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ABSTRACT 

 

Theoretical accounts of the visual number sense (VNS), i.e., an ability to discriminate 

approximate numerosities, remain controversial. A proposal that the VNS represents a process 

of numerosity extraction, leading to an abstract number representation in the brain,has been 

challenged by the view that the VNS is non-numerical in its essenceand amounts to a weighted 

integration of continuous magnitude features that typically change with numerosity.In the 

present study, using two-alternative forced-choiceparadigm, we aimed to distinguish between 

these proposals by probing brain areas implicated in the VSN with transcranial random noise 

stimulation (tRNS). We generated predictions for the stimulation-related changes in 

behavioural performance which would be compatible with alternative mechanisms proposed 

for the VSN. First, we investigated whether the superior parietal(SP) area hosts a numerosity 

code or whether its function is to modulate weighting of continuous stimulus features. We 

predicted that stimulation may affect the VNS precision if the SP role is representational, and 

that it may affect decision threshold if its role is modulatory. Second, we investigated whether 

the intra-parietal(IP) area hosts a numerosity code independently of codes for continuous 

stimulus features,or whether their representations overlap.  If the numerosity code is 

independent, we predicted that IP stimulation may improve the VNS but not continuous 

magnitude judgements. Our results were consistent with the hypotheses of a modulatory role 

of the SP and of the independence of the numerosity code in the IP, whereby suggesting that 

VNS is an emergent abstract property based on continuous magnitude statistics. 
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1. Introduction 

Extracting an approximate numerosity of a set from a visual scene,for instance the 

number of dots (aka visual number sense, VNS), is a primitive, cross-species and cross-cultural 

ability (Dehaene, Izard, Spelke, & Pica, 2008; Nieder, Freedman, & Miller, 2002).VNS tasks are 

widely used to assess basic magnitude skills (Davidse, de Jong, Shaul, & Bus, 2014; 

Halberda&Feigenson, 2008; Iuculano, Tang, Hall, & Butterworth, 2008), with some researchers 

arguing that the VNSrepresents a foundational abilityfordeveloping arithmetical competence 

(Halberda, Mazzocco, &Feigenson, 2008; Jordan, Glutting, &Ramineni, 2010; Piazza et al., 2010; 

Tibber et al., 2013).Different theoretical accounts of the VNShave been put forward, although 

there is currently no agreement on the nature of the cognitive mechanisms supporting this 

ability. 

One of these accounts, the Approximate Number System (ANS) model proposes a three-

stage hierarchical processof numerosity extraction (Dehaene&Changeux, 1993; Verguts&Fias, 

2004).  Firstly,the items to be enumerated are converted into an object location map by 

normalising continuous magnitude features that confound numerosity estimate (e.g., the area 

of individual items). The second processing layer pools together (summates) the output of the 

object location map. In the final stage, the results of the summation are converted into a 

number-selective code. 

The ANS model, however, has been challenged by the suggestion that stimulusnumerosity 

can be obtained withoutitem enumeration through a weighted integration of continuous 

magnitude features (Gebuis, Kadosh, &Gevers, 2016; Gebuis&Reynvoet, 2012; Karolis & 

Butterworth, 2016; Stoianov&Zorzi, 2012). Several studies demonstrated thatsystematic 
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manipulations of continuous magnitudes can bias numerosity judgements (Gebuis&Reynvoet, 

2012; Dakin, Tibber, Greenwood, Kingdom, & Morgan, 2011; Tibber, Greenwood, & Dakin, 

2012).This has been taken to suggest that no abstract numerosity representation is constructed 

from perceptual magnitudesand that the metric for approximate number relies on the metric 

for continuous magnitudes (Gebuis, Kadosh, &Gevers, 2016;Dakin et al., 2011).A compromise 

between the ANS and the weighted-integration hypotheses has also been proposed: an 

abstract ‘read-out’ of approximate numerositymay exist in the brainas an emergent property of 

the integration of continuous magnitudes (Karolis & Butterworth, 2016; Stoianov&Zorzi, 2012). 

One way to distinguish between these hypotheses is to examine the role of the brain 

regions known to contribute to numerosity processing. Thus, the ANS architecture is consistent 

with the evidence of two types of coding for magnitudes in the primate brain (Nieder, 2016; 

Roitman, Brannon, & Platt, 2012). Firstly, the summation code(Stage Two) may be reflected in 

theobserved activity in the lateral intraparietal area, a likely homologue of the human superior 

parietal lobule (SPL) (Koyama et al., 2004; Sereno, Pitzalis, & Martinez, 2001), which increases 

incrementally with the number of items presented in a display (Roitman, Brannon, & Platt, 

2007).Secondly, the number-selective code(Stage Three), may be implemented by neurons in 

the intraparietal sulcus (IPS), which act as number-selective filters such that their tuning curves 

are centred on preferred magnitudes (Nieder& Miller, 2004). Evidence for the two types of 

coding in the SPL and IPS has also been demonstrated in fMRI of human participants (Harvey, 

Klein, Petridou, &Dumoulin, 2013; Piazza, Izard, Pinel, Le Bihan, &Dehaene, 2004; Santens, 

Roggeman, Fias, &Verguts, 2010). 
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In support of weighted integration hypothesis, otherbrain studies have shown that the 

activity in the IPS is modulated by the presentation of continuous magnitudes as well as 

numerosities (Pinel, Piazza, Le Bihan, &Dehaene, 2004; Walsh, 2003). So far the role of the SPL 

in the process of weighted magnitude integration remains, however, unspecified.Its generic 

functionhas been described as ‘priority maps’, incorporating, as a part of dorsal attentional 

network (Corbetta& Shulman, 2002), the top-down feedback in order to modulate bottom-up 

visual information in accordance with task demands (Bisley & Goldberg, 2010).The SPL could 

therefore implement a modulation of the weights applied to continuous magnitudes rather 

than summation coding for numbers.  

In the present study, we aimed at differentiating among the alternative hypotheses on 

the VNS architecture by probing neural substrate for cognitive mechanisms implicated in the 

VSNwith transcranial random noise stimulation (tRNS). Specifically, we addressed two research 

questions. The firstwas whether the superior parietal area plays a representational or 

modulatory role in the VNS; that is, whether itimplements a type of numerosity code, as 

proposed by ANS model, orwhether instead itimplements weights for continuous stimulus 

features. The second question was whether the intraparietal region represents anumerosity 

‘read-out’ independent of continuous magnitudes or whether their metrics overlap.   

 

1. 1. This study 

In the two-alternative forced-choice paradigm (2AFC) task, participants chose between 

numerical magnitudes of two stimuli that contained equally sized dots scattered over 

mismatched areas(Dakin et al., 2011) (Figure 1A). One of the stimuli, the “reference”, 
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maintained constant stimulus area and spatial frequency of dots (and hence numerosity) over 

the entire block of trials; in the other stimulus, the “test”, the stimulus area remained constant 

but the dot spatial frequency varied from trial to trial.  

Here tRNSwas used instrumentally in order to differentiate between alternative 

hypotheses. tRNS has been shown to increase excitability of stimulated neuronal population, 

likely to be mediated by potentiation of sodium voltage-gated channels (Chaieb, Antal, & 

Paulus, 2015) and arguably is independent of gyrus folding (Terney, Chaieb, Moliadze, Antal, & 

Paulus, 2008). Increased excitability of a brain region in response to a stimulus is known asa 

response gain, i.e., a (proportional) increase of a response rate of neuronal populations 

(Reynolds &Heeger, 2009). We hypothesised that this may lead to two possible effectson 

behavioural performance. If a brain area implements a type of numerosity code, a tRNS-evoked 

response gain may result ina better discriminability between two stimuli (Carrasco, Ling & Read, 

2004;Brezis,Bronfman, Jacoby, Lavidor, & Usher, 2016). Thiscan be measured as a steeper slope 

of a psychophysical function that fits the probability of choosing a test stimulus in reference to 

a standard (Figure 1B).  In contrast, if a brain area plays a modulatory role in the VNS, then the 

response gain is elicited in neuronal populations that implement magnitudes’ weightingrather 

than their representations per se. A systematic modulation on weights may then result in a 

change of the decision threshold,a contrast gain (Carrasco, Ling & Read, 2004; Reynolds 

&Heeger, 2009). This can be measured as a horizontal shift of the psychophysical function 

(Figure 1 – C). 

Theaboveeffects should be distinguished from an involuntary attentional enhancement in 

the processing of low-level stimulus features and/or the modulation of stimulus salience 
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(Kastner & Ungerleider, 2001; Keitel, Andersen, Quigley, & Muller, 2012), typically associated 

with the function of the ventral attentional network (Corbetta& Shulman, 2000) and which may 

also result in a better precision and/or in an effect on the decision threshold (Reynolds 

&Heeger, 2009). In order to rule out this possibility,we administered two controltasks requiring 

continuous magnitude judgements – spatial frequency (density) and motion coherence. The 

presentation parameters of these tasks, especially the density task, closely matched those of 

the numerosity task. We hypothesisedthat performance in thesecontrol tasks may be equally 

affected if stimulation modulates the processing of low-level stimulus features. 

Abundant evidence accentuates the role of brain networks in cognitive functioning (e.g., 

Bressler & Menon, 2010) and modelling evidence suggests that electrical stimulation may cause 

network re-configuration in addition to altering activity in a stimulated region (Polania, Paulus, 

Antal, &Nitsche, 2011). Consequently, in contrast to anatomically defined SPL and IPS and in the 

absence of precise localisation for the stimulation-dependent activity changes, we will use the 

terms ‘SP’ and ‘IP’ as shortcuts to denominate functional systems which may also include 

regions which are anatomically or functionally connected tostimulation loci definedusing the 

EEG 10-20 system. 

To summarise, we predicted that tRNSstimulation may improve the VNS precision if the 

SP plays a representational role in the VNS, and may affect the decision criterion if its role is 

instead modulatory. We also predicted that if the IP represents a ‘read-out’ of numerosity 

independent of continuous magnitudes, then stimulating this region may improve the VNS 

precision in numerosity independently ofcontinuous magnitude judgements. 
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2. Method 

2.1. Participants 

An opportunistic sample of 54healthy, stimulation compatible(Wassermann, 1998) 

participantswas enrolled on the University campus. All participants providedinformed written 

consent to participate in the study (M = 20.6 years, SD = 2 years, 37 females and 17 males). The 

study was approved by Ethics Committee for Interdisciplinary Investigations (Tomsk State 

University, Russia). 

2.2.Apparatus 

The experiment was conducted in a darkened room with participants’ head movements 

restricted by a chinrest located 60 cm in front of a 19-in LCD monitor (1440 by 900 pixels, pixel 

size .265 mm). The midline of the eyesight approximately coincided with the centre of the 

monitor. Stimuli were presented using Cogent toolbox (UCL Institute of Neurology) for Matlab 

(Mathworks Inc).Random noise stimulation (0.1 – 640 Hz, 2.0 mA peak-to-peak with zero-mean 

offset) with fade-in and fade-out phase lasting 15 seconds was delivered for 20 minutes. A 

NeuroConn DC Brain Stimulator Plus unit was used (Rogue Resolutions, Wales, UK), and the 

current was delivered through a pair of 3 cm x 3 cm electrodes. No saline-soaked sponges were 

used, and electrodes were applied directly to the scalpand fixated using an elastic EEG cap. An 

EEG gel was used toreduce skin impendence (van der Groen&Wenderoth, 2016) 

 

2.3. Experimental task 



10 

 

A two-alternative forced-choice numerosity task (N task) was used, whereby participants 

were presented with two circular clouds of white and black, equally-sized square 

dotstimuli(0.12
o
of visual angle at the viewing distance of 60 cm) displayed on a grey 

background for 250 ms (Figure 1A) (Dakin et al., 2011).  Participants judged which cloud 

contained the largernumber of dots under no time pressure within a maximum response time 

of 2000 ms from the stimulus onset. The stimuli were presented to the left and right of central 

fixation, with 7.6
o
 separation between their centres. The positions of the dots within each 

stimulus cloud was randomly generated, ensuring there was no overlap between them. A 

fixation cross was presented 500 ms before the stimuli and disappeared at the moment of their 

presentation. Participants were asked to maintain their eye gaze on the fixation cross during a 

trial. Participants responded unimanually by pressingthe left or right button on keyboard. In 

order to maintain a between- and within-subject equality in the duration of an experimental 

session, the length of each trial was fixed, with the next trial starting after 2000 ms from the 

presentation of a stimulus in a previous trial. 

For each pair of stimuli, one was the Reference stimulus that always contained 128 dots, 

and the other was the Test stimulus, for which the number of dots varied from trial to trial. The 

left-right order of presentations for the Test and Reference stimuli was selected randomly. 

There were 7 levels for the Test stimulus: 64, 82, 102, 128, 164, 204, or 256 dots, presented in 

arandomised order. Each level waspresented 21 times per each block.In order to ensure that 

statistics for each level of stimuli were based on the same number of trials, the trials where 

participants failed to respond within the allowed response window were repeated later in the 

experiment, with their position in the trial order selected at random. The areas covered by the 
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Reference and Test stimuli clouds were fixed over the length of an entire experimental block 

but were always mismatched, with the diameter of one cloud being small (4
o
 of visual angle) 

and the other large (5.7
o
 of visual angle). The task consisted of two experimental blocks. In one 

block, the area of the Test stimulus was smaller than the area of the Reference stimulus(‘Small 

Test/Large Reference’ condition); in the other, the area of the Test stimulus was larger than the 

area of the Reference stimulus (‘Large Test/Small Reference’ condition). The mismatch of the 

areas coupled with varying dot density in the Test stimulus ensured that the N task meets a 

minimal criterion for a numerosity task; that is, stimulus magnitudes could not be accurately 

determined over the run of trials using one stimulus dimension only (cloud area or dot density). 

 

2.4. Density and motion coherence tasks 

Two control tasks were also administered. One task, a density discrimination task (D 

task)mimicked the design of the N task except that participants selecteda set withgreater dot 

density, i.e.,the smaller average distance between pairs of dot stimuli.The D task shared one 

task-relevant magnitude with the N task and making judgements on this magnitude was 

sufficient to perform in the task. The other task, a motion coherence task (C task), required 

judgments of magnitudes unfolding in the temporal domain.Participants observed clouds of 

moving dots, whosetrajectorieswere composed of both random and deterministic components, 

and judged which stimulus contained a more orderly/less random motion pattern.The C task 

shared a two-dimensional stimulus structure with the N task while maintaining a 3-way 

dissimilarity infeature types (random and deterministic components vs. density and area),their 

relations (ratio “random/deterministic” vs. product “density x area”), and temporal structure  
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(temporally unfolding vs. instantaneous).Presentation parameters in both control tasks were 

closely matched to the N task, apart from stimulus presentation window in the C task, which 

was extended up to 2000 ms or the time of participant’s response, whichever occurred earlier. 

Likethe N task, the area of the Test and Reference stimuli, non-informative for the performance 

in these tasks, was fixed but it was always mismatched;the task-relevant dimension was fixed 

for the Reference stimulus and was varying from trial to trialfor the Test stimulus. 

In the D task, the Reference stimulus always contained 128 dots and the Test stimulus 

contained 50, 64, 80, 100, 128, 160, or 200 % of Reference density. In the C task,participants 

viewed two sets of 128 moving dotstimuli, containing both non-random and random 

components in their motion. The direction of the motion non-random component wasupward 

or downward, selected at random. The direction of the motionrandom component was 

obtained by randomly sampling an angle of deviation from a notional vertical line. The lengths 

of non-random (Lnrand) and random (Lrand) components were set using formula:k(Lnrand
2
 + Lrand

2
)= 

1.7
o
/sec. The ratio between Lnrand and Lranddetermined stimulus levels. The scaling parameter k, 

found by simulations, was used to ensure that the average length of the dot path (‘speed’) did 

not differ between stimulus levels and could not be used as an additional cue for magnitude 

judgments. A pilot study indicated that subjective scale was not linear (linear scale 

characterises a standard variant of motion coherence task - e.g., Roitman&Shadlen, 2002) and 

were more likely to scale with the ratio between standard deviations of left-right and upward-

downward displacements. Accordingly, ratios between random and non-random components 

defining the Test stimulus levels were chosen as 0.05, 0.23, 0.35, 0.43, 0.50, 0.55 and 0.60.The 

mid-value in the sequence (0.43) was used as a magnitude for the Reference stimulus.  
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2.5. Procedure 

Participants’ recruitment and data collection were administered by researchers who were 

unaware of the specific hypotheses of the study.Each participant was assigned to one of the 

three groups, referred to as the superior parietal (SP), the intraparietal (IP), and the control 

motor (CM) groups.Based on the EEG 10-20 system, the SP group received stimulation to 

regions defined as half-way between PZ and P3 on the left side and half-way between PZ and P4 

on the right side. Participants in the IP group received stimulation bilaterally to parietal areas 

corresponding to P3 and P4;in the CM group - to areas C3 and C4. The performance of CM 

group was used as a quantitative baseline for the changes elicited by tRNS in parietal regions. 

Given that motor areas are not known to be involved in a specialised cognitive processing of 

visual magnitudes, their stimulation also provides a control for spatially indiscriminate effects, 

e.g., stimulation factor affecting performance irrespective of the stimulation locus. 

Prior to sitting the main experimental session, participants attended a pre-stimulation 

session designed to stabilise task performances(DeWind& Brannon, 2012) and to 

familiariseparticipants with the tasks. The pre-stimulation session took place on a separate 

day,within a week of the main experimental session, and wasitsabridged version, with each task 

consisting of 16 trials for each level of the test stimulus and two blocks, ‘Small Test/Large 

Reference’ and ‘Large Test/Small Reference’. The data from the pre-stimulation session were 

not analysed and therefore theyhad no effect on the participant’s assignment to a group which 

was done prior to the pre-stimulation session. 
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The main experimental session started with a shortpractice session of 20 trials per task, 

which were not included in the data analysis.All three tasks were then administered twice, 

before and following brain stimulation,hereafter –the Before and After sessions.The order of 

the tasksin the Before session was repeated in the After session, but it was fully counter-

balanced across participants. On completing the Before session, participants received 20 

minutes of stimulation. Participants continued performing the tasks after13 minutes from the 

start of the stimulation.  

 

2.6. Data analysis 

2.6.1. Performance measures 

The design of each task containedstimulation Group as a between-participant factor (SP 

vs.CM vs. IP), and 3 within-participant factors: Session (Before vs. After stimulation), Test 

stimulusArea (‘Small Test Area/Large Reference Area’ vs. ‘Large Test Area/Small Reference 

Area’), and 7 levels of the Test stimulus intensity. To fit the data, standard procedures of 

psychophysical fitting were used as follows.First,for each participant, a proportion of Test > 

Reference responses was calculated for each intensity level of the Test stimulusfor each 

combination of the other factors. Second, the calculated proportions were fitted using a 

cumulative Gaussian function, which rendered two standard statistics: the slope (Gaussian 

standard deviation) and the threshold (Gaussian mean).Four values were obtained per each 

participant (2 Sessions by 2 Test stimulus Areas) for each measure. The estimated value for the 

slope was divided by a square root of 2 to obtain an estimate of the Weber Fraction (WF), i.e., 

the measure of internal variability of magnitude representations, withsmaller values of WF 
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signifying a better accuracy. WFs were analysed in log space, as this measure demonstrates the 

features of a log-normal variable (Lambrechts, Karolis, Garcia, Obende, & Cappelletti, 2013): a) 

have a positive skew and, critically, b) the (unsigned) changes in WFs would also be positively 

skewed. In all analyses, a negative change in WF between theBefore and After sessions 

designateda relative improvement in VNSprecision.For threshold, a negative value indicated an 

overestimation of aTest stimulus magnitude; hence a negative change between the Before and 

After sessions would indicate a contrast gain (relative overestimation) fora Test stimulus. The 

data were fitted using Psignifit toolbox for Matlab (Frund, Haenel, & Wichmann, 2011). 

 

2.6.2. Statistical modelling 

To account for the factors associated withthe changes in threshold and WF between the 

Before and After sessions, the linear mixed-effect regression modelling was used in 

combination with themodel comparison procedure. This approach pursued two goals. Firstly, by 

modelling the effect of confounding factors, both random and fixed, we sought to obtain more 

accurate and robust estimates of the effects of interest. Secondly, by using the change in 

threshold and WF in the control tasks as additional predictors, we aimed to either confirm or 

reject a statistical independence of these changes from the changes in the N task.  

Our analyses start with the definition of a benchmark model that characterises thetask 

design. In Wilkinson notation (Wilkinson & Rogers, 1973), this model is: 

 

Model 1:dY = Group+TestArea+ Group:TestArea + (TestArea|Participant), 
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wheredY stands for the change of a parameter of interest (either WF or threshold) between 

Before and After sessions;notation Group:TestArea stands for an interaction term between two 

factors and (TestArea|Participant)codes for repeated measures via grouping of the Test 

stimulus area by a random Participant factor. 

To pursue Goal 1, Model 1 was contrasted with alternative models, which accounted for 

possible confounding effects, both fixed and random, of two factors: 1) the baseline 

performance as measured in the Before session, base_Y; and 2) the change in the un-modelled 

parameter dXbetween Before and After sessions (i.e., the change in WF as a confounding factor 

for the change in threshold and vice versa). The complete list of evaluated models is presented 

in Table 1. All models were fitted using Statistics toolbox for Matlab. The model comparison 

was performed using Bayesian Information Criterion. The independence of the change of the 

WF and threshold from the change in the same parameters in the control task (Goal 2) was then 

ascertained by adding these parameters as additional predictors to a best fitting model 

identified by the above model selection procedure. 

 

 

Table 1. List of models compared in the study. 

 

 Model in Wilkinson notation What is tested 

1 dY = Group + TestArea + Group:TestArea + 

(TestArea|Participant) 

Benchmark model 

2 dY = Group + TestArea + Group:TestArea + 

(base_Y|Participant) 

Same as 1, but uses performance in the Before 

session grouped by random Participant to account 

for repeated measures 

3 dY = Group + TestArea + Group:TestArea + base_Y + 

(TestArea|Participant) 

Same as 1, but adding performance in the Before 

session as additional factor 
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4 dY = Group + TestArea + Group:TestArea + base_Y + 

(base_Y|Participant)  

Same as 3, but uses performance in the Before 

session grouped by random Participant to account 

for repeated measures 

5 dY = Group + TestArea + Group:TestArea + 

(dX|Participant)  

Same as 1, but uses change in unmodelled 

parameter (i.e., change in threshold if dY is WF and 

vice versa) grouped by random Participant to 

account for repeated measures 

6 dY = Group + TestArea + Group:TestArea + dX + 

(TestArea|Participant) 

Same as 1, but adding change in unmodelled 

parameter  (i.e., change in threshold if dY is WF and 

vice versa) as additional factor 

7 dY = Group + TestArea + Group:TestArea + dX + (dX 

|Participant) 

Same as 5, but adding change in unmodelled 

parameter  (i.e., change in threshold if dY is WF and 

vice versa) as additional factor 

 

 

2.6.3. Supplementary data set 

As shown in Results section (see below), the performance measures in the N task of the 

CM group altered between the Before and After sessions. Consequently, wereport 

supplementary data demonstrating that the patterns observed in the CM group do not reflect 

unexpected and task-specific (see Discussion for details) stimulation effects but are rather 

typical patterns of performance under no-stimulation condition.  The data acquired as a part of 

a preliminary studycomprises performance measures of18 participants (mean = 23.7, SD = 5.3, 

14 females and 4 males) who received sham IP stimulation.  The study was approved by 

Goldsmith Ethical Committee. These supplementary data are not directly comparable to the 

main experimental datasetas they werecollected in a different location and using a different set-

up.  The study did not include a pre-stimulation session; participants attended the main 

experimental session only.  The sham stimulation consisted of 15 secs stimulation at the 

beginning and the end of the 20-minute interval. The electrodes were placed into saline-soaked 

pads and attached to the head using rubber stripes. 
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3. Results 

Measures of performance for all tasks and conditions are plotted in Figure 2.  

3.1. Baseline performance 

The performance at the baseline was modelled using the benchmark Model 1 usingthe 

threshold and WF in the Before session as dependent variables. 

No group differences were observed in any task for threshold. For Weber fraction (WF), 

there were no group differences inthe N and D tasks, but there was a significant effect of Group 

in the C task (F (2, 102) = 5.33, p < 0.01), suggesting that performance specifically between the 

IP and SP groups(planned contrast test: F (1, 102) = 10.65, p < .005), was not entirely matched 

for this task.  

Across all groups, there was a significant effect of Test Area on the thresholds in the D 

and N tasks, (F (1, 102) = 54.20, p < 0.001, and F (1, 102) = 6.73, p = 0.011, respectively, see 

Table 2). In the D task, participants underestimated the magnitude of the Small Test and 

overestimated the magnitude of the Large Test. The opposite pattern, that is, an 

underestimation of the Large Test, was observed in the N task. No effect of Test Area was 

observed in the C task (p > .25). 

 



 

Figure 2. Performance measures for all stimulation conditions and groups. 

Fraction, plotted on the log scale, impl

of the Test stimulus, positive value

 

 

 

 

Table 2. Effects of test stimulus area on baseline threshold. Intercept encodes the threshold value 

for the Small Test/Large Reference condition.  Large Test/Small Reference encodes the difference 

from Small Test/Large Reference condition. 

of a psychophysical function) and positive value

associated with Small Test/Large Reference is approximately twice as large as the beta for the in 

either tasks. This indicates an approximately symmetrical deviation from the point of objective 

equality for two types of test stimulus. The overestimation/underestimation pattern is opposite for 

N and D tasks. 

D task  

Predictors 

Intercept 

Large Test/Small Reference 

N task 

Predictors 

Intercept 

Large Test/Small Reference 

. Performance measures for all stimulation conditions and groups. Smaller values for the 

Fraction, plotted on the log scale, imply better precision. For threshold, negative value

of the Test stimulus, positive values its underestimation. Error bars show the standard error of the mean.

. Effects of test stimulus area on baseline threshold. Intercept encodes the threshold value 

for the Small Test/Large Reference condition.  Large Test/Small Reference encodes the difference 

from Small Test/Large Reference condition. Negative valuesreflects overestimation (a leftward shift 

of a psychophysical function) and positive values an underestimation (a rightward shift). The beta 

associated with Small Test/Large Reference is approximately twice as large as the beta for the in 

tes an approximately symmetrical deviation from the point of objective 

equality for two types of test stimulus. The overestimation/underestimation pattern is opposite for 

beta CI (Lower/Upper) t (df =102

0.28 0.18 0.39 5.47 

-0.54 -0.68 -0.39 -7.36 

    

beta CI (Lower Upper) t (df =102

-0.12 -0.23 0.00 -2.01 

0.22 0.05 0.39 2.59 
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Smaller values for the Weber 

better precision. For threshold, negative values reflect overestimation 

estimation. Error bars show the standard error of the mean. 

. Effects of test stimulus area on baseline threshold. Intercept encodes the threshold value 

for the Small Test/Large Reference condition.  Large Test/Small Reference encodes the difference 

overestimation (a leftward shift 

an underestimation (a rightward shift). The beta 

associated with Small Test/Large Reference is approximately twice as large as the beta for the in 

tes an approximately symmetrical deviation from the point of objective 

equality for two types of test stimulus. The overestimation/underestimation pattern is opposite for 

t (df =102) P-value 

 <0.001 

 <0.001 

 

t (df =102) P-value 

 0.048 

 0.011 
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3.2. Effect of stimulation on the Weber Fraction 

3.2.1. N task 

Model selection procedure identified Model 4 as a best-fitting model for the N task, 

suggesting a significant association between the WF change and WF magnitude at baseline. The 

difference in Bayesian Information Criterion from the benchmark Model 1 was equal to 15.99, 

implyingvery strong evidence (Kass& Raftery, 1995) in favour of Model 4.Asummary of 

themodel’sstatistics ispresented in Table 3. According to the model, WF improved the most in 

participants whose accuracy in the Before-session was lower, regardless of the stimulation 

condition. Critically, the planned-contrast test showed that the effect ofGroup was also 

significant (F (2, 101) = 5.00, p = 0.009). The pairwise contrast comparison showed a significant 

difference between theIP and CM group only(β= -0.28, CI = [-0.45 -0.10], t (101) = 3.15, p = .006 

(corrected), Figure 3A); the difference was significant for both TestArea conditions (both p < 

0.021).Numerically, the difference between the SP and IP groups was approximately half the 

difference between CM and IP groups,but it did not reach the significance threshold even at the 

uncorrected level (p = 0.15). When tested against zeroto establish an absolute rather than a 

relative change, only CM showed a significant change (increase) in WF (β = 0.18, CI = [0.06 

0.31], t (101) = 2.89, p = .014 (corrected)) 
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Table 3. Best-fitting model statistics for the change in Weber Fraction (dWF) in the N task. The intercept 

models CM group in Small Test/Large reference condition; the performance for other groups in the same 

condition is represented by IP and SP group factors. Statistics for other relevant performance measures, 

including the average performance across Test Area conditions, were determined using planned-contrasttests 

and described in the main text and Figure 3B.  Statistically significant results are highlighted in grey. 

Asterisks (*) mark p-values after Bonferroni-corrections (applicable to group contrasts:  CM vs. IP, CM vs. 

SP, and IP vs. SP). 

 

 

Given that the dots’ spatial frequency was the task-relevant dimension in the N task, we 

also assessed whether the WFchange in this task was independent from WF change in the D 

task.We added the WF change and its interaction with group factor as additional factors to the 

best fitting Model 4. The results showed a negative, but not reliable, association between WF 

changes in D and N tasks across all groups(t (98) = 1.94, p = 0.055, β = - 0.23, CI =[-0.47 0.01]) 

and, most critically, no significant group by density WF change interaction (F (2,98) = 0.32, p 

>0.7), with no effect on the significance of the Group factor.The difference in the BIC criteria = 

10.13 in favour of Model 4 indicated that the WF change and its interaction with Group factor 

in the D task are irrelevant for modelling the WF change in the N task.No association was found 

if the WF change in the C task and its interaction with Group factor were used in modelling 

(both p >0.2). 

N task - Model 4:  

dWF = Group + TestArea + Group: TestArea + base_WF + (base_WF|Participant) 

Predictors beta CI (Lower/Upper) t (df =101) P-value 

Intercept 0.16 0.02 0.30 2.23 0.024 

IP group -0.27 -0.46 -0.07 -2.76 0.020* 

SP group -0.14 -0.33 0.05 -1.46 0.44* 

Large Test/Small Reference 0.05 -0.08 0.18 0.73 0.466 

WF at baseline -0.26 -0.39 -0.13 -3.93 < 0.001 

IP : Large Test -0.02 -0.20 0.16 -0.24 1* 

SP : Large Test -0.06 -0.24 0.12 -0.64 1* 



 

Figure 3. Effect of stimulation in the N task on (A) WF and (B) Threshold 

 

3.2.2. D and C tasks 

Model 3 was best fitting for the D tasks. The model is similar to Model 4, which was best 

fitting for N task (the difference is only in the random effect), implying a significant association 

between the WF change and WF magnitude at the baseline (

= -5.52, p < 0.001). Model 7 was best fitting for the C task, implying that there wa

association between the WF and threshold changes (

0.03). No other effect was significant. The effect of Group and its interaction with Test Area 

were not significant in both cases

 

3.3. Effect of stimulation on t

3.3.1. N task 

Model 4 was the best-fitting model for the change in threshold in 

suggesting a significant association between the threshold change and its magnitude at a 

. Effect of stimulation in the N task on (A) WF and (B) Threshold  

Model 3 was best fitting for the D tasks. The model is similar to Model 4, which was best 

difference is only in the random effect), implying a significant association 

between the WF change and WF magnitude at the baseline (β = -0.33, CI = [

. Model 7 was best fitting for the C task, implying that there wa

association between the WF and threshold changes (β = 0.63, CI = [0.06 1.20], t (101) = 2.21, p = 

0.03). No other effect was significant. The effect of Group and its interaction with Test Area 

both cases.   

threshold 

fitting model for the change in threshold in 

suggesting a significant association between the threshold change and its magnitude at a 
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Model 3 was best fitting for the D tasks. The model is similar to Model 4, which was best 

difference is only in the random effect), implying a significant association 

0.33, CI = [-0.45 -0.21], t (101) 

. Model 7 was best fitting for the C task, implying that there was a significant 

0.63, CI = [0.06 1.20], t (101) = 2.21, p = 

0.03). No other effect was significant. The effect of Group and its interaction with Test Area 

fitting model for the change in threshold in the N task (Table 4), 

suggesting a significant association between the threshold change and its magnitude at a 
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baseline. The difference in Bayesian Information Criterion from benchmark Model 1 was equal 

to 9.42, indicating strong evidence in favour of the best fitting model. Model statistics are 

shown in Table 3. A significant difference from zero of the intercept anda nearly twice as large 

beta for Large Test Area (positive and negative, respectively) indicates thatthere was less bias 

(symmetrically decreasing for both Test Area conditions) in an estimate of a point of equality 

between Test and Reference stimuli in the After session (also see Figure 3B). The significant 

effect of threshold at a baseline indicates that participantswho overestimated or 

underestimated the Test stimulus more in the Before session, showed a greater reduction of 

their biases, irrespective of the Group factor. Critically, the planned-contrast test showed 

thatthe effect of Group was also significant (F (2,101) = 4.47p = 0.014). A pairwise group 

comparison showed that the threshold was differentially affected in the SP group relative to the 

other groups (Figure 3B; planned contrast of SP vs. CM: t (101) = -2.44, p = 0.049; planned 

contrast of SP vs. IP: t (101) = -2.71, p = 0.024; p-values are Bonferroni-corrected), with no 

difference between IP and CM groups. This effect however was driven by the difference in Small 

Test/Large Reference condition (Figure 3B; planned contrast of SP vs. CM: t (101) = -3.21, p = 

0.006; planned contrast of SP vs. IP: t (101) = -2.50, p = 0.042; Bonferroni-corrected), with no 

difference between groups in Large Test/Small Reference condition.No significant association 

was found between the threshold change in the N task and threshold changes in the D task 

across groups (t (98) = 1.73, p = 0.087, β = - 0.17, CI =[-0.35 0.03]). Critically, the interaction 

between Group and threshold change in the D tasks was not significant either (F (2,98) = 1.91, p 

= 0.15).The difference in the BIC criteria = 10.24 in favour of Model 4 indicated that the 

threshold change and its interaction with Group factor in the D task are irrelevant for modelling 
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the threshold change in the N task. Similarly, no association was found for the corresponding 

terms in the C task (both p > .2). 

Table 4.  Best-fitting model statistics for the change in threshold (dThreshold) in each task. The interpretation 

of the model factors is same as in Table 3. Statistically significant results are highlighted in grey. Asterisks (*) 

markp-values after Bonferroni-corrections (where applicable). 

 

 

3.3.2. D and C tasks 

Models 4 and 5 were best fitting for the D and C tasks, respectively. The following factors were 

significant in the D task: intercept (β = 0.11, CI = [0.05 0.17], t (101) = 3.69, p < 0.001), Large 

Test Area (β = -0.25, CI = [-0.35 -0.15], t (101) = -4.79, p < 0.001), and threshold at a baseline (β = 

-0.30, CI = [-0.47 -0.13], t (101) = -3.52, p < 0.001). Quantitatively, this across-groups pattern is 

similar to that observed in the N task. However, considering that at baseline participants 

showed over-/underestimation pattern opposite to the N task, it implies a greater rather than 

smaller bias in the estimation of the point of equality between Test and Reference stimuli (also 

see Figure 1). The effect of the threshold at a baseline indicates that a particularly greater 

increase is observed in participants who showed a smaller bias in the Before session. Model 5 

was best fitting in the C task, but no factor was significant.  

N task - Model 4:  

dThreshold = Group + TestArea + Group: TestArea + base_Threshold + 

(base_Threshold|Participant) 

Predictors beta 

CI 

(Lower/Upper) 

t (df 

=101) P-value 

Intercept 0.13 0.08 0.19 4.83 <0.001 

IP group -0.03 -0.11 0.05 -0.73 1* 

SP group -0.13 -0.20 -0.05 -3.21 0.005* 

Large Test/Small Reference -0.22 -0.31 -0.14 -5.13 <0.001 

Threshold at baseline -0.14 -0.26 -0.03 -2.45 0.016 

IP : Large Test 0.07 -0.05 0.19 1.19 0.71* 

SP : Large Test 0.13 0.01 0.24 2.12 0.11* 



 

 

3.3.3. Analysis of supplementary dataset

Figure 4shows the results of the analyses of the supplementary datase

received a sham IP stimulation.

(34) = 2.57, p = 0.015). The bias to overestimate and underestimate, respectively, Small Test 

and Large Test stimuli also decreased in the After session (Small Test: 

(34) = 4.12, p < 0.001; Large Test: 

patterns closely mirror the patterns observed in the CM group of the main experimental data 

set. 

Figure 4. Performance in sham-stimulation group of supplementary dataset in the N task. The patterns closely 

mirror these observed in the CM group of the main experimental data set.

 

 

 

4. Discussion 

In the present study,

understand the mechanisms

. Analysis of supplementary dataset 

the results of the analyses of the supplementary datase

stimulation. WF increased in the After session (β = 0.16, CI = [0.04 0.28

The bias to overestimate and underestimate, respectively, Small Test 

and Large Test stimuli also decreased in the After session (Small Test: β = 0.16, CI = [0.08 0.24], t 

(34) = 4.12, p < 0.001; Large Test: β = - 0.10, CI = [-0.18 -0.03], t (34) = 2.76, p

the patterns observed in the CM group of the main experimental data 

stimulation group of supplementary dataset in the N task. The patterns closely 

observed in the CM group of the main experimental data set. 

, transcranial random-noise stimulation (tRNS)

the mechanismsunderlyingthe visual sense of number (VNS

25 

the results of the analyses of the supplementary dataset, where participants 

0.16, CI = [0.04 0.28], t 

The bias to overestimate and underestimate, respectively, Small Test 

0.16, CI = [0.08 0.24], t 

0.03], t (34) = 2.76, p = 0.018). These 

the patterns observed in the CM group of the main experimental data 

 

stimulation group of supplementary dataset in the N task. The patterns closely 

(tRNS) was used to 

VNS). Firstly,we tested 
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whether thesuperior parietal (SP) region, a brain area known for being implicated in numerosity 

processing(Santens et al., 2010),hosts a numerosity code (i.e. whether it has a representational 

role), or whether instead it modulates weights for stimulus features, which could be used for 

the numerosity extraction (i.e. a modulatory role). We predicted that stimulation may affect the 

VNS precision if the SP role is representational, and may affectthe threshold (contrast gain) if its 

role were instead modulatory.  Secondly, we tested whether the intraparietal (IP) regions 

represent a numerosity ‘read-out’ independent of continuous magnitudes or whether their 

metrics overlap.  Inthe formercase, IP stimulation may affect the VNS precisionindependently of 

continuous magnitude judgements.  

Our results can be summarised as follows. Firstly, SP stimulation in the numerosity task 

induced a contrast gain, which significantly differed from a contrast gainfollowing both IP- and 

motor-tRNS. The results are consistent with the hypotheses of a modulatory role of the SP in 

the VNS. Secondly, we observed an improvement in VNS precision following IP stimulation 

relative to stimulation of the control motor regions, which was statistically independent of the 

changes in the precision of continuous magnitude judgements,suggestingthat the IP 

implements numerical code independently of the continuous magnitude features, at least the 

one used in the current study. 

The lack of contrast gain following SP stimulation in the density and coherence tasks, 

especially in the density task, allows for a better understanding of the role of the superior 

parietal region in the VNS.Dot density in the test stimulus was the only varying feature in both 

density and numerosity tasks.It is well documented thatstimulus change or novelty is a 

sufficient factor to capture attention (Corbetta& Shulman, 2002; Vossel, Weidner, Thiel, & Fink, 
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2009), and such bottom-up attentional modulation may result in a signal gain, “effective 

contrast”(Kastner &Ungerleider, 2001; Keitel, Andersen, Quigley, & Muller, 2012; Carrasco, 

Ling, & Read, 2004). If the SP was implicated in this process by providing acontrast boost to 

astimulus with varying features (i.e., dot density), then an increased excitability in this region 

should have also resulted in a similar effect in the density task. In other words, stimulation 

wouldsimply increase a bias towards selecting a stimulus with more varying features without 

implicating weighting of continuous magnitude features. Instead, in our study we observeda 

biastowards overestimating the test stimulus onlyin the task wherea magnitude was 

determined by a combination of features.Its behavioural manifestation was that it countered a 

generic trend towards a reduction of numerosity overestimation for varying stimuli with a 

dense dot composition, i.e., Small Test stimuli. The lack/statistical independence of a similar 

effect in the coherence task is also informative. Whereas this task featured a two-dimensional 

magnitude structure (similarly to the numerosity task, random-deterministic as compared to 

area-density), the size of the stimulus cloud in the coherence task bore no direct relation to its 

magnitudes.This suggests that the SP is engagedif a selection of features relevant for magnitude 

estimation is required. This is in line with the proposed role of the superior parietal lobule as a 

priority map of dorsal attentional network, implementing selective attention and exerting top-

downcontrol on the bottom-up visual streamimplemented in the ventral attentional network 

(Corbetta& Shulman, 2002; Bisley & Goldberg, 2010). 

Our study complements previous findings of improvement in the VNS following 

intraparietal tRNS (e.g., Cappelletti et al., 2013) and extends them in an important way. Here 

we show that modulatory effect occurs following a one-session stimulation suggestinga utility 
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oftRNS as a tool for probing cognitive mechanisms with the goal of their better 

understanding.Wealso show a performance modulation in a larger numerosity range than 

previously studied. This is important asit has beensuggested that the codes for large numerosity 

may differ not only from the codes for numbers in the subitising range (Kaufman, Lord, Reese, 

& Volkmann, 1949), but also from codes for relatively small numerositiesoutside the subitising 

range. Anobile et al. (Anobile, Cicchini, & Burr, 2014) proposed that extracting large 

numerosities may rely on spatial frequency of stimulus items whereas small numerosity may be 

accessed by the visual system directly.Whereas the processing routes for small and large 

numerosities may still differ, our results in combination with results by Cappelletti et al.(2013) 

suggest that their codesmay converge at the level of the IP region.  

Not all the stimulation effects however were specific in the current study. Although IP 

stimulation resulted in an improvement of performance compared to the stimulation of motor 

regions, the effect was not statistically different from (albeit numerically greater than) the 

effect of the SP stimulation. In other words, we observed a differential effect of SP stimulation 

on the threshold but not a differential effect of IP stimulation on the precision. Moreover, we 

did not observe a WF improvement in absolute terms. Whereas the control group showed a 

significant increase of WF if tested against zero, a decrease of WF in the IP group did not reach 

significance. 

These results may hallmark a limitation of the present study as it could be argued that the 

control group stimulation does not represent a true baseline and produces an unexpected 

region-specific “contamination” effect, impairing the performance. This interpretation is 

however unlikely for several reasons. Firstly, the analysis of the supplementary dataset 
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demonstrated that performance changes between the Before and After sessionsin participants 

who received a sham stimulation are essentially the same to those observed in the CM group. 

Even though the twodatasets arenot directly comparable because of some differences in the 

study protocols, the mixed-effect modelling produced very similar estimates of how the 

performance changed. Secondly, we implemented a very stringent task-based control for the 

stimulation effects. The analytical procedures demonstrated that the stimulation-dependent 

WF changes were task-specific, whereas neither motor areas, which provided an anatomical 

control condition, nor its circuitry are known to be involved in any specialised cognitive 

processing of visual magnitudes. It is still of course possible that non-specific stimulation effects 

may elicit task-specific effects through an interaction with some generic task properties, e.g., 

task difficulty. However, this is unlikely because the control tasks were either easier or more 

difficult than the numerosity task, as it is suggested by Weber Fraction data in Figure 1. Finally, 

a possible contamination effect is not fully supported by the data as no differentiation between 

SP and IP stimulation effects on WF was concomitant with no differentiation between SP and 

CM stimulation. Assuming that this pattern is a consequence of a “dose-dependent” stimulation 

effect, then it is more likely to occur for the spatially and functionally proximal IP and SP sites 

than for the (spatially and functionally) distant CM and SP sites. Moreover, a study on alternate 

current stimulation suggests that it may be easier for the electrical current to reach brain areas 

situated inside sulci compared to lateral parts of a gyrus (Kanai, Chaieb, Antal, Walsh, & Paulus, 

2008). This study  has shown that stimulation of V1 elicited phosphemes in a visual field 

associated with regions residing deeply in the calcarine sulcus, not with a lateral part of the V1. 

Relating these findings to the current study, it is possible that the regions within intraparietal 
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sulcus might still receive some stimulation when the targeted region was the SP area but not 

the opposite; that is, the SP stimulation may also affect the IP, whereas the IP stimulation did 

not significantly affect lateral SP cortex. 

Taken together, our results highlight the importance of higher-order integrative processes 

in the VNS, mediated by the SP, andare in good agreement with a computational model 

advanced by Stoianovand Zorzi (2012) showing that numerosity is an emergent property based 

on continuous magnitude statistics. Unlike earlier computational models of enumeration, 

whichassumed that continuous magnitudes confound numerosity(Dehaene&Changeux, 1993; 

Verguts&Fias, 2004), the model by Stoianov and Zorzicontains a hidden layer that codes 

continuous magnitudes and the output layer that implements their weighted integration. It 

remains an open question whether the first abstract ‘read-out’ is provided in a form of 

summation, as in their model, or as a number-selective coding. It has previously been argued 

(Karolis & Butterworth, 2016; Stoianov&Zorzi, 2012) that an abstract representation in a form 

of number-selective code is likely to require an accumulator process preceding it.  

Some researchers however argue against the existence of an abstract numerosity code. 

For instance, Dakin and colleagues proposed a computational model based on a unified 

mechanism for density and numerosity extraction - the outputs of high and low frequency 

visual filters (Dakin et al, 2011). The model accounts well for the overestimation of density and 

numerosity of stimuli with a large area, as reported in their study. However, this type of 

overestimation, which is the premise Dakin et al.’s model is built on, is not validated in a 

considerably larger sample of naïve participants assessed in the current study. The pattern is 

only replicated in the density task, but it is reversed in the numerosity task (see Table 1).  
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The current studyis consistent with the ANS model in that the VNSis characterised as a 

multi-stage process. Since several studies showed a positive association between the VNS and 

mathematical competence (Halberda, Mazzocco, &Feigenson, 2008; Tibber et al., 2013), it is 

importantto clarify at which processing stage this associationemerges.One study(Tibber et al., 

2013) suggests thatthe associationis not unique for the VNS, and other visuospatial abilities 

may also correlate with math achievements.However, the same study also demonstrates that 

precision of numerosity is a better predictor than precision ina spatial frequency task, indicating 

that processes implicated in the VNSabove and beyond the spatial frequency processing may 

contribute to strengthening the association. On could speculate thattheability to integrate 

information across several visuospatial dimensions may be important for developing a better 

mathematical competence in addition togeneric visuospatial abilities. 

Lastly, alimitation of the present study should be acknowledged. Even though the 

observed differential effects of stimulation were specific in terms of their spatial resolution, 

their exact anatomical localisation remains undetermined. To differentiate the two, we have 

distinguished between the terms ‘SPL’ and ‘IPS’, referring to the anatomically defined regions, 

and ‘SP’ and ‘IP’, referring to the loci of stimulations in the present study.  However, it is 

important to note that the issue of finding an exact anatomical underpinning for the VNS is 

largely orthogonal to the main purpose of this study. Previous fMRI studies have achieved a 

considerable progress in this respect. The currentstudy therefore complements previous 

(correlation-based) fMRI studies and contributes to a better understanding of the VNS 

mechanisms.  
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Conclusions 

This study showed that the VNSis a process of statistical inference based on continuous 

magnitude features. In this process, the superior parietal areas playa role in weighing stimulus 

feature, whereas the intraparietal region contains an abstract ‘read-out’ of numerosity. This 

suggests that the independence of numerosity representation from continuous magnitudes 

refers only to the final stages of the process of numerosity extraction. 
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