
Machine learning as meta-instrument:
Human-machine partnerships shaping expressive

instrumental creation

Dr. Rebecca Fiebrink
Department of Computing

Goldsmiths, University of London
r.fiebrink@gold.ac.uk

Introduction

The practice of building new musical instruments is predicated on the recognition that
instruments matter: that the sort of music one can make with a xylophone is different
than with a violin, which is different still from the music one can make with a
computer. Instruments differ by more than just their sound qualities; acoustic
instruments bring with them particular physical affordances, and these lead to
idiomatic playing styles and repertoires.

The goal of many designers of digital musical instruments is to discover new idioms
for expression, shrugging off old constraints of physical materials and acoustics. Each
new configuration of sensors and sound synthesis algorithms patched together by
software suggests a new way of being played.

Just as the instrument shapes the music that may be played, the tools for instrument
creation shape the instruments that may be built. And just as each instrument demands
its player develop a particular set of physical skills and musical knowledge to become
competent, each instrument creation tool demands the cultivation of certain technical
skills and ways of thinking in its users.

In this chapter, I will discuss how machine learning algorithms can shape the design
of new instruments. Machine learning algorithms can facilitate new types of design
outcomes: they enable people to create new types of digital musical instruments. But,
I will argue, they are also valuable in facilitating new types of design processes,
allowing the instrument creation process to become a more exploratory, playful,
embodied, expressive partnership between human and machine. And these qualities of
the design process in turn influence the final form of the instrument that is created—
as well as the instrument creator herself.

My aims in this chapter are: (1) to provide readers new to these ideas an introductory
understanding of how supervised learning algorithms can be used to build new digital
musical instruments; (2) to demonstrate that supervised learning algorithms are
valuable as design tools, bolstering embodied, real-time, creative practices; and (3) to
argue that, because the nature of any new musical instrument is intimately tied to the
process through which it was designed, a closer attention to the relationships between

instrument builders and instrument creation tools can deepen our understanding of
new instruments as well as point to opportunities to design both new instruments and
creative experiences.

New Instruments

Mappings	
 and	
 Mapping	
 Creation	
 Tools	

Wanderley and Depalle (2004) use the following basic modular structure (illustrated
in Figure 1) to frame discussion of the design of digital musical instruments: First, a
gestural controller (or other sensing component) senses the actions of the
performer(s); this may include custom sensing hardware, a microphone, a camera,
biosensors, and so on. These sensors pass a real-time stream of data to a “mapping”
component, which is typically a software program. This component determines how
to control the parameters of a sound production component, based on the values of the
sensors. The sound-making component might be controlled with low-level musical
parameters (e.g., amplitudes and frequencies of sinusoidal components, filter
coefficients, or physical modelling parameters) or higher-level ones (e.g., determining
the tempo or style of an autonomous agent).

	

Figure	
 1:	
 Components	
 of	
 a	
 digital	
 musical	
 instrument

In acoustic instruments, the relationship between a performer’s actions and the sound
of an instrument is dictated by physics, but there are few constraints on how digital
musical instrument mappings might link these together. The design of the mapping
determines, in the words of Hunt et al. (2002), “the very essence of an instrument”: it
defines the ways a performer may move or act, the dimensions of musical
engagement that are possible, the means for an audience to perceive the relationship
between a performer’s intention and the music, and so on. Designing a mapping can
thus be understood as designing a space of musical possibilities, and a number of
instrument builders see this process as one of musical composition, where the
outcome is a system that “carr[ies] as much the notion of an instrument as that of
a score” (Schnell and Battier 2002).

Currently, computer programming is the de facto tool for creating an instrument
mapping. Programming allows the creation of any imaginable mapping, in theory—
just as a Theremin allows one to play nearly any imaginable melody, in theory.
However, the practice of programming strongly encourages the creation of certain
types of instrument mappings and discourages others. It is easiest to program
mappings in which each sensor input controls a single sound synthesis parameter, and
in which each synthesis parameter value is likewise impacted only by this single
sensor; Hunt and Wanderley (2002) term such configurations “one-to-one mappings.”
Furthermore, it is easiest to program mapping functions that are simple (e.g., linear)
and deterministic. The easiest instrument to build is therefore often analogous to a
mixing desk: a set of independent sliders, each with an easy-to-reason-about control
mechanism wherein the usable range of the sensor is mapped onto the useful range of
a single sound control parameter.

This type of mapping naturally supports particular types of interactions between
performer and instrument at the expense of others. Problematically, Hunt and Kirk
(2000) found evidence that such simple, “one-to-one” mappings may present barriers
to effective musical use when compared with more complex mappings. They found
that mappings in which multiple dimensions of input affected multiple sound
parameters simultaneously—“many-to-many” mappings—were more engaging to the
user, offered more effective control over complex tasks, facilitated more effective
learning of the interface over time, allowed people to think about sound gesturally,
and were sometimes even considered to be more fun.

Researchers have developed various approaches to facilitate mapping creation
through means other than programming, and a number of these approaches make it
easier to create complex and many-to-many mapping functions. This work includes a
variety of mathematical approaches to function generation, including matrix
operations (Bevilacqua et al. 2005), interpolation (e.g., Garnett and Goudeseune 1999;
Bencina 2005), and machine learning, which I discuss in the next section.

Human-­‐computer	
 interactions	
 with	
 digital	
 instruments:	
 Control	
 versus	

partnership	

The idea that “mappings” are a useful concept for framing the design or analysis of
digital musical instruments is not without its detractors. For instance, Chadabe (2002)
is critical of the paradigm, as it assumes a one-directional, simplistic relationship
between human and instrument where the aim is control by the human over the sound.
To employ a fixed, deterministic mapping function can be seen as ignoring the true
potential for digital instruments to facilitate truly new forms of music making. Instead
of taking advantage of computers’ capacity for complex, non-deterministic processes,
employing a static mapping function underutilizes the computer as simply a means of
mimicking acoustic instruments, “to make the performer powerful and keep the
performer in complete control” (Chadabe 2002).

In this chapter, I argue that the act of composing the instrument, like Chadabe’s vision
for the act of performing with an instrument, presents opportunities for new forms of
relationships between humans and computers. The machine learning approaches I will
discuss next create deterministic mapping functions that might be lacking interest on
their own, at least in Chadabe’s assessment; however, they support a rich dialogue
and journey of co-discovery between human and machine throughout the process of

creating a mapping. This process may unfold for months or years before a
performance, or it may happen live on stage, making the mapping-building process a
performative instrument in its own right. In either case, the quality of relationship
between human and machine in the instrument composition process has significant
aesthetic and practical consequences, as I will discuss.

Machine Learning and The Wekinator

Supervised learning algorithms are capable of learning functions from examples. An
instrument mapping can be understood as such a function, whose inputs are sensor
readings and whose outputs are sound synthesis parameter values. An algorithm can
learn this mapping from a set of training examples, where each training example
contains one set of sensor readings, paired with the set of sound synthesis parameter
values that the designer would like to produce when those sensor readings are seen
during performance (Figure 2).

	

Figure	
 2:	
 A	
 supervised	
 learning	
 algorithm	
 can	
 create	
 a	
 mapping	
 from	
 a	
 set	
 of	
 training	
 examples.

Different learning algorithms employ different strategies for learning a function from
the training examples. However, the learning process can be roughly characterized as
finding a mapping function which, upon seeing input values similar to those in a
given training example, tends to produce output values similar to those in that training
example.

Supervised learning has been used to create mappings for new musical instruments
since the early 1990s. Neural networks—a type of supervised learning algorithm—
were used by Lee, Freed, and Wessel (1991) to control the timbre of synthesised
sound using a MIDI keyboard, and by Fels and Hinton (1995) to control speech
synthesis using a sensor glove.

In 2008, I began to build a general-purpose machine learning tool that could be used
by composers1 to create a variety of new digital instruments. By that time, seventeen

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1	
 In this chapter, I use the word “composer” to refer to people who build new musical instruments and
create customized controller mappings, rather than referring to them as instrument builders or
musicians. This word choice reflects an understanding of instrument building as an act of musical
composition (cf. Schnell and Battier 2002, discussed above). It also accommodates the fact that there

years after Lee and Wessel’s experiments, many composers had laptops which could
easily train neural networks in a few seconds (or even faster). They had a wealth of
sensors and game controllers, as well as fast audio and video feature extractors from
which to obtain information about performers’ actions. They had easy-to-use
communication protocols such as Open Sound Control (Wright and Freed 1997) to
patch these sensors to powerful, real-time sound synthesis software such as
Max/MSP. However, composers did not have access to easy-to-use machine learning
software tools. Outside of music, toolkits such as Weka (Hall et al. 2009) were
beginning to make it easier for people without extensive machine learning expertise to
experiment with off-the-shelf machine learning algorithms, using graphical user
interfaces (GUIs) that did not require computer programming. However, general-
purpose GUI toolkits such as Weka did not typically support real-time applications
such as music performance.

I named my real-time machine learning toolkit Wekinator, in honor of Weka’s
achievements in making machine learning accessible to wider groups of users, and
also because Wekinator used Weka’s implementations of several learning algorithms.
Fundamentally, Wekinator is a tool for building mappings like those in Figure 1. In
real-time performance, Wekinator receives input values from sensors or other input
sources via Open Sound Control (OSC) messages, and it sends output control values
to any sound synthesis program (or even animation program, game engine, etc.) via
OSC. Wekinator provides a GUI for recording new training examples, training
supervised learning algorithms (including neural networks and linear and polynomial
regression for creating continuous mapping functions, as well as other methods),
running trained models, and configuring various aspects of the machine learning
process (e.g., specifying which sensor values will be used in computing each one of
the synthesis parameters).

Interactive	
 machine	
 learning	
 as	
 design	
 tool	

In most conventional machine learning applications, the goal of using machine
learning is to build an accurate model from the set of training examples. For example,
the goal might be to build a model that predicts whether a medical treatment is likely
to be effective for a new patient, using a training dataset with information about
previous patients (the model function inputs) and the efficacy of the treatment on
them (the model function’s output). The set of training examples is often assumed to
be fixed, and much of the human work of applying machine learning focuses on
finding the algorithm that most accurately models the patterns in the given training
set. Typically, the human practitioner relies on established quantitative metrics in
order to compare alternative models and choose the best.

A composer using supervised learning to build a new instrument is faced with a very
different type of application. She most likely does not begin the design process with
an appropriate training set in hand—she must build a training set from scratch,
creating examples that encode her understanding of how performer gestures or actions
will be mapped to musical control parameters. While quantitative metrics may be
helpful in assessing whether a model has accurately captured the patterns in the
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

may not be a clear or consistent distinction between the notions of instrument, “preset” or mapping,
and composition. For instance, at least two of the composers discussed here (Dan Trueman and Laetitia
Sonami) have used the same controllers or sensors to play different musical pieces, but designed a
different gesture-to-sound mapping for each piece.

training data, these metrics cannot always reflect all of a composer’s priorities for a
trained mapping (Fiebrink et al. 2011). For instance, she might want the mapping to
provide access to a range of sounds that fits the desired aesthetic of the piece, and to
make these all accessible using a set of performer gestures that are comfortable to
perform; or perhaps she wants to create a mapping that is easy (or difficult) for a
performer to learn to play without making undesired sounds. The composer therefore
cannot rely only on quantitative metrics of how well a model fits the training data to
know whether a mapping is any good, or whether one alternative is better than
another; she must use other means to evaluate a mapping, such as experimenting with
it herself and listening to how it responds to her actions.

If a composer is dissatisfied with the mapping built by a supervised learning
algorithm, changing the training examples is often an effective way to improve the
mapping. For instance, if she wants a particular sound to be more easily playable
using her mapping, she can provide additional training examples, pairing that sound
with easy-to-demonstrate performer gestures, then retrain to build a new model. If she
is unhappy with the outcome, she can delete those training examples and replace them
with different ones. When supervised learning is used to build new musical
instrument mappings, the training examples act as the conduit through which a
composer communicates her intention to the computer. In more conventional machine
learning applications, however, changing the training data is not a reasonable action
to take to improve a model, because the training dataset is assumed to be a (more or
less) accurate representation of some phenomenon in the world. This is the case with
the medical treatment prediction example above, where the dataset recording
treatment outcomes for previous patients is a valuable source of information about the
problem domain.

For these reasons, Wekinator’s user interface is designed to facilitate certain
interactions between humans and supervised learning algorithms which are not part of
more conventional machine learning processes: Users can create new training
examples in real-time, by demonstrating performer actions along with the sound
synthesis parameters they would like to be associated with those actions. Users can
evaluate trained mappings by hands-on experimentation, observing how the mapping
changes the sound as they change the input values. Users can iteratively add and
remove training examples, and seamlessly move between these phases of editing data,
re-training, and evaluating the effects of changes they make to the mappings (Figure
3). This type of approach to machine learning in which a human user steers model
behaviours through iterative and strategic changes to the training data is often called
“interactive machine learning” (Fails and Olsen 2003).

	

Figure	
 3:	
 Interactive	
 workflow	
 with	
 Wekinator

Machine Learning as Design Tool

In the eight years since developing Wekinator, I have observed it being used to create
new instruments by dozens of professional composers, computer music and computer
science students, “hackers” and “makers,” and people with disabilities, and I have
also used it in my own compositions and performances (Figures 4–6). Previous
publications describe how I have used participatory design processes and surveys
(Fiebrink et al. 2010), workshops (Katan et al. 2015), interviews (Fiebrink 2011),
analysis of software logs (Fiebrink et al. 2011), and reflection on my own work
(Fiebrink et al. 2009) to understand how people use Wekinator and why. This work
all suggests that the most important benefits of Wekinator pertain to the way that it
changes the design process, facilitating the creation of new kinds of instruments while
also making design accessible to new people.

	

Figure	
 4:	
 Laetitia	
 Sonami	
 plays	
 the	
 Spring	
 Spyre,	
 an	
 instrument	
 she	
 created	
 with	
 Wekinator	
 (2015)

	

Figure	
 5:	
 The	
 Sideband	
 ensemble	
 performs	
 Anne	
 Hege's	
 composition	
 From	
 the	
 Waters,	
 in	
 which	

Wekinator	
 was	
 used	
 to	
 create	
 several	
 GameTrak-­‐controlled	
 instruments

	

Figure	
 6:	
 Nets0	
 was	
 one	
 of	
 the	
 first	
 pieces	
 written	
 for	
 Wekinator,	
 and	
 it	
 requires	
 performers	
 to	
 train	

new	
 mappings	
 for	
 their	
 own	
 controllers	
 live	
 on	
 stage.	

Speeding	
 up	
 implementation	
 of	
 complex	
 mappings	

One of the most immediately apparent benefits of using Wekinator to build mappings
is the speed and ease with which composers can build a new instrument and modify it.
Once the sensors or input devices are sending data to Wekinator via OSC, and a
sound synthesis program is ready to receive control messages from Wekinator, the
process of training a machine learning algorithm to create a mapping from input
values to sound can take as little as a few seconds. This is true even for complicated,
many-to-many mappings (the default type of mapping created by Wekinator) in which
each sound control parameter is influenced by many input dimensions in possibly
non-linear ways. Thus, using supervised learning encourages the creation of mapping
types that have been shown to be more engaging, learnable, and controllable than
those that are easiest to create using coding (Hunt and Kirk 2000).

Supporting	
 prototyping	
 and	
 exploration	

Reducing the time it takes to create a viable instrument does not necessarily mean that
composers using Wekinator spend less time building instruments. Instead, composers
I have observed typically use their time to make many different variants of an
instrument. They iterate many times, making slight or dramatic changes to the
training data, as well as to the input devices and the sound synthesis software.
Sometimes, these iterations are attempts to fix a problem with the mapping or
otherwise improve the instrument according to a clear set of criteria. In these cases,
changing a supervised learning model via changes to the training data can be a much
faster way to fix a mapping or adapt it to a change in input or sound synthesis,
compared to changing manually-written programming code.

However, these iterations are often the result of the composer intentionally exploring
alternative designs in an effort to better understand what sort of instrument he really
wants to make and how to make it. Prototyping and iterative refinement are
recognized as activities that are critical to design in any domain (Resnick et al. 2005;
Buxton 2010). Prototypes are physical manifestations of design ideas, and
experimentation with a prototype helps a designer better understand the merits of the
idea as well as potential ways to improve it. By reducing the time and effort needed to
instantiate a prototype for a new idea, Wekinator encourages prototyping and allows
composers to explore more ideas, and more refined ideas, over the process of building
an instrument. In contrast, several composers I surveyed described how creating
instruments by writing code often led to them using instruments they were unhappy
with: changing a design using code incurred enough time and effort that they were
discouraged from exploring new ideas, and they chose instead to accept instruments
that limited them in problematic ways.

Supporting	
 surprise	
 and	
 discovery	

Creating an instrument can be understood as an example of what design theorist Horst
Rittel (1972) described as a “wicked” design problem: the definition of the problem
(What sort of instrument should I make? How will it be played, and what sort of
sounds will it produce?) is not known in advance. It is only by designing the
instrument that the problem becomes clear: the final instrument design embodies both
the composer’s final understanding of what the goals of the design process are, as
well as the method of achieving them.

Composers using Wekinator to build instruments have often intentionally used
machine learning in ways that will help them refine this “problem definition,” to
evolve their understanding about what kinds of instruments are possible to build, and
what kind of instruments they ultimately want. A common strategy for a composer
creating a new mapping with Wekinator is to “sketch out” the rough boundaries of the
gestural and sonic space using the initial training dataset, then discover what sounds
and gesture-sound relationships the supervised learning algorithm builds into the
mapping trained from this dataset. A composer can construct this first training set by
choosing a set of sounds she thinks she might want to play using the instrument, and a
set of different input actions that span a comfortable range of control, then pair these
together in a small number of training examples. A mapping created from these
examples immediately allows the composer to discover new sounds that might exist
in between and beyond the input values (e.g., gestures) she placed in the training set.
When using this strategy, experimenting with the resulting mapping is really a process

of discovering unexpected sounds and behaviors, rather than “testing” whether the
mapping has learned the “right” behaviors from the given training examples. One
Wekinator user described his rationale for this process thus: “There is simply no way
I would be able to manually create the mappings that the Wekinator comes up with;
being able to playfully explore a space that I’ve roughly mapped out, but that the
Wekinator has provided the detail for, is inspiring.”

Wekinator’s support of interactive supervised learning allows composers to edit
training examples to modify the mapping in response to the discoveries they then
make. When a composer discovers a new sound she likes, she can reinforce this sound
in her instrument by adding new training examples with this sound into the training
set. When she discovers a sound she doesn’t like, she can change the training
examples in that region of the input gesture space to correspond to a more favorable
sound.

Having access to surprise and discovery can fundamentally change the way a
composer understands their relationship to the computer as well as the qualities of the
instrument that they build. In particular, professional composers who have used
Wekinator in their work have described how it allows them to move away from a
paradigm of control over a computer into one where the computer is a collaborator.
Laetitia Sonami, who has been using Wekinator for five years in the development of
the Spring Spyre (Figure 4), says in a lecture about her use of machine learning:

“…in a way, you don’t want the instrument to perform like a well-trained
animal circus, you kind of want it to be a little wild, and you want to adapt
to it somehow, like riding a bull... I think the machine learning allowed
more of this…fun of exploring, instead of going ‘I have to have a result
right away, this thing is going to do that,’ and then leaving it at that. This…
allows for a kind of flexibility that I think is essential for artists and
musicians to… open up some kind of unknown and really create… things
that excite you. I’m not sure about exciting the audience, but actually
hopefully exciting the person who’s making it, at least! And then you hope
that it gets conveyed.” (Sonami 2016)

Supporting	
 embodied	
 design	
 practice	

Another critical difference between designing instruments using machine learning and
designing instruments by writing code is that composers are able to use their bodies
directly in the design process. Instead of reasoning about what sort of movement-
sound relationships he might want in an instrument, then deriving a mathematical
function that he thinks will facilitate those relationships in a mapping, a composer can
simply demonstrate examples of movements and movement-sound pairs that feel and
sound right to him.

The ability to draw on embodied understanding of movement and sound in the
process of designing an instrument is vitally important to many composers who work
with Wekinator; the use of the body changes both the experience of composition and
the type of instrument that can be created. Composer Michelle Nagai used the
Wekinator to create an instrument, the MARtLET, from a piece of tree bark with
embedded light sensors. She describes her experience:

“I have never before been able to work with a musical interface (i.e. the
MARtLET) that allowed me to really ‘feel’ the music as I was playing
it and developing it. The Wekinator allowed me to approach composing
with electronics and the computer more in the way I might if I was
writing a piece for cello, where I would actually sit down with a cello
and try things out.” (Excerpt from interview, published in Fiebrink
2011)

Composer Dan Trueman, who used Wekinator to create game controller instruments
for his piece CMMV writes:

“With [the Wekinator], it’s possible to create physical sound spaces where the
connections between body and sound are the driving force behind the
instrument design, and they *feel* right. It’s very difficult to do this with
explicit mapping for any situation greater than 2–3 features/parameters [i.e.,
inputs and outputs], and most of the time we want more than 2–3
features/parameters, otherwise it feels too obvious and predictable. So, it’s
very difficult to create instruments that feel embodied with explicit mapping
strategies, while the whole approach of [the Wekinator], especially with
playalong, is precisely to create instruments that feel embodied. I like to think
of digital instrument building as a kind of choreography. Choreographers are
hands-on—they like to push, pull, hold their dancers, demonstrate how things
should go, in order to get what they want, and the resistance and flow of their
dancers in turn feeds back into their choreography. This is quite similar to the
approach that [the Wekinator] engenders, and radically different than what
explicit mapping strategies [i.e., mappings created with programming]
enable.” (Excerpt from personal correspondence, published in Fiebrink 2011)

Supporting	
 accessibility	

Wekinator allows people to build new instruments without programming. In addition
to making the instrument-building process faster for programmers, this means that
non-programmers have the ability to create new instruments for themselves and others
to perform. As an educator, this has been helpful in teaching students about computer
music performance and interaction design. Students can easily explore different
designs, start to reason about design trade-offs, and experience the satisfaction of
building and performing with a new instrument even if they are not confident
programmers (Morris and Fiebrink 2013).

Discussion: Wekinator as Meta-Instrument

I describe Wekinator as a meta-instrument: an instrument for creating instruments
(Fiebrink et al. 2009). Like anyone learning a new instrument, users of Wekinator
must begin by mastering the fundamental techniques of training, testing, and
modifying models, but they soon reach a point where their attention is no longer on
the algorithms but on using them to achieve a creative vision. Building an instrument
with Wekinator then becomes, fundamentally, a real-time process of self-expression,
sculpting a unique space of musical possibilities that will afford creative engagement

by oneself and/or others. In designing this space, just like in performing an
instrument, a creator draws on a foundation of established musical practices while
also seeking to imbue his work with an individual style, all the while being influenced
by affordances of the tool which subtly encourage certain idiomatic ways of working
and not others.

Understanding composition tools as instruments—whose affordances are vitally tied
to the musical potential of the instruments created with them—invites us to bring
aesthetic and philosophical considerations pertaining to the role of computers in
musical performance to bear on the analysis and creation of composition tools as well.
Composers have written of the value of creating “potential for change in the behaviors
of computer and performer in their response to each other” (Moon 1997), of interfaces
in which “interaction transcends control” (David Rokeby as described by Rowe et al.
1993), becoming more “like conversing with a clever friend” (Chadabe 1997, p.287)
or “sailing a boat on a windy day and through stormy seas” (Drummond 2009).

My work with composers suggests that a meta-instrument that supports these
interactive qualities, as Wekinator does, can make the process of composition more
engaging and musically satisfying. A meta-instrument that encourages playful
exploration and discovery can help a composer navigate the wicked design problem
of instrument building, sculpting the instrument to better meet her goals while
simultaneously evolving those goals in response to the instrument. When the process
of exploration and engagement is physical, rather than abstracted into mathematical
functions and programming code, composers are able to engage in tight, enactive
(Wessel 2006) action-feedback loops which further inform their embodied
understanding of the instrument and their own musical aims.

Supervised learning algorithms are not the only computational tools which might give
rise to these interactive qualities during instrument building or other compositional
activities, and Wekinator’s user interfaces are far from the only way to link human
creators to supervised learning processes. Alternative approaches might facilitate
faster exploration of more diverse instrument designs, or take advantage of additional
information that composers could communicate through the body (such as examples
of comfortable movement sequences or evocative sounds) without requiring a
composer to format these as supervised learning training examples. Particular
interaction qualities might be intentionally designed into tools, for instance making
the “seas” of interaction even stormier with algorithms that make it difficult for
composers to build instruments similar to those they have built before, or that
introduce indeterminacy into more aspects of the tool. Those of us who are composers
of meta-instruments have many new ideas to explore, ourselves, as we design new
spaces of musical interactions for the composers who use our tools.

References
[Bencina, 2005] Bencina, R. (2005). The Metasurface: Applying natural neighbor

interpolation to two-to-many mapping. In Proceedings of the International
Conference on New Interfaces for Musical Expression (NIME), pages 101–104.

[Bevilacqua et al., 2005] Bevilacqua, F., Müller, R., and Schnell, N. (2005). MnM: A
Max/MSP mapping toolbox. In Proceedings of the International Conference on
New Interfaces for Musical Expression (NIME), pages 85–88.

[Buxton, 2010] Buxton, B. (2010). Sketching user experiences: Getting the design
right and the right design. Morgan Kaufmann.

[Chadabe, 1997] Chadabe, J. (1997). Electric Sound: The Past and Promise of
Electronic Music. Prentice Hall, Upper Saddle River, New Jersey.

[Chadabe, 2002] Chadabe, J. (2002). The limitations of mapping as a structural
descriptive in electronic instruments. In Proceedings of the International
Conference on New Interfaces for Musical Expression (NIME).

[Drummond, 2009] Drummond, J. (2009). Understanding interactive systems.
Organised Sound, 14(2):124–133.

[Fails and Olsen, 2003] Fails, J. A. and Olsen, Jr., D. R. (2003). Interactive machine
learning. In Proceedings of the International Conference on Intelligent User
Interfaces (IUI ’03), pages 39–45.

[Fels and Hinton, 1995] Fels, S. S. and Hinton, G. E. (1995). Glove-Talk II: An
adaptive gesture-to-formant interface. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 456–463.

[Fiebrink and Cook, 2011] Fiebrink, R. A. and Cook, P. R. (2011). Real-time human
interaction with supervised learning algorithms for music composition and
performance. PhD thesis, Princeton University, USA.

 [Fiebrink et al., 2011] Fiebrink, R., Cook, P. R., and Trueman, D. (2011). Human
model evaluation in interactive supervised learning. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pages 147–156.

[Fiebrink et al., 2010] Fiebrink, R., Trueman, D., Britt, C., Nagai, M., Kaczmarek, K.,
Early, M., Daniel, M. R., Hege, A., and Cook, P. R. (2010). Toward
understanding human-computer interaction in composing the instrument. In
Proceedings of the International Computer Music Conference (ICMC).

[Fiebrink et al., 2009] Fiebrink, R., Trueman, D., and Cook, P. R. (2009). A meta-
instrument for interactive, on-the-fly machine learning. In Proceedings of the
International Conference on New Interfaces for Musical Expression (NIME).

[Garnett and Goudeseune, 1999] Garnett, G. and Goudeseune, C. (1999).
Performance factors in control of high-dimensional spaces. In Proceedings of the
International Computer Music Conference (ICMC), pages 268–271.

[Hall et al., 2009] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and
Witten, I. H. (2009). The Weka data mining software: An update. ACM SIGKDD
Explorations Newsletter, 11(1):10–18.

[Hunt and Kirk, 2000] Hunt, A. and Kirk, R. (2000). Mapping strategies for musical
performance. In Wanderley, M. M. and Battier, M., editors, Trends in Gestural
Control of Music. IRCAM—Centre Pompidou.

[Hunt and Wanderley, 2002] Hunt, A. and Wanderley, M. M. (2002). Mapping
performer parameters to synthesis engines. Organised Sound, 7(2):97–108.

[Hunt et al., 2002] Hunt, A., Wanderley, M. M., and Paradis, M. (2002). The
importance of parameter mapping in electronic instrument design. In Proceedings
of the International Conference on New Interfaces for Musical Expression
(NIME).

[Katan et al., 2015] Katan, S., Grierson, M., and Fiebrink, R. (2015). Using
interactive machine learning to support interface development through workshops
with disabled people. In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, pages 251–254.

[Lee et al., 1991] Lee, M., Freed, A., and Wessel, D. (1991). Real-time neural
network processing of gestural and acoustic signals. In Proceedings of the
International Computer Music Conference (ICMC), pages 277–280.

[Moon, 1997] Moon, B. (1997). Score following and real-time signal processing
strategies in open-form compositions. Information Processing Society of Japan,
SIG Notes, 97(122):12–19.

[Morris and Fiebrink, 2013] Morris, D. and Fiebrink, R. (2013). Using machine
learning to support pedagogy in the arts. Personal and Ubiquitous Computing,
17(8):1631–1635.

[Resnick et al., 2005] Resnick, M., Myers, B., Nakakoji, K., Shneiderman, B., Pausch,
R., Selker, T., and Eisenberg, M. (2005). Design principles for tools to support
creative thinking. In Report of Workshop on Creativity Support Tools,
Washington, DC, USA.

[Rittel, 1972] Rittel, H. W. (1972). On the Planning Crisis: Systems Analysis of the
‘First and Second Generations’. Institute of Urban and Regional Development.

[Rowe et al., 1993] Rowe, R., Garton, B., Desain, P., Honing, H., Dannenberg, R.,
Jacobs, D., Pope, S. T., Puckette, M., Lippe, C., Settel, Z., and Lewis, G. (1993).
Editor’s notes: Putting Max in perspective. Computer Music Journal, 17(2):3–11.

[Schnell and Battier, 2002] Schnell, N. and Battier, M. (2002). Introducing composed
instruments, technical and musicological implications. In Proceedings of the
International Conference on New Interfaces for Musical Expression (NIME).

[Sonami, 2016] Sonami, L. (2016). Lecture on machine learning, within online class
“Machine Learning for Musicians and Artists” by R. Fiebrink, produced by
Kadenze, Inc.

[Wanderley and Depalle, 2004] Wanderley, M. M. and Depalle, P. (2004). Gestural
control of sound synthesis. Proceedings of the IEEE, 92(4):632–644.

[Wessel, 2006] Wessel, D. (2006). An enactive approach to computer music
performance. In Orlarey, Y., editor, Le Feedback dans la Creation Musical,
pages 93–98. Studio Gramme, Lyon, France.

[Wright and Freed, 1997] Wright, M. and Freed, A. (1997). Open Sound Control: A
new protocol for communicating with sound synthesizers. In Proceedings of the
International Computer Music Conference (ICMC).

