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Abstract—Videogame systems incorporate varied sensors to
increase the range of player interactions and improve player
experience. However, implementing robust recognisers for player
actions with sensors presents significant challenges to developers.
Further, sensor-based controls offer little player customisation
compared to traditional input interfaces (gamepads, keyboards
and joysticks). Past research on motion-driven music systems has
successfully used interactive machine learning (IML) techniques
to facilitate the development and customisation of sensor-based
interfaces, both by developers and end users. However, existing
standalone software tools for IML are not ideal for use in game
development and distribution. In order to support more effective
and flexible use of sensors by game developers and players, we
developed an integrated IML solution for Unity3D in the form
of a visual node system supporting classification, regression and
time series analysis of sensor data.

I. INTRODUCTION

Videogames are increasingly incorporating a diverse vari-
ety of sensors. Examples include DIY hardware games, VR
sensors, smartphones, AR systems, smart watches and more.
Despite decades of research on using sensors as game con-
trollers, there are still no standard practices for how to design
sensor-based interactions. It can be difficult for developers to
implement accurate and robust sensor analysis when sensors
are noisy or high-dimensional, or when the goal is to sense
complex movements or actions. Further, players might want
to customise sensor-based interfaces—similar to how they
currently customise gamepads—to reflect their preferences or
expertise, or to suit their own range of motion or abilities.
However, current solutions provide little such functionality.

In this paper, we describe a new interactive machine
learning (IML) system designed to facilitate development
and customisation of games that use unconventional input
devices—including sensors, audio, and video—to capture rich
information about player movements and actions. This work
is informed by the success of IML in facilitating the design
of new gestural musical interfaces for professional musicians
[1], [2] as well as children and adults with disabilities [3],
[4]. We begin by briefly explaining how IML has been used
in similar domains and describing the barriers to using existing
tools for game development. We then introduce the newly built
Unity3D tool, InteractML.

II. INTERACTIVE MACHINE LEARNING

Supervised learning algorithms are capable of building new
recognisers or control systems from examples, rather than
requiring a developer to write code analysing sensor data and
specifying how an application (e.g., a game) should respond.
Specifically, an algorithm learns from examples of human
gestures or actions, each paired with the desired response. For
instance, a developer (or player) could provide a few examples
of an accelerometer being tilted right and left, along with
information about how the colour of an on-screen game object
should change in response to each tilt. A supervised learning
algorithm can then build a mathematical model capable of
choosing a new colour (or any other property) change in
response to each new tilt observed during gameplay.

In interactive machine learning, a user (e.g., a developer
or player) iteratively builds and refines the model through
“cycles of input and review” [5]. IML systems for building
new gestural controllers for music typically allow users to
create new gesture examples on the fly, and to evaluate models
by experimenting with the new controllers in realtime [1], [6].
Users can iteratively modify the training examples, sensor,
and learning algorithm to improve performance. A similar
approach has been used to customise virtual game characters’
behaviour via physical player movements [7].

Several standalone software tools have been created to
support IML creation of gestural control interfaces, such as
Wekinator [1], GRT [6], and GVF [8]. Occasionally these have
been used in games. For example, Schedel and Perry [9] used
Wekinator to create a musical game in Unity3D controlled
using a Cello K-bow and a Microsoft Kinect [9]. However,
the implementation of this system was difficult and needed
the writing of substantial new code to enable communication
between Wekinator, Unity and the audio engine. Further, the
final game could not be released as a standalone application, as
it required multiple software programs (Unity3D, Wekinator,
and a tailored application to extract data from sensors) running
in parallel. The complexity of this toolchain limits the utility
of such an IML solution for game developers.

It is worth noting that Unity3D’s built-in “machine learning”
tools1 provide reinforcement learning algorithms for training

1https://unity3d.com/machine-learning
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Fig. 1. InteractML, the proposed interactive machine learning solution. On the left of the image are the nodes extracting features from gameobjects in the
scene. The node “Extract Position” sends data from a gameobject forward in the graph. In the center of the image is the “Training Examples” node where
users can iteratively collect pairs of features extracted (positions, rotations, velocities, etc) and game outputs (sounds, colours, particles, etc). To the right is the
“IML Configuration” node, which holds the properties to build the ML model, specifying the type of supervised learning algorithm (classification, regression
or time series analysis), the training dataset and which gameobject will feed features during gameplay to perform the real-time ML analysis. Game creators
can iteratively customise the training dataset, the features extracted or the properties affected by the ML model outputs until they reach the ML configuration
that best expresses their intent (wave a hand, fly a dragon, play an instrument, etc).

agents. Supporting supervised learning with IML to train
new sensor-based interactions thus requires entirely different
algorithms, workflows, and interfaces.

III. INTEGRATED IML FOR THE UNITY3D GAME ENGINE

We have developed a Unity3D plugin, InteractML, that
enables developers to configure, train, and use IML systems
within the game editor. Using a visual node scripting system
(Fig. 1), developers can visualise incoming sensor data, con-
figure game inputs (e.g., specifying what data to extract from
sensors or objects in the game); train and refine ML models
(by iteratively adding new training examples in realtime);
and connect the ML model outputs (the real-time predictions
calculated based on the training data) to other objects/scripts
in the game scene. In addition, since InteractML doesn’t rely
on external software, the ML models can be trained and/or
refined by player-provided examples in the released version
of the game.

InteractML currently supports classification (with k-nearest
neighbour), regression (with multilayer perceptron neural net-
works) and time series analysis (with dynamic time warping)
of sensor input. Yet developers do not need to know anything
about the algorithms themselves to begin using InteractML;
they must only understand (1) the interaction flow required
to build a model (i.e., record data/train/run, as described in
Section II) and (2) which type of machine learning algorithm
(classification, regression, time series analysis) they wish to
use. InteractML comes with numerous examples and tutorials
to aid developers with these tasks.

IV. CONCLUSION

InteractML offers a simple and accessible tool to develop
sensor interactions, using an in-engine visual node IML work-
flow that does not require prior expertise with ML techniques.
This tool aims to support game creators in more easily devel-
oping interactions with sensors, and in creating more complex

embodied experiences for players. Since the ML models can
be iteratively trained by developers and/or players, there is
also room to explore bespoke controllers tailored to people
with motion impairments, and game mechanics based around
player customisation of actions.
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