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Abstract 
 

In order to identify a perceptually valid measure of rhythm complexity, we used five 
measures from information theory and algorithmic complexity to measure the complexity of 
48 artificially generated rhythmic sequences. We compared these measurements to human 
implicit and explicit complexity judgments obtained from a listening experiment, in which 32 
participants guessed the last beat of each sequence. We also investigated the modulating 
effects of musical expertise and general pattern identification ability. Entropy rate was 
correlated with implicit and explicit judgments, Kolmogorov complexity was highly 
correlated with explicit judgments, and scores on the implicit task were correlated with self-
assessed musical perceptual abilities. A logistic regression showed main effects of entropy 
rate and musical training, and an interaction between entropy rate and musical training. These 
results indicate that information-theoretic concepts capture some salient features of human 
rhythm perception, and confirm the influence of musical expertise in the perception of 
rhythm complexity. 

Keywords: Rhythm Perception; Rhythm Complexity; Information Theory Measures; 
Musical Expertise  
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1. Introduction  
 

The notion of complexity in art has been of interest to research in psychology for 
more than a century. Following Wundt’s idea that the enjoyment of a stimulus depends on its 
complexity (Wundt, 1896), a series of studies investigated the relationship between 
complexity and aesthetic perception. In this endeavor, various ways of assessing complexity 
have been used. For instance, in his famous study leading to the finding of an inverted-U 
relationship between hedonic value and arousal potential, the visual stimuli used by Berlyne 
(1970) were arbitrarily assigned to a category of complexity based on their background and 
on the number of human figures being featured. In the musical domain, stimulus complexity 
has been manipulated by varying the loudness, pitch and duration of tones in tone sequences 
(Vitz, 1966) or by increasing the variety of chords and the amount of syncopations (Heyduk, 
1975). Furthermore, complexity has sometimes been quantified by asking the participants to 
provide subjective ratings of complexity (Heyduk, 1975; North & Hargreaves, 1995). All 
these studies reported an inverted-U relationship between liking and complexity, and 
highlighted the modulatory effects of repeated exposure and familiarity, musical training, and 
individual preference for a specific level of complexity. 
 
 The research presented in this paper focused on identifying a perceptually valid 
measure of rhythm complexity, as opposed to the subjective or arbitrary measures presented 
so far. There were several possible measures of complexity to consider. Some of them have 
been derived directly from music theory, such as measures of rhythmic syncopation (Fitch & 
Rosenfeld, 2007; Gomez, Thul, & Toussaint, 2007), or from human performance, such as 
measures of rhythm reproduction ability (Essens, 1995; Povel & Essens, 1985). Other 
measures benefit from a solid information-theoretic grounding, and have been shown to 
capture various features of the cognitive processing of music. For instance, Shannon entropy 
(Shannon, 1948) was found to be a good predictor of the amount of attention directed to a 
single voice in a piece of music containing multiple voices (Madsen & Widmer, 2006). 
Hansen and Pearce (2012) reported that Shannon entropy predicts the uncertainty of probe 
tones in melodies. Moreover, they identified an entropy-by-expertise interaction in the ratings 
of uncertainty, showing once again a difference in how musicians and non-musicians process 
complex music. Another candidate, the predictive information rate, is a measure of how 
much an event within a sequence reduces the uncertainty about the following events, while 
taking into account the information content of all the previous events (Abdallah & Plumbley, 
2009; 2010; 2012; Bialek, Nemenman, & Tishby, 2001). Madsen and Widmer (2006) also 
mentioned the possible suitability of measures based on compression algorithms, such as 
LZ78 (Ziv & Lempel, 1978) or LZW (Welch, 1984). Indeed, LZ compressibility has been 
empirically tested for its perceptual validity as a measure of human rhythm complexity by 
Shmulevich and Povel (2000). The measure didn’t perform well, but the authors attribute this 
to the short length of the sequences used in their experiment, and suggest that LZ 
compressibility is likely to perform better with longer sequences. Moreover, LZ78 is able to 
provide an approximation of Kolmogorov complexity (Kolmogorov, 1965; Li & Sleep, 
2004), a measure of randomness that has been successfully used in order to cluster melodies 
or music in the MIDI format in similar groups, based on their compressibility (Cilibrasi, 
Vitanyi, & de Wolf, 2004; Li & Sleep, 2004; 2005). 
  The relationship between data compression and aesthetics is supported by 
Schmidhuber’s (2009) theoretical model. He compares the human mind to a self-improving, 
computationally limited observer, and approaches the question of complexity from an 
algorithmic point of view: he states that beauty comes from the challenge of discovering 
patterns and the ability to compress new data, i.e. a moderately complex stimulus will be 
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perceived as beautiful because the strategies developed to understand that stimulus will 
facilitate the subsequent understanding of similar stimuli. According to him, the limitations 
of the mind are a determining aspect of what an observer considers as enjoyable or not. It is 
therefore possible to consider that individual differences in pattern identification abilities 
might modulate the perception and enjoyment of complex stimuli. Moreover, he argues that 
the perceived complexity of a stimulus changes with exposure, in accordance with Berlyne’s 
(1970) and Heyduk’s (1975) findings.  
 

For the purpose of this study, we selected five measures with a potential to serve as 
perceptually valid measures of rhythm complexity: Shannon entropy, entropy rate, excess 
entropy, transient information, and Kolmogorov complexity. These measures have firm 
theoretical foundations and are defined at a high level of abstraction and generality, i.e. they 
may be used to characterize the complexity of structures in any domain, by quantifying the 
complexity of a sequence of symbols, irrespective of what the symbols stand for. 

The most fundamental measure is the Kolmogorov complexity, usually denoted K (Li 
& Vitanyi, 2008). It is defined as the length of the shortest computer program that can 
generate a given symbol string. It is convenient, but not necessary, to use a binary alphabet in 
which symbol strings are sequences of 0’s and 1’s. K measures the complexity of a single 
object. A long and very predictable sequence (e.g. 1, 1, 1, …,1) could be produced by a very 
short program and therefore has a small K-complexity. Such a sequence is highly 
compressible. On the other hand, a random sequence has a large K-complexity because it can 
only be produced by a long program. A random sequence has no structural property that 
enables compression. K-complexity therefore measures randomness. K-complexity has the 
disadvantage of being incomputable, although upper bounds can be estimated by the degree 
of compressibility with respect to a particular compressor. 

Shannon entropy, H, measures the information content of a typical symbol string from 
a particular source. It is given by the formula 

 
𝐻 = − 𝑝!  𝑙𝑜𝑔(𝑝!)  (1) 

 
where 𝑝! is the probability of the i’th symbol (Cover & Thomas, 2006). Although entropy is a 
function of a probability distribution and not of a single object, it can be computed for a 
single long message under the assumption that the distribution of symbols in the message 
matches the underlying probability distribution. Once more it ranges from small values for a 
very predictable sequence to high values for incompressible sequences.  

The entropy rate, h, is the limit of the Shannon entropy per symbol of substrings of 
increasing length L. It captures the inherent randomness of a sequence when all correlations 
over longer and longer sub-sequences have been taken into account. It is zero for any 
repetitive (periodic) sequence and of value one for a sequence of 0’s and 1’s generated by the 
toss of a fair coin. Denoting the entropy of substrings of length L by H(L), then 

 

ℎ =   lim
! →!

𝐻(𝐿)
𝐿  (2) 

 
The excess entropy, denoted E, has been described by numerous researchers and has 

been given various names (effective measure complexity, stored information, predictive 
information, Renyi entropy of order 1), although the mathematical definition is identical. It is 
defined as 
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𝐸 =   lim
!→!

𝐻 𝐿 − ! 𝐿 (3) 
 
If H(L) acquires the asymptotic form 𝐻 𝐿 → 𝐻! = !ℎ𝐿 + !  then ! = !𝐻!(0) . Excess 
entropy has the advantage that it can distinguish repetitive patterns of different period. It has 
various interpretations. It may be related to the intrinsic memory of the source of the 
sequence, or to the mutual information between two semi-infinite halves of the sequence. It is 
zero for a random sequence, and proportional to the logarithm of the period of a repetitive 
sequence. 

The final measure that we consider in this paper, the transient information, T, has 
been proposed as a means of distinguishing between sequences of the same period (and hence 
of identical h and E) and entropy. It measures the difficulty in synchronizing to a periodic 
process and captures a structural property that E fails to pick up (Crutchfield & Feldman, 
2003). In terms of the asymptotic length-L entropy it is calculated as 

 

𝑇 =   𝐻! 𝐿 − ! (𝐿)
!

!!!

 (4) 

 
In summary, the substring entropies H(1), H(2), … represent increasingly long range symbol 
correlations. The entire set of substring entropies can be characterized by three quantities h, E 
and T. 
 

We used these five measures in an experiment aimed at capturing implicit (or 
objective) rhythm complexity, as well as explicit (or subjective) rhythm complexity, and we 
investigated two suspected modulatory effects of rhythm perception: musical expertise 
(Hansen & Pearce, 2012; North & Hargreaves, 1995; Vitz, 1966) and pattern identification 
ability (Schmidhuber, 2009). In the following, we used a broad meaning for ‘rhythmic 
sequence’, characterizing the general enfolding of binary events in time. 
 

2. Method 
 
2.1. Participants 

 
32 participants (15 women and 17 men), ranging in age from 21 to 57 years (M = 26.9 

years, SD = 6.9 years) were recruited through various social networks and among graduate 
students at Goldsmiths, University of London. Most of the participants had received some 
musical training at some point in their lives (M = 4.67 years of musical training, SD = 3.46 
years). 
 
2.2. Materials  

 
We selected 16 different generative algorithms with a diverse range of complexity 

values on the five selected complexity measures (see Appendix A for details of the generative 
algorithms). Some algorithms produced easily identifiable patterns, but we deliberately 
covered a wide range of complexity values in order for most of the stimuli to be hard to fully 
apprehend. We generated a sequence of 104 symbols (1’s and 0’s) from each algorithm, and 
randomly extracted 3 sub-sequences of 50 symbols from each sequence, with the following 
restriction: the sub-sequences extracted from the same generative algorithm could not all end 
with the same symbol. The last symbol was removed from each of the 48 resulting sub-
sequences and kept in a separate file in order to be used as the answer key for the implicit 
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task. SuperCollider (Wilson, Cottle, & Collins, 2011) was then used to replace the 1’s by 
drum hits1 and the 0’s by rests, all representing quarter notes at 150bpm. Each sub-sequence 
was therefore almost 20 seconds long. Extracting three sub-sequences for each generative 
algorithm was a compromise, aimed at balancing the requirements of our analysis with the 
overall length of the experiment. We generated two additional training sequences, of 20 
symbols each, in order to accustom the participants to the experimental procedure. 

Due to the nature of the task, which required accurate following of the beat sub-
sequences, we also provided the participants with a visual representation of the sub-
sequences. We designed a beat visualization tool using PowerPoint and iMovie (Fig. 1), 
which consisted of a spiral made of 50 white dots. When a sub-sequence was played, a black 
dot gradually filled the spiral, synchronized with the beat, until it reached the center, at which 
point a question mark appeared in order to make sure the participants knew exactly which 
beat they needed to provide a judgment for.  
 

 
Fig. 1. Beat visualization tool at different stages of a sub-sequence. The first spiral shows a 
sub-sequence being played: the black dot moves along the spiral, synchronized with the beat. 
The second spiral shows the end of a sub-sequence: was the last beat supposed to be a hit or a 
rest? 
 

We used the self-report questionnaire of the Goldsmiths Musical Sophistication 
Index, or Gold-MSI (Müllensiefen, Gingras, Musil, & Stewart, 2014), in order to investigate 
the effects of musical expertise. The questionnaire allows the calculation of a general score of 
musical sophistication as well as individual scores for five subscales. For the purpose of this 
study, we only used the subscales ‘Perceptual Abilities’ and ‘Musical Training’, as well as 
the General Musical Sophistication, because they are most closely related to the individual 
differences effects that previous studies have found (Hansen & Pearce 2012; North & 
Hargreaves, 1995; Vitz, 1966). 

Finally, we selected a shortened version of the Raven’s Progressive Matrices (RPM), 
the Advanced Progressive Matrices: Set I (APM1), to assess the participants’ ability to 
identify and reason with visual patterns. The RPM is a widely recognized test of pattern 
detection, and although it is often used as a predictor of ‘general intelligence’, its initial 
purpose was to measure eductive ability, which is the ‘meaning-making ability’ that allows 
one to make sense of more or less chaotic stimulus configurations (J. Raven, J. C. Raven, & 
Court, 1998). 

 
                                                        
1 We used a sampled tom-tom recording uploaded by the user ‘quartertone’ on freesound, retrieved from 
http://www.freesound.org/people/quartertone/sounds/129946/ 



RHYTHM COMPLEXITY 7 

2.3. Procedure 
 

Each participant was tested individually in a quiet lab environment. The participants 
were first shown the 2 training sequences as many times as they wanted, and were given 
instructions on how to complete the answer sheet. They were requested, for each sub-
sequence, to indicate whether the last beat was supposed to be a hit or a rest (implicit task), 
and were subsequently asked to provide a rating on a 7-point scale reflecting the easiness of 
indicating whether the last beat was supposed to be a hit or a rest (explicit task).  

Once the answer sheet was completed for the training sequences and once the 
experimental procedure was fully understood, the participants were told that they should try 
to guess whether the last beat was a hit or a rest if they were not sure about their answer. 
Participants were also told that each sub-sequence would only be played once. They were 
then shown the 48 sub-sequences in a randomized order, with a 5 seconds pause between 
each sub-sequence in order to leave enough time to complete the answer sheet. 

The participants were then given instructions to complete the APM1, with a 10 
minutes time limit, and the self-report questionnaire of the Gold-MSI, with no time limit. 
 
2.4. Results 
 

We excluded one participant from the data analysis because that participant gave 
strictly alternating responses of ‘hit’ and ‘rest’ for the last 43 sub-sequences of the implicit 
task, which we did not consider as a valid effort to guess the last beat of each sub-sequence. 

For three of the generative algorithms, the three extracted sub-sequences differed 
significantly from each other in terms of the participants’ scores, as revealed by a Bonferroni-
corrected Chi-Square test. Hence for these three algorithms, the extracted sub-sequences did 
not seem to represent a homogeneous sample in terms of their perceptual complexity. The 
sub-sequences from the following generative algorithms were therefore excluded from the 
data analysis: P12.88 (χ2(2, N = 93) = 14.2, p = .001, EVEN (χ2(2, N = 93) = 19.2, p <.001), 
and QP-random (χ2(2, N = 93) = 15.7, p <.001). 

For the remaining 13 generative algorithms, we conducted Bonferroni-corrected 
correlation tests between the complexity values computed with each of the five selected 
measures. The results are shown in Table 1. We then averaged the participants’ scores across 
each sub-sequence for the implicit task (M = 60.8% correct, SD = 16.3%) as well as the 
explicit task (M = 3.76 easiness rating on a 1-7 scale, SD = 0.77). Implicit and explicit scores 
were moderately but significantly correlated across participants (r(37) = .457, p = .003), 
demonstrating that the sub-sequences that were perceived as easier to solve were indeed 
solved more successfully.  

 
We then averaged the participants’ scores across each generative algorithm for the 

implicit task as well as the explicit task. Bonferroni-corrected one-tailed correlation tests 
were conducted between the information-theoretic complexity values of the algorithms and 
their implicit and explicit scores, to test the following hypothesis: Sequence complexity, as 
measured by the five complexity measures, correlates negatively with participants’ implicit 
scores as well as explicit scores. The correlation results are shown in Table 2. Both entropy 
rate and Kolmogorov complexity are significantly negatively correlated with explicit scores, 
and entropy rate is also negatively correlated with implicit scores. For both complexity 
measures, the magnitude of the correlation is greater for the explicit scores than for the 
implicit scores. 
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Table 1 
 
Correlations between Complexity Values of Generative Algorithms 

* p < .005. ** p < .001. 
 
Table 2 
 
Correlations between Complexity Values of Generative Algorithms and their Implicit and 
Explicit Complexity 
Complexity measure Implicit scores Explicit scores 
Shannon entropy -.271 -.198 
Entropy rate -.670* -.909** 
Excess entropy .132 .030 
Transient information .097 .110 
Kolmogorov complexity -.592 -.973** 

* p < .01. ** p < .001.  
 

We also aggregated responses at participant level to obtain an overall performance 
score on the implicit task. All participants with an overall performance score below chance 
level were assigned the chance level score (50%). We ran Bonferroni-corrected correlation 
tests between the participants’ performance scores on the implicit task and their scores on the 
APM1 and three subscales from the Gold-MSI self-report inventory (Perceptual Abilities, 
Musical Training and General Sophistication). The participants with a higher score on the 
Perceptual Abilities subscale performed better on the implicit task (r(29) = .478, p = .007). 
There was no significant correlation with Musical Training (r(29) = .371, p = .040), General 
Sophistication (r(29) = .266, p = .149), or with the scores on the APM1 (r(29) = .135, 
p = .467), although it is worth mentioning that a large proportion of the participants obtained 
the maximal score on the APM1, which could have led to a lack of correlation due to a 
ceiling effect. 

In order to assess any potential interactions between sequence complexity (as assessed 
by entropy rate, the complexity measure that correlates the most strongly with implicit 
scores) and musical training, we computed a binomial mixed effect model with musical 
training and entropy rate as fixed effects, participant and generative algorithm as random 
effects, and sub-sequence as a nested random effect. The results are presented in Table 3. As 
expected, there was a significant main effect of entropy rate. Moreover, there was a 
significant main effect of musical training and a significant interaction between entropy rate 
and musical training. Similar results were obtained in a model using Kolmogorov complexity 
instead of entropy rate (Appendix B). 

 
 
 
 

Complexity measure Shannon 
entropy 

Entropy 
rate 

Excess 
entropy 

Transient 
information 

Kolmogorov 
complexity 

Shannon entropy 1 .207 .321 .419 .272 
Entropy rate .207 1 -.347 -.388 .929** 
Excess entropy .321 -.347 1 .861** -.088 
Transient information .419 -.388 .861** 1 -.096 
Kolmogorov complexity .272 .929** -.088 -.096 1 
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Table 3 
 
Mixed Effects Model of the Influence of Musical Training and Entropy Rate on Implicit Task 
Performance, with Participant, Generative Algorithm and Sub-Sequence as Random Effects. 
 Estimate SE z-value p-value 
(Intercept) 0.4840 0.1213 3.990 < .001 
Entropy rate -0.2639 0.1151 -2.293 .0219 
Musical training 0.1493 0.0721 2.070 .0384 
Entropy rate x Musical 
training -0.1490 0.0609 -2.445 .0145 

Note. Sub-sequences were coded as 1 for correct answer and 0 for incorrect answer. 
 

3. Discussion 
 
This study assessed the perceptual validity of five different general measures of 

complexity by comparing formal complexity measurements to explicit and implicit 
behavioral responses of human listeners on a novel rhythm perception task. Experimental 
results showed that implicit and explicit behavioral responses correlated moderately, 
indicating that sequences that are perceived as more complex are indeed less predictable. Out 
of the five assessed complexity measures, only entropy rate and Kolmogorov complexity 
were significantly correlated with explicit responses that reflect the subjectively perceived 
complexity of rhythms. In addition, only entropy rate was significantly correlated with the 
participants’ implicit task responses. The entropy rate of a sequence can be interpreted as the 
departure from periodicity. For instance, a periodic sequence that has each symbol 
randomized with a small probability p has an entropy rate that grows with p. The results 
therefore suggest that the perception of rhythm complexity scales with departure from 
periodicity. It is worth mentioning that entropy rate and Kolmogorov complexity per symbol 
of the generative algorithms were highly correlated in our study. We observe that these 
measures are fundamentally measures of the randomness of infinite length sequences; 
entropy rate and the Kolmogorov complexity per symbol scale from small (ordered and 
almost periodic sequences) to large (incompressible and random sequences). Entropy rate has 
not been investigated in a psychological context so far, but the strong correlation of 
Kolmogorov complexity with explicit responses confirms suggestions by Shmulevich and 
Povel (2000). More generally, our results fit within the growing body of research that 
provides evidence that salient features of music can be captured by formal measures of 
complexity (Cilibrasi et al., 2004; Essens, 1995; Fitch & Rosenfeld, 2007; Gomez et al., 
2007; Hansen & Pearce, 2012; Li & Sleep, 2004; 2005; Madsen & Widmer, 2006; Povel & 
Essens, 1985; Shmulevich & Povel, 2000).  

However, we only found low correlations between participants’ responses and excess 
entropy, transient information and Shannon entropy. Shannon entropy has previously been 
found to capture the attention given to a specific melodic line in a piece of music (Madsen & 
Widmer, 2006) or the uncertainty of probe tones in melodies (Hansen & Pearce, 2012). In 
comparison with our findings, this might indicate that Shannon entropy may be better suited 
for capturing the complexity of pitch sequences rather than rhythmic sequences. It is worth 
remarking that Shannon entropy, H(1), is a function of a probability distribution and, unlike 
the other measures considered here, is not sensitive to symbol order. We would expect that a 
valid measure of rhythm complexity should take into account the relative positions of beats, 
and not just their probability distribution. The low correlation between participants’ 
responses and excess entropy (which distinguishes sequences of different periodicity) and 
transient information (which differentiates between sequences of the same period) further 
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indicates that rhythm complexity is perceived as a departure from periodicity, no matter what 
the periodicity actually is (although sequences of very long periodicity were not included in 
our study). 

 
Our results also confirm that effects of musical expertise, as suggested by the 

correlation of the ‘Perceptual Abilities’ dimension of the Gold-MSI with participants’ scores 
on the implicit task, and by the main effect of ‘Musical Training’ dimension of the Gold-
MSI. ‘Perceptual Abilities’ is defined as the “self-assessment of a cognitive musical ability 
[…] related to music listening skills”, and ‘Musical Training’ is defined as the “extent of 
musical training and practice” and “degree of self-assessed musicianship” (Müllensiefen et 
al., 2014). The significant effects of individual perceptual ability and musical training are in 
line with Schmidhuber’s (2009) theory, which states that the understanding of a complex 
stimulus depends on the previous acquisition of strategies to understand similar stimuli. This 
is also in agreement with the findings reported by Hansen and Pearce (2012), North and 
Hargreaves (1995) and Vitz (1966) about the effects of musical abilities on the perception of 
music complexity. Hansen and Pearce (2012) also found an entropy-by-expertise interaction 
in their results. We identified a similar interaction between entropy rate and musical training 
in the results of the implicit task, which suggests that domain-specific expertise provides an 
advantage when dealing with low-randomness stimuli, and becomes detrimental as 
randomness increases. 
 

As stated above, Kolmogorov complexity and entropy rate both essentially measure 
the randomness of a sequence. Therefore, a possible interpretation of our results is that 
sequences that are less random (e.g. rhythmic patterns with a short period length) are easier to 
process because they can be processed within the limits of human working memory capacity. 
The working memory model, as proposed by Baddeley and Hitch (1974; for a detailed 
description of auditory working memory, see also Baddeley & Logie, 1992), includes 
components that are relevant for musical processing. Lee (2004) found evidence for the 
existence of a specific rhythmic component in working memory, and Jerde, Childs, Handy, 
Nagode and Pardo (2011) showed that working memory for rhythm activated different brain 
areas compared to passive listening of rhythms. Based on these results, it is reasonable to 
assume that our experimental task of completing rhythmic sequences could indeed be 
recruiting cognitive processes associated with working memory. This working memory 
interpretation of our results can also accommodate for the modulatory effect of musical 
expertise, as there is evidence for increased working memory capacity due to domain-specific 
expertise (Chase & Ericsson, 1982), and for a relationship between auditory working memory 
abilities and the extent of musical training (Bailey & Penhune, 2010). 
 

However, it is important to remember that the results of this study rely on certain 
modeling assumptions. We assumed that prediction accuracy for the last beat of a sequence 
can serve as a cognitively adequate implicit measure of rhythm complexity. While this 
assumption is debatable, it seems to receive at least some support by the correlation between 
implicit and explicit scores. Moreover, we assumed that complexity values as computed by 
the five complexity measures are comparable when computed for large sequences (infinite 
length complexity or over 107 symbols) and for shorter sub-sequences (50 symbols). This is 
due to our choice of using some non-periodic sequences and to the difficulty of defining 
complexity for short, non-periodic, but structured sequences. We tried to mitigate the effects 
of the instances where this assumption does not hold by discarding sub-sequences from 
algorithms that yielded inconsistent scores on the implicit task. Finally, we decided to use 
generative algorithms for the production of the rhythmic sequences in order obtain a large 



RHYTHM COMPLEXITY 11 

sample of experimental stimuli within a controlled parameter space. Of course, we are fully 
aware of the fact that the algorithmically generated sequences probably lack ecological 
validity and are only remotely related to rhythmic patterns from real music. However, having 
established the similar behavior of entropy rate and Kolmogorov complexity compared to 
human judgments on this set of artificially generated stimuli, an extension of this study could 
use rhythmic sequences taken from existing music pieces and apply formal complexity 
measurements in a similar way. A follow-up experiment should also revisit the effect of 
individual differences in general pattern recognition ability but should aim to avoid the 
ceiling effect on the APM1 task, for example by using the second and longer set of the 
Matrices.  
 

Finally, we acknowledge that the aesthetic experience of music certainly involves 
more aspects than just the complexity of the stimulus, such as ability to trigger emotions as 
well as the effects of enculturation, semantic context, stylistic preferences and many more. 
However, the main findings of this study that Kolmogorov complexity and entropy rate are 
perceptually valid measures of rhythm complexity offers the possibility to study the aesthetic 
perception of rhythm in a rigorous and quantitative manner which can contribute to our 
understanding of the cognitive processes that underpin the judgment of the beauty in music. 
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Appendix A  
Generative Algorithms and Associated Complexity Values 

 
A very large number of generative sequences have been defined and examined in the 

mathematical and scientific literature (the Online Encyclopedia of Integer Sequences,2 or 
OEIS, has over 220000 entries). We devised four broad groupings and collected, as far as 
possible, representative sequences which have known H, h, E, and T. We computed our own 
upper bound estimates to the Kolmogorov complexity by compressing sequences of length 
107 with the Lempel-Ziv 1978 algorithm and counting the number of codewords per symbol 
(Li & Sleep, 2004). We computed h, E and T wherever values were not available by 
analyzing generative sequences of 107 symbols. The sequences were all chosen for ease of 
generation; the algorithms in each case amounted to only a few lines of Java code. 

The groupings reflect the means of generation and overall statistical properties of the 
sequences. We have deliberately avoided any sequence of musical origin; our sequences are 
purely abstract entities.  
 
1. Deterministic-Periodic 
 

These sequences are repetitions of finite length substrings. They are generated by 
deterministic algorithms. We chose one sequence of period 5 (P5c: (10101)*), three 
sequences of period 12 (P12.165: (001010010101)*, P12.88: (000010111101)*, P12.116: 
(000100100101)*) and a single sequence of period 16 (P16: (1010111011101110)*). The 
sequences of period 12 were chosen to have entropy close to 1 (approximately equal numbers 
of 0’s and 1’s) and to have T values that spanned the possible range. The complexities of all 
inequivalent sequences of period 12 were computed; two sequences of period p are 
equivalent if they cannot be decomposed into sequences of smaller period, if they are 
identical under interchange of 0 and 1 or if one is a cyclic permutation of the other. The 
sequence complexities are given in Table A1. The entropy rates are zero as expected, and the 
K-complexities are low (0.01 - 0.0178) since these sequences are easily compressed. 

 
2. Stochastic 
 

This group contains sequences where each symbol is drawn independently from a 
probability distribution. Two sequences were produced using a pseudorandom number 
generator to produce 0’s and 1’s with probability 0.5 of either (Bernoulli-0.5 sequence), and 
with probability 0.7 of one symbol and 0.3 of the other (Bernoulli-0.7 sequences). Table A1 
shows the complexity values. In this case, E and T are zero because the sequences are 
produced from sources without memory (symbols do not depend on the past) and because 
there is nothing to synchronize to. The K-complexities are high (0.0514 - 0.0574) because the 
sequences, ideally, are incompressible. 
 
3. Deterministic-Stochastic 
 

These processes mix a deterministic rule with a stochastic one. The ‘golden mean’ 
process (GM) produces strings with no consecutive 0’s. A 0 or a 1 is generated with 
probability ½. The next symbol is certainly a 1 if a 0 was generated; otherwise a 0 or 1 is 
again generated with equal probabilities. The RRXOR process proceeds as follows: two 
Bernoulli-0.5 generations are immediately followed by their XOR i.e. sub-sequences 000, 

                                                        
2 Accessible at: http://oeis.org/ 
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011, 101, 110 occur with equal probability. The even process generates strings with even 
numbers of 1’s bounded by any number of 0’s. A 0 or a pair of 1’s is generated with even 
probability followed by a Bernoulli-0.5 trial. A full account of these sequences can be found 
in Crutchfield and Feldman (2003). Table A1 tabulates the complexities. None of the 
measures is zero, indicating the mix of stochastic and deterministic elements. The sequences 
are fairly incompressible with high K-complexities (0.0415 - 0.0469). 
 
4. Deterministic-Aperiodic  
 

These sequences are deterministic but are not strictly periodic. The Thue-Morse 
process (Crutchfield & Feldman, 2003) is produced as follows. The sequence starts with 01. 
The complement of 01 is then added to produce 01 10. This is again followed by the 
complement to produce 0110 1001. The procedure is iterated.  

The Fibonacci Word sequence (sequence A003849 of OEIS), or FW, is produced by 
adding the sequences at iteration n and at iteration n + 1 to produce the sequence at iteration 
n + 2. It begins S(0) = 0, S(1) = 01, S(2) = S(0)S(1) = 0 + 01 = 001 and continues S(3) = 01 + 
001 = 01001.  

The quasi-periodic linear sequence (Tao, 2006), or QP-linear, is formed by the 
linearly structured set 

 
𝐿 = {𝑛: 𝛼𝑛 <  𝛿!  (5) 

 
where [x] denotes the fractional part of x and, for this experiment, 𝛼 = ! !  and δ = 0.5. The 
n’th term of the sequence is 1 if n is in L and 0 otherwise. The resulting sequence is almost 
periodic since symbols at n and n + L are correlated by virtue of the identity 
 

𝛼 ! + 𝐿 − 𝛼𝑛 = [𝛼𝐿] (6) 
 
The quasi-periodic quadratic sequence (QP-quad) is formed in a similar way to QP-

linear. The quadratically structured set is  
 

𝑄 = {𝑛: 𝛼𝑛^2 <  𝛿!  (7) 
 
and the n'th term is 1 if n is in Q. The sequence is more random than QP-linear but 

has some vestige of periodicity. 
The quasi-periodic random sequence (QP-rand) has even more stochasticity; it is 

formed in a similar way to QP-quad except values of n in Q are further subject to a test. They 
are included in R with probability δ!. The definition is 

 
! ! {𝑛: 𝛼𝑛! !  𝛿 𝐴𝑁𝐷 𝑈 0, 1) <  𝛿! (8) 

 
where U(0, 1) is the uniform distribution on [0, 1] and, for this experiment, δ' = 0.5.  

The increasing randomness of the quasi-periodic sequences is reflected by the 
increasing h and K values. The very high T complexities indicate the unpredictable nature of 
these sequences. 

Finally, sequence W is designed to be particularly challenging for the LZ78 algorithm 
(Shor, 2005). It contains all possible codewords at each length. The sequence starts 0|1, and 
continues 0|1|00|01|10|11. Its empirical K-complexity as computed by LZ78 compressibility 
(Table A1) is even higher than the incompressible Bernoulli-generated sequences. This result 
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is presumably due to the finite length of the sequences and the imperfections of the 
pseudorandom number generator. 

 
Table A1 
 
Complexity Values of Generative Algorithms used in the Trials  
Group Algorithm H h E T K 
1 P5c .971 0a 0.232a 4.87a .00100 
 P12.165 .980 0 3.59 14.8 .00154 
 P12.88 1 0 3.59 8.42 .00155 
 P12.116 .918 0 3.59 11.7 .00154 
 P16 .896 0 4 16.6 .00178 
2 B-0.5 1 1 0 0 .0574 
 B-0.7 .881 .881 0 0 .0514 
3 GM .918 .667a 0.252a 0.252a .0415 
 RRXOR 1 .667a 2a 9.43a .0469 
 EVEN .918 .667a 0.902a 3.03a .0432 
4 TM 1 .083a 4.168 16.4 .00674 
 QP-linear 1 .019 5.14 33.2 .00488 
 QP-quadratic .970 .023 3.7 26.2 .0121 
 QP-random .877 .650 1.52 10.2 .0417 
 W 1 .693 5.59 53.84 .0582 
 FW .960 .087 2.63 9.04 .00474 
aThese values of  h, E and T were taken from Crutchfield and Feldman (2003). 
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Appendix B 
 

Table B1 
 
Mixed Effects Model of the Influence of Musical Training and Kolmogorov Complexity on 
Implicit Task Performance, with Participant, Generative Algorithm and Sub-Sequence as 
Random Effects. 
 Estimate SE z-value p-value 
(Intercept) 0.4839 0.1226 3.949 < .001 
Kolmogorov 
complexity -0.2592 0.1164 -2.228 .0259 

Musical training 0.1490 0.0726 2.053 .0401 
Kolmogorov 
complexity x Musical 
training 

-0.1289 0.0617 -2.089 .0368 

Note. Sub-sequences were coded as 1 for correct answer and 0 for incorrect answer. 
 
 


