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Abstract

This research is about the perception-based medial point description of a natural form

(2D static or in movement) as a generic framework for a part-based shape representation,

which can then be efficiently used in biological species identification, as well as more

general pattern matching and shape movement tasks. We consider recent studies and

results in cognitive science that point in similar directions in emphasizing the likely im-

portance of medialness as a core feature used by humans in perceiving shapes in static or

dynamic situations. This leads us to define an algorithmic chain composed of the follow-

ing main steps. The first step is one of fuzzy medialness measurements of 2D segmented

objects from intensity images that emphasizes main shape information characteristic of

an object’s parts, e.g. concavities and folds along a contour. We distinguish interior from

exterior shape description. Interior medialness is used to characterise deformations from

straightness, corners and necks, while exterior medialness identifies the main concavi-

ties and inlands which are useful to verify parts extent and reason about articulation and

movement. The second main step consists on defining a feature descriptor, we call ShIFT:

Shape Invariant Feature Transform constructed from our proposed medialness-based dis-

crete set, which permits efficient matching tasks when treating very large databases of

images containing various types of 2D objects. Our defined shape descriptor ShIFT ba-

sically captures elementary shape cues and hence it is able to characterise any 2D shape.

In summary, our shape descriptor is strongly footed in results from cognitive psychology

while the algorithmic part is influenced by techniques from more traditional computer

vision.
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Chapter 1

Introduction

“In the beginning you must subject yourself to the influence of nature. You

must be able to walk firmly on the ground before you start walking on a

tightrope.”

– Henri Emile Benoit Matisse, Artist (1869–1954)

Technology is progressing day-by-day and scientists seek to enhance computers ability to

understand the in-surrounding world through the development of computer vision. Visual

information plays a crucial role in our society, it is increasingly pervasive. One of the

basic and most fundamental problem in computer vision is that of object representation,

which can be further exploited for recognition and categorization tasks. These tasks are

complex enough that it is often not sufficient to simply regard the raw images as training

examples and apply latest machine leaning algorithms. Rather, there is structure in natural

images, which should be exploited to extract machine understandable features. This thesis

concentrates on mapping our current understanding of the human perception of shape

and creating algorithms, which transform an image into an intermediate representation

through medialness measurement and provide far superior input to later modules in a

processing chain for high-level tasks such as shape matching and movement analysis.
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In this chapter, first I describe my motivation for this thesis followed by the char-

acterisation of the problem statement. Further, I discuss most relevant and commonly

used definitions and methods for 2D shape representation found in the computer vision

literature.

1.1 Motivation

Over the past few decades, computer vision scientists and psychologists have put enor-

mous effort in the understanding of images of objects and their mathematical represen-

tation. An important theory on object detection is that humans have very powerful vi-

sual sensors and processors that successfully identify an object by its parts and their

aggregation, despite changes in size and orientation of an image. This theory, known

as recognition-by-components (RBC, Biederman (1987)), explains how moderately oc-

cluded or degraded objects are successfully recognized by the human visual system. A

similar strategy is formed in artistic rendering and animation where an artist represents

any character as the combination of primitive structures of different sizes (Figure 1.1,

here approximate disks of various radii), a technique referred to as “geometric drawing”

(Simmons and Winer (1977)). Different poses or body movements are characterised by a

particular orientation and combination of these primitives. Each body part can be fleshed

out and refined in successive sketches (Loomis (1951); Simmons and Winer (1977)). Such

sketches of characters can then be directed using the Line of Action technique from an-

imation: a single curve running through the “middle” of the character, which represents

an overall force and direction of movement for the character (Bregler et al. (2002); Guay

et al. (2013)).

On the other hand, from the point of view of psychophysical investigations on the

perception of shape and their movements by humans, Kovács et al. (1998) have indicated

that such articulated movements of a biological character can be captured via a minimal
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Figure 1.1: An artistic way to draw animal shapes. An artist perceives an animal character
as the combination of primitives of varying size (e.g. in its simplest form as a series of
disks of varying radius positioned at important junctions and capturing the main body
parts). The particular orientations and combinations of these primitives indicate different
body pauses and leads to an animation of natural-looking movements. Artist: Mr. Kelvin
Chow.

set of dominant features, potentially being represented as isolated points or “hot spots”

positioned near a medial axis locus; such ideas have been reinforced recently with further

studies and results by Lescroart and Biederman (2013); Firestone and Scholl (2014).

Inspired with the theory of RBC and these two approaches to the perception of the

shape of articulated objects by humans, we have investigated a possible scheme based on

the notion of robust medialness initially formulated by Kovács et al. (1998) that can effi-

ciently capture the important structural part-based information commonly used in artistic

drawings and animations. The main advantage over traditional medial-based representa-

tions of 2D shape is one of combined compactness, robustness and capacity of dealing

with articulated movements.

1.2 Problem Statement

Almost all the classic approaches on machine vision (Belongie et al. (2002); Loffler

(2008); Poppe (2010); Premachandran and Kakarala (2013); Wei and Li (2014)) try to

integrate some knowledge from current theories on visual perception and cognition, in

order to try to solve problems linked with human perception. However, despite continu-

ous progress in recent decades, machine vision systems still have a long way to go before
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being able to replicate human visual performance. A general result from visual perception

is that a human can effortlessly detect the shape of any object, despite of the variations in

their size, orientation and moderate occlusion (Biederman (1987)). One finds numerous

ways of defining shape in the computer vision literature; for example, one-dimensional

functions for shape representation (Wang et al. (1999); Loncaric (1998); Chang et al.

(2001); Zhang and Lu (2004)), polygonal approximation (Latecki and Lakämper (1999);

ShuiHua and ShuangYuan (2005)), spatial interrelation feature (Davies (2004); Bauck-

hage and Tsotsos (2005); Liu et al. (2007)), moments (Mukundan et al. (2001); Celebi

and Aslandogan (2005)), scale-space methods (Abbasi et al. (2000)), shape transform

domains (Chuang and Kuo (1996); Chen and Bui (1999); Khalil and Bayoumi (2001)).

However , to achieve the goals of the RBC theory, shape representation requires a set of

properties or features that are invariant under affine changes and prederably relate to what

is known of human vision. After an in-depth investigation on the state-of-the-art of shape

representation and object matching tasks, we found that: (a) the classical shape descrip-

tors and matching tasks mainly rely on well segmented object, as contours are proven to be

a semantically strong representation of the object, and (b) published results work only on

specific datasets (Zhang and Lu (2004); Yang et al. (2008); Poppe (2010); Weinland et al.

(2011)). Moreover, most of these shape descriptors produce poor or false matching results

when changed by a simple affine transformation. Although, some shape descriptors are

capable in handling affine transformation (Nasreddine et al. (2010); Wang et al. (2012)),

they fail to describe the shape through its parts to meet the basic part-based shape match-

ing task. While on the other hand partial shape matching approaches (Chen et al. (2008);

Riemenschneider et al. (2010)) perform relatively well in case of occlusions, they are not

fully invariant to affine transformation and work only on well segmented images. The

inner-distance approach (Ling and Jacobs (2007)) works well in handling articulations

but is overly sensitive to holes, object deformation, occlusions, cuts and perturbations.
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Feature based descriptors (Lowe (1999, 2004); Mikolajczyk and Schmid (2004, 2005);

Dalal and Triggs (2005)) work well in detecting objects in natural scenes, but they do not

consider an explicit shape representation of an object. As a consequence, accuracy of

these methods reduces drastically for detecting closely related objects with similar shape,

but with different textures: i.e. the local intensity variations take over the overall shape

and parts organisation of an object. Furthermore, to our knowledge, none of the shape

descriptors are able to define a shape generically, i.e., shape definition applicable for

every 2D shape of object.

Therefore, the major challenge of this thesis is to create a perception based descriptor

that can

1. provide a generic definition of a 2D (possibly articulated) shape;

2. show invariance towards affine transformation;

3. be easily indexable over a very large dataset.

Moreover, a robust and reliable matching algorithm is desired to handle part based match-

ing as well as be robust to occlusions, cuts and articulated movements.

Our current approach is to develop a shape matching algorithm that is invariant to

translation, scale and rotation and is inspired by the now classic Scale Invariant Fea-

ture Transform (SIFT, Lowe (1999, 2004)). Our shape representation is derived from

the region-based medial point description of shape proposed by Kovács et al. (1998) in

cognitive science and perception studies. In the current work, an algorithmic chain is

further developed to highlight the feature points. The purpose of evaluating such medi-

alness measurement is to provide a representation of shape that is local, compact, can

easily be applied at different spatial scales, and mimics human sensitivity to contour stim-

uli. This process maps the whole shape information into a few number of points we call

“dominant” and hence make it compact. Contrary to classic medial-based representa-
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tions, ours is not overly sensitive to small boundary deformations and furthermore gives

high response in those regions where the object has high curvature with large boundary

support and in the vicinity of joints between well-delineated parts, such as the limbs of

an animal. We further augment interior hot-spots as proposed by Kovács et al. (1998);

Kovács (2010) with significant concave and convex points by locating these at the end of

medialness ridges. This permits to tie medialness with the “codon” theory of Richards

and Hoffman (1985), proposed in the 1980’s as potent object part separators and often

used to characterise shape complexity (Kayaert et al. (2011)) as well as being used in

scale-space analyses of contours (Yang et al. (2008)). Evidence for the importance of

significant contour curvature extrema as shape-rich features has also been increasing in

recent years in the psychology and vision literature (De Winter and Wagemans (2008);

Rodríguez-Sánchez and Tsotsos (2012)).

1.3 Shape Representation

Shape representation towards matching has been addressed in many ways by computer

scientists in recent years, including by directly characterising and grouping contour points

(Chui and Rangarajan (2003); Liu et al. (2011b); Van Wamelen et al. (1999, 2004)), by

contour analysis (Bai et al. (2009a); Berretti et al. (2000); Chen et al. (2008); Latecki

et al. (2000); Srestasathiern and Yilmaz (2011)), using Blum’s medial axis transform

(MAT) (Kimia (2003); Sebastian et al. (2004)) and the closely related skeleton (Bai et al.

(2008, 2009a)), inner distance (Ling and Jacobs (2007)), medial point transform (MPT)

(van Tonder and Ejima (2003)), fusion of contour and local interest points descriptions

(Mouine et al. (2013a)), multiscale triangulation representation (Mouine et al. (2013b)),

and contour enclosure-based symmetries (Kelly and Levine (1993, 1995a,b)). Some of the

main medial representations are illustrated in Figure 1.2, including our proposed method.

Other classic approaches emphasise similarly either boundary information (e.g. Fourier
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 1.2: (a) Sketch of a cat built from a small number of approximate disks (visible
sketched lines); (b) corresponding segmented and binarized image; (c) classic internal
medial-axis approximation; (d) external medial-axis; (e) 2D shock graph; (f) proposed
interior medialness map; (g) recovered concave (green dots) and convex (red dots) points,
and (h) final dominant (medial) point set (in blue for internal ones, in green for exter-
nal/concave ones, and in red for convex points) obtained via our method.
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(Zhang and Lu (2002); Chen and Bui (1999)), wavelet (Chuang and Kuo (1996)) and

scale-space analyses of closed contours (Mokhtarian and Mackworth (1992); Mokhtarian

et al. (1997); Zhang and Lu (2003))) or interior information (e.g. primitive retro-fitting

or approximation). The general approach to matching is then to find good ways to put in

correspondence the whole shape representation from a query with an equivalent complete

shape representation of a target object (e.g. extracting a skeleton from a segmented image

and defining a process to match it with another skeleton description in the database).

1.4 Contributions

I propose instead to find an efficient medial representation which remains discrete (point-

based), is (at least approximately) invariant to scaling, rotations and translations, and can

be the basis of a feature vector map for efficient query-target matching tasks as produced

in the discipline of Information Retrieval. Note that we do not require to have a complete

object segmented and thus will also address partial shape matching. Note also that most

of other classical shape-based approaches do not consider deformations and articulated

movements, while we do.

Mathematically, following Kovács et al. (1998), medialness of a point in the image

space is defined by computing the Dε function based on an equidistance metric to bound-

ary segments. The Dε value at any point in image space is represented as the containment

of all segment of boundary (information, edges) falling into the annulus of thickness pa-

rameterised by the tolerance value ε , and with interior radius taken as the minimum radial

distance of a point from boundary (Figure 1.3). I modify the original definition of medi-

alness by introducing weight and orientation to bounding contour points to better localise

the medialness measurements. On completion of medialness measurements each pixel in

the transformed image space holds a local shape information of cumulated medialness.

Assuming figure-ground separation, thickness variations, bulges and necks of an object
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Figure 1.3: Adapted from Kovács et al. (1998) with permission from the lead author: the
Dε function for a simple shape is defined as an accumulation of curve segments falling
inside the annulus neighborhood of thickness ε (thick boundary segments within the gray
ring) centered around the circle with center p. M(p) is taken as the minimum radial
distance from point p to the nearest contour point.

are captured via interior medialness measurement, while the concavities and joints are

defined via exterior medialness measurement. The interior and exterior medialness mea-

surement gives different types of information about the shape of an object, and they are

processed separately in our proposed method.

In the work of Kovács et al. (1998) it is shown that humans are most sensitive to a

small number of localised areas of medialness which coarsely correspond to joints for

animated bodies. Our equivalent (extended) notion is defined as dominant points and

can be applied to any objects, animated or not. Dominant points are constrained to be

a relatively small number of points of high medialness obtained by filtering out the less

informative, redundant and noisy data from the initial medialness image space.

To identify internal dominant points a top-hat transform (Serra (1983); Leymarie and

Levine (1988); Vincent (1993)) is applied to isolate peaks in the medialness signal.1 Peaks

are filtered using an empirically derived threshold. The selected peaks are then each char-

1In mathematical morphology, images are considered as set functions on which operations such as di-
lations and erosions can be applied iteratively to gradually modify the initial sets and emphasise certain
characteristics. The hat-transforms are used to isolate peaks or valleys in function sets (such as an intensity
image).
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acterised by a single representative point. To avoid considering large numbers of nearby

isolated peaks which are characteristic of object regions with many small deformations,

only peaks at a given minimum distance away from each other are retained. The extrac-

tion process of external dominant point is achieved by combining a concavity measure

together with length of support on the contour. Again, a spatially localised filtering is ap-

plied to isolate representative dominant points. Furthermore, to improve the robustness of

our representation, we extracted the set of convex points to capture the blob like structure

from the shape. We have shown that the articulation and limbs movement can be captured

via the exterior dominant points. All the selected internal and external dominant points

along with convex points are then considered as the representative feature points of the

shape. Our matching algorithm is designed in such a way that it first compares internal

dominant points of a query object with internal representative dominant points of target

shapes in a database. External dominant points are then processed similarly. The match-

ing algorithm first analyses the amount of scale, rotation and translation of the query with

respect to the target image. These values are then applied over the query image to find the

best possible matching location in the target image.

Figure 1.4: Block diagram of medialness based matching task.

The overall working process of the system is shown via a block-diagram in Figure

1.4. This thesis is mainly focused around providing a generic definition of the 2D shape;

driven by previous psychophysical investigation on human perception. I have evaluated
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this definition on diverse datasets of 2D objects and proved them to work well on a number

of tasks where 2D shapes can play significant role. The thesis includes such tasks as object

classification, matching and recognition.

1.5 Thesis Outline

Chapter 2: Background, reviews the state-of-the-art of medialness measurement and object-

based image matching. The chapter is categorised into three sections: review on medi-

alness measurement, contour-based object matching and feature-based image matching

methods. The main goal of this chapter is to summarise the evolution from the medial

axis to medialness measurements, also comparing different contour based and feature

based matching methods.

Chapter 3: Medialness Measure via Oriented Boundary, details the mathematical for-

mulation of our modified definition of medialness measure. This chapter has two major

sections: (a) calculating orientation and weight (actual length) of a contour point; (b) for-

mulating and comparing two possible functions for the adaptive tolerance ε as a function

of the minimum radial distance. It also provides definitions to both interior and exterior

medialness calculations, which are further used to extract different feature or dominant

points from the given shape.

Chapter 4: Shape Invariant Feature Extraction and Description, presents the mathe-

matical model of our designed feature descriptor: the Shape Invariant Feature Transform

(ShIFT); the chapter also describes the extraction process of different dominant points.

The sections are: (a) detail mathematical description of the ShIFT vector and finding key-

point orientations; (b) interior, concave or exterior and convex dominant points extraction

process; and (c) indexing on ShIFT feature vectors. The ShIFT descriptor’s affine in-

variance is outlined, as well as it’s behavior under viewpoint changes. The chapter also

considers those cases where an object is inverted (upside-down or mirror via a reflector).



1.5 Thesis Outline 12

We also provide two complementary methods to extract extremities (concave and convex

points) from an outline.

Chapter 5: Shape Retrieval and Matching, provides details on shape retrieval and

matching techniques. The sections are: (a) illustrating a strategical process to index and

retrieve shape through ShIFT vectors; (b) finding a homography amongst two shapes and

exploiting it further for the matching task; (c) different ranking metrics to evaluate the

outcomes for a given query shape; (d) a bag-of-words model for our matching system;

and (e) how we evaluate the overall performance of our system for a given set of shapes

or dataset.

Chapter 6: Results and Discussion, evaluates our framework for different set of shape

databases. We introduce two datasets: (a) a dataset of 2D heterogeneous objects, and

(b) dataset of cartoon characters, focused on the Simpson’s family characters; we further

evaluate the performance of our system via different metrics. The chapter also compares

the results with the recent state-of-the-art 2D-shape descriptors. The robustness of our

matching algorithm is further tested by perturbing the data-set at different levels.

Chapter 7: Conclusion and Future Work, concludes the thesis and suggests potential

future extensions for our work.



Pablo Picasso, Guernica, 1937. @Museo Reina Sofia, Madrid, Spain.



Chapter 2

Background

“All perceiving is also thinking, all reasoning is also intuition, all observation

is also invention.”

– Rudolf Arnheim, Perceptual Psychologist (1904–2007)

Visual information plays an important role in our society, where it is increasingly per-

vasive in our human lives. Images and videos are used in many application areas like

architectural and engineering design, fashion, journalism, advertising, entertainment, se-

curity, military, planning, science. Object recognition and detection in 2D images has

received a lot of attention in the computer vision and pattern recognition communities.

Computer vision seeks to enhance the ability of machines to understand the visual world

through the development of algorithms for object detection, understanding, recognition

and reconstruction. In the early days of computer vision Blum (1967) proposed a then

novel geometrical interpretation of 2D objects by introducing the concept of medial axis,

which captures both global and local shape properties of an object. The medial axis trans-

form (MAT ) of an object (also referred to as skeletal representation) is defined as the

locus of the centers of the maximal disks that fit an object’s outline. Each symmetry

axis locus can be linked to curvatures at the boundary of the object, hence unifying local
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differential structure with global topological properties (Siddiqi and Pizer (2008)).

Many researchers have studied shape representation, matching, comparison and recog-

nition. Such work can be loosely organised into two groups: (i) contour vs region and (ii)

feature-based. Contour-based and region methods work directly from a representation

of object boundaries, while feature-based methods attempt to first extract salient features

such as corners and use a small amount of associated local information, e.g. such as the

correlation within a small image patch (Förstner (1986)).

In the remaining of this chapter, we first summarise in Section 2.1 the main approaches

that relate to our work. Then in Section 2.2, we provide a more general background on

the main recent approaches to 2D shape analysis and retrieval.

2.1 Background on Medialness Measurement

In mathematical morphology, the medial axis (MA) became a central concept (Serra

(1983)). In computational geometry the MA is closely related to the Voronoi diagram

(Aurenhammer (1991)) and bisector sets. A mathematical definition of Medial loci can

be given as (adopted from Siddiqi and Pizer (2008)): Let S be a connected closed set in

Rn. A closed ball B ⊂ Rn is called a maximal inscribed ball in S if B ⊂ S and there does

not exist another ball B
′ ̸= B such that B ⊂ B

′ ⊂ S. The medial locus is thus a subset of

the space Rn × [0,+∞].

Blum, a true visionary in the history of pattern recognition, was interested in develop-

ing a mathematical description for biological shapes, in order to study growth and move-

ment (Blum (1962a,b); Kotelly (1963)). Blum provided a suitable class of descriptors in

the form of a skeletal representation of shape as the result of a grassfire transformation

also known as the medial-axis transformation or MAT (see Figure 2.1). The MAT results

in a graph with segments capturing local symmetries and junctions relating to parts of the

original object’s contour. A medial-axis segment is a symmetry axis in the sense that each
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pair of associated contour boundaries forms a local mirror-like symmetry.

(a) (b) (c) (d)

Figure 2.1: Adapted from Leymarie (2011) after Van Tonder et al. (2003), Figure3: The

Medial Axis of Blum: (a) for two sample points as the locus of meeting Euclidean wave-

fronts, where the (central) cross indicates the initial shock when the fronts first meet, and

the arrows indicate the direction of growth or flow of the medial axis segments; (b) as the

loci of centres of maximal contact disks (a dual view to propagating wavefronts such as in

(a)); (c) derived from a distance map computed for a humanoid outline, as the ridge lines

of the corresponding height field, (d), where the (signed) distance from the outline maps

to a height value.

For a given silhouette, each segment of the medial axis can correspond to categorically

different types of configurations of the corresponding pair. This problem is resolved by

introducing shock graphs (Kimia et al. (1995)), which is a form of directed planar graph,

produced as a result of the grouping of medial axis points with common directions of

distance flow or increasing radius of the associated bi-tangent circles.

2.1.1 Medialness, Shape and Psychology

In the 1950’s, Rudolf Arnheim (1974), a Berlin gestaltist who had emigrated to the United

States and became professor of the Psychology of Art at Harward University, intuitively

arrives at a notion similar to medialness and talks of the “structural skeleton” of a canvas
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and its object traces. Around the same time, Fred Attneave (1954) studies shows the

importance of curvature features while observing 2D objects, where the outline of a shape

is encoded in the form of curvature extrema, i.e, concavities or convexities. A proof was

still lacking whether the human visual system captures these type of information or not.

To develop a geometry of visual form, an appropriate intermediate-level represen-

tation became a requirement (Kimia (2003)), which must be able to mediate between

ambiguous, noisy regional fragments and entire object models. After the initial work of

Harry Blum and his collaborators, in the 1960’s and 1970’s (Kotelly (1963); Blum (1967,

1973)), during the 1980’s, Irving Biederman (1987) and his collaborators defined a shape

based on a notion of parts and referred to these as elementary geometric primitives or

geons. Over many years of psychophysics studies, it was shown how humans recognise

more complex objects in terms of hierarchies of parts and their relationships. In the same

period, Richards and Hoffman (1985) defined a shape as sequences of triplets of signifi-

cant concavities and convexities, i.e., two concavities with an intermediate convexity, also

known as (shape) codons.

In the 1990’s Kovacs and Julesz (1993, 1994) presented a finding that the human

visual system is more sensitive towards a closed contour than to open contours. Their

experimental setup was basically based on a series of Gabor patches with varying orien-

tations. These psychological experiments were aimed at finding correlates of perceptual

organisation at the level where spatial interactions occurs among early cortical filters.

While Polat and Sagi (1993, 1994) described the architecture of pairwise spatial interac-

tions, Kovacs and Julesz (1993, 1994) described the activity pattern of a large number

of interacting filters. By the late 1990’s Kovács et al. (1998) derived an analogous form

of medial-axis, called medial-point description. A major drawback of Blum’s MA lies

in the fact that it is sensitive to noise. The Dε–function (definition is given in Section

1.4) makes prominent certain medial points along the MA, potentially leading to a very
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compact representation with greater robustness to noise than Blum’s MA. Kovács (2010)

refers to such points of high medialness as “hot-spots”, which could play a key role in

analysing animal forms, particularly in the case of articulated movements. A similar, but

more direct and non-algorithmic technique is used for producing moving virtual charac-

ters in films and games, where a human wears a special suit with localised “hot-spot”.

The system is based on Computerised Movement Capture system (also commonly known

as mo-cap, Amor et al. (2009)).

Some other studies in psychology are done on human-driven attention when presented

with simple shape, such as rectangles and ovals. In such studies, non-expert human sub-

jects are asked to place a dot within the outline of presented shapes (Psotka (1978)). The

resulting cumulative patterns closely resemble “fat” Blum’s MA loci. Recently, this study

has been repeated by Firestone and Scholl (2014), using a computerised tablet (to support

the interface) and asking random people on the street of New York City to tap on the

screen. Here we note that the results not only resemble the MA type of responses but they

reflect traces alike the results indicated by Kovács et al. (1998), i.e., higher cumulative

values appear to be concentrated as “hot-spots”.

Also in recent studies, Lescroart and Biederman (2013) indicated that parts represen-

tation and their relative orientation can be encoded in V3 and higher visual stages, while

they are in support of MA based shape coding. Explicit coding of MA shape in higher-

level object cortex (also known as inferotemporal cortex or IT) is further supported and

demonstrated by Hung et al. (2012). They report that such IT neurons encode both the

MA and contour segments simultaneously.

2.1.2 Scale-space Medialness Measurement

In the early 1990s, Kelly and Levine (1993) introduced the notion of contours as sym-

metric enclosure and used annular symmetric operators to detect contour configurations.
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Two physical analogies for enclosure were proposed that provide the basis for selecting

appropriate parameters. Later they showed that the subsequent grouping of symmetric

points can result in a set of parts that makes it possible to identify the location of a tar-

get object within an image (Kelly and Levine (1995b)). Around the same time, Burbeck

and Pizer (1995) showed how an object medialness can be sensed at multiple scales by

“boundariness” detectors that give integrated responses. While these ideas were being de-

veloped in computer vision, Kovács et al. (1998) in perception and cognition studies had

showed that a “biological shape” in movement can be summarised by a few informative

points thereby defining a medial-point description of an object. A related model was then

proposed more recently by van Tonder and Ejima (2003) who reformulated the maximal

disk methods for calculating medial-points and presented the Hybrid Symmetry Transfor-

mation (HST), which is a mixture of shunting inhibition networks and wave dynamics.

The maximal disk paradigm is made parametric (and can be implemented in hardware or

a neural network) by introducing an adjustable shunting coefficient.

Multiscale medialness measurement on gray level images

In all the above measures, normally, the input images are in the binary form and hence

the extracted boundary consists of either white or black pixels. In the field of medical

imaging, Xu and Pycock (1998, 1999) introduced the Concordance-based Medial Axis

Transform (CMAT) that computes medial evidences from gray-scale boundary measures.

CMAT computation takes the advantage of a look up table (LUT) that contains a series of

groups of boundariness points, where the groups are identified in second LUT. The medial

responses are calculated at multiscale where progressively large blurring filters are used

to produce a set of scale-space images, which discards the need of prior segmentation

and avoids removing important boundary information at an early stage of processing. For

each multiscale medial axis (MMA) point, the spatial coordinate, x, indicates the middle
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position of the object; the scale parameter, r, specifies the approximate width of the object

at that position. The MMA curves are obtained by first computing medialness1 over scale-

space and then detecting scale-space ridges in the medialness function. The medialness

function, M(x, σ ), is defined as the degree to which a position x resembles an object

central locus when examined at a particular scale r (Xu and Pycock (1999)). Furthermore,

Xu (2004) presented an improvement of the MMA, where a sliding window algorithm is

used to detect locally optimal scale ridges in scale space, in order to distinguish different

objects in the input image.

The method maintains a pair of LUTs, which can take a large memory portion if

the images are of high resolution. The CMAT algorithm is not only computationally

expensive, but also the representation is not concise and hence it can not be applied in

real time system. The CMAT representation also suffers from a “halo” effect2 and cannot

be said as a true medialness definition because it aggregates the nearby boundary segments

oriented towards the point in consideration, but they represent different object parts. The

method also seeks an algorithmic formulation to make it compact, i.e., extract feature

points from the map.

2.2 Background on Shape Analysis and Image Retrieval

Shape-based image retrieval consists of the measuring of similarity between objects rep-

resented by their features. In this section, we mainly focus on the representation and

descriptive aspects of shape analysis. Shape representation methods spatially transform

the object’s outline shape (e.g. into a graph) so that the “important” or “most informative”

characteristics of an object are preserved. Here, the word “important” is context sensitive

1The medialness at a particular position x in the image space is the integral of the boundariness contri-
bution to the true medialness structure in a certain circular area, centered at that position x.

2The halo effect is a cognitive bias in which an observer’s overall impression of an entity influences the
observer’s feelings and thoughts about that entity’s character or properties.
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and typically has different meanings for different applications. Shape description refers to

methods that result in a numerical descriptor and is a step subsequent to shape representa-

tion. Typically, a shape descriptor vector (also called a feature vector) is generated. The

goal is to uniquely characterise the object using its feature vector. The usually required

properties of a description scheme are invariance to translation, scale and rotation. This

implies that such transformations do not change the perceived shape of the object.

Looking back on recent developments, a shape can be described according to: Digital

bending energy (Young et al. (1974)), Axis of least inertia (Tsai and Chen (1995)), Eccen-

tricity (Peura and Iivarinen (1997)), Convexity (Peura and Iivarinen (1997); De Berg et al.

(2000); Grunbaum (2003)), Hole area ratio (Soffer and Samet (1997)), Earth Mover’s

distance (Rubner et al. (2000); Ling and Okada (2007)), Solidity (Chang et al. (2001)),

Circularity ratio (Zhang and Lu (2004)), Inner Distance (Ling and Jacobs (2005, 2007)),

Center of gravity (Yang et al. (2008)), Elliptic variance (Yang et al. (2008)), Height func-

tion (Wang et al. (2012)), Multiscale triangular representation (Mouine et al. (2013b)).

Such parameters can then be used to define various types of shape descriptors.

A number of recent review papers (Loncaric (1998); Jain et al. (2000); Biederman

(2001); Zhang and Lu (2004); Yang et al. (2008); Poppe (2010); Weinland et al. (2011);

Cope et al. (2012)), as well as books (Serra (1983); Amit (2002); Forsyth and Ponce

(2002); Osher and Paragios (2003); Davies (2004); Berg and Malik (2006); Siddiqi and

Pizer (2008)) have been written on the subject of shape analysis.

Shape analysis methods can be classified according to many criteria. We organise

these methods in two main groups: (a) contour vs region based methods, and (b) feature

based methods. We further compare each of the methods based on these criteria: (i)

provide the definition of concavity and convexity in the shape, (ii) able to describe and

preserve the topology, (iii) remains invariant with affine parameters changes, (iv) provide

part description, (v) able to handle articulation, and (vi) scalability.
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2.2.1 Contour vs Region based Methods

In the early 1990s, Vernon (1991) presented an overview on the mathematical description

of shape using boundary features and categorised into four distinct types of shape descrip-

tors: (a) external scalar transform techniques utilizing features of the shape boundary; (b)

internal scalar transform techniques utilizing features of the shape region; (c) external

space domain techniques utilizing the spatial organization of the shape boundary; and (d)

internal space domain techniques utilizing the spatial organization of the shape region.

During the mid-1990s, object deformation was another aspect to cover in the shape rep-

resentation and detection. Jain et al. (1996) introduced a statistical approach of object

matching by using deformable templates representing the object’s class. They were try-

ing to solve the problem of locating and retrieving an object from a complex image using

its 2D boundary information. To do so, a set of parametric transformations were used

to deform the template and a probabilistic distribution (Bayesian inference scheme) was

defined on the set of deformation mappings to bias the choice of possible templates.

In Contour based approaches shape features are first extracted, helping to find rele-

vant images from a shape database (Zhang and Lu (2004)). The key idea behind contour

based approaches is to define shape similarity measures for example by analyzing con-

vex and concave curve segments of an object’s outline (Latecki et al. (2000)). In order

to train the retrieval method on the shape database while considering affine changes and

deformations, one possibility is to use deformable templates consisting of the representa-

tive contour (Jain et al. (1996)). Later, a shape retrieval process was proposed by shape

similarity using local descriptors and effective indexing. To create the feature descriptor,

shapes were partitioned into tokens in correspondence with their protrusions, and each

token was modelled according to a set of perceptually salient attributes (Berretti et al.

(2000)).

Other main approaches to define similarity include: (i) providing a parametric equa-
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tion of the contour and convolving it with Gaussian kernel (Veltkamp (2001)); (ii) con-

tour point correspondence and computing an alignment transform between two shapes

(Belongie et al. (2002); Chui and Rangarajan (2003)); (iii) B-spline modeling of the 2D

planar curve (Wang and Teoh (2004)); (v) computing (modified) skeletons (Aslan et al.

(2008)).

Recent detailed reviews on shape representation, description and matching techniques

are reported by Stegmann and Gomez (2002); Zhang and Lu (2004); Yang et al. (2008).

We now detail the most relevant contour vs region based methods that relate to this thesis.

These methods can be further sub-categorised as:

1. Contour-point distance based methods

2. Curvature-based contour partitioning methods

3. Medial-axis transform and skeleton-based methods

4. Shape deformation

5. Shape decomposition

6. Other popular contour-based methods
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2.2.1.1 Contour-point distance based methods

Figure 2.2: Adapted from Belongie et al. (2002), Figure3: Shape context computation

and matching. (a) and (b) Sampled edge points of two shapes. (c) Diagram of log-polar

histogram bins used in computing the shape contexts. Here, they use five ranges for logr

and 12 ranges for θ giving 60 bins. (d), (e), and (f) Example shape contexts for reference

samples marked by #,♢, 2 in (a) and (b). Each shape context is a log-polar histogram

of the coordinates of the rest of the point set measured using the reference point as the

origin (dark=large value). Note the visual similarity of the shape contexts for and # and

♢, which were computed for relatively similar points on the two shapes. By contrast,

the shape context for 2 is quite different. (g) Correspondences found using bipartite

matching, with costs defined by the χ2 distance between histograms.
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Most approaches equate the task of shape-matching to the matching of the respective

object boundaries. The shape boundaries are often discretized into a set of n landmark

points for easier representation and matching. Belongie et al. (2002) argued that these

points could be located at any place on the object boundary and that they need not be

restricted to extrema points on the curve. They also defined the notion of using shape

contexts (SC) at each of these sampled points (Figure 2.2). Each SC is given by the relative

distribution of the rest of the n − 1 points which is represented as a 2D histogram of

distances and angles, i.e., a histogram of the relative polar coordinates of all other points.

SC can be made invariant to translation, rotation, and scale. However, while SC matching

performs relatively well on rigid objects, it does not capture parts and handle articulations.

This is because the SC histogram is composed of spatial Euclidean distances and set

angles. To overcome this problem, Ling and Jacobs (2005, 2007) proposed a variant of

SC, the Inner Distance Shape Context (IDSC), which uses the length of a shortest path

connecting two boundary points, such that the path lies completely within the shape.

The IDSC can be applied to articulated objects, but it is not designed to characterise

the interior shape variations, e.g. in terms of widths, necks, indentations. In the recent

work on boundary based methods, Nasreddine et al. (2010) defined geodesics based a

multi-scale distance between shapes in order to address local and global variabilities.

This similarity measure is invariant to affine parameters. Mostly, these boundary-based

and contour point distances based methods are robust towards matching the static 2D

shapes, but their accuracy reduces drastically when there is deformation or occlusion

or holes in the shape. In the more recent work by Mouine et al. (2012, 2013a,b), the

SC is fused with a multiscale triangular description where the latter is associated to a

sequence of N sample points uniformly distributed over the contour and numbered in a

clockwise order. Each triangle is further given its: (i) Triangle Area Representation (TAR,
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defined as TAR(T ) = A(T ), where A(T ) is the signed area of triangle T 3), (ii) Triangle

side lengths representation (T SL, defined as ratios of two smaller triangle sides with the

larger ones), (iii) Triangle represented by two side lengths and an angle (T SLA, defined

as (T SL, θ ), where θ is the absolute value of the vertex angle at point in operation, i.e.,

pi), and (iv) Triangle represented by two oriented angles (TOA, defined as two successive

angles, i.e. (∠pi−k pi pi+k and ∠pi pi+k pi−k)). This approach is affine-invariant, robust to

noise, works well on occluded objects and intuitively captures some coarse information

on local extremities. However, this method fails to quantify the true extremities and hence

cannot in our evaluation produce an appropriate and promising part description. It also

cannot handle well significant object’s deformations and articulation. We note also that,

while the multiscale triangular based method works well on rigid objects, it is not directly

able, in general, to handle flipped (or mirror-inverted) cases.

Concave/Convex These methods do not provide any explicit definition to the concavity

and convexity in the shape. The shape boundaries are often discretized into a set of n

landmark points and need not be restricted to extrema points on the curve, therefore sam-

pled points may or may not contain the concavity (minima) and/or convexity (maxima)

along the bounding contour. The TAR-based approach partitions the shape into triangles

and further calculates parameters such as signed area of triangle, TSL, TSLA, & TOA to

find the coarse information on local extremities. Hence this heuristic approach fails to

quantify the true extremities in the shape.

Topology The descriptors created by these methods do not hold topology information.

Nature of these descriptors change with a small deformation in the shape.

3If (xi−k,yi−k), (xi,yi) and (xi+k,yi+k) are three respective coordinates of the points pi−k, pi and pi+k,

then the signed area of the triangle T formed by this triplet is given as: 1
2

 xi−k yi−k 1
xi yi 1

xi+k yi+k 1

.
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Affine Invariance These methods remain invariant with affine changes.

Part-description None of these contour-point distance based methods provide explicit

definition of parts. However, IDSC finds the best matching of parts in terms of shortest

path connecting two boundary points.

Articulation Up to a certain extent SC and IDSC descriptors remain invariant toward

shape articulations, but they do not inform explicitly on the behavior of articulations, i.e.,

which part of the shape is moved and where it is moved.

Scalability On the one hand the computational complexity of these methods is high

while on the other hand the descriptors cannot be indexed for matching tasks. Therefore,

these methods cannot be scaled on a big shape database.

2.2.1.2 Curvature-based contour partitioning methods

Another perspective on shape definition is to seek to split up the boundary using curva-

ture. The approach can be loosely categorised into two groups of techniques: (a) approx-

imation based, and (b) curvature (analytic) based. Important examples of approximation

techniques include that of Nelson and Selinger (1998) who detect key curves: long seg-

ments of an edgel-chain4 comprised between two high discrete curvature points. A key

curve’s size and orientation define a square image patch, which is then described using

all edgels falling within it. Such edge patches prove to be robust to occlusions and some

level of clutterness. However, these patches are also likely to include clutter edgels lying

near the object boundary, which may corrupt their descriptive power and make it difficult

to proceed with matching tasks. Ferrari et al. (2008) improved this method by introducing

a scale-invariant local shape features called PAS (pairs of adjacent segments), by using

4Chained group of pixels in an image that is recognised as the edge of an object; this goes back to the
classic Freeman chain-code description of a discretised contour.
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chains of k adjacent segments (kAS). First, the Berkeley natural boundary detector (Mar-

tin et al. (2004)) is used to detect the edgels which are further chained and partitioned

into roughly straight contour segments. Then, a complex branching structure is formed

by organizing these segments in a network by connecting them along the edgel-chains

and across their links. Depth-first search is used to form the kAS where the complexity of

features is directly proportional to k. On one hand, by increasing the value of k the feature

sets become more and more informative while on the other hand the repeatability5 reduces

gradually. kAS are capable to encode fragments of an object boundary in a robust way

without including nearby clutter. A support vector machine (SVM) is used for the training

stage, where the shape descriptors are based on a sliding window object detection scheme

and separate positive examples from negative ones. They rely on evaluating a quality

function, e.g. a classifier score, over many rectangular subregions of the image and taking

its maximum as the object’s location. Because the number of rectangles in an image of

size n×n is of the order n4, this maximization usually cannot be done exhaustively. Typi-

cally, these consist of reducing the number of necessary function evaluations by searching

only over a coarse grid of possible rectangle locations and by allowing only rectangles of

certain fixed sizes as candidates. In more recent work (Ferrari et al. (2010)), a principal

component analysis (PCA) is used to learn the deformation model, while a class model is

learned by localizing the novel instances in presence of intra-class variation, clutter and

scale changes. A Hough style voting technique with a non-rigid point matching algo-

rithm (TPS-RPM) is applied to localize the object in cluttered images. Furthermore, the

objective function of the TPS-RPM is extended by adding two terms: (i) minimize the

orientation difference between corresponding points, and (ii) maximize the edge strength

of matching image points. The approximation methods not only computationally expen-

sive, but also they are non-scalable, because they do not produce any feature vector and

5Repeatability is defined as the variability of the measurements obtained by one person while testing and
retesting of an event repeatedly. This is also known as the inherent precision of the measurement equipment.
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hence objects cannot be indexed.

In contrast to approximation methods, Berretti et al. (2000) described a shape as the

analytic curvature function and further partitioned the shape at the minima of this func-

tion. The curvature function is computed by parameterising the Gaussian smoothed planar

curve according to its arc-length. Each partition (token) is further described via the combi-

nation of editing distance and orientation while final shape indexing is performed by the

application of M-tree. The main drawback of this method is its sensitivity to noise. Later,

Felzenszwalb and Schwartz (2007) used the curvature function to represent a shape in a

hierarchical form, called shape−tree deformation model, which captures both global and

local geometric properties. An elastic matching between two shapes is further performed

by finding the correspondence between two curves. One advantage of such a technique is

that it can handle some level of articulations. However, this group of techniques based on

computing curvature also suffer from the same drawback alike approximation methods;

i.e., mainly, no obvious indexing scheme is available.

Concave/Convex Both the approximation and curvature (analytic) based methods hold

the information of minima and maxima points on the closed contour, and hence the con-

cavity and convexity in the shape.

Topology The topology information is not always preserved as the small deformation

changes the nature of curvature function. However, some methods use PCA to learn the

deformation in the shape and tries to preserve the topology.

Affine Invariance Change in rotation and scale modify the behavior of curvature func-

tions, and as a result these curvature-based methods do not hold affine invariance property.

Part-description Curvature function partitions shape at the minima of function, but it

doesn’t confirm that these partitions describes the correct parts of the shape. Approxima-
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tion based methods totally fails in providing the part descriptions to the shape.

Articulation Approximation-based methods do not work well on articulated objects,

while the analytic curvature function can handle some level of articulations, but fails when

the object is moderately articulated. In such cases, if a shape is articulated moderately,

the nature of the curvature function for the modified shape differ from the original one.

Scalability These methods do not produce any feature vector and hence no obvious

indexing scheme is available. Therefore these methods are not scalable.

2.2.1.3 Medial-axis transform and skeleton-based methods

The most popular and the most studied space domain method is the medial axis transform

(MAT) originally proposed by Blum (1967, 1973). The idea of this approach is to rep-

resent ab object by a graph where important shape features are made explicit. A skeletal

pair consisting of the skeleton and the "quench" function is used by collaborators of Blum,

Calabi and Hartnett (1968). This approach is motivated by the study of neural physiol-

ogy and visual psychology. In particular, Blum hypothesized that the process of image

formation on the retina is a chain reaction in the following sense. When an object image

is formed on the retina a certain number of neurons are excited, lowering the excitation

levels of neighboring neurons and causing them to fire a short interval of time later. This

process is repeated until the whole area of the object is "tiled" with ring neurons. The

inhibited neurons cannot fire again for a short time due to the underlying neurophysiolog-

ical processes (Shepherd (1974)). Therefore the wave front of the ring cells cannot move

back towards the retinal areas containing inhibitory neurons. This mechanism is similar

to the spreading of a prairie fire. In fact, the first approach Blum used was a temporal

function showing the arc length of wave front versus time. This approach did not prove

very useful for shape description purposes. Blum’s second concept, the concept of medial
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axis, has proven to be much more useful.

Later, Blum and Nagel (1978) proposed a generalized medial axis transform, based

on the touching disk defined as a circle which is tangent to the shape boundary without

intersecting it. The r-symmetric axis of a shape is then defined as the union of all points

that have a touching circle of radius greater than r and at least two points that touch the

boundary. The requirement that the radius is greater than r prevents little noisy spikes

from generating skeleton segments. The two touching point requirement limits the se-

lection to only skeleton points. The generalized skeleton has proven to have better noise

robustness. This geometric view is the fundamental idea behind the concept of medial

axis (Blum (1967)), which has found a variety of applications in describing the shape

of virtually all kinds of objects from the infinitely large to the infinitely small including

biological entities (Leymarie and Kimia (2008)).

In the early 1990s, Leymarie and Levine (1992) developed a new method for the ex-

traction of symmetry axes which does not suffer from the discretization problems that

many other algorithms do have. This method was based on the use of snakes for active

contour representation, high curvature points on the boundary, and symmetry axis trans-

form. The result was a dynamic multi-scale skeleton representation. Another variant of

the medial axis, called shock graph, came into existence in the mid 1990s, when Siddiqi

and Kimia (1996) defined this concept as an abstraction of the medial axis of a shape onto

a direct acyclic graph (DAG). A shock graph decomposes a shape into a set of hierarchi-

cally organized primitive parts. Shock segments are curve segments of the medial axis

with monotonic flow, giving a more refined partition of medial axis segments. The skele-

ton points are first labeled according to the local variation of the radius function at each

point. A disadvantage of such an approach is that the calculation for evaluating the dis-

tance between two shock graphs is of polynomial time, a complexity making the method

not scalable.
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In more recent developments, the skeleton has been combined with its associated con-

tour, where the skeletal features are robust against articulation and non-rigid transforma-

tion, while contour features are more stable and informative with respect to global and

affine transformations (Bai et al. (2009a)). This type of integration captures both local

as well as global shape information which is later used for shape classification. Here a

generative model is used to compute the shape likelihood, where first the contour seg-

ments are extracted using a discrete curve evaluation and later a polygon approximation.

Then a skeletal path (or graph) is evaluated by detecting end points, junction points, and

connection points. Both the contour and skeletal features are normalized and combined to

perform learning over the dataset, later used for classification purpose. However, for more

accurate and robust recognition, the skeleton branches are needed to be pruned (Shaked

and Bruckstein (1998); Choi et al. (2003); Bai et al. (2007)). Moreover, another major

restriction of recognition methods based on skeleton is a complex structure of resulting

trees or graph representations of the skeletons. Graph edit operations are applied to the

graph structures, such as merge and cut operations (Zhu and Yuille (1996); Liu and Geiger

(1999); Pelillo et al. (1999); Di Ruberto (2004)), in the course of the matching process.

The most important challenge for skeleton similarity is the fact that the topological struc-

ture of skeleton graphs of similar objects may be completely different (Bai and Latecki

(2008)). Skeleton-based approach are further used for non-rigid object detection (Bai

et al. (2009b)), where each branch on the skeleton is associated with a few part-based

templates and the object boundary information.

Concave/Convex The convexity or maxima in the shape is described by the medial-axes

endings.

Topology Topology is preserved because the medial axis can be deformed back to the

original contour, as it holds distance to contour information
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Affine Invariance These methods remains invariant with affine changes and produce

the same results under scaling, rotation and translation.

Part-description In medial-axes based approaches, each branch or loop is treated as a

potential part. However, small boundary-based perturbation results into towards spuri-

ous branches. In the recent development (Bai et al. (2007); Bai and Latecki (2008); Bai

et al. (2008, 2009b)) these spurious branches are pruned and more robust medial axes are

produced.

Articulation The medial axis tree structure (in 2D) can deal with articulations to the

extent that occlusions are not complete.

Scalability The polynomial time one-to-one matching makes these method hard to scale

on big database. In the best case scenario of medial-axis transform, the matching com-

plexity is O(n logn) or pseudo-linear, which is still hard to scale it with the growing

database (1000 times increment in the database increases the retrieval time by the factor

of 1000).

2.2.1.4 Deformation Models

Shapes have also been described via deformation models. In this particular approach,

the objective is to solve the problem of locating and retrieving an object from a com-

plex image using its 2D shape/boundary information. In this particular approach, one of

the important early work is done by the team of Jain et al. (1996). On one hand, their

probabilistic transformation based deformation model is an extension of Grenander and

his colleagues (Chow et al. (1989); Amit et al. (1991); Miller et al. (1993)), while the

potential functions is taken from the “snake-model” introduced by Kass et al. (1988).

They obtained the deformed templates by applying Bayesian objective function to the
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prototype, while variability in the template shape is acquired by imposing a probability

distribution function. Their method is based on the 2D planar rubber sheet principle which

has closed boundary, but it can be deformed by twisting, squeezing, and stretching. The

technique is too slow for practical use, because the possible non-rigid transformations of a

template is very large. In order to solve this problem, Felzenszwalb (2005); Felzenszwalb

and Schwartz (2007) described a global optimal solution to the non-rigid shape matching

problem, where a shape deformation is determined through the triangulated polygonal

method: here, the shape (using the contour information) is divided into various triangles

to generate a polygonal structure. Furthermore an energy function is estimated, one for

each triangle, which is the sum of two terms: a data term, which attracts the deformed

model towards salient image features, and a penalty term, which penalises large deforma-

tions of the model. The final shape matching problem is based on dynamic programming,

where the objective is to determine the optimal fitting map that minimizes the energy, i.e.,

corresponds to the best location for the deformable template in the image. This work is

further improved by Kim and Shontz (2010), where they modified the definition of the

energy function to consists of a cost term that considers the center of mass of an image

and is invariant to translation, rotation and uniform scaling. Their shape matching process

is also based on a dynamic programming method and consists of three steps: (i) determin-

ing the boundary vertices, (ii) generating a triangular mesh using a constrained Delaunay

method, and (iii) finding the optimal mapping from the source image to the target image

that minimises the energy function. In more recent work, Pan et al. (2012) used angle

gradients to extract critical points of the contour. A pairwise similarity measure is then

evaluated that uses a spectral technique to solve a quadratic assignment problem.

Although shape deformation models are affine invariant, they tend to be very slow.

Moreover, a deformation model does not bring any explicit definition of a shapes through

its parts and hence the recognition rate reduces drastically when an object is occluded.
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These template based matching methods also do not support feature vectors, and as a

result the indexing over a large shape dataset is not practical.

Concave/Convex Deformation models do not conform on boundary minima and max-

ima points and hence do not provide explicit concavity and convexity points in the shape.

Topology Deformation models are able to hold the topology of a shape and remains

invariant under shape deformation.

Affine Invariance These methods remains invariant under affine changes.

Part-description Deformation models uses triangulation method to partition the shape.

However, they do not provide any spatial correlation and behavior of such partitioning.

Articulation An articulated movement produces different types of deformation in the

shape. The model finds the corresponding matching original object via optimal mapping.

Therefore, deformation models work very well under shape articulations, but they not

inform on semantics of articulation, i.e. what type of articulation is performed, which

part is moved and where it is moved.

Scalability These methods do not support feature vectors, and hence can not be indexed

over a large shape dataset.

2.2.1.5 Shape decomposition

In shape decomposition, an object is represented as a combination of primitive parts. The

shape decomposition task has been done in several ways focused on: (i) boundary-points,

(ii) stroke detection, and (iii) inner distance. Early on Pavlidis (1980) stated the problem

of global shape analysis (decomposition) as: among the boundary points find sets which
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are closely related. Such sets may be used to assign labels to corresponding parts of the

object. In this approach, shape decomposition is based on the properties of boundary

points. Several authors have used this approach for shape decomposition. Decompo-

sition criteria can be defined in terms of the medial-axis transform, can require convex

components or visibility of boundary points. In the medial axis transform approach, two

boundary points are labeled related if they are both on the circle contained in the object

shape. Decomposition criteria can be formulated to require that the line segment between

two points on the boundary is contained in the shape that is described. This kind of crite-

rion leads to a decomposition into convex components.

In stroke detection approaches points are related if they are close to each other across

the boundary. Semantic considerations about shapes being described were taken into ac-

count in the method for shape decomposition by collinearity (Kim et al. (1987)). di Baja

and Thiel (1994) developed a method for shape decomposition by its weighed skeleton;

this method is well designed for elongated, ribbon-like objects. Berretti et al. (2000)

partitioned the shape into segments in correspondence with their protrusions, and each

such segment is modelled according to a set of perceptually salient attributes. Latecki

and Lakamper (2000) converted an object’s outline into a polygon by applying a polyg-

onal approximation method. The polygonal boundary is then further decomposed into

visual parts based upon a notion of convex boundary arcs. These visual parts are grouped

together in the order of their connection for the measurement of shape similarity.

Ling and Jacobs (2005, 2007) proposed shape descriptors by using the inner-distance

model, which can capture the part structure of the shape. The inner distance is defined

as the length of a shortest path between landmark points while being constrained to stay

within the shape silhouette. To improve the shape classification result, along with short-

est path, texture information is also added. Chen et al. (2008) proposed a partial shape

matching with the help of local and global shape descriptors. A global shape descriptor
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at a feature point takes into account the position of all other points relative to this point,

while a local shape descriptor depends only on the neighboring points. The mathemati-

cal formulation of the shape features are dependent on turning angle and distance across

the space (DAS). For shape matching a dynamic programming approach is used that de-

pends on the designed similarity function and a gap function, which determines the cost

of deleting or inserting a feature point x.

The above shape decomposition methods work well mainly in determining the artic-

ulations and shape by its parts. However, they cannot be converted into a reliable feature

vector and hence they do not explicitly support indexing and are non-scalable.

Concave/Convex Since these methods are based on convex components analysis, hence

they provide the information on shape extrema.

Topology The deformation in the shape does not change the nature of such methods and

the descriptor remain invariant under such transformation. Therefore shape decomposi-

tion models preserved the topology of the shape.

Affine Invariance The shape decomposition method remains invariant under affine

changes.

Part-description These methods provides explicit definition of the shape parts via con-

vex components.

Articulation The shape articulations are predicted via its parts. Therefore these meth-

ods are capable in handling articulations.

Scalability These methods do not support feature vectors, and hence can not be indexed

over a large shape dataset.
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2.2.1.6 Other popular contour-based methods

Other popular methods used for shape description, recognition and matching tasks are:

generative model, expectation-maximization (EM), histogram of the contour points dis-

tribution (CPDH), height function. Tu and Yuille (2004) proposed a generative model

that allows for a class of transformations (affine and non-rigid), and induces a similarity

measure between shapes. For the matching task, the EM algorithm is used. Tsai et al.

(2005) also used the EM approach to organise a shape database into different classes and

simultaneously estimate the shape contours to give descriptions of each of the different

shape classes. In the histogram-based technique, Shu and Wu (2011) define a shape de-

scriptor by evaluating the histogram of the contour points distribution (CPDH descriptor).

To construct this CPDH descriptor, first the object centroid is calculated and the maxi-

mum value of the distance between the centre and a point on the contour is selected as

radius to build a minimum circumscribed circle. The region of this minimum circum-

scribed circle is divided into several bins, by using a concentric circle and equal interval

angle and a histogram is calculated by using such bins. One of the major drawback of this

system is that it is not fully invariant to rotation. However, to resolve the rotation invariant

problem to some extent, the authors adopted a circular shift and mirror matching scheme

(random images are selected from the database and rotated in clockwise and anticlock-

wise directions to 12 selected angles). The CPDH extraction mainly involves contour

extraction, points sampling, counting and calculating the distances between the sampled

points and the object centroid. The shape similarity is measured by the Earth Mover’s

Distance (EMD, Rubner et al. (2000); Ling and Okada (2007)) metric by matching dif-

ferent CPDHs: Bin-By-Bin Dissimilarity Measures, Cross-Bin Dissimilarity Measures,

and Parameter-Based Dissimilarity Measures. Through a voting scheme, the minimum

among the three is chosen as the final shape distance. Also, the recall rate reduces rapidly

as a function of the movement and perturbation of shapes.



2.2 Background on Shape Analysis and Image Retrieval 39

In another recent contour-based approach, Wang et al. (2012) used a height function

to generate the shape descriptor. In height function, the contour of each object is rep-

resented by a fixed number of sample points. For each sample point, height function is

defined based on the distances of the other sample points to its tangent line. At the end,

a compact and robust shape descriptor is obtained by smoothing the height functions that

is invariant to affine changes and insensitive to nonlinear deformations. For matching,

a dynamic programming algorithm is used to find the optimal correspondence between

sample points of two shapes. The method lacks scalability because the shape descriptors

are not convertible into a reliable feature vector that can support indexing over a large

shape database.

2.2.2 Feature-based Methods

An important work in feature-based methods was initiated by David Lowe (1999, 2004) in

the late 1990s who presented a method for extracting distinctive invariants from an image

for matching purpose using a Difference of Gaussian (DoG) filter through which a sub-

stantial amount of information about the spatial intensity pattern would be captured, with

a goal of making the matching algorithm scale invariant (SIFT: Scale Invariant Feature

Transform, detailed in Section 2.2.2.1). In a related approach, Brown et al. (2005) local-

ized features using the Harris Corner detectors while the matching task was performed by

a fast nearest-neighbor algorithm. Very similar to the SIFT descriptor is the gradient loca-

tion and orientation histogram (GLOH) descriptor of Mikolajczyk and Schmid (2005) that

replaces the Cartesian location grid used in SIFT with a log-polar one, and applies PCA

to reduce the size of the descriptor. Later refinements included: Speeded-Up Robust Fea-

tures (SURF, Bay et al. (2008)), binary robust independent elementary features (BRIEF,

Calonder et al. (2010, 2012)) and Oriented Fast and Rotated BRIEF (ORB, Rublee et al.

(2011)) descriptors, which seek to reduce the execution time by optimising various parts
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of the feature computations and matching algorithms.

Such feature-based methods exploit the most relevant features for object detection or

classification that provide invariance to changes in illumination, differences in viewpoint

and shifts in object contours. Such features can be based on points (Harris and Stephens

(1988); Mikolajczyk and Schmid (2002)), blobs (Laplacian of Gaussian (LoG, Lindeberg

(1998)) or Difference of Gaussian (DoG, Lowe (1999, 2004))), gradients (Mikolajczyk

and Schmid (2004)), Histogram of Oriented Gradient (HOG) (Dalal and Triggs (2005)),

texture, color, or combinations of several. These approaches extract local image features

at a sparse set of salient image points – usually called points of interest or key points.

The final detectors are then based on feature vectors computed from these key point de-

scriptors. The hypothesis is that key point detectors select stable and more reliable image

regions, which are especially informative about local image content. The overall detector

performance thus depends on the reliability, accuracy and repeatability with which these

key points can be found for the given object class and the informativeness of the points

chosen. For the detection and classification task, the final descriptors need to characterise

the image sufficiently well.

2.2.2.1 Laplacian or Gaussian based methods

The use of salient local points or regions for object detection has a long history (Schiele

and Crowley (1996); Lindeberg (1998); Lowe (1999, 2004); Mikolajczyk et al. (2005);

Bay et al. (2006, 2008); Calonder et al. (2010); Rublee et al. (2011); Calonder et al.

(2012)). In his work, David Lowe (1999, 2004) presented a method for extracting distinc-

tive invariants from an image for matching purpose using a Different of Gaussian (DoG)

filter through which a substantial amount of information about the spatial intensity pattern

would be captured, with a goal of making the matching algorithm scale invariant (SIFT

algorithm). The input image is successively smoothed with a Gaussian kernel and sam-
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pled. The DoG representation is obtained by subtracting two successive smoothed images.

Thus, all the DoG levels are constructed by combined smoothing and sub-sampling. SIFT

then computes histograms over rectangular grids. The local 3D extrema in this pyramidal

representation determine the localization and the scale of the interest points. The DoG op-

erator is a close approximation of the LoG function (Lindeberg (1998)) but the DoG can

significantly accelerate the computation process Burt (1980); Lowe (1999, 2004)). The

common drawback of the DoG and the LoG representation is that local maxima can also

be detected in the neighborhood of contours or straight edges, where the signal change

is only in one direction. These maxima are less stable because their localization is more

sensitive to noise or small changes in neighboring texture. In a related approach, Brown

et al. (2005) localized features using the Harris Corner detectors while the matching task

was performed by a fast nearest-neighbor algorithm.

Very similar to the SIFT descriptor is the GLOH descriptor proposed by Mikolajczyk

and Schmid (2005), which replaces the Cartesian location grid used in SIFT with a log-

polar grid, and applies PCA to reduce the size of the descriptor. Another SIFT like ap-

proach is SURF (Bay et al. (2006, 2008)), which refines the definition of detector and de-

scriptors to perform a fast and robust computation and comparison. The detector is based

on the Hessian matrix and uses Gaussian second order partial derivatives in y-direction

and x,y-plane as box filters. The filter responses are further normalised with respect to the

mask size while descriptors are extracted over a square region as Haar wavelet responses.

A fully affine invariance of the SURF algorithm is presented by Pang et al. (2012), where

they normalize all six affine parameters along with selecting the number of latitudes and

longitudes and use epipolar geometry to filter out false matches.

2.2.2.2 Histogram Based

Dalal and Triggs (2005) showed the feature extraction process for human detection in
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which the detector window is tiled with a grid of overlapping blocks to extract the HOG

feature vectors. For this, the image window is first divided into small cells, where for

each cell a local 1-D histogram of gradient directions or edge orientations over the pix-

els of the cell are piled up. For better invariance to illumination and shadowing, local

contrast-normalization is done. Chandrasekhar et al. (2012) used histogram-of-gradients

descriptor and directly captured the gradient distribution by using a histogram binning

scheme. They established a distance function between descriptors in the compressed do-

main to discard the need for decoding. Ren and Ramanan (2013) proposed Histograms of

Sparse Codes (HSC) - a sparse representation for object detection, where the sparse codes

are computed with dictionaries and form local histograms by aggregating per-pixel sparse

codes. Further, a dimensionality reduction is applied by computing supervised singular

value decomposition (SVD) on the learned models.

2.2.2.3 Other Recent Popular Methods

The Earth Mover’s Distance (EMD) was first proposed by Rubner et al. (2000), which is

the measure of dissimilarity between signatures that are compact representations of dis-

tributions. EMD is a cross-bin distance function that addresses the histogram alignment

problem raised due to shape deformation, non-linear lighting change, and heavy noise.

EMD defines the distance between two histograms as the solution of the transportation

problem that is a special case of linear programming. Ling and Okada (2007) improved

the EMD method by reducing the number of unknown variable and constraints.

The early work of Lepetit et al. (2004) is based on the point matching approach for

object pose estimation based on classification. The system is first trained by synthesizing

a large number of views of individual keypoints and then later a compact description

of this view set is produced by using statistical classification tools. For validation, k-

mean in addition to Nearest Neighbor classifier is used. Later, Lepetit et al. (2005) used
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randomized trees as the classification technique which not only matches keypoints but

also selects those keypoints during a training phase that are the most recognizable ones.

Calonder et al. (2010) proposed to use binary strings as feature point descriptors (BRIEF),

which are defined over a function of bitstring. The descriptors’ similarity measure is

evaluated using the Hamming distance. Later, Calonder et al. (2012) showed the fast

computation of binary descriptor and matching, on the basis of simple intensity difference

tests.

Other recent works of interest include Hough transform based class detection (Fast

PRISM : the Principled Implicit Shape Model, Lehmann et al. (2011)), FAST-based (Fea-

tures from Accelerated Segment Test, Rosten and Drummond (2006)), BRISK (Binary

Robust Invariant Scalable Keypoints, Leutenegger et al. (2011)) descriptor which is com-

posed as a binary string by concatenating the results of simple brightness comparison

tests, improvement of best bin first (BBF) search algorithm (Liu et al. (2011a)) by intro-

ducing more features in k-d tree to perform fast and robust search, comparative evaluation

of SIFT, SURF, ORB, BRIEF, BRISK etc. (Heinly et al. (2012)), and the radial gradient

transform (RGT) and a fast approximation (Takacs et al. (2013)).

2.3 Conclusion

A common critique of medial-axis based methods is their high sensitivity to small per-

turbations and noise and their relative lack of scaling with large problems (large database

of targets). On one hand, curvature extrema can provide the most important points on

the object’s boundary, however, they encounter all the drawbacks that edge-based repre-

sentations have to face. As a result, the spatial organisation of the object components is

not made explicit. On the other hand, medial-axis based representations are compact, but

not compact enough, i.e., it is not as local as the point-based curvature extrema methods.

Kovács et al. (1998) medial-point representation has the benefits of both representations,
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i.e., it defined local points, and it is region-based, but it lacks making a distinction be-

tween neighboring boundary segments part of separate object regions. Also, there is no

description on the extraction process of these points and what do they correspond to.

A common drawback of SIFT-like approaches is that they do not consider an explicit

shape representation of an object, and in consequence their accuracy reduces drastically

for detecting closely related objects (with similar shape) but with different textures: i.e.

the local intensity variations take over the overall shape and parts organisation of an ob-

ject. Our proposed method combines these approaches in order to use their strong points

and avoid the limitations of each category of methods when considered separately.

Table 2.1: Comparative Table of Approaches
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Contour
√

Medial-Axis
√ √ √

Shape-Context
√ √

Inner-Distance
√ √ √

Features
√ √ √

Primitives
√ √ √

A comparative analysis of different approaches has been shown in Table 2.1.



Pablo Picasso, Bull Analysis, 1945.



Chapter 3

Medialness Measure via Oriented

Boundary

“We can only see a short distance ahead, but we can see plenty there that

needs to be done.”

– Alan Mathison Turing, Computer scientist (1912–1954)

When it comes to visual perception, there are many cues one can use to describe an

object, for example with reference to modalities such as color, texture, shape. Which

one carries the most information, i.e., which one alone can be sufficient to identify and

characterize an object, is a practically important question to ask. Consider the case of a

cat-silhouette in Figure 3.1(a). Human’s vision system is intelligent enough in perceiving

the given silhouette as a cat-build; by just looking at its shape or contour. Let us mod-

ify the scenario by introducing a dog-silhouette alongside with this cat-silhouette (see

Figure 3.1(b)). Again, we can easily distinguish the two shapes, i.e., dog and cat, by

looking at their shapes. Now if we further modify the problem domain of object detection

by introducing the natural colored and textured picture of the same cat and dog (Fig-

ures 3.1(c)&(d)), it is still very easy for us to say Figures 3.1(a) and 3.1(c) represent the
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Object comparison through shapes, texture and color.
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same cats while Figures 3.1(b) and 3.1(d) represent the same dogs. Here, shape plays the

noticeable role in identifying similar objects or distinguishing two objects while texture

and color have no or little role. The opposite situation can be seen in Figures3.1(e)&(f).

Shape alone can provide powerful cues to detect and recognise objects, and therefore we

decided to start our investigation by exploring the elementary shape features that would

also be found in psychological aspects of human vision.

In this chapter we discuss the representation of 2D shapes. Among the different shape

representations that exist in the literature, I explore the use of medialness as defined by

Kovács et al. (1998), a psychophysically derived mathematical model. The reasons behind

such a choice are:

• Medialness had to be studied in an algorithmic form; and hence this gave us an

opportunity to investigate the model.

• This psychophysically derived model provides new insights on shape representa-

tion.

• The model relates to the most used shape representation in computer vision and

computational geometry – medial axis and its closely related Voronoi diagram.

• Medialness informs on both local and global features, allowing us to represent an

object via parts.

• Medialness relates topology with geometry, i.e., the representation provides enough

information in order to characterise the connectivity between different extracted

feature points. In addition, the model permits to acquire the concavities and con-

vexities of an object.

According to Kovács et al., the definition of medialness of a point in the image space

is given by the accumulation of sets of boundary segments falling into an annulus of
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thickness parameterised by the tolerance value (ε) and with interior radius taken as the

minimum radial distance of a point from boundary (Kovács et al. (1998)), Figure 1.3. The

so defined medialness maps an image of the interior of an object to a grey level 2D map,

where greyness is a direct measure of the accumulated medialness measure for each point

of the original image under consideration. One can think of such a map as a landscape

with peaks and pits, ridges and valleys, i.e. a 2D set function. A dominant point for this

medialness map then intuitively corresponds to a well localised peak.

In order to implement this notion of medialness we first need to characterise the Dε

medialness measure. This is a sampling function constrained to annular sectors. Given

a minimum radius function R(p) with center locus p, which defines the interior shell

of the annulus, and Rmax(p) = R(p)+ ε the exterior shell, a given sector Si is specified

by an angular opening θi with bounding segments defined by the intercepts ti and ti+1.

The area of the sector is then: Ai = θiε(R+ 0.5ε). In practice, the intercepts bounding

a sector [ti, ti+1] are given by the extremal points of contour or edge segments entering

and exiting the annulus, i.e., crossing either of its interior or exterior shells (Figure 1.3).

The medialness measure is then taken as a sampling over the sum of one or more annular

sectors containing boundary information (i.e. with contour or edge segments); what is

actually measured in each sector is application dependent; in our case one can count the

amount of boundary information present in each sector, e.g., the number of edge pixels,

the contour segment length, a binary counter for fixed-length elementary sub-sectors, bins

for fixed sub-tended elementary angular steps δθ , or even simply as the area Ai of the

sector. We denote the measure taken over an annular sector Si: Ŝi. Then, we can express

the medialness measure first proposed by Kovács et al. in a general form as:

Dε =
n

∑
k=0

Ŝk+1 ,n ≥ 1 . (3.1)
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This formulation implies that at least one separate annular sectors are traversed by

the boundary. Notice that when the tolerance value ε reduces to zero, Dε reduces to a

maximal inscribed disk and leads to the traditional medial axis graph measure.

One noticeable drawback of this definition when seeking to retrieve dominant points

is that it does not make a distinction with neighboring boundary segments part of separate

object parts and which ought not to be considered in the support annular zones; e.g., this

may be the case with the fingers of one’s hand when these are kept near each other (Fig-

ure 3.2). That is, by introducing a boundary information catchment area via the tolerance

annular width ε we loose the implicit property of a maximal disk being inscribed. In

Figure3.2 (top) the medialness mapping has been performed using Kovács et al. (1998)

original method where the medialness of each finger also is influenced by neighbouring

fingers and result in extra information being added creating a typical “halo”1 effect in the

vicinity of ridges shown in dark grey.

This imprecision in Dε can be remedied by introducing a measure of orientation at

boundary points when assuming figure-ground segmentation (i.e., when knowing the in-

terior versus the exterior of an object); we propose to use such information, e.g., obtained

from a classic gradient boundary filter to modify the medialness function, resulting in D∗
ε

(derived in the following sub-section). This not only reduces the impact of neighbouring

parts on medialness measurements, but also emphasize the sharpness of medialness at

the tips of ridges, see Figure 3.2, which proves helpful in practice to locate convex and

concave features points as will become clearer later.

On completion of medialness measurements, each pixel in the transformed image

space holds a local shape information of accumulated medialness. When assuming figure-

ground separation, thickness variations, bulges and necks of an object are captured via

interior medialness measurement. Kovács et al. (1998) have shown that humans are most

sensitive to a small number of localised areas of medialness which coarsely (by visual in-

1a wider more diffused impact
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Figure 3.2: Comparison of the results of computing medialness functions on the image of
a human hand. Top: the result of applying the original Dε function as proposed by Kovács
et al. Bottom: the result of our proposed method which takes into account orientation at
the boundary (D∗

ε ). In computing Dε , the medialness at a point p may take support from
neighbouring fingers, while when using the proposed D∗

ε such extraneous information can
be discarded by only taking those boundary segments into account that have a positive
scalar product of their location vector (p−b) with its boundary vector vb.
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spection) correspond to joints for animated bodies (Kovács et al. (1998); Kovács (2010)).

Our extended notion is defined as dominant points and can be applied to any object, ani-

mated or not. Dominant points are constrained to be a relatively small number of points of

high medialness obtained by filtering out the less informative, redundant and noisy data

from the initial medialness image space. Note that, I compute medialness both for the

figure (interior) and the ground (exterior) as I seek to also characterise concavities of an

object.

To identify dominant points a morphological top-hat transform (Serra (1983); Ley-

marie and Levine (1988); Vincent (1993)) is applied to isolate ridges and their peaks in

the medialness 2D function. Ridges are filtered using an empirically derived threshold.

The selected ridges are then locally characterised by isolated representative points asso-

ciated to peaks in the ridge data. To avoid considering large numbers of nearby isolated

peaks that are characteristic of elongated object parts or parts with many small defor-

mations, only peaks at a given minimum distance away from each other are retained.

The extraction process of external dominant points is achieved by combining a concavity

measure at the tip of medialness ridges together with a length of support on the associated

contour segments. Again, a spatially localised filtering is applied to isolate representa-

tive dominant points. The set of convex points is similarly extracted. The details of the

recovery of the three types of selected points is given in Chapter 4.

Together, the three types of selected dominant points are then considered as the rep-

resentative feature points of the shape. Our matching algorithm, detailed in Chapter 5, is

designed in such a way that it first compares internal dominant points of a query object

with internal representative dominant points of target shapes in a database. External con-

cave points are then similarly processed, and convex points are used in a final refinement

step. The matching algorithm first analyses the amount of scale, rotation and translation

of the query with respect to the target image. These values are then applied over the query
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image to find the best possible matching location in the target image. We next provide the

details of the various stages of computation.

3.1 Medialness for Oriented Boundary Segments

We define the computation of 2D medialness, modifying Kovács et al. (1998) original

definition, by introducing orientation to each considered object boundary points. In a

continuous curve, orientation of a boundary point b is given by a vector vb, which is the

direction of a normal at this point b with respect to a positively oriented horizontal X-axis

(see Figure3.3).

Figure 3.3: For the curve y = f (x), tangent at point P is the line joining points P &

T . The orientation of point with respect to this curve is the direction of the normal: a

perpendicular line on tangent PT passing through point P, i.e., line
−→
NP.

In the case of a digitized curve, orientation of a boundary pixel b can be evaluated by

either calculating its local gradient or calculating a vector sum for the foreground pixels

(here it is black) in the specified window size n×n centered at this point b. For example,

a window of size 3×3 centered at boundary-pixel b creates a set of 8-neighbor pixels {p1,

p2, ... , p8} and a set of vectors {v1, v2, ... , v8} joining b and its neighbors, i.e., {(p1−b),
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(p2 −b), ... , (p8 −b)} (Figure 3.4), then vb is defined as (the vector sum):

vb =
8

∑
i=1

vi ·δi =
8

∑
i=1

(pi −b) ·δi (3.2)

where

δi =


1 foreground pixel

0 otherwise
(3.3)

(a) (b)

Figure 3.4: Examples of the orientation assessment of candidate boundary points. (a)

8-connected neighbor-points of p, and (b) three different examples of boundary points:

horizontally straight, right diagonal and at a corner of the object. The orientation of a

boundary-point b is illustrated by a green arrow; in practice this can be approximated by

the summation from other vectors in its 8-direct neighborhood linking to object’s fore-

ground pixels (shown as pink arrows).

In general, in a digital curve, the orientation of a boundary point b with the window-
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Figure 3.5: Illustration of the D∗
ε function for a simple shape, defined as an accumulation

of boundary segments falling inside an annulus neighborhood of thickness ε (shown as
darker boundary segments within the annulus’ ring) centered around a position p, and
such that the associated orientation vector −→v has a dot product with the unit radius vector
(taken in the direction of the line from b(t) to p) which is positive. R(p) is taken as the
minimum radial distance from p to the nearest contour point.

size n×n is calculated as:

vb =
(n2−1)

∑
i=1

vi ·δi =
(n2−1)

∑
i=1

(pi −b) ·δi (3.4)

The medialness gauge at a point p is defined similarly to Dε by adding an orientation

constraint such that only those boundary loci which are pointing inward (with respect to

the figure) are considered for evaluation (Figure 3.5):

D+
ε = ∑

k
Ŝk+1 ·δvb·(p−b) (3.5)

D−
ε = ∑

k
Ŝk+1 ·δ−vb·(p−b) (3.6)

where
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Figure 3.6: Weight assignment to the boundary pixels based on their orientations. The
value is periodic with an interval of π/2.

δx =


1 if x ≥ 0

0 otherwise
(3.7)

for a point p = (xp, yp), vector b(t) = (x(t), y(t)) describing (pixel) loci along a piece of

2D bounding contour (B) of the object, and such that vb is the orientation of the boundary

point b(t), −−→v(b,p) is the orientation of the line joining b(t) to p. The positiveness (case of

internal medialness, i.e., D+
ε ) or negativeness (case of external medialness, i.e., D−

ε ) of

the scalar product vb·(p−b) is used to rule out boundary pixels which are oriented away

from the given annulus center. We do not consider the geometry (differential continuity)

of a contour other than provided by that gradient orientation. NB: this criterion is efficient

if we have reliable figure-ground information. This is a limit of the modified gauge D∗
ε ;

however we can always fall back on the original gauge Dε if object segmentation is not

reliable, i.e., no interior versus exterior can be pre-identified.
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Figure 3.7: Contribution of an oriented boundary point b to different points p1, p2, and

p3 in the image space.

One problem in the digitized image is evaluating the length of a curve segment. Count-

ing pixel is wrong as a digital diagonal in a square is made of as many pixels as each side

but 41% longer. Curve fitting is another approach but again, this produces erroneous re-

sult at the end.2 Here we define a method that assigns weight to each boundary pixel in

the range of [1,
√

2]. From a given frame of reference, a boundary pixel weight is 1 when

it is either horizontally or vertically aligned and is
√

2, when it is aligned diagonally (i.e.

slanted at 45 degree), otherwise it will take a weight in between these two values (see Fig-

ure 3.6). If a boundary pixel has an orientation φ (see Figure 3.7), its weight is the value

of projection of the square-pixel in the direction of φ . Mathematically, this is calculated

2Curve fitting is the process of constructing a curve, or mathematical function, that has the best fit
to a series of data points, possibly subject to constraints. Curve fitting can involve either interpolation,
where an exact fit to the data is required, or smoothing, in which a "smooth" function is constructed that
approximately fits the data. For the discrete set of data-points, interpolation is used, while for the continuous
set, approximate smoothing function is applied. If approximation smoothing leads to under-fitting/over-
fitting or leaves out those data which are not fitting on the curve then there is loss of information.
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ε = 4 ε = 8 ε = 12 ε = 16

Figure 3.8: Medialness and tolerance — Left: silhouette of sea-horse (image size: 630×
1010); other images to the right show variations in D∗

ε for increasing tolerance values (ε ,
in pixel units).

as:

l =
1

max(|sin(φ)|, |cos(φ)|) (3.8)

The final contribution ∂b of a boundary point b to Ŝi, with orientation φ and angular

distance θ (Figure 3.7), is calculated as:

∂b =


l cosθ , if −π/2 ≤ θ ≤ π/2

0, otherwise
(3.9)

The metric R(p), the minimum radial distance to the interior annular shell, is taken as

the smallest available distance between p and a bounding contour element:

R(p) =min
t

{
|p−b(t)| | 0 ≤−→vb ·−−→v(b,p)

}
(3.10)

In Figure 3.8 the medialness measurement is performed on a sea-horse profile illus-

trating the evolution in interior medialness measures when varying the value of tolerance

(ε), which reflects a smoothing effect: as the tolerance increases, medial symmetries with

smaller boundary support are averaged out in favor of larger scale ones — their associated
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ridges become more dominant. The tolerance value (ε) is currently set as the elementary

pixel size (and so is related to the resolution used).

3.2 Adaptive Tolerance εεε as a Function of the Minimum

Radial Distance R(p)R(p)R(p)

(a)

(b)

Figure 3.9: Tolerance ε defined as two different functions of the minimum radial distance

R(p). (a) Linear: variation of ε with respect to R(p) at a typical value of slope 1/8; and

(b) Logarithmic function: variation of ε with respect to R(p) value of base of 1.5.

The medialness measure of a point p varies with the two parameters: R(p) and ε , where

R(p) is the minimum radial distance between p and the bounding contour, and ε is the
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width of the annulus region (capturing object trace or boundary information). Any bound-

ary point b falling inside this annulus that satisfies the definition of equation 3.5 (for

interior medialness) or equation 3.6 (for exterior medialness) is added in support for me-

dialness at p. We can think of the width of the annulus as dictated by ε as an equivalent to

a scaling parameter: the larger the width, the more averaging of nearby contour informa-

tion is considered. How to set the tolerance ε in order to have desirable scaling properties

thus needs to be addressed.

(a) (b) (c)

Figure 3.10: Medialness measures, Dε (Kovács et al. (1998) method), of (a) full seahorse
at scale 1, (b) full seahorse at scale 0.25, i.e., uniformly scaled-down to 25%, and (c) mid-
left part of the seahorse at scale 1. Medialness measure is affected by uniform scaling
effect, as the amount of boundary points is scaled proportionally, and this explains why
medialness measures of seahorses in (a) and (b) are same. On the other hand, when there
is a cut or occlusion or deformation in the shape, Dε produces very different medialness
results. Such case can be seen by comparing (a) and (b) with (c), where (c) is a part of (a).
In these images, ε is taken as 1% of the total boundary length, as suggested by Kovács
et al. (1998).

In the literature [Kovács et al. (1998); van Tonder and Ejima (2003)], ε is fixed for a

given image, which is a function of the total length of boundary (e.g. x% of the boundary
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length). The method works well and produces similar medialness field in those cases

where the same image is scaled up or down proportionally. But the medialness field

changes for the same object if there is a cut in the shape or another object is introduced in

the same image (Figure 3.10). Consequently, this changes the total boundary length and

hence the value of ε .

I first noticed that as the minimum radius value R(p) augments, it is useful to augment

the corresponding value of ε so as to filter away noisy variations in what is an increasing

part of a lower curvature (flatter) set of boundary segments. On the other hand, for smaller

values of R(p) we should use a sharper, smaller width ε in order to more accurately cap-

ture the augmenting local boundary curvature variations. Furthermore, when considering

the tip of sharp fine elongated limbs, e.g. the end of fingers, a decreasing value of ε is also

beneficial in practice to avoid blurring the corresponding centre of curvature locus. I have

therefore studied various ways to set automatically an augmenting value of the tolerance

ε as the minimum radius value R(p) is increased. The obvious first choice is to use a

simple linear relation, such as:

εp = κ

(
a ·R(p)

κ
+1

)
, 0 < a ≤ 1 (3.11)

where κ is the smallest measurable length in the given image.3 But it has been observed

in practice that this leads to rapidly increasing averaging effects which generate overly

thick ridge traces or generate ridge doubling (alike the halo effect when using Dε ). To

overcome this effect, I select ε as a logarithmic function of R(p) (Figure 3.11):

εp = κ logb

(
R(p)

κ
+1

)
, b > 1 (3.12)

Having selected ε to be adaptive as a logarithmic function of R(p), the next step is

3κ is the smallest measurable length in an image, that is directly proportional to the sampling rate. The
sampling rate (or pixel clock) of the digitiser determines the spatial resolution of the digitized image.
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Figure 3.11: Comparing (interior) medialness gauge maps for different adapting functions
to set the tolerance ε . On the left are the results of setting ε as a logarithmic function of
R(p), while to the right ε varies linearly with R(p); notice less sharpness in the medialness
ridges and tips near convex corners when using linear functions.

to define a useful logarithmic base. When such a base has a large value it produces very

sharp medialness for large radii values response but can emphasise noisy responses. This

can be intuitively understood since a relatively large base makes the medialness measure

become more and more like a traditional medial axis transform as the relative width of the

annulus region becomes smaller and smaller in comparison to R(p) for increasing radii.

Setting the logarithmic base to a relatively low value (i.e. nearer unity) gives smoother

responses, which can augment considerably the halo effect as with a linear function (Fig-

ure 3.16, first two rows). By empirical investigation we have observed that a good com-

promise can be obtained for bases with values in the range of [e/2 , 3e/4]. For our reported
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Figure 3.15: Medialness under scale-invariance. Medialness also remains invariant when
there is a cut or occlusion or deformation in the shape, D∗

ε produces same medialness
results.

results we use a logarithmic base of e/2, where e is the Euler’s number (approximately

2.718281828). By visual inspection, we observe that the main medialness features remain

present under varying rotations (Figure 3.12, 3.13, & 3.14), scaling and cut (Figure 3.15).

These features include the main ridges necessary to retrieve hot spots and end of ridges

mapping to significant convex and concave loci.
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Figure 3.16: Comparing internal medialness measure different adaptive tolerance levels
ε set as logarithmic functions of R(p). We illustrate from left to right how augment-
ing the logarithmic base impacts the resulting medialness map (2nd row) and associated
ridge traces retrieved by applying a morphological hat transform (3rd bottom row). Note
that for a base nearer unity, the medialness response suffers more from halo effects mak-
ing dominant points more difficult to localise, while higher values of the base augments
sharpness of the results but also emphasise noisier, less significant (with small support)
boundary features.
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3.3 Summary

In this chapter we presented a psychophysically inspired mathematical model — medialness,

which provides a description for 2D shape. Different from state-of-the-art approaches,

we moved in the direction of a psychological aspect of human vision. We augmented

the Kovács et al. (1998) medialness definition by introducing orientation to the boundary

points and then used this information to modify the medialness function accordingly. In

contrast to the work of Kovács et al. (1998), we applied this model on both internal and

external regions, and as a result we obtained the medialness field for the given shape.

The resulting field contains one or multiple prominent thick ridges, subsequently isolated

by morphological top-hat transformation. In the case of digital images, we also consid-

ered the pixel under-counting and/or over-counting to evaluate the length of boundary

segments.

In other methods (Kelly and Levine (1995a); Kovács et al. (1998); van Tonder and

Ejima (2003)), adaptive tolerance ε is either kept constant or some percentage of the

length of the boundary. We argued through examples that this value must be adaptive

to the changes in the size of a shape. Our empirical observations showed that ε should

change with the minimum radial distance R(p) logarithmically, not linearly. We also

showed how the value of this logarithmic base should fall in a certain range, in order to

obtain a good medialness result.

At the end of this chapter, we obtain the medialness field and the isolated ridge. The

following questions arise at this point:

1. The medialness field or ridge contains overwhelming and redundant information.

Processing of all of these points is an extremely expensive task in terms of both

time and space. The proposal by Kovács et al. (1998) indicates that there are few

number of points, they call it “hot-spot”, which contain maximal information about

the shape. Within our extracted ridge, how such hot-spots can be extracted?
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2. Once those hot-spots have been identified (also called dominant points) how can

they be intelligible to a machine? In other words, can we represent these dominant

points in form of feature vectors? If yes, in what form and how?

3. A frequent problem in shape representation and identification is to make the method

Affine invariant. Can we address this issue as well?

4. If we are able to represent a 2D shape with a number of feature points, how can we

identify the homography amongst the two shapes?

5. Can we address the scalability issue as well? If yes, how?



Henry Matisse, Bathers With A Turtle, 1908. @City Art Museum, St. Louis.



Chapter 4

Shape Invariant Feature Extraction and

Description

“There’s no sense in being precise when you don’t even know what you’re

talking about.”

– John von Neumann, Mathematician (1903–1957)

This chapter addresses the feature extraction technique and how to represent in descriptive

and understandable format, the extracted feature points corresponding to visual cues. I

began by an overview of the ShIFT descriptor, followed by the details of the dominant

points recovery. The process of converting the set of dominant points into vectors is

then explained. This conversion process starts by subdividing the annulus sector into 2π

bins followed by erroneous hole filling, which is generally caused by inaccurate contour

extraction. Next step is to find the correct orientations of feature points. Depending on

the type and configuration of boundary segments contained by the dominant points, a

dominant point can have one or more than one orientations. Starting from each evaluated

orientation, the set of 2π bins is then converted into n buckets, depending on the value

of selected step-angle. Here, my aim is to describe each bucket as a notion of boundary
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segment (1-valued) or non-boundary segment (0-valued), therefore I quantize the ShIFT

descriptor into a binary representation. I then show that the ShIFT descriptor holds the

affine invariance property intrinsically. I also comment on its behavior under viewpoint

changes and when the object gets inverted. Internal dominant points are extracted by

isolating medialness ridges via morphological operations and applying minimum distance

parameter. Concave and convex points can be extracted by two different methods: (a)

contour following, and (b) using the ShIFT vector. For a given database, the ShIFT vectors

obtained from each image are indexed using a B+ tree.

The ShIFT vector holds the same definition for all the three dominant points, i.e., in-

ternal hot-spots, external concave points, and internal convex points. Chapter 5 details

how to use these for indexing and retrieval purposes. Internal dominant points (hot-spots)

are derived from the model of medialness in perception proposed by Kovács et al. (Kovács

et al. (1998); Kovács (2010)). Such hot-spots represent the interior structure of the shape

and remains invariant with affine changes and articulated movements; however, they don’t

provide any explicit part description and external structure of the shape. Codons (Richards

and Hoffman (1985)), on the other hand, provide an explicit definition of parts by identi-

fying concave (minima) and convex (maxima) points along a closed contour. We adopted

this concept to our medialness field to identify significant concave and convex points from

a contour. Together all three types of dominant points provide a powerful representation

and remain invariant to affine changes and articulations.

In my work, medialness measurement is done separately for internal and external

regions and takes advantage of the perceptual figure-ground dichotomy known to be a

powerful perceptual cue in humans (Arnheim (1974); Layton et al. (2014)). This also en-

ables our method to consider more easily articulated objects as potential targets in pattern

recognition tasks. On the other hand it requires that some good image segmentation is

available prior to initiating medialness computations.1 Under these constraints I can now

1In the recent cognitive science literature, arguments are presented to support the idea that medialness
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Figure 4.1: Top-Left: Example where two segments (here circular arcs) of various lengths
are in medial symmetry (with minimum radial distance R(p) and orientation αp). Top-
Middle-Right: Division of the annulus in 2π/δ (here 18) bins and filling of the bins where
pixels correspond to the presence of boundary segments. Bottom: Quantization process
leading to the ShIFT feature vector for this configuration.

detail how feature points can be retrieved from the medialness map D∗
ε with logarithmic

base setting of tolerance ε . Before going in the details of the dominant point extraction

process, first I introduce the Shape Invariant Feature Transform (ShIFT) feature vector or

descriptor2 that will be used to obtain a shape-type associated with dominant points (or

keypoints).

4.1 ShIFT Feature Vector

Let us consider an extracted candidate feature p from an arbitrary 2D segmented object,

with parameters: {(x,y), R(p), εp, αp, D∗
ε(p)} — i.e. for an annulus centered at p = (x,y)

can itself be the basis of figure-ground segregation (Layton et al. (2014)).
2In this thesis, ShIFT feature vector and ShIFT descriptor have the same meaning and they are used

interchangeably.
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Figure 4.2: The length of ShIFT descriptor is controlled by the step-angle δ . Top: A
boundary segment is pitching inside the annulus centered at p. Bottom: Depending on
the value of δ , the quantization process leads to the ShIFT descriptor of relative length.
A lower value of δ produces large number of bins and vice-verse higher δ results into a
lesser number of bins.
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Figure 4.3: Three boundary points b1, b2, and b3 are sampled from the given contour
segment illustrating three different possible situations, which lie inside the annulus and
provide different support values for medialness calculation at p. Arrows in red color
indicate their orientations with respect to the +x-axis, while green arrows in bottom row
show their orientation with respect to p. Considering equation 3.5, b1 contributes the most
while b2, and b3 have less impact.
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with inner radius R(p), thickness εp, orientation with respect to +x-axis αp (0≤αp ≤ 2π),

and total medialness value D∗
ε(p). The annulus band is then subdivided into 2π/δ empty

bins, where δ is the step-angle parameter defined as nδ = 2π with n∈N+(Figure 4.1). A

bin of the descriptor is then populated by integrating the l values (equation 3.8) of bound-

ary segments falling inside the corresponding sector of the annulus. Following equation

3.5, an elementary part of a boundary segment tends to provide maximum support value

to the respective bin when it is oriented towards the feature point p. The support value is

lower when the boundary’s elementary part is less oriented towards p (Figure 4.3).

4.1.1 Filling of Erroneous Holes

Figure 4.4: Sliding window protocol: (a) An input boundary image. (b) and (d) A sliding
window of size ω covering holes between two boundary segments, thus the holes are
replaced by boundary segments in next steps. (c) The sliding window is unable to fit
properly for hole filling, hence the area is not replaced. (e) Final resultant image.

Sometimes inaccurate contour extraction followed by binarization leads to erroneous

pores or holes in the resulting boundary segments, i.e., some of the segments of the re-
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sulting boundary are represented as background color rather than foreground or boundary

color. This can lead to a false descriptor and hence can affect further calculations. This

situation can be handled via a sliding-window protocol3, which replaces the erroneous

boundary part with boundary infilling segments (see Figure 4.4). The process is recur-

sive and takes a sliding window of width ω , and can be originated from any direction.4

Since the hole filling process can alter a keypoint orientations, it must be applied prior to

orientation assessment.

Figure 4.5: (a) A perfect circle. Dotted circles with (b) small pores, and (c) large pores in

the boundary.

Hole filling is not always desirable and can be omitted based on the application or

query requirement. For example, take the case of disks as shown in Figure 4.5 where

(a) depicts a perfectly drawn circle, (b) a circle with small pores, and (c) a circle with

relatively larger pores. Case I: if the query demands to identify circles only (global per-

spective only), despite their boundary types, hole filling becomes necessary. On selecting

an appropriate value for ω , circles in Figure 4.5(b)&(c) eventually result into the circle

as shown in Figure 4.5(a). Case II: on the contrary, if the task is to distinguish amongst

perfect and dotted circles (local perspective) then we don’t want to fill-in the pores. There-
3A sliding window protocol is usually found in the literature of network and communication, i.e., Data

Link Layer (OSI model) and Transmission Control Protocol (TCP); defined as a feature of packet-based
data transmission protocols (Peterson (2000)). Our sliding-window protocol is motivated from this classic
model, where we replace the notion of packets with the contour fragments.

4The process of hole filling handles the gaps in the boundary segments that could be caused by an
artefact or inaccurate boundary extraction process.
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fore, the hole filling step should be omitted, or we set ω to 0. However, in the majority of

the real-world cases, hole-filling remains in demand. In the current work ω = δ = 2π/n

has been used.

4.1.2 Orientation αpαpαp Assignment

Figure 4.6: Process of orientation assessment for a dominant point p. In this particular

configuration two orientations α1
p & α2

p are possible and hence after the quantization

process two ShIFT descriptors are obtained. Here, step angle δ = π/9 is selected, i.e.,

length (n) of the ShIFT descriptor is set to 18 bins.
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Alike the hole filling step, rotation invariance depends on the application (Belongie et al.

(2002)). For example, an optical character recognition (OCR) does not need rotation

invariance when identifying decimal number system; otherwise 6 and 9 will be labelled

as the same number. However, often real-world problems require the rotation invariance

property for a feature vector.

Figure 4.7: Tolerances in keypoint orientations. Top: A feature point p holds an orienta-

tion αp. Two bounding orientations α+
p = αp + δ/2 and α−

p = αp − δ/2 are created in

anti-clockwise and clockwise directions respectively. Together, the resulting orientation

range allows to handle cases of noisy boundary where the orientation might slightly devi-

ate and result into different ShIFT descriptors. Resulting ShIFT descriptors are shown on

the right hand side. Bottom: Bounding orientations in the case of a bumpy surface.

In order to be invariant to rotations, first we identify all possible orientations for the

selected dominant points (Figure 4.6). For a particular dominant point p we sub-divide

the annulus (of width εp) in 360 circular-bins, where each of these is populated with a

value of 1 if and only if at least one boundary segment/pixel is located in that particular

angular bin. Each consecutively connected 0’s in this circular-bin provides an orienta-

tion to the dominant point where we take the mid point of the empty segment as the
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Figure 4.8: ShIFT descriptors with different boundary conditions of the keypoint p: Top:
Shape is either concave (if p is outside) or convex (if p is inside), limit cases for me-
dialness description. Here p holds a single orientation αp, i.e., identified by only one
descriptor. Middle: Shape is bumpy or has a thick structure. Here p confines two ori-
entations α1

p & α2
p, and represented by two ShIFT descriptors. Bottom: Shape is a joint

structure. Here p has three orientations, α1
p, α2

p, and α3
p, and hence is represented by three

descriptors. For each configuration of p, their ShIFT descriptor is shown on the right-side.
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direction of orientation. Secondly, we introduce some robustness in our feature vector by

including some tolerance for the accepted orientation values. For this, we take angular

tolerances with value δ/2 in both clockwise and anticlockwise directions with respect to

the keypoint orientation, i.e. αp+δ/2 = α+
p and αp−δ/2 = α−

p . Thus for each keypoint

orientation, two bounding orientations α+
p , and α−

p are added to the set of descriptors (see

Figure 4.7). This strategy handles cases where the boundary is slightly deformed or noisy,

which otherwise would lead to different ShIFT descriptors.

4.1.3 Bin Aggregation and Quantization

Once the keypoint orientations are identified, the next step is to aggregate the sub-divided

360 bins into n buckets (Figure 4.9). For each keypoint orientation, the process is ini-

tialised from the bin pointed at the keypoint orientation and moving in anti-clockwise

direction. After mapping to n bins, the next step is to quantize the vector, so that it can

easily be used for indexing and shape-retrieval purposes. For binary shapes, any point

can be seen either as a boundary or non-boundary point. Similarly, each bin of the ShIFT

descriptor reflects whether it is a boundary segment or not. To achieve such represen-

tation we map this descriptor to a binary representation, i.e., 0 - non-boundary, and 1 -

boundary. However, in case of colored or gray-scaled images, boundary segments can

take a range of values, which depends on the range of image intensity. For instance, if

the image intensity range is 0-255 and needs to be mapped into the range of 0− 1 with

10 equal subdivision, then the granularity of the feature vector becomes 0.1. Here the

intensity value I in the mapped vector becomes 10I/255.
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Figure 4.9: Bin aggregation process: In this scenario, δ = π/9 has been taken, i.e. the

length of the ShIFT descriptor is 18. Initially, the annulus is divided into 360 sectors,

which results in having each of the 18 buckets be further divided into 20 sub-sectors.

We consider a bin threshold bth= 0.4. (a) In this case, each of the 20 bins receives a

contribution through boundary segments, which is 20. Hence, the total value of bin counts

reaches 20, which is larger than 40% of the maximum value. As a result, this bucket is

considered as part of boundary segment and the bucket value is mapped to 1. (b) In

this case, only 5 out of 20 bins receive contributions from boundary segments and their

cumulative value falls below the threshold value (0.4×20=8), hence this ShIFT bucket is

considered empty (mapped to 0).

Continuing with the binary representation, if W is the maximum value amongst n

buckets and bth (0 < bth < 1) is a selected threshold value, then all buckets having value

greater than W × bth are lifted to 1, and otherwise are grounded to 0. Empirically, we
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have identified that a minimum of one third of W is required in a bucket to consider it as

being part of a contour. At the end of this step, a quantized ShIFT descriptor of length n

is obtained.

Algorithm 4.1 Outline of ShIFT descriptor Algorithm
For each dominant point di, a spatial position in a 2D image, where di can be internal,
concave and convex dominant points:

1. Populate first part of vector as ⟨(x,y), R(di), εdi, D∗
ε(di)⟩.

2. Create an annulus, centered at di with radii R(di) and R(di)+εdi .

3. Subdivide the annulus band in 360 empty bins.

4. Populate each bin with l values of boundary segments falling inside the correspond-
ing sector of the annulus.

5. Find possible orientations α
di
j of di as described in Section 4.1.2.

6. Apply hole-filling algorithm as described in Section 4.1.1.

7. Recalculate orientations α
di
j of di as described in Section 4.1.2.

8. Aggregate 360 bins into 2π/δ buckets, where δ is the step-angle. Followed by bin
aggregation, quantize the vector. Both methods are described in Section 4.1.3.

9. For each orientation α
di
j , populate the binary ShIFT vector by moving in anti-

clockwise direction.

4.1.4 Scale, Rotation, and Translation Invariance

By design the resulting feature vector can be shown to remain invariant to uniform

scalings, rotations, and translations, and up to certain extent to view-point changes

(i.e., change under projections). Figure 4.10 shows the scale invariance property. Here,

the shape on the left side is scaled-up (shown in middle) and scaled-down (on right)

uniformly. The resulting annulus for medialness calculation at dominant point p also

get resized in a way such that it still captures a set of similar boundary segments in the

relative sectors. Hence, at the end, a silimar ShIFT descriptor is obtained demonstrating
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its invariance to uniform scaling.

Figure 4.10: Scale Invariance: Shape segments (left) are uniformly scaled-up (middle)

or down (right). The medialness annulus operator is correspondingly left invariant.

Figure 4.11 depicts the situation of rotation invariance, where three different shape

attributes are represented by three shape segments. To check the rotation invariance prop-

erty, random rotations are applied over them. As we always start binning ShIFT descrip-

tors from the keypoint orientation, therefore the shape rotation only changes the values of

keypoint orientations, however their ShIFT descriptors remain unchanged and makes the

rotation invariant property intrinsic. Alike rotation, ShIFT descriptors are not affected by

translation while this can only change their spatial location, not descriptor value. There-

fore, again, ShIFT holds the translation invariance property intrinsically.
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Figure 4.11: Rotation Invariance: Random rotations are applied on three different shape

segments. Shape rotation does not affect the resultant ShIFT descriptor for each keypoint

orientation.
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4.1.5 Behavior Under Viewpoint Changes

Figure 4.12: Top: A hand seen from different viewpoints. Middle: Our D+
ε function.

Medialness measure D+
ε remains almost consistent in vp1, vp2, and vp3. While in vp4,

the thumb is lost and results in slightly different medialness field. Note that, the function

still captures other four fingers. Bottom: Dominant points along with their orientations:

Interior in green, convex in blue and concave in red. Note here that these images are

manually segmented and each finger is isolated, as the goal here is to illustrate the use of

medialness, not produce a fully robust segmentation.
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2D shape descriptors can be made invariant to changes in viewpoint up to a certain ex-

tent but the task is critical as the change in viewpoint alters the shape appearance. For

the same object, two different viewpoints can create completely different 2D shapes. For

instance, in Figure 4.12 (top), the 2D appearance of a hand is very different at viewpoint

vp1 and vp3 or vp4. However, if the viewpoint variation still captures a similar shape

information and their extracted 2D shape descriptors categorize them as the same object

(i.e., the retrieved feature vectors from these images are mostly same), then this 2D shape

descriptor can be said to be partly invariant to viewpoint change. Our designed ShIFT

descriptor is capable of handling such situations. In the original input image, the fingers

are slightly touching or overlapping and there are no easy automatic segmentation solu-

tion. Therefore, I do a manual segmentation in that special case, in order to make sure

each finger is isolated, as the goal here is to illustrate the use of medialness, not produce

a fully robust segmentation. Figure 4.12 (middle and bottom) provides an example be-

hind this claim where medialness and dominant points are consistent in vp1, vp2 and vp3

and hence the ShIFT descriptor still holds the same representation even for a noticeable

change in viewpoint.

4.1.6 Object Inversion and ShIFT descriptor

Visually, the shape information should remain the same when an object is inverted.5 Our

designed ShIFT descriptor can easily handle such situations if we apply an inversion rule,

i.e. by reversing the order of the ShIFT descriptor. In Figure 4.13, an airplane image is in-

verted horizontally and vertically. For the original object, the ShIFT descriptor is created

by binning the sub-divided annulus in anti-clockwise direction. If we reverse the order

from anti-clockwise to clockwise, then the resulting descriptors will correspond to the

inverted cases. If a database contains only inverted forms of a query shape, in practice it

5The shape is transformed upside down or in left-right (mirror-like reflection).
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Figure 4.13: (A) A silhouette of an airplane. p is an internal dominant point with αp as its
one of the orientations. (b) Horizontally inverted shape through mirror M1. (c) Vertically
inverted object through mirror M”. Inversion not only changes the keypoint orientation
but also inverts the ShIFT descriptor representation. Bottom-right side shows the ShIFT
descriptors with step-angle δ = π/9. Since one time inversion process produces same
inverted objects, hence (b) and (c) are same airplanes with different rotations. Therefore,
keypoint p has same representation in these two cases, which is the inverted representation
of case (a).



4.2 Dominant Points 89

is usually important to not miss a potential shape match because of a simple mirror inver-

sion. To handle such situations, we can use two queries per shape, i.e. one representing

an original query and another for its corresponding inverted shape. This additional query

only cost for the retrieval process from the indexed dataset, which is almost negligible

compared to overall time cost. Moreover, this inverted query requires equal space alike

the original. Hence the process does not affect overall time and space complexities. Note

here that, for homography purpose, values in the affine matrix (discussed in section 5.2)

for the inverted query must be changed accordingly.

Object inversion includes those images to the query, which are relevant but got in-

verted, and hence improves values of both precision6 and recall7.

4.2 Dominant Points

The computation of a medialness map result in a field of medial symmetries (alike a

terrain where height corresponds to medialness). The thick ridges in the map hold the

most informative loci including dominant points, which are preferably isolated. Assuming

a figure-ground situation, we focus first on the interior medialness representation, and

on isolating the interior dominant points. Then we can precede to recover significant

interior and exterior ends of ridges as candidate convex and concave loci. Once we have

extracted the three types of feature points, we shall make these intelligible to a machine by

representing them in the form of feature vectors usable for archiving and retrieval tasks.

6In information retrieval, precision (also called positive predictive value) is the fraction of retrieved
instances that are relevant.

7In information retrieval, recall (also known as sensitivity) is the fraction of relevant instances that are
retrieved.
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4.2.1 Interior Dominant Points

The interior dominant points extraction process consists of three steps: (a) isolating the

medialness ridge via morphological top-hat transform; (b) mapping the medialness ridge

to the response value to get the correct position of dominant point in flat regions; and (c)

avoid the cluttering of dominant points via minimum distance parameter.

(a) (b) (c)

Figure 4.14: Illustration of the three successive steps in isolating internal dominant

points: (a) medialness representation of (the interior of) a standing dog (top) and butterfly

(bottom); (b) corresponding top-hat transform; and (c) internal dominant points illustrated

as green dots together with the original object’s pre-segmented boundary.

Step A:

Medialness increases with blackness in our transformed images (this is for visualization

purpose). To select points of internal dominance, a black top-hat transform is applied,

resulting in a series of dark black areas which typically correspond to peaks, ridges and

passes of the medialness map when considered as a height field, where black means high

or proximity to a peak or a ridge. The black top-hat transform is defined as the differ-
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ence of the morphological closing of an input function by a flat structural element, i.e.,

a disk with radius as single parameter (Serra (1983)). Closing is a set operator on func-

tions which removes small holes from the foreground of an image, placing them in the

background (augmenting the local function set values, Serra (1983); Leymarie and Levine

(1988); Vincent (1993); Dougherty and Lotufo (2003)). Here, the size of the structuring

element varies with the location and is a linear function of εp, i.e. wεp.8 This filtering is

followed by a thresholding9 to discard remaining areas of relatively low medialness sig-

nificance. Figures 3.16 (bottom row) and 4.14 (b) show the result obtained after applying

the black top-hat transform on a medialness map. Detailed technical details on Top-hat

Transform has been appended as AppendixB.

Figure 4.15: Left: Illustration of a plateau in medialness response following a top-hat

transform where no peak locus is isolated. Right: Response-value ψε after filtering the

plateau.

8Empirically, I found that w = 1 works better and produces affine invariant medialness-ridge.
94-5% of either maximum medialness within the structuring element if the medialness map is not inter-

polated or maximum of the range of interpolation within the structuring element. Our empirical analysis
suggests that the value higher than this threshold range includes spurious and noisy points in the filtered
space, which are not along the medialness ridge. A value lower than this designed threshold range can
destroy the ridge connectivity and loss of important information also occurs sometimes.
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Step B:

We still require to process further the output of the top-hat transform to isolate the most

dominant points amongst the remaining selected medialness loci. We also consider the

cases where the resulting ridges are more like plateaus and thus rather flat at their top.

In order to identify isolated representative dominant points for such plateaus we pull-

up such flatten regions and map the central locus of a plateau to the highest local peak

value (Figure 4.15). A simple way to achieve this result is to locally modify the value of

medialness at each filtered point of the top-hat image to ensure a non-flat “response-value”

(ψε(p)):

ψε(p) = ∑
q∈s

D+
ε (q) (4.1)

where:

s =
{

q | (|p−q| ≤ εp) ∧ D+
ε (q)≤ D+

ε (p)
}

(4.2)

An equivalent solution is to propagate a distance map over a plateau to identify the

most central, interior point (Toivanen (1996); Osher and Paragios (2003)).

Step C:

To provide some control of the possible clustering of dominant points, a flat circular

structuring element of radius εp (but of at least 2 pixels in width) is also applied over the

output of a top-hat transform to pick-up maxima. We also impose that no remaining points

of locally maximised medialness are too close to each other; this is currently implemented

by imposing a minimum distance of length 2εp taken between any pair of selected points.

An example of applying these steps to identify interior dominant points in medialness is

given in Figure 4.14 (c).
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This way of identifying interior dominant points is robust and conforms to the preser-

vation of most informative points. However, the minimum distance parameter in Step C

is somewhat sensitive to the value of the multiplier of εp and there might be chances of

inclusion of too many dominant points if the distance parameter has a low value or of dis-

carding some informative points if the distance parameter is too high. Since our designed

εp is adaptive (equation 3.12), hence it take cares of both these problems and maintain

robustness, i.e., the chosen value is designed carefully to be able to both discard having

packed clusters of dominant points while keeping important dominant points. Since this

algorithmic chain is using heuristics, hence it is not based on first principles. In the fu-

ture, a more formal approach would consider paths generation over a medialness map to

walk from peaks to passes to peaks via ridges. What we have designed here instead is

approximated computation that is quickly obtained and produces robust results.
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4.2.2 (Exterior) Concave Points

Figure 4.16: Bottom row: External medialness processing on a humanoid object. The

articulated movement of the left arm changes the location and orientation of the associated

external dominant point (near the concave curvature peak). If the external dominant point

is reasonably far from the contour, then it proves difficult to retrieve a (shape-based) match

with the modified form. Top row: Red arrows show the local support for concavity while

blue arrows indicate the direction of flow of medialness (away from the concavity).

In practice, if an object can be deformed or is articulated, salient concavities can be iden-

tified in association to those deforming or moving areas (such as for joints of a human

body). Considering this empirical observation, the location of an external dominant point

can be made invariant to this deformation/articulation only up to a certain extent. For ex-

ample, if the location of an external dominant point in medialness is initially relatively far

away from the corresponding contour segment, a slight change in the boundary shape near

the movable part (such as an arm movement) can considerably change the position of that

associated dominant point (Figure 4.16). On the other hand, if a potential concavity point

is located very close to the contour, it can easily be due to noise or small perturbations in
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the boundary reflecting a local maximum of curvature. Therefore, to be able to retrieve

reliable concave points, it is first required to provide an adapted definition of concavity as

a significant shape feature.

Method I (Contour following): We define a point of local concavity if it falls under a

threshold angular region, under the constraint of length of support which itself depends on

the tolerance value (ε). The value of the threshold (θext) is tunable but is always less than

π , which permits to control the angular limit of the concave region. A point whose local

concavity is larger than θext is considered a flat point. In our experiments we tune the value

of θext int the range [5π/6, 8π/9]. In association, we define an external circular region

(of radius function of ε) centered at each locus containing candidate external dominant

points. Each such region may provide only one representative dominant point, where the

dominance of a particular point is decided by the maximum containment of boundary

points inside the associated annular gauge (of exterior medialness) and corresponds to

(our definition of) the maximum length of support. Finally, we position the representative

dominant point to be near the contour at a fixed distance outside the form.10

10This heuristic, of positioning the representative concavity near the object contour trace is useful both
for visualisation and for greater robustness in matching under articulated movements.
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Figure 4.17: A feature point p represents left: concavity, and middle: convexity. Their

respective orientations αp are shown as blue needle and red arrow. Right: Their resultant

ShIFT descriptor.

Method II (Using the ShIFT Vector): We note that points lying outside the shape can

have more filled bins when the shape is concave and have fewer filled bins when the shape

is locally convex, whereas the opposite is observed for interior candidate points near the

end of a ridge of medialness. To improve the labeling of whether a contour segment is

significantly concave or convex, we identify a minimum number of concurrently filled

bins. The point can then be confirmed as concave (convex) if it is associated with at least

k successive filled bins (typically k = 4n/9, proves empirically useful) and has highest

medialness value in the surrounding of a circle with radius R(p). With this verification

stage, typical feature vector configurations are alike the following:

(a) 0 · · ·01 · · ·10 · · ·0 : convex or concave

(b) 1 · · ·10 · · ·0: convex or concave

(c) 0 · · ·01 · · ·1: convex or concave

(d) B · · ·B10 · · ·01B · · ·B0: neither convex or concave, where “B” is a “don’t care”

(can be either “0” or “1”).
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4.2.3 Interior Convex Points

Figure 4.18: Illustration of interior medialness processing on a humanoid object to iden-

tify significant convexities in the vicinity of the ends of medialness (ridge) trace.

Our final shape feature is a set of convex points, where an object’s figure has sharp local

internal bending and gives a signature of a blob-like part or significant internal curvature

structure (i.e. a peak in curvature with large boundary support). The goal is to repre-

sent an entire protruding sub-structure using one or a few boundary points. In has been

recognised for a long time that such protrusions have a significant contribution in char-

acterising a form’s figure (Richards and Hoffman (1985); Leymarie and Levine (1992);

Berretti et al. (2000); Srestasathiern and Yilmaz (2011)). The process of extraction of

convex points is similar to the extraction of concave points, the main difference being the

value of threshold angle (θint), where π < θ ≤ 2π . In our experiments we have found
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useful values to be in the range: [1.25π , 1.33π] (Figure 4.18).

Convex and concave feature points are complementary to each others and have been

used in the codon theory of shape description: a codon is delimited by a pair of negative

curvature extrema denoting concavities and a middle representative positive maximum

of curvature denoting a convexity (Richards and Hoffman (1985)). In our case we relate

these two sets with the extremities of the medial axis of Blum (1973): end points of in-

terior branches correspond to center of positive extrema of curvature and end points of

exterior branches are mapped to negative extrema of curvature of the boundary. Further-

more, we note that the repositioning of these extrema near the boundary is alike the end

points of the Process Inferring Symmetry Axis (PISA) representation of Leyton (1992).

4.2.4 Feature Point Set

Together, the three point sets derived from medialness — Interior, Concave and Convex

— form a rich description of shape which can, in particular, be used to address the difficult

problem of building a shape-based matching system. Each feature point p has associated

information made from two distinctive parts: part 1 describes the spatial and geometrical

information of the dominant point (associated with medialness):
〈
(x,y), R(p), D∗

ε(p), αp
〉
,

while part 2 is the ShIFT vector made of up to n entries corresponding to the way we

partition a medial annulus band into sectors (or bins). Our designed ShIFT is a “rich”

descriptor of shape and it can be used to address different important problems, such as

indexing over a large shape datasets (information retrieval aspect), shape retrieval and

matching, movement computing. Moreover, from this set a coarse medial axis (MA)

graph is recoverable, hence it has MA applications. As our ShIFT feature is quantized in

binary form, so in total it can have a maximum of 2n different forms. A larger value of

δ will produce a smaller number of bins and hence reduce accuracy. On the other hand,

a lower value of δ will produce a larger number of bins, perhaps making the mapping
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(a) (b)

(c) (d)

Figure 4.19: Maple leaf shape with (a) Interior medialness, (b) exterior medialness, (c)
interior ridge obtained after top-hat transform, and (d) feature points recovered: medial
hot spots (in green), and significant convexities (in red) and concavities (in blue). Here
size of interior feature points is proportional to their weight, i.e., the value of D+

ε .
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more sensitive to noise. Our empirical study shows that a value of δ in the range of

[π/12, 2π/15] leads to a good compromise (with the considered datasets). In this thesis

we report results with δ = π/9 resulting in feature vectors of length n = 18.

4.3 Shape-based Image Indexing using ShIFT Features

Processing efficiently the exponentially growing numbers of digital images and video

sequences is more and more needed in order to archive, retrieve, modify and manipulate

such sources of big-data (Wiederhold (1995, 2016)) . In daily life, one of the major search

query on the Internet is to find the most relevant images in such large databases, which

contain some samples of the object of interest. To make such searching queries practical,

effective shape-based image encoding and indexing based on object semantics is becom-

ing increasingly important. In current real-world image databases and query processing,

two different techniques are frequently in use: (a) the prevalent retrieval techniques that

involve human-supplied text annotations to describe object semantics in images or video

sequences, and (b) content or feature-based methods. There are many problems in using

the former approach, for example, different people may supply different textual annota-

tions for the same image and hence, this makes it difficult to reliably answer user queries.

Furthermore, entering textual annotations manually is expensive for very large and grow-

ing image databases. While on the other hand, feature-based methods are proven to be

fast, although the compromise is with robustness and accuracy.

With large image databases, indexing is the key technique for fast searching. Such in-

dexing can be performed in two ways: (a) concept-based image indexing, and (b) content-

based image indexing. Concept-based image indexing, usually referred as "description-

based" or "text-based" image indexing/retrieval, refers to retrieval from text-based in-

dexing of images that may employ keywords, subject headings, captions, or natural lan-

guage text. Content-based image retrieval (CBIR), also known as query by image content
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(QBIC), is the application of computer vision techniques to the image retrieval problem.

“Content-based” means that the search process analyzes the main contents of the image

rather than metadata. In our case, content refers to shape features.

A feature vector is indexable if it shows the properties of granularity and quantiza-

tion. The published popular shape descriptors, such as Shape Context (SC) and Inner

Distance Shape Context (IDSC), are not in a form which makes them applicable to the

practical case of information retrieval amongst millions (or more) of shape samples. On

the other hand, feature descriptors like SIFT (Scale-Invariant Feature Transform) Lowe

(1999, 2004) and SURF (Speeded-Up Robust Features) Bay et al. (2006, 2008) were de-

signed to work well for such indexing purpose, but they lack in providing explicit shape

representation or information. Our ShIFT feature vector is already binarized and hence

quantized, and can thus be used for indexing. Hence, this descriptor representation pro-

vides explicit shape information as well as make it indexable.

One can use the sequential indexing method (Indexed Sequential Access Method,

ISAM) to organise the feature vectors. The main disadvantage of this indexing technique

is that performance degrades as the file grows, both for index lookups and for sequential

scans through the data. Although this degradation can be remedied by reorganization of

the file, frequent reorganizations are undesirable. On the other hand, B+ tree index struc-

ture maintains their efficiency despite insertion and deletion of data (Silberschatz et al.

(1997)).

In the current work, a B+ tree is used to index ShIFT feature vectors.11 The B+ tree

is a variation of the B-tree data structure, where it combines the features of both ISAM

and B-tree (Ramakrishnan and Gehrke (2000)). Here, data pointers are stored only at the

leaf nodes of the tree and hence the structure of leaf nodes differ from the structure of

internal nodes (Figure 4.20). The leaf nodes have an entry for every value of the search

11A B+ tree is an n-ary tree with a variable number of children per node; it is an extension of the classic
B-tree (Elmasri (2011)).
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field, along with a data pointer to the record (or to the block that contains this record).

The leaf nodes are linked together to provide ordered access on the search field to the

records, while internal nodes are used to guide the search. Some search field values from

the leaf nodes are repeated in the internal nodes. More extended details on the B+ tree

can be found in Appendix C.

(a)

(b)

Figure 4.20: (a) The structure of the internal nodes in a B+ tree. (b) A simple B+ tree

example linking the keys 1− 7 to data values d1 − d7. The linked list (red) allows rapid

in-order traversal. This particular tree’s branching factor is b=4.

Some characteristics of the B+ tree with h levels of index and order12 b in the tree are:
12The order, or branching factor of a B+ tree measures the capacity of nodes (i.e., the number of children

nodes) for internal nodes in the tree.
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• The maximum number of records stored is nmax = bh −bh−1

• The minimum number of records stored is nmin = 2
⌈b

2

⌉h

• The minimum number of keys is nkmin = 2
⌈b

2

⌉h −1

• The maximum number of keys is nkmax = bh

• The space required to store the tree is O(n)

• Inserting a record requires O(logb n) operations

• Finding a record requires O(logb n) operations

• Removing a (previously located) record requires O(logb n) operations

• Performing a range query with k elements occurring within the range requires

O(logb n+ k) operations

4.4 Summary

In this chapter we addressed most of the issues raised in Chapter 3. Followed by the de-

tailed description of our designed feature descriptor ShIFT, we presented the algorithmic

chain in order to extract the dominant points also known as feature points or hot-spots, as

indicated in the literature of Kovács et al. (1998); Kovács (2010), from a medialness map.

We provided a representative description of these dominant points through our designed

descriptor ShIFT, which provides a machine intelligible representation.

We illustrated the affine invariance property of the ShIFT descriptor along with its

behavior under viewpoint changes. Motivated by the literature on data transfer protocol

in networking, i.e., using a sliding-window protocol, we addressed the case of inaccurate

contour extraction followed by a binarization process that leads to erroneous holes in the

resulting boundary segments. We presented finer details on the orientation assessments
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and quantization process of the descriptor. Moreover, we addressed the behavior of the

descriptor under object inversion, which is not handled by most of the existing shape

descriptors.

The notion of articulated movement is captured via the analysis of concavities and

convexities in the shape. We presented two complementary methods to detect these ex-

tremities in the shape and also commented on the notion of flatness in the shape. At the

end, the ShIFT descriptor is defined by two parts, one is responsible for affine parameter

calculation and homography, while the second part (binarized and quantized) is helpful

for indexing. To index our ShIFT feature vectors, we used a B+ tree index structure,

which proves efficient in retrieval queries.

At this particular point, the following questions are still unanswered:

1. We have obtained the ShIFT descriptor containing two parts: (a) a set of parameters

and (b) an n-length binarized and quantized vector. How can we use these parameter

to identify affine parameters?

2. After getting these parameters, how to perform a homography and shape matching

task?

3. Once the shape matching task is accomplished between two objects, can we distin-

guish the case of matching of a query image with two different image? How can we

quantify such situations? Or in other words, how can we rank the shape matching

task on a large dataset?

4. It is an inappropriate task to perform one-to-one shape matching when the dataset

is too large. Is there any way to filter out irrelevant objects quickly and rank the

others on some criteria, in order to check the homography on only the N top-ranked

shapes?



Pablo Picasso, Bullfight, 1934. @Museo Thyssen-Bornemisza, Madrid.



Chapter 5

Shape Retrieval and Matching

“We should not give up and we should not allow the problem to defeat us.”

– Avul Pakir Jainulabdeen Abdul Kalam, Missile Man of India (1931–2015)

With the invention of digital photography and video, the world has become to be small

enough to be stored in anyone’s collection. Large digital image and video collections

typically contain large amount of information related to human activities such as image

based web searching, architectural and engineering design, movement computing, fash-

ion and design technology, medical diagnosis, cultural heritage, geographical information

and remote sensing systems, home entertainment, human computer interaction, education

and training, etc. After image and video acquisition, people usually tend to reorganize

their collections in a way such that it is good for searching later, i.e., spending minimal

time for finding best result. The comprehensive manual analysis, search and retrieval

on collections are acceptable when these remain small. Such manual retrieval time in-

creases rapidly when the collections grow large enough and contain diversified categories

making it almost impossible to produce effective results in a reasonable time. Therefore,

an important issue associated with such problems is how to offer users more effective

technologies to supply results acceptable in terms of both time and accuracy.
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The objective of this chapter is to design robust indexing and retrieval algorithms by

exploiting ShIFT descriptors. We discuss how we use our ShIFT descriptor for indexing

large image databases, retrieving top best matches from this indexed databases. Fur-

thermore the retrieved results are used to find the homography between query and target

images by means of matching feature points in an efficient way. In order to perform the

homography, we first identify affine parameters namely: scale, rotation and xy- translation

parameters. When the test and target images represent similar shapes, the homography

process finds the scaling and rotation factor between these. If the images contain dissim-

ilar shapes (for example matching butterfly with a horse) then it finds the best possible

part-based match. The retrieved results are needed to be ranked based on how much rele-

vance they have with the test case. In this thesis we use three ranking metrics: Percentage

Match or Precision, standard F-measure, and Relative Score, which provides a weight to

each matching pair. We also provide an overall performance measure to our system based

on standard Mean Average Precision (MAP) value.

5.1 ShIFT Descriptor-based Shape Retrieval

Figure 5.1: Flow chart: Content-based image/video retrieval and indexing model.

In the current context “content-based” is in terms of shape information, here it is de-

fined through ShIFT descriptors interpreted as primitive visual features. These descriptors

provide both low and medium level shape information. For example, when observing a

hand, local discriminative parts include finger tips, while global features like the palm

are also captured and described through this descriptor. Since these descriptors are quan-



5.1 ShIFT Descriptor-based Shape Retrieval 108

tized, they are directly available for indexing. A conventional content-based image/video

retrieval and indexing system is illustrated in Figure 5.1.

Figure 5.2: Type conversion or identity detection of the ShIFT descriptors for indexing
purpose. Top: A ShIFT descriptor obtained after feature extraction process, which can
be internal, concave, or convex. Bottom: For dominant type representation, 2-bits are
prefixed before the descriptor: 00 for internal, 01 for concave, and 10 for convex dominant
points.

In this work, first, feature points are located from query and target images and kept

with separate identities as members of three types: internal, concave and convex. To

utilize their identity in the descriptors, each ShIFT feature vector is first prefixed with two

bits such that: 00 = internal, 01 = concave or external, and 10 = convex (Figure 5.2).

This means the length of the descriptor is always incremented by 2. As introduced in

section 4.3, a B+ tree is used to index a ShIFT descriptor, for which the complexity to

index the database is O(n logb n), while retrieval is O(logb n).

For a given query shape, each descriptor is exploited to find the respective target in

the indexed database which is stored at a leaf node of the B+ tree. The retrieved results

are then needed to get scored on the basis of a ranking metric, in order to find the amount

of correspondence with the given query. Once these outcomes obtain scores, a voting

scheme is applied to rank them. Out of these ranked outcomes, if required by the search

engine, the top N outcomes can be used for illustration purpose. Query to target (spatial)
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fitting can be done by finding the corresponding homography1, which is explained next.

5.2 Homography and Shape Matching Algorithm

For query to target fitting, it is required to find their best possible homography. A homog-

raphy is a transformation from one projective plane to another, in our case, homography

is a transform to map objects of one image to the objects of another image. Consider a

point p = (xi, yi) in one image and q = (x j, y j) in another image. The homography is a

3×3 (for a 2D transform) or a 4×4 (for a 3D transform) matrix H, and relates the pixel

co-ordinates in the two images if q = H p.

Once the feature points are located from query and target images and kept as separate

identities, the next task is to evaluate their relative affine parameters, i.e. scale, rotation

and translation. The order of evaluating these parameters are invariant and final result will

be same. In our representation, internal dominant points holds discriminating feature to

identify all these three affine parameters correctly. However, concave and convex domi-

nant points can be used to identify rotation and translation, but they cannot be used to get

the correct scaling factor between query and targetobject. Hence, internal dominant points

are used as the initial keypoints for evaluating scale, rotation and translation of the query

image with respect to a particular target image. The next step is to improve the correct-

ness of the matching algorithm. For this, concave and convex points are used as additional

information. Each feature point p has associated information made from two distinctive

parts: part (1) describes the spatial and geometrical information of the dominant point

(associated with medialness):
〈
(x,y),R(p),D∗

ε(p),αp
〉
, while part 2 is the ShIFT vector

made of up to n = 2π/δ entries corresponding to the way we partition a medial annulus

band into sectors (or buckets). Here (x,y) is the 2D location of a feature point p, R(p)

1In projective geometry, a homography is an isomorphism of projective spaces, induced by an isomor-
phism of the vector spaces from which they are derived. It is a bijection that maps lines to lines, and thus a
collineation (Berger (2009)).
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is the minimum radial distance of the point from the contour, D∗
ε(p) is the medialness

measurement, and αp is the orientation with respect to the positive x-axis. The test case

(query Q) is represented as: Q= {QI ,QE ,Qc}, for internal (QI), concave (or external) (QE)

and convex (QC) feature points; while the target image (T ) is similarly represented as:

T = {TI ,TE ,TC}. For affine parameter evaluation, we follow a brute-force method where

each element of QI is compared with each element of TI following four stages.

(a) (b)

Figure 5.3: Illustration of how scaling of an object is evaluated towards matching. Here
(a) a butterfly form is used, to be matched with (b) a scaled-down version.

If an object is uniformly scaled by a factor β , we expect the distance between any two

similar parts to be scaled by the same factor. In Figure 5.3, an example of scaling is shown

for a butterfly object: consider the top-left (centered at C1 with radius R1) and bottom-left

(centered at C2with radius R2) parts of a butterfly (a) being scaled-down to corresponding

disks: centre C
′
1 with radius R

′
1 and centre C

′
2with radius R

′
2 part of the butterfly (b), then:

R1

R′
1
=

R2

R′
2
⇒ R

′
2 = R2 ×

R
′
1

R1
(5.1)

Here, the scaling factor for butterfly (b) having a disc with radius R
′
2 w.r.to butterfly (a)

having a disc with radius R2 is β ≡ R
′
1/R

′
2. Similarly, their respective distance vectors C1C2
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and C
′
1C

′
2 get scaled by the same factor, i.e.:

R1

R′
1
=

C1C2

C′
1C′

2
⇒C

′
1C

′
2 =C1C2 ×

R
′
1

R1
(5.2)

Stage I is thus used to identify a scale (β ) as well as identify the required translation

of the query image by matching a dominant point. Stage II is a check on the scale β to

make sure at least one more internal dominant point can be used in the matching process

(if not, move to a different dominant point not yet considered). In stage III, the rotation of

the query image (w.r.to the target) is evaluated. Finally, stage IV modifies the Cartesian

positions of each feature point of the query image by applying the evaluated scale, rotation

and translation and we proceed to measure a matching performance value.

Figure 5.4: Illustration of the evaluation of scale (β ). In the query image on the left, for
a particular dominant point falling inside a red circle, two possible matching locations in
the target image, are shown: cases I and II. In each case the circle’s radius is dictated by
the minimum distance to the contour (from medialness) and the scale (β ) is given as the
ratio of the minimum radial distances of target vs query.

Stage I: Take an element (qi) from set QI and match it with each element (t j) of set TI .

For each pair of (qi,t j), the scale (β ) is evaluated as (Figure 5.4):

scale(β ) =
Rt j

Rqi

(5.3)
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The scale (of query image w.r. to target) for the matching pair (qi,t j) is defined via two

translations, one for each axial direction: −−→qxtx = tx − qx and −−→qyty = ty − qy, where qi =

(qx,qy) and t j = (tx,ty).

Stage II: Now take the next element (qi+k) from set QI and match it again with each

element (t j) of set TI . For each pair of (qi+k,t j) find the scale β
′
. If the ratio of β

′
over β

is under the tolerance level βth, then goto stage III. Otherwise, repeat at another point and

check the same tolerance criterion βth and repeat if necessary until all the elements of QI

are counted. The value β
′

(if it is under the tolerance level) ensures compatibility under

scaling of the query image (with respect to a target) and helps in finding the matching

location of the next internal dominant point to consider (blue arrows in Figure 5.4).

Figure 5.5: For both query (test) and target images, the orientation (α) is the angle be-
tween a line joining the two matching internal dominant points (shown with blue arrows)
and a positive x-axis. The required rotation (θ ) of the query image w.r.to the target is
given by the difference in orientations.

Stage III: After stage II, if (qi,qi+k) are the matching dominant points in QI and (t j,t j+l) are
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matched dominant points in TI , then the orientation satisfies the condition: |(αqi −αt j)−

(αqi+k −αt j+l)| ≤ θth, where θth ≥ 0 is a tolerance level under image rotation at a keypoint

p. The rotation (θ ) of the image Q is then defined by the difference of orientations of

matching keypoints, i.e.:

rotation(θ) = (αqi −αt j) (5.4)

Usually θth ≥ δ/2, while θth = 0 is the hard tolerance which assumes that the shape

is not deformed.

Stage IV: Upon obtaining the values of translation, rotation and scale of the image Q

(w.r.to T ), our next task is to transform the positions of all feature points (QI , QE and QC)

of the image Q into the space of image T and finally check for a match. This is done as

follows:

1. Construct the 4× 4 homogeneous matrix H, of the form



a b 0 0

c d 0 0

0 0 1 0

δx δy 0 1


, to

perform the required linear (rotation and scaling, represented by the parameters

(a,b,c,d)) and affine (translation (δx,δy)) transforms for all feature points found

in image Q.2

2. Calculate the modified coordinate positions by matrix multiplication of H with the

feature point positions.

3. For each modified qi (qiεQI) if there is a t j (t jεTI) within a tolerance radius of r×ε ,

their β -value is then compared. If the β ratio is within βth, then count it as a match.

2We use the traditional 3D graphics notation when performing affine transformation using 4×4 matri-
ces; as we are only dealing with a 2D problem, one of the spatial dimensions is redundant, but this is not a
problem in practice.
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4. Repeat step 3 for external dominant and convex points, i.e. each element of QE and

QC with TE and TC respectively.

Figure 5.6 shows the case where a query (horse silhouette) and a target image (butterfly

silhouette) hold completely different shape configurations from each other. Our matching

algorithm finds a best possible fitting of the horse (part-based) within the butterfly image

by comparing ShIFT feature vectors and looking at their corresponding association. For

these two objects, the best fit is found to be the horse’s tail with the butterfly’s abdomen.

In other words, we can say that when the query and target images represent the same

objects then the matching algorithm finds their corresponding affine parameters (rotation,

scale and translation). While on the other hand, when the query and target images has

dissimilar shapes, then the matching algorithm finds a best possible fitting in between the

two.
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Figure 5.6: An example of homography between two dissimilar objects: the silhouettes

of a horse (test-image) and a butterfly (target-image). Here, our matching process finds

a best fit of the horse within the butterfly, by considering the part-configuration. These

two images are very different from each other and only the horse’s tail has a similar shape

alike butterfly’s abdomen. Top-row: finding the best matching parts based on the ShIFT

descriptor matching; middle-row: rotation of the horse matching the butterfly’s abdomen;

and bottom-row: scaling of the horse with respect to the matched butterfly’s abdomen.
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5.3 Ranking Metrics

Consider MI , ME and MC as the sets of internally, externally (concave) and convex match-

ing feature points. Intuitively, more shape discrimination is present in internal and ex-

ternal dominant points while convex points add details (end points of protruding parts

delimited by external (concave) points). Hence we make use of the following heuristic:

our matching metric is biased towards internal and external (concave) dominant points.

If |A| is the cardinality of set A, then we express the problem of finding a best matching

location of Q in T as the maximization of (although there can be many other ways to

combine the information from the three sets of feature points):

• Percentage Match or Precision

• F-measure

• Relative Score

5.3.1 Percentage Match or Precision

Percentage match or precision is calculated as:

%match =
∑wtype|Mtype|
∑wtype|Qtype|

, (5.5)

where type = {I,E,C}. wI , wE and wC are the weights for internal, external(concave) and

convex matching score, where wI > (wE = wC). In this metric, regardless of the number

of keypoints in the target image, if all keypoints in the query image find a corresponding

match then the value become 100%, i.e. the precision will become 1.3 This is an example

of surjective4 mapping which can be injective or non-injective. However, this measure

3Precision, also known as positive predictive value, is the fraction of retrieved instances that are relevant.
4The function is surjective (onto) if every element of the co-domain is mapped to by at least one element

of the domain. That is, the image and the co-domain of the function are equal.
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does not explain the nature of the target image, i.e., whether the query is a sub-part of the

target image or a replica. Such a quantitative measure can be evaluated by recall.5

5.3.2 F-measure

Our mathematical formulation of F-measure is:

F = 2× ∑wtype|Mtype|
∑wtype(|Qtype|+ |Ttype|)

, (5.6)

where type = {I,E,C}. wI , wE and wC has the same meaning alike in section 5.3.1. This

is another measure of a match accuracy, consisting of both precision and recall with a

value lying in the interval [0,1]. As equation 5.6 in itself describes, the F-measure is the

harmonic mean of precision and recall. This metric produces a value of 1 if and only if

Q and T have surjective mapping. This means each keypoint in the query image finds a

mapping with one keypoint in the target image and all the keypoints in the target image are

mapped. If f is the mapping function, then the F-measure punishes those cases where (a)

f : Q → T is an injective non-surjective mapping, i.e. some elements of T are not mapped

(precision = 1 while recall<1), (b) in f : Q → T , all the elements in T have a mapping

from Q, but some elements of Q are not mapped, i.e., recall = 1 while precision<1, and

(c) in f : Q → T , only some elements of Q are mapped with some elements of T , i.e.

precision<1 and recall<1.

5.3.3 Relative Score

The relative score is the combination of two functions, f and g, where f evaluates the

score of the mapping f : Q→ T , while g evaluates its importance (see equation 5.9 below).

5Recall, also known as sensitivity, is the fraction of relevant instances that are retrieved.
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Relative to the query image Q, the matching score is expressed as:

RSQ = ∑wtype
|Mtype|
|Qtype|

, (5.7)

and, relative to the target image T , the matching score is expressed as:

RST = ∑wtype
|Mtype|
|Ttype|

, (5.8)

where 0 < wtype < 1. RSQ > RST means the query image has more overlapping portion

than the target image, while the reverse is true for RSQ < RST . The overall relative score

RS is measured as:

RS = f (RSQ,RST )+g(RSQ,RST ) (5.9)

f (RSQ,RST ) is the score for mapping that can be expressed in terms of an arithmetic

mean (AM), a geometric mean (GM) or a harmonic mean (HM) of RSQ and RST . The

importance function, g(RSQ,RST ), is calculated as:

g(RSQ,RST ) = min(RSQ,RST )

(
max(RSQ,RST )−min(RSQ,RST )

2

)
(5.10)
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5.4 Classification: Bag-of-Words Model

Figure 5.7: Bag-of-words model for a seahorse shown at the central circular disk. Moving

in outward direction, concavities (exterior dominant regions in blue), convexities (in red),

and interior dominant regions (in green) are shown respectively.

In computer vision, the bag-of-words model (BoW model, Salton and McGill (1983);

Han et al. (2011)) also known as bag-of-features model is used for the purpose of image

classification such as finding relevant target images out of a trained or indexed database.
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To represent an image by the BoW model, the image is treated as a document and the

image features are treated as “words”. Usually, there are three steps involved in the pro-

cess: feature detection, feature description, and codebook generation. The BoW model is

nowadays often used in content based image indexing and retrieval (CBIR, Gudivada and

Raghavan (1995)).

Feature Representation:

In our mathematical model, features are detected algorithmically by following the steps

of medialness measure, top-hat transform and keypoint detection. The shape is then ab-

stracted by several dominant points that can be internal, concave or convex. Our feature

representation method ShIFT, deals with the representation of these keypoints as numer-

ical vectors, we refer to as feature descriptors. The designed ShIFT descriptor is able to

handle rotation, scale and affine variations. The length of the descriptor (i.e. its dimen-

sion) depends on the step-angle δ . After this step, each image is a collection of vectors of

same dimension, 2π/δ . Figure 5.7 illustrates how our bag of features approach maps to

elementary visual cues as captured by dominant points. Here, an example of sea-horse is

processed and concave, convex and internal elementary parts are shown, surrounding the

object for illustrative purpose.

Codebook Generation:

The final step of the BoW model is to convert the descriptors to “codewords” (in analogy

to words in text documents), which eventually produces a “codebook” (in analogy to a

word dictionary). A codeword can be considered as a representation of several similar

descriptors. As mentioned in section 4.3, the B+ tree is used to maintain such a dictionary

over all the vectors obtained after training the dataset.
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k-Nearest Neighbors Classifier:

K-nearest neighbors (k-NN) is a non-parametric method used for classification in pattern

recognition. In k-NN classification, the output is a class membership. An object is classi-

fied by a majority vote of its neighbors, with the object being assigned to the class most

common among its k nearest neighbors (k is typically a small positive integer). For ex-

ample, k=1, then the object is simply assigned to the class of the nearest neighbor. The

accuracy of the k-nearest neighbor (k-NN) classification depends significantly on the met-

ric used to compute distances between different examples. In this thesis, we used three

different distance metrics: Percentage Match or Precision, standard F-measure, and Rel-

ative Score for k-NN classification from an indexed database. In our approach, metrics

are trained with the goal that the k-nearest neighbors always belong to the same class

while examples from different classes are separated by a large margin. This is among the

simplest of all machine leaning algorithms and provides effective results. It can also be

useful to assign a weight to the contributions of the neighbors, so that the nearer neighbors

contribute more to the average than the more distant ones.

5.5 Performance Evaluation Methods

The most common performance evaluation method is based on precision and recall:

Precision =
tp

tp + fp
=

|(relevant results)∩ (retrieved results)|
|retrieved results|

, (5.11)

Recall =
tp

tp + fn
=

|(relevant results)∩ (retrieved results)|
|relevant results|

, (5.12)

where, tp= true positive, fp= false positive, and fn= false negative.

For each query image, the system returns a ranked sequence of images. To compare
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results and methods, an overall measure can be obtained by computing the Average Pre-

cision (AP), which is defined in the Information Retrieval literature as the average of

precision measurements evaluated at the position of each of the relevant documents in the

ranked sequences Manning et al. (2008):

AP =
∑P(r)rel(r)

Ir
, (5.13)

where r is the rank of the current image in the returned image set, N is the number of

retrieved images, rel() is a binary function on the relevance of a given rank.6 P(r) and

Ir are respectively the precision and the number of relevant images at the given cut-off

rank. Furthermore, to test the performance of the full system, the standard metric known

as Mean Average Precision (MAP) can be evaluated for a given set of queries:

MAP =
∑AP(q)

Q
, (5.14)

where Q is the number of queries in the benchmark. The system that holds the highest

MAP on a benchmark dataset is considered as the state-of-the-art in the area defined by

the benchmark.

5.6 Summary

In this chapter we described how we exploited our ShIFT descriptor to perform a spatial

matching in the form of an homography. Using information associated with the descrip-

tor, we evaluated different affine parameters and used them for the shape matching task

between a query and the target image. To identify the most relevant targets for a given

query shape, we referred to the bag-of-words model. Furthermore, we presented three

6The binary value of rel(r) is set automatically by parsing a text file which contains the ground truth for
each image: i.e., which type it corresponds to, such as a dog, a horse, etc. Thus, the AP measure is only
available given ground truth (identification) is provided.
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discrete ranking metrics, used for scoring a particular matching task. From this model

we can then pick the top N targets on which a homography is performed. We need a

parameter that can evaluate the performance of the whole system which can then be used

for comparing the performances. For this purpose we used a standard evaluation metric

Mean Average Precision (MAP). In the following chapter, we will see the behavior of our

system under these metrics.



Henry Matisse, Large Reclining Nude (The Pink Nude), 1935. @The Baltimore Museum
of Art.



Chapter 6

Results and Discussion

“My success will not depend on what A or B thinks of me. My success will be

what I make of my work.”

– Homi Jehangir Bhabha, Nuclear Physicist (1909–1966)

An attractive broad view of computer vision is that it is an inference problem: we have a

model and some measurements, and we wish to determine what caused the measurement.

In the past couple of chapters of this thesis have been dedicated for the quantitative analy-

sis of the shape via psychophysically driven medialness-based description. Furthermore,

distinct feature point sets are derived from such a description and then mapped to a feature

vector. To deal with large or overgrowing datasets, those feature vectors are converted into

affine invariant descriptors, we refer to as the Shape Invariant Feature Transform (ShIFT),

which can be used for indexing purpose. We further discuss retrieval method and homog-

raphy in detail, and each query image produced ranked results based on the ranking metric

used. Our current matching algorithm is hierarchical in its use of feature points: internal

(medial hot spots) –> external (concave tips) –> internal (convex tips), and has proven

effective even with articulated body movements (Leymarie et al. (2014b); Aparajeya and

Leymarie (2015)).
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This chapter poses object recognition as a correspondence problem – which shape

feature corresponds to which feature on which object in the trained shape dataset? This

simple view of recognition focuses on the relationship among object/shape features and

image features.

6.1 Shape Databases and Performance Evaluation

During my research program I have performed extensive experiments on different het-

erogeneous databases containing biological forms, including large animals, plants, and

insects, to verify the performance in efficiency and accuracy of the devised method.1

Now I detail the databases along with their experimental setups for the result analysis.

6.1.1 Result analysis with feature-based methods

6.1.1.1 Our (GOLD) Shape Database

Our GOLD shape database mainly consists of :

(i) animals taking a static posture and in movement (see Figure 6.1),

(ii) humans taking a static posture or in action, i.e., articulated movements (see Fig-

ure 6.2),

(iii) insects, e.g., bugs, butterflies (see Figure 6.3),

(iv) plant leaves (see Figure 6.4).

In order to verify the robustness of the designed algorithm under some random re-

scaling, rotation and translation have been performed on this collected dataset. On top of

this, a number of occlusions have been added performed through random cuts, to test the

method’s response beyond affine transforms. Furthermore, to evaluate the robustness of

1The first results on such data were presented in a paper at the 1st International Workshop on “Envi-
ronmental Multimedia Retrieval” (EMR) held in conjunction with the ACM International Conference on
Multimedia Retrieval (ICMR) in Glasgow (UK), April 1, 2014 Aparajeya and Leymarie (2014).

http://ceur-ws.org/Vol-1222/
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Figure 6.1: Samples from our GOLD database: Here animals are taking a static posture
or they are in movement.

Figure 6.2: Samples from our GOLD database: Here humans are taking a static posture
or they are in movement.
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Figure 6.3: Samples from our GOLD database: Insects.

Figure 6.4: Samples from our GOLD database: Plant Leaves.
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the algorithm, some structural noise is added, by introducing scalable random geometric

deformations, designed by performing randomised morphological set operations on the

binarised shapes/object. In this experiment, three levels of such structural perturbations:

small or less perturbed, medium and large or highly perturbed are defined, Figure 6.5. We

note that other methods relying on smooth continuous contours, such as methods based

on the use of codons or curvature scale-space, as well as many of the traditional medial-

axis methods, will have great difficulty in dealing with such deformations — which are to

be expected in noisy image captures and under varying environmental conditions such as

due to decay and erosion.2

To construct such shape database we used the standard MPEG-7 (Latecki et al. (2000);

Latecki and Lakamper (2000)), ImageCLEF-2013 (Caputo et al. (2013)) and Kimia (Brown

University’s) (Sebastian et al. (2003, 2004)) datasets. Furthermore, we also initiated our

own database where we selected different sequences of animals in motion from videos.

From these datasets, we have collected a total of 2215 samples belonging to Animals

other than insects (650 samples, including Human, Horse, Rat, Cat, Panther, Turtle, Ele-

phant, Bat, Deer, Dog, and Ray forms), Insects (410 samples, including Butterfly, Bug,

Mosquito, Ant, and other miscellaneous insect forms), and Plant leaves (1155 samples,

including Acercampestre, Aceropalus, Acerplatanoides, Acerpseudoplatanus, Acersac-

charinum, Anemonehepatica, Ficuscarica, Hederahelix, Liquidambarstyraciflua, Lirio-

dendrontulipifer, Populusalba specimens). Furthermore, to check the robustness of our

algorithm, we deformed each such sample at the previously indicated three levels of per-

turbation, thus bringing our total dataset count to 2215×4 = 8860.

We note that we are limiting the sizes of our test databases as we require segmented

binary forms (distinguishing figure from ground) to initiate our medialness transform (e.g.

ImageCLEF includes circa 5000 plant images, among which only 1155 contain clearly

2We do not claim that this way of perturbing the data is physically accurate in modeling natural decay
or erosion. Rather it provides a simple (computational) way to approximate such effects and produce
deformations which visually appear credible in modeling these.
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Figure 6.5: Three levels of (added) perturbation: I - none (originals), II - small , III -
medium and IV - large.
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distinguishable leaf forms). Also, rather than focus on one type of biological forms, say

butterflies, we decided to test and show the potential power of our approach for a number

of very different biological forms, from plant leaves, to various species of insects to larger

animals, including humans.

To check the performance of our method on this dataset, we exploited our current

ranking metric F-measure (see equation 5.6) to find the returned top-10 matches. Exam-

ples of such top-10 results can be seen in Figures 6.6, 6.7, 6.8, and 6.9.

First, in Figure 6.6 we notice the ranking follows a gradual degradation in spatial

overlays of query and target, but where the first 10 forms are all of the right type. We also

notice a graceful degradation in ranking when dealing with articulated planar movements

of a human and horse figures.

Second, in Figure 6.7 we study the use of our current matching method on plant leaf

queries and also obtain a graceful degradation in rankings with a similar behavior in spa-

tial form overlaps. We note that our feature points can be used to support a higher level

semantic description of leafs for better taxonomic characterisation (Cope et al. (2012)),

in particular by permitting to identify: the apex, main lobes, and petiole using convex hot

spots. The insertion point (where the petiole reaches the leaf) can be characterised by

a codon: pair of bounding (significant) concavities together with the intermediate main

convexity (denoting the petiole). The apex and lobes extent and relative size can be ob-

tained by finding their associated codon information (apex and lobes tips as convexities

associated with nearby concavities). If teeth at the border of a leaf are detectable, with

sufficient resolution in the input image, then we can select a related scale of analysis, i.e.

setting the annular gauge with corresponding parameters (R,ε), once the other previous

main features have been identified. It would then be of interest to study the relation be-

tween the medial hot spots and main vein layout; the current approach in the literature is

to directly process the textured input images to either segment out veins and then char-
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Figure 6.6: Top-10 results on some of the collected samples from our extended
database (containing 8860 forms): for deer, horse and humanoid forms when using our
F −measure as the basis for ranking. The leftmost image for each ranking results is the
query, while the images on the top row are the target images matched at successive rank
location from best to worst. The bottom row then shows the overlaying (in orange) of the
query on the respective target image (after transformation) and their spatial differences (in
grey). The top two series show tests for the invariance under scaling, rotation and trans-
lation. The third and fourth series show the behavior of matching using the F −measure
in the presence of articulated movements.
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Figure 6.7: Top-10 results on some of the samples from the Plant database (ImageCLEF-
2013, Caputo et al. (2013)) with shape perturbations using our F −measure as the basis
for ranking. NB: The first match is always the desired target.
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Figure 6.8: Top-10 results on some of the samples for butterfly forms from the Insect
database including structural perturbations when using our F −measure as the basis for
ranking. NB: A partial shape query (3rd series from the top) returns valid and interesting
results.
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Figure 6.9: Top-10 results on some of the samples from the Insect database including
structural perturbations when using our F −measure as the basis for ranking.
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Figure 6.10: A special query image obtained as a juxtaposition of two different insect
cuts finds a best fitting location in the target image, and results into an interesting series
of part-based matches (eventually retrieving the correct pair of individual insects (before
juxtaposition) from the DB). The top series shows as usual the top 10 matches. The bot-
tom series shows the interesting matches where the individual original insects are found
(ranked 12th and 16th (for the smaller insect) and 4th and 8th for the larger butterfly.
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acterise their networks (Park et al. (2008)) or by directly extracting approximate feature

points, e.g. using the Harris (corner) detector (Mouine et al. (2012)). By simple visual

inspection, some leafs with strong well delimited lobes and/or teeth with clear associated

convexity tips may see their dominant veins well approximated by medial hot spots; but

this is clearly not the case for many other leaf types with rather smooth outlines (Larese

et al. (2014)).

Third, in Figures 6.8, 6.9 and 6.10 we show some results with queries from insects

forms. In Figure 6.8 we study the use of our current matching method on butterfly queries

and again obtain a graceful degradation in rankings with a similar behavior in spatial form

overlaps as for leaves and mammals. Note that the 3rd series indicated in that figure is

for a butterfly with a large part cut away: we either get top retrievals for butterflies with

similar cuts or complete butterflies which represent likely completed forms (including

the correct original butterfly, before being cut, ranked no. 3). Good matches are also

found for an artificially constructed case of fusing the cut form with another smaller insect

(Figure 6.10). Figure 6.9 gives more evidence for the quality of retrieved matches on

other insect forms. Figure 6.10 illustrates a special case where we fabricated an artificial

query by merging together two different insects with large cuts to their original form. The

returned top matches are interesting as they include the original two individual insects

with varying degrees of cuts.

In these experiments, the matching algorithm always finds the best fitting shape area

for the query in the target image (Figure 6.10). For empirical analysis, we performed

two individual comparisons: (a) precision obtained on different sets of data types (Fig-

ure 6.11), and (b) precision obtained at different perturbation levels (Figure 6.12). When

the query image belongs to the original set, the retrieval rate at different ranks is very

high, while the performance significantly decreases for high levels of perturbations. Note

however that even under a large structural perturbation, a given form which may have lost
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Figure 6.11: Result analysis (precision) on the different datasets containing originals of
large animal, plant and insect images, using our proposed F −measure as the ranking
metric.
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Figure 6.12: Result analysis of the entire dataset for different levels of perturbations,
using our F −measure as the ranking metric. NB: Many of the images are also randomly
rotated, scaled and translated.
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Figure 6.13: Comparative result analysis (precision) of the entire dataset at different
ranking locations, using our shape descriptor with F −measure as the ranking metric
w.r.to SIFT (Lowe (2004)) and SURF (Bay et al. (2008)). NB: Many of the images are
also randomly rotated, scaled and translated.

some of its significant shape features (e.g. a limb) can still be matched with perceptu-

ally similar targets — as judged by a human observer and validated here as we know the

ground truth.

Figure 6.13 shows a comparative result analysis by computing precision at different

ranking locations with respect to two of the currently most popular image matching meth-

ods: SIFT (Lowe (2004)) and SURF (Bay et al. (2008)), which are proven to be good at

retrieval from large datasets as their features are indexable and hence they are scalable.

The image features used by these methods (such as edge or corner responses) prove not

particularly good on their own at capturing the shape structure. As a consequence, their

accuracy reduces drastically when there is a slight deformation, occlusion and/or pertur-

bation in the same shape. On our test database, already from the 2nd ranked match, SIFT
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and SURF both show a rapid reduction in accuracy (to circa 10%) in detecting a relevant

target shape. While, on the other hand, our shape descriptor shows a slow fall in overall

accuracy — from 85.7% at 2nd rank to 57% at 10th rank (Figure 6.13). We compare

our method with SIFT and SURF as they represent the dominant vector-based index-

ing schemes used in computer vision. These methods were however developed mainly to

deal with highly textured images rather that focusing on scenes where the shape of objects

varies mainly in their contour features. As most (if not all) shape-based methods do not

provide efficient indexing schemes, we wanted to compare ours when processing video

streams with other efficient schemes such as SIFT and SURF. In the future, we would

aim to further develop our implementations and compare to more recent object recogni-

tion schemes, such as based on advances made with Neural Networks (NN) methods, in

particular when based on Convolutional NN (or CNN) schemes applicable to image and

video data.

For each query image, the system returns a ranked sequence of images. By computing

the Average Precision (AP) we can obtain an overall measure to compare results and

methods. The obtained comparative MAP graph at different ranking locations on our

dataset is shown in Figure 6.14. MAP values for our method stay well above the 50%

mark even for 10-th place in rankings, and decrease smoothly from 100% for 1st place

rankings. The SIFT and SURF methods on the other hand show poor MAP results with

the values 11% (SIFT) and 13% (SURF) for 10th place in ranking.

6.1.1.2 Simpsons’ Video Frames Database

We have used different Simpson’s video frames to populate our second shape database,

where the Simpson family – Bart, Homer, Lisa, Maggie and Marge Simpson has a par-

ticular yellow-color and shape (Figure 6.15). Color based segmentation is used to extract

their facial shape, but in conjunction we also obtain other objects as well which have sim-
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Figure 6.14: Result analysis of the entire dataset by evaluating Mean Average Precision
(MAP) at different ranking locations, using our F −measure as the ranking metric with
SIFTLowe (2004) and SURFBay et al. (2008). NB: Many of the images are also randomly
rotated, scaled, translated and perturbed.
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Figure 6.15: Simpson’s Family Characters, from left to right: Bart Simpson, Homer
Simpson, Lisa Simpson, Maggie Simpson, and Marge Simpson. Source and Copyright:
Twentieth Century Fox Film Corporation.

ilar yellow-color. As a result, sometimes we get occluded and cluttered frames. From

the videos, we have created a ground truth of 15K video frames (each frame of size

854×480 containing Bart-22.13%, Homer-51.21%, Lisa-19.20%, Maggie-13.82%, and

Marge-28.48%). These cartoon videos have many redundant frames since the scene does

not change within few milli-seconds (or sometime couple of seconds) of frames. If a

video was recorded at 24fps and the scene is not changing for 2s then 48 frames are re-

dundant. To create fast ground truth, we have created a semi-automatic tool to label all

five characters at their respective position in different frames and provide textual as well

as visual labeling of them.

http://www.foxmovies.com/


6.1 Shape Databases and Performance Evaluation 144

(A)

(B)

Figure 6.16: (A) Bart, and (B) Lisa Simpson’s Templates
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Figure 6.17: Homer Simpson’s Templates
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(A)

(B)

Figure 6.18: (A) Maggie, and (B) Marge Simpson’s Templates
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Figure 6.19: A semi-automatic tool for tagging Simpson’s characters in the video.
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(a)

(b)

(c)

Figure 6.20: Tagging of Simpson’s character (Bart within Blue, Homer in Green, Lisa

in Cyan, Maggie in Orange, and Marge in Pink colored rectangular box) with our semi-

automatic tagging tool.
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The structure of created meta-data file has information in this template form: <

id, is, MinX , MinY, MaxX , MaxY >, where id is the character identity (0 – Bart, 1 –

Homer, 2 – Lisa, 3 – Maggie, and 4 – Marge), is holds a binary value representing

whether the character is present in the scene or not, {MinX , MinY} and {MaxX , MaxY}

are the top-left and bottom-right co-ordinates of the rectangle respectively. If a partic-

ular character is not in the scene, i.e. is = 0, then the rectangle holds the co-ordinates

{−1,−1,−1,−1}. For example, for the frames shown in Figure 6.20 (a), (b), & (c), the

respective meta-data are:

(a)

0 1 82 112 181 207

1 0 -1 -1 -1 -1

2 1 662 154 748 264

3 0 -1 -1 -1 -1

4 0 -1 -1 -1 -1

(b)

0 1 280 311 315 370

1 0 -1 -1 -1 -1

2 1 164 334 217 386

3 0 14 184 45 216

4 0 102 168 142 199
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(c)

0 1 194 201 264 245

1 0 0 86 78 165

2 1 344 220 411 245

3 0 748 248 828 329

4 0 154 99 241 129

To evaluate our method on the created dataset a set of query images are selected. In

this set, each of the five characters has 50 unique shapes related to their different facial

orientation and/or expressions, Figures 6.16(A) & (B), 6.17, and 6.18(A) & (B). Out of

this dataset, 42% belong to the dataset itself (Bart- 20%, Homer- 36%, Lisa-50%, Maggie-

56%, Marge-48%), while the rest are either part of different video frames, i.e., not inside

the training dataset of facial drawings. The task then boils down to either find those frames

where a character has a very similar shape or at-least the same character is present in the

frame.

Our retrieval process takes the advantage of the bag-of-word model (Salton and McGill

(1983); Han et al. (2011)). For a query image Q, first all three sets of features are retrieved,

and their frequency are counted on the basis of the ShIFT descriptor. For each retrieved

feature vector in query, all documents are listed from the indexed database that contains

the same feature. As a result, three sets of lists are created at the end. To rank those

documents in order, the next task is to assign them a score. Here, we use a query-driven

scoring system that aims to provide high scoring in those cases where a maximum match-

ing value is obtained. Initiating the score of documents with 0, each time when a feature

vector p in query finds a document Di with frequency k in database, the score Sp,Di,type is

incremented by:

Sp,Di,type =
min( f type

p ,k)
#Keypoints In Query Image

(6.1)
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Table 6.1: Metric types, their nature and use.

Type Equation Nature Usage

Metric 1
(Mean
Value)

SDi
I +SDi

E +SDi
C

3
When all the three
types of dominant
points have equal

importance in
defining a shape

Shape boundary is
smooth or contain
minimal boundary

noise.

Metric 2 (H.
M.)

3
∑

1
SDi

– Same – Shape Boundary is
less noisy.

Metric 3
(Weighted

Mean)

wiS
Di
I +weSDi

E +wcSDi
C

wi+we+wc

When the internal
structure is more
important than

external and concave.
Usually the order of

the weights are:
wi > we > wc.

Highly noisy shape
boundary: many false

concavity and
convexity, makes
internal structure

more reliable.

In this way, for each retrieved document, the set of scores {SDi
I , SDi

E , SDi
C } are obtained,

consecutively representing internal, concave and convex matching scores. The final score

SDi can be obtained in three different ways, based on the choice of a metric and their

usability on the dataset (Table. 6.1). Typical matching results for each character type are

shown in Figure 6.21, 6.22, 6.23, 6.24, 6.25, 6.26, 6.27, and 6.28.
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Figure 6.21: Results on our Simpson’s dataset. Left: Retrieving the frames when the

query is part of the database. Right: Retrieving the frames with closed possible shape

matching when the query is not a part of database. Due to the dataset redundancy, only

the 1st ranked result is shown.
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(a)

(b)

(c)

Figure 6.29: MAP-values at different ranking locations on Simpson’s characters for three

metrics: (a) Mean Value as Metric 1, (b) Harmonic Mean as Metric 2, and (c) Weighted

Mean as Metric 3.
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We tested the performance of our shape-descriptor (ShIFT vector) on Simpson’s video

frame sequences with three ranking metrics – (a) Mean-value, (b) Harmonic Mean, and

(c) Weighted Mean (with weights: wi=0.45, we=0.3, wc=0.25). For each of these metric,

we calculated Mean Average Precision (MAP) value at each ranking location (see Fig-

ure 6.29. Overall MAP values for each metric are: (a) Metric 1: 0.64, (b) Metric 2: 0.62,

(c) Metric 3: 0.61. This shows that when the shape has minimal boundary noise, Metric

1 outperforms over other two metrics.

For any shape, the recognition rate increases when the query images are more likely

parts of the dataset or when the dataset contains more samples. For example, the character

Lisa Simpson (orange curves in Figure 6.29) has the highest retrieval rate. On the other

hand, the retrieval rate reduces drastically when a character appearance is less frequent in

the dataset, or there is much changes in the 3D appearances in the frame sequence. This

situation is well explained with the character Maggie Simpson with the result of green

curves in Figure 6.29. Moreover, the facial shape of Maggie Simpson is very similar to

Lisa Simpson and because of this, many times it produces true-negative results.

Many frame sequences in our dataset has scaled, rotated, translated, mirror flipped

and some times changes of view points. Our shape descriptor is robust against these

transformations and produces more likely results at higher ranks. Also, it tends to find the

similar shape when the query is not a part of the dataset. This situation is well illustrated

with character Bart Simpson (blue curve in Figure 6.29).

This is not entirely conclusive as our database remains limited in size; furthermore, in

the next following experiments, we compare our method with other ones which specifi-

cally rely on explicit shape measures other that simple edges or corner loci, such as “shape

contexts” and its relatives (Belongie et al. (2002); Xie et al. (2008); Nanni et al. (2014)),

although most of these techniques typically are not adapted to deformations, articula-

tions, structural perturbations, occlusions and cuts and also most are not scalable to large
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databases.

6.1.2 Result analysis with shape-oriented approaches

6.1.2.1 MPEG-7 Shape Dataset

For our third set of experiments we tested the MPEG7 shape benchmark dataset (Latecki

et al. (2000); Latecki and Lakamper (2000)). This dataset consists of 1,400 silhouette

images from 70 2D classes including apples, bats, beetles, bells, birds, bones, bottles,

bricks, butterflies, camels, cars etc., where each class contains 20 forms. Although, this

dataset offers a possibility to compare various shape descriptors of non-rigid shapes with

a single closed contour, some classes are fairly similar and there is often complicated

appearance changes within the same class. Thus it is often hard to perfectly accomplish

the task of shape retrieval on the dataset due to its inter- and intra- class variability.

The performance is measured by the standard Bullseye test: for each shape, we match

it with all other shapes in the database and the top 40 matched shapes are considered.

The retrieval accuracy is the proportion of the 20 correct shapes in the top 40 matches.

Table 6.2 shows the reported results from different existing/recent state-of-the-art algo-

rithms on this dataset. Based on the a priori designed 70 object classes contained in the

MPEG7 dataset, the inner distance-based method as modified by Gopalan et al. (2010)

reported the best performance, followed by IDSC + LCDP method (Yang et al. (2009)),

SVS + DP Nguyen and Porikli (2013) and our method, which puts us near the top of the

state-of-the art reported, when using this particular database and this particular base test.

Most of the other shape matching algorithms (Table 6.2) are designed with respect to

robustness and accuracy. When it comes to the retrieval of target images/objects amongst

a large database of forms, say with millions of images, then almost all of these methods

show limitations due to their numerical complexity (most being O(n2)). For example,

the shape context (SC), inner distance shape context (IDSC) and their variants (which
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Table 6.2: Comparison on the MPEG7 Shape dataset, where n is the number of samples
in a dataset, articulation invariance (a), detecting concavity/convexity (c), hole handling
(h), capability for indexing (i), shape-parts detection (p), rotation invariance (r), scale
invariance (s), utilizing texture information (t), and view point invariance (v).

Algorithm A (%) O(·) Properties
Gopalan (Gopalan et al. (2010)) 93.67 n2 ac · ·pr s ·v
IDSC+LCDP (Yang et al. (2008)) 93.32 n2 · ·h · · r s ·v
SVS+DP (Nguyen and Porikli (2013)) 91.07 n2 a ·h · · r s ·v
Shape Vocab (Bai et al. (2014)) 90.41 dnlogD · c · i · r s ·v
ShIFT (our method) 89.62 n logn ac · ipr s ·v
Mix Gauss+tSL (Liu et al. (2010)) 89.1 n logn · ·hi · r s ·v
Shape-tree (Felzenszwalb and Schwartz (2007)) 87.7 n2 · ·h · · r s ·v
IDSC+DP+EMD (Ling and Okada (2007)) 86.56 n2 a ·h · · r s tv
Biswas (Biswas et al. (2010)) 86.48 n3 a · · i · r s ·v
Hierarch. Prosc. (McNeill and Vijayakumar (2006)) 86.35 n2 · ·h ·pr s ·v
IDSC+DP (Ling and Jacobs (2007)) 85.4 n2 a · · ·pr s tv
Gen. Models (Tu and Yuille (2004)) 80.03 n2 · ·h ·pr s tv
Curve Edit (Sebastian et al. (2003)) 78.14 n2 a · · · · r s ·v
SC+TPS (Belongie et al. (2002)) 76.51 n2 · · · ·pr s tv
Visual Parts (Latecki and Lakamper (2000)) 76.45 n2 · c · ·pr s ·v
CSS (Mokhtarian et al. (1997)) 75.44 n2 · · · · · r s · ·

includes the reported top 2 methods in terms of accuracy, Table 6.2) cannot be used for

practical indexing as a change in the shape boundary significantly impacts their repre-

sentation. Also, most reported methods currently rely either on clustering-based class

means or on one-to-one comparisons with other feature vectors to find an error or a score

(based on minimum difference) providing the final target. As a result, the numerical com-

plexity of such methods increases quadratically with the size of a database. Noticeably,

Biswas et al. (2010) have introduced a robust feature vector, which is a mixture of several

features (inner distance, relative angles contour distance, and center of mass) and more

importantly can be quantised for meaningful indexing. The drawback of this method is

that while retrieval has a linear time complexity, indexing scales with n3. By contrast, we

designed our feature vector ShIFT in a robust and efficient way such that it can be indexed

with a complexity of n logn using B+ trees and retrieved with complexitylogn.
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In Table 6.2, we have ordered the various shape descriptors including ours according

to their reported accuracy (2nd column, adapted from Nguyen and Porikli (2013)). Our

method shows an accuracy of 89.92% on the MPEG7 dataset, which is competitive being

currently ranked in 4th place. However, when considering the maximum indexing or

retrieval complexities our method is best (3rd column of Table 6.2).3 The method of

Liu et al. (Mix Gauss+ total Square Loss, Liu et al. (2010)) also reports a similar time

complexity, however when considering space complexity, theirs goes to n logn, while ours

is n. In terms of retrieval, almost all these methods shows a complexity of n, except

Liu et al. (2010) and ours (ShIFT) which have the better complexity logn , i.e., almost

constant with increasing dataset size. The linear complexity in retrieval for most published

methods makes it hard for these to retrieve matches from the large (and increasing in size)

datasets as they do comparisons with each form to evaluate their score. In our case,

the quantization property of our feature vector provides for an easy indexing and the

retrieval is logarithmic (sub-linear) which outperforms most currently published shape-

based methods, to the best of our knowledge.

In the fourth column in Table 6.2 we summarise via nine properties how the various

shape-based methods can be further compared, in terms of: articulation invariance (a), de-

tecting concavity/convexity (c), hole handling (h), capability for indexing (i), shape-parts

detection (p), rotation invariance (r), scale invariance (s), utilizing texture information (t),

and view point invariance (v) related to a shape. Our current version of the ShIFT algo-

rithm possesses all properties except that of explicitly handling holes and utilizing texture

features.

We have noted that our algorithm produces slightly poorer results in those cases where

a shape has holes (for example, such as some cattle, dog, horse-shoe specimens, Fig-

ure 6.30). For these cases, we miss internal dominant points due to the presence of holes.

3We are evaluating the worst complexity amongst indexing or retrieval. The methods which uses clus-
tering get a quadratic complexity to find a centroid. The methods which use kd-trees as their feature repre-
sentation get a complexity of n logn.
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(a)

(b)

(c)

Figure 6.30: Some MPEG7 classes: (a) cattle, (b) dogs, and (c) horse-shoes that contain
holes in different samples.

But still, we are able to retrieve other internal dominant points in those regions where the

shape is unchanged, i.e. without holes, which provide us with correct affine parameters.

However, we also tend to get more concave and convex dominant points (then for a simi-

lar form without holes), which tends to lower the final matching score. As a consequence

of our built-in bias in our scoring function (Equation 5.6), the relevant target shape with

holes might get pushed down in the ranking, while another less relevant target sample but

with more internal dominant point matches may get a too high relative ranking.

Alike Nasreddine et al. (2010), we report here that the MPEG7 dataset has visually

dissimilar samples in the same class (Figure 6.31) and also different classes have similar

samples in their shape (Figure 6.33). Examples of such situations are shown in Fig-

ure 6.32, where we report our top 10 matches (e.g. a disc is matching with apples and

squares with top hats). In these cases, the medialness field is very similar and as a result

produce similar dominant points and create (perhaps) class confusion. Consequently, we

have noticed that some classes could be broken into separate smaller classes as, arguably,
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(a)

(b)

(c)

Figure 6.31: Some MPEG7 classes: (a) Devices 2, (b) Devices 6, and (c) Devices 9,
which contain perceptually (and arguably) different samples (intra-class difference) but
were put together in one class.

from a perceptual point of view, they indicate different types of objects (Figure 6.31). For

example, samples which belong to the MPEG7 classes device0-device9 should be further

segmented in sub-classes as they highlight sufficiently different shape characteristics. Our

ShIFT method does highlight such (perhaps more subtle) differences which we argue are

perceptually significant; on such a refined set of classes and sub-classes we expect our

method would then outperform as well the other current top (3) methods in terms of ac-

curacy, as these do not highlight shape features such as tapering, necks or concavities.
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(a)

(b)

Figure 6.32: Top-10 results along with their medialness. All the shapes are visually

similar but they are put in different classes.

Figure 6.33: Examples of shapes issued from different classes but arguably highly similar.

Bottom row shows their medialness which again reflects high similarity.

6.1.2.2 Swedish Leaf Dataset

Figure 6.34: Swedish Leaf Dataset: one sample per class. Note that some classes are

quite similar, e.g., the first, third and ninth classes.
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Table 6.3: Comparison on Swedish-Leaf dataset.

Algorithm Accuracy (%)
BCF (Wang et al. (2014)) 96.56±0.67
Shape-Tree (Felzenszwalb and Schwartz (2007)) 96.28
IDSC+DP (Ling and Jacobs (2005)) 94.13
Our method 90.80
Spatial PACT (Wu and Rehg (2011)) 90.77
Fourier descriptors (Ling and Jacobs (2005)) 89.60
SC+DP (Ling and Jacobs (2005)) 88.12
Soderkvist (Söderkvist (2001)) 82.40

Our fourth and final set of experiments is tested on the standard Swedish leaf dataset that

comes from a leaf classification project at Linkoping University and the Swedish Museum

of Natural History (Söderkvist (2001)). This consists of the isolated images belonging to

15 classes of Swedish leaves, with 75 samples per class (Figure. 6.34). Alike the MPEG-7

dataset, this dataset is challenging because of its high inter-class similarity (Serra (1983);

Vincent (1993)). For example classes 1, 3 and 9 show similar outline structure. The

first 25 images from each class are used for training and the rest for testing. We used

the (mathematical morphology) watershed algorithm to segment and find contours of the

images. As the training, we first extract our feature points out of the selected training

samples and then index them using B+ trees. The extracted features from the test cases are

then matched with this indexed database and ranked according to the score in equation 5.6.

We use a k-nearest neighbor (kNN) classifier (with k=3) for the test cases and obtained an

overall accuracy of 90.80% which is tabulated along with other recent methods in table

6.3 (we are reporting only those methods that are using contours/shapes).

Table 6.4 shows the class confusion matrix that we obtained through our method.

Letters in green-bold face represents those where we get an accuracy greater than 95%

while red ones represent those cases where we get an accuracy less than 80%. This matrix

clearly shows that for the classes 1, 3 and 9 our method is more confused with lower

accuracy in classification results. Utilization of other features such as venation patterns,
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Table 6.4: Confusion Matrix on Swedish-Leaf dataset.

texture and color can further increase the accuracy of our system. Also variations in the

length of our feature vector should help make the method more accurate. Finally, notice

that, to the best of our knowledge, other published methods do not scale well with the size

of a database, while ours do (O(logn)).

6.2 Summary

In this chapter we have shown the evaluation of our framework with our designed shape

database, the Simpson’s family video frame database and other standard shape and leaf

databases. Our ShIFT feature is robust under partial occlusion, invariant towards affine

changes and also capable in matching the object when the pose is changed. ShIFT out-

performs SIFT and SURF when detecting objects (with defined shapes) in both binary as

well colored images since SIFT and SURF fail to provide the explicit shape description.

A slight change in the shape leads to false feature matching and hence retrieval quality
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reduces drastically. The detailed evaluation on the MPEG7 and Swedish Leaf benchmark

dataset shows that we are very close to the top of the published state-of-the-art algorithms

(as measured by accuracy). But, we also emphasise that when taking into account the

capacity to scale to larger databases, we then outperform other methods as our retrieval

time is O(log n). In the future we shall augment our approach by considering in addition

a representation of venation patterns.



Pablo Picasso, Les Demoiselles d’Avignon/The Brothel on Avignon Street, 1907. @Mu-
seum of Modern Art, New York City.



Chapter 7

Conclusion and Future Work

“Every child is an artist. The problem is how to remain an artist once he

grows up.”

– Pablo Ruiz y Picasso, Painter (1881–1973)

This chapter summarises the main contributions of the thesis and draws important con-

clusions. Mainly, the goals of this work have been to:

1. provide the novel generic definition for shape that is derived from human perception

(vision psychology, where early neural layers in the visual cortex (such as V1 and

V2) are likely responsible for shape detection, Hatori and Sakai (2014));

2. formulate a computational model for this given definition;

3. propose an algorithmic chain to extract the shape features, which is invariant to

affine transforms;

4. facilitate search in a large image dataset by exploiting the indexing property of the

designed ShIFT feature vectors;

5. find the best possible match (homography) amongst the query and the target shape.
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7.1 Conclusion

This thesis is about providing a generic computational model to define any 2D shape,

which is motivated and adapted from the cognitive science literature when studying the

visual attention of human subjects presented with articulated biological 2D forms, possi-

bly in movement. Medialness is shown to have deep roots in perception and cognition.

Our main goal has been in developing a computational framework on the basis of the

models proposed by Kovács et al. (1998) (medial-point representation) and Richards and

Hoffman (1985) (contour codons), themselves inspired by early works such as that of

Attneave (1954). We have combined these two representations, i.e., region and contours.

The representation describes shapes by a small number of dominant points that are impor-

tant not only in terms of representing significant portions of the boundary segments, but

also in terms of the spatial configuration of those segments. Recent studies in perception

and cognition shows that contour extrema are better thought of as combining significant

curvature peaks with regional support De Winter and Wagemans (2008), rather than refer-

ring to the traditional mathematical definitions biased towards a purely local (point-based)

concept and analysis (such as derived from calculus). This property makes it attractive

from the point of view of real perceptual tasks such as biological locomotion, articulation,

and feature based shape retrieval from big datasets. An important aspect of the medial-

ness representation is that it reduces the redundant information present in an image, and

a small set of resulting dominant points convey information about the larger, extended

objects.

The strengths of our approach include:

1. emphasizing a representation of 2D shapes based on results from studies on human

perception via robust medialness analysis;

2. introducing an algorithmic chain providing an implementation of this shape analysis
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tested on current reference 2D binary animal and plant databases;

3. mapping of the whole form into a small number of dominant feature points with

associated shape significance (in terms of medialness, concavity, convexity);

4. converting these dominant feature points into affine invariant descriptors, ShIFT,

used for indexing and fast retrieval purpose;

5. achieving accuracy for top ranked matches (exactness) and with nice (observable)

degradation properties for following highest ranking results;

6. testing and demonstrating robustness under some levels of articulation and other

structural (noise, cuts) perturbations. Our method also shows promising results for

part-based matching tasks, in the context of occlusions, cuts and mixed object parts.

The shape representation we have proposed to explore for the purpose of Information

Retrieval (on objects present in images) is well rooted in established results from human

visual perception (Richards and Hoffman (1985); Kovács et al. (1998); Kovács (2010);

Layton et al. (2014)) and it also relates to the art of drawing and animation (Leymarie

et al. (2014b)). We are the first to propose and explore a possible algorithmic chain which

implements the intuitive notion of “hot spots” first indicated by Kovács et al. (Kovács

et al. (1998); Kovács (2010)).We have refined and extended this notion in a number of

ways: (i) we have introduced orientation to the boundary in the computation of medi-

alness (metric D∗
ε , equations 3.5 & 3.6) which reduces the effect of nearby extraneous

contours (halo effect); (ii) we have proposed an adaptive scheme to automatically set

the tolerance, or annulus width, in a logarithmic relation to an increasing disc minimum

radius R(p) (equation 3.10); (iii) we have extended the computation of medialness as pro-

posed by Kovács et al. (1998) to regions exterior to an object, in particular to characterise

significant concavities; (iv) we have added to the notion of “hot spots” of Kovács et al.

(1998) significant concave and convex points at the tip ends of ridges of medialness; and
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(v) on the basis of this representation we have introduced here a Shape Invariant Feature

Transform (or ShIFT) which is made of two parts: the medialness feature vector and the

quantized feature vector useful for indexing in large databases and for rapid (sub-linear)

retrieval. The matching algorithm we have proposed represents a first step in exploiting

this shape representation for its application in Information Retrieval problems for objects

in images.

We emphasise that our motivation is inter-disciplinary: we aim at being able to ad-

dress semantic gaps and mimic human pattern recognition performance, and this explains

our exploitation of results from cognitive science in order to design a notion of feature

points which relate explicitly emerging models of the human perception of shape. The

original perceptual model of medialness proposed by Kovács et al. (1998) was studied in

the context of the articulated movement of biological forms (such as a running animal).

Our results presented in this communication confirm the potential of this method when

applied to the Information Retrieval problem in dealing with static scenarios when ac-

cessing snapshots of either animals or plants or cartoon characters, and is proving also

powerful for image sequences of articulated movement of animals.

7.2 Potential Future Threads

There are several ways further research could go, but there are also a variety of obvious

extensions to the existing framework we have presented in this thesis. Subsequently I

discuss them organised by topics: Movement Computing with Locomotion and Articu-

lation, Gesture recognition for human-robot interaction, Understanding artistic images,

Shape compression and reconstruction, Psychophysical investigation for illusory images,

and Medialness-based 3D object description and recognition.
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7.2.1 Movement Computing

By movement computing we understand a developing discipline which aims at providing

computational schemes to automatically annotate movement and be capable of producing

meaningful qualitative dynamics descriptions, including the inherent quality of a move-

ment, its phrasing, embodiment and motivation, which are integral and should be included

as parameters (Chi et al. (2000); Lehoux (2013)). Figure 7.1 shows a snapshot of video

sequence of an artist performing on stage, where each shot reflects a different dance pose.

Figure 7.1: Video sequences of a dance pose of an artist performing on stage. Artist: Dr.

Vesna Petresin.

The earliest known attempts to annotate movement were in dance and date from the

15th century (Guest (1998)), but the first true annotator of movement to include a strong

qualitative element was Rudolf Laban who created a Labanotation in the first half of the

20th Century, based on the idea of harmonic movement (Foster (1986), p.77). The ani-

mator has no problem communicating and an animated version could include full body

movement and motivation. It has been pointed out by Bishko (1993) that there is some

similarity between Labanotation and the Principles of Animation in expressing the func-

tional aspects of movement. While animation principles permit to impose a specific style
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of movement (such as in cartoons) they lack the depth and richness of Labanotation in

exposing not only functional aspects of movement but their detailed expression (Bishko

(2007); MacGillivray (2014)).

One important tool used in animation for controlling qualia which offers the potential

for implementation is the idea of a central line of deformation being key to our assimila-

tion of full body movement. The Line of Action (LoA) is a single line running through the

character, which represents the overall force and direction of each drawing. In traditional

celluloid animation such as used by early Disney full-length features like Snow White,

before drawing the full character, an animator would frequently draw in a LoA to help

determine the position of the character. By simply changing the LoA – making it more

curved, sloped or arched in a different direction – the entire essence of the drawing can be

changed. Bregler et al. (2002) have investigated capturing such a contour (the LoA) as the

source of the motion and re-targeting it to other characters in other media. Although there

is not enough information in this contour to solve for more complex motion, such as how

the legs move relative to each other, the investigators discovered that a surprising amount

of information comes from this single curve: the essence of the motion is still present in

the re-targeted output. A more recent application of the LoA to 3D character interactive

animation is being explored at the INRIA in France by Guay et al. (2013).

Our medialness map and extracted dominant points can be seen as a potential psy-

chophysically motivated support for the LoA, where the later is a simplification of a

full medial trace. Our pseudo-distance function, D∗
ε , which captures medial symmetries

within a pair of disks defining an annulus region, where “ε” denotes the parametric thick-

ness of the annulus. Under this metric, the special nodes of the skeletal field are those,

which locally maximise the amount of outline trace they capture: they are “the most in-

formative points along the medial-axis” of an object in motion.1 Such a compact medial

1Our earlier works in this direction were presented in a paper at the ACM International Workshop on
Movement and Computing (MOCO, Leymarie et al. (2014b))
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representation shares strong resemblance to the chronophotographs of Marey (circa 1880)

and to G. Johansson’s work (circa 1970) on the perception of biological motion for point-

light walker displays (Kovács (2010)). Our medialness function D∗
ε can be computed for

each frame of a video sequence, when applied directly to available outlines. “The max-

ima of the function are good candidates as primitives for biological motion computations”

(Kovács et al. (1998); Kovács (2010)). Such a representation of bodies in movement by a

graph connecting nodes of high (visual) interest is a potentially richer model than the sin-

gle LoA used in (cartoon) animation. It also offers an explicit markerless computational

model and relates to human perception.
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7.2.1.1 Locomotion and Articulation

Figure 7.2: Original Image: An articulated set of 16 frames of Vitruvian men (after L. da

Vinci, 1490).

Eadweard Muybridge (1830-1904), known as “the father of motion pictures”, pioneered

the application of photography to the study of human and animal locomotion (Muybridge

(1887, 1901, 1957, 1984)). During 1884-1887, he took photo sequences and then pro-

jected them onto a screen with a device he called a zoopraxiscope resulting in the world’s

first illusion of moving pictures (Muybridge (1887)). While visiting the University of
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Figure 7.3: Dominant Points Image: 16 samples from an articulated set of Vitruvian men
(after L. da Vinci, 1490) illustrating some features of our perception-based selection of
dominant points.
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Figure 7.4: 1st Row: Muybridge’s original sequential set of frames of the movement of a
running cat (Muybridge (1887, 1957)). 2nd Row: Interior medialness map, D+

ε -function.
The maxima (white spots) of the function are good candidates as primitives for biological
motion representation. 3rd Row: Illustration of the changes in feature points loci for the
same running cat.

Pennsylvania, Muybridge photographed many men and women along with four-legged

animals. He found that whenever they ran, they lifted all their legs off the ground at once,

even two-legged humans did. That complete lack of contact with the ground, in fact, came

to define the act of running. Muybridge’s photographs also revealed other rules. When

four-legged animals walk rather than run, their feet usually hit the ground in the same

pattern: hind left, front left, hind right, front right.

Anatomically, an animal’s articulated movement is dependent on the point of connec-

tion between two bones or elements of a skeleton. Our results show that the concave

points (representative exterior dominant points) have good potential to indicate and trace

such articulations, unless the shape is highly deformed. For usual movements (e.g. walk-

ing, jogging, gesticulating), these feature points remain present most of the time and are

identifiable in association to an underlying bone junction and hence can provide a practi-

cal signature for it; examples of this property are given in Figures 7.2 & 7.3.

Our work also directly relates to the early findings of Marey (1883), a French med-

ical doctor and engineer: “In the method of photographic analysis the two elements of
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Figure 7.5: 1st Row: Original sequential set of frames of the movement of a running
athlete, captured by E. Muybridge in 1887 (Muybridge (1887, 1901, 1984)). 2nd Row:
Illustration of the changes in feature points loci for the same running human.

Figure 7.6: 1st Row: Sequential set of frames of the trotting horse, captured by E. Muy-
bridge in 1887 (Muybridge (1887, 1957)). When four-legged animals walk rather than
run, their feet usually hit the ground in the same pattern: hind left (LH), front left (LF),
hind right (RH), front right (RF). 2nd Row: Illustration of the changes in feature points
loci for the same running horse.
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Figure 7.7: A running cat captured in 6 different frames (from Muybridge (1887, 1957)).
Different dominant points (internal dominant, external dominant and convex points) are
shown using colours to indicate their persistence in time: Red: present in all frames;
Green: highly frequent (4-5 times); Blue: less frequent (2-3 times), and Yellow: not
consistent (single occurrence). NB: Due to the animal’s movement, sometimes dominant
points overlap each other.

movement, time and space, cannot both be estimated in a perfect manner. Knowledge

of the positions the body occupies in space presumes that complete and distinct images

are processed; yet to have such images, a relatively long temporal interval must be had

between two successive photographs. But if it is the notion of time one desires to bring to

perfection, the only way of doing is to greatly augment the frequency of images, and this

forces each of them to be reduced to lines.”2 Ours can be seen as providing a marker-less

approximation to solve the inherent problem of capturing space and time information in

one notation from an analysis based on photographic snapshot sequences or video (Fig-

ures 7.4, 7.6 and 7.5). In future work, the full potential of this representation should

be explored; e.g., in Figure 7.7 we track our feature point set over a frame sequence to

highlight their dynamics (here persistence in time).

2Marey (1883) was able to read the successive postures of the body on his plates, and follow the impor-
tant trajectory of motion of those selected points, which he considered the most informative points.
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7.2.2 Gesture Recognition for Human-Robot Interaction

We consider the 2D shape representation and its associated gesture characterisation prob-

lems in computer vision and robotics. To perform a gesture identification task efficiently

(ultimately classification, recognition, learning), our point-based medialness shape de-

scriptor can robustly capture the important structural information related to a deforming

and moving form, in particular, in the context of humans and robots performing gestures-

driven tasks. This work is part of a larger project on human perception and computer

vision applied to artistic creativity and how it can impact social robotics, in developing

new modes of communication and collaboration between robots and humans (Tresset and

Leymarie (2012); Tresset and Fol Leymarie (2013)).

As we indicated previously, articulated movement is dependent on the point of con-

nection between two bone elements of a skeleton. For usual movements, gesticulating,

these feature points remain present and identifiable in association to an underlying bone

junction and hence can provide a practical signature for it; examples of this property are

given in Figure 7.9. Next we consider a study we conducted in collaboration with graffiti

artist Daniel Berio.

The practice of writing graffiti tags is usually assimilated through years of observation

and practice. With experience gestures are learned and embodied to the point of becoming

“second nature” to the writer, leading to a drawing process that is performed almost auto-

matically. With experience the hand will draw more efficient lines, which will ultimately

result in more harmonious curves and evoke a strong sense of dynamism in the tag (Berio

and Leymarie (2015)). Berio and Leymarie (2015) have observed that the stroke gestures

used when writing tags assume an asymmetric ‘bell’ shaped velocity curve.
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Figure 7.8: 1st row: Left: Original shot of an open hand gesture; Right: corresponding
segmented and binarised (figure-ground) image. 2nd row: Left: Classical internal medial-
axis approximation; Right: external medialaxis; 3rd row: Left: 2D shock graph; Right:
interior medialness map; 4th row: Left: recovered concave (blue dots) and convex (red
dots) points; Right: final dominant point set (where interior medial points are in green)
obtained via our method.
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Figure 7.9: Some examples of tracking three gestures of a hand and (bottow row) of the
artist performing a graffiti tracing.

Figure 7.10: Illustration of the artist performing a graffiti tag and its transfer to a plotter.

Graffiti artist: Daniel Berio.

In order to recognise strokes and their associated gestures, we need to develop a con-

cise yet robust representation, which is adequate for computer vision methods. This can

inform both an analysis of the human performance and drive a robotic platform to repro-

duce or learn by example how to create a similar artistic piece (Figures 7.10 & 7.11).
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Figure 7.11: An early-stage experiment on gesture transfer from a graffiti artist to the
pen-plotter using the medialness approach. Here, artist’s frame is overlaid on plotter’s
frame, where plotter follows the dominant point of palm. Graffiti artist: Daniel Berio.
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We have presented early results in applying our proposed point-based medialness rep-

resentation to support marker-less gesture recognition from image sequences (Leymarie

et al. (2014a)). In Figure 7.10, we illustrate our current work on tracking over time persis-

tent dominant points in order to identify useful waypoints which can then be fed into our

robotic platforms under the Sigma Lognormal Model (SLM) of Plamondon et al. (2013)

to generate gesture traces alike those performed by the human artist. The early graffiti

writing robots were simple Cartesian platforms. As a future work, experiments with ar-

ticulated arms as well as with visual feedback can be planned.

7.2.3 Understanding Artistic Images

In this section, we explore the application of medialness as a representation substrate for

a class of works of visual art. Here, we show an early study, which is only meant as

an entry into the subject and thus clearly not exhaustive. We apply our framework the

painting on two important 20th century artists, Picasso and Matisse, who exploited the

power of line drawing and simplet object representations in conveying finished art works.

While we apply our model on those images, we propose that such detailed analysis can be

made more explicit in the form of our medialness representation and extracted dominant

points.3

Figure 7.12 shows the application of our framework on the famous “Les Demoiselles

d’Avignon” painting by Pablo Picasso, where we show: (a) the five female figures in

the piece, (b) which we refer to by numerals 1, 2, 3, 4, 5 from left to right (from the

observer’s vantage point), (c) the computed medialness field in between the bounding

canvas rectangular limits and the regions exterior to the female figures;4 (d) the exterior

medialness field for the bottom-right figure; (e) the medialness field for the interior of all

3Our earlier works in this direction is recently accepted in the journal of Art and Perception, titled:
“Medialness and the Perception of Visual Art”

4The roles of exterior and interior regions can be interchanged, e.g. if the focus is on the “negative
spaces” (such as in architecture Leymarie and Kimia (2008)).
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(a) (b)

(c) (d)

(e) (f)

Figure 7.12: (a) Les Demoiselles d’Avignon, 1907, Pablo Picasso (as a grey level photo).
(b) Approximate segmentation (using skin colors from the original). (c) Exterior medial-
ness field. (d) Exterior medialness for female 4. (e) Interior medialness fields. (f) Feature
points retrieved for the five demoiselles (vis.#1).
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five female figures; and (f) the result of our recovery of the three types of feature points

based on medialness (a visualisation we refer to as “vis.#1”).

In Leymarie and Aparajeya (2016), we propose that such feature points and their

underlying medialness map can be further used to perform more careful studies of the art-

works comprised of different objects, for example Les Demoiselles. We also approximate

ridge following on the medialness field (thick varying green paths) to link the various

feature points. In this visualisation (we refer to as “vis.#2”), we show significant convex-

ities with red arrows (single headed) and significant concavities with blue arrows (double

headed); the orientation of these arrows corresponds to the direction of the associated end

of ridges of medialness. We note that our choices of parameters and thresholds remain

purely experimental and can only be used with care as a more in depth study over se-

ries of works will be required to provide perhaps some systematic methods of parameter

selection.

Figure 7.13 illustrates a series of three Picasso drawings from the 1940’s, mainly

centered around the female form (originals can be found in the 1950 book by Bouret

and Picasso (1950)) which is further cleaned-up by Koenderink et al. (2012) for their

extensive study on cartoon-style line drawings. Their result produced distinct analyses of

these drawings, where they were particularly interested in capturing the 3D percepts that

human observes report. One of their analyses can be seen in this figure, which is based on

boundary fitting of drawn stroke. Further analyses of curvature and pairing with boundary

fitting indicates strong medial-axes type cues and associated circular primitives, such as

for the buttocks of the female bodies. Our medialness framework not only produces very

similar results but also provides much finer detailed analyses, as we compute medialness

for a larger set of line traces (we do not require carefully drawn strokes). Our medialness

can be computed from partial data, points or line segments. In these drawings, the long

linear structures of the arms is made explicit by the ridges of medialness; important body
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Figure 7.13: Top row: Three 1940’s Picasso drawings of the female form (adapted from
Koenderink et al. (2012)). Bottom row: Contour-based analysis highlighting certain pair-
ings (resulting in medial axis segments) and important circles of curvature (convexities)
and external concavities (shown as darken small disks, where the size reflects the signifi-
cance of the concavity, while the shade/color reflects the type); adapted from Koenderink
et al. (2012), Figure 20 — originals in color.
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Figure 7.14: Women Drawn Series processed; top row: vis.#1, middle and bottom rows:
vis.#2 with and without heads and details.
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parts, e.g. buttocks, bulging knees, breasts, are well captured as hot spots with associated

medial disks, Figure 7.14.

Figure 7.15: Matisse: Women Cut-Outs Series. 1952. Our medialness analysis is shown,

superimposed (vis.#1).

Another example, as shown in Figure 7.15, presents some works by Henri Matisse

(another important artist of the 20th century) along with our dominant points represented

in different colors. In this figure, we have two examples of the famous series of blue cuts

in which Matisse explored the female form.

In essence, another extension of the thesis could be in the field of visual art and per-

ception. As a future step, more careful studies are needed to specify useful parametric

ranges, useful visualisation modes, and have artists, art historians, and other specialists

use and comment on the framework when seen as a toolbox for exploring the works of
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other artists or of one’s own art.

7.2.4 Other Potential Domains/Applications

The generic nature of our framework opens many opportunities where the system can be

applied. Apart from the above mentioned extensions and future works, the framework can

also be extended to the following applications: Shape compression and reconstruction,

Psychophysics, and 3D.

7.2.4.1 Shape Compression and Reconstruction

Figure 7.16: Top row: An artistic way to draw animal forms, here of a playful cat (Artist:

Mr. Kelvin Chow). Middle row: Our proposed shape representation in terms of dominant

medial (in green) and contour (convex (red) and concave (blue)) points. Bottom row: A

possible set of contour reconstructions of the moving cat using our proposed point-based

medialness representation.
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Compression is usually considered part of signal (image) processing, where it is defined

as minimizing the size in bytes of a (graphics) file without degrading the quality of the

original data to an unacceptable level. The reduction in file size allows more data to be

stored in a given amount of disk or memory space. It also reduces the time required for it

to be sent over the Internet or downloaded from Web pages.

In the current context, our focus is mainly on the 2D shapes in the given image, which

we represent as the point-based medialness field followed by dominant points extraction.

Each of these dominant points hold the minimum radial distance along with the 2D Carte-

sian location and medailness information. A given shape can be compressed to these few

number of dominating feature points with associated information. Our early prototype

shows a naive reverse-engineering applied on different pose of cat-builds, where the ap-

proximate (currently lossy) reconstruction has been shown in Figure 7.16. Here, we join

two circles (two radii of neighbouring internal dominant points) by drawing tangents. We

implemented a heuristic that joins internal-internal, concave-internal, concave-concave,

convex-internal, convex-concave, and convex-concave points that are in neighbours. As a

future work, more careful studies are needed to achieve lossless and accurate reconstruc-

tion of the shape.

7.2.4.2 Psychophysical Investigation for Illusory Images

One of the classic problem in vision psychology is to model the perception of illusory

contours (ICs) that reproduces the human response. ICs constitute ’simple’ stimuli for

the investigation of vision (Figure 7.17). They have attracted considerable attention in

the past for a number of reasons. First, ICs provide access to mental operations that link

sensation and perception by generating experiences in the absence of physically present

information. Second, ICs can be used to understand binding mechanisms and their per-

ceptual consequences, particularly because IC stimuli can be readily used in experiments
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Figure 7.17: Examples of illusory contours. Top-Left: Kanizsa Triangle; Top-Right:
Kanizsa Triangle Squeezed; Bottom-Left: Kanizsa Rectangle; and Bottom-Right: Kanizsa
Square.

across artificial vision (Nieder (2002); Murray and Herrmann (2013)).

We perform our medialness measure on various ICs images. For example, Figure

7.18 is our medialness measure over the ICs shapes in Figure 7.17. Figure 7.19 shows an

example of a normal triangle and a Kanizsa triangle. While looking at the middle of figure,

one can easily observe that the Kanizsa’s medialness representation reflects the normal

triangle’s medialness representation along with additional medialness line extending to

infinity (corresponding to gaps int he triangle contour). Moreover, in the bottom part
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Figure 7.18: Our medialness field on illusory contour images on (a) Kanisza triangle, (b)
squeezed Kanisza triangle, (c) Kanisza rectangle, and (d) Kanisza Square.

of the figure, all three convexities as well as the circumcentre is retained. As a future

work, this part needs further thoughtful study to establish the connection of medialness

and ShIFT features with the ICs perceived shapes.



7.2 Potential Future Threads 198

Figure 7.19: Our medialness field on illusory contour images. Left: Moving from top-

to-bottom, the column shows a simple triangle, its medialness field and dominant points

(green – internal dominant points with yellow circles indicating their minimal radial dis-

tances, and red – convex points. The similar representation had been shown on Right, but

here the input is a Kanisza triangle.
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7.2.4.3 Medialness-based 3D object description and recognition

It would be worth the effort to investigate how such perception driven 2D shape definition

and recognition could be extended to work with 3D object models. There might be many

ways to address this problem and here we can think of two obvious ones: (i) converting

our 2D annulus into some 3D structuring element and finding medialness in the 3D space;

or (ii) converting the 3D object into several 2D views and combining them via some

heuristics (Yasseen et al. (2015)).



Henry Matisse, Dance, 1910. @The Hermitage, St. Petersburg.
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Top Hat Transform

Figure B.1: Curvature function kσ (s) as the sum of two functions: k+(s), and k−(s),

adopted from Leymarie and Levine (1988).

Mathematical morphology applied to functions such as f = kσ (s) provides us with useful

tools for the extraction of primitives or dominant shapes found in such functions. Two

dual key operations are erosion and dilation. For a signal (or image), erosion (⊖) is a

shrinking operation while dilation (⊕) is an expanding operation. These operations are
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performed locally by observing the structure of the neighborhood at point of the function.

(a)

(b)

Figure B.2: (a) Top-hat transform of the input signal (curvature function kσ (s)), and

(b) Bottom-hat transform of the input signal (curvature function kσ (s)), adopted from

Leymarie and Levine (1988).

Combinations of dilation and erosion forms two set of complementary morphological

operations: closing and opening. Opening is defined as the dilation of an eroded function,

i.e., dilation followed by erosion, while Closing is the erosion of the dilated function,

i.e., erosion followed by dilation. For an input binary image f and structuring element s,
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closing ( f • s) and opening ( f ◦ s) operation are mathematically denoted as:

f • s = ( f ⊕ s)⊖ s (B.1)

f ◦ s = ( f ⊖ s)⊕ s (B.2)

Opening removes convexities or bumps of increasing size with the use of different

sized structuring elements. Closing, on the other hand, is used to fill-in concavities or

holes in the input signal.

Openings and closings can be used to derive useful image operations. Using the dif-

ference between original signal, significant informations can be extracted from the signal.

Top-hat transform is another morphological operation that is used for extracting small

or narrow, bright or dark features in an image. It is useful when variations in the back-

ground mean that this cannot be achieved by a simple threshold. Top-hat transform has

two types: White top-hat (or simply top-hat) transform (Figure B.2(a)), and black top-hat

(or bottom-hat) transform (Figure B.2(b)). White top-hat transform Tw( f ) is defined as

the difference between the input signal and its opening by a structuring element, while

black top-hat or bottom-hat transform Tb( f ) as he difference between the closing and the

input image. Mathematically:

Tw( f ) = f − f ◦ s (B.3)

Tb( f ) = f • s− f (B.4)
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B+ Tree: A Dynamic Index Structure

Figure C.1: Structure of a B+ Tree

The B+ tree is a dynamic structure that is used for database indexing purpose. It adjusts

well to changes and supports both equality and range queries. The static structure like

“indexed sequential access method” (ISAM) suffers from the problem that long overflow

chains can develop as the database size grows, resulting in poor performance. The B+ tree

search structure overcomes this problem by allowing more flexible, dynamic structures

that adjust gracefully to inserts and deletes. The tree structure is balanced in which the

internal nodes direct the search and the leaf nodes contain the data entries. Since the

tree structure grows and shrinks dynamically, it is not feasible to allocate the leaf entries
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sequentially as in ISAM, where the set of primary leaf entries was static. In order to

retrieve all leaf entries efficiently, it is required to link them using pointers. By organizing

them into a doubly linked list, we can easily traverse the sequence of leaf entries (called

also as the sequence set) in either direction. This structure is illustrated in Figure C.1.

Following are some of the main characteristics of a B+ tree:

1. Insert and delete operations on the tree keep it balanced.

2. A minimum occupancy of 50% is guaranteed for each node except the root if the

deletion algorithm is implemented. However, deletion is often implemented by sim-

ply locating the data entry and removing it, without adjusting the tree as needed to

guarantee the 50% occupancy, because database typically grow rather than shrink.

3. Searching for a particular value requires just a traversal from the root to the appro-

priate leaf. The length of a path from the root to a leaf (any leaf, because the tree is

balanced) is referred as the height of the tree.

Let us assume that every node (except the root node) in the B+ tree contains m entries,

where d ≤m≤ 2d. Here the parameter d is called the order of the tree, which is a measure

of the capacity of a tree node. The root node is only the exception to this requirement on

the number of entries; for the root it is simply 1 ≤ m ≤ 2d. For the space overhead of

storing the index entries, we obtain all the advantages of a sorted entry plus efficient

insertion and deletion algorithms. B+ tree typically maintain 67% space occupancy.
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Format of a Node

Figure C.2: A node structure of the B+ Tree.

Format of the B+ tree has been shown in Figure C.2. Non-leaf nodes with m index entries

contain m+1 pointers to children. Pointer Pi points to a subtree in which all key values K

are such that Ki ≤ K < Ki+1. As special cases, P0 points to a tree in which all key values

are less than K1, and Pm points to a tree in which all key values are greater than or equal

to Km. Regardless of the alternative chosen for leaf entries, the leaf pages are chained

together in a doubly linked list. Thus, the leaves form a sequence, which can be used to

answer range queries efficiently.

Search

The search algorithm finds the leaf node in which a given data entry belongs. Pseudocode

of the algorithm is given in AlgorithmC.1.

Insert

The algorithm for insertion takes an entry, finds the lead node where it belongs, and

inserts it there. Pseudocode for the B+ tree insertion algorithm is given in AlgorithmC.2.
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Algorithm C.1 Algorithm for Search
procedure search(value V ) returns node-pointer P

//Given a search key value, finds its leaf node
return tree_search(root-node, V ); //searches from root

end procedure

procedure tree_search(node-pointer P, value V ) returns node-pointer P
//Searches tree for entry
if P is a leaf

if there is a value K in P such that V = K
return P;

else
no record with value V exists;
return;

else
if V <V1

return tree_search(P0,V );
else

if V ≥Vm //m = #entries
return tree_search(Pm,V );

else
find i such that Vi ≤V <Vi+1;
return tree_search(Pi,V );

end procedure
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The insert algorithm is recursive and inserts the entry at the appropriate child node. In

case, when the node is full, it gets split and an entry pointing to the node created by the

split must be inserted into its parent; this entry is pointed by the newchildentry pointer.

If the root is needed to split, then a new root node is created and the height of the tree

is increased by one. If a split occurs at the leaf level, however, we have to retrieve a

neighbor in order to adjust the previous and next-neighbor pointers with respect to the

newly created leaf node.

Delete

Deletion task takes an entry, finds the leaf node where it belongs, and deletes it. Pseu-

docode for the B+ tree deletion is given in Algorithm C.3. The algorithm is recursive and

deletes the entry from the appropriate child node. Usual way is to go down to the leaf

node (from root node) where the entry belongs, remove the entry from there, and return

all the way back to the root node. Sometimes, before deletion operation, a node can be

at its minimum occupancy. Deletion, in this particular case, causes it to go below the

minimum occupancy. Such cases are handled by redistributing entries from an adjacent

sibling or merging the node with a sibling to maintain minimum occupancy. When the

redistribution occurs, the parent node must get updated in order to reflect this change,

i.e., the key value in the index entry pointing to the second node must be changed to the

lowest search key in the second node. When the merging happens, again, the parent node

get updated to reflect this change, which is done by deleting the index entry for the second

node. If the last entry in the root node is deleted, the height of the B+ tree decreases by 1.
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Algorithm C.2 Algorithm for Insertion into B+ Tree of Order d
procedure insert_entry(node-pointer, entry, newchildentry)

// Inserts entry into subtree with root ’*nodepointer’; degree is d;
// ’newchildentry’ is null initially, and null upon return unless child is split

if *nodepointer is a non-leaf node, say N
find i such that Ki ≤ entry’s key value < Ki+1; // choose subtree
insert(Pi, entry, newchildentry); // insert entry recursively
if newchildentry is null

return; //don’t split child
else // split child, must insert *newchildentry in N

if N has space
put *newchildentry on it;
set newchildentry to null;
return;

else // note difference with respect to splitting of leaf page
split N: // 2d + 1 key values and 2d + 2 nodepointers
first d key values and d +1 nodepointers stay;
last d keys and d +1 pointers move to new node, N2;
// *newchildentry set to guide searches between N and N2
newchildentry = & (<smallest key value on N2, pointer to N2>);
if N is the root // root node was just split

create new node with <pointer to N, *newchildentry>;
make the tree’s root-node pointer point to the new node;

return;

if *nodepointer is a leaf node, say L
if L has space

put entry on it;
set newchildentry to null;
return;

else,
split L: first d entries stay, rest move to the new node L2;
newchildentry = & (<smallest key value on L2, pointer to L2>);
set sibling pointers in L and L2;
return;

end procedure
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Algorithm C.3 Algorithm for Deletion from B+ Tree of Order d
procedure delete(parentpointer, nodepointer, entry, oldchildentry)
// Deletes entry from subtree with root ‘*nodepointer’; degree is d;
// ’oldchildentry’ null initially, and null upon return unless child deleted
if *nodepointer is a non-leaf node, say N

find i such that Ki ≤ entry’s key value < Ki+1; // choose subtree
delete(nodepointer, Pi, entry, oldchildentry); // recursive delete
if oldchildentry is null

return; // child not deleted
else // child node is discarded

remove *oldchildentry from N; // check for minimum occupancy
if N has entries to spare

set oldchildentry to null;
return;

else // note difference with respect to merging of leaf pages
get a sibling S of N: // parentpointer is used to find S
if S has extra entries

redistribute evenly between N and S through parent;
set oldchildentry to null;
return;

else
merge N and S;
oldchildentry = & (current entry in parent for M); // call node on rhs as M
pull splitting key from parent down into node on left;
move all entries from M to node on left;
discard empty node M;
return;

if *nodepointer is a leaf node, say L
if L has entries to spare

remove entry;
set oldchildentry to null;
return;

else,
get a sibling S of L; // parentpointer is used to find S
if S has extra entries

redistribute evenly between L and S;
find entry in parent for node on right, i.e., M;
replace key value in parent entry by new low-key value in M;
set oldchildentry to null;
return;

else,
merge L and S;
oldchildentry = & (current entry in parent for M);
move all entries from M to node on left;
discard empty node M;
adjust sibling pointers;
return;

end procedure
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Visualisation modes

First mode: vis.#1

• The minimum separation between selected hot spots (dominant medialness loci) is

set to 2× ε (twice the annulus operator’s width).

• We indicate an associated medial disk (radius+annular width) using a yellow circle.

The centre is colored green and the corresponding dot size reflects the medialness

value.

• Both concavities and convexities measures are performed by doing contour analy-

sis. To do such an analysis, we used two operators

– Length of support – This basically avoids small bumpy regions in the shape;

and

– Threshold angle – This limits the angle (of opening) of the concavity or con-

vexity.

• Detected concavities (blue dots) and convexities (red dots) are projected on the

contour.
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Second mode: vis.#2

• The minimum separation between selected hot spots (dominant medialness loci)

is set to ε (the annulus operator’s width). This tends to generate more dominant

points (hot spots) than for vis.#1. It brings us closer to a medial axis graph structure

as ε becomes smaller. The centre is colored green and the corresponding dot size

reflects the medialness value.

• Again, we indicate an associated medial disk (radius+annular width) using a yellow

circle, but we do this only for those hot spots whose medialness value is equal or

more than 80% of the maximum value (for a given image). Thus only the top 20%

of hot spots having contour support are illustrated.

• Both concavities and convexities measures are done by analysing medialness (con-

cavity - external medialness, convexity - internal medialness) values. Only ends of

medialness ridges are considered as candidates convexities/concavities. The equiv-

alent of “length of support” in terms of medialness is used to decide on which

candidates to keep.

• We use blue and red arrows to indicate the orientations of concave dominant and

convex dominant points respectively.

• The ridge trace left from the hat-transform filters is thinned downed and showed as

a green trace of varying thickness (still reflective of the local medialness values).

This visualises an approximate path of medialness linking the various features.
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List of Symbols

Symbols Meaning

2D Two Dimensions

3D Three Dimensions

p(x,y) x- and y- coordinate of a point/pixel p in 2D Cartesian system

ε Tolerance value (constant) in Kovács et al. (1998) representation

εp Tolerance value (variable) at point p(x,y) in our representation

δi Kronecker delta

δ Step angle

∂b Contribution of a boundary point b to Ŝi

φ Orientation of boundary point b

θ Rotation

θth Rotation tolerance or threshold value

κ Smallest measurable length in the given image

ω Window’s width for hole filling

ψε Response value

αp Orientation of a dominant point p with respect to +x-axis
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α+
p Tolerant orientation of dominant point p in clockwise direction

α−
p Tolerant orientation of dominant point p in anti-clockwise direction

β Scale

βth Scale tolerance of threshold value

|.| Cardinality of a set

b boundary point

bth ShIFT bin threshold for bin binarization

Dε Medialness function described by Kovács et al. (1998)

D+
ε Interior medialness function (our modified representation)

D−
ε Exterior medialness function (our modified representation)

D∗
ε Either D+

ε or D−
ε

e Euler’s constant

F F- measure

H 4×4 matrix for homography calculation

k Number of successive filled ShIFT-bins

l weight of a boundary pixel

M Set of matching feature points

{MI,ME ,MC} Matching {Internal,External,Convex} feature points

n Number of ShIFT bins

N+ Positive natural numbers

p
′

Transformation of dominant point p with respect to matrix H
−→qxtx x-translation
−→qyty y-translation

qi A feature point from set Q

Q Set of feature points from a query (test) sample

{QI,QE ,QC} Query {Internal,External,Convex} feature points
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R(p) Minimum radial distance

Ŝi ith annular sector

ti A feature point from set T

T Set of feature points from a trained (target) image

{TI,TE ,TC} Target {Internal,External,Convex} feature points

vb Normal at boundary point b

wtype weight of dominant type “type” (type = I,E,C)

W Maximum value in ShIFT bins
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