Gupta, Aman; Strivens, Finn L; Tag, Benjamin; Kunze, Kai and Ward, Jamie A. 2019. 'Blink as you Sync - Uncovering Eye and Nod Synchrony in Conversation using Wearable Sensing'. In: International Symposium on Wearable Computers (ISWC). London, United Kingdom 9-13 September 2019. [Conference or Workshop Item]

http://research.gold.ac.uk/id/eprint/26630/

The version presented here may differ from the published, performed or presented work. Please go to the persistent GRO record above for more information.

If you believe that any material held in the repository infringes copyright law, please contact the Repository Team at Goldsmiths, University of London via the following email address: gro@gold.ac.uk.

The item will be removed from the repository while any claim is being investigated. For more information, please contact the GRO team: gro@gold.ac.uk
Blink as you Sync - Uncovering Eye and Nod Synchrony in Conversation using Wearable Sensing

Aman Gupta, Finn L Strivens
Benjamin Tag, Kai Kunze
Graduate School of Media Design
Keio University
Yokohama, Japan
aman@keio.jp

Jamie A Ward
Department of Computing
Goldsmiths University of London
London, United Kingdom
jamie@jamieward.net

ABSTRACT

We tend to synchronize our movements to the person we are talking to during face-to-face conversation. Higher interpersonal synchrony is linked to greater empathy and more effortless interactions. This paper presents a first method and a corresponding dataset to explore synchrony in natural conversation by capturing eye and head movement using commodity smart eyewear. We present a 17 hour dataset, using Electrooculography and inertial sensing, of 42 people in conversation (21 dyads: 10 in Japanese, 10 in English, 1 in Chinese). Initial results on 18 dyads show significant interpersonal synchrony of blink and head nod behaviour during conversation (at frequencies of 0.2 to 0.5 Hz). We also find that people are more likely to synchronise blinks at around 1 Hz when conversing back-to-back than when face-to-face.

CCS CONCEPTS

- Human-centered computing:

KEYWORDS

interpersonal synchrony, wearable sensing, eye tracking

ACM Reference Format:

*First two authors contributed equally to the paper.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

PREPRINT ISWC ’19, September 9–13, 2019, London, United Kingdom
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nmnnnnn.nnnnnnn

1 INTRODUCTION

Understanding a person’s context and activity is at the core of making wearable computing more personal and transparent. Activity recognition covers a wide range of wearable modalities and applications, including physical (e.g., daily step counting, assembly task analysis), physiological (e.g., heart rhythm analysis, breathing rate), and cognitive (e.g., reading detection, cognitive load tracking). To-date, most of the focus of wearable sensing has been on the individual. However there is growing interest in the topic of social sensing, i.e. the in-situ capture and analysis of human social behavior using unobtrusive devices [20].

A particularly useful social signal is interpersonal synchrony. Interpersonal synchrony reveals the degree of temporal coordination between people during social interaction, and can provide cues on things like social engagement, and affect [2]. We propose measuring interpersonal synchrony using the head nods and eye blinks of dyads in conversation. Nods and blinks are used due to their importance as non-verbal signals [6], their connection to cognitive processes like sustained attention [16], and the relative ease of collecting this data using commercial head-worn wearables.
Tschacher et al. found a link between interpersonal synchrony and affect [4], revealing that if people move in sync, they tend to feel more positive towards one another. Ward et al. use head nods of remote users can be reproduced in real time to facilitate group discussion [15].

Much of the work on non-verbal analysis of social signals use either computer vision, or pocket worn sensing (e.g. mobile phones) [12, 13, 28]. Wearables positioned on the body have the potential to provide a richer source of information on social signals.

To uncover synchrony between participants, we use a method based on wavelet cross-coherence. This method highlights correlation in both time and frequency between two signals, and was originally developed to measure covariations in weather patterns [8]. It has since been used to measure interpersonal synchrony of head movements in conversation [5, 10]. And was applied to wrist-worn sensor data to detect social engagement [30]. The present work introduces a first attempt to apply wavelet coherence to conversation data obtained from two different head-mounted sensors (EOG and IMU).

3 EXPERIMENTAL SETUP

Pairs of participants were asked to have two conversations on two assigned topics. They had one conversation facing each other (FF) and another sat back to back (BB) so that they were unable to see the other person (Figure 1). Each conversation lasted exactly five minutes. The first conversation topic, adapted from Tschacher et al., was to "plan a 4-course meal together using only ingredients that neither of you enjoy." The second topic was to "plan one day of a holiday only doing things that neither of you like" [27]. The topics were described to participants directly before the beginning of each conversation. The direction faced for the first conversation was alternated throughout the study, and the two topics were used equally in both directions.

Apparatus and signals

All interactions were recorded using two video cameras and two channel audio recording (Figure 1). Each participant’s EOG eye motion data, as well as IMU head movement data
Figure 3: 6s example conversation (dyad 12, BB). Raw EOG-V signals shown, with corresponding continuous wavelet transforms (cwt) for each, and the resulting wavelet coherence WCOH spectrogram from combining these. Darker regions on the spectrograms show higher coherence values. Dotted line shows a moment of synchronous blinking and resulting wcoh (at scale of approx. 0.2s).

We use ‘nod’ as a shorthand for head pitch (y-axis acceleration, or ACC-Y) because nodding is the most common (and dominant) head pitch movement. Similarly we use blink as a shorthand for vertical EOG, or EOG-V. During a blink, the eyes perform a characteristic up- and downward motion that is expressed in the EOG-V signal [3]. This is created, in part, by changes in measuring the retinal-corneal potential, but also movement of the eyelid muscle. The characteristic voltage from blink is larger than any other eye movement, and is thus a dominant signal in EOG-V.

Applying cross-wavelet coherence directly to pairs of ACC-Y (and EOG-V) gives an indication that people are nodding (or blinking) in a coordinated way with one another: it highlights if the signals change at the same time.

Participants

We recorded 42 participants (22 female, average age 23, STD 4), who were predominantly university students. Participants registered themselves for the study in pairs or were assigned to dyads with someone fluent in their language to allow coherent communication. 21 pairs of participants (n=21 dyads) were asked to speak in their mutually preferred language. In total we had 10 English language pairs, 10 Japanese language pairs, and one Chinese language pair. All participants gave written consent after getting informed of the study design, setup, and potential data usage for analysis, including video and audio recordings before the experiment.

In the following analysis, we use data from 18 of the 21 dyads. Two excluded pairs were due to hardware synchronisation issues. The one Chinese-language pair was also excluded (in part because one participant wore a face-mask, and we are interested in face-to-face effects).

4 WAVELET COHERENCE ANALYSIS

Wavelets allow us to decompose a signal into its frequency components while preserving temporal information, and without the need for windowing [26]. Obtaining the wavelet transform from two signals and then combining the outputs provides a way of obtaining the common time-spectral response. Two related methods of combining these include the cross-wavelet transform, which highlights the frequencies with high common power, and the wavelet coherence transform, which highlights common frequencies regardless of power [8]. Here we use wavelet coherence because of its superior performance on subtle, lower-power data.

The wavelet coherence spectrogram is obtained by combining wavelet spectrograms of the two signals being analysed (one from each of the conversing participants, here referred to as left, L and right, R). This process is shown using EOG-V for a 6s sequence of two people conversing in Figure 3. The wavelet coherence spectrogram (for both EOG-V and ACC-Y) is obtained in 3 steps: 1) low-pass filter the raw signals for L and R (5th-order Butterworth, cut-off 20Hz), 2) apply a continuous wavelet transform to the signals, \(W_L \) and \(W_R \), 3) calculate the cross-wavelet transform by multiplying \(W_L \) by the complex conjugate of the other \(W_R^{*} \), i.e. \(W_{L,R} = W_L \ast W_R^{*} \), and then normalising for signal power to obtain the wavelet coherence (see [8] for full details). The wavelets used in this work are calculated using the continuous wavelet transform function, with a Morlet base, from the PyCWT module in Python (https://github.com/regeirk/pycwt).

Wavelet coherence spectrograms were computed for all the EOG and IMU data signals between conversing partners, and the results averaged for each condition over time to give a typical frequency response. Here we present only the data from vertical eye movement, EOG-V (blink), and y-direction acceleration, ACC-Y (head nods), as these are the relevant signals to the current study. The frequency response is represented by the approximate wavelet scale periods, or \(1/f \) frequency. Paired t-tests (with \(p=0.05, N=18 \)) were applied across 121 different wavelet scales. To account for multiple comparisons, we applied Benjamini-Hochberg, false discovery rate (FDR) correction at 0.05.
5 RESULTS AND DISCUSSION

We performed evaluations to test 2 hypotheses: 1) people synchronise nods and blinks during conversation, 2) people synchronise more when they can see one another vs. when they cannot.

Do people synchronise in conversation?

Coherence data from real conversations were compared against coherence data from pseudo-conversations. Pseudo conversations approximate a random interaction by calculating the coherence of two signals taken from different conversations. To maintain the validity of the dependent t-tests, each pseudo conversation is calculated from the same participants used in the corresponding real conversation. To calculate a pseudo, we generate the coherence of person L (from FF), with their partner, R (from BB), and vice versa (L from BB, R from FF). We then average both to generate a single pseudo response. By comparing real-vs-pseudo in this way, we can uncover synchronicity that occurs in actual conversation as distinct from just the combination two individuals speaking.

Figure 4 shows our main result, which confirms the hypothesis that people synchronise with one another in eye blink, and to a slightly lesser extent in head nod. The effect is particularly strong for EOG-V at periods of 2 to 5 s, which roughly corresponds to typical eye blink rates in individuals.
Do people synchronise more face-to-face?

The right plots on Figure 5 suggest that there is generally no significant difference between conversants’ ACC-V when face to face (FF) vs. back to back (BB).

However, when analysing EOG-V (the left plot), a significant difference is found in favour of BB at interaction periods of around 1s (1Hz). This surprising result suggests that people coordinate blinks more when they cannot see one another.

A rate of 1 Hz is faster than typical blink rates. It should be stressed that this analysis does not necessarily imply a constant stream of synchronised blinks every second. The result might also be explained by a series of occasional, synchronised, slow blinks (each lasting around 1s), or short bursts of 1 Hz blinks. Currently, we do not have a full explanation for this phenomenon, but hypothesize that either entrainment of breathing patterns of people who sit next to one another and talk, but cannot see one another, might be a factor. It may be also that the lack of visual connection leads to a higher dependence on auditory attention to be able to follow the conversation, which results in synchronized eye blinks due to increased engagement [19].

6 CONCLUSIONS AND FUTURE WORK

In this paper, we provide a data set exploring over 17 hours of natural conversations recorded by smart eyewear. We show – for the first time – that synchrony of physiological signals and non-verbal communication gestures can be detected using an unobtrusive, off-the-shelf wearable sensing device. We demonstrate how wavelet coherence analysis might be used to highlight coordination between wearable signals from interacting participants.

One limitation of the work is our use of raw EOG-V and ACC-Y signals as a proxy for ‘blink’ and ‘nod’ behaviour. This is a valid assumption considering the dominance of nods and blinks on these signals. However, future work might consider a higher-level analysis, for instance using dynamic time warping on the output of separate blink and nod detectors.

In future work we intend to explore the cultural differences inherent in non-verbal behaviour. There are known differences in nodding between Japanese and English speaking populations, for example, which we will explore more fully in a follow-on work (e.g., [24]).

We also plan to extend the research beyond dyads to analyze group discussions. An important addition will be to test the robustness of these methods in in-the-wild situations and to evaluate real-time classification of conversational behaviour. This will allow eventual application of these methods to help build wearable aids that benefit from better awareness of human social context.

REFERENCES

