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Introduction 

The practice of building new musical instruments is predicated on the recognition that 
instruments matter: that the sort of music one can make with a xylophone is different 
than with a violin, which is different still from the music one can make with a 
computer. Instruments differ by more than just their sound qualities; acoustic 
instruments bring with them particular physical affordances, and these lead to 
idiomatic playing styles and repertoires.  
 
The goal of many designers of digital musical instruments is to discover new idioms 
for expression, shrugging off old constraints of physical materials and acoustics. Each 
new configuration of sensors and sound synthesis algorithms patched together by 
software suggests a new way of being played. 
 
Just as the instrument shapes the music that may be played, the tools for instrument 
creation shape the instruments that may be built. And just as each instrument demands 
its player develop a particular set of physical skills and musical knowledge to become 
competent, each instrument creation tool demands the cultivation of certain technical 
skills and ways of thinking in its users. 
 
In this chapter, I will discuss how machine learning algorithms can shape the design 
of new instruments. Machine learning algorithms can facilitate new types of design 
outcomes: they enable people to create new types of digital musical instruments. But, 
I will argue, they are also valuable in facilitating new types of design processes, 
allowing the instrument creation process to become a more exploratory, playful, 
embodied, expressive partnership between human and machine. And these qualities of 
the design process in turn influence the final form of the instrument that is created—
as well as the instrument creator herself. 
 
My aims in this chapter are: (1) to provide readers new to these ideas an introductory 
understanding of how supervised learning algorithms can be used to build new digital 
musical instruments; (2) to demonstrate that supervised learning algorithms are 
valuable as design tools, bolstering embodied, real-time, creative practices; and (3) to 
argue that, because the nature of any new musical instrument is intimately tied to the 
process through which it was designed, a closer attention to the relationships between 



instrument builders and instrument creation tools can deepen our understanding of 
new instruments as well as point to opportunities to design both new instruments and 
creative experiences. 

New Instruments 

Mappings	
  and	
  Mapping	
  Creation	
  Tools	
  
Wanderley and Depalle (2004) use the following basic modular structure (illustrated 
in Figure 1) to frame discussion of the design of digital musical instruments: First, a 
gestural controller (or other sensing component) senses the actions of the 
performer(s); this may include custom sensing hardware, a microphone, a camera, 
biosensors, and so on. These sensors pass a real-time stream of data to a “mapping” 
component, which is typically a software program. This component determines how 
to control the parameters of a sound production component, based on the values of the 
sensors. The sound-making component might be controlled with low-level musical 
parameters (e.g., amplitudes and frequencies of sinusoidal components, filter 
coefficients, or physical modelling parameters) or higher-level ones (e.g., determining 
the tempo or style of an autonomous agent).  
 

	
  
Figure	
  1:	
  Components	
  of	
  a	
  digital	
  musical	
  instrument 

 
In acoustic instruments, the relationship between a performer’s actions and the sound 
of an instrument is dictated by physics, but there are few constraints on how digital 
musical instrument mappings might link these together. The design of the mapping 
determines, in the words of Hunt et al. (2002), “the very essence of an instrument”: it 
defines the ways a performer may move or act, the dimensions of musical 
engagement that are possible, the means for an audience to perceive the relationship 
between a performer’s intention and the music, and so on. Designing a mapping can 
thus be understood as designing a space of musical possibilities, and a number of 
instrument builders see this process as one of musical composition, where the 
outcome is a system that “carr[ies] as much the notion of an instrument as that of 
a score” (Schnell and Battier 2002). 



Currently, computer programming is the de facto tool for creating an instrument 
mapping. Programming allows the creation of any imaginable mapping, in theory—
just as a Theremin allows one to play nearly any imaginable melody, in theory. 
However, the practice of programming strongly encourages the creation of certain 
types of instrument mappings and discourages others. It is easiest to program 
mappings in which each sensor input controls a single sound synthesis parameter, and 
in which each synthesis parameter value is likewise impacted only by this single 
sensor; Hunt and Wanderley (2002) term such configurations “one-to-one mappings.” 
Furthermore, it is easiest to program mapping functions that are simple (e.g., linear) 
and deterministic. The easiest instrument to build is therefore often analogous to a 
mixing desk: a set of independent sliders, each with an easy-to-reason-about control 
mechanism wherein the usable range of the sensor is mapped onto the useful range of 
a single sound control parameter. 
 
This type of mapping naturally supports particular types of interactions between 
performer and instrument at the expense of others. Problematically, Hunt and Kirk 
(2000) found evidence that such simple, “one-to-one” mappings may present barriers 
to effective musical use when compared with more complex mappings. They found 
that mappings in which multiple dimensions of input affected multiple sound 
parameters simultaneously—“many-to-many” mappings—were more engaging to the 
user, offered more effective control over complex tasks, facilitated more effective 
learning of the interface over time, allowed people to think about sound gesturally, 
and were sometimes even considered to be more fun.  
 
Researchers have developed various approaches to facilitate mapping creation 
through means other than programming, and a number of these approaches make it 
easier to create complex and many-to-many mapping functions. This work includes a 
variety of mathematical approaches to function generation, including matrix 
operations (Bevilacqua et al. 2005), interpolation (e.g., Garnett and Goudeseune 1999; 
Bencina 2005), and machine learning, which I discuss in the next section. 

Human-­‐computer	
  interactions	
  with	
  digital	
  instruments:	
  Control	
  versus	
  
partnership	
  
The idea that “mappings” are a useful concept for framing the design or analysis of 
digital musical instruments is not without its detractors. For instance, Chadabe (2002) 
is critical of the paradigm, as it assumes a one-directional, simplistic relationship 
between human and instrument where the aim is control by the human over the sound. 
To employ a fixed, deterministic mapping function can be seen as ignoring the true 
potential for digital instruments to facilitate truly new forms of music making. Instead 
of taking advantage of computers’ capacity for complex, non-deterministic processes, 
employing a static mapping function underutilizes the computer as simply a means of 
mimicking acoustic instruments, “to make the performer powerful and keep the 
performer in complete control” (Chadabe 2002). 

In this chapter, I argue that the act of composing the instrument, like Chadabe’s vision 
for the act of performing with an instrument, presents opportunities for new forms of 
relationships between humans and computers. The machine learning approaches I will 
discuss next create deterministic mapping functions that might be lacking interest on 
their own, at least in Chadabe’s assessment; however, they support a rich dialogue 
and journey of co-discovery between human and machine throughout the process of 



creating a mapping. This process may unfold for months or years before a 
performance, or it may happen live on stage, making the mapping-building process a 
performative instrument in its own right. In either case, the quality of relationship 
between human and machine in the instrument composition process has significant 
aesthetic and practical consequences, as I will discuss. 

Machine Learning and The Wekinator 

Supervised learning algorithms are capable of learning functions from examples. An 
instrument mapping can be understood as such a function, whose inputs are sensor 
readings and whose outputs are sound synthesis parameter values. An algorithm can 
learn this mapping from a set of training examples, where each training example 
contains one set of sensor readings, paired with the set of sound synthesis parameter 
values that the designer would like to produce when those sensor readings are seen 
during performance (Figure 2).  

	
  
Figure	
  2:	
  A	
  supervised	
  learning	
  algorithm	
  can	
  create	
  a	
  mapping	
  from	
  a	
  set	
  of	
  training	
  examples. 

 
Different learning algorithms employ different strategies for learning a function from 
the training examples. However, the learning process can be roughly characterized as 
finding a mapping function which, upon seeing input values similar to those in a 
given training example, tends to produce output values similar to those in that training 
example. 
 
Supervised learning has been used to create mappings for new musical instruments 
since the early 1990s. Neural networks—a type of supervised learning algorithm—
were used by Lee, Freed, and Wessel (1991) to control the timbre of synthesised 
sound using a MIDI keyboard, and by Fels and Hinton (1995) to control speech 
synthesis using a sensor glove.  
 
In 2008, I began to build a general-purpose machine learning tool that could be used 
by composers1 to create a variety of new digital instruments. By that time, seventeen 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  In this chapter, I use the word “composer” to refer to people who build new musical instruments and 
create customized controller mappings, rather than referring to them as instrument builders or 
musicians. This word choice reflects an understanding of instrument building as an act of musical 
composition (cf. Schnell and Battier 2002, discussed above). It also accommodates the fact that there 



years after Lee and Wessel’s experiments, many composers had laptops which could 
easily train neural networks in a few seconds (or even faster). They had a wealth of 
sensors and game controllers, as well as fast audio and video feature extractors from 
which to obtain information about performers’ actions. They had easy-to-use 
communication protocols such as Open Sound Control (Wright and Freed 1997) to 
patch these sensors to powerful, real-time sound synthesis software such as 
Max/MSP. However, composers did not have access to easy-to-use machine learning 
software tools. Outside of music, toolkits such as Weka (Hall et al. 2009) were 
beginning to make it easier for people without extensive machine learning expertise to 
experiment with off-the-shelf machine learning algorithms, using graphical user 
interfaces (GUIs) that did not require computer programming. However, general-
purpose GUI toolkits such as Weka did not typically support real-time applications 
such as music performance. 
 
I named my real-time machine learning toolkit Wekinator, in honor of Weka’s 
achievements in making machine learning accessible to wider groups of users, and 
also because Wekinator used Weka’s implementations of several learning algorithms. 
Fundamentally, Wekinator is a tool for building mappings like those in Figure 1. In 
real-time performance, Wekinator receives input values from sensors or other input 
sources via Open Sound Control (OSC) messages, and it sends output control values 
to any sound synthesis program (or even animation program, game engine, etc.) via 
OSC. Wekinator provides a GUI for recording new training examples, training 
supervised learning algorithms (including neural networks and linear and polynomial 
regression for creating continuous mapping functions, as well as other methods), 
running trained models, and configuring various aspects of the machine learning 
process (e.g., specifying which sensor values will be used in computing each one of 
the synthesis parameters).  

Interactive	
  machine	
  learning	
  as	
  design	
  tool	
  
In most conventional machine learning applications, the goal of using machine 
learning is to build an accurate model from the set of training examples. For example, 
the goal might be to build a model that predicts whether a medical treatment is likely 
to be effective for a new patient, using a training dataset with information about 
previous patients (the model function inputs) and the efficacy of the treatment on 
them (the model function’s output). The set of training examples is often assumed to 
be fixed, and much of the human work of applying machine learning focuses on 
finding the algorithm that most accurately models the patterns in the given training 
set. Typically, the human practitioner relies on established quantitative metrics in 
order to compare alternative models and choose the best. 
 
A composer using supervised learning to build a new instrument is faced with a very 
different type of application. She most likely does not begin the design process with 
an appropriate training set in hand—she must build a training set from scratch, 
creating examples that encode her understanding of how performer gestures or actions 
will be mapped to musical control parameters. While quantitative metrics may be 
helpful in assessing whether a model has accurately captured the patterns in the 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
may not be a clear or consistent distinction between the notions of instrument, “preset” or mapping, 
and composition. For instance, at least two of the composers discussed here (Dan Trueman and Laetitia 
Sonami) have used the same controllers or sensors to play different musical pieces, but designed a 
different gesture-to-sound mapping for each piece. 



training data, these metrics cannot always reflect all of a composer’s priorities for a 
trained mapping (Fiebrink et al. 2011). For instance, she might want the mapping to 
provide access to a range of sounds that fits the desired aesthetic of the piece, and to 
make these all accessible using a set of performer gestures that are comfortable to 
perform; or perhaps she wants to create a mapping that is easy (or difficult) for a 
performer to learn to play without making undesired sounds. The composer therefore 
cannot rely only on quantitative metrics of how well a model fits the training data to 
know whether a mapping is any good, or whether one alternative is better than 
another; she must use other means to evaluate a mapping, such as experimenting with 
it herself and listening to how it responds to her actions. 
 
If a composer is dissatisfied with the mapping built by a supervised learning 
algorithm, changing the training examples is often an effective way to improve the 
mapping. For instance, if she wants a particular sound to be more easily playable 
using her mapping, she can provide additional training examples, pairing that sound 
with easy-to-demonstrate performer gestures, then retrain to build a new model. If she 
is unhappy with the outcome, she can delete those training examples and replace them 
with different ones. When supervised learning is used to build new musical 
instrument mappings, the training examples act as the conduit through which a 
composer communicates her intention to the computer. In more conventional machine 
learning applications, however, changing the training data is not a reasonable action 
to take to improve a model, because the training dataset is assumed to be a (more or 
less) accurate representation of some phenomenon in the world. This is the case with 
the medical treatment prediction example above, where the dataset recording 
treatment outcomes for previous patients is a valuable source of information about the 
problem domain.  
 
For these reasons, Wekinator’s user interface is designed to facilitate certain 
interactions between humans and supervised learning algorithms which are not part of 
more conventional machine learning processes: Users can create new training 
examples in real-time, by demonstrating performer actions along with the sound 
synthesis parameters they would like to be associated with those actions. Users can 
evaluate trained mappings by hands-on experimentation, observing how the mapping 
changes the sound as they change the input values. Users can iteratively add and 
remove training examples, and seamlessly move between these phases of editing data, 
re-training, and evaluating the effects of changes they make to the mappings (Figure 
3). This type of approach to machine learning in which a human user steers model 
behaviours through iterative and strategic changes to the training data is often called 
“interactive machine learning” (Fails and Olsen 2003). 
 



	
  
Figure	
  3:	
  Interactive	
  workflow	
  with	
  Wekinator 

Machine Learning as Design Tool 

In the eight years since developing Wekinator, I have observed it being used to create 
new instruments by dozens of professional composers, computer music and computer 
science students, “hackers” and “makers,” and people with disabilities, and I have 
also used it in my own compositions and performances (Figures 4–6). Previous 
publications describe how I have used participatory design processes and surveys 
(Fiebrink et al. 2010), workshops (Katan et al. 2015), interviews (Fiebrink 2011), 
analysis of software logs (Fiebrink et al. 2011), and reflection on my own work 
(Fiebrink et al. 2009) to understand how people use Wekinator and why. This work 
all suggests that the most important benefits of Wekinator pertain to the way that it 
changes the design process, facilitating the creation of new kinds of instruments while 
also making design accessible to new people. 

	
  
Figure	
  4:	
  Laetitia	
  Sonami	
  plays	
  the	
  Spring	
  Spyre,	
  an	
  instrument	
  she	
  created	
  with	
  Wekinator	
  (2015) 



	
  
Figure	
  5:	
  The	
  Sideband	
  ensemble	
  performs	
  Anne	
  Hege's	
  composition	
  From	
  the	
  Waters,	
  in	
  which	
  
Wekinator	
  was	
  used	
  to	
  create	
  several	
  GameTrak-­‐controlled	
  instruments 

 

	
  
Figure	
  6:	
  Nets0	
  was	
  one	
  of	
  the	
  first	
  pieces	
  written	
  for	
  Wekinator,	
  and	
  it	
  requires	
  performers	
  to	
  train	
  
new	
  mappings	
  for	
  their	
  own	
  controllers	
  live	
  on	
  stage.	
  

Speeding	
  up	
  implementation	
  of	
  complex	
  mappings	
  
 
One of the most immediately apparent benefits of using Wekinator to build mappings 
is the speed and ease with which composers can build a new instrument and modify it. 
Once the sensors or input devices are sending data to Wekinator via OSC, and a 
sound synthesis program is ready to receive control messages from Wekinator, the 
process of training a machine learning algorithm to create a mapping from input 
values to sound can take as little as a few seconds. This is true even for complicated, 
many-to-many mappings (the default type of mapping created by Wekinator) in which 
each sound control parameter is influenced by many input dimensions in possibly 
non-linear ways. Thus, using supervised learning encourages the creation of mapping 
types that have been shown to be more engaging, learnable, and controllable than 
those that are easiest to create using coding (Hunt and Kirk 2000). 

Supporting	
  prototyping	
  and	
  exploration	
  
 



Reducing the time it takes to create a viable instrument does not necessarily mean that 
composers using Wekinator spend less time building instruments. Instead, composers 
I have observed typically use their time to make many different variants of an 
instrument. They iterate many times, making slight or dramatic changes to the 
training data, as well as to the input devices and the sound synthesis software. 
Sometimes, these iterations are attempts to fix a problem with the mapping or 
otherwise improve the instrument according to a clear set of criteria. In these cases, 
changing a supervised learning model via changes to the training data can be a much 
faster way to fix a mapping or adapt it to a change in input or sound synthesis, 
compared to changing manually-written programming code. 
 
However, these iterations are often the result of the composer intentionally exploring 
alternative designs in an effort to better understand what sort of instrument he really 
wants to make and how to make it. Prototyping and iterative refinement are 
recognized as activities that are critical to design in any domain (Resnick et al. 2005; 
Buxton 2010). Prototypes are physical manifestations of design ideas, and 
experimentation with a prototype helps a designer better understand the merits of the 
idea as well as potential ways to improve it. By reducing the time and effort needed to 
instantiate a prototype for a new idea, Wekinator encourages prototyping and allows 
composers to explore more ideas, and more refined ideas, over the process of building 
an instrument. In contrast, several composers I surveyed described how creating 
instruments by writing code often led to them using instruments they were unhappy 
with: changing a design using code incurred enough time and effort that they were 
discouraged from exploring new ideas, and they chose instead to accept instruments 
that limited them in problematic ways. 

Supporting	
  surprise	
  and	
  discovery	
  
 
Creating an instrument can be understood as an example of what design theorist Horst 
Rittel (1972) described as a “wicked” design problem: the definition of the problem 
(What sort of instrument should I make? How will it be played, and what sort of 
sounds will it produce?) is not known in advance. It is only by designing the 
instrument that the problem becomes clear: the final instrument design embodies both 
the composer’s final understanding of what the goals of the design process are, as 
well as the method of achieving them.  
 
Composers using Wekinator to build instruments have often intentionally used 
machine learning in ways that will help them refine this “problem definition,” to 
evolve their understanding about what kinds of instruments are possible to build, and 
what kind of instruments they ultimately want. A common strategy for a composer 
creating a new mapping with Wekinator is to “sketch out” the rough boundaries of the 
gestural and sonic space using the initial training dataset, then discover what sounds 
and gesture-sound relationships the supervised learning algorithm builds into the 
mapping trained from this dataset. A composer can construct this first training set by 
choosing a set of sounds she thinks she might want to play using the instrument, and a 
set of different input actions that span a comfortable range of control, then pair these 
together in a small number of training examples. A mapping created from these 
examples immediately allows the composer to discover new sounds that might exist 
in between and beyond the input values (e.g., gestures) she placed in the training set. 
When using this strategy, experimenting with the resulting mapping is really a process 



of discovering unexpected sounds and behaviors, rather than “testing” whether the 
mapping has learned the “right” behaviors from the given training examples. One 
Wekinator user described his rationale for this process thus: “There is simply no way 
I would be able to manually create the mappings that the Wekinator comes up with; 
being able to playfully explore a space that I’ve roughly mapped out, but that the 
Wekinator has provided the detail for, is inspiring.”  
 
Wekinator’s support of interactive supervised learning allows composers to edit 
training examples to modify the mapping in response to the discoveries they then 
make. When a composer discovers a new sound she likes, she can reinforce this sound 
in her instrument by adding new training examples with this sound into the training 
set. When she discovers a sound she doesn’t like, she can change the training 
examples in that region of the input gesture space to correspond to a more favorable 
sound. 
 
Having access to surprise and discovery can fundamentally change the way a 
composer understands their relationship to the computer as well as the qualities of the 
instrument that they build. In particular, professional composers who have used 
Wekinator in their work have described how it allows them to move away from a 
paradigm of control over a computer into one where the computer is a collaborator. 
Laetitia Sonami, who has been using Wekinator for five years in the development of 
the Spring Spyre (Figure 4), says in a lecture about her use of machine learning: 
 

“…in a way, you don’t want the instrument to perform like a well-trained 
animal circus, you kind of want it to be a little wild, and you want to adapt 
to it somehow, like riding a bull... I think the machine learning allowed 
more of this…fun of exploring, instead of going ‘I have to have a result 
right away, this thing is going to do that,’ and then leaving it at that. This… 
allows for a kind of flexibility that I think is essential for artists and 
musicians to… open up some kind of unknown and really create… things 
that excite you. I’m not sure about exciting the audience, but actually 
hopefully exciting the person who’s making it, at least! And then you hope 
that it gets conveyed.” (Sonami 2016) 

Supporting	
  embodied	
  design	
  practice	
  
 
Another critical difference between designing instruments using machine learning and 
designing instruments by writing code is that composers are able to use their bodies 
directly in the design process. Instead of reasoning about what sort of movement-
sound relationships he might want in an instrument, then deriving a mathematical 
function that he thinks will facilitate those relationships in a mapping, a composer can 
simply demonstrate examples of movements and movement-sound pairs that feel and 
sound right to him.  
 
The ability to draw on embodied understanding of movement and sound in the 
process of designing an instrument is vitally important to many composers who work 
with Wekinator; the use of the body changes both the experience of composition and 
the type of instrument that can be created. Composer Michelle Nagai used the 
Wekinator to create an instrument, the MARtLET, from a piece of tree bark with 
embedded light sensors. She describes her experience: 



 
“I have never before been able to work with a musical interface (i.e. the 
MARtLET) that allowed me to really ‘feel’ the music as I was playing 
it and developing it. The Wekinator allowed me to approach composing 
with electronics and the computer more in the way I might if I was 
writing a piece for cello, where I would actually sit down with a cello 
and try things out.” (Excerpt from interview, published in Fiebrink 
2011) 

 
Composer Dan Trueman, who used Wekinator to create game controller instruments 
for his piece CMMV writes:  

“With [the Wekinator], it’s possible to create physical sound spaces where the 
connections between body and sound are the driving force behind the 
instrument design, and they *feel* right. It’s very difficult to do this with 
explicit mapping for any situation greater than 2–3 features/parameters [i.e., 
inputs and outputs], and most of the time we want more than 2–3 
features/parameters, otherwise it feels too obvious and predictable. So, it’s 
very difficult to create instruments that feel embodied with explicit mapping 
strategies, while the whole approach of [the Wekinator], especially with 
playalong, is precisely to create instruments that feel embodied. I like to think 
of digital instrument building as a kind of choreography. Choreographers are 
hands-on—they like to push, pull, hold their dancers, demonstrate how things 
should go, in order to get what they want, and the resistance and flow of their 
dancers in turn feeds back into their choreography. This is quite similar to the 
approach that [the Wekinator] engenders, and radically different than what 
explicit mapping strategies [i.e., mappings created with programming] 
enable.” (Excerpt from personal correspondence, published in Fiebrink 2011) 

Supporting	
  accessibility	
  
 
Wekinator allows people to build new instruments without programming. In addition 
to making the instrument-building process faster for programmers, this means that 
non-programmers have the ability to create new instruments for themselves and others 
to perform. As an educator, this has been helpful in teaching students about computer 
music performance and interaction design. Students can easily explore different 
designs, start to reason about design trade-offs, and experience the satisfaction of 
building and performing with a new instrument even if they are not confident 
programmers (Morris and Fiebrink 2013). 

Discussion: Wekinator as Meta-Instrument 

I describe Wekinator as a meta-instrument: an instrument for creating instruments 
(Fiebrink et al. 2009). Like anyone learning a new instrument, users of Wekinator 
must begin by mastering the fundamental techniques of training, testing, and 
modifying models, but they soon reach a point where their attention is no longer on 
the algorithms but on using them to achieve a creative vision. Building an instrument 
with Wekinator then becomes, fundamentally, a real-time process of self-expression, 
sculpting a unique space of musical possibilities that will afford creative engagement 



by oneself and/or others. In designing this space, just like in performing an 
instrument, a creator draws on a foundation of established musical practices while 
also seeking to imbue his work with an individual style, all the while being influenced 
by affordances of the tool which subtly encourage certain idiomatic ways of working 
and not others.  
 
Understanding composition tools as instruments—whose affordances are vitally tied 
to the musical potential of the instruments created with them—invites us to bring 
aesthetic and philosophical considerations pertaining to the role of computers in 
musical performance to bear on the analysis and creation of composition tools as well. 
Composers have written of the value of creating “potential for change in the behaviors 
of computer and performer in their response to each other” (Moon 1997), of interfaces 
in which “interaction transcends control” (David Rokeby as described by Rowe et al. 
1993), becoming more “like conversing with a clever friend” (Chadabe 1997, p.287) 
or “sailing a boat on a windy day and through stormy seas” (Drummond 2009).  
 
My work with composers suggests that a meta-instrument that supports these 
interactive qualities, as Wekinator does, can make the process of composition more 
engaging and musically satisfying. A meta-instrument that encourages playful 
exploration and discovery can help a composer navigate the wicked design problem 
of instrument building, sculpting the instrument to better meet her goals while 
simultaneously evolving those goals in response to the instrument. When the process 
of exploration and engagement is physical, rather than abstracted into mathematical 
functions and programming code, composers are able to engage in tight, enactive 
(Wessel 2006) action-feedback loops which further inform their embodied 
understanding of the instrument and their own musical aims. 
 
Supervised learning algorithms are not the only computational tools which might give 
rise to these interactive qualities during instrument building or other compositional 
activities, and Wekinator’s user interfaces are far from the only way to link human 
creators to supervised learning processes. Alternative approaches might facilitate 
faster exploration of more diverse instrument designs, or take advantage of additional 
information that composers could communicate through the body (such as examples 
of comfortable movement sequences or evocative sounds) without requiring a 
composer to format these as supervised learning training examples. Particular 
interaction qualities might be intentionally designed into tools, for instance making 
the “seas” of interaction even stormier with algorithms that make it difficult for 
composers to build instruments similar to those they have built before, or that 
introduce indeterminacy into more aspects of the tool. Those of us who are composers 
of meta-instruments have many new ideas to explore, ourselves, as we design new 
spaces of musical interactions for the composers who use our tools. 
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