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Impact of communication topology in particle
swarm optimization

Tim Blackwell, Jim Kennedy

Abstract—Particle Swarm Optimisation has two salient compo-
nents: a dynamical rule governing particle motion and an inter-
particle communication topology. Recent practice has focused on
the fully connected topology (Gbest) despite earlier indications on
the superiority of local particle neighborhoods. This paper seeks
to address the controversy with empirical trials with canonical
PSO on a large benchmark of functions, categorized into fourteen
properties.

This paper confirms the early lore that Gbest is the overall
better algorithm for unimodal and separable problems and that
a ring neighborhood of connectivity two (Lbest) is the preferred
choice for multimodal, non-separable and composition functions.
Topologies of intermediate particle connectivity were also tested
and the difference in global/local performance was found to be
even more marked.

A measure of significant improvement is introduced in order
to distinguish major improvements from refinements. Lbest,
according to the experiments on the 84 test functions and a bi-
modal problem of adjustable severity, is found to have significant
improvements later in the run, and to be more diverse at
termination. A mobility study shows that Lbest is better able
to jump between optimum basins. Indeed Gbest was unable to
switch basins in the bi-modal trial.

The implication is that Lbest’s larger terminal diversity, its
better ability to basin hop and its later significant improvement
account for the performance enhancement. In several cases where
Lbest was not the better algorithm, the trials show that Lbest was
not stuck but would have continued to improve with an extended
evaluation budget.

Canonical PSO is a baseline algorithm and the ancestor of all
contemporary PSO variants. These variants build on the basic
structure of baseline PSO and the broad conclusions of this study
are expected to follow through. In particular, research that fails
to consider local topologies risks underplaying the success of the
promoted algorithm.

Index Terms—Particle Swarm Optimization, PSO.

I. INTRODUCTION

S INCE its introduction in 1995, the Particle Swarm
Optimization (PSO) algorithm has gone through many

changes. The dynamics of the particles have been studied, pa-
rameter values have been evaluated, and extended and compact
versions have been proposed. The communication topology of
the swarm has been investigated, and various dynamic and
adaptive variations have been put forward. A March 2018
search for the string “particle swarm” in Google Scholar
returned 261,000 results; the algorithm has been looked at
quite intensively by a curious and active research community.

For all the variations and innovations, though, the version
that has ascended as the “standard” in a majority of recent

Tim Blackwell is with the Department of Computing, Goldsmiths, Univer-
sity of London, UK. e-mail: t.blackwell@gold.ac.uk

Jim Kennedy, Washington DC, USA. email: kennedy.jim@gmail.com

publications is not the version that has usually been judged
as superior over the past twenty-plus years. In particular, the
research community has settled on the global-best topology for
the great majority of implementations, even when distributed
communication topologies have been uniformly preferred and
praised in the literature. This has sometimes led to disappoint-
ing research results; a slight modification of the algorithm
might have been successful.

The very first particle swarm papers [1], [2], described a
primitive algorithm with some surprising properties. Based on
the metaphor of social learning, a population of initially ran-
dom candidate problem solutions, or particles, moved through
the search space and informed one another of better positions.
Teaching and learning from one another simultaneously, the
system - swarm - evolved towards a global optimum in a large
number of standard test problems.

Even in 1995, two kinds of inter-particle communication
network were proposed. The global best (Gbest) network
keeps track of the best solution found by any member of the
population, and shares that information with all particles. The
ring network - known here as Lbest - is the most extreme local
topology; it permits information sharing between immediate
neighbors only. Even in that first year it was noted that the
Lbest topology seemed to make the swarm relatively immune
to the attraction of local optima, while Gbest ran quickly but
was susceptible to getting stuck.

Over recent years the research community has largely as-
sumed Gbest as the default or standard topology, and, in 2013,
Engelbrecht reported that, on a sixty function benchmark, there
was no real performance difference between G and Lbest [3].
This conclusion went against a large amount of published
research.

This paper seeks to clarify the G/Lbest controversy with
rigorous testing on a large benchmark that combines the
popular CEC test functions with the problems chosen in the
2013 study. In order to match performance with function
characteristics, correlations between error and fourteen binary
problem properties were investigated. Furthermore, an insight
into G/Lbest behaviour is obtained by monitoring how late into
a run a swarm continues to improve, its diversity at the end of
a run, and its ability to jump between promising modal basins.
This last quality is investigated with a purpose-built bi-modal
function that allows for tight control of problem difficulty.

The main finding of the paper is that the topology affects
many aspects of the swarm’s performance, and a distributed
topology offers advantages, especially in the case of more
difficult problems.

The paper continues with a review of PSO particle commu-
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nication; the aim is to spotlight the G/Lbest controversy and
argue for a definitive response. Section III tests G/Lbest on the
combined benchmark and links performance with the presence
of one or more of the fourteen binary function properties. A
study of G/Lbest stagnation - the tendency of an algorithm to
get stuck - and mobility - the ability to jump between optimum
basins - follows. Tests on real-world problems are reported
in Section VI. A study of other local topologies completes
the empirical investigations; all findings are gathered and
presented in a concluding section.

II. PARTICLE COMMUNICATION

This section gives an overview of the particle swarm al-
gorithm and a review of communication topology and PSO
performance. The section ends with comments on the uptake
of Gbest as the default topology and summarizes Engelbrecht’s
2013 study [3].

A. The particle swarm
The particle swarm described herewith is the ‘canonical’

PSO [4]–[8] which differs only from the original 1995 PSO
by the inclusion of a convergence controlling inertia weight
(equivalent to Clerc and Kennedy’s constriction parameter).
This PSO contains the two essential components - dynamics
and topology - at a conceptually fundamental level. It is widely
accepted as the baseline PSO and is invariably used as a
reference model in contemporary research.

Each individual, or particle, i in the swarm of M particles
is the triplet (xi, vi, pi) where xi and pi are D dimensional
vectors in the search space X . xi is the current position, pi
(pbest) is the previous best position achieved (pbest may be
equal to xi), and the velocity vi is the difference between the
current and the immediately prior position. Particles move by
adding an updated velocity to xi. The new position is evaluated
with respect to the objective function and, if that position is
better, or equal, to any position it has found so far, the position
is stored in pi.

Specifically, the velocity update rule is

vi(t+ 1) = wvi(t) + cu1(t) ◦ (ni(t)− xi(t))
+ cu2(t) ◦ (pi(t)− xi(t)) (1)

where u1,2 are uniform random variables in [0, 1]D and ◦ is
the Hadamard (entry-wise) product. ni is the pbest of the best
neighbor, as determined by the communication topology and
the inertial weight, w, and c, are two arbitrary parameters,
chosen to encourage search by moderating convergence whilst
preventing explosion.

The topology typically consists of bidirectional edges con-
necting pairs of particles, so that if j is in i’s neighborhood, i
is also in j’s. Each particle communicates with other particles
in its neighborhood and is influenced by the pbest of the best
neighbor. Population topologies are potentially hugely varied,
but in practice certain types have been used more frequently.
The present paper compares aspects of the two most widely-
used topologies.

PSO has two arbitrary components, parameter values and
the choice of network, and each has been the subject of
considerable investigation over the past twenty years.

1) Parameters: Clerc and Kennedy [6] analyzed the system
at stagnation and determined that a constriction coefficient
χ, equivalent to the inertial weight of Eq. 1) with value
0.7968 along with acceleration constants c fixed at 1.4962
provided optimal performance. Shi and Eberhart came to a
similar conclusion with slightly different values and a slightly
different algebraic arrangement [4]. Subsequent research has
mostly adopted the Clerc and Kennedy values and the Shi and
Eberhart arrangement of inertia weight, rather than constriction
coefficient. The inertia weight encourages convergence by
gearing the velocity down.

2) Topology: The first PSO paper, published in 1995,
proposed two methods for organizing the particles in order
to manipulate the flow of information through the population
[2]. One method, called “Gbest”, allowed every member of the
population to be influenced by the member that had achieved
the best performance so far.

In the second topology, “Lbest”, however, particles were
connected by a sparse network of low connectivity. In a
ring neighborhood, for instance, particle i compares its best
position with particles i− 1 and i+1 (with appropriate wrap-
around). Lbest was found to successfully optimize a set of
weights of an XOR neural network and, despite hundreds of
trials, convergence to a local optimum was never seen. The
authors suggested that the good behaviour of Lbest could be
attributed to the spontaneous formation of groups of exploring
particles. However, they noted that, to meet a given error
criterion, Lbest requires more iterations than Gbest.

B. Central versus distributed population communication

As discussed above, the present study compares two tradi-
tional particle swarm topologies, Lbest and Gbest.

It is important to bear in mind that while Lbest and Gbest
are two venerable and well-known population topologies, they
are by no means the only ones, or even the best ones [9].
They are extremes in terms of fluency of propagation through
the population and as such represent opposite ideals; in one
case new breakthroughs are shared with the entire population
and adopted immediately and in the other case new problem
solutions are shared locally and compete for adoption against
solutions propagated from other parts of the population. Very
many topological structures have been proposed, blending
these two extremes or innovating in other ways.

The general question has to do with distributed versus
centralized communication. Is it better to give all particles
the very best information known at any time, or is it better to
spread out the search and let individuals persuade each other,
one by one?

In fact Lbest and Gbest are end-points of a near-continuum
of communication topologies. Besides the large number of
possible bidirectional, fully-connected structures, particles can
communicate through weighted edges, probabilistic edges,
fuzzy edges, adaptive links based on an unlimited number of
possible rules, dynamic links of various types, there can be
disconnected subpopulations, unidirectional connections – the
list is vast. Furthermore, particles can communicate in a large
number of ways through the links; in the standard particle
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swarm the best neighbor is selected, but the particle could use
an average of all neighbors [9], or some subset of them, the
individuals could employ any of the recombination methods
used in evolution strategies [10], and so on.

C. Topology - early experiments

As has been noted, the first particle swarms used either
Gbest or Lbest topologies. As early researchers were learning
how to control the tendency for trajectories to explode by
damping the velocity and applying some coefficients on the
velocity terms, the question of communication topology did
not receive much of a focus until the publication of Watts
and Strogatz’ landmark paper [11] on the “small world” effect
in network topologies. Kennedy modified the social network
topology of a particle swarm systematically, and concluded
that small-world effects were not significant in a population
of twenty particles, but needed a larger network [5]. That
paper noted that the effect of the topology seemed to vary
with the function, and subsequently a number of researchers
began looking at aspects of the topology.

Suganthan [12] developed the case that since the Lbest
topology seemed better for exploring the search space while
Gbest converged faster, it would be reasonable to begin the
search with an Lbest lattice and slowly increase the size of
the neighborhood until the population was fully connected –
Gbest – by the end of the run. That same paper also reported
on another kind of topology, where neighbors were defined
by proximity in the search space and the number of neighbors
was dynamically increased through the course of the run.
The authors anecdotally reported some improvement using the
neighborhood operator.

Besides Gbest and Lbest, Kennedy and Mendes [13] tested a
“pyramid” topology, based on a three-dimensional wire-frame
triangle; the star, with one central node exchanging influence
with all others; a graph created with cliques and isolates, as
an example of heterogeneity; von Neumann neighborhoods,
with neighbors above, below, and on each side on a wrapped
two-dimensional lattice and random graphs having various
characteristics. They found that Gbest was ranked second in all
topologies as ranked by median necessary iterations. However,
they concluded that, in trials where an error criterion was met,
Lbest took longer than Gbest to achieve the specified error, but
it met the criterion more often.

Peram et al. [14] select an interaction partner for a particle
using a weighted Euclidean distance. They identified the parti-
cle with the highest fitness distance ratio (FDR) for each vector
element, i.e. the ratio of the difference between the target
particle’s fitness and the neighbor’s fitness to the distance
between them in the search space on that dimension. FDR and
Gbest were used to influence the particle. FDR ensured that
the selected neighbor was a good performer and increased the
probability that a particle interacted with a neighbor nearby
in the search space. The new algorithm outperformed the
standard PSO on a set of test functions.

Liang and Suganthan [15] created random subpopulations
and occasionally randomized all the connections. Those re-
searchers obtained good results, especially on multimodal

problems, with subpopulation size n = 3, re-structuring every
5 iterations.

Janson and Middendorf [16] arranged the particles in a
dynamic hierarchy, with each particle’s own previous success
and that of the particle directly above it influencing it. When
particles with better performance were moved up the hierarchy
they had more effect on poorer particles. The result was im-
proved performance on most of the test functions considered.

Clerc [17] developed a parameter-free particle swarm sys-
tem called TRIBES, in which the topology, including the
size of the population, evolved over time in response to
performance feedback. The population was divided into sub-
populations with their own order and structure. “Good” tribes
were hypothesized to benefit by removal of their weakest
member, as they already possessed good problem solutions and
thus could afford to reduce their size; “bad” tribes, on the other
hand, were thought to benefit by addition of a new, randomly
generated member, increasing the possibility of improvement.
In the context of the many modifications to the particle swarm
that comprise the unique TRIBES paradigm, Clerc reported
good results on a number of test functions.

D. Topology - niching
Interest in niching in genetic algorithms, for the solving of

multimodal problems, brought localized topologies back to the
foreground in particle swarm research. The nomenclature of
niching comes from evolutionary theory, where species narrow
their variation in order to fit to a particular optimum; in the
social jargon of particle swarms it might be better discussed
in terms of conformity and norm formation, where subpopu-
lations of connected particles communicate and influence one
another and eventually converge around optima.

Niching divides the swarm into subpopulations in order
to identify and explore more than one optimal region si-
multaneously. Niching techniques in GA include crowding,
fitness sharing, the sequential niche technique, and species
conservation [18]. Generally, particle swarm implementations
have used crowding and fitness sharing techniques. The Lbest
topology naturally encourages parallel search and typically
discovers multiple optima; because neighborhoods overlap the
result is competition between solutions, with one propagating
through the population and another solution being forgotten
and lost.

Li [19] found that an Lbest particle swarm can operate as a
niching algorithm because the pbest of each particle forms a
stable network retaining the best positions found so far, while
the particles explore the search space more broadly. Also,
Li concluded that the Lbest topology in a reasonably large
population was able to locate dominant niches (optima) across
the search space. This means that particles locate optima that
are approximately equally good. However, if the aim of the
algorithm is to locate optima that are less dominant as well,
a non-overlapping topology might be recommended.

Liu and Ma [18], in a survey of multimodal particle swarm
techniques, maintain that an Lbest topology can provide com-
parable or better performance, and with more consistency,
than niching PSO’s with a fixed niche radius, and without
the introduction of an undetermined parameter.
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Crowding is an approach where less-fit population members
are replaced by fitter offspring whilst preserving population
size. Populations implementing multi-niche crowding are able
to converge simultaneously to multiple solutions by encourag-
ing competition between individuals within the same locally
optimal group. Parrot and Li [20] called their technique “spe-
ciation”, where particles that are similar to one another were
linked topologically, improving on a technique by Kennedy
[21] called “stereotyping” that substituted cluster centroids as
sources of influence. [19] found that the Lbest topology was
able to induce more stable niching behavior.

Fitness sharing is intended to model environmental niches
with limited resources by making individuals in the same
niche share their fitness; it modifies the search landscape by
reducing the payoff in densely populated regions. In practice,
the sharing effect is implemented by reducing the fitness
of each individual as a function of the number of similar
individuals in the population. It is a penalty for conformity.

One of the earliest “fitness sharing” approaches was devel-
oped by Parsopoulos and Vrahatis [22]. The method stretches
the fitness landscape to remove local optima. Considering
a minimization problem, when the swarm converges on an
optimum, the fitness of that position is stretched so that it
becomes non-optimal. Thus the swarm will focus on other
areas of the search space, leading to the identification of other
solutions.

Parsopoulos and Vrahatis [23] modified the function-
stretching approach through the application of two other tech-
niques: deflection and repulsion. The former is another form of
modification of the objective function which removes optima
which have been already located. The repulsion technique
modifies the PSO algorithm by introducing a repulsion force
in an area surrounding the optima which have already been
found. The combination of these techniques seems to improve
the ability of the method to find multiple optima.

Brits, et al. [24] used a technique of generating sub-swarms
when a local optimum was discovered, called NichePSO. The
main swarm explores widely without communication among
particles, while the sub-swarms perform local search of a
region.

Researchers investigating techniques for finding multiple
optima have experimented with particle swarm topologies,
extending the Lbest configuration to give even more indepen-
dence to subpopulations and largely rejecting Gbest because
of its inability to search beyond a single optimal region.

E. Dynamic topologies

Several investigators have suggested adjusting the topology
over time in order to capitalize on the strengths of the two
approaches.

Clerc continued to experiment with dynamic topologies in
the years following the intriguing TRIBES algorithm; these
explorations culminated in a putative baseline PSO known
as SPSO-2011 [25]. The algorithm contained a novel form
of particle dynamics, and more relevant to this review, an
adaptive and random particle communication strategy of great
interest. The topology, identical to the 2006 version of the

algorithm [26], is modified at the end of each unproductive
iteration by demanding that each particle ‘informs’ K particles
at random, as well as itself. The result is a heterogeneous
communication graph of degree varying between 1 and the
swarm size (although, on average, a particle is informed
by K others) which harmonizes Lbest and Gbest qualitites.
However fully connected particles are rare. Although not
intended as a competitive PSO, and in fact not performing
well on the challenging CEC 2013 benchmark composition
functions, SPSO-2011 showed evidence of scalability to higher
dimension [27].

Suganthan’s early experiments [12] have already been noted.
Bonyadi and Michalewicz [28] developed a time-adaptive
topology, based on the observation that Lbest neighborhoods
explore the search space more widely for optimal regions,
while Gbest tends to find a good point within an optimal
region. Thus they proposed to change the topology over time
from several small sub-swarms to the fully connected Gbest
topology. They argued that sub-swarms with as few as two
members explore the search space very thoroughly, while
Gbest more effectively exploits the better quality regions. They
started with small subswarms and increased their size linearly
through the run until the entire population was fully connected.

Marinakis and Marinaka [29] implemented an expanding
neighborhood topology and in a similar vein, Lim and Isa
[30] decided to balance the particle swarms’ preference for
exploration or exploitation by varying the particles’ connec-
tivity with time in a version they called PSO with increas-
ing topology connectivity (PSO-ITC). They found that high
connectivity topologies favor simple problems whereas Lbest
topologies perform better in complex problems.

Each particle in PSO-ITC is initially connected with one
neighbor that is randomly selected from the population. As
the optimization process evolves, the ITC module gradually
increases the particle’s topology connectivity by randomly
selecting new neighbors until all particles are fully connected.
Interestingly, connections in PSO-ITC are unidirectional; A
may influence B without B influencing A. If a particle fails
to improve for a criterion number of evaluations, then new
neighbors are randomly selected. The algorithm incorporates
many changes, as well, that are outside the scope of this
discussion.

All the cited papers in this review are in agreement that
the communication topology of the particle swarm affects
its performance. In comparing the two “classical” topologies,
most note that Lbest has a tendency for exploration, for finding
good regions of the search space and searching in parallel to
discover multiple regions, while Gbest excels at exploitation,
at finding the highest quality point in a good region.

F. The rise of Gbest

Despite the early advice, a great majority of published PSO
research uses Gbest swarms. It is difficult to point to a time
when the research paradigm began tipping in favor of Gbest,
because the phenomenon is marked more by the absence of
language than any presence. Over time, through the middle
2000s, many writers stopped referring to population topology
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at all, and only described the algorithm in terms of a “personal
best” and a “global best” or “population best” term in the
velocity formula.

It was simply assumed that the algorithm used the popu-
lation’s best solution to influence all members. For example,
the 2015 Proceedings of the Congress on Evolutionary Com-
putation contained thirty-six papers with “particle swarm” or
“PSO” in the title. Three of the papers described hierarchical
or “subswarm” structures that are not relevant to the current
discussion. Of the remaining thirty-three papers, twenty-nine,
or 91% used the Gbest topology exclusively. This measure is
representative of the trend in the research.

The continued exclusive use of the Gbest communication
topology in trials of new PSO variants is perplexing given the
considerable evidence that Lbest has greater search capacity.
Three reasons can be seen immediately. The Gbest PSO,
compared to, say, a gradient descent algorithm, is easy and
quick to code. The Lbest ring topology is hardly any more
difficult to implement, but other Lbest networks are intricate
and require careful coding. Gbest performs “well enough”,
and since it is the simplest algorithm, it seems a natural
choice. And Gbest runs faster due to fewer look-ups. The
speed difference is not great but might become significant in
some applications. Gbest, therefore, is simple to understand
and code, has acceptable performance and executes efficiently.

We note, also, that very many papers that assume Gbest as
orthodoxy also go on to mention the particle swarm’s “well
known tendency to converge prematurely.” For example, this
view point is clearly stated in Pant’s study in 2008 [31], Van
den Burgh et al’s 2010 paper on PSO convergence [32] and
Han and Wang’s 2013 paper [33].

At present, because of the preponderance of publications
that literally define the particle swarm in terms of the Gbest
topology, and because much of the easily available software
implements Gbest with no alternative, we presume that many
new researchers are unaware that there is any other way to
implement the algorithm.

G. Engelbrecht’s Study

Engelbrecht [3] finds, from a survey of fifteen papers
published between 2000 and 2013, a general recommendation
to use Gbest on unimodal problems and to otherwise employ
Lbest. However, he concluded, on the basis of an empirical
investigation on sixty hand-picked test functions:

1) Neither algorithm is preferred for unimodal, multimodal,
separable or non-separable problems.

2) In terms of accuracy (mean error), G and Lbest are
approximately equivalent.

3) Gbest is slightly more consistent (smaller standard de-
viation in the error).

These findings allow him to speculate that:
A The general recommendation is in error: both Gbest and

Lbest must be tested in order to find the optimal PSO
for an arbitrary problem.

B Either Gbest or Lbest could be chosen in order to assess
the effect of a specific change to PSO dynamics.

A is a generalization of 1 to all functions and speculation B
is strictly unsupported since the interaction between particle
dynamics and particle communication is not investigated.

Engelbrecht’s results are intriguing but his methods are
somewhat opaque. Conclusions 1 and 2 are particularly sur-
prising since they question the orthodox view that has emerged
over the past twenty years of PSO research. Therefore it seems
worthwhile to replicate his results.

III. EMPIRICAL STUDY - COMBINED BENCHMARK

This section forms the central part of our study: the rel-
ative performance of GBest and LBest on a comprehensive
benchmark.

A. The combined benchmark

A set of twenty-five single-objective optimization test func-
tions was assembled for a competition at the 2005 Congress on
Computational Intelligence. This benchmark consists of five
unimodal functions, seven basic multimodal functions, two
multimodal complex functions, and eleven hybrid functions,
which were weighted sums of ten basic test problems [34].
This test suite became the standard for comparing algorithms,
and in subsequent years possible improvements were iden-
tified, resulting in a new benchmark suite being developed
for CEC 2013 [35]. This collection of twenty-eight functions
expanded on the 2005 composite functions and added new test
problems. It includes five unimodal functions, fifteen basic
multimodal functions, and eight composition functions, and
has become the more recent default standard for testing and
comparing optimization algorithms.

Engelbrecht’s 2013 study [3] used a benchmark of 37 base
functions, plus rotated, rotated and shifted, and noisy versions
of some of these base functions, totaling 60 problems in all.

The combined benchmark (CEC05 + CEC13 + ENG13), Ta-
ble S1, provides 84 unique problems. Four CEC05 functions,
F01, F03, F09 and F10 have equivalent versions in the CEC13
set. These functions were not included. CEC05 F06, F07 and
F08, however, are non-rotated, unbounded and optimum-on-
bounds versions of CEC13 F06, F07 and F08 respectively:
these functions were retained on account of their important
differences. The ENG13 benchmark has several overlaps with
CEC 2005 and includes a duplicate. The overlaps and duplicate
were removed from our combined test set, and two functions
were added - shifted and rotated versions of a couple of
base functions. The functions are numbered f02−25 (CEC05),
f31−58 (CEC13) and f61−95 (ENG13).

Table S1 lists the presence of twelve independent binary
function properties, as reported in the original documentation,
[34], [35], and [3]. Fourteen properties are annotated, but
two are dependent: a function is either uni- or multi-modal,
and is either separable or non-separable. The total number of
functions with a given property is given in the second column
of Table I. The absence of a property in table S1 does not
indicate that a function does not have that property, it merely
indicates that the documentation is silent on the matter. The
published references omit some property definitions and hence
we cannot confidently make any inference - for example, the
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CEC05 composition functions appear, judged by the CEC13
composition functions, to be asymmetric.

B. Methodology

The canonical PSO algorithm as described in Sec. II-A was
used for all experiments. A single fully connected topology
(Gbest) and the ring topology (Lbest) were trialed for each
function of the benchmark. Particles were initialized uniformly
at random in each function’s search space X for each run.
Particles were allowed to move outside X but were not
evaluated. The pbest update was applied immediately after a
particle moves and not at the end of an iteration (the particle
with the highest index is chosen if there were ties within the
neighborhood).

Each algorithm (Gbest, Lbest) was run 50 times on each test
function. Runs were terminated at 150000 function evaluations
(evals), where a function evaluation is the number of times
xi, i = 1, . . .M , is evaluated, even if vi(t) = 0.

In order to be commensurate with Engelbrecht’s BRICS
paper, [3], the swarm has M = 30 particles and w =
0.729844, c = 1.49618. The initial condition v = 0 is also
taken from the BRICS paper. The spatial dimension, constant
across runs, was D = 30.

Three measurements were made: best function value, known
here as the error, the swarm diversity and the eval of the last
improvement in the run. The actual error (best value minus f∗)
was recorded for CEC05 and CEC13. The optimum value f∗

is not known for some ENG13 test functions: in these cases,
the best function value was recorded.

The diversity, div, defined here and in [3] as the mean
separation between any two particle pbests is given by

div =
M(M − 1)

2

M−2∑
i=0

M−1∑
j=i+1

|pi − pj |. (2)

Each run was considered as a single trial. Analysis of the
84000 trials (84 functions * 50 runs * 2 algorithms) was
grouped by function and by function property.

For tests of aggregated function data, the three measure-
ments were ranked per function to make data commensurate
across functions. Wilcoxon nonparametric tests of significance
(p < 0.05) were considered more appropriate that t-tests due
to non-normality of the raw data, as well as of transformed
ranks.

C. Results

The result of Wilcoxon analysis on the trials on each
function is displayed in Tables S2 and S3. This method of
analysis obviates data normalization and imposition of an
arbitrary criterion of success. Bold type indicates significance,
p < 0.05. The number of ‘wins’ and mean rank is reported in
Table I where a win is: a significantly lower function error, a
significantly higher last improvement or a significantly higher
terminal diversity. The mean error ranks are charted in Fig. 1.

Gbest has better error performance than Lbest on 23 func-
tions, Lbest is superior on 37 functions, and the algorithms
are not significantly different on the remaining 24 functions.

Lbest therefore performs no worse than Gbest on 73% of the
functions in the benchmark. Lbest ranks higher than Gbest,
although the difference is small. Lbest improves later in the
run in 39 cases (Gbest improves later in 15 functions), and
has a higher terminal diversity in 71 functions (Gbest is more
diverse in 8). The rankings are again significant, and by a large
difference.

Lbest, as tested on this comprehensive benchmark, is the
better algorithm (lower error). Furthermore, Lbest achieves a
higher diversity and is able to improve at later stages of the
optimisation than Gbest. A reasonable inference from these
results is that Lbest searches longer and more widely and, in
consequence, finds better solutions.

We find significant differences in error between the algo-
rithms for all properties except narrow-valley; all properties
except noise are pertinent with regards to last improvement
and, apart from unbounded and sensitive-direction, we find
that the property groups yield significant run results.

The algorithms have better ranked errors in six (Gbest) and
seven (Lbest) properties. Lbest improves later in all function
groups except narrow valley and high conditioned, and has
a higher terminal diversity in all groups except opt. outside
bounds.

Unimodality and separability indicate simpler problems
in the sense that separable problems can be optimized one
dimension at a time and unimodal functions can be optimized
by any gradient following algorithm. On the other hand, multi-
modality, asymmetry and composition represent more difficult
functions due to the possibility of entrapment in local optima,
the non-uniformity between dimensions, and, in the case of
what is arguably the hardest of all properties, composition,
a mixture of different characteristics leading to very high
modality, optima in funnels and very marked anisotropy.

Gbest is the preferred algorithm for the simpler problems:
unimodal (15 Gbest wins, 3 Lbest wins) and separable (7-5).

Lbest is the better algorithm for problems featuring each of
these more challenging properties. LBest is a far better opti-
miser of composition functions (15-1) and better at multimodal
(34-8), nonseparable (32-16) and asymmetric (11-4) functions.
In each case, Lbest improves later in the run, and maintains a
higher diversity.

Neutrality is present in 8 functions and Lbest has better
error in 7 of these, Gbest in none. This result indicates that
Gbest has problems transversing flat regions, a finding that is
compatible with small diversity.

The correlation between larger diversity, larger improvement
and lower error does not hold for the simpler properties of
unimodality and separability. The correlation also does not
hold for the deception functions although there are only two
deceptive functions in the set and results might be misleading
due to interactions with other properties.

However, the proposition that larger diversity and later
improvement implies lower error, is true for non-separable
functions, those functions with the global optimum on the
bounds of the search space, functions with plateaus (neutral ar-
eas), asymmetric, and composition functions. These properties
are commonly thought to indicate optimization severity.
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Fig. 1. Gbest and Lbest mean error rank for each function property. All ranks are significant at p < 0.05 except for narrow-valley. A lower rank indicates
better performance.

Conversely, whenever Lbest is the better algorithm by error,
except for opt. outside bounds, it also has later improvement
and higher diversity. Gbest might or might not have later
improvement if it is the better. It is never the more diverse.

D. Conclusions

The results show that Lbest is the better algorithm for harder
functions and indicates that Lbest achieves its success by being
more diverse and improving for longer. Easier functions, those
that are separable and unimodal, are optimized more efficiently
by the Gbest topology.

Regarding modality, we note that our results are consistent
with Engelbrecht’s 2013 study [3]. He reported that Gbest
performed better on 11 unimodal functions compared to Lbest
performing better on 3, and that Gbest performed better on
9 multimodal functions to Lbest’s 19, and concluded, “The
empirical analysis of this paper provides convincing support
in favor of Gbest PSO even for multimodal and non-separable
problems”. We find the same pattern but conclude the opposite.
In sum, Lbest performs better than Gbest, especially on
harder problems, because it retains its population diversity and
continues to search longer.

IV. STAGNATION ANALYSIS

A comparison of last improvements indicates algorithm
activity late in a run. Improvements, however, might be minute
adjustments in the vicinity of a discovered optimum. Late
improvements, if tiny, are inconsequential. In other words,
what matters is the lateness of the last significant improvement.
This section considers how significant improvement and the
related concept of stagnation can be quantified and reports on
G/Lbest measurement of these quantities.

A. Defining improvement and stagnation

Any attempt to quantify the last significant improvement
(LSI) will involve arbitrary decisions on the nature of f . For
example, a significant improvement for a flat function might
be trivial for a very hilly function. Despite this arbitrariness,

differences in logarithmic, rather than absolute, values seem
cogent since is it is known that PSO converges exponentially
on symmetric unimodal problems such as the sphere function
[36], and it is desirable for PSO convergence on such minima
to be significant at any stage in a run. Furthermore, a loga-
rithmic sensitivity would ensure that exploration of fine detail
at lower function value will count as significant.

A simple single-parameter measure of LSI based solely
on the observation of the history of best values f(t) at
each evaluation t can therefore be defined as follows: an
improvement is regarded as significant at level s if∣∣∣∣log(f(t+ 1)

f(t)

)∣∣∣∣ ≥ s× log

(
E[f(0)]
fmin

)
(3)

where E[f(0)] is the expected best initial value of the popula-
tion and fmin is the least value of f over a batch of trials. An
improvement is therefore significant if log(f) changes by more
than a fraction s of the expected overall logarithmic change.

The applicability of this definition of LSI can be clarified by
considering PSO progress inside a symmetric basin with, say,
the optimum at 0: PSO converges to 0 as x(t) = x(0)e−αt

[36]. From Eq. 3, an improvement on the threshold of signif-
icance satisfies

f(x(t+ 1))

f(x(t))
=
f(e−αx(t))

f(x(t))
=

(
E[f(0)]
fmin

)s
= const.

The underlying assumption on the nature of f is therefore that
f is homogenous close to each optimum: f(e−αx) = const×
f(x), i.e. f , in the vicinity of its optima, is a polynomial
of homogeneous degree. This condition will be true for all
continuous functions.

An algorithm is not expected to improve at every evaluation
of a run. However, a satisfactory algorithm would be expected
to improve over an evaluation interval in an appreciable
number of runs. Suppose that a run is regarded as s-stagnant
in an evaluation interval I if there is no s-level improvement
in that interval. A stagnation probability can be defined as
the proportion of runs that are s-stagnant in I . An algorithm
can then be said to be improving or non-stagnant at level s
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TABLE I
COMPARISON OF FUNCTION PROPERTIES. THE TABLE SHOWS THE NUMBER OF WINS FOR EACH MEASUREMENT AND THE MEAN RANK OVER EACH OF

THE FOURTEEN FUNCTION PROPERTIES. A WIN ON A TEST FUNCTION IS DEFINED AS LOWER ERROR, AND HIGHER LAST IMPROVEMENT AND TERMINAL
DIVERSITY. SIGNIFICANCE WAS DETERMINED BY A WILCOXON RANKED TEST. THE MEAN RANKS WERE DETERMINED BY A WILCOXON TEST ON THE

POOLED RANKS OF EACH FUNCTION IN A GIVEN PROPERTY CLASS. BOLD TYPE INDICATES SIGNIFICANCE AT THE 0.05 LEVEL.

Error Last Improvement Diversity
Gbest Lbest Gbest Lbest Gbest Lbest

Property Total #Wins Mean rank #Wins Mean rank #Wins Mean rank #Wins Mean rank #Wins Mean rank #Wins Mean rank
All 84 23 51.1 37 49.9 15 43.3 39 57.7 8 33.3 71 67.7

Unimodal 22 15 36.9 3 64.1 6 48.6 5 52.4 4 35.2 18 65.8
Multimodal 62 8 56.1 34 44.9 9 41.4 34 59.6 4 32.6 54 68.4
Separable 18 7 46.3 5 54.7 3 39.8 11 61.2 5 39.4 13 61.6

Non-separable 66 16 52.4 32 48.6 12 44.3 28 56.7 3 31.7 59 69.4
Noisy 3 1 45.2 1 55.8 1 51.4 0 49.7 0 25.5 3 75.5

Opt. on bounds 4 0 57.2 2 43.8 0 46.5 1 54.5 0 31.4 3 69.6
Opt. in narrow valley 3 1 50.9 2 50.1 2 55.5 0 45.5 0 36.6 3 64.4
Opt. outside init vol 2 0 61.5 1 39.5 0 38.7 1 62.3 1 49.9 1 51.1

Neutral 8 0 64.6 7 36.4 0 43.5 3 57.5 0 31.7 8 69.3
High conditioned 2 1 43.4 1 57.6 2 62.6 0 38.4 0 25.7 2 75.3
Sensitive direction 2 1 38.0 0 63.0 0 38.4 1 62.6 1 46.6 1 54.4

Asymmetry 20 4 53.8 11 47.2 3 42.8 9 58.2 0 26.9 19 74.1
Deceptive 2 1 45.3 0 55.7 0 34.2 2 66.8 0 25.5 2 75.5

Composition 19 1 59.9 15 41.1 2 45.3 6 55.7 0 31.8 16 69.2

in I with probability at least p if the stagnation probability
is less than or equal to 1 − p. We take, in the following,
p = 0.5, so that an improving algorithm on a given interval
with significance level s does not stagnate on at least half of
all runs.

B. Results - convergence plots

Convergence plots of the trials reported in the previous
section are plotted in Figs S1 - S84, Supplementary Material.
The plots show the logarithm of the error as a function of
evaluation t for 50 runs of Gbest and Lbest. Only a summary
of the vast amount of information contained in these plots can
be given here. The main features, split according to modality
and separabilty are:

The unimodal separable functions (U, S), f =
{31, 35, 61, 67, 68, 72, 77, 78, 89, 90}, are the easiest
optimisation class of the benchmark since they correspond
to D 1D unimodal problems. All plots show a power law f
dependence except for f78, a noisy function.

The non-separable unimodal (U, NS) functions,
f={2, 4, 5, 32-34, 73, 76, 85-87, 91}, are more challenging
than the separable unimodal functions since variables interact
and the problem cannot be decomposed into subproblems.
The convergence plots show a mix of behaviours: power law
fall-offs and stagnant runs, as indicated by horizontal regions.

Multimodal separable functions (M, S), f =
{41, 52, 65, 74, 79, 92-94, 95}, are arguably the next hardest;
decomposition into subproblems is possible, but subproblems
may have sub-optimal minima which can potentially trap
optimisers. Once more the convergence curves show either
exponential convergence on an optimum or periods of
stagnation with jumps. Some plots show stagnant runs at
different function values - parallel horizontal lines - indicating
entrapment in local optima. In other cases, the algorithm
choses to optimize a single optimum and exponential
convergence is displayed.

The non-separable multimodal functions (M, NS),
f = {6, 7, 8, 11-25, 36-40, 42-51, 53-58, 62-66, 69, 70, 71, 75,
80-84, 88}, form the largest class. Apart from f62−64, which
shows Lbest exponential convergence, the plots display rapid
decrease followed by long periods of stagnation. The stagnant
periods may be interspersed with jumps.

C. Results - LSI

Histograms of numbers of LSI’s per designated interval
essentially provide coarse-grained descriptions of the conver-
gence plots.

The LSI at level s = 0.001 frequency histograms were
computed by counting the LSI’s in bins of width 37500:
Figs S1 - S84. The intervals can be conveniently labelled
Ii ≡ 37500× [i− 1, i] for i = 1-4. In order for the logarithm
to be defined, function values for ENG13 functions with
fmin < 0 have been shifted up by |fmin| and zero values
have been excluded. Logs were then taken to base 10.

The majority (7 out of 10) of the U, S histograms consist of
a single bar at I4, indicating improvement to termination, or a
single bar at an earlier interval, corresponding to convergence
within the bounds of finite precision arithmetic. 7 of the 12 U,
NS histograms are single barred; the lower proportion indicates
the increased severity of this class. The centre of mass (CM) of
the Lbest M, S histograms is predominantly to the right of the
CM of the corresponding Gbest histograms (the sole exception
if f92). The M, NS histograms show a similar relative Lbest
CM bias (the situation for f ’s 6, 21, 46, 75 and 85 is not so
clear cut). This right bias is indicative of Lbest’s ability to
significantly improve later in the run.

In summary, the main features of the convergence plots
are represented by the histogram distributions, validating the
choice of s = 10−3.

Tables S5 and S6 provide the mean LSI, the number of
runs with improvements in I4 (the algorithm is non-stagnant
if this number is at least 25) and which algorithm, if either, had
significant (Wilcoxon, p < 0.05) later LSI’s, for s = 10−5, a
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very weak criterion, corresponding to minute improvements,
s = 10−3, a moderate criterion, and a very tough criterion,
10−1, equivalent to very large jumps. s = 10−7, 10−1 were
chosen as extremes; 10−3 corresponds to the smallest notice-
able jumps on the convergence plots.

These tables are summarized in Table II. As expected,
stagnation increases from s = 10−7 to s = 10−1 for either
algorithm. Lbest is evidently the later improver at all three
levels. In particular, Lbest improves later in 66 functions at
s = 10−3 compared to Gbest’s 7.

Non-stagnant runs in I4 will presumably continue to im-
prove beyond termination. For example, although Lbest is the
weaker, in terms of error, algorithm for f67, Fig. S56 suggests
that the poorer performance is a matter of run duration. Lbest
is simply slower.

Focusing on s = 10−3, we find that Lbest is non-stagnant in
I4 in 13 of the 22 functions with better Gbest error (59%) and
Gbest is non-stagnant on 5 of Lbest’s 37 preferred functions
(14%). Assuming that a non-stagnant algorithm will continue
to improve, Lbest is stuck on only 22−13 = 9 Gbest-preferred
functions whereas Gbest is stuck on 37 − 5 = 33 Lbest-
preferred functions. Lbest is either equivalent (tied error),
better (lower error than Gbest) or slower (higher error than
Gbest, but significantly improving) on 84− 9 = 75 functions.

D. Conclusion

On the combined benchmark of 84 functions: Lbest is the
later significant improver, provides a lower error and is more
diverse at termination. Choosing Lbest above Gbest would not
be detrimental for 84 − 13 = 71 or 85% of problems with
an evaluation budget of 1.5 × 105, and for larger budgets,
the stagnation analysis suggests the number could rise to 75
(89%).

V. MOBILITY ANALYSIS

Although LSI is a guide to an algorithm’s rate of conver-
gence on a function, it fails to identify an important property:
the ability to discover new optima. Improvements might be
significant even if the algorithm is converging on a sub-optimal
point. Ideally, we wish to measure mobility i.e. the ability to
jump between optima.

A. Defining mobility

Suppose, borrowing the language of dynamical systems, a
downhill basin of attraction B of an attractor x∗ (the basin’s
optimum position) is the set of points such that any downhill
path starting at a point x in B will inevitably lead to x∗. This
definition fits with the action of non gradient optimisers such
as PSO and enables, in simple cases such as 2-CONES (de-
fined below) the tracking of an algorithms’s progress between
basins. The relative mobility of one algorithm with another
can be gauged by the number of jumps between basins.

The 2-CONES function,

f2C(x) = min(mA|x− xA|+ dA,mB |x− xB |+ dB),

where cones A and B have depths dA, dB and positive gradi-
ents mA and mB , is a bimodal version of the more general
cone landscape [37], [38].

Define L = |xB − xA| and d = dB − dA ≥ 0 (so that the
global optimum is at xA). The equal value contours from the
two cones meet on the line joining the centres at a distance

rA =
d+mBL

mA +mB

from the global optimum xA. A point x is therefore in BA
if |x − xA| < rA, and in BB if |x − xB | < L − rA ≡ rB .
The difficulty of an instance of 2-CONES, as perceived by an
optimiser, can be controlled with the parameters mA,B , d and
L. A simple difficulty measure, ρ can be defined as the ratio
(rA/rB)

D of optimal to suboptimal basin volumes. Smaller
relative volumes indicate harder problems.

B. Experiments

A series of experiments was performed with seven 2-
CONES instances. The gradients, mA, of the the optimal cone
ranged from 0.85 to 1.15. Otherwise, mB = 1, dA = −450
and d = 1. The optima xA, xB were placed symmetrically
either side of O on the diagonal 1D at a separation of
L = 500. The search space X = [−1000, 1000]D; particles
were initialised in X \ (BA∪BB). Error, diversity, the number
of jumps between basins, the eval of the last jump and the
basin of the best position on each run were recorded for 1000
runs of each algorithm on each function instance. The number
of runs is far higher than is customary in order to improve the
significance of the nominal measurements.

C. Results

The results are tabulated in Tables S7 and III.
The tables report on one degree of freedom chi-square tests

of success at finding the optimal basin. The chi-square test for
independence calculates the expected number of cell observa-
tions in a table of nominal-scale data based on row and column
sums. The probability of obtaining the observed frequencies,
given expectations is then estimated. A significant (p < 0.05)
outcome suggests that there is dependency between the row
and column variables. In this case, populations were tabulated
for each cones environment, dichotomized by whether they
succeeded or failed at finding the optimal basin, by topology
and bold type in the tables indicates significance at p < 0.5.

The error, for Gbest and Lbest decreases as ρ increases,
confirming that a relatively larger optimal basin is easier to
optimise. LBest is significantly better in each case and has a
later final basin jump.

The diversity distribution, in each instance, was unimodal
for Gbest with near-zero variance but Lbest had a marked bi-
modal distribution that extended both below and above Gbest’s
values. The great difference in the distributions means that
nonparametric group tests are problematic. Instead, nominal
significance tests were employed. The bimodal Lbest distri-
butions were characterized by a tight cluster in the interval
[10−13, 10−12] and a second sub-distribution with diversities
> 1. There were no diversities in [10−12, 1] for any function
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TABLE II
SUMMARY OF LAST SIGNIFICANT IMPROVEMENT (LSI) STUDY. THE TABLE SHOWS THE NUMBER OF FUNCTIONS WHERE EITHER ALGORITHM WAS

NON-STAGNANT AT LEVEL s IN THE FINAL 25% OF THE AVAILABLE EVALUATIONS, AND THE NUMBER OF FUNCTIONS WITH SIGNIFICANTLY (p < 0.05)
LATER LSI. THE STATISTICS ARE GROUPED BY ERROR PERFORMANCE.

s = 1E-5 1E-3 1E-1
Gbest Lbest Gbest Lbest Gbest Lbest

non-stagnant later non-stagnant later non-stagnant later non-stagnant later non-stagnant later non-stagnant later
G better error 14 2 16 7 11 7 13 9 0 9 0 1

L better error 4 0 11 32 0 0 5 35 0 8 0 20

Neither better 10 1 13 20 1 0 8 22 0 7 0 6

Σ 28 3 40 59 12 7 26 66 0 24 0 27

TABLE III
2-CONES. MEAN NUMBER OF BASIN JUMPS AND NUMBER OF RUNS IN THE BATCH OF 1000 THAT ENDED WITH THE BEST FOUND POSITION IN THE
OPTIMAL BASIN. THE TABLE ALSO SHOWS THE RELATIVE VOLUME OF THE THE OPTIMAL BASIN TO THE SUBOPTIMAL BASIN. BOLD TYPE SIGNIFIES

SIGNIFICANCE (p < 0.05) IN WILCOXON (JUMPS) AND χ-SQUARED (OPTIMAL BASIN) TESTS.

Jumps Optimal basin
mA rel. vol Gbest Lbest Gbest Lbest

1.15E+00 1.69E-02 1.00E+00 ± 0.00E+00 1.06E+00 ± 8.30E-01 11 17
1.10E+00 6.43E-02 1.00E+00 ± 0.00E+00 1.44E+00 ± 2.79E+00 58 65
1.05E+00 2.60E-01 1.00E+00 ± 0.00E+00 2.16E+00 ± 4.15E+00 152 273
1.00E+00 1.13E+00 1.00E+00 ± 0.00E+00 3.14E+00 ± 5.39E+00 527 733
9.50E-01 5.27E+00 1.00E+00 ± 0.00E+00 2.32E+00 ± 4.54E+00 844 965
9.00E-01 2.68E+01 1.00E+00 ± 0.00E+00 1.38E+00 ± 2.32E+00 967 996
8.50E-01 1.49E+02 1.00E+00 ± 0.00E+00 1.06E+00 ± 7.91E-01 992 1000

instance. Nominal categories ‘low’ (div < 10−12) and ‘high’
(div > 100) were chosen. Low diversity indicates a very tight
swarm, and high diversity means that the swarm is spread over
a distance of 20% of the separation between the optima. Table
S7 shows the far higher diversity of the Lbest swarm.

Gbest jumped just once - from the initialization region to
either BA or BB - in every run of every cones instance.
Lbest, on the other hand, was found to be more mobile,
with frequent jumps between BA and BB . The mobility was
at a maximum when the basins were near equal volume
(ρ = 1.13), and fell away for decreasing ρ, presumably due to
the increased difficulty of finding the optimum basin. Mobility
also decreased for ρ increasing beyond 1.13 since jumps from
A are disfavored due to the smaller size of B, and indeed
become algorithmically impossible when function value falls
below f(xB). Lbest finds the optimal basin significantly more
often in the five easier functions.

D. Conclusions

Lbest performs better on 2-CONES, a simple bimodal
function. This performance enhancement is correlated with
increased mobility and diversity. Lbest finds the optimal basin
more often and jumps later in the run. This experiment pins
down a key property of Lbest swarms.

VI. REAL WORLD PROBLEMS

A small number of global optimisation problems deriving
from problems in the human domain were also tested. These
functions have been chosen for their diversity of origin and
structure: the FM synth problem (FM), originating in the
design of virtual electronic instruments, is low-dimensional

and highly multimodal [39]; the design of a gear train (GT),
an integer programming problem, is also low-dimensional
[40]; the 3D configuration of molecules as modeled by the
funnel structured Lennard Jones (LJ) potential [41]; the control
of a continuous stirred tank reactor (CSTR), arising in the
control of industrial chemical mixing, is a system of ordinary
differential equations [39]; the spread spectrum radar problem
(SSR) is an NP-hard minimax electrical engineering problem
(but can be rewritten as a system with constraints) [39] and the
reconstruction of images by tomography (TR), an important
inverse problem in medical and industrial imaging, is an un-
derdetermined system, which implies that the global optimum
is degenerate [42]. The dimensionality of the problems ranges
from 4 to 100 and the global minimum is sought in all cases.

TR is a novel test function in this context. It is constructed
from a downsampled standard test image, the Shepp-Logan
image phantom [43]. In this case, the phantom was down-
sampled to a 10 by 10 matrix, yij . The downsampling is
necessary in order to control the high dimensionality of the
problem. The aim is to reconstruct y from knowledge of
the row and column sums, ri(y) =

∑
j yij , ci =

∑
i yij .

Suppose that xij is a trial image. Then the objective function
is ||r(x) − r(y)||2 + ||c(x) − c(y)||2. A 12 atom LJ problem
was chosen so that the dimensionality, 30, is commensurate
with the combined benchmark.

Table S4 displays the results of Gbest and Lbest trials
using the experiment design of section III-B. Lbest achieves
a significantly lower function value on FM Synth, Gear Train
and TR. The algorithms perform equally well on the remaining
three. Lbest has the higher terminal diversity throughout the
real world test set and improves later on three functions. Inter-
estingly, Lbest is superior on the lower and higher dimensioned
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problems.
This test set is too small and the problems are too struc-

turally diverse for any firm conclusion, but the indication is
that Gbest is not the first choice PSO algorithm for complex
real world optimization.

VII. OTHER LOCAL TOPOLOGIES

Any particle communication topology that is not global -
one in which particles do not have immediate access to every
pbests - is, by definition, local. However some topologies are
more local than others.

The number of edges connecting each vertex, or degree, k of
a regular graph is perhaps the simplest measure of (inverse)
locality. It is simply the number of neighbors in a regular
particle topology. Another measure is the minimum flow time
(number of iterations) τ for information to become global.

Consider a sequence of topologies constructed from a ring
topology by adding links to next-nearest neighbors and to next-
next-nearest neighbors and so on. The result is a degree k
topology, denoted Lk, where the neighborhood of particle i is
{i	 k

2 , . . . , i	1, i⊕1, . . . , i⊕
k
2}, 	,⊕ are arithmetic operators

modulo the swarm size, N , and k is an even integer. Lbest ≡
L2 lies at one extreme and Gbest ≡ L(2bN2 c) lies at the other
(i	 N

2 is identified with i⊕ N
2 when N is even). The flow time

in an Lk topology is related to the degree by τ = dNk e. It is
an even coarser measure of locality. For example, topologies
with k between 2dN4 e and N − 1 share a flow time of two
iterations.

The Lk topologies can be employed to explore how PSO
behavior varies along a spectrum of localities from Lbest to
Gbest.

A. Experiments

Local neighborhoods L4 , L8 and L16 were tested using
the methodology of Section III-B in order to assess the
impact of locality on swarm performance over the combined
benchmark. The data from the Lbest and Gbest trials re-
ported in Sec. III was added to provide a span of degrees
(k = 2(Lbest), 4, 8, 16, 30(Gbest)) and flow times (τ =
15, 8, 4, 2, 1).

B. Results

Table IV shows the Lk vs Gbest Wilcoxon tests for each
function, organized by Gbest preferred, Lbest preferred and
tied functions where preference is according to the error results
reported in Sec. III. The table shows the winning topology in
each comparison and the Lk topology with the lowest mean
error (LME).

1) Gbest preferred functions: Gbest loses to L16 (L16 < G)
in 7 functions, L8 < G in two functions and Gbest ties with L8
or L16 in 10 functions. The Kruskal-Wallis (KW) test failed
to distinguish the Lk algorithms in three of the 23 functions.
L16 returned the LME in 17 cases - however the KW test only
indicates that the there is a significant difference in error in at
least one, and not necessarily in all four, algorithms.

In summary, Gbest beats any local topology in only 10 of
the 23 functions in this group.

2) Lbest preferred functions: The trials in this group tell a
contrasting story. Gbest optimizes better than an Lk topology
in just two cases (f36 and f46). L4 < Gbest in 36 out of 37
functions in this group and even L16, the most distant topology
from Lbest, is equalled by Gbest just four times and beaten
once. The KW test failed to distinguish any Lk in 13 cases;
of the remaining 24, L2 recorded the LME 11 times.

In summary, Gbest beat a local topology in 2 out of 148
comparisons. Lbest is confirmed as the algorithm of choice in
this function group.

3) Tied functions: The functions remain tied for 10 of
the 24 functions in this group. Otherwise, an Lk topology
optimizes better, or is equivalent to, Gbest in all but 2 (f8
and f40) functions. The KW test fails to distinguish an Lk
algorithm in 50% of the tied functions.

4) All functions: The number of Wilcoxon winners per
degree over the entire benchmark of 84 functions is tabulated
as follows:

L2 L4 L8 L16
G < Lk 23 24 13 12
Lk < G 37 42 43 47
Lk = G 24 18 28 25

LME 21 18 18 27

Although exhaustive tests are required to differentiate the
Lk algorithms, the local vs Gbest tests show that choosing
a local topology can reduce the number of functions where
Gbest was superior to a mere twelve. Of particular interest, the
replacement of Gbest with a topology that is only marginally
local can improve PSO performance in many cases where
Gbest was previously found to be superior to Lbest.

C. Conclusions

It is likely that there is an optimal amount and pattern of
connectivity for each function, and perhaps an optimal amount
and pattern for general use. Indeed, the trials on several Lk
networks indicate that a judicious choice of local topology can
improve Lbest performance in many cases. We find that Gbest
beats a local topology in just 14% of functions.

Although the investigation of the aspects of communication
topology is an excellent topic for future research, this paper
focuses on Gbest’s standing as the default topology for particle
swarm optimization - a position that is demonstrably in error.

VIII. CONCLUSION

A. The message from the results

The conclusion is easily stated: whenever canonical PSO is
used, Lbest and other Lk local topologies perform better on
more difficult problems because particles spread out and keep
looking after Gbest has collapsed. Gbest can perform well on
some functions, but in the face of multimodality and other
difficulty factors, local PSO pulls out ahead.

Lbest performs better or equally to Gbest on 85% of the
wide-ranging benchmark of 84 test functions in a budget of
150000 evaluations. A study of significant improvements in
the last quarter of the run suggests that this figure could be
extended to 89%. Apart from improved performance, the series
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TABLE IV
RESULTS OF LK VERSUS GBEST WILCOXON (p < 0.05) ERROR TRIALS FOR THE COMBINED BENCHMARK. COLUMNS HEADED L2-L16 SHOW THE

SIGNIFICANTLY LOWER ERROR RANKED ALGORITHM ON EACH FUNCTION. THE LK ALGORITHM WITH THE LOWEST MEAN ERROR (LME) IS TABULATED
- OLDEN TEXT INDICATE THAT THE RANKING OF ERRORS DIFFERED IN AT LEAST ONE GROUP IN A KRUSKAL-WALLIS ((p < 0.05) ) FOUR-WAY TEST.

f L2 L4 L8 L16 LME f L2 L4 L8 L16 LME f L2 L4 L8 L16 LME f L2 L4 L8 L16 LME
2 G G G G L16 92 G G = = L16 49 L2 L4 L8 L16 L16 11 = L4 L8 L16 L8
4 G G L8 L16 L16 94 G G = = L8 51 L2 L4 = = L2 12 = = = = L2
6 G G G G L2 15 L2 L4 L8 L16 L4 54 L2 L4 L8 L16 L8 13 = = L8 L16 L16
32 G G = = L8 16 L2 L4 L8 L16 L4 55 L2 L4 L8 L16 L16 14 = = L8 = L8
34 G G G = L16 18 L2 L4 L8 L16 L4 56 L2 L4 L8 L16 L2 17 = L4 L8 L16 L4
38 G G G G L16 19 L2 L4 L8 L16 L2 58 L2 L4 = = L2 33 = = = L16 L16
44 G G = L16 L16 20 L2 L4 L8 L16 L4 62 L2 L4 L8 L16 L2 35 = = = = L4
52 G G = L16 L16 21 L2 L4 L8 L16 L4 63 L2 L4 L8 L16 L2 39 = = = = L4
61 G G L8 L16 L16 22 L2 L4 L8 L16 L8 64 L2 L4 L8 L16 L4 40 = G = = L2
67 G G G G L16 23 L2 L4 L8 L16 L4 69 L2 L4 L8 L16 L2 45 = L4 L8 = L8
72 G G G G L16 24 L2 L4 L8 L16 L2 70 L2 L4 L8 L16 L2 50 = L4 L8 L16 L16
73 G = = = L4 25 L2 L4 L8 L16 L4 71 L2 L4 = = L2 53 = L4 L8 = L4
76 G G G G L16 31 L2 L4 L8 L16 L8 78 L2 L4 L8 L16 L8 57 = = L8 L16 L16
77 G G G G L16 36 L2 G = = L4 80 L2 L4 L8 L16 L8 65 = = = = L8
81 G G G G L8 37 L2 L4 L8 L16 L8 83 L2 L4 L8 L16 L4 66 = = = = L4
84 G G = L16 L16 41 L2 L4 L8 L16 L4 88 L2 L4 L8 L16 L4 68 = = = = L2
85 G G G G L16 42 L2 L4 L8 L16 L8 90 L2 L4 L8 L16 L2 74 = = = = L16
86 G G G G L16 43 L2 L4 L8 L16 L8 95 L2 L4 L8 L16 L2 75 = L4 = = L2
87 G G = = L16 46 L2 L4 = G L2 5 = = = L16 L16 79 = = L8 L16 L8
89 G G G L16 L16 47 L2 L4 L8 L16 L8 7 = = = = L16 82 = = = = L2
91 G = = L16 L16 48 L2 L4 L8 L16 L8 8 = G G G L2 93 = = = = L2

of trials and analyses presented here show that Lbest improves
later in the run, that the improvements are significant, that it
has higher terminal diversity and that it has a higher mobility
between optimum basins. Lbest performs equally or better then
Gbest on a selection of real world problems.

We find that Gbest beats any local Lk topology for 14%
of the test functions. Even adding a small amount of locality
(from global to L16) can significantly improve performance.

In order to cast doubt on the current practice of employing
Gbest canonical PSO as the default version, it is sufficient to
find a single alternative topology that performs better. This has
been accomplished.

The categorization of problem by binary property gives an
indication of which type of canonical PSO to utilise on a new
problem in the case that some knowledge of that problem type
is available. Gbest can certainly be employed if the problem
is unimodal or separable. Noisy, high-conditioned, deceptive
and problems with a sensitive/dominant variable could benefit
from Gbest (although examples of these categories were not
numerous in the combined benchmark). A local topology
should be applied to multimodal, non-separable problems and
problems with neutrality (plateaus), asymmetry and with a
combination of difficulties (as manifest by the composition
functions). There is evidence that local canonical PSO is
preferable in situations where the optimum is on or outside the
search bounds (but once more, these types were not prevalent
in the test set).

Since non-separable, multimodal and combination functions
represent the harder problem type, and unimodality and sepa-
rability the easier type, local canonical PSO is generally to be
picked if the problem is suspected to be complex. In particular,
real world problems are invariably complex and an application
of canonical PSO would benefit, as witnessed from tests on

six wide-ranging real world problems, from a local topology.
These conclusions are drawn from a comprehensive series

of trials on the canonical PSO, a version that includes particle
dynamics and communication in their purest forms and is his-
torically and, arguably, conceptually, the basis of subsequent
PSO development. It is probable that the conclusions transfer
to many PSO variants: PSO research that ignores the signif-
icant role of inter-particle communication risks underselling
any claimed advantage; comparative evaluation between a new
variant and only Gbest canonical PSO has dubious validity.

B. Measuring significant improvement and mobility

A general method for coarse-graining the information con-
tained in a batch of runs has been advanced: the last significant
improvement (LSI). LSI depends on a level, s, defined as a
proportion average total logarithmic function change in the
course of a run. The LSI is placed within a small number of
equal evaluation intervals Ii that cover the total evaluation
budget. The number of LSI’s in a given interval can then
be used for algorithm comparison. The probability that an
algorithm is not stagnant in the final interval can be used to
define an improving algorithm. We argued that an improving
algorithm in I4 can be expected to continue to find better
function values if the run budget were extended. This enables
us to distinguish algorithms that become stuck, from those that
are merely optimizing slowly.

The downhill basin of attraction of an optimum has been
defined and computed for a bimodal problem. This function
(2-CONES) is the superposition of two cone base functions.
Different instances of 2-CONES are obtained by tweaking
cone parameters. A simple difficulty measure, defined as the
ratio of basin volumes, is found to match canonical PSO
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performance. The ability of an algorithm to jump between
basins - the mobility - is then observable.

C. General conclusions

The Gbest population converges rapidly, which may be
beneficial when a problem is simple but, as the present
results show, it tends to perform relatively poorly when there
are features in the function landscape blocking its way or
attracting it toward local optima. Local topologies offer a
much richer dynamic, with individuals interacting locally to
form subpopulations clustered in the search space, exploring
multiple regions before converging, one by one if at all, on a
superior solution. Each particle must be persuaded, in a sense,
that a solution is better than the one it has been developing,
and good problem solutions flow through the population with
greater or less speed, depending on the connectivity; one
particle persuades its neighbor, and if the solution is good
then that neighbor persuades its neighbor on the other side,
and so on. This amounts to a distributed marketplace of
competing problem solutions. A particle in one part of the ring
has no information about what is happening in other parts,
and eventually better problem solutions spread through the
population.

Let us emphasize that Lbest and Gbest are only two possible
topologies for a particle swarm, and the space between them
is rich with potential, as demonstrated in Sec. VII. Besides
holding a key position in the particle-swarm literature, they
establish a pair of end-points that enable contrast between
highly centralized and widely distributed swarm communica-
tion patterns. In the centralized Gbest topology all influence
flows from the one individual particle that has found the best
solution so far. The sense of this is that the entire population
acquires the best information available at any time; the prob-
lem is that the first decent guess at a solution is unlikely to be
the best one, and by betting the whole population’s efforts on
early candidates, pretty soon the entire population is trapped
in an inferior part of the search space.

The Lbest and Lk topologies can have many parallel
searches going on, as pairs and groups of particles entrain and
influence one another in one region or another. In practice,
better solutions begin to attract adherents, and small subpopu-
lations eventually, but not always, tend to dissolve and merge
as superior solutions become the neighborhood best for one
after the other. There is not much ambiguity in the present
results. There are some functions where Gbest performs better
than any local topology. If a researcher is working with a
problem that is known to be unimodal or separable, or that has
previously been satisfactorily solved with a Gbest approach,
or when a speedy and merely adequate solution is required,
then it may be sensible to choose the faster and simpler Gbest.
And it may perform well on certain more difficult problems, as
well, with lesser probability. If a researcher knew in advance
what the fitness landscape looked like, then the choice of a
solution strategy would be simple and a precise, non-stochastic
approach would likely be appropriate.

It is hoped that the present results will lead researchers to
focus on the dimensions of particle swarm communication

topologies and their effects on performance. Particles are
unable to solve any problem alone, but through communication
they are very powerful. And now, after more than twenty years
of research, the effects of the communication topology are
still not very well understood. Learned patterns of thought
guide our attention to the particles, to the “items” comprising
the system, but only a holistic analysis of the population
can reveal how the algorithm works and how to improve it.
Besides dynamic and adaptive approaches, there is a need to
understand the effects of speeding and damping the flow of
information through the population during the search process.
These effects will interact with other aspects of the algorithm;
for instance, though it is customary to have a particle select
its best neighbor, this is not necessary; good results can be
attained by choosing a neighbor at random (Pea, et al. 2006),
or averaging across all neighbors (Mendes and Kennedy,
2004), and the effect of the communication topology will
depend on the interaction rule. Most of all, it is hoped that
the particle swarm research community will show itself to be
robust and will re-evaluate the choice of topology used in
everyday research. It is painful to read papers that mention the
well-known weakness of the particle swarm for being trapped
in local optima, and then to realize that the author is unaware
that the weakness is an effect of the topology that has been
implemented.
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IX. SUPPLEMENTARY MATERIAL
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TABLE S1
THE COMBINED BENCHMARK: CEC05/13 AND ENG13 FUNCTIONS. NUMBERING WITH RESPECT TO THIS BENCHMARK IS DENOTED f2, f4, . . ..
PARENTHESES INDICATE TWO ADDITIONAL FUNCTIONS (SHIFTED AND ROTATED VERSIONS OF ENG13 F7/20). THE TABLE PROVIDES ORIGINAL
NUMBERING AND NAMES. NB ALL CEC13 FUNCTIONS ARE SHIFTED; FOR EXAMPLE, CEC F11 IS A SHIFTED VERSION OF ENG13 F12. BINARY

FUNCTION PROPERTIES, AS CLAIMED IN THE ORIGINAL PUBLICATIONS, ARE INCLUDED.
U: UNIMODAL, M: MULTIMODAL, S: SEPARABLE, NS: NON-SEPARABLE, N: NOISY, B: x∗ ON BOUNDS, NV: x∗ IN NARROW VALLEY, UB: x∗ OUTSIDE

INITIALIZATION VOLUME, F: NEUTRALITY (HAS FLAT AREAS), HC: HIGH CONDITIONING, SD: SENSITIVITY (f HAS ONE OR MORE SENSITIVE
DIRECTIONS), A: ASYMMETRIC, D: DECEPTIVE (x∗ IS FAR FROM NEXT LOCAL OPTIMUM), C: COMPOSITION.

f CEC num CEC name Properties f CEC/ENG num CEC/ENG name Properties
02 CEC05 F02 Shifted Schwefel 1.2 U, NS 52 CEC13 F22 Composition Function 2 (n=3, Unrotated) M, S, A, C

04 CEC05 F04 Shifted Schwefel 1.2 with noise U, NS, N 53 CEC13 F23 Composition Function 3 (n=3, Rotated) M, NS, A, C

05 CEC05 F05 Schwefel 2.6, x∗ on bounds U, NS, B 54 CEC13 F24 Composition Function 4 (n=3, Rotated) M, NS, A, C

06 CEC05 F06 Shifted Rosenbrock M, NS, NV 55 CEC13 F25 Composition Function 5 (n=3, Rotated) M, NS, A, C

07 CEC05 F07 Shifted Rotated Griewank without bounds M, NS, UB 56 CEC13 F26 Composition Function 6 (n=5, Rotated) M, NS, A, C

08 CEC05 F08 Shifted Rotated Ackley, x∗ on bounds M, NS, B 57 CEC13 F27 Composition Function 7 (n=5, Rotated) M, NS, A, C

11 CEC05 F11 Shifted Rotated Weierstrass M, NS 58 CEC13 F28 Composition Function 8 (n=5, Rotated) M, NS, A, C

12 CEC05 F12 Schwefel 2.13 M, NS 61 ENG13 F01 Absolute value U, S

13 CEC05 F13 Expanded Extended Griewank + Rosenbrock M, NS 62 ENG13 F02 Ackley M, NS

14 CEC05 F14 Shifted Rotated Expanded Scaffer F6 M, NS 63 ENG13 F02 Sh Shifted Ackley M, NS

15 CEC05 F15 Hybrid Composition M, NS, F, C 64 ENG13 F02 R Rotated Ackley M, NS

16 CEC05 F16 Rotated Hybrid Composition M, NS, F, C 65 ENG13 F03 Alpine M, S

17 CEC05 F17 Rotated Hybrid Composition with noise M, NS, N, F, C 66 ENG13 F04 Egg holder M, NS

18 CEC05 F18 Rotated Hybrid Composition M, NS, F, C 67 ENG13 F05 Elliptic U, S

19 CEC05 F19 Rotated Hybrid Composition, x∗ in narrow basin M, NS, NV, F, C 68 ENG13 F05 Sh Shifted Elliptic U, S

20 CEC05 F20 Rotated Hybrid Composition, x∗ on bounds M, NS, B, F, C 69 ENG13 F06 Griewank M, NS

21 CEC05 F21 Rotated Hybrid Composition M, NS, C 70 ENG13 F06 Sh Shifted Griewank M, NS

22 CEC05 F22 Rotated Hybrid Composition, highly conditioned M, NS, HC, C 71 ENG13 F06 R Rotated Griewank M, NS

23 CEC05 F23 Non-Continuous Rotated Hybrid Composition M, NS, B, C 72 ENG13 F07 Hyperellipsoid U, S

24 CEC05 F24 Rotated Hybrid Composition M, NS, F, C 73 (ENG13 F07 ShR) Shifted Rotated Hyperellipsoid U, NS

25 CEC05 F25 Rotated Hybrid Composition without Bounds M, NS, UB, F, C 74 ENG13 F08 Michalewicz M, S

31 CEC13 F01 Sphere U, S 75 ENG13 F09 Norwegian M, NS

32 CEC13 F02 Rotated High Conditioned Elliptic U, NS, HC 76 ENG13 F10 Quadric U, NS

33 CEC13 F03 Rotated Bent Cigar U, NS 77 ENG13 F11 Quartic U, S

34 CEC13 F04 Rotated Discus U, NS, SD, A 78 ENG13 F11 N Quartic/Jong’s F4 U, S, N

35 CEC13 F05 Different Powers U, S, SD 79 ENG13 F12 Rastrigin M, S

36 CEC13 F06 Rotated RosenbrockÕs M, NS, NV 80 ENG13 F12 R Rotated Rastrigin M, NS

37 CEC13 F07 Rotated Schaffer’s F7 M, NS, A 81 ENG13 F13 Rosenbrock M, NS

38 CEC13 F08 Rotated Ackley M, NS, A 82 ENG13 F13 R Rotated Rosenbrock M, NS

39 CEC13 F09 Rotated Weierstrass M, NS, A 83 ENG13 F14 Saloman M, NS

40 CEC13 F10 Rotated Griewank M, NS 84 ENG13 F15 Schaffer 6 M, NS

41 CEC13 F11 Rastrigin M, S, A 85 ENG13 F16 Schwefel 1.2 U, NS

42 CEC13 F12 Rotated Rastrigin M, NS, A 86 ENG13 F16 R Rotated Schwefel 1.2 U, NS

43 CEC13 F13 Non-Continuous Rotated Rastrigin M, NS, A 87 ENG13 F17 Schwefel 2.6 U, NS

44 CEC13 F14 Schwefel M, NS, A, D 88 ENG13 F18 Schwefel 2.13 M, NS

45 CEC13 F15 Rotated Schwefel M, NS, A, D 89 ENG13 F19 Schwefel 2.21 U, S

46 CEC13 F16 Rotated Katsuura M, NS, A 90 ENG13 F20 Schwefel 2.22 U, S

47 CEC13 F17 Lunacek Bi Rastrigin M, NS 91 (ENG13 F20 ShR) Shifted Rotated Schwefel 2.22 U, NS

48 CEC13 F18 Rotated Lunacek Bi Rastrigin M, NS, A 92 ENG13 F21 Shubert M, NS

49 CEC13 F19 Expanded Griewank + Rosenbrock M, NS 93 ENG13 F23 Step M, S

50 CEC13 F20 Expanded Scaffer’s F6 M, NS, A 94 ENG13 F24 Vincent M, S

51 CEC13 F21 Composition Function 1 (n=5, Rotated) M, NS, A, C 95 ENG13 F25 Weierstrass M, S
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TABLE S2
MEAN ERROR, MEAN LAST IMPROVEMENT AND MEAN DIVERSITY ± 95% CONFIDENCE LIMITS FOR THE CEC FUNCTIONS. EMBOLDENED VALUES

INDICATE p < 0.05 SIGNIFICANCE IN A WILCOXON RANKED TEST OF THE COMBINED GBEST AND LBEST RUNS.

Error Last improvement Diversity
f Gbest Lbest Gbest Lbest Gbest Lbest
2 5.77E-09 ± 3.99E-09 1.82E+00 ± 9.99E-01 1.50E+05 ± 1.98E+01 1.50E+05 ± 4.11E+01 2.19E+00 ± 2.23E+00 7.97E+00 ± 3.33E+00
4 2.76E+03 ± 6.03E+02 1.23E+04 ± 1.40E+03 1.49E+05 ± 2.46E+02 1.48E+05 ± 4.05E+02 6.26E+00 ± 2.19E+00 1.24E+02 ± 9.39E+00
5 5.75E+03 ± 3.36E+02 6.13E+03 ± 4.68E+02 1.50E+05 ± 2.83E+01 1.50E+05 ± 2.23E+02 2.97E+00 ± 3.47E+00 1.13E+02 ± 1.13E+01
6 2.68E+01 ± 1.23E+01 7.43E+01 ± 3.65E+01 1.50E+05 ± 1.01E+01 1.50E+05 ± 2.37E+01 3.86E+00 ± 1.17E+00 1.35E+01 ± 4.25E+00
7 4.70E+03 ± 9.48E-04 4.70E+03 ± 3.99E+00 1.15E+05 ± 9.02E+03 1.47E+05 ± 1.53E+03 8.69E+02 ± 5.54E+01 3.45E+02 ± 5.03E+01
8 2.09E+01 ± 2.82E-02 2.09E+01 ± 3.50E-02 5.43E+04 ± 1.48E+04 9.44E+04 ± 1.22E+04 2.64E+01 ± 2.68E+00 9.02E+01 ± 1.99E+00
11 3.16E+01 ± 9.50E-01 3.11E+01 ± 9.02E-01 1.36E+05 ± 4.74E+03 1.37E+05 ± 6.78E+03 1.36E-01 ± 3.76E-02 1.43E+00 ± 3.13E-02
12 1.57E+04 ± 4.91E+03 1.11E+04 ± 2.30E+03 1.49E+05 ± 7.81E+02 1.50E+05 ± 1.12E+01 1.23E+00 ± 2.14E-01 8.00E+00 ± 2.63E-01
13 5.64E+00 ± 5.20E-01 5.72E+00 ± 4.39E-01 1.49E+05 ± 1.15E+03 1.50E+05 ± 1.24E+01 3.53E-02 ± 8.50E-03 2.37E+00 ± 7.01E-02
14 1.28E+01 ± 1.21E-01 1.29E+01 ± 8.18E-02 1.47E+05 ± 3.27E+03 1.38E+05 ± 7.78E+03 3.23E+01 ± 8.33E+00 2.82E+02 ± 7.26E+00
15 4.50E+02 ± 3.88E+01 3.77E+02 ± 2.08E+01 9.99E+04 ± 1.14E+04 1.23E+05 ± 8.27E+03 2.22E-08 ± 2.44E-08 1.06E+01 ± 1.29E+00
16 3.75E+02 ± 4.42E+01 2.84E+02 ± 2.37E+01 8.79E+04 ± 9.45E+03 1.44E+05 ± 4.36E+03 1.28E-02 ± 2.06E-02 1.19E+01 ± 6.06E-01
17 3.77E+02 ± 5.11E+01 3.40E+02 ± 2.80E+01 1.43E+05 ± 2.28E+03 1.43E+05 ± 3.10E+03 2.73E-01 ± 9.56E-02 1.11E+01 ± 7.58E-01
18 9.97E+02 ± 1.63E+01 9.28E+02 ± 1.05E+01 1.43E+05 ± 5.08E+03 1.46E+05 ± 3.47E+03 5.33E-01 ± 3.24E-01 4.38E+00 ± 6.69E-01
19 9.88E+02 ± 1.71E+01 9.29E+02 ± 8.70E+00 1.45E+05 ± 2.56E+03 1.46E+05 ± 3.27E+03 7.19E-01 ± 3.50E-01 3.42E+00 ± 5.20E-01
20 9.98E+02 ± 1.47E+01 9.31E+02 ± 6.58E+00 1.45E+05 ± 3.02E+03 1.47E+05 ± 2.71E+03 5.97E-01 ± 3.42E-01 3.89E+00 ± 7.32E-01
21 8.93E+02 ± 9.19E+01 5.64E+02 ± 5.60E+01 9.83E+04 ± 1.28E+04 9.24E+04 ± 7.04E+03 1.38E-03 ± 1.81E-03 1.69E+00 ± 8.96E-01
22 1.09E+03 ± 2.73E+01 1.04E+03 ± 1.27E+01 1.43E+05 ± 4.48E+03 1.23E+05 ± 7.95E+03 5.90E-01 ± 1.52E-01 9.13E+00 ± 4.71E-01
23 8.22E+02 ± 9.48E+01 5.85E+02 ± 6.40E+01 8.28E+04 ± 1.30E+04 9.50E+04 ± 8.41E+03 8.83E-03 ± 9.65E-03 2.02E+00 ± 8.96E-01
24 4.75E+02 ± 1.35E+02 2.21E+02 ± 4.34E+01 6.72E+04 ± 1.53E+04 8.52E+04 ± 6.89E+03 8.81E-02 ± 6.69E-02 1.43E+00 ± 8.47E-01
25 1.72E+03 ± 7.49E+00 1.67E+03 ± 3.19E+00 1.40E+05 ± 2.90E+03 1.44E+05 ± 1.56E+03 2.26E-01 ± 8.04E-02 1.66E+00 ± 8.41E-02
31 1.73E-13 ± 2.82E-14 2.73E-14 ± 2.14E-14 3.99E+04 ± 8.15E+03 9.22E+04 ± 6.78E+03 8.84E-07 ± 5.94E-08 4.08E-07 ± 3.22E-08
32 8.72E+05 ± 1.24E+05 2.57E+06 ± 3.36E+05 1.50E+05 ± 5.71E+00 1.50E+05 ± 2.46E+01 9.32E+01 ± 8.38E+00 2.06E+02 ± 8.67E+00
33 6.73E+08 ± 3.42E+08 5.83E+08 ± 1.83E+08 1.50E+05 ± 2.87E+01 1.50E+05 ± 3.36E+01 3.61E+01 ± 7.81E+00 1.14E+02 ± 7.87E+00
34 5.46E+03 ± 1.02E+03 4.49E+04 ± 3.79E+03 1.49E+05 ± 2.53E+02 1.49E+05 ± 5.74E+02 3.18E+01 ± 3.68E+00 2.21E+02 ± 1.10E+01
35 1.14E-13 ± 0.00E+00 1.14E-13 ± 0.00E+00 4.83E+04 ± 1.43E+03 9.50E+04 ± 8.67E+02 2.48E-05 ± 1.52E-06 1.79E-05 ± 1.22E-06
36 2.99E+01 ± 7.44E+00 2.56E+01 ± 6.32E+00 1.50E+05 ± 6.72E+00 1.50E+05 ± 2.08E+01 4.97E+01 ± 6.63E+00 7.39E+01 ± 9.19E+00
37 1.27E+02 ± 1.00E+01 1.11E+02 ± 7.38E+00 1.50E+05 ± 2.36E+01 1.47E+05 ± 3.85E+03 5.41E+00 ± 1.46E+00 1.67E+02 ± 6.14E+00
38 2.09E+01 ± 1.66E-02 2.10E+01 ± 1.43E-02 6.18E+04 ± 1.24E+04 7.57E+04 ± 1.26E+04 9.35E+01 ± 7.41E+00 2.82E+02 ± 5.54E+00
39 3.17E+01 ± 1.05E+00 3.24E+01 ± 6.69E-01 1.47E+05 ± 2.25E+03 1.29E+05 ± 8.76E+03 2.69E+01 ± 7.72E+00 2.88E+02 ± 8.38E+00
40 1.24E-01 ± 2.15E-02 1.42E-01 ± 2.40E-02 6.99E+04 ± 5.14E+03 1.49E+05 ± 8.44E+02 1.60E+00 ± 5.86E-01 1.02E+01 ± 2.35E+00
41 1.09E+02 ± 1.06E+01 8.17E+01 ± 6.92E+00 5.54E+04 ± 8.84E+03 1.17E+05 ± 7.90E+03 2.82E-07 ± 2.58E-08 1.01E+02 ± 3.82E+00
42 1.92E+02 ± 2.51E+01 1.10E+02 ± 9.45E+00 6.93E+04 ± 8.38E+03 1.50E+05 ± 3.36E+01 2.19E+00 ± 1.24E+00 1.10E+02 ± 4.62E+00
43 2.69E+02 ± 1.48E+01 1.64E+02 ± 8.59E+00 9.06E+04 ± 8.33E+03 1.38E+05 ± 6.17E+03 7.18E+00 ± 2.26E+00 9.25E+01 ± 2.93E+00
44 2.41E+03 ± 1.39E+02 2.80E+03 ± 1.34E+02 9.44E+04 ± 8.15E+03 1.35E+05 ± 5.63E+03 3.89E+00 ± 2.65E+00 2.78E+02 ± 6.89E+00
45 4.23E+03 ± 1.96E+02 4.16E+03 ± 1.99E+02 1.43E+05 ± 5.03E+03 1.46E+05 ± 4.34E+03 4.04E+01 ± 7.32E+00 2.81E+02 ± 1.04E+01
46 1.75E+00 ± 1.66E-01 1.39E+00 ± 9.82E-02 8.76E+04 ± 1.45E+04 7.89E+04 ± 1.18E+04 8.06E+01 ± 9.56E+00 2.86E+02 ± 5.51E+00
47 1.24E+02 ± 7.29E+00 1.09E+02 ± 6.29E+00 8.56E+04 ± 9.13E+03 1.47E+05 ± 2.65E+03 2.48E-02 ± 4.68E-02 5.07E+01 ± 1.81E+00
48 1.26E+02 ± 8.76E+00 1.03E+02 ± 6.09E+00 6.35E+04 ± 8.90E+03 1.27E+05 ± 6.95E+03 1.01E-07 ± 1.95E-08 4.87E+01 ± 1.98E+00
49 7.87E+00 ± 8.24E-01 6.63E+00 ± 5.43E-01 1.50E+05 ± 1.62E+01 1.50E+05 ± 8.93E+01 9.33E-01 ± 2.42E-01 4.56E+01 ± 2.41E+00
50 1.18E+01 ± 1.90E-01 1.16E+01 ± 1.27E-01 1.50E+05 ± 4.11E+02 1.37E+05 ± 7.29E+03 3.60E+01 ± 5.57E+00 2.73E+02 ± 8.13E+00
51 3.16E+02 ± 2.12E+01 2.64E+02 ± 2.07E+01 7.65E+04 ± 7.87E+03 1.28E+05 ± 5.89E+03 2.57E-06 ± 1.06E-06 1.37E+02 ± 2.06E+01
52 2.71E+03 ± 1.60E+02 3.48E+03 ± 1.81E+02 1.30E+05 ± 5.83E+03 1.46E+05 ± 2.96E+03 7.40E+00 ± 5.17E+00 2.85E+02 ± 6.66E+00
53 5.45E+03 ± 3.19E+02 5.57E+03 ± 2.13E+02 1.48E+05 ± 2.99E+03 1.42E+05 ± 6.63E+03 3.32E+01 ± 5.94E+00 2.85E+02 ± 5.40E+00
54 2.98E+02 ± 4.13E+00 2.86E+02 ± 3.82E+00 1.46E+05 ± 2.24E+03 1.44E+05 ± 5.00E+03 8.63E-01 ± 7.26E-01 1.75E+02 ± 8.15E+00
55 3.27E+02 ± 3.47E+00 3.21E+02 ± 2.50E+00 1.48E+05 ± 1.71E+03 1.44E+05 ± 4.25E+03 1.86E+00 ± 1.93E+00 2.31E+02 ± 9.48E+00
56 3.53E+02 ± 1.96E+01 2.31E+02 ± 1.91E+01 1.48E+05 ± 1.66E+03 1.50E+05 ± 1.07E+02 8.37E+00 ± 4.74E+00 2.20E+02 ± 2.24E+01
57 1.17E+03 ± 2.48E+01 1.14E+03 ± 4.88E+01 1.48E+05 ± 2.00E+03 1.35E+05 ± 6.75E+03 1.98E+00 ± 1.27E+00 2.34E+02 ± 6.78E+00
58 7.52E+02 ± 2.84E+02 2.80E+02 ± 1.74E+01 9.85E+04 ± 9.19E+03 1.37E+05 ± 2.21E+03 9.35E-02 ± 1.48E-01 5.19E+01 ± 2.02E+01
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TABLE S3
MEAN ERROR/VALUE† , MEAN LAST IMPROVEMENT AND MEAN DIVERSITY ± 95% CONFIDENCE LIMITS FOR THE ENG13 FUNCTIONS. EMBOLDENED

VALUES INDICATE p < 0.05 SIGNIFICANCE IN A WILCOXON RANKED TEST OF THE COMBINED GBEST AND LBEST RUNS.

Error/Value† Last improvement Diversity
f Gbest Lbest Gbest Lbest Gbest Lbest

61 4.26E-29 ± 6.17E-29 8.33E-23 ± 2.10E-23 1.50E+05 ± 1.18E+01 1.50E+05 ± 1.94E+01 1.89E-30 ± 2.79E-30 3.37E-23 ± 8.27E-24
62† 2.09E+00 ± 3.73E-01 6.77E-15 ± 4.28E-16 5.04E+04 ± 6.78E+03 1.22E+05 ± 2.65E+03 4.95E-08 ± 6.46E-09 1.35E-14 ± 8.82E-16
63† -1.38E+02 ± 3.73E-01 -1.40E+02 ± 5.71E-15 4.85E+04 ± 5.37E+03 1.22E+05 ± 3.73E+03 1.71E-07 ± 2.34E-08 8.57E-14 ± 5.74E-15
64 2.76E+00 ± 2.51E-01 1.22E+00 ± 2.09E-01 5.37E+04 ± 7.81E+03 1.21E+05 ± 7.26E+03 5.66E-08 ± 5.69E-09 2.08E+00 ± 2.16E-01
65† -2.22E+11 ± 8.13E+10 -1.61E+11 ± 4.05E+10 9.33E+04 ± 9.68E+03 1.28E+05 ± 6.29E+03 6.53E-09 ± 1.27E-09 1.12E+01 ± 3.59E-01
66† -1.28E+04 ± 3.68E+02 -1.31E+04 ± 2.63E+02 1.14E+05 ± 8.10E+03 1.49E+05 ± 1.39E+03 1.34E+02 ± 5.54E+01 1.64E+03 ± 5.03E+01
67 2.00E-84 ± 1.65E-84 1.61E-35 ± 9.62E-36 1.50E+05 ± 8.96E+00 1.50E+05 ± 2.58E+01 2.05E-43 ± 1.09E-43 1.16E-18 ± 2.77E-19
68† -4.50E+02 ± 6.17E-15 -4.50E+02 ± 5.71E-15 4.75E+04 ± 8.59E+03 1.03E+05 ± 5.97E+03 1.22E-07 ± 7.52E-09 5.66E-08 ± 4.48E-09
69 2.91E-02 ± 1.28E-02 1.63E-03 ± 1.04E-03 4.29E+04 ± 4.34E+03 8.61E+04 ± 6.14E+03 1.29E-07 ± 1.01E-08 1.73E+00 ± 6.52E-01
70† -1.80E+02 ± 6.92E-03 -1.80E+02 ± 1.09E-03 5.39E+04 ± 9.88E+03 9.50E+04 ± 8.13E+03 1.54E-06 ± 9.71E-08 1.46E+00 ± 6.23E-01
71 1.11E-02 ± 3.36E-03 1.13E-03 ± 8.24E-04 5.90E+04 ± 7.04E+03 1.29E+05 ± 3.85E+03 1.02E-07 ± 1.24E-08 3.17E+00 ± 6.60E-01
72 4.90E-88 ± 9.73E-88 4.75E-40 ± 2.25E-40 1.50E+05 ± 1.21E+01 1.50E+05 ± 2.05E+01 1.90E-45 ± 2.17E-45 9.64E-21 ± 1.92E-21
73† -4.50E+02 ± 0.00E+00 -4.50E+02 ± 3.39E-07 1.05E+05 ± 3.76E+03 1.50E+05 ± 2.34E+01 4.71E-02 ± 2.08E-02 1.94E-01 ± 6.83E-02
74† -2.47E+01 ± 2.96E-01 -2.47E+01 ± 2.49E-01 9.31E+04 ± 9.59E+03 1.39E+05 ± 4.59E+03 3.59E-03 ± 6.32E-03 3.63E+00 ± 9.50E-02
75† -7.86E-01 ± 2.59E-03 -7.88E-01 ± 2.03E-03 1.10E+05 ± 8.47E+03 1.30E+05 ± 5.20E+03 2.68E-02 ± 1.74E-02 7.41E-01 ± 7.26E-02
76 5.08E-09 ± 2.28E-09 7.64E-01 ± 2.02E-01 1.50E+05 ± 2.90E+01 1.50E+05 ± 4.62E+01 8.26E-02 ± 9.68E-02 6.29E+00 ± 2.05E+00
77 1.69E-138 ± 2.78E-138 2.76E-60 ± 1.49E-60 1.50E+05 ± 8.76E+00 1.50E+05 ± 2.87E+01 8.80E-36 ± 5.54E-36 1.30E-15 ± 2.24E-16
78† -3.16E+00 ± 1.54E-01 -3.41E+00 ± 8.47E-02 8.44E+04 ± 1.07E+04 9.61E+04 ± 1.02E+04 3.28E-01 ± 3.65E-02 1.02E+00 ± 4.77E-02
79 6.91E+01 ± 5.46E+00 7.35E+01 ± 4.91E+00 4.96E+04 ± 5.25E+03 1.16E+05 ± 8.13E+03 1.10E-08 ± 1.49E-09 9.17E+00 ± 3.16E-01
80 9.88E+01 ± 6.14E+00 8.81E+01 ± 5.80E+00 5.86E+04 ± 7.67E+03 1.46E+05 ± 3.96E+03 3.71E-01 ± 1.07E-01 1.03E+01 ± 2.71E-01
81† 1.60E+01 ± 6.75E+00 2.80E+01 ± 1.02E+01 1.50E+05 ± 9.22E+00 1.50E+05 ± 2.30E+01 2.74E+00 ± 9.82E-01 8.28E+00 ± 2.51E+00
82† 4.57E+02 ± 4.13E+02 2.36E+02 ± 1.86E+02 1.50E+05 ± 1.18E+01 1.50E+05 ± 2.24E+01 4.35E+00 ± 1.68E+00 2.30E+01 ± 5.80E+00
83 1.75E-01 ± 8.61E-03 1.20E-01 ± 6.00E-03 4.50E+04 ± 8.13E+03 1.34E+05 ± 3.30E+03 1.70E-01 ± 2.21E-02 1.08E+00 ± 4.59E-02
84† 8.44E+00 ± 2.96E-01 1.00E+01 ± 2.48E-01 1.49E+05 ± 1.15E+03 1.49E+05 ± 1.64E+03 2.19E+00 ± 1.84E+00 2.41E+02 ± 6.69E+00
85 2.75E-09 ± 1.79E-09 7.97E-01 ± 2.19E-01 1.50E+05 ± 1.85E+01 1.50E+05 ± 2.61E+01 5.21E-02 ± 8.82E-02 6.86E+00 ± 2.82E+00
86 3.92E-08 ± 1.91E-08 2.84E+00 ± 1.09E+00 1.50E+05 ± 1.63E+01 1.50E+05 ± 4.36E+01 3.82E-01 ± 3.70E-01 1.09E+01 ± 2.50E+00
87 5.37E+03 ± 3.45E+02 6.33E+03 ± 3.96E+02 1.50E+05 ± 2.24E+01 1.50E+05 ± 6.86E+01 4.25E-02 ± 6.98E-02 1.20E+02 ± 8.59E+00
88 2.50E+04 ± 6.63E+03 1.17E+04 ± 3.36E+03 1.46E+05 ± 3.93E+03 1.50E+05 ± 7.75E+00 9.08E-01 ± 2.15E-01 7.91E+00 ± 2.38E-01
89 9.62E-05 ± 4.51E-05 1.54E-01 ± 3.68E-02 1.50E+05 ± 1.19E+01 1.50E+05 ± 3.27E+01 3.42E-04 ± 2.10E-04 6.34E-01 ± 1.47E-01
90 9.66E-14 ± 7.55E-15 6.03E-14 ± 3.91E-15 8.34E+04 ± 7.70E+03 1.06E+05 ± 2.86E+03 5.35E-14 ± 3.56E-15 2.55E-14 ± 1.27E-15
91† -4.45E+02 ± 1.07E+00 -4.44E+02 ± 8.38E-01 1.50E+05 ± 9.13E+01 1.50E+05 ± 2.72E+01 4.86E-02 ± 9.88E-02 5.52E+00 ± 1.18E+00
92† -6.30E+32 ± 4.57E+32 -3.14E+31 ± 2.93E+31 9.92E+04 ± 8.36E+03 1.47E+05 ± 1.62E+03 8.41E-03 ± 1.62E-02 2.68E+01 ± 5.63E-01
93 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 1.28E+04 ± 1.36E+03 1.75E+04 ± 4.77E+02 2.06E+00 ± 5.37E-02 1.29E+00 ± 5.00E-02
94† 0.00E+00 ± 0.00E+00 3.62E-15 ± 2.87E-15 2.63E+04 ± 8.56E+02 6.97E+04 ± 5.40E+03 9.25E-03 ± 1.63E-02 8.04E+00 ± 4.94E-01
95† 6.59E+00 ± 7.61E-01 6.23E-02 ± 8.53E-02 1.19E+05 ± 6.40E+03 1.03E+05 ± 9.50E+02 8.18E-15 ± 6.09E-16 9.70E-15 ± 3.88E-16

TABLE S4
MEAN FUNCTION VALUE, MEAN LAST IMPROVEMENT AND MEAN DIVERSITY ± 95% CONFIDENCE LIMITS FOR THE REAL WORLD APPLICATIONS. D

DESIGNATES THE DIMENSIONALITY OF THE PROBLEM. EMBOLDENED VALUES INDICATE p < 0.05 SIGNIFICANCE IN A WILCOXON RANKED TEST OF THE
COMBINED GBEST AND LBEST RUNS.

Value Last improvement Diversity
f D Gbest Lbest Gbest Lbest Gbest Lbest

FM Synth (FM) 6 1.23E+01 ± 2.98E-01 9.78E+00 ± 2.06E-01 9.42E+04 ± 2.11E+03 1.11E+05 ± 1.76E+03 2.27E-01 ± 3.39E-02 7.03E+00 ± 4.71E-02
LJ 12 atoms (LJ) 30 -2.71E+01 ± 2.55E-01 -2.65E+01 ± 2.10E-01 1.50E+05 ± 1.55E+00 1.50E+05 ± 1.63E+00 6.97E-01 ± 4.92E-02 1.16E+01 ± 8.30E-02
Tank Reactor (CSTR) 14 1.36E-01 ± 3.13E-11 1.36E-01 ± 9.64E-12 1.19E+05 ± 1.22E+03 1.31E+05 ± 7.93E+02 7.84E-02 ± 1.21E-02 1.89E+02 ± 5.42E+00
Gear Train (GT) 4 1.03E-11 ± 1.11E-12 2.37E-12 ± 1.78E-13 2.09E+04 ± 9.91E+02 4.51E+04 ± 1.93E+03 2.28E+00 ± 4.10E-02 1.08E+01 ± 8.29E-02
SS Radar (SSR) 20 1.88E+00 ± 1.10E-02 1.91E+00 ± 6.38E-03 1.50E+05 ± 3.22E+01 1.39E+05 ± 1.03E+03 4.36E-01 ± 2.71E-02 7.75E+00 ± 2.28E-02
Tom. Reconstr. (TR) 100 1.91E+02 ± 1.72E+00 1.63E+02 ± 9.70E-01 3.23E+04 ± 1.94E+03 1.06E+04 ± 6.86E+02 4.08E+00 ± 1.05E-02 4.21E+00 ± 8.12E-03
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TABLE S5
MEAN LAST SUBSTANTIAL IMPROVEMENT (LSI), MEASURED IN EVAL/1500, AND THE NUMBER OF LSI’S OCCURRING IN THE FINAL 25% OF THE TOTAL

BUDGET OF 150000 EVALUATIONS, FOR THREE LSI LEVELS, s. THE COLUMN HEADED LSI SHOWS SIGNIFICANTLY LARGER LSI (WILCOXON,
p < 0.05.) THE ERROR COLUMN SHOWS SIGNIFICANTLY BETTER GBEST/LBEST PERFORMANCE.

s = 0.00001 s = 0.001 s = 0.1

error mean LSI # LSI ≥ 75 LSI mean LSI # LSI ≥ 75 LSI mean LSI # LSI ≥ 75 LSI

f sig Gbest Lbest Gbest Lbest sig Gbest Lbest Gbest Lbest Gbest Lbest Gbest Lbest sig

2 G 100 100 50 50 - 100 99.8 50 50 G 0 0 0 0 -

4 G 99.86 99.3 50 50 G 98.04 96.32 50 49 - 0.98 0.98 0 0 -

5 - 78.02 96.48 30 47 L 47.06 74.62 9 28 L 2.16 2 0 0 -

6 G 99.84 99.5 50 50 - 54.76 47.52 22 8 - 2.68 0.94 0 0 G

7 - 11.02 37.92 0 1 L 7.14 24.24 0 0 L 1.36 3.96 0 0 L

8 - 34.38 59.2 9 16 L 33.9 56.52 9 16 L 15.68 22.38 2 4 -

11 - 33.32 56.72 7 18 L 21.4 38.86 3 11 L 2.36 3 0 1 -

12 - 68.74 98.68 25 48 L 37.28 73.48 7 26 L 1.1 0.96 0 0 G

13 - 66.64 95.06 25 46 L 29.42 49.96 7 9 L 1.1 1.34 0 0 L

14 - 88.08 84.6 42 37 - 45.36 58.02 12 12 L 4.8 4.76 1 1 -

15 L 12.44 38.44 0 4 L 7.64 25.5 0 2 L 1.42 3.26 0 0 L

16 L 7.86 47.88 0 5 L 4.5 37.24 0 5 L 1.1 1.74 0 0 L

17 - 95.56 95.78 49 48 - 45.9 81.84 8 35 L 1.1 2.44 0 0 L

18 L 21.44 67.14 4 23 L 10.16 48 2 12 L 1.12 2.96 0 0 L

19 L 24.08 65.64 2 21 L 12.7 45.24 2 9 L 1.28 2.22 0 0 L

20 L 25.52 77.78 5 31 L 12.44 50.74 3 10 L 1.1 2.22 0 0 L

21 L 13.18 19.18 1 0 L 5.44 12.92 0 0 L 2.26 7.1 0 0 L

22 L 74.9 71.98 29 23 - 53 63.26 14 19 L 1.16 2 0 0 L

23 L 7.02 20.8 0 0 L 3.78 13.28 0 0 L 1.6 6.3 0 0 L

24 L 24.46 20.58 8 0 L 7.44 15.42 0 0 L 2.36 9.88 0 0 L

25 L 93.14 95.26 47 49 - 22.84 73.62 1 26 L 1.62 2.22 0 0 L

31 L 19.88 41.36 0 0 L 19.88 41.36 0 0 L 0.96 0 0 0 G

32 G 99.98 100 50 50 - 93.24 97.58 45 49 L 1.04 1.3 0 0 L

33 - 95.56 98.42 48 48 L 50.58 77.18 14 29 L 1 1.32 0 0 L

34 G 99.52 99.34 50 50 - 98.94 93.54 50 48 G 0.86 0.9 0 0 -

35 - 32.64 63.88 0 0 L 32.64 63.88 0 0 L 1 0.04 0 0 G

36 L 93.42 97.92 45 48 - 21.52 48.22 2 11 L 2.02 1.5 0 0 L

37 L 90.7 93.52 44 46 L 7.72 36.92 0 5 L 1.02 1.66 0 0 L

38 G 41.54 50.92 8 13 - 41.12 50.92 8 13 - 20.14 15.16 4 2 G

39 - 36.84 49.18 10 9 L 19.86 33.3 5 5 L 3.62 1.22 1 0 -

40 - 23.78 80.72 0 35 L 20.88 71.38 0 15 L 3.24 1 0 0 G

41 L 10.06 45 0 9 L 7.94 36.14 0 6 L 1.94 3.02 0 0 -

42 L 10.4 91.68 0 43 L 6.36 72.64 0 26 L 1.6 1.62 0 0 -

43 L 14.82 71.14 1 25 L 13.36 59.78 1 18 L 1.16 2.28 0 0 L

44 G 20.12 51.48 3 10 L 16.14 40 1 7 L 2.3 2.58 0 0 G

45 - 69.64 91.12 29 43 L 23.06 78.2 1 34 L 2.88 4.5 0 0 G

46 L 51.28 45.08 13 8 - 43.32 42.02 10 7 - 19.76 19.68 2 1 -

47 L 21.18 66.74 1 17 L 15.8 50.64 1 7 L 1.24 1.9 0 0 L

48 L 10.16 44.78 0 6 L 7.88 33.22 0 2 L 2 2.16 0 0 -

49 L 60.28 94.46 19 48 L 24.96 43.9 3 7 L 1.38 3.68 0 0 L

50 - 95.82 87 49 39 G 34.26 69.74 5 25 L 2.74 5.92 0 0 L

51 L 9.34 30.74 0 1 L 5.98 20.5 0 1 L 1.98 3.7 0 0 L

52 G 24.14 56.8 2 14 L 21.54 44.32 2 6 L 3.3 2.36 0 0 G

53 - 63.66 88.08 22 41 L 20.84 74.06 1 27 L 2.32 2.3 0 0 G

54 L 19.3 59.38 3 20 L 10.88 43.98 1 10 L 1 1.2 0 0 L

55 L 22.24 68.12 5 20 L 9.64 47.94 0 7 L 1.24 2.36 0 0 L

56 L 22.64 89.9 4 42 L 5.86 25.84 0 6 L 0.98 2.08 0 0 L

57 - 26.08 55.68 5 15 L 11.82 33.44 1 4 L 1 1.2 0 0 -

58 L 24.3 31.96 5 0 L 8.98 22.32 0 0 L 2.82 1.54 0 0 G
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TABLE S6
MEAN LAST SUBSTANTIAL IMPROVEMENT (LSI), MEASURED IN EVAL/1500, AND THE NUMBER OF LSI’S OCCURRING IN THE FINAL 25% OF THE TOTAL
BUDGET OF 150000 EVALUATIONS, FOR THREE SIGNIFICANCE LEVELS, s. THE COLUMN HEADED LSI SHOWS SIGNIFICANTLY LARGER LSI (WILCOXON,

p < 0.05.) THE ERROR COLUMN GIVES SIGNIFICANTLY BETTER GBEST/LBEST PERFORMANCE.

s = 0.00001 s = 0.001 s = 0.1

error mean LSI # LSI ≥ 75 LSI mean LSI # LSI ≥ 75 LSI mean LSI # LSI ≥ 75 LSI

f Gbest Lbest Gbest Lbest Gbest Lbest Gbest Lbest Gbest Lbest Gbest Lbest

61 G 99.88 100 50 50 - 99.2 100 50 50 L 4.2 0 1 0 G

62 L 11.56 81.62 0 49 L 9.48 81.62 0 49 L 0 0 0 0 -

63 L 13.02 74.86 0 21 L 11.2 74.86 0 21 L 0.18 0 0 0 -

64 L 7.12 48.98 0 15 L 4.8 34.32 0 11 L 0 0 0 0 -

65 - 7.48 28.02 0 4 L 3.8 11.6 0 3 - 0 0 0 0 -

66 - 16.76 73.7 1 30 L 12.62 40.12 1 6 L 1.06 0 0 0 -

67 G 100 100 50 50 - 100 100 50 50 - 0 0 0 0 -

68 - 25.16 49.52 0 0 L 25.16 49.52 0 0 L 1 0 0 0 G

69 L 12.74 51.44 0 5 L 11.16 50.36 0 5 L 0.24 0 0 0 G

70 L 13.26 47.3 0 3 L 11.64 46.38 0 2 L 0.92 0 0 0 G

71 L 18.52 77.7 0 32 L 16.16 76 0 31 L 0.18 0 0 0 G

72 G 100 100 50 50 - 100 100 50 50 - 0 0 0 0 -

73 G 63.58 100 2 50 L 63.58 100 2 50 L 0.2 0 0 0 G

74 - 18.6 50.6 1 6 L 17.44 46.04 1 5 L 0.7 0 0 0 -

75 - 11.84 27.58 0 2 L 9.88 20.14 0 1 L 0.16 0 0 0 -

76 G 100 100 50 50 - 100 99.9 50 50 G 0 0 0 0 -

77 - 100 100 50 50 - 100 100 50 50 - 0 0 0 0 -

78 L 56.8 64.54 15 19 - 56.56 64.54 15 19 - 5.04 6.82 1 0 L

79 - 8.82 36.8 0 4 L 6.56 25.88 0 1 L 2.02 2.54 0 0 G

80 L 8.46 70.84 0 21 L 6.02 53.3 0 14 L 2.78 3.8 0 0 G

81 G 99.92 99.8 50 50 - 57.68 49.48 23 9 - 2.98 0.92 0 0 G

82 - 92.6 94.3 45 45 L 25.3 41.82 5 7 L 3.52 2.5 0 0 G

83 L 19.72 59.8 1 10 L 19.24 58.24 1 9 L 3.54 1.22 0 0 G

84 G 56.54 86.3 16 37 L 46.52 55.88 10 11 L 5.18 1.76 0 0 G

85 G 100 100 50 50 - 100 99.74 50 50 G 0 0 0 0 -

86 G 100 100 50 50 - 100 99.94 50 50 G 0 0 0 0 -

87 G 80.9 95.7 36 47 L 43.62 74.64 10 28 L 2.08 2.18 0 0 -

88 L 53.74 99.94 16 50 L 30.38 79.7 6 30 L 1.08 1.04 0 0 -

89 G 100 100 50 50 - 100 99.72 50 50 G 0 0 0 0 -

90 L 56.16 70.84 8 12 L 56.16 70.84 8 12 L 4.26 0.98 0 0 G

91 G 25.52 62.9 1 17 L 13.22 26.82 1 0 L 1 1 0 0 -

92 G 17.56 10.9 0 3 G 3 0 0 0 G 0 0 0 0 -

93 - 6.6 10.9 0 0 L 6.6 10.9 0 0 L 5.1 6.98 0 0 L

94 G 16.7 44.54 0 1 L 16.7 44.54 0 1 L 1.34 0 0 0 G

95 L 11.12 66.38 0 0 L 5.68 65.5 0 0 L 0 0 0 0 -
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TABLE S7
2-CONES RESULTS. MEAN ERROR, MEAN LAST JUMP IN EVALS AND NUMBER OF RUNS IN THE BATCH OF 1000 WITH DIVERSITY < 10−12 AND WITH
DIVERSITY > 100. BOLD TYPEFACE INDICATES SIGNIFICANCE (p < 0.05) IN WILCOXON TESTS (ERROR AND LAST JUMP) AND χ-SQUARED 1 DEGREE

OF FREEDOM (DIVERSITY) TESTS.

Error Last jump Div < 1e-12 Div > 100
mA Gbest Lbest Gbest Lbest Gbest Lbest Gbest Lbest

1.15E+00 9.89E-01 ± 1.04E-01 9.83E-01 ± 1.29E-01 1.89E+03 ± 3.41E+02 5.53E+03 ± 3.86E+03 1000 984 0 16
1.10E+00 9.42E-01 ± 2.34E-01 9.35E-01 ± 2.47E-01 1.92E+03 ± 3.49E+02 6.54E+03 ± 8.39E+03 1000 920 0 69
1.05E+00 8.48E-01 ± 3.59E-01 7.27E-01 ± 4.46E-01 1.94E+03 ± 3.31E+02 9.24E+03 ± 1.27E+04 1000 715 0 268
1.00E+00 4.73E-01 ± 5.00E-01 2.67E-01 ± 4.42E-01 1.96E+03 ± 3.24E+02 1.23E+04 ± 1.64E+04 1000 478 0 488
9.50E-01 1.56E-01 ± 3.63E-01 3.53E-02 ± 1.84E-01 1.95E+03 ± 3.36E+02 8.07E+03 ± 9.88E+03 1000 712 0 266
9.00E-01 3.30E-02 ± 1.79E-01 4.00E-03 ± 6.32E-02 1.89E+03 ± 3.12E+02 5.82E+03 ± 3.98E+03 1000 919 0 76
8.50E-01 8.00E-03 ± 8.91E-02 8.77E-14 ± 1.14E-13 1.88E+03 ± 3.33E+02 5.21E+03 ± 1.60E+03 1000 986 0 13
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Fig. S1. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f2 (M, NS, C).
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Fig. S2. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f4 (M, NS, C).
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Fig. S3. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f5 (M, NS, C).
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Fig. S4. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f6 (M, NS, C).
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Fig. S5. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f7 (M, NS, C).
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Fig. S6. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f8 (M, NS, C).
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Fig. S7. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f11 (M, NS, C).
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Fig. S8. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f12 (M, NS, C).
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Fig. S9. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f13 (M, NS, C).
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Fig. S10. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f14 (M, NS, C).
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Fig. S11. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f15 (M, NS, C).
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Fig. S12. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f16 (M, NS, C).
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Fig. S13. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f17 (M, NS, C).
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Fig. S14. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f18 (M, NS, C).
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Fig. S15. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f19 (M, NS, C).
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Fig. S16. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f20 (M, NS, C).
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Fig. S17. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f21 (M, NS, C).
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Fig. S18. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f22 (M, NS, C).
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Fig. S19. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f23 (M, NS, C).
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Fig. S20. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f24 (M, NS, C).
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Fig. S21. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f25 (M, NS, C).
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Fig. S22. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f31 (M, NS, C).
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Fig. S23. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f32 (M, NS, C).
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Fig. S24. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f33 (M, NS, C).
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Fig. S25. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f34 (M, NS, C).
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Fig. S26. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f35 (M, NS, C).
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Fig. S27. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f36 (M, NS, C).

0 50000 100000 150000

2
4

6
8

f 37 G

evals

lo
g1

0(
er

ro
r)

0 50000 100000 150000

2
4

6
8

f 37 L

evals

lo
g1

0(
er

ro
r)

f 37 G

Last sig impr (evals / 1500)

F
re

qu
en

cy

0 20 40 60 80 100

0
10

30
50

f 37 L

Last sig impr (evals / 1500)

F
re

qu
en

cy

0 20 40 60 80 100

0
10

30
50

Fig. S28. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f37 (M, NS, C).
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Fig. S29. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f38 (M, NS, C).
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Fig. S30. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f39 (M, NS, C).
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Fig. S31. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f40 (M, NS, C).
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Fig. S32. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f41 (M, NS, C).
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Fig. S33. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f42 (M, NS, C).
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Fig. S34. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f43 (M, NS, C).
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Fig. S35. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f44 (M, NS, C).
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Fig. S36. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f45 (M, NS, C).
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Fig. S37. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f46 (M, NS, C).
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Fig. S38. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f47 (M, NS, C).
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Fig. S39. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f48 (M, NS, C).
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Fig. S40. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f49 (M, NS, C).
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Fig. S41. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f50 (M, NS, C).
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Fig. S42. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f51 (M, NS, C).
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Fig. S43. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f52 (M, NS, C).
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Fig. S44. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f53 (M, NS, C).
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Fig. S45. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f54 (M, NS, C).
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Fig. S46. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f55 (M, NS, C).
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Fig. S47. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f56 (M, NS, C).
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Fig. S48. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f57 (M, NS, C).
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Fig. S49. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f58 (M, NS, C).
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Fig. S50. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f61 (M, NS, C).
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Fig. S51. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f62 (M, NS, C).
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Fig. S52. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f63 (M, NS, C).
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Fig. S53. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f64 (M, NS, C).
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Fig. S54. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f65 (M, NS, C).
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Fig. S55. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f66 (M, NS, C).



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 51

0 50000 100000 150000

−
80

−
40

0

f 67 G

evals

lo
g1

0(
er

ro
r)

0 50000 100000 150000

−
80

−
40

0

f 67 L

evals

lo
g1

0(
er

ro
r)

f 67 G

Last sig impr (evals / 1500)

F
re

qu
en

cy

0 20 40 60 80 100

0
10

30
50

f 67 L

Last sig impr (evals / 1500)

F
re

qu
en

cy
0 20 40 60 80 100

0
10

30
50

Fig. S56. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f67 (M, NS, C).
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Fig. S57. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f68 (M, NS, C).
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Fig. S58. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f69 (M, NS, C).
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Fig. S59. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f70 (M, NS, C).
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Fig. S60. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f71 (M, NS, C).
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Fig. S61. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f72 (M, NS, C).
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Fig. S62. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f73 (M, NS, C).
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Fig. S63. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f74 (M, NS, C).
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Fig. S64. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f75 (M, NS, C).
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Fig. S65. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f76 (M, NS, C).
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Fig. S66. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f77 (M, NS, C).
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Fig. S67. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f78 (M, NS, C).
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Fig. S68. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f79 (M, NS, C).
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Fig. S69. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f80 (M, NS, C).
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Fig. S70. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f81 (M, NS, C).
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Fig. S71. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f82 (M, NS, C).
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Fig. S72. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f83 (M, NS, C).
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Fig. S73. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f84 (M, NS, C).
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Fig. S74. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f85 (M, NS, C).
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Fig. S75. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f86 (M, NS, C).
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Fig. S76. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f87 (M, NS, C).
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Fig. S77. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f88 (M, NS, C).
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Fig. S78. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f89 (M, NS, C).
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Fig. S79. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f90 (M, NS, C).
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Fig. S80. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f91 (M, NS, C).
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Fig. S81. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f92 (M, NS, C).
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Fig. S82. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f93 (M, NS, C).
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Fig. S83. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f94 (M, NS, C).
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Fig. S84. Convergence plots and Last significant Improvement histograms for Gbest and Lbest runs on f95 (M, NS, C).


