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Abstract Current cognitive theories postulate either

localist representations of knowledge or fully overlapping,

distributed ones. We use a connectionist model that closely

replicates known anatomical properties of the cerebral

cortex and neurophysiological principles to show that

Hebbian learning in a multi-layer neural network leads to

memory traces (cell assemblies) that are both distributed

and anatomically distinct. Taking the example of word

learning based on action-perception correlation, we docu-

ment mechanisms underlying the emergence of these

assemblies, especially (i) the recruitment of neurons and

consolidation of connections defining the kernel of the

assembly along with (ii) the pruning of the cell assembly’s

halo (consisting of very weakly connected cells). We found

that, whereas a learning rule mapping covariance led to

significant overlap and merging of assemblies, a neuro-

biologically grounded synaptic plasticity rule with fixed

LTP/LTD thresholds produced minimal overlap and pre-

vented merging, exhibiting competitive learning behaviour.

Our results are discussed in light of current theories of

language and memory. As simulations with neurobiologi-

cally realistic neural networks demonstrate here

spontaneous emergence of lexical representations that are

both cortically dispersed and anatomically distinct, both

localist and distributed cognitive accounts receive partial

support.
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Introduction

The field of cognitive neuroscience has been inundated by

a flood of experimental findings produced by new and

exciting imaging techniques. The development of brain-

based theories, however, has not been able to keep up with

the large and unexpected flow of experimental data:

although the mapping of cognitive processes to cortical

areas may be motivated by empirical evidence, a funda-

mental issue that any theory should address is a principled

explanation of why specific areas become active when

specific cognitive processes are being performed. The

major ‘‘label and conquer’’ approach to cognitive neuro-

science has, in many cases, fallen short of providing such a

mechanistic explanation.

Recently, researchers have started to use computational

modelling in conjunction with experimental techniques

with a view to combine cognitive and brain theories and

link neuronal circuits to functional systems, especially in

the domain of visual, auditory and language processing

(e.g. [13, 14, 16, 33, 37, 86, 93]). When built so as to

closely replicate neuroanatomical structure and neuro-

physiological characteristics of the cortex, computational

models can make precise, quantitative predictions about
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when and where in the brain specific cognitive processes

are expected to take place. Such predictions can be tested

with experimental methods, which can provide evidence in

support of the neurophysiological validity of the models or

lead to their further refinement. Crucially, neurobiologi-

cally realistic models can help address a fundamental (and

generally neglected) question in the field of cognitive

neuroscience i.e. the ‘‘how/why’’ question: by shifting the

level of investigation from that of abstract mechanisms

down to that of cortical circuits, models can provide a

mechanistic explanation of how human cognition might

emerge from neurobiological structure and function. In the

work described here this approach was successfully applied

in the domain of language to simulate and explain, at the

neuronal level, the mechanisms underlying early word

acquisition.

In psycholinguistics, most existing computational

approaches explain language processes either as the activa-

tion and long-term storage of localist elements [17, 18, 45,

51, 57, 58] or on the basis of fully distributed activity patterns

[28, 39, 52, 64, 72, 73, 76]. Localist approaches typically

assume, a priori, the existence of separate nodes for separate

items (words), and of pre-established, ‘‘hard-wired’’ con-

nections between them; the adoption of anatomically distinct

nodes allows different item representations to be active at the

same time while avoiding cross-talk. Distributed accounts,

on the other hand, do not make such a priori assumptions:

according to them, the representations of the relevant items

emerge as distributed patterns of strengthened connections

over all nodes in a layer (the hidden layer). In this approach,

the same set of hidden nodes is used to encode different items

as different patterns of graded activation; this, however,

makes it impossible to maintain separate different item

representations when these are simultaneously active. In

general, cognitive arguments (e.g. our proven ability to

maintain multiple item representations distinct) favour

localist representations, whereas neuroscience arguments

weight in favour of distributedness [22, 58].

The results presented here suggest that these two

approaches are both partly correct and partly misleading:

distributed and anatomically distinct representations can

emerge spontaneously in the cortex solely as a result of

Hebbian synaptic plasticity mechanisms, and do not need

to be assumed a priori.

Background

We start from the hypothesis that the neural correlate of a

word is a memory circuit (‘‘trace’’) that develops during

early language acquisition [66]. It is well known that

articulation is controlled by neuronal activity in inferior-

frontal (IF) areas; the articulatory gestures lead to acoustic

signals which, in turn, cause stimulation of neurons in

superior-temporal (ST) auditory areas (see Fig. 1a). Thus,

during babbling and in the earliest stage of word learning

[25, 67] activity in IF cortex is accompanied by near-

simultaneous activity in ST. The same applies in adults:

whenever we utter a word, correlated activity is present in

the areas controlling speech output, IF, and those where

neurons respond to the incoming sound being produced,

ST. In the brain, IF and ST areas are connected reciprocally

(mainly via the arcuate and uncinate fascicles and the

extreme capsule [11, 47, 61, 75]). Therefore, repeated

speech-related co-activation of neurons in these areas in

presence of associative (Hebbian) synaptic mechanisms

[35] should lead to the formation of strongly intercon-

nected sets of cells distributed over IF and ST cortex [8,

66] constituting sensory-motor associations between co-

occurring cortical patterns of activity, such that, for

example, listening to speech sounds involving specific

articulators leads to the activation of the corresponding

motor representations. In early ontogeny, spontaneous

articulatory gestures are generated by genetically pre-pro-

gramed mechanisms; after babbling, auditory input from

the environment can activate the pre-established circuits,

facilitating and leading to repetition and early world

learning. A significant body of experimental evidence

confirms the presence of such speech-motor associations

between left superior-temporal and inferior-frontal cortex

[23, 66, 68–70, 90, 91, 95, 96] and their role in language

processing. Throughout this article we refer to such dis-

tributed networks of strongly interconnected neurons as to

cell assemblies (CAs) [8, 34, 35, 59, 92].

In order to test the mechanistic validity of this account,

we implemented a brain-inspired neural network that rep-

licates the areas in the left hemisphere involved in spoken

language processing (here, ‘‘language cortex’’ for short) in

close proximity of the sylvian fissure, along with their

approximate connections as inferred from experimental

research [60, 63, 74], and investigated the emergence and

consolidation of such perception-action circuits in it. The

network (see Fig. 1b) was specifically designed to mimic

neuroanatomical, connectivity and neurophysiological

properties of the left perisylvian language cortex, as sum-

marized below (the model is described in detail in [27]):

(i) On the basis of neuroanatomical and imaging studies,

six interconnected cortical areas are modelled:

primary auditory cortex (A1), auditory belt (AB) and

parabelt (PB) areas (Wernicke’s area), inferior

prefrontal (PF) and premotor (PM) cortex (Broca’s

area) and primary motor cortex (M1).

(ii) Neurons are modelled as graded-response cells with

adaptation, whose output represents the average firing

rate of a local pool of pyramidal cells.
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(iii) Within- (recurrent) and between-area connectivity is

implemented via sparse, random, ‘‘patchy’’ next-

neighbour synaptic links between cells, as typically

found in the mammalian cortex [9, 29].

(iv) Both local and global (non-specific) cortical inhibi-

tion mechanisms are realized:

a. Inhibitory cells reciprocally connected with

neighbouring excitatory cells simulate the action

of a pool of inter-neurons surrounding a cortical

pyramidal cell in serving as lateral inhibition and

local activity control;

b. Area-specific inhibitory loops implement a

mechanism of self-regulation, preventing the

overall network activity from falling into non-

physiological states (total saturation or

inactivity).

(v) Long-term potentiation (LTP) and depression (LTD)

[10, 49] cortical mechanisms of synaptic plasticity are

modelled.

In our previous work, this architecture has been used to

investigate the emergence of cell assemblies for words and

the effects of attention on language processes [26, 27];

here, we specifically focus on the mechanisms of cell

assembly formation and on how different computational

implementations of synaptic plasticity affect such mecha-

nisms and the network’s ability to spontaneously develop

separate input pattern representations.

It should be noted that we did not model individual

spiking neurons but chose to use a mean-field approach,

where each cell of the network represents the average

activity of a local pool of neurons, or cortical column [21,

94]. Although spiking neurons would have made the model

more biologically realistic, their introduction would have

produced a significant impact in terms of computational

resources; thus, we decided to start simple, and leave the

implementation of this level of detail to a possible second

phase, if necessary. As it turned out, modelling the cortical

interactions at the level of cortical columns was sufficient

to reproduce the phenomena of interest here.

(a)

(b)

IF
ST

(a)

PFPM ABPB A1M1

Fig. 1 The relevant areas of the

left perisylvian cortex involved

in spoken language processing,

the overall network architecture,

and the mapping between the

two, indicated by the colour

code. a The six different areas

modelled, grouped into ST areas

(labelled M1, PM, PF) and IF

areas (labelled A1, AB, PB).

Long-distance cortico-cortical

links between PF and PB are not

shown. b The six-areas network

model and an illustration of the

type of distributed circuit that

developed during learning of

perception-action patterns. Each

small oval (‘‘cell’’) represents

an excitatory neuronal pool

(column); solid and dotted lines

indicate, strong reciprocal and

weak (and/or non-reciprocal)

connections, respectively.

Co-activated cells are depicted

as black or grey ovals. Only

forward and backward links

between co-activated cells are

shown. Pools of inhibitory

inter-neurons are not depicted

(adapted from [27])
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With regard to point (v), we postulate that the emer-

gence of specialized cell assemblies for words is driven by

the repeated presentation of the same action-perception

patterns in presence of Hebbian mechanisms of associative

learning. LTP and LTD, consisting of long-term increase or

decrease in synaptic strength resulting from pairing pre-

synaptic activity with specific levels of postsynaptic

membrane potentials, are believed to play a key role in

experience-dependent plasticity, memory and learning [48,

71]. The network implemented two different computational

abstractions of LTP and LTD, one based on Sejnowski’s

covariance rule [77, 78], the other one on the Artola–

Bröcher–Singer (ABS) model of LTP/LTD [3, 4]. Both

algorithms are described in the next section.

Methods

To induce CA formation in the model, we repeatedly

exposed the network to pairs of (sparse) activation con-

figurations, each activation-pattern pair representing the

model equivalent of an auditory-articulatory word form

(Refer Fig. 2). More precisely, two predetermined, ran-

domly generated sets of cells were activated at the same

time in the primary auditory (A1) and motor (M1) areas of

the model, simulating speech production and correlated

perception of the same speech element. The number of

cells (17) activated in each primary area equalled 2.72% of

the total number of cells of one area (625). The training

consisted of repeated presentation (in randomized order) of

four different pairs of patterns, in alternation with periods

of variable length of time during which no input was given

and activity was driven by white noise. The training ter-

minated when each of the four stimuli had been presented

to the network for five thousand times. Throughout the

training (including the period in which no input patterns

were present) the weights of all the links between cells

were left free to adapt according to the specific learning

rule used.

The first rule implemented, the co-variance rule [77], is

a widely used [15, 46, 62, 93], neurobiologically inspired

(e.g. [85, 87]; cf. [53] for a discussion) Hebbian rule. In it,

the change of synaptic weight xij of the excitatory link

from pre-synaptic cell i to post-synaptic cell j per unit time

is defined simply as:

Dxij ¼ a xi � xih ið Þ xj � xj

� �� �
ð1Þ

where a[]0,1] is a small constant specifying the learning

rate, xi is the current output of cell i, and xih i is the time-

average output of cell i. While this rule captures well the

essence of Hebbian learning (neurons that ‘‘fire-together,

wire-together’’), it was not originally built to accurately

mimic known mechanisms of synaptic plasticity, like

subsequent more realistic implementations have attempted

to do (e.g. [7, 84]; see [6] for a useful account). The

co-variance rule appears to be prone to the problem of CA

merging [55], which, as discussed in detail in the section

‘‘Discussion’’, can be attributed to the imbalance between

synaptic strengthening (LTP) and weakening (LTD) which

is entailed by sparse neuronal activity. In the attempt to

address this issue, we implemented and tested a second,

more biologically accurate learning rule, based on the ABS

model of LTP/LTD [3]. Such a model is derived from

neurophysiological data suggesting that similar presynaptic

activity (namely, brief activation of an excitatory pathway)

can lead to synaptic LTD or LTP, depending on the level of

postsynaptic depolarization co-occurring with the presyn-

aptic activity. In particular, data from structures susceptible

to both LTP and LTD [4, 20, 56] suggest that a stronger

depolarization is required to induce LTP than to initiate

LTD. Accordingly, the ABS model postulates the existence

of two voltage-dependent thresholds in the postsynaptic

cell, called h- and h? (with h- \ h?). The direction of

change in synaptic efficacy depends on the membrane

potential of the postsynaptic cell: if the potential reaches

the first threshold (h-), all active synapses depress; if the

second threshold (h?) is reached, all active synapses

potentiate.

A1 AB  PB  PF  PM  M1 

Fig. 2 Schematic illustration of network simulation of word learning

processes: predefined stimulus patterns were presented simulta-

neously to areas A1 and M1, resulting in a temporary wave of

activation that spread across the network. Black (grey) cells indicate

strongly (weakly) activated cells. Between- and within-area synaptic

links connecting cells are not depicted
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We implemented a tractable version of the full ABS

model [3]: the continuous range of possible synaptic effi-

cacy changes was discretized into two possible step-

changes, ?Dw and -Dw (with Dw � 1 and fixed); also,

we defined as ‘‘active’’ any link from a cell x such that the

output O(x,t) of cell x at time t is larger than hpre, where

hpre[]0,1] is an arbitrary threshold representing the mini-

mum level of presynaptic activity required for LTP to

occur.1 Thus, given any two cells x and y currently linked

with weight wt(x,y), the new weight wt?1(x,y) was calcu-

lated as follows:

where V(y,t) is the membrane potential of the postsynaptic

cell y at time t, defined as the low-pass filtered sum of the

total input to cell y (see Appendix 1). The total input to y

represents all excitatory and inhibitory postsynaptic

potentials (EPSPs, IPSPs) acting upon neuron pool y at

time t (inhibitory inputs were given a negative sign). The

three cases of Eq. 2 model, respectively, (i) homosynaptic

and associative LTP, (ii) homosynaptic LTD and (iii)

heterosynaptic LTD. The latter type of LTD involves

synaptic change at inputs that are themselves inactive but

that undergo depression due to depolarization spreading

from adjacent active synapses [36]. It is important to note

that post- and pre-synaptic thresholds h-, h? and hpre are

identical for all cells and remain unchanged throughout the

simulation runs.

After the training, the network was tested to reveal the

properties of the cell assemblies which had emerged for the

given auditory-motor pattern pairs. More precisely, for

each of the four patterns presented to the network, the time-

average of the response (output value, or ‘‘firing rate’’) of

each cell in the network was computed. These averages

were used to identify the CAs that developed in the net-

work in response to the four input pairs, as follows: a CA

was defined simply as the subset of cells exhibiting average

output above a given threshold c[[0,1] during stimulus

presentation. Using the above functional definition, we

then measured, for different values of c, (i) CA size

(averaged across the CAs) and (ii) distinctiveness of a CA,

quantified as the average overlap (number of cells that two

CAs shared) between one randomly chosen CA and the

other three (this is also a measure of the amount of cross-

talk between pairs of CAs). We repeated the above process

and collected these measures for two sets of ten networks,

each set trained using one of the two rules, and each net-

work randomly initialized and trained with a different set

of stimulus pairs.

Results

As the training progressed, we observed the emergence of

distributed cell assemblies; the distinctiveness of the CAs,

however, differed significantly depending on the learning

rule adopted. This becomes apparent by examining the

time-averaged response that each input pattern induced in

the network at the different stages of the learning process.

Impacts of the Learning Rule

Let us first consider the results obtained using the covari-

ance learning rule. Figure 3 shows the time-averaged

response of one (randomly chosen) network to the four

input patterns W1–W4 (one for each row), at different

points during the training (after 10, 50, 100 stimulus pre-

sentations in panel (a), and after 1,000, 2,000, 3,000 in

panel (b)), averaged over the time during which the pat-

terns W1–W4 were presented in input. Each input pattern

Wi consisted of a pair (WiA, WiM), representing, respec-

tively, auditory and motor form of that word. Initially, the

presentation of the pattern produces only weak activation

in the two secondary areas AB and PM, and no activation

in the central (or associative) areas PB and PF. As the

learning progresses, however, the average response pro-

duced by the same stimulus reaches further towards the

central areas, where the binding of the sensory-motor

patterns is expected to take place. As the CAs become

stronger in such areas, however, an interesting phenome-

non was observed (Fig. 3b). At some point between 1,000

and 2,000 presentations, the two CAs specific to the input

wtþ1 x; yð Þ ¼

wt x; yð Þ þ Dw if O x; tð Þ� hpre and V y; tð Þ � hþ
wt x; yð Þ � Dw if O x; tð Þ� hpre and h� �V y; tð Þ\hþ
wt x; yð Þ � Dw if O x; tð Þ\ hpre and V y; tð Þ� hþ
wt x; yð Þ otherwise

8
>>><

>>>:

ð2Þ

1 The output value O(x,t) of a cell x represents the cumulative output

(number of action potentials per time unit) of neuronal cluster

(column) x at time t, and is a piecewise-linear sigmoid function of the

cell’s membrane potential V(x,t). See Appendix 1 for details.
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patterns W1–W2 ‘‘merge’’, becoming a single CA that

responds to either of the two words: after 2,000 presenta-

tions, the responses to W1–W2 are almost identical across

the four areas AB–PM. During the 1,000 stimulus presen-

tations that follow, the CA development does not seem to

progress any further.

W3A

W4A

W1A

W2A

W4M

W1M

W2M

W3M

W3A

W4A

W1A

W2A

W4M

W1M

W2M

W3M

W3A

W4A

W1A

W2A

W4M

W1M

W2M

W3M

10
(a)

100

50  

A1 AB  PB  PF  PM  M1 
Fig. 3 a Time-averaged

response of a network (trained

using the covariance rule) to the

four input patterns (W1,…W4)

at different stages of training:

after 10 (top), 50 (middle) and

100 (bottom) stimulus

presentations. The brightness of

a cell indicates its average

output value, or firing rate

(black areas consist of cells

having output *0.0). b Time-

averaged response of a network

(trained using the covariance

rule) to the four input patterns

after 1,000 (top), 2,000 (middle)

and 3,000 (bottom) stimulus

presentations. Note the merging

of CAs for W1 and W2
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The merging phenomenon prevented the formation of

distinct CAs in several of the networks, and was a symptom

of the covariance learning rule’s inability to separate, or

‘‘pull apart’’ the representations of two or more input pat-

terns that happened to produce overlapping activations (see

below and the ‘‘Discussion’’ section). This illustrates a

W3A

W4A

W1A

W2A

W4M

W1M

W2M

W3A

W4A

W1A

W2A

W4M

W1M

W2M

W3M

W3A

W4A

W1A

W2A

W4M

W1M

W2M

W3M

1000
(b)

2000

A1 AB  PB  PF  PM  M1 

W3M

3000

Fig. 3 continued
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mechanism commonly used for nurturing reservations

against the cell assembly theory: learning can ‘‘lump

together’’ different representations (see, for example, [55]).

Figure 4 quantifies average cell assembly specificity in

eight networks (the two networks showing the most

extensive merging were discarded) as a function of the

minimal-activation threshold c, which was used for iden-

tifying the CAs (see ‘‘Methods’’ section). The graph shows

the significant amount of overlap (or cross-talk) between

pairs of CAs, expressed in % of shared cells between a

randomly chosen CA and (i) the other three CAs (we plot

the mean of the three overlaps) and (ii) the CA maximally

overlapping with the chosen one.

Networks trained using the ABS rule produced signifi-

cantly different results. Figure 5 plots CA distinctiveness

for the 8 best networks. As opposed to the plot shown in

Fig. 4, here the maximum overlap is above 5% only for

values of c\ 0.1, and never above 10%. The average

overlap is always below 5% and less than 2% for c[ 0.2.

Figure 6 shows an example of CA formation in one of

the networks trained using the ABS rule. As before, acti-

vation is initially weak in the middle areas; however, after

100 presentations the CAs have already reached and

‘‘filled’’ areas PB and PF, where the binding between

sensory and motor patterns takes place.

The number of cells activated and involved in the

binding is significantly larger than that observed in the

previous simulations. In particular, a number of weakly

active cells (widespread grey areas in the background) now

accompany CA formation. Although a higher number of

cells responding to an input pattern should increase the

probability of CA overlap (and, thus, of CA merging), this

did not happen (Fig. 5). In this example, too, a small

overlap did develop between the CAs responding to W3

and W4 (e.g. compare the lower corners of area PB). This

overlap, however, is maintained within limits (e.g. the

responses to W3 and W4 still differ in areas AB and PM).

Although this may not be easily visible, the weakly

active cells (which can be considered either as weak

members of the CA or as part of what [8] called the ‘‘halo’’

of the assembly) become less numerous (and/or less active)

between stages 100 and 5,000: this phenomenon is more

apparent in the central areas (e.g. compare the responses to

patterns W1–W3 in area PB at these two time points). On

the other hand, cells that are already strongly active after

100 presentations (very bright or white dots) still respond

equally (if not more) strongly after 5,000 presentations; this

indicates that the CAs have reached a stable and robust

configuration, with strongly and reciprocally connected

sets of cells forming their ‘‘kernel’’ [8].

The reduction in the sizes of the CAs’ haloes suggests

that, subsequently to the initial period of CA growth, the

links connecting a CA to the set of potential candidates

(cells that could become part of the CA kernel i.e. be

‘‘recruited’’ by it) undergo a process of weakening, or

‘‘pruning’’. Such process could play a role in limiting CA

merging and in ‘‘separating’’ initially overlapping CAs. To

address this issue, it is necessary to look at the way in

which CA overlap changes (in the areas where the pruning

takes place) as a function of learning.

Pruning and CA Separation (with ABS Rule)

In this section we report evidence that the pruning and

reduction in number of weakly active cells visually

observed in the central areas is indeed a phenomenon that

occurs reliably (on average) in all networks trained with the

ABS rule, and that the amount of overlap between the CAs

in these areas decreases as the learning progresses.

Figure 7 shows the average network responses to an

input pattern at different stages of learning, expressed in

number of cells responding to the input. All the cells in the

network are grouped in different activation bins, according

to the average output that they exhibit in response to

a pattern (i.e. cells with output value between 0 and

0.01—1% of the maximal activation—are put in activation

Overlap between pairs of cell assemblies 

0

10

20

0 0.2 0.4 0.6 0.8 1
minimal-activation threshold γ 

%
 o

f 
sh

ar
ed

 c
el

ls

Maximum overlap

Average overlap

Fig. 5 Cell-assembly distinctiveness using the ABS learning rule:

average (SEM) overlap between pairs of CAs as a function of the

minimal-activation threshold c (adapted from [27])

Overlap between pairs of cell assemblies

0

10

20

0 0.2 0.4 0.6 0.8 1
minimal-activation threshold γ 

%
 s

ha
re

d 
ce

ll
s

average overlap 

maximum overlap

Fig. 4 Cell-assembly distinctiveness in networks trained using the

covariance rule: average (SEM) overlap between pairs of CAs. Data

are from the eight ‘‘best’’ networks (see text for details)
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bin 0–0.01, etc.). Data for the activation bins 0–0.01, 0.01–0.02

and 0.02–0.03 are shown; note that more than 95% of the

total number of cells in one area (625) fall within these bins.

By far the largest group (shown in cyan) consists of cells

that are either not active or have very weak output (below

0.01). A direct comparison of the bar graphs for 100 and

W3A

W4A

W1A

W2A

W4M

W1M

W2M

W3M

W3A

W4A

W1A

W2A

W4M

W1M

W2M

W3M

W3A

W4A

W1A

W2A

W4M

W1M

W2M

W3M

5000

10

100

A1 AB  PB  PF  PM  M1  Fig. 6 Time-averaged response

of a network trained using the

ABS learning rule to the four

input patterns after 10 (top), 100

(middle) and 5,000 (bottom)

stimulus presentations. No

global CA merging was

observed
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5,000 training phases shows that, in the two central areas

(PB and PF) a significant number of cells initially active in

the 0.01–0.02 interval are pushed to the lower activation

level (0–0.01). This result indicates that the weakly active

cells (grey areas in Fig. 6) indeed become less numerous

(and/or less active) between stages 100 and 5,000 in the

two central areas. As the weaker activations can only be

explained by synaptic-weight reduction, these numbers

illustrate the phenomenon of pruning during the learning

process.

Finally, the graphs in Fig. 8 demonstrate that the prun-

ing leads to the gradual separation (‘‘pulling apart’’) of the

CAs: in addition to the expected decrease in CA size (panel

(a)), both the maximum (panel (b)) and average (panel (c))

overlap between CAs decrease significantly (in areas PF

and PB) as the learning progresses.

Emergence (Cell Recruitment) and Consolidation

of CAs

The data presented in Figs. 7 and 8 only concern groups of

weakly active cells, forming the CA’s halo; what happens

to the more strongly active ones, constituting the CA’s

kernel? Figure 9 shows the emergence and development of

both the weakly and strongly active groups of cells. The

bar graphs plot the number of active cells per activation

interval (bins 0.01–0.02 to 0.09–0.1 and 0.1–0.2 to 0.9–1.0)

per area, in response to an input pattern, at three points

during the training. After 10 presentations, strongly active

cells are only present in the primary areas A1 and M1,

where the input patterns are presented; the central areas

contain a fair number of weakly active cells. After 100

presentations, three things can be observed: (i) the number

of cells active between 0.01 and 0.02 exceeds the graph

ceiling (as can be seen from Fig. 7, the actual numbers vary

in the range 50–100); (ii) the slightly more active cells (still

part of the CA’s halo) have decreased in number and (iii)

the number of strongly active cells (from 0.5–0.6 to

0.9–1.0) has significantly grown. As we know from the

data in Fig. 7 that the numbers for the 0–0.01 bin decreased

and that the total number of cells with activity below 0–

0.03 was either unchanged or reduced across areas, we can

conclude that the fate of the weakly active cells was to be

‘‘recruited’’ by the CA and to become strongly active i.e.

part of the CAs’ kernel. After 5,000 stimulus presentations,

the same cells have shifted their activation even closer

to the maximum: the training has produced further

strengthening of the synaptic links between the cells

recruited at the beginning, which now form a stable and

robust CA.
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Fig. 7 Changes in the CAs’

haloes size: average (SEM)

network response to an input

pattern at different stages of

training using the ABS rule

(average of eight networks, each

trained with four input patterns).

The number of cells having

average output value in the

intervals 0–0.01, 0.01–0.02 and

0.02–0.03 are shown
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Discussion

We report here four observations apparent from word

learning simulations in a brain-inspired neural architecture:

1. Action-perception patterns are stored as distributed

sets of neurons in multilayer networks with neuroana-

tomical constraints;

2. During learning, neurons are recruited and gradually

bound together into a single CA; such recruitment and

CA consolidation processes proceed from the sensory

and motor areas inwards, towards the central, or

‘‘amodal’’, associative areas;

3. Whereas networks adopting the covariance rule [77]

struggle to produce input-specific, distinct lexical

representations, the adoption of a neurobiologically

grounded Hebbian rule with fixed thresholds, based on

the Artola–Bröcher–Singer [3] model of LTP/LTD,

leads to CA overlap minimization (\5%) and anatom-

ically distinct CAs;

4. In the networks adopting the ABS rule, the process of

growth and merging of CAs is countered by a process

of competition and pruning of the CAs’ halo; we

conjecture that this reduction in CA size and overlap

reflects a strong weight decrease in the connections

between kernel and halo.

It should be added that the strong binding of the artic-

ulatory-acoustic activation patterns and distinctiveness of

CAs was confirmed by additional simulations (not reported

here) in which the network was stimulated, in area A1 only,

with the auditory component of a word pattern; the results

showed that, while the input-specific CA was strongly

activated and led to partial reconstruction of the associated

motor pattern in M1 (on average, approximately 30% of

the motor pattern was reproduced), the other CAs remained

almost completely silent (see Garagnani et al. [27], their

Figs. 10 and 11).

The simulation results indicate that the formation of cell

assemblies (or, more generally, of memory traces) begins

with an initial period of CA expansion, during which neu-

rons in progressively more central areas are recruited and

bound strongly into the CA’s kernel. As soon as the CAs’

haloes start to overlap (this happens already after 100

stimulus presentations), competition for the recruitment of

cells in such overlaps begins, gradually leading to the sur-

vival of only the strongest connections and pruning of the

weakest ones. This reduction effectively means that the

representations of the input patterns are being separated, a

phenomenon typically observed in networks that implement

competitive learning mechanisms [31, 32, 42, 43]. At the

same time, the neurons initially recruited are further con-

solidated in the CA, preventing, to some degree, their re-use

by different CAs. By ‘‘competitive learning’’ here we mean

competition between the incoming patterns, rather than just

between synapses; this behaviour is often considered a

hallmark of many forms of developmental plasticity [10, 40,

82]. Notice that the presence of synaptic competition in a

learning rule (implemented, e.g. via heterosynaptic LTD or

weight normalization) does not, in itself, guarantee com-

petition between the incoming patterns. Indeed, the

covariance rule tested here [77, 78] implements both LTP

(Table 1, case (a)) and heterosynaptic LTD (Table 1, case

(b)), but cannot achieve competitive learning [54].

To understand why this is so, and what may be under-

lying the ABS rule’s competitive behaviour, consider the
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Fig. 8 Pruning of CAs’ haloes: average (SEM) cell assembly size

(a), maximum (b) and average overlap (c) between one CA and the

other three in the central areas (PF and PB), for two different training

points. Note the significant drop in the size and overlap between 100

and 5,000 stimulus presentations
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2-area network of cells depicted in Fig. 10 below. Let us

assume that the network uses sparse coding, and that the

cells in area 1 are repeatedly confronted with different

patterns of activation: two input patterns (called A and B)

strongly activate cells A1, A2, C1, C2 and B1, B2, C2, C3,

respectively.

Assume that during training, the weights are modified

according to the co-variance rule, as summarized by

Table 1. The difference between current and average

activity of one cell is larger when cells are fully active than

when they are silent, as in a sparsely active network, a
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Fig. 9 Emergence and

consolidation of CAs: number

of cells active in response to an

input pattern (averaged across

eight networks), grouped by

activation level (bins) and area,

at three different points of

training (using the ABS rule).

Data for the activation bin 0–

0.01 are not shown (but see

Fig. 7). Cells from the CA’s

halo are recruited during the

initial phase and become part of

the kernel; as learning

progresses, the strongly active

cells in all areas become more

firmly bound into the CA

area 1 area 2 

B2

B1
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w4
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w6

w1

C3

C2

C1

Fig. 10 Example of overlapping cell assemblies. Nodes simulta-

neously active are depicted using the same fill pattern. The dashed

and dotted lines identify the two CAs activated by two different input

patterns

Table 1 Summary of [77] covariance rule

Pre-synaptic cell

Ac Ac

Ac

Ac

Si

Si Si

Si

Post-synaptic cell w= pre x post

The size of the arrows in columns 2 and 4 indicates the approximate

magnitude of the difference between current and average activity of

that cell (assuming sparse neuronal coding); the orientation indicates

the sign of the difference (up: positive, i.e. the cell is active above

average; down: negative). Arrows in the last column indicate the

amount of change in weight (Dw) that the rule produces in a link when

the pre- and post-synaptic cells exhibit the specified activations

(obtained as the ‘‘product’’ of columns 2 and 4)
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cell’s average activity is much closer to zero than to its

maximum level of activation.

Note that links between two cells that are simulta-

neously silent are strengthened (case (d) in Table 1). This

leads to an overall merging effect. Setting Dw = 0 in case

(d) is not sufficient to solve this problem. In fact, because

of the differences in magnitude, the net effect produced by

the alternated strengthening (a) and weakening (cases (b)

or (c)) of a link is an increase in strength. In the example of

Fig. 10, alternation of inputs A and B means alternated

increase (homosynaptic LTP, (a)) and decrease (heterosy-

naptic LTD, (b)) of w3 and w4: the net effect is a weight

increase in both, which, in the long run, causes the two cell

assemblies to merge into a single one.

The Artola–Bröcher–Singer rule differs from the

covariance rule at least in the following ways:

• It uses the same amount of weight change Dw per unit

time for both LTP and LTD (this implies that weak-

ening and strengthening produce weight changes of

equal magnitude);

• It does not strengthen links between cells that are

simultaneously silent;

• It uses a single parameter’s value (the postsynaptic

membrane potential) to determine whether LTP or LTD

should occur—see Eq. 2.

The last feature (based on neurobiological evidence)

allows one to precisely define the ranges of values of the

postsynaptic membrane potential for which either LTP or

LTD will occur. We speculate that the ratio between the

widths of these ranges allows the modulation of the total

amount of competitive learning that takes place in the

network. The validity of this hypothesis requires further

computational testing, motivated also by the presence of a

residual CA overlap in the ABS rule simulations.

Also note that as words usually have ‘‘neighbours’’ with

which they share part of their form [12, 50], the model

correlate of words should also partially overlap in their

articulatory-acoustic signatures. Input patterns with over-

lapping activations, however, are expected to lead to an

increase in CA overlap and merging; to maintain CA dis-

tinctiveness and neurobiological realism, we envisage the

use, in future, of temporally dynamic patterns, spiking

neurons and time-dependent synaptic plasticity rules.

The fact that the computational abstraction of the ABS

model implemented here exhibits both competitive and

recruitment learning behaviour [19, 24, 80] is worth of

note. Perhaps the most well-known example of Hebbian

learning rule exhibiting both of these properties is the

Bienenstock–Cooper–Munro (BCM) rule [7], which has

been successfully used to model and explain the sponta-

neous emergence of orientation selectivity and ocular

dominance in the visual cortex [83]. It should be noted that,

although many of the BCM rule properties have been

shown to arise from spike-time dependent plasticity rules

(e.g. [38]), this rule had been originally developed to

account for cortical organization and receptive field prop-

erties during development. Instead, the ABS model was

derived from neurophysiological data obtained in the

mature cortex. Below we discuss in detail additional

aspects that distinguish the ABS rule implemented here

from the classical BCM rule.

First of all, in the BCM rule the LTP/LTD threshold—

corresponding to parameter h? in Eq. 2—is not, like here, a

predefined, fixed value, but a sliding threshold that changes

according to the running average of the postsynaptic cell’s

activity.2 As pointed out by [53], although evidence sug-

gesting that the LTP/LTD threshold may be affected by the

activity of the cell does exist (e.g. [5, 41]), it has been

established that this effect is input (i.e. synapse) specific, and

that it depends on the pattern of pre-synaptic rather than post-

synaptic activity [2]. Thus, the assumption of a single,

postsynaptic-driven LTP/LTD threshold that applies to all

the synapses of a cell is not entirely justified.3 Second, in the

BCM rule LTD occurs even with very small postsynaptic

potentials, whereas experimental evidence suggests that if

postsynaptic depolarization remains below a certain thresh-

old, the synaptic efficacy should remain unchanged,

regardless of any presynaptic activity [4]. This aspect was

implemented in the present ABS rule using a second (fixed)

threshold, parameter h- in Eq. 2. Finally, the BCM rule is

unable to model heterosynaptic LTD (the weakening of

synaptic inputs that are themselves inactive), as it requires at

least some presynaptic activity to be present at a synapse for

LTD to take place. This form of LTD has been observed in

the hippocampus and neocortex [36]; the induction protocols

require strong postsynaptic activation (e.g. high frequency

stimulation of the cell through excitatory inputs). Accord-

ingly, the ABS rule implemented here allows heterosynaptic

LTD to occur, subject to the postsynaptic cell being strongly

depolarized (condition V(y,t) C h? in Eq. 2).

In view of the above point, we submit that the ABS rule

that we adopted is more neurobiologically accurate than the

BCM rule; furthermore, it does not make any assumptions

2 More precisely, for the BCM rule to exhibit stable learning

behaviour, the threshold must be a more-than-linear function of the

cell’s average output rate (simulations typically use the power of 2).
3 Although evidence in support of the existence of homeostatic

plasticity mechanisms exists (see [88] for a review), phenomena such

as that of synaptic scaling—showing that prolonged changes in the

cell’s activity lead to the multiplicative scaling of all the amplitudes

of the miniature excitatory postsynaptic currents [89]—do not

constitute direct evidence for the presence of a single sliding LTP/

LTD cell-threshold. Equally, synaptic scaling does not justify

assuming that the norm of the vector of the synaptic strengths is

conserved and equal for all cells, as often presupposed by neurobio-

logically inspired implementations of Hebbian learning (e.g. [44]).
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about the existence of a global sliding threshold (or con-

servation of the cell’s total synaptic strength). At the time

of writing, we are not aware of any other examples of

biologically realistic learning rules with fixed (non-sliding),

input-specific (local) LTP/LTD thresholds (and no synap-

tic-weight conservation) that have been reported to exhibit

both recruitment and competitive learning (but see [81] for

a biologically grounded recruitment learning algorithm).

Relevant here is the innovative recent study by [79],

which explores the effects of the BCM learning rule on the

dynamics of neural populations in a model of the hippo-

campus and surrounding cortical areas. Like the

simulations presented here, Seth and Edelman’s network

uses mean-firing rate units and Hebbian synaptic plasticity,

and carefully replicates neuroanatomical structure and

connectivity of the relevant areas. In this study, however,

the authors investigate the spontaneous emergence of

mesoscale (i.e. cell assembly level) causal structures during

the execution of a spatial navigation task. To analyse the

network’s behaviour in terms of population dynamics, for

each specific network output, or neural reference (NR),4 a

corresponding ‘‘context network’’ is identified, consisting

of the set of neuronal interactions that could have poten-

tially caused the observed NR (i.e. the set of cells that were

active before the NR and are connected to it, either directly

or via a number of synaptic links smaller than six). From

this context, a ‘‘causal core’’ of interactions is then

extracted, comprised of only those links that are causally

significant (according to Granger’s concept of causality

[30]) and that form a chain of activations causing (or

predicting) the specific NR. Interestingly, the results of this

study indicate that the size of the causal cores diminishes as

the learning progresses, a process which the authors refer to

as of ‘‘refinement’’, and which is interpreted by them as

possibly reflecting the selection of a specific causal path-

way from diverse neuronal repertoires.

In view of the apparent similarities with the present

work, one might be tempted to draw parallels between the

concepts of causal core and cell assembly, or, even further,

between the process of refinement and that of pruning of a

CA’s halo. However, this analogy would not be very

appropriate. To begin with, the concept of causal core (or

context network) introduced by Seth and Edelman is not

equivalent to that of cell assembly kernel (or halo). In fact,

a CA kernel consists of a set of strongly and reciprocally

connected cells; the presence of positive feedback loops

within the CA’s circuits is a crucial feature, as it allows

reverberation and persistence of activity even in absence of

a stimulus. Instead, causal cores, more akin to Abeles’

synfire chains [1], are formed by mono-directional chains

of (not necessarily strongly connected) cells, whose

sequential activation is a good predictor of the activation of

a single output cell at a particular time point (due to the

combinatorial growth in the number of cells to be included

in the context network, the causal core analysis cannot be

easily extended to include a set of NRs rather than just one

[79]). Second, while in the results reported here the pruning

process that gradually separates the CAs takes place in the

CA’s halo, in Seth & Edelman’s simulations the refinement

takes place in the causal core (the equivalent of the CA

kernel), and not in the context network, or ‘‘periphery’’ of

the circuit. Third, Seth and Edelman’s results do not pro-

vide evidence of an ongoing process of recruitment of cells

from the periphery (or halo) and consequent consolidation

of the links between them: the context network is mostly

unaffected by the learning process [79], their Fig. 3a).

Finally, to achieve competitive learning, in addition to

adopting a BCM-based rule (which, as discussed earlier,

makes some assumptions that are not biologically moti-

vated), Seth & Edelman’s model of synaptic plasticity uses

weight normalization [44], a mechanisms not fully justified

on neurobiological grounds. In spite of these differences,

Seth & Edelman’s significant contribution is still close, in

spirit, to the present and other works (e.g. [16, 33, 37, 86]),

which attempt to explain the emergence of high-level

behavioural and cognitive processes in terms of neural

population dynamics in neurobiologically realistic neural

networks.

Finally, the present results provide evidence in support

of the hypothesis that words, similar to other units of

cognitive processing (e.g. objects, faces), are represented in

the human brain as distributed and anatomically distinct

action-perception circuits. Existing theoretical and com-

putational accounts of knowledge representation in the

brain explain memory either as the activation of a priori-

established localist elements, or on the basis of fully

overlapping, distributed patterns (see ‘‘Introduction’’ sec-

tion). However, neither of these accounts is entirely

compatible with an approach grounded in neuroanatomy

and neurophysiology: localist networks with one cell

(neuronal pool, or cortical column) coding for one cogni-

tive trace may have difficulty in explaining (or making

predictions about) the experimentally observed spreading

of activity in cortex when words or concepts are recog-

nized. Fully distributed networks, on the other hand,

predict very global brain activity if their layers are not

firmly related to specific cortical areas, and struggle to

explain our ability to maintain active more than one rep-

resentation at the same time within the same sensory

modality. The present results suggest that anatomically

4 A ‘‘neural reference’’ is defined as the activation, at a particular

time, of a particular cell in area CA1; in the model in question, the

activity in area CA1 directly affected motor output.
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distinct and distributed action-perception circuits can

emerge spontaneously in the cortex as a result of synaptic

plasticity. Our model predicts and explains the formation of

lexical representations consisting of strongly intercon-

nected, anatomically distinct cortical circuits distributed

across multiple cortical areas, allowing two or more lexical

items to be active at the same time. Crucially, our simu-

lations provide a principled, mechanistic explanation of

where and why such representations should emerge in the

brain, making predictions about the spreading of activity in

large neuronal assemblies distributed over precisely

defined areas, thus paving the way for an investigation of

the physiology of language and memory guided by neu-

rocomputational and brain theory.
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Appendix 1

The membrane potential V(x,t) at time t of a model cell x

with membrane time-constant s is governed by the

equation:

s � dV x; tð Þ
dt

¼ �V x; tð Þ þ VIn x; tð Þ ð3Þ

where VIn(x,t) is the total input to cell x. The output O(x,t)

of an excitatory cell x at time t is defined as:

O x; tð Þ ¼
0 if V x; tð Þ�u

V x; tð Þ � uð Þ if 0\ V x; tð Þ � uð Þ� 1

1 otherwise

8
><

>:

ð4Þ

The cell adaptation u is initialized to 0 and varies in time

according to Eq. (5):

sA �
du x; tð Þ

dt
¼ �u x; tð Þ þ O x; tð Þ ð5Þ

The output O(x,t) of an inhibitory cell x at time t is 0 if

V(x,t) \ 0, and V(x,t) otherwise.

Parameter values used in the simulations were:

(Eq. 3) Excitatory cells: s = 2.5; Inhibitory cells: s = 5

(in simulation time-steps)

(Eq. 5) sA = 15

(Eq. 1) a = 0.004

(Eq. 2) h- = 0.15; h? = 0.25; hpre = 0.05;

Dw = 0.0005

The low-pass dynamics of the network cells (Eqs. 3 and

5) were integrated using the Euler scheme with step size Dt

[65], with Dt = 0.5 (in arbitrary units of time).
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4. Artola A, Bröcher S, Singer W. Different voltage-dependent

thresholds for inducing long-term depression and long-term

potentiation in slices of rat visual cortex. Nature. 1990;347:69–72.

5. Bear MF. Mechanism for a sliding synaptic modification

threshold. Neuron. 1995;15(1):1–4.

6. Bi GQ, Poo MM. Synaptic modification by correlated activity:

Hebb’s postulate revisited. Annu Rev Neurosci. 2001;24:139–66.

7. Bienenstock EL, Cooper LN, Munro PW. Theory for the devel-

opment of neuron selectivity: orientation specificity and

binocular interaction in visual cortex. J Neurosci. 1982;2:32–48.

8. Braitenberg V. Cell assemblies in the cerebral cortex. In: Heim R,

Palm G, editors. Theoretical approaches to complex systems, vol.

21. Berlin: Springer; 1978. p. 171–88.
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