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We propose an energy-driven stochastic master equation for the density matrix as a

dynamical model for quantum state reduction. In contrast, most previous studies of

state reduction have considered stochastic extensions of the Schrödinger equation,

and have introduced the density matrix as the expectation of the random pure

projection operator associated with the evolving state vector. After working out

properties of the reduction process we construct a general solution to the energy-

driven stochastic master equation. The solution is obtained by the use of nonlinear

filtering theory and takes the form of a completely positive stochastic map.
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I. INTRODUCTION

Many physicists have expressed the view that quantum mechanics needs to be modified to
provide a mechanism for “collapse of the wave function” (Pearle 1976, Penrose 1986, Bell
1987, Diosi 1989, Ghirardi 2000, Adler 2003a, Weinberg 2012). Among the ways forward
that have been proposed, perhaps the most fully developed, at least from a mathematical
point of view, are the so-called stochastic models for state reduction, in connection with
which there is now a substantial body of literature. In such models, the quantum system
is usually taken to be in a pure state, represented by a vector in Hilbert space, evolving
as a stochastic process. The state of the system evolves randomly in such a way that it
eventually approaches an eigenstate of a preferred observable, such as position or energy.
In the situation where the reduction is to a state of definite energy, which is the case
that will concern us here, the setup is as follows. The Hilbert space H is taken to be of
finite dimension N, and the state-vector process {|ψt〉}t≥0 is assumed to satisfy an Ito-type
stochastic differential equation of the form

d|ψt〉 = −i ~−1Ĥ|ψt〉dt − 1
8
σ2(Ĥ −Ht)

2|ψt〉dt + 1
2
σ(Ĥ −Ht)|ψt〉dWt. (1)

Here {Wt}t≥0 is a standard Brownian motion, and |ψt〉 ∈ H is the state vector at time t. The
initial state vector |ψ0〉 is an input of the model. We write

Ht =
〈ψt| Ĥ |ψt〉
〈ψt|ψt〉

(2)

for the expectation value of the Hamiltonian operator Ĥ in the state |ψt〉. The reduction
parameter σ, which has dimensions such that

σ2 ≈ [energy]−2[time]−1, (3)
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determines the characteristic timescale τR associated with the reduction of the state, which
is of the order τR ≈ 1/(σ∆H)2, where ∆H is the initial uncertainty of the energy. Thus a
state with high initial energy uncertainty has a shorter characteristic reduction timescale
than a state with low energy uncertainty. After a few multiples of τR, the system will be
nearly in an eigenstate of energy. The determination of σ is an empirical matter. One
intriguing possibility suggested by a number of authors (Karolyhazy 1966, Karolyhazy
et al 1986, Penrose 1986, 1996, Diosi 1989, Percival 1994, Hughston 1996) is that state
reduction is determined in some way by gravitational phenomena. In that case we might

suppose that σ is given by a relation of the form σ2 ≈ EP
−2TP

−1, where EP is the Planck
energy and TP is the Planck time, and hence of the order

σ2 ≈
√

G~−3c−5. (4)

A surprising feature of this expression is that the large numbers associated with the
various physical constants cancel out, and we are left with a reduction timescale that is in
principle observable in the laboratory, given by

τR ≈
(

2.8 MeV

∆H

)2

s. (5)

Going forward, we shall not make any specific assumptions regarding the magnitude of
the reduction parameter. Nevertheless, to get a feeling for the numbers involved, we note
that the binding energies per nucleon of low mass nuclei are of the order of 1.1 MeV for the
deuteron, 2.6 MeV for He3, and 7.1 MeV for He4. Since the fusion reactions leading to the
production of such nuclei are essential in normal stellar evolution, it is not unreasonable
to suppose that some form of observer-free “objective” state reduction is involved in the
process, and that gravitational effects play a role as well.

No attempt will be made to review the extensive literature of dynamical collapse
models, of which the energy-driven model described above is an example, or to discuss
in any detail the relative merits of the various models that have been proposed. See Bassi
& Ghirardi (2003), Bassi (2007), Pearle (2007, 2009), Bassi et al (2013), Ghirardi (2016) for
surveys. For aspects of the energy-driven models, we refer the reader to Gisin (1989),
Ghirardi et al (1990), Percival (1994, 1998), Hughston (1996), Pearle (1999, 2004), Adler
& Horwitz (2000), Adler & Mitra (2000), Adler et al (2001), Brody & Hughston (2002a,b,
2005, 2006), Adler (2003a,b, 2004), Brody et al (2003, 2006), Gao (2013), Mengütürk (2016).
Adler (2002), in an empirical study of energy-driven models, concludes thus:

Our analysis supports the suggestion that a measurement takes place when
the different outcomes are characterized by sufficiently distinct environmental
interactions for the reduction process to be rapidly driven to completion.

Although other collapse models have been considered at length in the literature, in-
cluding, for example, the GRW model (Ghirardi, Rimini & Weber 1986) and so-called
continuous spontaneous localization (CSL) models (Diosi 1989, Pearle 1989, Ghirardi,
Pearle & Rimini 1990), the energy-driven reduction models stand out, in our view, on
account of (a) their parsimonious mathematical structure, and (b) the fact that they are
universal. By “universal”, we mean applicable to any quantum system. We point out that
energy-driven models maintain the conservation of energy in a well-defined probabilistic
sense, as an extension of the Ehrenfest theorem, whereas models driven by observables
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that do not commute with the energy, such as position, do not conserve energy (Pearle
2000, Bassi, Ippoliti & Vacchini 2005). Furthermore, energy-driven models give the Born
rule and the Lüders projection postulate as exact results (Adler & Horwitz 2000, Adler
et al 2001, Adler 2003b), whereas other models do not. For these reasons we emphasize
here the role of energy-driven models. This is not to say that energy-driven models are
the only ones to be taken seriously. But if one wishes to propose a stochastic reduction
model that it is applicable to any nonrelativistic system, without qualification, including
finite dimensional systems, then it must be an energy-driven model.

In that case, is the dynamics necessarily of the form (1) given above? Clearly not, since,
for a start, one could consider the possibility that other forms of noise than Brownian
motion act as a basis for the stochastic dynamics of the state, and indeed there is a sizable
literature dealing with dynamical reduction models based on other types of noise. To keep
the discussion focussed, we stick here with models based on Brownian motion, though in
the final section of the paper we comment briefly on a generalization to models based on
Lévy noise. One might also introduce time-dependent coupling (Brody & Hughston 2005,
2006, Brody et al 2006, Mengütürk 2016), which offers an approach to the “tail problem”
(Shimony 1990, Pearle 2009). Again, we pass over such considerations for the present.

There is, however, an important aspect of the dynamical equation (1) that seems to
build in what might be viewed as an unnecessary assumption, even if one accepts the
principle that reduction must be energy driven, and even if one narrows the scope to
models based on a Brownian filtration. This concerns the issue of what constitutes a
“state” in quantum mechanics. The physics community seems to be divided on the
matter. It is worth recalling that in von Neumann’s highly influential 1932 book, the term
“state” is reserved for pure states, and the statistical operator is introduced to describe
mixtures. He introduces the notion of a statistical ensemble, corresponding to a countable
collection of quantum systems, each of which is in a pure state, and he distinguishes two
cases. In the first case, the individual systems of the ensemble can be in different states,
and the statistical operator is determined by their relative frequencies. In the second case,
which he calls a homogeneous ensemble, the various individual systems are in the same
state. The statistical operator for a homogeneous ensemble is identical to the state of any
one of its elements, and takes the form of a pure projection operator.

In his consideration of statistical ensembles von Neumann (1932) was motivated in part
by the frequentist theories of von Mises (1919, 1928). In particular, von Neumann identifies
his concept of ensemble with von Mises’s idea of a “Kollektiv” (random sequence):

Such ensembles, called collectives, are in general necessary for establishing
probability theory as the theory of frequencies. They were introduced by
Richard von Mises, who discovered their meaning for probability theory, and
who built up a complete theory on this foundation.

According to von Mises, “Erst das Kollektiv, dann die Wahrscheinlichkeit”. At about the
same time that these developments were under way, Kolmogorov (1933) revolutionized
classical probability theory by giving it a set-theoretic foundation and providing it with a
subtle measure-theoretic definition of conditional expectation that allows one to handle in
a satisfactory way the logical issues associated with conditioning on events of probability
zero. The mathematics community took on board Kolmogorov’s innovations, and success
followed success, with the introduction of many further new ideas, including, among
others, martingales, stochastic calculus, and nonlinear filtering. Von Mises’s theory,
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despite its attractive features, was eventually dropped by mathematicians, even though
the ensemble concept (and elements of the frequentist thinking underpinning it) has been
kept alive by physicists, and is still taught to students (Isham 1995, for instance, gives a
good treatment of the relevant material). See van Lambalgen (1999) for a rather detailed
discussion of where von Mises’s ideas stand today. It appears that the more general use of
the term “state” (to include mixed as well as pure states) was introduced by Segal (1947),
in his postulates for general quantum mechanics. Segal’s point of view was adopted by
Haag & Kastler (1964), and also by Davies (1976), who says:

The states are defined as the non-negative trace class operators of trace one,
elsewhere called mixed states or density matrices.

If the matter were purely one of terminology, there would be no point in worrying about
it very much. The problem is that in the language physicists use there can be assumptions
that are implicit in the choice of words, and these in turn can guide the direction of the
subject as it moves forward. The issue of what exactly constitutes a “state” is such a case.

The point that concerns us here is that most of the models that have been developed
in detail in the collapse literature treat the quantum system as a randomly evolving pure
state. This point of view is represented, for example, in Ghirardi, Pearle & Rimini (1990) in
the context of their development of the CSL model, where we find the following succinct
account of their stance on the matter:

The theory discussed here allows one to describe naturally quantum measure-
ment processes by dynamical equations valid for all physical systems. It is
worthwhile repeating, that, in this theoretical scheme, any member of the sta-
tistical ensemble has at all times a definite wave function. As a consequence,
the wave function itself can be interpreted as a real property of a single closed
physical system.

The emphasis placed on the role of pure states reflects a view held by many physicists
that pure states should be treated as being fundamental. See, for example, Penrose (2016),
who argues persuasively concerning the preferred status of pure states. According to this
view, which, as we have indicated, is generally in line with that of von Neumann (1932),
individual systems are represented by pure states. Physicists are likewise divided on the
issue of the status of statistical ensembles. Are they essential to the theory? Mielnik (1974)
offers the following:

It is an old question whether the formalism of quantum theory is adequate to
describe the properties of single systems. What is verified directly in the most
general quantum experiment are rather the properties of statistical ensembles.

Although our brief remarks cannot do justice to the deep insights of the authors men-
tioned above, one will be impressed by the diversity of opinion held by physicists on
the nature of quantum states and the role of statistical ensembles. It should be empha-
sized, nevertheless, that, as far as we can see, there is no empirical basis for assuming
that individual quantum systems are necessarily in pure states. Nor is there any evi-
dence showing that density matrices necessarily have to be interpreted as representing
ensembles. In fact, it seems to be accepted in the quantum information community that
the state of an individual system should be represented, in certain circumstances, by a
higher-rank density matrix. This can happen, for example, if the system is entangled
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with another system and the state of the composite system is pure, in which case the state
of the first system is obtained by taking the reduced density matrix of the system as a
whole, where we trace out the degrees of freedom associated with the second system. It
thus seems reasonable to take matters a step further and drop altogether the assumption
that individual systems are necessarily in pure states. It also seems reasonable to drop
the assumption that statistical ensembles play a fundamental role in the theory. In our
approach, therefore, we make no use of frequentist thinking, and we avoid reference
to observers, measurements, and ensembles. We regard state reduction as an entirely
objective phenomenon, and even in the case of an individual system we model the state
as a randomly evolving density matrix. We denote the density matrix process by {ρ̂t}t≥0,
and we require that ρ̂t should be nonnegative definite for all t and such that tr ρ̂t = 1. The
dynamical equation generalizing (1) then takes the following form:

Definition 1 We say that the state {ρ̂t}t≥0 of an isolated quantum system with Hamiltonian Ĥ
satisfies an energy-driven stochastic master equation with parameter σ if

dρ̂t = −i~−1[Ĥ, ρ̂t]dt + 1
8
σ2

(

2 Ĥρ̂tĤ − Ĥ2ρ̂t − ρ̂tĤ
2
)

dt

+ 1
2
σ
(

(Ĥ −Ht)ρ̂t + ρ̂t(Ĥ −Ht)
)

dWt, (6)

where Ht = tr ρ̂tĤ.

We take a moment to spell out some of the mathematical ideas implicit in the dy-
namics. In accordance with the well-established Kolmogorovian outlook, we introduce
a probability space (Ω,F ,P) as the basis of the theory. We do not necessarily say in
detail what the structure of this space is, but we assume that it is endowed with sufficient
richness to support the various structures that we wish to consider. Thus Ω is a set on
which we introduce a σ-algebra F (no relation to the σ above) and a probability measure
P. By an algebra we mean a collection of subsets of Ω such that Ω ∈ F , A ∈ F implies
Ω\A ∈ F , A ∈ F and B ∈ F implies A ∪ B ∈ F . If for any countable collection of
elements Ai ∈ F , i ∈ N, it holds that ∪i∈N Ai ∈ F , then we say that F is a σ-algebra. The
pair (Ω,F ) is called a measurable space. By a probability measure on (Ω,F ) we mean a
functionP : F → [0, 1] satisfyingP[Ω] = 1, andP[∪i∈NAi] =

∑

i∈N P[Ai] for any countable
collection of elements Ai ∈ F , i ∈ N, such that Ai ∩ A j = ∅ if i , j. A measurable space
endowed with a probability measure defines a probability space. A function X : Ω → R
is said to be F -measurable, or measurable on (Ω,F ), if for all A ∈ BR, where BR is the
Borel σ-algebra on R, it holds that {ω : X(ω) ∈ A} ∈ F . Thus for each A ∈ BR we require
X−1(A) ∈ F . If X is a measurable function on a probability space (Ω,F ,P), we say that
X is a random variable, and the associated distribution function is defined for x ∈ R by
FX(x) = P[X < x], where P[X < x] denotes the measure of the subset {ω ∈ Ω : X(ω) < x}.

By a random process on (Ω,F ,P) we mean a family of random variables {Xt}t≥0

parametrized by time. To formulate a theory of random processes some additional struc-
ture is required. First we need the idea of a complete probability space. A σ-algebra F P is
said to be an augmentation of the σ-algebra F with respect to P if F P contains all subsets
B ⊂ Ω for which there exist elements A,C ∈ F satisfying A ⊆ B ⊆ C and P[C\A] = 0.
If F P = F , we say that (Ω,F ,P) is complete. Next we need the idea of a filtration on
(Ω,F ,P), by which we mean a nondecreasing family F = {Ft}t≥0 of sub-σ-algebras of F .
We say that a filtration F is right continuous if for all t ≥ 0 it holds that Ft = Ft+ where
Ft+ = ∩u>tFu. If additionally we assume, as we do, that for any A ∈ F such that P[A] = 0
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it holds that A ∈ F0, then we say that the filtered probability space (Ω,F ,P,F) satisfies the
usual conditions. A random process {Xt} is said to be adapted to F if the random variable
Xt is Ft-measureable for all t ≥ 0. We say that {Xt} is right continuous if the sample paths
{Xt(ω)}t≥0 are right continuous for almost all ω ∈ Ω. By a standard Brownian motion or
Wiener process on a filtered probability space (Ω,F ,P,F) we mean a continuous, adapted
process {Wt}t≥0 such that (a) W0 = 0 almost surely, (b) Wt−Ws is normally distributed with
mean 0 and variance t− s for t > s ≥ 0, and (c) Wt −Ws is independent of Fs for t > s. The
filtration Fmay be strictly larger than that generated by the Brownian motion itself. The
existence of processes satisfying these conditions is guaranteed by the following (Hida
1980, Karatzas & Shreve 1986). Let Ω = C[0,∞) be the space of continuous functions
from R+ to R. Each point ω ∈ Ω corresponds to a continuous function {Wt(ω)}t≥0, and we
write F = σ[{Wt}t≥0] for the σ-algebra generated by {Wt}t≥0. The σ-algebra generated by a
collection C of functions X : Ω → R is defined to be the smallest σ-algebra Ξ on Ω such
that each function X ∈ C is Ξ-measurable. Then there exists a unique measure P on the
(Ω,F ), called Wiener measure, such that properties (a), (b) and (c) hold, and we take F to
be the filtration {Ft}t≥0 generated by {Wt}t≥0, defined by Ft = σ[{Ws}0≤s≤t] for each t ≥ 0.

In what follows we assume that (Ω,F ,P,F) satisfies the usual conditions. Equalities
and inequalities for random variables are understood to holdP-almost-surely. One checks
by the use of Ito calculus that if ρ̂t takes the form of a pure projection operator

ρ̂t =
|ψt〉〈ψt|
〈ψt|ψt〉

, (7)

then the stochastic Schrödinger equation (1) for the state-vector implies that the pure
density matrix (7) satisfies the stochastic master equation (6). The relevant calculation is
shown, for example, in sections 6.1-6.2 of Adler (2004). Since (6) is a nonlinear stochastic
differential equation, it does not immediately follow that (6) should be applicable to gen-
eral states rather than merely to pure states. Nevertheless, this is what we propose, and,
as we shall see, the theory that follows from Definition 1 has many desirable properties,
both physical and mathematical. For some purposes it is useful if we write equation (6)
in integral form, incorporating the initial condition explicitly. In that case we have

ρ̂t = ρ̂0 − i ~−1

∫ t

0

[Ĥ, ρ̂s]ds + 1
8
σ2

∫ t

0

(

2 Ĥρ̂sĤ − Ĥ2ρ̂s − ρ̂sĤ
2
)

ds

+ 1
2
σ

∫ t

0

(

(Ĥ −Hs)ρ̂s + ρ̂s(Ĥ −Hs)
)

dWs . (8)

Then it follows, by taking the expectation of each side, which eliminates the term involving
the stochastic integral, that the mean state of the system satisfies

〈ρ̂t〉 = ρ̂0 − i ~−1

∫ t

0

[Ĥ, 〈ρ̂s〉]ds + 1
8
σ2

∫ t

0

(

2 Ĥ〈ρ̂s〉Ĥ − Ĥ2〈ρ̂s〉 − 〈ρ̂s〉Ĥ2
)

ds. (9)

Here 〈ρ̂t〉 = E[ρ̂t], where E[ · ] denotes expectation under P. One recognizes (9) as the
integral form of a master equation of the type derived by Lindblad (1976), Gorini et al
(1976), and, in a different context, Banks et al (1984), and we have the following:
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Proposition 1 If the state of a quantum system satisfies the energy-driven stochastic master
equation, then the mean state of the system satisfies a linear master equation of the form

d〈ρ̂t〉
dt
= −i ~−1[Ĥ, 〈ρ̂t〉] + 1

8
σ2

(

2 Ĥ〈ρ̂t〉Ĥ − Ĥ2〈ρ̂t〉 − 〈ρ̂t〉Ĥ2
)

. (10)

In the pure case, it is well known (see, for example, Gisin 1989) that if |ψt〉 satisfies (1) then
the expectation of the corresponding pure density matrix, given by

〈ρ̂t〉 = E
[ |ψt〉〈ψt|
〈ψt|ψt〉

]

, (11)

satisfies the autonomous stochastic differential equation (10). This is not so obvious if one
works directly with the dynamics of a state vector, but if one takes the stochastic master
equation as the starting point then the linearity of the dynamics of 〈ρ̂t〉 is immediate.
Proposition 1 shows that in the generic situation where the density matrix is of rank
greater than unity and follows the general nonlinear stochastic dynamics given by (6), the
associated mean density matrix 〈ρ̂t〉 still satisfies (10).

We are thus led to postulate that the energy-driven stochastic master equation pre-
sented in Definition 1, with a prescribed initial state ρ̂0, characterizes the stochastic evo-
lution of the state of a quantum system as reduction proceeds. In saying that we take
the initial state as prescribed, we avoid for the moment entering into a discussion about
how that can be achieved. Likewise, we avoid asking how one can determine what the
initial state of the system is. It is meaningful to ask such questions, but we separate the
problem of working out the consequences of the evolution of the state from the problem
of working out what the state of the system is in the first place, or how to create a system
in a given state. In Sections II, III and IV below, we work out properties of the energy-
driven stochastic master equation. A number of the results obtained are generalizations
of corresponding results known to hold in the case when the state is pure. In Proposition
2 we show that the expectation of the variance of the energy goes to zero in the limit as t
grows large. In Proposition 3 we show that there exists a random variable H∞ = limt→∞Ht

taking values in the spectrum of the Hamiltonian such that we have E [H∞] = tr ρ̂0 Ĥ and

Var [H∞] = tr ρ̂0 Ĥ2 − (tr ρ̂0 Ĥ)2. The proofs of Propositions 2 and 3 generalize arguments
appearing in Hughston (1996). In Section V we present a derivation of the Born rule for
general states, summarized In Proposition 4, extending arguments of Ghiradi et al (1990),
Adler & Horwitz (2000), and Adler et al (2001). In the case of a degenerate Hamiltonian,
the reduction leads for a given outcome to the associated Lüders state. Then in Sections
VI and VII we proceed to construct a general solution of the energy-driven stochastic
master equation using techniques of nonlinear filtering theory. Here we extend results
known for the dynamics of pure states (Brody & Hughston 2002). The solution, which
takes the form of a completely positive stochastic map, is obtained by the introduction of
a so-called information process {ξt}t≥0 defined by ξt = σtH+Bt where the random variable
H takes values in the spectrum of the Hamiltonian operator, and {Bt}t≥0 is an independent
Brownian motion. We show that it is possible to construct the processes {ρ̂t}t≥0 and {Wt}t≥0

in terms of {ξt}t≥0 in such a way that {ρ̂t}t≥0 satisfies the energy-driven stochastic master
equation and {Wt} is a standard Brownian motion on (Ω,F ,P,F), where F is the filtration
generated by {ξt}. The results are summarized in Propositions 5 and 6. Then we introduce
the notion of a potential and in Propositions 7 and 8 we show that the decoherence of the
density matrix can characterized in a rather natural way by the fact that its off-diagonal
terms are potentials. Section VIII concludes.
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II. DYNAMIC PROPERTIES OF THE ENERGY VARIANCE

We proceed to show that many of the important properties of the pure state dynamics (1)
carry forward to the general state dynamics (6). First, one can check that the trace of ρ̂t is
preserved under (6). Thus, if tr ρ̂0 = 1 then equation (8) implies that tr ρ̂t = 1 for all t > 0.

Next, one can check that the energy expectation process {Ht}t≥0 defined by Ht = tr ρ̂t Ĥ is
a martingale. In fact, even in the pure case the result can be obtained rather more directly

by use of (6) than (1), for if we transvect each side of (6) with Ĥ and take the trace we are
immediately led to the following dynamical equation for the energy:

dHt = σVt dWt. (12)

Here we have written Vt = tr ρ̂t (Ĥ −Ht)
2 for the variance of the energy. Thus we have

Ht = H0 + σ

∫ t

0

Vs dWs. (13)

Since the expectation and the variance of the energy are bounded random variables, it
follows from (13) that {Ht}t≥0 is a martingale. Letting Et[ · ] = E[ · | Ft] denote conditional
expectation with respect to Ft, we haveEs[Ht] = Hs for 0 ≤ s ≤ t. The martingale property
represents conservation of energy in a conditional sense. This property is known to be
satisfied by the energy expectation process in the case of a pure state, and we see that the
martingale property holds more generally in the case of a mixed state governed by the
energy-driven stochastic master equation. A further calculation shows that

dVt = −σ2V2
t dt + σβt dWt, (14)

where {βt}t≥0 denotes the so-called energy skewness process, defined by

βt = tr ρ̂t (Ĥ −Ht)
3. (15)

The dynamical equation (14) can be obtained as follows. Write the variance in the form

Vt = tr ρ̂t Ĥ2 −H2
t . (16)

The dynamics of the term tr ρ̂t Ĥ2 can be worked out by transvecting each side of equation

(6) with Ĥ2. The dynamics of the second term can be deduced by applying Ito’s lemma
to H2

t and using (12). The two results combined give (14).
The stochastic equation satisfied by the variance of the Hamiltonian in the case of a

general state has the same form that it has in the pure case. In the pure case (14) implies
that the variance tends to zero asymptotically, and thus that the state evolves to an energy
eigenstate. We shall show that the argument carries through to the case of a general initial
state. That is to say, for any initial state the result of the evolution given by (6) is an energy

eigenstate. By an energy eigenstate with energy E we mean a state ρ̂ such that Ĥρ̂ = Eρ̂.
If the Hamiltonian is nondegenerate, then the energy eigenstates are pure states. In the
case of a degenerate Hamiltonian, the situation is more complicated. If the outcome of
the collapse is an eigenstate with energy Er, then it can be shown that the state that results
is the so-called Lüders state given by outcome of the Lüders (1951) projection postulate
associated with that energy and the given initial state (Adler et al 2001).
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Definition 2 Let P̂r denotes the projection operator onto the Hilbert subspace Hr consisting of

state vectors that are eigenstates of Ĥ with eigenvalue Er. Then for any initial state ρ̂0 the associated

Lüders state L̂r is defined by

L̂r =
P̂r ρ̂0 P̂r

tr ρ̂0 P̂r

. (17)

If the Hamiltonian is degenerate, and if the initial state is pure, then the final state will
be pure. On the other hand, if the initial state is impure, then the final state need not be
pure, and in general will be impure.

To show that collapse to an energy eigenstate occurs as a consequence of (14) for a
general initial state, we establish the following, which is known to hold for pure states:

Proposition 2 Let {ρt} satisfy the energy-driven stochastic master equation. Then the expectation
of the variance of the Hamiltonian vanishes asymptotically:

lim
t→∞
E[Vt] = 0. (18)

Proof We integrate (14) to obtain

Vt = V0 − σ2

∫ t

0

V2
s ds + σ

∫ t

0

βs dWs. (19)

The integrals are defined since the variance and the skewness are bounded. Since the
drift in (14) is negative, we see that Es[Vt] ≤ Vs for 0 ≤ s ≤ t and hence that {Vt}t≥0 is a
supermartingale. Taking the unconditional expectation on each side of (19), we have

E[Vt] = V0 − σ2
E

[∫ t

0

V2
s ds

]

, (20)

which shows that E[Vt] decreases as t increases, and hence that limt→∞E[Vt] exists. We
say that anR-valued random process {Xt}t≥0 on a probability space (Ω,F ,P) is measurable
if for all A ∈ BR, where BR is the Borel σ-algebra on R, it holds that

{(ω, t) : Xt(ω) ∈ A} ∈ F × BR+ , (21)

whereBR+ denotes the Borel σ-algebra on the positive “time axis”R+ = [0,∞). A sufficient
condition for a process to be measurable is that it should be right continuous. Then one
has the following (Liptser & Shiryaev 1975):

Fubini’s theorem. If a process {Xt}t≥0 is measurable and
∫

S
E[ |Xt| ] dt < ∞ for some S ∈ BR+ ,

then
∫

S
|Xt|dt < ∞ almost surely and

E

[∫

S

Xt dt

]

=

∫

S

E[Xt] dt. (22)
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As a consequence of Fubini’s theorem, we can interchange the order of the expectation
and the integration on the right side of (20) to obtain

E[Vt] = V0 − σ2

∫ t

0

E

[

V2
s

]

ds, (23)

from which it follows that

dE[Vt]

dt
= −σ2

E

[

V2
t

]

. (24)

Thus we can write

dE[Vt]

dt
= −σ2

E[Vt]
2(1 + αt), (25)

where

αt =
1

E[Vt]2
E[(Vt − E[Vt])

2], (26)

and we note that αt is nonnegative. If we set γt =
∫ t

0
αsds, we can integrate (25) to obtain

E[Vt] =
V0

1 + V0 σ2(t + γt)
. (27)

Since γt is nonnegative, we have

E[Vt] ≤
V0

1 + V0 σ2t
, (28)

and this gives (18). �

III. ASYMPTOTIC PROPERTIES OF THE VARIANCE

As a consequence of (18) one deduces that the energy variance vanishes as t goes to
infinity. More precisely, it holds that V∞ = 0 almost surely. To see this, we need to
show that the limit V∞ = limt→∞Vt exists, in an appropriate sense, and then we need to
show that the order of the limit and the expectation in (18) can be interchanged. If both
of these conditions hold, then we conclude from (18) that V∞ = 0. Now, when we ask
whether a limit exists, we are not asking whether the result is finite or not. Limits, if they
exist, are allowed to be infinite. The question is one of convergence. Moreover, even if a
random process converges, that does not imply that the resulting function onΩ to which
the process converges is a random variable (that is to say, a measurable function). So
the question is whether there exists a random variable V∞ to which the variance process
converges for large t with probability one. If the answer is yes, then one can ask whether
the interchange of limit and expectation is valid, and if so then we are able to conclude
that the result of the collapse process is a state of zero energy variance and hence an
energy eigenstate.
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To show that (18) implies V∞ = 0 almost surely, we use the martingale convergence
theorem. There are various versions of this theorem, and it will be sufficient to have at
hand the version that follows below (Protter 2003). First we introduce some additional
terminology. We fix a probability space and let p ∈ R satisfy p ≥ 1. A random process
{Xt}t≥0 is said to be bounded in Lp if

sup
0≤t<∞

E[ |Xt| p ] < ∞. (29)

As usual, by the supremum we mean the least upper bound. A random process {Xt}t≥0

is said to be right-continuous if it holds almost surely that limǫ→0 Xt+ǫ = Xt for all t ≥ 0.
Then we have:

Martingale convergence theorem. If a right-continuous supermartingale {Xt}t≥0 is bounded in
L1 then limt→∞Xt exists almost surely and defines a random variable X∞ satisfyingE[|X∞|] < ∞.

Note that in asserting that limt→∞Xt exists almost surely we mean that lim supt→∞Xt(ω) =
lim inft→∞Xt(ω) for all ω ∈ Ω′ for some set Ω′ ∈ F such that P[Ω′] = 1, and that there
exists a random variable X∞ such that X∞(ω) = limt→∞Xt(ω) for all ω ∈ Ω apart from a
set of measure zero.

As we shall see, the martingale convergence theorem is just the tool one needs in order
to show that the energy variance process converges to zero. In particular, since the energy
variance is bounded for all t ≥ 0, we have sup0≤t<∞ E[ |Vt| p ] < ∞ for all p ≥ 1. It follows
by the martingale convergence theorem that V∞ = limt→∞Vt exists almost surely and that
E[V∞] < ∞. To proceed further we make use of the following (see, e.g., Williams 1991):

Fatou’s lemma. Let {Yk}k∈N be a countable sequence of nonnegative integrable random variables.
Then E [lim infk→∞ Yk] ≤ lim infk→∞E [Yk].

If {tk}k∈N is a countable sequence of times such that limk→∞ tk = ∞, then for any process
{Xt}t≥0 such that X∞ = limt→∞Xt exists it holds that limk→∞Xtk

= X∞. Thus, in our case we
have limk→∞ E[Vtk

] = 0 and limk→∞ Vtk
= V∞. We know that if limk→∞ Yk exists then it is

equal to lim infk→∞ Yk. Then by Fatou’s lemma we have E [limk→∞ Vtk
] ≤ limk→∞E [Vtk

]. It
follows thatE [V∞] = 0 and hence V∞ = 0 almost surely, since the variance is nonnegative.

IV. TERMINAL VALUE OF THE ENERGY

Let Spec[Ĥ] denote the spectrum of the Hamiltonian. Then we have the following result,
which shows that Ht and Vt are given at each time t ≥ 0 respectively by the conditional
mean and the conditional variance of the terminal value of the energy:

Proposition 3 There exists a random variable H∞ on (Ω,F ,P) taking values in Spec[Ĥ] such
that Ht = Et[H∞] and Vt = Et[(H∞ −Et[H∞])2].

Proof Since {Ht}t≥0 is bounded by the highest and lowest eigenvalues of Ĥ, we have
sup0≤t<∞ E[ |Ht| ] < ∞ and hence by the martingale convergence theorem the random
variable H∞ = limt→∞Ht exists and E[H∞] < ∞. A process {Xt}t≥0 on a probability space
(Ω,F ,P) is said to be uniformly integrable if, given any ǫ > 0 there exists a δ such that

E [ |Xt|1( |Xt| > δ )] < ǫ (30)
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for all t ≥ 0, where 1( · ) is the indicator function. Let {Mt}t≥0 be a right-continuous
martingale on a probability space (Ω,F ,P) with filtration {Ft}t≥0. Then it is known that
the following conditions are equivalent: (i) there exists a random variable M∞ such that
limt→∞E[|Mt −M∞|] = 0; (ii) there exists a random variable M∞ satisfying E [M∞] < ∞
such that Mt = Et [M∞] for all t ≥ 0; (iii) {Mt}t≥0 is uniformly integrable. Clearly, any
bounded martingale is uniformly integrable. Since {Ht}t≥0 is bounded, we have

Ht = Et[H∞], (31)

as claimed. We turn now to the variance, in connection with which we use the following.

Monotone convergence theorem. For any increasing sequence {Yk}k∈N of nonnegative inte-
grable random variables such that limk→∞ Yk = Y∞, where Y∞ is not necessarily integrable, it
holds that limk→∞ E [Yk] = E [Y∞].

By use of (18) and (20), together with the monotone convergence theorem, we deduce that

E

[∫ ∞

0

V2
s ds

]

< ∞. (32)

Hence, it follows from (19) that

V0 + σ

∫ ∞

0

βs dWs = σ
2

∫ ∞

0

V2
s ds. (33)

If we take a conditional expectation, we obtain

V0 + σ

∫ t

0

βs dWs = σ
2
Et

∫ ∞

0

V2
s ds. (34)

Combining this relation with (19) we deduce that

Vt = σ
2
Et

∫ ∞

t

V2
s ds. (35)

Next we observe that as a consequence of (13) we have

H∞ −Ht = σ

∫ ∞

t

Vs dWs. (36)

Taking the square of each side of this equation, forming the conditional expectation, and
using the Ito isometry, we obtain

Et (H∞ −Ht)
2 = σ2

Et

∫ ∞

t

V2
s ds, (37)

and therefore

Vt = Et (H∞ − EtH∞)2, (38)

as claimed. �
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The significance of this result is that the conventional expectation value H0 of the

observable Ĥ with respect to the initial state ρ̂0 is equal to the expectation of the terminal
value of the energy on the completion of the reduction process. This may seem like a
tautology, but it is not, since the statistical interpretation of the expectation value of an
observable in quantum mechanics is an assumption, not a conclusion, of the theory.

Likewise, we see that the conventional squared uncertainty V0 is the variance of the
terminal value of the energy on the completion of the reduction process. Again, the sta-
tistical interpretation of the squared uncertainty is an assumption in quantum mechanics,
not a conclusion of the theory. But under the dynamics of the stochastic master equation
these properties are deduced rather than assumed.

The methods used in the proof of Proposition 3 can be used to give an alternative
derivation of the fact that limt→∞E[Vt] = 0 implies that V∞ = 0 almost surely. We have
already seen that this follows as a consequence of Fatou’s lemma, but the same result can
be obtained by use of the martingale convergence theorem. The proof is as follows. We
observe that by the definition of the variance process we have

Vt = tr ρ̂t Ĥ2 −H2
t , (39)

where Ht = tr ρ̂t Ĥ. Writing Ut = tr ρ̂t Ĥ2, we see that {Ut}t≥0 is a bounded martingale. It
follows by the martingale convergence theorem that {Ut} → U∞, and as a consequence
we have {Vt} → U∞ −H2

∞, from which it follows that

V∞ = U∞ −
(

H0 + σ

∫ ∞

0

Vs dWs

)2

. (40)

Since E [U∞] = U0, it follows by use of the Ito isometry that

E [V∞] = U0 −H2
0 − σ2

E

∫ ∞

0

V2
s ds. (41)

On the other hand, on account of (33) we have

V0 = σ
2
E

∫ ∞

0

V2
s ds. (42)

Since U0 −H2
0 = V0, it follows that E [V∞] = 0, and therefore V∞ = 0 almost surely.

V. DERIVATION OF THE BORN RULE

The foregoing arguments show that the dynamic approach to reduction extends to the
situation where the initial state of the system need not be pure. The Born rule is another
example of an assumption of quantum mechanics that can be derived from the stochastic

master equation. As before, for the given Hamiltonian let P̂r denote the projection operator
on to the Hilbert subspace of energy Er. Let the number of distinct energy levels be D.

Proposition 4 Under the dynamics of the energy-driven stochastic master equation, with initial
state ρ0, the probability that the outcome will be a state with energy Er is given by

P [H∞ = Er] = tr ρ̂0P̂r. (43)
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Proof It is straightforward to check that the process {πrt}t≥∞ defined for each value of

r = 1, 2, . . . ,D by πrt = tr ρ̂tP̂r is a martingale. Thus we have πrt = Et [πr∞] and hence

tr ρ̂0P̂r = E [tr ρ̂∞P̂r]. (44)

On the other hand, because the state reduces asymptotically to a random energy eigen-
state, we know that

tr ρ̂∞P̂r = 1(H∞ = Er), (45)

and since

E[1(H∞ = Er)] = P[H∞ = Er], (46)

we are led to the Born rule (43). �

It may seem tautological to assert that the probability of the outcome Er is given by the

trace of the product of the initial density matrix and the projection operator P̂r, but it is not.
In quantum mechanics, the Born rule is an assumption, part of the statistical interpretation
of the theory. Physicists are on the whole quite comfortable with this assumption, but
that does not change the fact that there is no generally accepted “derivation” of the Born
rule as a probability law arising from within quantum theory itself. Indeed, it is one
of the features of the energy-driven stochastic reduction model that a mathematically
satisfactory explanation for this otherwise baffling aspect of quantum theory emerges.

VI. SOLUTION TO STOCHASTIC MASTER EQUATION

A solution to the energy-driven stochastic master equation (6) can be written down as
follows. We start afresh, and consider a finite-dimensional quantum system for which

the Hamiltonian (possibly degenerate) is Ĥ and the initial state (which we regard as pre-
scribed) is ρ̂0. Let a probability space (Ω,F ,P) be given, upon which we introduce a
standard Brownian motion {Bt}t≥0 and an independent random variable H taking values

in Spec[Ĥ] with the distribution P [H = Er] = tr ρ̂0P̂r, where P̂r denotes the projection op-
erator on to the Hilbert subspace of energy Er. Then we introduce a so-called information
process on (Ω,F ,P) denoted {ξt}t≥0, defined by

ξt = σtH + Bt. (47)

Thus {ξt} takes the form of a Brownian motion with a random drift, the rate of drift being
determined by the random variable H and the parameter σ. Processes of this type arise in
the theory of stochastic filtering (Wonham 1965, Liptser & Shiryaev 2000). In the language
of filtering theory one refers to H as the signal, Bt as the noise, and ξt as the observation.
Of course, the notion of observation as it is understood in the context of filtering theory
has no immediate connection with the notion of observation as it is usually understood
in quantum mechanics. Nevertheless, the ideas that have been developed in filtering
theory are rather suggestive, so it is worth keeping the associated terminology in mind
as we proceed. Loosely speaking, one can think of “that which has been observed” in the
context of filtering theory as equivalent to “that which has irreversibly manifested itself
in the world” in the context of a physical theory. Now, let {Ft}t≥0 denote the filtration
generated by {ξt}t≥0. We have the following.
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Proposition 5 Let the operator-valued process {K̂t}t≥0 be defined by

K̂t = exp
[

−i ~−1Ĥt + 1
2
σĤξt − 1

4
σ2Ĥ2t

]

. (48)

Then the process {ρ̂t}t≥0 defined by

ρ̂t =
K̂t ρ̂0 K̂∗t

tr [K̂t ρ̂0 K̂∗t]
(49)

has trace unity, is nonnegative definite, and satisfies a stochastic master equation of the form

dρ̂t = −i ~−1[Ĥ, ρ̂t]dt + 1
8
σ2

(

2 Ĥρ̂tĤ − Ĥ2ρ̂t − ρ̂tĤ
2
)

dt

+ 1
2
σ
(

(Ĥ −Ht)ρ̂t + ρ̂t(Ĥ −Ht)
)

dWt, (50)

where Ht = tr ρ̂tĤ and the process {Wt}t≥0 defined by

Wt = ξt − σ
∫ t

0

Hsds (51)

is an {Ft}-Brownian motion.

Remark Here we look at the stochastic master equation from a new point of view. Instead
of regarding {Wt}t≥0 as an “input” to the model, we regards {ξt}t≥0 as the input. Then both
{ρ̂t}t≥0 and {Wt}t≥0 are defined in terms of {ξt}t≥0, and together they satisfy equation (50).

Proof Let us set Λt = tr [K̂t ρ̂0 K̂∗t]. From the cyclic property of the trace we obtain

Λt = tr ρ̂0 exp
(

σĤξt − 1
2
σ2Ĥ2t

)

. (52)

By Ito’s lemma, along with (dξt)
2 = dt, which follows from (47), we have

dΛt = σ tr ρ̂0Ĥ exp
(

σĤξt − 1
2
σ2Ĥ2t

)

dξt, (53)

and therefore dΛt = σHtΛt dξt, since

Ht =
tr ρ̂0Ĥ exp

(

σĤξt − 1
2
σ2Ĥ2t

)

tr ρ̂0 exp
(

σĤξt − 1
2
σ2Ĥ2t

) . (54)

If we write (49) in the form

ρ̂t =
1

Λt
K̂t ρ̂0 K̂∗t , (55)

a straightforward calculation using the Ito quotient rule then gives (50). To establish
that the process {Wt}t≥0 defined by (51) is an {Ft}-Brownian motion under P we use the
so-called Lévy criterion. We need to show (i) that (dWt)

2 = dt, and (ii) that {Wt}t≥0 is an
{Ft}-martingale under P.
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The first property follows immediately as a consequence of the Ito multiplication rules
applied to (47) and (51). To check that the second property holds we need to verify for
s ≤ t that E[Wt | Fs] = Ws. Let Gt denote the σ-algebra generated by H and {ξu}0≤u≤t. Then
Ft, which is generated by {ξu}0≤u≤t alone, is a sub-σ-algebra ofGt, and for all t ≥ 0 we have
the tower property of conditional expectation:

E [E [ · | Gt] | Ft] = E [ · | Ft]. (56)

Now, by (51) it holds that

E[Wt | Fs] = E[ξt | Fs] − σ
∫ t

0

E[Hu | Fs] du. (57)

As for the first term on the right side of (57), it follows from (47) that

E[ξt | Fs] = E[Bt | Fs] + σtE[H | Fs]

= E[Bt | Fs] + σt Hs

= E [E [ Bt | Gs] | Fs] + σt Hs

= E[Bs | Fs] + σt Hs

= ξs + σ(t − s) Hs, (58)

where we use the tower property to go from the second to the third line. In the second
term on the right side of (57), we use the fact that {Ht} is a martingale to deduce that

∫ t

0

E[Hu | Fs] du =

∫ s

0

Hu du +

∫ t

s

Hs du =

∫ s

0

Hu du + (t − s)Hs. (59)

Thus putting together the results for the two terms on the right side of (57) we have

E[Wt | Fs] = ξs − σ
∫ s

0

Hu du = Ws, (60)

which is what we wished to show. �

VII. INFORMATION FILTRATION

The collapse property in the case of a general state admits a remarkable interpretation in

the language of stochastic filtering. As before, let us write P̂r (r = 1, . . . ,D) for the projec-
tion operator onto the Hilbert subspaceHr consisting of state vectors with eigenvalue Er.

For any element |a〉 ∈ Hr we have Ĥ |a〉 = Er |a〉, and for the Hamiltonian we can write

Ĥ =

D
∑

r=1

Er P̂r. (61)

Therefore, if we set R̂nm t = P̂n ρ̂t P̂m then for the diagonal terms we have

R̂nn t =
P̂n ρ̂0 P̂n exp

[

σEnξt − 1
2
σ2E2

n t
]

∑D
r=1 pr exp

[

σErξt − 1
2
σ2E2

r t
] , (62)

where pr = tr ρ̂0 P̂r.
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Proposition 6 For each n the process {R̂nn t}t≥0 is a uniformly integrable martingale, given by

R̂nn t = E [1(H = En) | Ft]
P̂n ρ̂0 P̂n

tr ρ̂0 P̂n

, (63)

where

E [1(H = En) | Ft] =
pn exp

[

σEnξt − 1
2
σ2E2

n t
]

∑D
r=1 pr exp

[

σErξt − 1
2
σ2E2

r t
] . (64)

Thus, {ξt} carries partial information about the value of the random variable H, which is
revealed as time progresses, leading asymptotically to the outcome

R̂nn∞ = 1(H = En)
P̂n ρ̂0 P̂n

tr ρ̂0 P̂n

, (65)

which is the Lüders state that results under the projection postulate in the standard theory
as a consequence of an energy measurement, with the outcome En, given that the initial
state is ρ̂0. In the present context there is no measurement as such. Nevertheless, the final
state of the reduction process is a Lüders state. For each value of n the corresponding
diagonal element of the density matrix at time t is given by the conditional expectation of
the indicator function 1(H = En) given the value of ξt.

Next we present a probabilistic formulation of the fact that the state decoheres as

reduction proceeds. For any operator Ô let us write |Ô| = (tr ÔÔ†)1/2.

Definition 3 By a potential on a filtered probability space (Ω,F ,P,F), we mean a strictly positive
right-continuous supermartingale {πt}t≥0 with the property that limt→∞E[πt] = 0.

Then we have the following:

Proposition 7 For each n,m such that n , m the process { |R̂nm t| }t≥0 is a potential.

Proof Let n,m be such that n , m. The off-diagonal matrix elements of the state then take
the form

R̂nm t = P̂n ρ̂0 P̂m

exp
[

−i ~−1(En − Em) t + 1
2
σ(En + Em)ξt − 1

4
σ2(E2

n + E2
m) t

]

∑D
r=1 pr exp

[

σErξt − 1
2
σ2E2

r t
] . (66)

Thus we have

R̂nm t = P̂n ρ̂0 P̂m exp
[

−i ~−1(En − Em) t
]

Φnm t, (67)

where

Φnm t =
exp

[

1
2
σ(En + Em)ξt − 1

4
σ2(E2

n + E2
m) t

]

∑D
r=1 pr exp

[

σErξt − 1
2
σ2E2

r t
] , (68)
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and a calculation shows that

Φnm t = Πnm t exp
[

− 1
8
σ2(En − Em)2 t

]

, (69)

where

Πnm t =
exp

[

1
2
σ(En + Em)ξt − 1

8
σ2(En + Em)2 t

]

∑D
r=1 pr exp

[

σErξt − 1
2
σ2E2

r t
] . (70)

We claim that for any λ ∈ R the process {µt}t≥0 defined by

µt =
exp

[

λξt − 1
2
λ2t

]

∑D
r=1 pr exp

[

σErξt − 1
2
σ2E2

r t
] (71)

is a martingale. To see that this is so, note that by use of Ito’s lemma, together with the
relation dξt = σHtdt + dWt, we have dµt = (λ − σHt)µtdWt, and thus

µt = exp

[∫ t

0

(λ − σHs) dWs − 1
2

∫ t

0

(λ − σHs)
2 ds

]

. (72)

Since {Ht}t≥0 is bounded, we deduce that {µt}t≥0 is a martingale. Therefore, {Πnm t}t≥0 is a
martingale and {Φnm t}t≥0 is a supermartingale. By (69) one sees that

E [Φnm t] = exp
[

− 1
8
σ2(En − Em)2 t

]

, (73)

and hence

lim
t→∞
E [Φnm t ] = 0, (74)

so {Φnm t}t≥0 is a potential. Finally, we observe that

∣

∣

∣R̂nm t

∣

∣

∣ =
∣

∣

∣ P̂n ρ̂0 P̂m

∣

∣

∣Φnm t, (75)

from which we obtain

lim
t→∞
E

[ ∣

∣

∣R̂nm t

∣

∣

∣

]

= 0 (76)

for n , m, which is what we wished to prove. �

Thus, the potential property of the off-diagonal terms of the density matrix in the
energy representation captures the essence of what is meant by decoherence. We see that
the decay of the off-diagonal terms of the density matrix is exponential in time, and that
the decay rate for any particular such term is proportional to the square of the difference
of the associated energy levels. In fact, we can take the representation of {Φnm t}t≥0 as a
potential a step further. A calculation making use of the Ito quotient rule shows that

dΦnm t = − 1
8
σ2(En − Em)2Φnm t dt + 1

2
σ(En + Em − 2Ht)Φnm t dWt. (77)
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As a consequence, for each n,m such that n , m we have

Φnm t = 1 − 1
8
σ2(En − Em)2

∫ t

0

Φnm s ds + 1
2
σ

∫ t

0

(En + Em − 2Hs)Φnm s dWs. (78)

Taking the limit as t goes to infinity and using the fact that Φnm∞ = 0 almost surely, we
deduce that

1 + 1
2
σ

∫ ∞

0

(En + Em − 2Hs)Φnm s dWs =
1
8
σ2(En − Em)2

∫ ∞

0

Φnm s ds. (79)

Then by taking a conditional expectation we obtain

1 + 1
2
σ

∫ t

0

(En + Em − 2Hs)Φnm s dWs =
1
8
σ2(En − Em)2

Et

[∫ ∞

0

Φnm s ds

]

, (80)

from which it follows by use of (78) that

Φnm t =
1
8
σ2(En − Em)2

Et

[∫ ∞

t

Φnm s ds

]

. (81)

This identity gives us a representation of {Φnm t}t≥0 as a so-called type-D potential. More
explicitly, if we define an increasing process {Anm t}t≥0 by setting

Anm t =
1
8
σ2(En − Em)2

∫ t

0

Φnm s ds, (82)

then we have

Φnm t = Et [Anm∞] − Anm t, (83)

which is the canonical form for a potential of type D (Meyer 1966). Thus we arrive at the
following:

Proposition 8 The state process under energy-driven stochastic reduction is of the form

ρ̂t =

D
∑

n=1

Et [1(H = En)]
P̂n ρ̂0 P̂n

tr ρ̂0 P̂n

+

D
∑

n,m=1

1n,mP̂n ρ̂0 P̂m exp
[

−i ~−1(En − Em) t
]

Φnm t. (84)

The conditional expectation in the first term is given by (64) and the potential in the second
term is given by (69). At time zero, the two terms combine to give the initial density matrix
ρ̂0. As the collapse proceeds, the first term converges to the Lüders state associated with
the selected energy eigenvalue En, and the second term tails off to zero. It should be
emphasized that if the initial state is impure, and if the Hamiltonian is degenerate, then
the final state will in general also be impure.
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VIII. CONCLUSION

In our development of the dynamic reduction program we have taken the view that the
state of a single system can be described by a density matrix that may or may not be pure.
The initial state ρ̂0 is prescribed, and its value at time t is given by the random density
matrix ρ̂t. The model is understood as describing an “objective” reduction process, so
there are no observers in the theory in the usual sense. All the same, one can ask what is
known at time t, in the sense of what has manifested itself in the world (or, let’s say, in the
experimenter’s laboratory) at that time. For this purpose it seems reasonable to adopt the
view that the standard interpretation of the filtration {Ft} gives an adequate answer. This
means that for any overall outcome of chance ω ∈ Ω, the value of any Ft-measureable
random variable Xt will be “known” or will have manifested itself at (or before) time t. In
particular, the value of ρ̂t itself will be known at time t, as will the value of the information
process ξt. Now, it is not quite meaningful to ask how ξt can be measured in a theory in
which there are no measurements. Nevertheless, we are forced to the conclusion that the
theory only makes sense if ξt is known (in the sense of having manifested itself) at time t.
In fact, Diosi (2015) has arrived at what we believe to be in essence a similar conclusion,
that stochastic reduction models only really make sense if the {ξt} process can in some
appropriate sense be monitored in real time. This is not the same thing as saying that
the quantum system is being actively monitored (in the sense of Diosi 1988, Barchielli
& Belavkin 1991, Barchielli 1993, Wiseman 1996, Wiseman & Diosi 2001, Barchielli &
Gregoratti 2009), since the monitoring that takes place in such considerations is within a
framework of standard quantum dynamics, and some form of ad hoc collapse is required
as an additional assumption to make the infinitesimal collapses occur in response to the
monitoring. But it may be that in a laboratory situation it is possible to monitor {ξt}, or
equivalently {Ht}, in the passive sense implicit in the structure of the information filtration
of the models that we have here described. The class of information-based models that
can be developed by use of the filtering techniques discussed in Sections VI and VII can
be extended to a wider set of models, in which the underlying noise is not Brownian
motion but rather a general Lévy process. Such processes, like Brownian motion, have
the property of being stationary with independent increments, but are not generally
Gaussian and can be discontinuous. Providing that a condition is satisfied ensuring the
existence of exponential moments, Lévy trajectories are suitable for characterizing a wide
and extraordinarily diverse family of noise processes (Brody, Hughston & Yang 2013).
The development of relativistic analogues of the models considered here remains an open
problem, though it seems reasonable to conjecture that in the relativistic case the reduction
process should lead to states for which the total mass and spin take definite values.
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Roy. Soc. Lond. A 469, 20120433.

[25] Davies, E. B. (1976) Quantum Theory of Open Systems (London: Academic Press).

[26] Diosi, L. (1988) Continuous quantum measurement and Ito formalism. Phys. Lett. A 129,

419-423.

[27] Diosi, L. (1989) Models for universal reduction of macroscopic fluctuations. Phys. Rev. A 40,

1165-1174.

[28] Diosi, L. (2015) Is spontaneous wave function collapse testable at all? J. Phys. Conf. Series 626,

012008.

[29] Gao, S. (2013) A discrete model of energy-conserved wave function collapse. Proc. R. Soc.

Lond. A 469, 20120526.

[30] Ghirardi, G. C., Rimini, A., & Weber, T. (1986) Unified dynamics for microscopic and macro-

scopic systems. Phys. Rev. D 34, 470-491.

[31] Ghirardi, G. C., Pearle, P. & Rimini, A. (1990) Markov processes in Hilbert space and contin-

uous spontaneous localization of systems of identical particles. Phys. Rev. A 42, 78-89.

[32] Ghirardi, G. C. (2000) Beyond conventional quantum mechanics. In: Quantum Reflections, J.

Ellis & D. Amati, eds., 79-116 (Cambridge University Press).

[33] Ghirardi, G. C. (2016) Collapse theories. In: Stanford Encyclopedia of Philosophy, Spring 2016

edition, E. N. Zalta, ed., https://plato.stanford.edu/archives/spr2016/entries/qm-collapse/.

[34] Gisin, N. (1989) Stochastic quantum dynamics and relativity. Helv. Phys. Acta 62 363-371.

[35] Gorini, V., Kossakowski, A. & Sudarshan, E. C. G. (1976) Completely positive dynamical

symmetry groups of N-level systems. J. Math. Phys. 17, 821-825.

[36] Haag, R. & Kastler, D. (1964) An algebraic approach to quantum field theory. J. Math. Phys. 7,

848-861.

[37] Hida, T. (1980) Brownian Motion (New York: Springer-Verlag).

[38] Hughston, L. P. (1996) Geometry of stochastic state vector reduction. Proc. R. Soc. Lond. A 452,

953-979.

[39] Isham, C. J. (1995) Lectures on Quantum Theory (London: Imperial College Press).

[40] Karatzas, I. & Shreve, S. E. (1991) Brownian Motion and Stochastic Calculus, second edition

(Berlin: Springer).

[41] Karolyhazy, F. (1966) Gravitation and quantum mechanics of macroscopic objects. Nuovo

Cimento 42, 390-402.
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