEG
as steady-state responses (SSRs) over a temporal window [7–10]. For example, BB at 40 Hz elic-
ited a SSR over fronto-central brain regions [8]. Karino et al. [7] reported SSRs evoked by BBs
of 4 Hz and 6.66 Hz that were localized in the temporal, parietal and frontal regions. The authors
further suggested the possible cognitive encoding of BBs at a cortical level as the phases of the
SSRs showed large variability. Pratt et al. [11] studied event-related-potentials (ERP) of two BBs
at 3 Hz and 6 Hz, with two base frequencies, 250 Hz and 2000 Hz, and reported distinct event-re-
lated-potential (ERP) components such as P50, N100, and P200 following tone-onsets, with larg-
er brain responses to the lower base frequency and to the lower BB frequency. Draganova et al.
[10] showed a 40 Hz auditory steady-state response (ASSR) in the auditory cortices during 40 Hz
BB stimulation. All these studies suggest that brain activity corresponding to this illusory audito-
ry beats can be identified from, and systematically affect, EEG scalp recordings. However, we
have noticed three big gaps as follows in the neuroscientific literature on BB.

First, most studies have looked only at a limited number of frequency mismatch. The large-
scale neural oscillatory responses to BB frequencies varying systematically over a relative wide
range have not been characterized. We believe this is essential as using a range of BBs would
allow us to study the effect of cross-frequency coupling in large scale brain responses. The SSRs
primarily represent the interaction between neuronal assemblies and external stimulation with
identical frequency, but the cross-frequency coupling suggests a more generalized interaction
between neuronal oscillations and stimulating frequency. Indeed cross-frequency coupling at
the neuronal level has been demonstrated to provide a general mechanism of functional inte-
gration at multiple spatiotemporal scales [12].

Second, no study, to our knowledge, has investigated the cortical network patterns against
BB stimulation, yet an increasing body of evidence suggests that functional co-operation
among near and distant brain areas underlie almost any sensory and cognitive processing [13,
14]. Understanding information processing at the cortical network level provides novel insight
into the possible propagation of the auditory stimulation and the induction of the illusory beat.

Finally, little is known about the individual differences in the brain responses to BB stimula-
tion. A recent attempt in this direction was made by Goodin and colleagues [15] who investi-
gated EEG spectral power in thirty three participants exposed to BB in either theta (7 Hz) or
beta (16 Hz) frequency for a period of 2 minute and measured the personality traits by stan-
dard Big Five Factor model; no significant relationships were found between BB-related EEG
responses and Big Five personality traits. Instead of looking for personality dependent differ-
ences, a more pragmatic and useful approach would be to investigate training related differ-
ences. In this context, musicians are an important group to study as the musician's brain is a
robust model of neuroplasticity [16, 17], and long-term musical training leads to 'auditory fit-
ness', i.e. an enhanced processing of auditory information [18].

The current study was designed to address these issues by recording electrical brain re-
sponses as measured by high-density EEG signals obtained from healthy human adults, both
musicians and non-musicians, when stimulated by a range of BBs from low frequency delta
band to high frequency gamma band. We analysed the EEG signals in terms of neuronal oscil-
latory activity as measured by spectral power, and phase synchronization as measured by mean
phase coherence [19] and phase lag index [20]. Further, we also characterized the underlying
network pattern by measures based on graph theory approach [21].
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In this study, we strategically focused our analysis on the neuronal oscillations in the alpha
and gamma frequency bands of EEG signals for the following reasons. Firstly, large scale brain
oscillations in the alpha band (8–12 Hz) are the most studied and understood brain rhythm
[22] and have been found ubiquitously in most cortical and subcortical areas [23]. Further,
when humans are visually stimulated by flickering stimuli, steady state oscillations in the alpha
band and its higher harmonics exhibited most resonant effect [24]. So it would be important to
investigate whether alpha oscillations show similar resonance effect in auditory domain. This is
in clear alignment with the growing interest on the importance of studying alpha rhythms in
audition (see for a review, [25]). Furthermore, alpha oscillations are crucially associated with
the perception of various types of illusions, i.e. examples of perceptual accounts that cannot be
explained by physical properties of the stimuli, from visual (e.g., wagon wheel illusion [26]), au-
ditory (e.g., tinnitus [27]), to multisensory (e.g., double flash illusion [28]). As alpha oscillations
reflect the degree of excitability of sensory cortices, we expected that it would be associated
with the perception of the binaural beat, an auditory illusion. Second, there has been increasing
evidence that the degree of neuronal synchronization in the gamma band (30 Hz and above) is
significantly larger in trained musicians as compared to non-musicians during music related
task processing [29–31]. Further, enhanced neuronal synchronization in the gamma band has
also been observed in other expert groups like long-term meditators [32], proficient bilinguals
[33], professional artists [34]. Considering the widespread role of gamma band in providing a
general framework for cortical computation [35] and its possible modulation with neuroplas-
ticity, we expected that the gamma band synchrony would be differentially involved between
the musicians and non-musicians during the perception of illusory binaural beat.

Therefore, we had two specific predictions: (i) across both groups, EEG alpha band power
would be largest when stimulated by BBs belonging to alpha band, and (ii) as compared to
non-musicians, musicians would produce a larger network response against binaural beat in
the gamma band.

Materials and Methods

Participants
Sixteen musicians (6 males, age 25.5 ± 3.18 years) and sixteen non-musicians (7 males, age
26.1 ± 3.82 years) participated in the study. All but one non-musician were right-handed. No
participants reported any auditory deficits or neurological disorders. Our musicians reported
an average of 18.4 (± 4.3) years of active engagement with a musical instrument and 14 (± 3.40)
years of formal training on a solo instrument. They practiced their principal instrument an
average of 21.59 (± 11.42) hours per week with 81.3% reported being professional musicians. All
participants were kept blind to the real purposes of the experiment. They gave their written in-
formed consent before the start of the experiment. The experimental protocol was approved by
the Ethics Committee of the Department of Psychology at Goldsmiths, and the experiment was
conducted in accordance with the Declaration of Helsinki.

Stimuli
Auditory stimuli were presented in 34 blocks of 2 min and 20 s each. Each block consisted of a
silent period of 20 s followed by two auditory conditions of 1 min each: the non-binaural beat
(NB) and the binaural beat (BB). For both auditory conditions (NB and BB), the base frequency
(fb) was 200 Hz. This selection was made after recent studies on BB stimulation using fb between
100–300 Hz [7, 11, 36]. For the NB condition, both ears received auditory pure tones of 200 Hz
across all blocks. For the BB condition, the left ear received an auditory pure tone of 200 Hz and
the right ear an auditory pure tone of 200+fbbHz (fbb = beat frequency) with fbb varying with a
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step size of 1 Hz in the range of 1 Hz to 20 Hz and with a step size of 2 Hz from 20 Hz to 48 Hz.
Based on the values of the beat frequency (fbb) lying within the standard EEG frequency bands
[37], we formed five groups of BB stimuli as follows: delta-BB (1 Hz� fbb� 4 Hz), theta-BB
(5 Hz� fbb� 8 Hz), alpha-BB (9 Hz� fbb� 12 Hz), beta-BB (13 Hz� fbb� 30 Hz), and
gamma-BB (32 Hz� fbb� 48 Hz). Following this grouping, we had four blocks each for delta-
BB, theta-BB and alpha-BB, eight blocks for beta-BB and finally fourteen blocks for gamma-BB.
Auditory stimuli were presented through a Philips in-ear headphone with rubber caps that re-
duced external noise, ensured a precise fit, and decreased effective surface for bone conduction
[38, 39]. The volume of the auditory stimuli was self-adjusted a priori by each participant and
was kept at constant level throughout the experiment. During the entire period of auditory stimu-
lation, participants watched a silent movie with subtitles on and were also asked to ignore the
background auditory stimuli. These altogether ensure that any effect elicited by BBs would be
largely implicit, i.e. not requiring overt attention. At the end of the experiment, participants rated
on a 5-point scale their responses concerning the pleasantness of the background sounds, the in-
terestingness of the movie, and their overall alertness, and finally completed a self-report ques-
tionnaire regarding personal details including musical expertise.

Recording and pre-processing
EEG signals were recorded from sixty-four active electrodes that were placed according to the
extended 10–20 system, and amplified by a Biosemi ActiveTwo amplifier. Four additional elec-
trodes were placed around the eyes to record vertical and horizontal eye movements. The sam-
pling frequency was 512 Hz. Biosemi system has two electrodes–active CMS (common mode
sense) electrode and passive DRL (driven right leg) electrode–that together form a feedback
loop representing the online reference (see http://www.biosemi.com/faq/cms&drl.htm for de-
tails on the Biosemi referencing and grounding procedures). The EEG data were later refer-
enced offline to the average of the left and right earlobe electrodes. The data were further
down-sampled offline to 256 Hz to make the file size manageable. A 0.5 Hz high-pass filter was
applied to remove drifts and low-frequency artefacts. Trials containing large artefacts (< 2%)
were eliminated by visual inspection from subsequent analysis. Eye-blink artefacts were cor-
rected using Independent Component Analysis as implemented in the EEGLAB package [40].
For each auditory condition (NB and BB) of 1 min long, epochs were extracted by excluding
the first and last 500 ms to eliminate transient brain responses due to the sudden onset or offset
of stimulus, resulting in epochs of 59 s each.

Data analysis
EEG power analysis. The spectral content of the EEG signals was estimated by the method

of multitapers [41] as implemented in the Matlab function ‘pmtm’. Multitapers are sets of func-
tions that reduce the leakage between neighbouring frequencies, thereby making it suitable for
estimating the oscillatory content of neuronal signals [42]. We used a time-bandwidth parame-
ter of 4, a 1024 point FFT (4 s window) with a frequency resolution of 0.25 Hz. We divided the
broadband EEG power spectrum into five standard EEG frequency bands [37]: delta-EEG
(1–4 Hz), theta-EEG (5–8 Hz), alpha-EEG (9–12 Hz), beta-EEG (13–30 Hz), and gamma-EEG
(32–48 Hz); in this article, we focused our primary analysis on alpha-EEG and gamma-EEG
frequency bands. The BB-related spectral power was normalized by the NB-related spectral
power, and this normalization was done separately for alpha- and gamma-EEG bands, elec-
trode, and at participant level. The normalized spectral power was expressed in dB. The audito-
ry SSRs was estimated by averaging the EEG spectral power over alpha (gamma) frequency
band when participants were stimulated by binaural beats belonging to the alpha-BB (gamma-
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BB). All statistical analyses were initially performed at the global level after averaging across
electrodes. The statistical significance level was set at P< 0.05.

Phase synchrony analysis. For the assessment of phase synchronization (PS), it is first
necessary to estimate the phases of the EEG signal, xi(t), at each electrode-i, a procedure that
consists of two steps. First, the raw EEG data are band-pass filtered (xi,α(t)) in the frequency
band of interest (say, the alpha band, α) using a finite impulsive response (FIR), zero-phase dis-
tortion filter. Then, this real valued filtered data xi,α(t) is converted into a complex-valued one,

~xi;aðtÞ ¼ xi;aðtÞ þ jxHi;aðtÞ ð1Þ

where j =
ffiffiffiffiffiffiffi�1

p
is the imaginary unit and xHi;aðtÞ is the Hilbert Transform of the filtered data:

xHi;aðtÞ ¼
1

p
p:v:

Z N

o

xi;aðtÞ
t � t

dt ð2Þ

p.v. stands for Cauchy principal value. The phase of ~xi;aðtÞ, θi α (t) is then defined as:

yi;aðtÞ ¼ arctan
xHi;aðtÞ
xi;aðtÞ

ð3Þ

The cyclic relative phase (i.e., restricted to the interval [0,2π)) between EEG electrodes i and
k (i, k = 1,. . ., 64) is finally obtained as:

φik;aðtÞ ¼ jyi;aðtÞ � yk;aðtÞjmod2p ð4Þ

Assessing the degree of PS between two electrode regions comes down to estimate whether
the distribution of Eq (4), which is a circular variable, is different to what would expected for
two phase-independent signals. This estimation can be performed in different ways [43, 44].
An index, widely used in M/EEG analysis, is the mean phase coherence [19], also termed as
Phase Locking Value (PLV); it is a measure of how homogeneously the relative phase spreads
over the unit circle:

PLVik;a ¼ j < ejφik;aðtÞ > j ð5Þ

where<> stands for average value and | | for absolute value. This index ranges between 0 (no
phase synchrony) and 1 (perfectly synchronized in phase).

Though Eq (5) is a powerful, widely used PS indicator, it does not discriminate between
zero phase lag and non-zero constant phase lag, yet two EEG signals can be phase-synchro-
nized in both ways. Further, volume conduction effects (i.e. a single neural source affecting two
or more EEG electrodes) primarily contribute to zero phase lag synchrony. Therefore, another
index, phase lag index, PLI [20], has been developed to deal with this issue, by taking into ac-
count that true interaction between neural sources, as opposed to volume conduction effects,
occurs with some delay [45], which in turns gives rise to a distribution of Eq (4) asymmetric
around 0 (or π). Thus, PLI is defined as:

PLIik;a ¼ jhsignðsinðφik;aðtÞÞÞij ð6Þ

Although, from the point of view of functional connectivity analysis, it may seem enough,
then, to look at Eq (6), zero lag synchronization can also be achieved if two neural sources are
indirectly connected through a third one, which acts as a dynamical relay [46]. This is actually
not a volume conduction effect, but rather an indirect connection between, e.g., two cortical
sources through the thalamic relay [47], which would be overlooked should we only focus on
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PLI. Thus, both indices are complementary, with PLI estimating only direct true connections,
whereas PLV is also sensitive, if any, to zero lag, indirect connections [48].

Both indices were calculated using the recently released HERMES toolbox for Matlab [49].

Characterization of the functional brain networks
Once the degree of PS between any two electrodes was assessed by means of PLV or PLI, we
had the corresponding interdependence matrix:

A ¼
a11 � � � a1n

..

. . .
. ..

.

an1 � � � ann

0
BBB@

1
CCCA ð7Þ

where a stands for either PLV or PLI, 0� aij = aji � 1 (i,j = 1,..,n, i 6¼ j), n = 64, and we take
aii = 0.

As it is well-known, in the context of multivariate EEG analysis this matrix can be regarded
as the weighted adjacency matrix of a complex network, where the electrodes are considered as
nodes and the PS indices measure the strength of the links between them [21]. From this adja-
cency matrix, it is possible to estimate different measures that provide information about net-
work’s structure and function.

Thresholding
The first step in this direction consists in determining which of the values of the PS indices
should be considered significant. There are different approaches for this largely unsolved ques-
tion [50, 51]. A straightforward approach consists of estimating the significance of each indi-
vidual link aij at a given level of statistical significance by using, e.g., bivariate surrogate data
[52, 53]. The problem with this approach, however, is that one may end up with adjacency
matrixes with different proportions (densities) of significant links across groups/ conditions,
which may bias the values of the network measures [54], thereby giving rise to spurious sta-
tistical differences between them. This would be also the problem if we were to take a fixed
threshold value T, so that aij was set to zero if aij <T. Instead, we used here the so-called fixed
density approach [50], in which values of aij are rank ordered for each adjacency matrix, and
the (1-k)�NLINKS lowest values were set to zero (0<k<1 is the fixed density, NLINKS = 64�(64–
1)/2 = 2048 is the total number of possible links). In line with some recent studies [55, 56], we
calculated all network measures (see below) for different values of k to check that the robust-
ness of the results against this parameter.

Network measures
We described the structure of the weighted undirected functional brain networks resulting
from the above procedure by calculating three commonly used measures (the strength, the clus-
tering and the efficiency), which characterizes network centrality, segregation and integration,
respectively [21].

The average strength (S) of the network is defined as:

S ¼ 1

N

X
i2N

Si ¼
1

N

X
i2N

X
j 6¼i2N

aij ð8Þ

where Si, the strength of each individual node, is the sum of weights of links connected to it,
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and provides a simple centrality measure that estimates the importance of the node within
the network.

The clustering coefficient (C) quantifies the tendency of network elements to form local
clusters. The presence of network clusters indicates segregated functional dependencies in the
brain. In its weighted version [57], C is defined as:

C ¼ 1

n

X
i2N

Ci ¼
1

n

X
i2N

2ti
kiðki � 1Þ ð9Þ

where Ci is the clustering coefficient of node i (Ci = 0 for ki< 2), ki is the degree of node i and ti is
the sum of triangle intensities around node i, defined by the geometric mean of triangles around it:

ti ¼
1

2

X
j;h2N

ðaijaihajhÞ
1=3 ð10Þ

Finally, we measured integration in the network by means of the local efficiency [58], which
can be understood as a measure of how well each sub-graph exchanges information when the
index node is eliminated [59]. It is inversely related to the shortest average path lengths be-
tween nodes in the network that contains only neighbours of node i.

All the network measures were calculated using the Brain Connectivity Toolbox for Matlab
[21].

Statistical tests for the network measures
The comparison of brain networks can be carried out at two different levels: global and local
[60]. Indeed, the three network measures described above are all calculated locally (at each
node) and then averaged to get a global estimation of the corresponding feature. Correspond-
ingly, we perform the statistical tests at these two levels.

At the global level, we used a mixed 2x2x5 factorial ANOVA, with Group (musicians vs.
non-musicians) as between-subjects factor and Beat (non-binaural vs binaural beat) and Range
(delta-BB, theta-BB, alpha-BB, beta-BB and gamma-BB) as within-subjects factors. When any
of the factors (or their interaction) was significant at the P<0.05 level, differences were further
analysed using appropriate post-hoc comparisons. The test was applied to the global measures
for both types of BBs, alpha-BB and gamma-BB.

Local comparisons at the sensor level were carried out to elucidate the topography of the
global differences, in those cases were the corresponding omnibus test was significant. In this
case, a paired (for Beat and Range) or an unpaired (Group) t-test was applied to the three local
measures at each electrode, and then corrected for multiple comparison using a Type-I False
Discovery Rate (FDR) at the q<0.05 level [61].

Results

Behavioural analysis
No statistically significant differences were found between the two groups (musicians vs. non-
musicians) in terms of their reported pleasantness of the background auditory stimuli (Mann-
Whitney U-test: z = 1.25, P> .05, two-tailed), interestingness of the movie (z = 1.75, P> .05),
and alertness over the entire duration of the experiment (z = .14, P> 0.5).

Power analysis
First, we calculated normalized SSRs for both alpha-BB and gamma-BB averaged across all
electrodes and subsequently applied a 2x2 mixed factorial ANOVA with Group (musicians vs
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non-musicians) as a between-subjects factor and BeatFrequency (alpha vs gamma) as a within-
subjects factor. We found a significant effect of BeatFrequency: SSR for alpha-BB was larger
than SSR for gamma-BB (F(1,32) = 5.03, P = .03). We did not find any effect of Group or
Group�Beat interaction (P> .6). Next, we investigated normalized SSR individually, as any
value systematically larger than zero would suggest a significant frequency following response
for that frequency band specific BB stimulation. Two separate one-sample t-tests were con-
ducted and only the alpha-BB revealed a significant effect in its SSR (alpha: t(31) = -3.15,
P = 0.004; gamma: t(31) = -1.54, P = .13).

Next we analysed the normalized alpha-EEG power at the global level (i.e. averaged across
all electrodes) separately by a 2x5 mixed ANOVA with factors, Group (two levels) and BB (five
levels: delta, theta, alpha, beta and gamma). We observed a significant effect of BB (F(4,120) =
4.39, P = .002); the largest increase of normalized alpha-EEG power was observed for alpha-BB
followed delta-BB (Fig 1(A)) and only these two showed a significant non-zero response
(alpha-BB: t(31) = 3.15, P = .004, delta-BB: t(31) = 2.67, P = .01). The scalp maps of these two
effects are shown in Fig 1(B).

No robust differences were observed in the normalized alpha-EEG power between the two
groups except for gamma-BB for which the normalized alpha-EEG power in the musicians was
higher than non-musicians (t(30) = 2.13, P = .04).

For normalized gamma-EEG power at global level, we did not observe a significant effect of
BB (P> .8) but we did find a marginal effect of Group (F(1,30) = 2.4, P = .048) as musicians
showed overall higher normalized gamma-EEG power than non-musicians.

Interestingly, when we extended our power analysis to other EEG frequency bands (delta-
EEG, theta-EEG and beta-EEG, seeMethods), we did not observe significant effect (at the level
of Bonferroni corrected P) on the normalized SSRs (Figure A in S1 File) nor we found any sig-
nificant effect of cross-frequency responses at other EEG frequency bands (Figure B in S1 File).
The robust results were only found at the alpha-EEG band.

Network analysis
At the global level, differences in network measures were only found for the alpha-EEG band
for both phase locking value (PLV) and phase lag index (PLI), as shown in Table 1 for PLV,
Table 2 for PLI, and Figs 2 and 3. In the case of the PLV, the pattern of statistical differences is
complex. Thus, the main effect of Beat was significant for all the densities for the network
strength (S) and the network efficient (E) indices, but was not present for the network cluster-
ing (C). In turn, the main effect of Range was also significant across densities for S, but

Fig 1. Normalized power in the EEG alpha band (9–12 Hz) during different binaural beat stimulation. BBs were grouped into five frequency bands:
delta-BB, theta-BB, alpha-BB, beta-BB and gamma-BB (seeMethods for details). Spectral power was normalized w.r.to the non-binaural beat condition
presented just before the BB condition. Error bar indicates s.e.m. (b) Scalp maps of the normalized alpha power for alpha-BB and delta-BB. Results were
pooled across all participants.

doi:10.1371/journal.pone.0129486.g001
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depended on k for both C and E. The interaction between factors was, however, robust across
all the densities analysed for both indices, although the profile was different for the PLV and
the PLI. For the PLV (Fig 2), there was a significant Beat-Range interaction (cfr. S: F(4,120) =
5.73, P< 0.001; C: F(4,120) = 5.98, P< 0.001; E: F(4,120) = 4.53; P< 0.01 for k = 0.8), so that
BB vs NB differences were only significant in the delta-BB range, with BB> NB for the three
network measures. For the PLI (Fig 3), there were no main effects for any index. There was,
however, an interaction among the three factors (Beat-Range-Group), with BB<NB for musi-
cians in the theta- and alpha-BB ranges (cfr, S: F(4,120) = 3.9, P< 0.01 for k = 0.8).

The topologies of the differences at the electrode level are shown in Fig 4 for PLV and Fig 5
for PLI. In both cases, they correspond to the density k = 0.8, but are robust across the other
values of k analysed. For the PLV, the topology is strikingly similar for the three measures, with
differences spreading over many electrodes, the greatest ones showing clear right hemisphere
lateralization and antero-frontal and centro-parietal localization, with both C (not shown) and
E showing also a left parieto-occipital patch. For the PLI, however, the pattern is different for S
(Fig 5) than for the other two measures (Fig 6 for C). Thus, differences in S were mainly con-
centrated along the midline electrodes (both theta- and alpha-BB range), with an additional
right temporo-occipital patch in the alpha band; for C and E, although differences showed a
certain trend for right hemisphere lateralization (more posterior for the theta than for the
alpha-BB range), they were widespread over many electrodes.

Table 1. Network measures for alpha-EEG band using PLV index.

Strength (S) Clustering (C) Efficiency (E)

K beat F B-R B R B-R B R B-R

0.8 ** * *** (δ,α) *** (δ) * * ** (δ,α)

0.6 * ** *** (δ) * *** (δ) * *** (δ)

0.4 * *** *** (δ) ** * (δ) * ** (δ)

Strength (S), clustering (C) and global efficiency (E) for the PLV index as a function of the density of network links, k. The results are for alpha-EEG band.

Asterisks stand for differences for the main effects (B)eat (Nonbinaural vs. Binaural) and (R)ange (low frequency delta-, δ—, to high frequency, γ-BB), as
well as the interaction between them (B-R)

*: p < 0.05

**: p < 0.01

***: p < 0.001. In the B-R column, Greek letters indicate the BB range for which BB—NB differences were significant.

doi:10.1371/journal.pone.0129486.t001

Table 2. Network measures for alpha-EEG band using PLI index.

Density, k Strength, S Clustering, C Efficiency, E

0.8 B-R-G: ** B-R-G: ** B-R-G: **

0.6 (θ, α) (θ, α) (θ, α)

0.4 BB<NB in MS BB<NB in MS BB<NB in MS

Strength (S) Clustering (C) and global efficiency (E) for the PLI index for different densities of network links. The results are for alpha-EEG band. Asterisks

stand for differences for the interaction between the three factors (B)eat (Nonbinaural vs. Binaural), (R)ange (δ-BB to γ-BB band) and (G)roup (Musicians,

MS vs. Nonmusicians), B-R-G;
**: p<0.01. Greek letters indicate the BB range for which BB—NB differences were significant. Note that the differences and the bands were robust

across all the density links considered.

doi:10.1371/journal.pone.0129486.t002
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Fig 2. Global strength (S, top), clustering (C, middle) and efficiency (E, bottom) for the PLV brain
network in the EEG alpha band (k = 0.8) for the different BB frequency ranges. Bars indicate 95%
confidence interval for the mean. Blue: Non-binaural (NB) beat; red: Binaural (BB) beat. For all the indices,
there was a significant interaction between the (R)ange and (B)eat factors (see Results for F and p values, as
well as Table 1). Asterisks stand for BB-NB, differences: *: p<0.05; **: p<0.01; ***: p<0.001.

doi:10.1371/journal.pone.0129486.g002
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Discussion
The current study investigated the relationships between BB stimulation and large-scale neuro-
nal oscillations and synchrony, and the potential influence of musical training on these rela-
tionships. We investigated the alpha and gamma band oscillations in the EEG signals against a
range of BB stimulations; both local (in terms of spectral power), long-distance (in terms of
phase synchronization) neuronal synchronization were investigated in addition to characteriz-
ing the underlying brain network in these two bands of neuronal oscillations. Finally, we also
investigated the impact of musical expertise on the brain responses to BB stimulations.

Power analysis
We have identified two types of oscillatory responses: (i) narrow band or frequency following
responses suggesting a kind of neuronal entrainment or a linear relationship to the beat
frequency, and (ii) broadband or cross frequency responses suggesting a kind of nonlinear
relationship.

As predicted, we found significant entrainment in the EEG-alpha band across participants;
the alpha band EEG power was significantly enhanced during alpha-BB stimulation. Early

Fig 3. Global strength (S) for the PLI brain network in the alpha band (k = 0.8) for the different BB frequency ranges. Left: Musicians; right: Non-
musicians. Blue: NonBinaural (NB) beat; red: Binaural (BB) beat. Bars indicate 95% confidence interval for the mean. There is a significant interaction
between the three factors (R)ange, (B)eat and (G)roup (see Results for F and p values as well as Table 2). Asterisks stand for differences between BB and
NB, ***: p<0.001.

doi:10.1371/journal.pone.0129486.g003
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research literature indicates that presentation of a visual rhythmic stimulus (i.e. a flickering
light) at alpha band frequencies lead to a robust enhancement of EEG power in alpha and har-
monic or sub-harmonic frequencies of alpha [62, 63], known as photic driving. However, the
evidence for the similar driving response caused by auditory rhythmic stimuli has been mixed
[15, 64–67]. The reported absence of BB-related entrainment could be due to several methodo-
logical issues, such as using a higher fb of 400–500 Hz instead of 100–200 Hz, single BB stimu-
lation instead of a range of stimulation or sparse spatial sampling of brain regions. By
systematically varying the BB frequency and using high density EEG recording followed by
carefully constructed statistical analysis, we here demonstrated the role of alpha band in audi-
tory driving as well.

Alpha, being the dominant neuronal oscillations in the human brain, is classically consid-
ered as the 'idling rhythm' [68, 69]. However, a large body of recent evidence suggest that alpha
band oscillations play an active and important role in both task-specific and ongoing informa-
tion processing (see [70] for a review). Our alpha effect was largest over posterior parieto-oc-
cipital electrode regions, roughly overlying visual cortices. Previous research suggests that
parieto-occipital alpha power increases with anticipatory attentional allocation mechanisms
[71] and distractor suppression [72]. Altogether, our results are also aligned with behavioural
studies suggesting that alpha band rhythmic stimulation could enhance attentional [73] and
memory [74, 75] performance, and reduce the sensation of unpleasant stimuli [76].

In terms of cross frequency responses, alpha power was significantly enhanced by delta-BB
stimulations, with the effect being predominant over parietal electrode regions extending to
right frontal regions. By using a variety of auditory stimuli with and without rhythmic compo-
nent, it was shown that listening to rhythmic stimuli, as compared to non-rhythmic ones, was

Fig 4. Average across all subjects of the topographic distribution of differences in strength (S, left) and efficiency (E, right) between BB and NB for
the PLV index (alpha EEG band, k = 0.8, delta-BB). Bullets indicate the position of electrodes for which differences were significant at the q < 0.1 level
(FDR type I) using a paired t-test.

doi:10.1371/journal.pone.0129486.g004
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associated with higher EEG alpha power, and further, the auditory envelope was synchronized
with the alpha oscillations [65]; this suggests some kind of frequency selectivity of brain oscilla-
tions against auditory or visual stimulation [77], something that has been put forward as one of
the possible models of an alpha generator [78]. The spatial locations of this effect, the fronto-
parietal regions, are aligned with a previous study in which auditory SSRs were evoked by BBs
of 4 Hz and 6.66 Hz [7]. A more recent fMRI study has found that acoustic exposure to a more
isometric rhythmic sequence was associated with activations in the parieto-frontal brain re-
gions, including dorsal premotor cortex and supplementary motor cortex [79]. An isometric
sensation can also be perceived while listening to BBs due to the interaural phase differences
(IPD). Bengtsson et al. [79] suggested that activation in these brain areas might reflect the tem-
poral sensory prediction.

Further, the BBs in lower frequencies (e.g. in delta, theta and alpha frequency bands) often
elicit a subjective sensation of a moving ‘image’ that swaps from one side to another side (lat-
erally) within the head [80]. This internal sensation of a moving object from place to place in
the head may partly explain the engagement of the fronto-parietal brain network. In fact, an
ERP study showed that the sensation of a moving sound as caused by the interaural time differ-
ences (ITD) was associated with right inferior parietal and bilateral inferior frontal activities
[81]. Nevertheless, further examination is needed to establish the link between consciously per-
ceived sensation of motion induced by BB stimulation and such brain activity patterns.

Similar evidences of cross-frequency function of BBs were also found by Kasprzak [36], who
examined the effect of BB in 10 Hz. Results revealed higher activation of the EEG 10 Hz

Fig 5. Average across all subjects in the musicians group of the topographic distribution of differences in strength (S) between BB and NB for the
PLI index (alpha EEG band, k = 0.8). Left: theta-BB; Right: alpha-BB. Bullets indicate the position of electrodes for which differences were significant at the
q < 0.1 level (FDR type I) using a paired t-test.

doi:10.1371/journal.pone.0129486.g005
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strength signal. Interestingly, averaging amplitudes of spectral density into frequency bands
lead to a significant decrease for alpha and beta bands and increase for theta frequency bands.
He suggested that this phenomenon of alpha suppression in parallel with a 10 Hz follow-up ef-
fect might be a natural reflex of the nervous system to be tuned to a strong external stimulus.
Cross-frequency results were also reported by Atwater [82] who found a reduction of occipital
alpha when stimulated by a complex pattern of BBs mainly in delta band. These results may
also give an explanation to our findings underling the non-linear dynamic function of the
brain under various BB stimulations. Moreover, encoding of BBs may also be a process of a
more complicated mechanism involving both a cognitive process, as Karino et al. [7] suggested,
and an encoding of the IPD in the ascending auditory pathway [3, 4, 10].

Comparisons between musicians and non-musicians revealed higher alpha power over the
frontal and parietal regions for gamma-BB stimulations (figure not shown). Previous fMRI
studies revealed that frontal and parietal lobes show higher activation bilaterally in musicians
as compared to non-musicians during passive listening to piano melodies [83]. Similarly,
Meister et al. [84] reported bilateral activations of the parietal-frontal network during music
performance and musical imagery. An additional explanation why alpha power increases in
musicians across gamma-BB stimulation may be that stimuli higher than 30 Hz (gamma-BB
stimulation) falls into the audible range (20 Hz—20 kHz) of the humans’ auditory system
and is effortlessly recognizable as a bitonal instead of binaural sensation. The frequency inter-
vals, which resulted from the mismatched frequency between both stimuli, are easier to be
detected and distinguished as two different tones, especially for well-trained musicians [85].
The Δf which results (left ear: 200 Hz and right ear: 200+fbb Hz [fbb = 30–48 Hz]) creates a

Fig 6. As in Fig 5 but for the clustering index (C).

doi:10.1371/journal.pone.0129486.g006
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sensation of a ± minor 3rd musical interval of the well-tempered tuning system (minor 3rd;
ratio: f6/5 (f-reference = 200 Hz) = ~240 Hz, scale pitch names: near to G3 and B

[
3). Therefore this

bitonal sensation could elicit higher frequency selectivity for musicians who are exposed much
longer to musical sounds, and therefore could lead to higher alpha power across gamma-BB
stimulation. Musicians also showed marginally higher overall gamma power across BB stimula-
tions. This is aligned with previous findings that musicians present larger gamma band oscilla-
tions [86] and synchronizations [29] while listening to musical stimuli.

Network analysis
To our knowledge, this is the first study on characterizing the cortical network pattern when
stimulated by binaural beats. Our second prediction of finding a greater network in the gamma
band oscillations for musicians as compared to non-musicians was not supported. Instead we
have found that the differences between the groups and also the effects of binaural beat were
found in the alpha band EEG only.

Before we interpret our findings of network analysis, we would like to include some remarks
on analysis methodology. It is not exaggerated to state that the network analysis based on
graph theoretic methods has been at the forefront of the current neuroimaging research and it
has become customary in multivariate EEG studies [87–89]. Despite the extensive literature in
the subject, however, there are still many important open questions in the field [50]. Among
them, we can mention the choice between weighted and unweighted networks, choosing a
threshold to consider an edge significant, the effect of network size, which network index best
characterizes between group (or tasks) differences, how to deal with the multiple comparison
problem and even which functional connectivity index is the right one for a given problem [51,
54, 90]. Here, we had three popular network indices characterizing different network properties
(strength, clustering, efficiency [21]). Moreover, in line with recent EEG studies [55, 56], we
have used weighted networks, which provide additional information on edge weights as com-
pared to Boolean networks, and have checked that the statistical differences are consistent for a
wide range of degree densities (see Tables 1 and 2), both at the global and at the local level, at
which we corrected for multiple comparisons by means of the type I FDR algorithm. One im-
portant feature of our study, however, is that we analysed the functional networks obtained
from two different PS indices, whereas the usual approach entails the use of either the PLV or
the PLI. At first sight, it may seem a little odd to use them jointly, since PLI was developed as a
kind of refined version of the PLV, robust against to volume conduction due to its insensitive-
ness to zero lag correlations [20, 44]. Yet we think (and the results seem to agree with us) that
there are good reasons to include both the PLI and the PLV in the analysis (see also [49] for a
recent example), because, as commented in theMethods section, both indices provide comple-
mentary rather than redundant information. Indeed, whereas PLI is in principle the right
choice for M/EEG graph connectivity analysis as it focuses on lagged (direct) correlations [91,
92], it may miss true, zero lag cortico-cortical connectivity through a common relay (i.e., the
thalamus [93–95]), which could be picked up by the PLV. Thus, by analysing both functional
brain networks (the “true” one derived from PLI and the one derived from PLV, which may be
affected by volume conduction effects, but includes all type of connections), we can be sure to
gather most of the information available from our data in the form of functional connectivity
patterns. Indeed, recent results comparing the application of PLV to PS indices robust to vol-
ume conduction, clearly suggest [96, 97] that PLV may provide additional information not
present in other indices, whereas the use of advanced pre-processing methods such as the
Laplacian to work with current source densities instead of voltages does not solve the volume
conduction problem either [98].
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In concrete terms, our results showed that both indices agreed in showing that statistical dif-
ferences are only present in the alpha frequency band and for the lower range of binaural beats
(delta to alpha), with a slight right hemisphere dominance. But the network of direct cortico-
cortical connections (as assessed by the PLI) presented differences only for the group of musi-
cians (Table 2, Figs 3, 5 and 6), with a decrease in overall connectivity, clustering and efficiency
during the processing of the binaural beat. Yet this decrease ran in parallel to a (group-unspe-
cific) increase of all network indices for the PLV network (Table 1, Figs 2 and 4), although in
this case an alternative explanation might be that during BB there might be an enhanced vol-
ume conduction effects due to increased deep source activation. Taken together, these results
indicate that processing of low range (delta to alpha) binaural beats significantly increased zero
lag (i.e., mediated by deeper relay neural sources) phase synchrony between cortical areas (and
possibly also the overall oscillatory activity of these deeper sources) in the alpha band for all
subjects regardless of the level of training level in sound processing, but a concomitant reduc-
tion in direct cortico-cortical alpha band connectivity is indeed related to the level of expertise
in sound processing.

Limitations and future extension of the research
We would like to mention here a few practical remarks. First, sound intensities of this study
were not kept constant across participants, instead were self-adjusted by participants at indi-
vidual level of comfort. Higher intensities may generate possible cross-hearing (bone or fluid
conduction) which may affect the presented data [38]. Second, the mismatch frequency was al-
ways presented to the right ear, thereby limiting any interpretation on lateralization effect [99].
However, this stands for all of our participants, so any group related effects are unlikely to be
affected by this presentation bias. Third, our musicians group was heterogeneous in terms of
type of instruments played and years of musical experience, which could explain the marginali-
ty of the reported group related effects. Future studies could be focused on different subcatego-
ries of musicians such as those with absolute vs. relative pitch [100, 101], years of experience
[102], type of instrument played [16, 103], or even gender [104, 105]. Fourth, in addition to
musical expertise, the two groups may also differ across other dimensions, like personality. Pre-
vious research does suggest that personality traits may partly explain individual differences in
the entrainment induced by BB stimulation [106, 107], though a recent study did not find any
significant relationship between neuronal entrainment and personality variables against a
short (2 min) BB stimulation [15]. Finally, our results revealed the neural correlates of BB pro-
cessing, but due to the lack of behavioural measures related to the reported BB illusion, the
specificity and potential implications of the reported effects are less than explicit. On the other
hand, these effects could be considered as markers of implicit processing of BB stimuli.

Conclusions
In summary, the present study revealed that binaural beat stimulation can modulate the strength
of neuronal oscillations and synchrony obtained noninvasively from the scalp EEG. Various re-
gions of the brain, such as frontal, temporal and parietal lobes, seem to be involved in the proce-
dure of binaural auditory mismatched frequencies stimulations. Alpha brain oscillations appear
to be the most prominently entrained to the perceived binaural beat illusion, and further, alpha
band network appears to be significantly modulated by low frequency binaural beats.

Supporting Information
S1 File. BB-related SSRs and cross-frequency responses. Figure A: Normalized SSRs in each
frequency band across all participants, error bars indicate 99% confidence intervals. A
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significant effect was observed during alpha-BB stimulation. Figure B: Cross-frequency re-
sponses against BB stimulations, error bars indicate 99% confidence intervals. A significant en-
hancement of alpha-EEG power during delta-BB stimulation was found.
(DOCX)
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