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a b s t r a c t 

Clinical and subclinical (trait) anxiety impairs decision making and interferes with learning. Less understood are 

the effects of temporary anxious states on learning and decision making in healthy populations, and whether 

these can serve as a model for clinical anxiety. Here we test whether anxious states in healthy individuals elicit 

a pattern of aberrant behavioural, neural, and physiological responses comparable with those found in anxiety 

disorders —particularly when processing uncertainty in unstable environments. In our study, both a state anx- 

ious and a control group learned probabilistic stimulus-outcome mappings in a volatile task environment while 

we recorded their electrophysiological (EEG) signals. By using a hierarchical Bayesian model of inference and 

learning, we assessed the effect of state anxiety on Bayesian belief updating with a focus on uncertainty esti- 

mates. State anxiety was associated with an underestimation of environmental uncertainty, and informational 

uncertainty about the reward tendency. Anxious individuals’ beliefs about reward contingencies were more pre- 

cise (had smaller uncertainty) and thus more resistant to updating, ultimately leading to impaired reward-based 

learning. State anxiety was also associated with greater uncertainty about volatility. We interpret this pattern 

as evidence that state anxious individuals are less tolerant to informational uncertainty about the contingencies 

governing their environment and more willing to be uncertain about the level of stability of the world itself. Fur- 

ther, we tracked the neural representation of belief update signals in the trial-by-trial EEG amplitudes. In control 

participants, lower-level precision-weighted prediction errors (pwPEs) about reward tendencies were represented 

in the ERP signals across central and parietal electrodes peaking at 496 ms, overlapping with the late P300 in 

classical ERP analysis. The state anxiety group did not exhibit a significant representation of low-level pwPEs, 

and there were no significant differences between the groups. Smaller variance in low-level pwPE about reward 

tendencies in state anxiety could partially account for the null results. Expanding previous computational work 

on trait anxiety, our findings establish that temporary anxious states in healthy individuals impair reward-based 

learning in volatile environments, primarily through changes in uncertainty estimates, which play a central role 

in current Bayesian accounts of perceptual inference and learning. 
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. Introduction 

Anxiety is characterised by excessive worry about negative possi-
ilities ( Grupe and Nitschke, 2013 ). It can lead to distinct difficulties
hen making decisions and learning about the world, as anxious indi-
iduals experience negative reactions to uncertainty —known as intol-
rance of uncertainty (IU; Bishop, 2007 ; Carleton, 2016 ). Recent work
as established that individuals high in trait anxiety have difficulties
dapting their learning rate to changes in probabilistic task environ-
ents ( Browning et al., 2015 ; Huang et al., 2017 ). Less understood is
ow temporary states of anxiety in healthy subjects interfere with op-
imal learning and belief updating in the brain. Identifying the com-
utations that subserve learning under state anxiety is important due
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o the prevalence of highly anxious states in most real-world environ-
ents that are filled with uncertainty ( Bach et al., 2011 ; Bishop and
agne, 2018 ). In addition, these insights could expand our understand-

ng of the mechanisms by which anxiety biases beliefs about the world,
inking to anxiety-related disorders. 

Previous computational work has identified three types of uncer-
ainty during decision-making and learning: expected (irreducible) un-
ertainty, estimation (informational) uncertainty, and unexpected (en-
ironmental) uncertainty ( Bland and Schaefer, 2012 ; de Berker et al.,
016 ; O’Reilly, 2013 ; Yu and Dayan, 2005 ). Expected uncertainty
merges from the probabilistic relationships between responses and
heir outcomes, which is an inherent (irreducible) property of most
eal-world interactions. Estimation uncertainty arises from the imperfect
eptember 2020 
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nformation about those response-outcome relationships and decreases
ith learning. Lastly, changes in the environment (volatility) induce un-

xpected environmental uncertainty. Subjective estimates of volatility
hould affect learning as the individual should be more willing to up-
ate their estimates in a world that is changing ( Mathys et al., 2011 ). To
educe uncertainty, the brain is thought to appraise the inherent statis-
ical structure of the world using probability distributions, continuously
pdating and inverting a hierarchical model of the causes of the sensory
nputs it receives ( de Lange et al., 2018 ; Doya et al., 2007 ; Friston, 2005 ;
riston, 2010 ; Rao and Ballard, 1999 ). In this context, each type of un-
ertainty is expressed by the width (variance, or its inverse, precision)
f the probability distribution of the corresponding belief ( Feldman and
riston, 2010 ; Mathys et al., 2011 ). 

Examinations of belief, uncertainty, and precision estimates using
ayesian formulations in perceptual and learning tasks are increasingly
sed to provide mechanistic explanations for an array of neuropsychi-
tric conditions. Specifically, difficulties estimating precision has been
uggested to explain various clinical expressions, from movement dif-
culties in Parkinson’s disease to features of schizophrenia and autism
 Friston et al., 2016 , 2013 ; Lawson et al., 2017 , 2014 ; Parr et al., 2018 ).
n the case of anxiety, altered beliefs are also theorised to play a vital
ole ( Paulus and Stein, 2010 ; Paulus and Yu, 2012 ). As anxiety relates
o worry over uncertainty, volatile task environments have been used to
nderstand how trait anxiety affects learning, providing a mechanistic
ccount of anxiety-related disorders ( Browning et al., 2015 ; Huang et al.,
017 ). Healthy individuals are known to adapt their learning rate to
olatility, with changing environments promoting a higher learning rate
s new information needs to be integrated to better predict the future
 Behrens et al., 2007 ). By contrast, high-trait anxious individuals show
educed adaptability of their learning rate to changes in volatility, both
n aversive ( Browning et al., 2015 ) and reward settings ( Huang et al.,
017 ). Moreover, they show poorer performance in decision-making
asks ( de Visser et al., 2010 ; Hartley and Phelps, 2012 ; Miu et al., 2008 ).
xpanding on those findings, here we evaluated whether temporary anx-
ous states in healthy individuals influence reward learning in a volatile
nvironment through changes in informational and environmental un-
ertainty. Evidence for a link between anxiety and inaccurate estima-
ion of uncertainty would lend support to recent theoretical accounts
uggesting that difficulties learning from incomplete information and
isestimations of uncertainty are crucial to understanding affective dis-

rders ( Pulcu and Browning, 2019 ). 
Probabilistic inference is thought achieved through the sequential

se of Bayes’ rule, dynamically combining predictions (prior beliefs)
ith new evidence (sensory data) and weighting each resultant predic-

ion error (PE) according to its precision ( Feldman and Friston, 2010 ;
riston and Kiebel, 2009 ; Kok and de Lange, 2015 ). This predictive cod-
ng scheme relies on a specific message passing policy carried out among
egions of the cortical hierarchy ( Bastos et al., 2012 ; Iglesias et al.,
013 ; Rao and Ballard, 1999 ). Predictions are transmitted down the
ortical hierarchy (backwards) to meet incoming ascending (forward)
ensory PEs thought to arise in supragranular layers in superficial pyra-
idal cells ( Friston and Kiebel, 2009 ). Beliefs are then updated by

educing PE signals across each level of the cortical hierarchy, with
oth priors and PEs weighted according to their estimated precision
 Kok and de Lange, 2015 ). Importantly, developments in Bayesian com-
utational modelling allow us to estimate inter-individual differences in
he trial-wise computations and expression of these precision-weighted
Es ( Mathys et al., 2014 , 2011 ). 

Monkey single-cell recording and human functional magnetic res-
nance imaging (fMRI) studies have shown that PEs elicited by re-
ard are encoded by phasic responses in midbrain dopamine neurons,
nd these signals are conveyed to the medial frontal cortex (MFC;
hew et al., 2019 ; Matsumoto et al., 2007 ; Morris et al., 2006 ; Zarr and
rown, 2016 ). Using electroencephalography (EEG), these reward learn-

ng signals can be detectable in the error related negativity (ERN), an
vent-related potential (ERP) triggered by overt errors around 100 ms;
nd the feedback ERN (fERN) that follows negative feedback around
50 ms ( Holroyd et al., 2003 ; Montague et al., 2004 ; Nieuwenhuis et al.,
004 ; Yeung et al., 2005 ). Both components have been shown to orig-
nate in the posterior medial frontal cortex (pMFC, including the ante-
ior cingulate cortex, ACC; Holroyd et al., 2003 ; Montague et al., 2004 ;
eung et al., 2005 ). Relevant to our study, the fERN has been pro-
osed to index the magnitude of prediction violation (surprise), thus
eflecting a reward PE signal that can be estimated, for instance, by
sing reinforcement learning models ( Gehring and Willoughby, 2004 ;
olroyd and Coles, 2008 ; Holroyd and Krigolson, 2007 ). Another com-
onent of the ERP that may be sensitive to reward PEs, valence, and
urprise is the P300 (peaking between 250 − 500 ms with a parietal to-
ography, Hajcak et al., 2007 , 2005 ; Polich, 2007 ; Wu and Zhou, 2009 ).

Evidence linking PEs, Bayesian surprise, and belief updating to
rial-wise fluctuations in ERP responses comes from studies combin-
ng computational modelling and analysis of trial-wise EEG responses
 Diaconescu et al., 2017a ; Jepma et al., 2016 ; Kolossa et al., 2015 ;
ars et al., 2008 ; Stefanics et al., 2018 ; Weber et al., 2020 ). For in-

tance, recent EEG studies on the mismatch negativity (MMN) were
ble to spatiotemporally dissociate lower-level precision-weighted PE
pwPE) signals, which drive updates in belief estimates ( Stefanics et al.,
018 ), and higher-level pwPEs —driving volatility updates ( Weber et al.,
020 ). In addition, model-based single-trial analyses of the P300 iden-
ified the earlier P3a waveform of anterior distribution as an index of
elief updating, whereas Bayesian surprise was represented in the later
osterior P3b component ( Kolossa et al., 2015 ). Here we were interested
n assessing the neural representation of pwPEs across different levels,
ncluding lower-level pwPEs used to update reward tendency estimates,
nd higher-level pwPEs used to update volatility estimates, as belief up-
ates on these two levels both depend on informational and environ-
ental uncertainty. We therefore aimed to examine the effect of these

wo hierarchically-related pwPEs on brain activity by analysing trial-
ise ERP responses across frontal, central, and parietal brain regions,
nd within a broad temporal range from 200 to 850 ms, encompassing
he fERN and extended P300 components. 

To address our questions, we examined cortical dynamics in a state
nxious group and a control group using EEG recordings during a
eward-based learning task. To link anxiety-induced neural changes
o potential alterations in uncertainty estimation, we used a Bayesian
odel of perception and learning, the Hierarchical Gaussian Filter (HGF,
athys et al., 2014 , 2011 ). The HGF estimates individual trajectories of

rial-wise belief updates governed by hierarchically related PEs based on
he behavioural responses of participants. To reveal the effect of hier-
rchical PEs and precision weights on evoked brain responses, we used
he relevant computational quantities (pwPEs) as regressors in a general
inear model (GLM) of trial-wise EEG amplitudes —as done in previous
tudies ( Diaconescu et al., 2014 , 2017a ; Weber et al., 2020 ). 

. Material and Methods 

.1. Participants 

Forty-two healthy individuals (age 18–35, 28 females, mean age 27,
tandard error of the mean [SEM] 0.9) participated in this reward-based
earning study following written informed consent. This experiment was
pproved by the ethics review committee at Goldsmiths University of
ondon. Our sample size was informed by previous computational work
n anxiety ( Browning et al., 2015 ). All participants were healthy volun-
eers, with no past neurological or psychiatric disorders. 

All participants were screened using Spielberger’s Trait Anxi-
ty Inventory (STAI; Spielberger, 1983 ) which has reliably demon-
trated internal consistency and convergent and discriminant validity
 Barnes et al., 2002 ; Spielberger, 1983 ; Spielberger et al., 1970 ). Scores
n this trait inventory range from low (20) to high anxiety (80). Par-
icipants were measured for their trait anxiety level (mean in the total
ample was 46, SEM 1.5) and then split into two groups using the me-
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ian value (43). The sample population range was between 34 and 68
Low trait = 34–42, High trait = 43–68). This created a high and low
rait anxiety sample to then pseudo-randomly draw from to create the
xperimental (state anxiety, StA) and control groups (Cont). The mean
rait anxiety score in the StA group was 47 (SEM = 2.1), while it was 46
SEM = 2.2) in the Cont group. Importantly, individual trait anxiety lev-
ls did not exceed the clinical level ( > 70, a cutoff score provided by the
uthors who developed the Spielberger STAI scale corresponding with
he mean and 2SD of the average score for adults, see: Spielberger et al.,
983 ). 

Taken together, the ages (mean 27.7, SEM = 1.2) and sex (13 fe-
ale, 8 male) of the Cont group were commensurate with those from

tA (mean 27.5, SEM = 1.3, sex 14 female, 7 male), demonstrating that
o age or sex-related confounds are present for subsequent analysis. This
s important in the light of documented age and sex-related effects on
eart-rate variability (HRV: see Voss et al., 2015 ), which we used to
ssess physiological changes due to state anxiety. 

.2. Experimental Design 

We used a between-subjects experimental design with state anxiety
eing the between-subject factor (StA and Cont groups). Both groups
ompleted our experimental task, which consisted of four blocks: rest-
ng state 1 (R1: baseline), reward learning task block 1 (TB1), reward
earning task block 2 (TB2), and resting state 2 (R2; see Supplementary
ig. 1). Both resting state blocks were 5 min-long recordings of EEG and
lectrocardiography (ECG) with eyes open. After R1, participants con-
ucted a binary choice decision-making task with contingencies that
hanged over the course of learning as in previous work ( Behrens et al.,
007 ; de Berker et al., 2016 ; Iglesias et al., 2013 ). In our task, partic-
pants completed two blocks of 200 trials each (TB1, TB2), and their
oal was to find out which one of two visual icons (always either blue
r orange: see Figure 1 ) would lead to a monetary reward (positive re-
nforcement, 5 pence). Thus, they had to learn the probability of reward
ssigned to each stimulus (reciprocal: p, 1-p). Both experimental blocks
ere divided into 5 segments with different stimulus-outcome contin-
ency mappings that were randomly ordered for each participant and
aried in length between 26 and 38 trials. These contingencies ranked
rom being strongly biased (90/10), moderately biased (70/30), to un-
iased (50/50), and repeated in reverse relationships (10/90; 30/70)
o that over the two blocks there were 10 contingency blocks in total
 de Berker et al., 2016 ). 

On individual trials, participants were asked to predict which of
he two visual icons was going to reward them with money. Success-
ul predictions were rewarded 5p, while unsuccessful predictions and
o-responses were regarded as losses with 0p reward ( Fig. 1 ). The stim-
li were either presented to the left or right of the centre of the screen
andomly. They remained on the screen until a response was given or
he prediction time (2200 ms ± 200 ms) expired. When a response of
ither the left arrow key or right arrow key was pressed, participants
mmediately saw their chosen image highlighted in bright green, which
emained on screen for 1200 ms ( ± 200 ms) before the outcome was
evealed. The outcome, either win or lose, was shown in the middle of
he screen for 1200 ms ( ± 200 ms) in green and red respectively. Each
rial ended with a fixation cross and an inter-trial interval of 1250 ms
 ± 250 ms). 

The participants were given full computerised instructions for each
lement of the experiment, including questionnaires. Each question-
aire came with written instructions and was responded to using the
umerical keyboard buttons. Just before 10 practice trials of the same
robabilistic reward learning task used in the main experiment, partici-
ants were explicitly informed that the reward structure would change
hroughout the task and that they needed to adjust their predictions in
esponse to inferred changes ( de Berker et al., 2016 ). Importantly, di-
ectly after practice trials but before TB1, both the state anxiety and
he control groups were informed that this experiment was, in fact, an
xamination of performance in two subsequent tasks: reward learning
nd an additional presentation task (see next section). Their instructions
ith regard to the additional task were, however, different as we aimed

o induce state anxiety during the blocks of reward-based learning in
he state anxiety and not in the control group. 

.3. State Anxiety Manipulation 

Participants in the StA group were informed that they had been
andomly selected to complete a public speaking task after finishing
he reward learning task ( Feldman et al., 2004 ; Lang et al., 2015 ;
orberbaum et al., 2004 ). They were told they would be required to
resent a piece of abstract art and would be allowed to prepare for 3
in for a 5 min public presentation of this artwork to a panel of aca-
emic experts. Those in the control (Cont) group were instead informed
hat they would be given a piece of abstract art, but they were to give
 mental description of it for the same time privately to themselves (in-
tead of a panel of experts). After completing the reward-based learning
locks, StA participants were informed of the sudden unavailability of
he assessment panel and were ultimately instructed to describe the art-
ork privately in line with the Cont group. 

.4. EEG and ECG Recording and Pre-Processing 

EEG and ECG signals were recorded throughout all task blocks (R1,
B1, TB2, and R2) using the BioSemi ActiveTwo system (64 electrodes,
xtended international 10–20) with a sampling rate of 512 Hz. The EEG
ignals were referenced to the average between two electrodes affixed
o the left and right earlobes. Four additional external electrodes in a
ipolar configuration were used, which included two electrodes posi-
ioned to capture vertical and horizontal eye-movements (EOG), one to
he zygomatic bone of the right eye, and one to the glabella (between
oth eyes); and two electrodes to record the ECG. ECG electrodes were
laced in a two-lead configuration ( Moody and Mark, 1982 ) calibrated
o fit the Einthoven triangle ( Wilson et al., 1931 ). All electrodes used
ighly conductive bacteriostatic Signa gel (by Parker Laboratories, Inc.,
 Sperry Road. Fairfield, NJ 07004 USA). All events, including presenta-
ion of stimuli, participant responses, and trial outcomes, were recorded
n the EEG file using event markers. 

Analysis of the ECG data was conducted in MATLAB (The Math-
orks, Inc., MA, USA) using the FieldTrip toolbox ( Oostenveld et al.,

011 ) and their recommended procedure to detect the cardiac
vents ( http://www.fieldtriptoolbox.org/example/use_independent_
omponent_analysis_ica_to_remove_ecg_artifacts ). Following this ap-
roach, the ECG signal was used to detect the QRS-complex and its main
eak, the R wave peak. Next, we extracted the latency of the R-peak,
hich was used to compute the coefficient of variation (CV = standard
eviation/mean) of the difference intervals between consecutive R-
eaks (inter-beat interval: IBI). The CV of inter-beat intervals was used
s a metric of heart rate variability for statistical testing and is termed
RV hereafter. This measure was recently shown to capture block-wise

tate anxiety changes using a similar manipulation, as validated by
orresponding changes in state anxiety scores ( Sporn et al., 2020 ). See
urther details below in Section Measures of Anxiety . 

EEG data were preprocessed in EEGLAB toolbox ( Delorme and
akeig, 2004 ) by first high-pass filtering at 0.5 Hz (hamming windowed

inc finite impulse response [FIR] filter, 3381 points) and then notch-
ltering between 48–52 Hz (847 points) to remove power line noise. Af-
erwards, artefacts (eye blinks, eye movements, cardiac artefacts) were
lassified using independent components analysis (ICA, runICA algo-
ithm) and removed (on average 2.3, SEM 0.16, components). Noisy
hannels were corrected utilising spherical interpolation. All signals
ere then epoched around outcome onsets (win, lose) from -200 to 1000
s. Noisy epochs exceeding ± 100 𝜇V were identified and removed us-

ng a thresholding technique relative to the pre-stimulus baseline. The
umber of rejected trials for each participant did not exceed 10% of the

http://www.fieldtriptoolbox.org/example/use_independent_component_analysis_ica_to_remove_ecg_artifacts


T.P. Hein, J. de Fockert and M.H. Ruiz NeuroImage 224 (2021) 117424 

Figure 1. Behavioural task structure and physiological measures. A) On individual trials, participants were presented with two visual icons. They were instructed to 

predict the rewarding stimulus (win = 5p). The stimuli (blue or orange image) were randomly presented to either the left or right of the screen. They remained on the 

screen until a response was given or the allowed time (2200 ms ± 200 ms) expired —recorded as no-response. When a response of either the left arrow key or right 

arrow key was pressed, participants immediately saw their chosen image highlighted in bright green, which remained on screen for 1200 ms ( ± 200 ms) before the 

outcome was revealed. The outcome, either win or lose, was shown in the middle of the screen for 1200 ms ( ± 200 ms) in green and red respectively. Each trial ended 

with a fixation cross and an inter-trial interval of 1250 ms ( ± 250 ms). B) The probability governing the likelihood of the blue stimulus being rewarded (p(win|blue), 

with reciprocal probability values for the orange stimulus: p(win|orange) = 1 - p(win|blue)). Probability mappings varied in length (26-38 trials) ranging from 

heavily biased, p(win|blue) = 0.9, through moderately biased, 0.7, to unbiased, 0.5; and repeated in reverse relationships (0.1, 0.3). Here we display one example of 

contingency changes for p(win|blue) over the course of the experimental blocks (TB1, TB2, 200 trials each). These blocks were divided into the 5 randomly ordered 

stimulus-outcome mappings and were randomly generated for each participant. While conducting the experimental task, participants’ physiological responses - C) 

EEG and D) ECG - were recorded continuously, with R-peaks from ECG signals being used to calculate heart-rate variability (HRV) and spectral estimates of high 

frequency (0.15–0.4 Hz) power in HRV. 
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otal number. Additional processing steps related to the use of a Gen-
ral Linear Model in combination with the regressors extracted from the
omputational model are presented in the below section on EEG analysis
nd the general linear model. 

Cleaned EEG and preprocessed behavioural data files are available
n the Open Science Framework Data Repository: https://osf.io/b4qkp/ .
he results shown in Figs. 3 , 4 , and 5 are based on these data. 

.5. Measures of State Anxiety 

One marker of state anxiety used during the experiment was the
V of the inter-beat intervals to assess HRV, as this measure, similarly
o other metrics of HRV, has been reported to show reductions dur-
ng anxious states ( Chalmers et al., 2014 ; Friedman and Thayer, 1998 ;
orman and Sloan, 2000 ; Kawachi et al., 1995 ). A lower HRV is as-

ociated with complexity reduction in physiological responses to stress
nd anxiety ( Friedman, 2007 ; Gorman and Sloan, 2000 ), and is used as a
ransdiagnostic marker to identify anxiety in psychiatry ( Quintana et al.,
016 ). In our recent work, we validated the use of the CV-based HRV
s a proxy for state anxiety by showing that a similar experimental ma-
ipulation reduced this HRV index and increased state anxiety scores
 Sporn et al., 2020 ). 

Complementing the HRV analysis, we acquired subjective self-
eported measures of state anxiety (STAI state scale X1, 20 items:
pielberger, 1983 ) four times throughout the experiment using an on-
ine version that was embedded within the code for the experiment.
owever, due to an error in the code, the STAI was presented at the
rong time intervals, rendering it invalid to assess changes in state anx-

ety following the experimental manipulation. To address this limita-
ion, an additional analysis on the spectral characteristics of the inter-
eat-interval data was performed to link our HRV proxy of state anxi-
ty to autonomic modulation and parasympathetic (vagal) withdrawal
 Friedman, 2007 ; Gorman and Sloan, 2000 ). Reduced high-frequency
RV (0.15–0.40 Hz) and reduced variation between R-R intervals are
onsistently shown across trait anxiety, worry, and anxiety disorders
 Aikins and Craske, 2010 ; Friedman, 2007 ; Fuller, 1992 ; Klein et al.,
995 ; Miu et al., 2009 ; Mujica-Parodi et al., 2009 ; Pittig et al., 2013 ;
hayer et al., 1996 ). After obtaining the IBI time series, as described

n the previous section, we interpolated it at 1 Hz with a spline func-
ion (order 3), with spectral power estimated using Welch’s periodogram
ethod (Hanning window: following Rebollo et al., 2018 ). These power

stimates were then normalised to the average power in the baseline
R1) and converted to decibels (dB) for statistical analysis. 

.6. The Hierarchical Gaussian Filter (HGF) 

We used the Hierarchical Gaussian Filter (HGF) from Mathys et al.
2014 , 2011 ) to estimate each participant’s individual learning char-
cteristics and belief trajectories during our binary reward learning
ask. The HGF is a freely distributed open source software available

https://osf.io/b4qkp/
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n TAPAS ( http://www.translationalneuromodeling.org/tapas ), and has
een used to model and understand learning across diverse settings (e.g.,
e Berker et al., 2016 ; Diaconescu et al., 2017b , 2014 ; Iglesias et al.,
013 ; Marshall et al., 2016 ; Stefanics et al., 2018 ; Weber et al., 2020 ). 

Alternative models to the HGF have been proposed based on a gener-
tive model of sudden changes in the environment (change-point mod-
ls: Nassar et al., 2010 , Moens and Zénon, 2019 ). In our task, changes
o the contingencies governing the outcomes were abrupt (see Fig. 1 B),
hich is in contrast to the generative model of the environment sug-
ested by the HGF, where states evolve as Gaussian random walks and
hus change slowly and diffusively over time. While the HGF has been
uccessful in explaining and predicting human behaviour in such tasks
e.g., Iglesias et al., 2013 ; de Berker et al., 2016 ), alternative models
change-point models: Nassar et al., 2010 ; Hierarchical Adaptive For-
etting Variational Filter: Moens and Zénon, 2019 ) were formulated to
xpect sudden changes and could outperform the HGF in environments
ith diffuse or sudden changes. In practice, however, both approaches

HGF and change-point models) can successfully deal with both kinds of
nvironments (sudden versus diffuse changes), as a recent comparative
nalysis found ( Markovi ć and Kiebel, 2016 ). 

The HGF is a generative model representing an approximately
ayesian observer estimating hidden states in the environment. As such,
he HGF is a model of perception where beliefs about states are up-
ated hierarchically. This perceptual model can then be coupled to a re-
ponse model that associates belief estimates to decisions. More specifi-
ally, in the generative model, a sequence of hidden states x 1 

(k) , x 2 
(k) ,...,

 n 
(k) gives rise to sensory inputs that each participant encounters across

 trials. Notably, while the perceptual model specifies how inference
rom observations to beliefs operates hierarchically across those en-
ironmental states, the response model probabilistically generates re-
ponses (in our case, the choices of the agents) based on those beliefs
see Fig. 2 ). 

We used a 3-level HGF model for binary outcomes, where observed
ontingencies were used as input ( Mathys et al., 2014 , 2011 ). Hence,
he trial-wise input u k = 1 if the blue stimulus was rewarding (or or-
nge lose) and u k = 0 if the blue stimulus was not rewarding (orange
timulus win). Note that all equations of relevant HGF quantities pre-
ented below are taken from ( Mathys et al., 2014 , 2011 ). We refer the
nterested reader to these papers for the derivation of the perceptual
odel. At the lowest level of the model, the hidden state x 1 corresponds

o the binary categorical variable of the experimental stimuli: whether
he blue symbol is rewarded in trial k (x 1 

(k) = 1; hence, orange would be
on-rewarding) or not rewarded (x 1 

(k) = 0; orange is rewarded). The sec-
nd and third level states, x 2 and x 3 , are continuous variables evolving
s Gaussian random walks coupled through their variance (inverse pre-
ision). Thus, their value at trial k will be normally distributed around
heir previous value at trial k-1. The posterior distribution of beliefs
bout these true hidden states x i (i = 2,3) is fully determined by the
ufficient statistics 𝜇i (mean, corresponding with a participant’s expec-
ation) and 𝜎i (variance or uncertainty). 

State x 2 describes the true value of the tendency of the stimulus-
utcome contingency. It can be mapped to the probability of the bi-
ary state x 1 through a Bernoulli distribution p(x 1 | x 2 ) = Bernoulli (x 1; 

(x 2 )), where s(x) is a sigmoid function s(x) = 1/(1 + exp(-x)). We can
hen measure the change in expectation at the lowest level and interpret
t as an implied learning rate ( 𝛼). This is defined as the sigmoid trans-
ormed difference between 𝜇2 before seeing the input and after seeing
t, relative to the difference between the observed inputs u and its pre-
iction s( 𝜇2 ) ( Fig. 2 , lower panel; TAPAS toolbox: tapas_hgf_binary.m).
 larger belief update in response to the same observed mismatch
etween the input u and the prediction amounts to a higher learn-
ng rate 𝛼. At the top level, x 3 represents the phasic log-volatility
ithin the task environment; that is, the rate of change on the second

evel. 
The coupling between levels 2 and 3 is through a positive (exponen-

ial) function of x 3 , which represents the variance or step size of the
aussian random walk that determines how x 2 evolves in time: 

 

( 𝑘 ) 
2 ∼ 𝑁 

(
𝑥 
( 𝑘 −1 ) 
2 , exp 

(
𝜅𝑥 3 + 𝜔 2 

))
(1)

The parameters 𝜅 and 𝜔 2 represent the coupling strength and the
onic volatility, respectively. In the associated belief updates, momen-
arily high volatility estimates ( 𝜇3 ) increase the speed with which beliefs
t level 2 change. Larger values of the tonic (time-invariant) part of the
ariance ( 𝜔 2 ) generally increase the step size of x 2 . This leads to faster
elief updates on level 2 irrespective of current levels of (estimated)
olatility. 

The step size of the volatility state x 3 in our 3-Level HGF is governed
y a positive constant, which is the exponential of a constant parameter
 3 : 

 

( 𝑘 ) 
3 ∼ 𝑁 

(
𝑥 
( 𝑘 −1 ) 
3 , exp 

(
𝜔 3 

))
(2)

Our analyses of uncertainty estimates focused on informational un-
ertainty, captured by variance on level 2 ( 𝜎2 , belief uncertainty about
utcome tendencies) and level 3 ( 𝜎3 , belief uncertainty about volatil-
ty representing imperfect knowledge about how the reward outcome
ontingencies are changing across time: Mathys et al., [2014, Eq. 9 –
0 ]). Uncertainty about x 2 can be split into two distinct forms of un-
ertainty (informational uncertainty 𝜎2 , and environmental uncertainty
exp( 𝜅𝜇3 

(k-1) + 𝜔 2 )]), whereas uncertainty about x 3 consists of 𝜎3 . (Note
hat 𝜎3 corresponds to “informational ” uncertainty about state x 3 ). Envi-
onmental uncertainty (Mathys et al., 2014, Eq. 13 –14 ), determines the
tep of the random walk for x 2 through a combination of two quantities:
hasic volatility ( 𝜇3 

(k − 1) ) and tonic volatility ( 𝜔 2 ): 

xp 
(
𝜅𝜇

( 𝑘 −1 ) 
3 + 𝜔 2 

)
(3) 

Formally, the update equations of the posterior estimates for level i
i = 2 and 3) take the following form: 

𝜇𝑘 
𝑖 
= 𝜇

( 𝑘 ) 
𝑖 

− 𝜇
( 𝑘 −1 ) 
𝑖 

∝
�̂�
( 𝑘 ) 
𝑖 −1 

𝜋
( 𝑘 ) 
𝑖 

𝛿
( 𝑘 ) 
𝑖 −1 (4)

Where the posterior mean update term Δ𝜇i 
k is the difference be-

ween the posterior expectation in the current trial, 𝜇i 
(k) and the pre-

iction from the previous trial 𝜇i 
(k-1) before seeing the input on the cur-

ent trial. The update step is proportional to the prediction error 𝛿i − 1 
(k) 

erm, which denotes the discrepancy between the lower level expecta-
ion 𝜇i − 1 

k and the prediction �̂�( 𝑘 ) 
𝑖 −1 . The prediction error is then weighted

y a ratio of precisions (the precision of the prediction of the level be-
ow �̂�

( 𝑘 ) 
𝑖 −1 before seeing the input divided by the precision of the current

elief 𝜋( 𝑘 ) 
𝑖 

). Precision is defined as the inverse variance of the posterior
xpectation: 

( 𝑘 ) 
𝑖 

= 1∕ 𝜎( 𝑘 ) 
𝑖 

(5)

The precision-weights ratio in Eq. (4) can be interpreted as a learn-
ng rate, whereas its product with the prediction error constitutes
he precision-weighted prediction error that governs the update steps
pwPE: see also Eq. 19 and 20 below). Correspondingly, Eq. (4) above
rticulates the idea that more uncertain (less precise) belief estimates
or the current level should motivate a larger influence of unpredicted
utcomes on subsequent belief updating. 

As mentioned above, the updates on the first level of our model are
quivalent to the input u (k) : 

( 𝑘 ) 
1 = 𝑢 ( 𝑘 ) (6) 

While the posterior belief updates on level 2 of our 3-level HGF take
he form: 

( 𝑘 ) 
2 = 𝜇

( 𝑘 −1 ) 
2 + 𝜎

( 𝑘 ) 
2 𝛿

( 𝑘 ) 
1 (7)

With the variance update as follows: 

( 𝑘 ) 
2 = 

1 
1∕ ̂𝜎( 𝑘 ) + �̂�

( 𝑘 ) (8) 
2 1 

http://www.translationalneuromodeling.org/tapas
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Fig. 2. Three-level Hierarchical Gaussian Filter for binary outcomes. Bottom panel. Representation of the three levels of the HGF for binary outcomes and the 

associated belief trajectories across the total 400 trials in a representative participant. At the lowest level, the inputs u correspond to the rewarded outcome of each 

trial (1 = blue, 0 = orange; shown as black dots). The participant’s responses y are shown in light blue dots tracking those trial outcomes. The learning rate ( 𝛼) about 

stimulus outcomes at the lowest level is also given in black. The belief on the second level, 𝜇2 ( 𝜎2 ), represents the participant’s estimate of the stimulus tendency x 2 
and the step size or variance of the Gaussian random walk for x 2 depends on parameters 𝜅 and 𝜔 2 , in addition to the estimates of the level above , x 3 . The belief on 

the third level, 𝜇3 ( 𝜎3 ), represents estimates of volatility x 3 , whose step size is governed by parameter 𝜔 3 . Top panel. Schematic representation of the 3-level HGF 

model with relevant parameters modulating each level. In our study, 𝜔 2 , 𝜔 3 and the response parameter 𝜁 were free parameters and were estimated by fitting the 

HGF to the individual responses and observed inputs. Generally, parameters 𝜔 2, 𝜔 3 describe an individual’s learning motif (see the section below for further details). 

𝛿  

𝜎

𝜎  

𝜋  

𝜇  

𝜋  

𝜋

𝑤

2 
Where the following definitions apply: 

( 𝑘 ) 
1 def 𝜇

( 𝑘 ) 
1 − �̂�

( 𝑘 ) 
1 (9)

̂
( 𝑘 ) 
1 def ̂𝜇

( 𝑘 −1 ) 
1 

(
1 − �̂�

( 𝑘 −1 ) 
1 

)
(10) 

̂
( 𝑘 ) 
2 def 𝜎

( 𝑘 −1 ) 
2 + 𝑒 

𝜅𝜇
( 𝑘 −1 ) 
3 + 𝜔 2 (11)

Formulated as precision, the variance step from Eq. 8 above is: 

( 𝑘 ) 
2 = �̂�

( 𝑘 ) 
2 + 

1 
�̂�
( 𝑘 ) 
1 

(12)

A similar form is found for the belief update on level 3: 
( 𝑘 ) 
3 = 𝜇

( 𝑘 −1 ) 
3 + 𝜎

( 𝑘 ) 
3 

𝜅

2 
𝑤 

( 𝑘 ) 
2 𝛿

( 𝑘 ) 
2 (13)

( 𝑘 ) 
3 = �̂�

( 𝑘 ) 
3 + 

𝜅2 

2 
𝑤 

( 𝑘 ) 
2 

(
𝑤 

( 𝑘 ) 
2 + 𝑟 

( 𝑘 ) 
2 𝛿

( 𝑘 ) 
2 

)
(14)

With 

̂
( 𝑘 ) 
3 def 

1 
𝜎
( 𝑘 −1 ) 
3 + 𝑒𝑥𝑝 

(
𝜔 3 

) (15) 

 

( 𝑘 ) 
2 def 

𝑒 
𝜅𝜇

( 𝑘 −1 ) 
3 + 𝜔 2 

𝜎
( 𝑘 −1 ) + 𝑒 

𝜅𝜇
( 𝑘 −1 ) 
3 + 𝜔 2 

(16) 
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Table 1 

Means and variances of the priors on perceptual parameters and starting values 

of the beliefs of the HGF models. Values are shown for 3-level HGF, 2-level 

HGF and HGF 𝜇3 models. Free parameters are estimated in their unbounded 

space. Accordingly, parameters that are restricted to a confined interval are log- 

transformed, to allow for estimation in an unbounded space. In our study, 𝜁 was 

estimated in the log space (3-level HGF and 2-level HGF models). Model HGF 𝜇3 

had as free parameters 𝜔 2 , 𝜔 3 , 𝜇3 
(0) , and 𝜎3 

(0) with 𝜇3 governing the decision 

noise through a negative exponential ( Diaconescu et al., 2014 ). Here, 𝜎3 
(0) was 

estimated in the log space. 

Model Prior Mean Variance 

3-level HGF 

𝜅 1 0 

𝜔 2 -4 16 

𝜔 3 -7 16 

𝜇2 
(0) 0 0 

𝜎2 
(0) 0.1 0 

𝜇3 
(0) 1 0 

𝜎3 
(0) 1 0 

𝜁 48 1 

2-level HGF 

𝜅 0 0 

𝜔 2 -4 16 

𝜔 3 -7 0 

𝜇2 
(0) 0 0 

𝜎2 
(0) 0.1 0 

𝜇3 
(0) 1 0 

𝜎3 
(0) 1 0 

𝜁 48 1 

HGF 𝝁3 

𝜅 1 0 

𝜔 2 -4 16 

𝜔 3 -7 16 

𝜇2 
(0) 0 0 

𝜎2 
(0) 0.1 0 

𝜇3 
(0) 1 1 

𝜎3 
(0) 1 1 
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( 𝑘 ) 
2 def 

𝑒 
𝜅𝜇

( 𝑘 −1 ) 
3 + 𝜔 2 − 𝜎

( 𝑘 −1 ) 
2 

𝜎
( 𝑘 −1 ) 
2 + 𝑒 

𝜅𝜇
( 𝑘 −1 ) 
3 + 𝜔 2 

(17)

( 𝑘 ) 
2 def 

𝜎
( 𝑘 ) 
2 + 

(
𝜇
( 𝑘 ) 
2 − 𝜇

( 𝑘 −1 ) 
2 

)2 

𝜎
( 𝑘 −1 ) 
2 + 𝑒 

𝜅𝜇
( 𝑘 −1 ) 
3 + 𝜔 2 

− 1 (18)

Following the posterior updates from Eq. 7 and Eq. 13 , the equations
or pwPE on level 2 ( 𝜀 2 ) and level 3 ( 𝜀 3 ) can be written as: 

 

( 𝑘 ) 
2 = 𝜇

( 𝑘 ) 
2 − 𝜇

( 𝑘 −1 ) 
2 = 𝜎

( 𝑘 ) 
2 𝛿

( 𝑘 ) 
1 (19)

 

( 𝑘 ) 
3 = 𝜇

( 𝑘 ) 
3 − 𝜇

( 𝑘 −1 ) 
3 = 𝜎

( 𝑘 ) 
3 

𝜅

2 
𝑤 

( 𝑘 ) 
2 𝛿

( 𝑘 ) 
2 (20)

As response model we used the unit-square sigmoid observation
odel for binary responses ( Iglesias et al., 2013 ; Mathys et al., 2014 ).
his transforms the predicted probability m(k) that the stimulus (e.g.
lue) is rewarding on trial k (outcome = 1) —which is a function of the
urrent beliefs —into the probabilities p(y (k) = 1) and p(y (k) = 0) that the
articipant will choose that stimulus (blue, 1) or the alternative (orange,
): 

 ( 𝑦 |𝑚, 𝜁) = 

( 

𝑚 

𝜁

𝑚 

𝜁 + ( 1 − 𝑚 ) 𝜁

) 𝑦 

⋅
( 

( 1 − 𝑚 ) 𝜁

𝑚 

𝜁 + ( 1 − 𝑚 ) 𝜁

) 1− 𝑦 

(21)

Higher values of the response parameter 𝜁 lead to the participants
eing more likely to choose the response that corresponds with their
urrent belief about the rewarded stimulus. 

Fitting the combination of perceptual and response model to an in-
ividual participant’s responses allows for a subject-specific characteri-
ation of learning (and response) by the set of perceptual (and response)
arameters. Here, we estimated the parameters 𝜔 2, 𝜔 3, and 𝜁 (see be-
ow for free model parameters in an alternative HGF model). The priors
n these values were set to be relatively uninformative by choosing a
road variance (16 for 𝜔 2, 𝜔 3 and 1 for 𝜁 as we expected less variation in
his parameter). We fixed both the coupling parameter 𝜅 and the starting
alue of the belief on the third level 𝜇3 

(0) to 1 following de Berker et al.,
2016) , but note that the scale of x 3 is arbitrary in our setting (for de-
ails, see Mathys et al., 2014 ). We chose a neutral starting value for the
elief on the second level, i.e., 𝜇2 

(0) = 0, assuming participants would
ot have any initial preference for the outcome to be either rewarding
positive 𝜇2 ) or not rewarding (negative 𝜇2 ). The initial uncertainties
f these beliefs ( 𝜎2 

(0) = 0.1 and 𝜎3 
(0) = 1) corresponded to the default

ettings of the toolbox, and we verified that these values had a neg-
igible impact of the estimated belief trajectories. All prior settings are
ummarised in Table 1 (see also model space below for alternative mod-
ls). Maximum-a-posteriori (MAP) estimates of model parameters were
etermined using these priors on parameters and the series of inputs,
ptimised with a quasi-Newton optimisation algorithm and calculated
n the HGF toolbox version 3.1. 

To assess the reliability of our estimates for the free model parame-
ers in our implementation of the HGF (winning model, see model com-
arison details below), we simulated behavioural responses of 70 agents
or nine different values of 𝜔 2 (total 630 simulations), when observing
he input of Cont participant #1. Similar simulations were run to esti-
ate parameters 𝜔 3 and 𝜁 (Supplementary Fig. 2). This analysis demon-

trated high accuracy for estimating 𝜔 2 and 𝜁 , while 𝜔 3 was poorly re-
overed. Poor estimation of 𝜔 3 has also been reported in a recent study
sing a different approach ( Reed et al., 2020 ). A complementary anal-
sis using simulated responses to observed inputs from StA participant
1 provided very similar results (Supplementary Figure 3). 

Based on these results, we excluded 𝜔 3 from subsequent between-
roup statistical analyses. Given our stimulus sequence, which exerted
 certain level of volatility (changes in the contingencies every 26–38
rials) but did not contain marked changes in volatility, it is thus unsur-
rising that we could not infer on participants’ beliefs about the meta-
olatility 𝜔 3. However, even if the true value of environmental volatil-
ty is constant, participants still need to estimate the adequate level for
erforming the task, suggesting that learning about volatility is still rel-
vant (consistent with our model comparison results, see below; see also
e Berker et al., 2016 which used a very similar task structure with con-
tant true volatility). 

In sum, in the current study, the computational quantities of inter-
st for the statistical comparison between the groups were the model
arameters 𝜔 2 (tonic volatility estimate) and the decision noise from
he response model, 𝜁 . In addition, we assessed the trial-wise trajecto-
ies of posterior mean on beliefs about volatility ( 𝜇3 ), environmental
ncertainty, and the variances on levels 2 and 3 ( 𝜎2 , 𝜎3 ) as a measure
f (informational) uncertainty about the hidden states on these levels.
ote that due to the poor estimation of 𝜔 3 (‘meta-volatility’), which di-

ectly modulates precision in level 3 and thus the update steps on the
xpectation of volatility, 𝜇3 , interpretation of between-group results for

3 and 𝜎3 should be treated with care. 
Precision-weighted prediction errors play an important role in cur-

ent Bayesian theories of perceptual inference and learning ( Doya et al.,
007 ; Feldman and Friston, 2010 ; Friston et al., 2013 ; Friston and
iebel, 2009 ; Moran et al., 2013 ; Rao and Ballard, 1999 ), and these
re the quantities that are considered to predominantly modulate EEG
ignals ( Friston and Kiebel, 2009 ). We initially selected the pwPE tra-
ectories from levels 2 and 3 (labelled 𝜀 2 , 𝜀 3 , Eqs. [19] and [20])
o examine how these are represented in the brain as a function of
tate anxiety. However, as we identified a very high correlation be-
ween the regressors derived from 𝜀 2 and 𝜀 3 , our final GLM analysis
xcluded the pwPE trajectories from level 3 (see GLM analysis section
elow). 
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.7. Model Space 

We tested five computational models of learning. The first three
ere a 3-level HGF (with volatility on the third level: HGF 3 ), a re-
uced 2-level HGF excluding volatility (HGF 2 ) and a modified 3-level
GF where the decision noise parameter that maps beliefs to choices
 𝜁) depends on trial-by-trial estimates of volatility ( 𝜇3 ) (in line with
iaconescu et al. 2014 ; here termed HGF 𝜇3 ). In the modified model
GF 𝜇3 trial-wise increases in volatility correspond with an individual
xhibiting more exploratory or noisier behaviour (smaller decision noise
). In this model, in addition to the free model parameters 𝜔 2 and 𝜔 3 ,
e estimated 𝜇3 

(0) and 𝜎3 
(0) . These were all hierarchical Bayesian mod-

ls implemented using the HGF TAPAS toolbox ( Mathys et al., 2011 ,
014 ). The priors on hierarchical Bayesian model parameters are shown
n Table 1 . 

The fourth and fifth models were broadly used reinforcement learn-
ng models: a Rescorla Wagner (RW) where PEs drive belief updating
ut with a set learning rate ( Rescorla and Wagner, 1972 ); and a Sutton
1 model (SK1) that permits the learning rate to change with recent
rediction errors ( Sutton, 1992 ). 

Models were then compared at the group level for fit using random
ffects Bayesian model selection (BMS; Stephan et al., 2009 ; code from
he freely available MACS toolbox; Soch and Allefeld, 2018 ). BMS pro-
ided model frequencies and exceedance probabilities, reflecting how
ptimal each model or family of models performed ( Soch et al., 2016 ).
irst, the log-model evidence (LME) from all Bayesian models were com-
ined to get the log-family evidence (LFE) and was compared to the LFE
f the family of reinforcement learning models (RW and SK1) to assess
hich provided more evidence. In the winner family, additional BMS
etermined the final optimal model. 

.8. EEG analysis and the General Linear Model 

Prior to single-trial ERP analysis using the general linear model
GLM), a statistical analysis of the main effect of outcome on the ERP
as conducted in the total population (N = 42). The aim of this ERP
nalysis was to assess whether the windows associated with the effect of
he outcome (lose versus win) on the EEG signals in our task converge
ith the windows of the fERN and P300 effects reported in previous

tudies (see for instance Nieuwenhuis et al., 2004 ; Hajcak et al., 2005 ).
ccordingly, we assessed the difference between lose and win ERPs in
 broad window between 100 and 1000 ms, which includes the latency
f those previously reported ERP components. This analysis was carried
ut using permutation tests with a cluster-based threshold correction to
ontrol the family-wise error (FWE) at level 0.05 (dependent samples
-test, 5000 iterations: Maris and Oostenveld, 2007 ; FieldTrip toolbox,
ostenveld et al., 2011 ). 

To allow for the detection of significant clusters corresponding with
ositive and negative ERP differences, cluster-based test statistics be-
ng in the 2.5th and 97.5th percentiles of the permutation distribution
ere considered significant (two-sided test). For this statistical analysis,

he ERP data epochs were baseline-corrected by subtracting the mean
ctivation during the baseline period from -200 ms to 0 ms. 

For the GLM single-trial analysis, we selected a smaller 200–850 ms
nterval, primarily based on the observed latency of the fERN and P300
omponents in our study. This interval also covered the latency of HGF
egressors in previous GLM studies (see, e.g. Diaconescu et al. [2017a] ;
eber et al. [2020] ; although these studies used quite different tasks).
dditionally, it should be noted that the modulation by pwPE regressors
f the trial-wise ERP responses can peak at different latencies than the
odel-free ERP effects ( Diaconescu et al. [2017a] ; Weber et al. [2020] ;

tefanics et al. [2018] ). 
In this analysis, EEG data were downsampled to 256 Hz, low-

ass filtered at 30Hz and converted to SPM 12 ( http://www.fil.
on.ucl.ac.uk/spm/ version 7487) ( Penny et al., 2011 ). In SPM 12 soft-
(  
are we converted the EEG data into 3-dimensional volumes (two spa-
ial dimensions: anterior to posterior, left to right across the scalp; one
emporal dimension: peri-stimulus time; Litvak et al., 2011 ). All partic-
pants’ data consisted of 64 channels and 168 time points using a voxel
ize of 4.2 mm × 5.4 mm × 4 ms and were spatially smoothed to adjust
or between-subject spatial variability in the channel space. The scalp x
ime 3D images were then tested statistically using statistical paramet-
ic mapping and the GLM (see next section; Kiebel and Friston, 2004a ,
004b ; Kilner and Friston, 2010 ). This procedure is firmly established
n EEG using SPM ( Litvak et al., 2011 ). 

Initially, our GLM was composed of trial-wise estimates of two com-
utational quantities: absolute values of pwPEs in level 2 ( 𝜀 2 ), and pw-
Es in level 3 ( 𝜀 3 ). The absolute value of 𝜀 2 was selected because its
ign is arbitrary: the quantity x 2 is related to the tendency of one choice
e.g. blue stimulus) to be rewarding (x 1 = 1); yet this choice and equiv-
lently the sign of the pwPE at this level was arbitrary (see for instance
tefanics et al., 2018 ). In addition, we aimed to use as third regressor
he trial-wise win/lose outcome values as we expected this variable to
ccount for much of the signal variance in the EEG epochs. 

However, we observed a prominent correlation between the two re-
ressor quantities abs( 𝜀 2 ) and 𝜀 3 . The Pearson correlation coefficient
anged from 0.67 to 0.96 across all 42 participants, mean 0.86, me-
ian 0.88; and the correlation was significant in all participants ( p <
.05). The effect of collinearity on GLMs in neuroimaging has been as-
essed and discussed in detail before (see, e.g. Mumford et al., 2015 ).
ollinear regressors can reduce power and lead to unreliable parameter
stimates, but researchers should only be concerned with this issue in
he case of near-collinearity (very high correlation between regressors;
umford et al., 2015 ). A common practice is to orthogonalise collinear

egressors in the model to solve the problem of reduced power and unre-
iable parameter estimates in the GLM ( Mumford et al., 2015 ). However,
ther authors argue that despite the potential appeal of orthogonalisa-
ion of regressors to remove collinearity from the model, the implica-
ions are actually not necessarily beneficial: it does not improve the
verall fit of the model, and in most cases, it can lead to a mislead-
ng interpretation of the resulting inferences ( Vanhove, 2020 ). Here we
ollowed this second line of argumentation, and instead of orthognalis-
ng our pwPE regressors, we updated our GLM to only include trial-wise
stimates of the absolute values of pwPEs on level 2, abs( 𝜀 2 ), and the
utcome of each trial (1 = win, 0 = lose). Regressor abs( 𝜀 2 ) was chosen
ver 𝜀 3 out of theoretical considerations, but also as abs( 𝜀 2 ) was associ-
ted with much higher efficiency of 𝛽 coefficients in the GLM compared
o 𝜀 3 (see Supplementary Materials, following Mumford et al., 2015 ). 

Having reduced the regressor space, we then assessed the efficiency
or the 𝛽 coefficients associated with each regressor in the final GLM. The
fficiency for 𝛽1 , modulating the effect of pwPEs about reward outcome
n the EEG, was in the same order of magnitude as the efficiency for 𝛽2 ,
ssociated with the outcome regressor (Supplementary Materials). In
ddition, we observed that, while the efficiency for 𝛽2 was very similar
n both Cont and StA groups, the efficiency for 𝛽1 associated with abs( 𝜀 2 )
as considerably lower in the StA group, relative to control participants.
he efficiency values indicated that our final GLM model was a priori
ell specified for our chosen explanatory variable abs( 𝜀 2 ), although it
ad greater efficiency for the regression coefficient on this variable in
he control group. 

Using these choices for regressors and time interval, we then carried
ut a whole-volume (spatiotemporal) analysis that searched for repre-
entations of our computational quantities in the single-trial EEG re-
ponses for each individual participant, before assessing within-group
tatistical effects at the second level. We corrected for multiple compar-
sons across the whole time-sensor matrix using Gaussian random field
heory ( Worsley et al., 1996 ) with a family-wise error (FWE) correction
t the cluster-level ( p < 0.05). This was performed with a cluster defining
hreshold (CDT) of p < 0.001 ( Flandin and Friston, 2019 ). Importantly,
ll results reported survived whole-volume correction at the peak-level
 p < 0.05). We assessed separately within each group, whether the tra-

http://www.fil.ion.ucl.ac.uk/spm/
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Fig. 3. State anxiety modulates heart rate variability and behavioural re- 

sponses. A) Modification in heart-rate variability (HRV) during anxiety manip- 

ulation. The average HRV (measured with the coefficient of variation of the 

inter-beat-interval of the ECG signal) is provided for the state anxiety (StA) and 

Control (Cont) groups across task block 1 (TB1), task block 2 (TB2) and final 

resting state (R2). The average of the resting state (R1: baseline) has been sub- 

tracted from each subsequent task block to normalise HRV values. Significant 

between-group differences assessed in learning blocks TB1 and TB2 are iden- 

tified by black bars on the x-axis (paired permutation test, P FDR < 0.05 after 

control of the FDR at level q = 0.05). B) The effect of anxiety on reward-based 

learning performance: error rates. Here, the average error rates of each group, 

the state anxiety (StA) and the control group (Cont) are presented using a central 

point flanked by SEM bars. To the right of each mean and SEM are the individual 

data points in each group to show group population dispersion. Anxiety signifi- 

cantly increased the error rate in the StA group when compared to Controls ( p 

= 0.001). C) The main effect of outcome (win, grey; lose, blue) on mean reac- 

tion times (RT: p = 0). On the left, the average RT of each outcome is presented 

using a central point with SEM bars. To the right of each mean and SEM are the 

individual data points of each group to show group population dispersion. 
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ectories of our computational quantities were associated with increases
r decreases in EEG amplitudes using an F-test. Following within-group
nalysis, we used a 2-sample t-test to assess between-group StA minus
ont differences in the representations of those same regressors. A stan-
ard summary statistics approach was used to perform random effects
roup analysis within each group (StA, Cont) of 21 participants inde-
endently and between groups ( Penny and Holmes, 2007 ). 

.9. Statistics 

To assess Group (StA, Cont) and Block (1,2) main effects and in-
eractions in state anxiety measures, behavioural, and computational
odel variables, we applied non-parametric factorial synchronised per-
utations tests ( Basso et al., 2007 ) with 5000 permutations. These
ermutation-based factorial analyses assessed main effects and inter-
ction effects for factors Block (TB1, TB2) and Group (StA, Cont). As
hown below (see Results 3.1), we found a significant main effect of
actor Block on the HRV index, indicating that the anxiety manipulation
ed to different physiological changes as a function of the block number.
ccordingly, we continued to assess all our dependent variables using

he 2 × 2 non-parametric factorial design with factors Block and Group.
actorial analyses were complemented with planned pair-wise permuta-
ion tests to assess our specific hypothesis of between-group differences
5000 permutations). This applies to the following dependent variables:
a) model-free behavioural measures (error rate, reaction time: RT); (b)
V as a measure of HRV (CV values in TB1, TB2 blocks were corrected
y subtracting the R1 baseline value) and power for spectral analysis
xpressed in dB; (c) HGF perceptual model parameter 𝜔 2 (tonic volatil-
ty modulating the variance of the Gaussian random walk at level 2);
d) Decision noise of the response model, 𝜁 ; (e) Relevant HGF quanti-
ies: (i) informational uncertainty about the reward tendency x 2 ( 𝜎2 );
ii) estimates of belief on volatility (mean, 𝜇3 , and variance, 𝜎3 ); and
ast, (iii) environmental uncertainty —related to volatility in the envi-
onment: exp( 𝜅𝜇3 + 𝜔 2 ). 

Note that the above selected HGF trajectories do not directly re-
ect the subject-specific sequence of contingency blocks, which was
andomly generated for each participant. By contrast, the expectation
n the reward tendency, 𝜇2 , was strongly associated with the structure
f contingency blocks and therefore necessarily differed across partici-
ants by nature of the task design. Accordingly, 𝜇2 was not selected as
 dependent variable. 

Pair-wise permutation tests were also used to test within-group dif-
erences in RT across blocks. In the case of multiple comparisons (for
nstance, two between-group permutation tests run separately for each
lock), we controlled the false discovery rate (FDR) using an adaptive
inear step-up procedure set to a level of q = 0.05 ( Benjamini et al.,
006 ). This procedure furnished us with an adapted threshold p -value
P FDR ). Prior to these statistical analyses and following BMS, the trial-
ise trajectory for each computational quantity of interest ( 𝜎2 , 𝜎3 , 𝜇3 ,
nd environmental uncertainty, Eq. 3 ) was extracted from the winning
odel, followed by an average across trials within task blocks (TB1,
B2). By collapsing the trial information, we aimed to assess the gen-
ral block-related or group-related monotonic changes in the HGF quan-
ities using the 2 × 2 factorial analysis with the factors Group and Block
escribed above. 

Below, in the Results section, we present the mean and standard er-
or of the mean (SEM) for our dependent variables (either in text or in a
gure), alongside non-parametric effect sizes for pair-wise comparisons
nd corresponding bootstrapped confidence intervals ( Grissom and
im, 2012 ; Ruscio and Mullen, 2012 ). In the case of within-group
omparisons, the non-parametric effect size was estimated using the
robability of superiority for dependent samples ( Δdep ), whereas for
etween-group effects we used the probability of superiority ( Δ); both
re calculated in line with Grissom and Kim (2012) , expressed as the
umber of values in sample A greater than those in sample B ( Δ =
[A > B]). In the case of dependent samples, the comparison between
airs is done for matched pairs. Although in the original formulation
y Grissom and Kim (2012) , ties were not taken into account; here, in
ine with Ruscio and Mullen (2012) , we corrected ( Δ) using the number
f ties (difference scores = 0) and estimated bootstrapped confidence
ntervals (CI) for ( Δ). 

. Results 

.1. Heart-rate variability 

Using a non-parametric 2 × 2 factorial test with synchronised rear-
angements, significant main effects of Block ( p = 0.009) and Group ( p =
.04) were revealed on the normalised HRV index during reward-based
earning blocks. No interaction effect was found. Planned between-
roup comparisons using permutation testing revealed significantly
ower HRV in StA during TB1 (mean -0.02, SEM 0.004) when com-
ared to Cont (mean -0.005, SEM 0.005, p FDR < 0.05, Δ = 0.70, CI =
0.54, 0.86], see Fig. 3 A). These results indicate that the experimental
anipulation induced physiological changes in cardiovascular activity

orresponding to an anxious state ( Chalmers et al., 2014 ; Feldman et al.,
004 ). An additional analysis on the spectral characteristics of the IBI
ime series corresponded our HRV result to autonomic inflexibility in
tate anxiety, with significantly reduced high frequency HRV (0.15–0.4
z, termed HF-HRV hereafter) in StA (mean -6.3, SEM 0.6) compared
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o Cont (mean -4.7, SEM 0.5, non-parametric 2 × 2 factorial test with
ynchronised rearrangements: significant main effect of Group p = 0.02
nd trend level interaction effect p = 0.06, see Supplementary Fig. 4).
here was no effect of Block ( p = 0.8). 

Our analysis demonstrating reduced HRV in state anxiety cor-
esponds to both prior research showing lower HRV in anxiety
 Chalmers et al., 2014 ; Friedman and Thayer, 1998 ; Gorman and
loan, 2000 ) and our previously published work using a similar state
nxiety manipulation where we found lower HRV along with higher
tate anxiety scores using the STAI state scale omitted from the present
tudy ( Sporn et al., 2020 ). Our additional analysis of the frequency
ontent in the IBI time series further links our lower HRV result (as
 proxy of state anxiety) to research showing reduced HF-HRV (0.15–
.40 Hz) in anxiety conditions, a physiological expression of inflex-
ble autonomic activity ( Aikins and Craske, 2010 ; Friedman, 2007 ;
uller, 1992 ; Klein et al., 1995 ; Miu et al., 2009 ; Mujica-Parodi et al.,
009 ; Pittig et al., 2013 ; Thayer et al., 1996 ). 

.2. Model-free Analysis 

The percentage of errors made by each participant across 400 trials
as used as a measure to assess whether anxiety impairs reward learn-

ng task performance. Using non-parametric factorial test (synchronised
earrangements), the main effect of factor Group ( p = 0.01) on error
ates was significant, whereas factor Block revealed only a trend ( p =
.056). There was no significant interaction effect ( p = 0.66). A planned
etween-group comparison on the Group factor alone using pair-wise
ermutation tests revealed a significantly higher total average error rate
n the StA group (mean 38.0, SEM 0.97), in comparison to the Cont
roup (mean 35.6, SEM 0.66, p = 0.001, Δ = 0.70, CI = [0.58, 0.82],
ee Fig. 3 B). 

Turning to the mean reaction times (RT, in milliseconds; averaged
cross all trials), a significant main effect of task Block on RTs was ob-
erved ( p = 0.02). No significant main effect of Group or interaction
ffect was found ( p = 0.64, p = 0.26) in line with previous work on
nxiety ( Bishop, 2009 ). Post-hoc analyses on the Block effect in each
roup revealed there was a significant decrease in the mean RT from
B1 (mean 658.3, SEM 32.53) to TB2 (mean 552.8, SEM 20.68) in the
tA group ( P FDR = < 0.05, Δ = 0.73, CI = [0.65, 0.81]). This effect
as also significant for Cont, with mean RT dropping from TB1 (mean
57.7, SEM 35.65) to TB2 (mean 591.4, SEM 31.78, P FDR = < 0.05, Δ
 0.65, CI = [0.56, 0.72]). As a separate analysis, and given the lack
f between-group differences in RTs, we contrasted the total-population
StA + Cont) mean RT of lose and win trials. The lose minus win RT dif-
erence was highly significant, as expected, reflecting a slower response
n trials where participants responded incorrectly ( p = 0, Δ = 1, CI = [1,
]; mean RT for lose trials 639.8 ms [SEM 0.36 ms], and for win trials
00.8 ms, [SEM 0.33 ms], Fig. 3 C). 

In a final post-hoc analysis, we assessed RT separately in blocks of
npredictable cues (50-50 contingency phase) and highly predictable
ues (90-10 contingency phase). The rationale for this analysis was that
revious work using classical attention paradigms revealed that lack of
ttention leads to larger RTs both on trials with predictive cues (our
0-10 contingency phase) and trials with uninformative cues (as our
0-50 contingency phase; see for instance Prinzmetal et al., 2009 ). We
hus aimed to assess whether state anxiety influenced attention using
lassical behavioural measurements. We examined whether the strength
f the contingency bias shapes RT differently in each group. The results
emonstrate no significant difference in RT between the two groups for
ither unpredictable or predictable contingency phases ( p > 0.05: See
upplementary Materials). 

.3. Bayesian Model Selection 

After fitting each model (HGF: 3-Levels [HGF 3 ], 2-Levels [HGF 2 ],
GF 𝜇3 , the Rescorla Wagner [RW], and Sutton K1 [SK1]) individually
n each of the 42 participants and obtaining log-model evidence (LME)
alues for each, we compared the five models using Bayesian model
election (BMS). Results from BMS revealed that the family of Bayesian
odels (HGF 3 , HGF 2 , and HGF 𝜇3 ) had much stronger evidence than the

einforcement-learning models (RW, SK1), with an exceedance proba-
ility of 0.99, and an expected frequency of 0.74 (leftmost columns:
ig. 4 A). Next, within the Bayesian models, an additional BMS step us-
ng the LME for each subject and model demonstrated much stronger
vidence for the HGF 3 model relative to the HGF 2 and HGF 𝜇3 model
ersions, with an exceedance probability of 0.98 and an expected fre-
uency of 0.61 (rightmost columns: Fig. 4 A). The HGF 3 model was the
inner model also when performing BMS separately in the StA and Con-

rol groups. 
Although a previous study found the HGF 𝜇3 model to outperform the

-level HGF ( Diaconescu et al., 2014 ), here we found the latter to pro-
ide more model evidence. One possible explanation is that the HGF 𝜇3 

ight be particularly useful in paradigms where (at least some) partic-
pants are exposed to a scenario of alternating low and high volatility
 Diaconescu et al., 2014 ). For a fixed value of true volatility, as in our
tudy (constant rate of change of contingency blocks), the standard 3-
evel HGF with a decision noise parameter that is not modulated by the
ynamics of 𝜇3 performed the best. 

To further determine the quality of the fit of the winning HGF 3 
odel, we simulated responses using the estimated model parameters

or each individual ( 𝜔 2 , 𝜔 3 , 𝜁). Similarly to Aylward et al. (2019) , we
omputed the probability of response switch (choosing orange or blue)
cross trials in each individual and separately for simulated and em-
irical responses. We found a high significant non-parametric Spear-
an rank correlation between both variables across participants (N
 42): 𝜌 = 0.8679, p = 4 × 10 − 14 (Supplementary Fig. 5). A similar
utcome was obtained when assessing correlations within each group,
uggesting that the winning model captured the dynamics in the data
ell. 

.4. Model-based analysis 

.4.1. State anxiety is associated with a lower learning rate about stimulus 

utcomes 

We observed significant differences between the groups in the per-
eptual model parameter 𝜔 2 , with smaller values obtained in StA (mean
3.1, SEM 0.23) when compared to the Cont group (mean -2.0, SEM
.15, p = 0.002, effect size: Δ = 0.75, CI = [0.55, 0.90]). The decision
oise parameter, 𝜁 , did not differ between groups ( p = 0.62), and was
oderately low in both groups: Cont (mean 1.98 [0.26]) and StA (2.20

0.41]). 
The values of 𝜔 2 influence, among other HGF trajectories, the learn-

ng rate at the lowest level, 𝛼 (through modulation of 𝜇2 ), driving the
tep of the update about stimulus outcomes ( Mathys et al., 2014 ). More
egative 𝜔 2 values —as found in StA —lead to smaller updates, and thus
o smaller learning rates (See Fig. 4 B). To illustrate the impact that this
as on the evolution of beliefs about reward contingencies and envi-
onmental volatility in our task, we additionally provide simulations of
elief trajectories for both 𝜇2 ( 𝜎2 ) and the log-volatility 𝜇3 ( 𝜎3 ) (Sup-
lementary Figures 6-7). The results demonstrate that decreasing 𝜔 2 

educes the estimation uncertainty about the reward tendency 𝜎2 with
maller update steps on 𝜇2 (Supplementary Figure 6). The effect of de-
reasing 𝜔 2 on high-level beliefs is to reduce the update steps for the
xpectation of log-volatility 𝜇3 and increase uncertainty 𝜎3 (Supple-
entary Figure 7). In the following, we explore whether the two ex-
erimental groups did indeed differ in the uncertainty of their beliefs as
 consequence of the observed change in 𝜔 2 . 

.4.2. Informational uncertainty about the outcome tendency is lower in 

tate anxious individuals 

As indicated in the previous section and illustrated in Supplemen-
ary Figure 6, the informational (belief) uncertainty about the outcome
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Fig. 4. Bayesian Model Selection and Hierarchical Gaussian Filter Results. A) Bayesian model selection (BMS). The two leftmost panels represent the model frequency 

and exceedance probability for the family of models ‘HGF Fam’ (HGF 2 , HGF 3 and HGF 𝜇3 : dark blue) and the family of reinforcement learning models ‘RL Fam’ (RW, 

SK1: blue). The family of HGF models provided the best model evidence. In the two right panels is the comparison between the three HGF models (HGF 2 : blue, 

HGF 3 : dark blue and HGF 𝜇3 : light blue). The HGF 3 provided stronger model evidence. B) Illustration of the trial-by-trial learning rate about stimulus outcomes ( 𝛼) 

in two ideal observers with different values of 𝜔 2 . Trajectories were simulated using the same input sequence and parameters (except 𝜔 2 ): 𝜇2 
(0) = 0, 𝜇3 

(0) = 1, 𝜎2 
(0) 

= log(0.1), 𝜎3 
(0) = log(1), 𝜅 = 1, 𝜔 3 = -7. The two values on 𝜔 2 used in the simulated trajectories are -2 (orange) and -4 (black). This parameter represents the tonic 

part of the variance in the Gaussian random walk for x 2 and modulates the learning rate about stimulus outcomes at the lowest level. Lower 𝜔 2 values lead to smaller 

trial-by-trial learning increments. When comparing 𝜔 2 values between groups (StA, Cont), we found more negative values in StA than in the Cont group ( p = 0.002). 

C) Lower 𝜔 2 in state anxiety leads to decreased informational uncertainty about x 2 . There was a significant main effect for factor Group (StA, green; Cont, black; 

synchronised permutation test: p = 0.008) but not for factor Block ( p > 0.05). Planned between-group comparisons indicated that state anxiety significantly decreased 

the average uncertainty about beliefs on tendency x 2 ( p = 0.003, as given by black bars), after averaging across both blocks; significant effect indicated by black 

bars at the bottom). D) Lower 𝜔 2 in state anxiety leads to decreased environmental uncertainty ( p = 0.02; not effect of factor Block, p > 0.05). Thus, StA participants 

had a lower estimate of environmental uncertainty. E) State anxiety increased uncertainty about volatility in the task environment ( 𝜎3 ). We found a significant main 

effect for factor Block ( p = 0.0006) and Group (StA, green, Cont, black; p = 0.0002), modulating uncertainty about volatility. Planned between-group comparisons 

further indicated that state anxiety exhibited significantly higher 𝜎3 , as compared to control participants, separately in each task block (TB1, TB2, P FDR < 0.05, as 

given by black bars). 
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endency, 𝜎2 , is reduced for smaller 𝜔 2 values, while it also depends on
he volatility estimate 𝜇3 from the previous trial and other quantities
see Eq. 11 and 13 in Mathys et al., 2014 ). Here we found a significant
ain effect of factor Group on 𝜎2 ( p = 0.008). There were no significant

ffects of block and no interaction effect ( p = 0.58, p = 0.78). In ad-
ition, planned comparisons showed that anxiety significantly lowered
he total average 𝜎2 for StA in comparison to Cont, as expected from
he lower 𝜔 2 values in StA ( Fig. 4 C; p = 0, Δ = 0.75, CI = [0.55, 0.89]).
 lower belief uncertainty about the outcome tendency in StA individ-
 u  
als means that new information had a smaller impact on the update
quations for beliefs about x 2 in this group. 

.4.3. Environmental uncertainty is underestimated in state anxiety 

Environmental uncertainty —induced by changes in the environ-
ent —depends on the tonic volatility estimate, 𝜔 2 , and the trial-wise

olatility estimate 𝜇3 
(k-1) (see Eq. 3 above; the coupling constant 𝜅 was

xed to one). More volatile environments lead to greater environmental
ncertainty. We found that environmental uncertainty was significantly
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odulated by factor Group ( p = 0.02), while there was no significant
ain effect for factor Block or interaction effect ( p = 0.58, p = 0.75).

urther pair-wise analyses demonstrated that the StA group underesti-
ated the environmental uncertainty, relative to control participants,
hen averaging across both experimental blocks ( Fig. 4 D; p = 0 , Δ =
.74, CI = [0.54, 0.89]), consistent with their reduction in 𝜔 2 . 

.4.4. Uncertainty about volatility is higher in state anxious individuals 

In contrast to the effect on 𝜎2 reported above, state anxiety increased
elief uncertainty on level 3 ( 𝜎3 ; uncertainty about volatility). We found
oth a significant main effect of Block ( p = 0.0006) and Group on this pa-
ameter ( p = 0.0002), yet no interaction effect ( p = 0.99). Across blocks,
he uncertainty about volatility generally decreased. Planned compar-
sons demonstrated that separately in the first and second task blocks
nxiety significantly increased 𝜎3 in the StA group when compared to
he Cont group ( Fig. 4 E; P FDR < 0.05, effect size for TB1: Δ = 0.73,
I = [0.53, 0.89]; TB2: Δ = 0.74, CI = [0.53, 0.89]). The larger anxiety-

nduced uncertainty about volatility is consistent with the effect of de-
reasing 𝜔 2, as illustrated in our simulations (Supplementary Fig. 7). 

.5. Standard Lose versus Win ERP results 

Cluster-based random permutation tests demonstrated a significant
ifference between the effect of the two outcomes (lose, win) on the
RP (N = 42: two significant clusters at level p < 0.025). Losing led to a
ore negative ERP amplitude than winning during a time window be-

ween 200 and 350 ms post outcome (negative cluster, p = 0.003). This
ffect at first had a centro-parietal distribution, which later propagated
o broader central, frontal, temporal, and parietal electrode regions, oc-
urring approximately in line with the fERN ERP (Supplementary Fig.
). In a later time window, between 350 and 860 ms, losing evoked a
ore positive amplitude when compared to winning (positive cluster,
 = 0.0002). During this later latency, the difference originated over
ronto-central electrodes and later spread to centro-parietal electrodes
esembling the P300 component wave (Supplementary Fig. 8). The la-
ency of the significant clusters confirmed that lose relative to win tri-
ls elicited a biphasic ERP modulation consisting of an earlier negative
ave resembling the fERN and a later positive and very pronounced
eflection corresponding to the P300. 

.6. Single-trial ERP modulations by precision-weighted PEs 

The HGF results had confirmed that state anxiety alters informa-
ional uncertainty of beliefs about reward contingencies (level 2) and
lso about volatility (level 3) ( Fig. 4 ) in an opposing pattern of changes
decrease in 𝜎2 and increase in 𝜎3 relative to control participants). We
hen proceeded to analyse in each group separately the electrophysi-
logical representations of trial-wise pwPEs for level 2 —which are a
unction of the uncertainty estimate as shown in Eq. 12 (for an illustra-
ion of abs( 𝜀 2 ), see Fig. 5 A). The GLM results of the additional outcome
egressor are shown in Supplementary Figure 9. 

.6.1. Low-level precision-weighted prediction errors 

In the Cont group, abs( 𝜀 2 ) significantly modulated trial-wise EEG
esponses from 475 ms to 503 ms post stimulus over central and parietal
lectrodes, with a maximum effect at 496 ms across a left parietal region
 P FWE < 0.0001). An additional significant effect of a smaller cluster size
as found earlier between 425–464 ms with a peak at 457 ms ( P FWE =
.001) across central and frontal electrodes ( Fig. 5 B). Details on the
luster effects can be found in Table 2 . Precision-weighted PEs about
he stimulus tendencies abs( 𝜀 2 ) did not significantly modulate the ERP
esponses in the StA group. When directly contrasting the groups, there
ere no significant differences in the representation of abs( 𝜀 2 ) in EEG
ctivity. 
. Discussion 

We combined computational modelling of behaviour and analysis of
lectrophysiological responses to examine how state anxiety modulates
eward-based learning when learning in a volatile environment. Our key
nding is that state anxiety was associated with a reduced estimate of
onic volatility, which resulted in an overall lower learning rate, and
orresponded to a significant underestimation of environmental and in-
ormational uncertainty. At the same time, a reduction of tonic volatility
n our paradigm led to a decrease in learning about phasic volatility, a
igher-level belief about the current rate of change in the environment.
ur modelling results offer a mechanistic explanation for the increase

n error rate that we observed in the anxiety group. 
Trial-wise estimates of uncertainty —or its inverse, precision —serve

o scale the impact of prediction errors (PEs) on the belief updates. We
ound that precision-weighted PEs (pwPEs) about the stimulus-reward
ontingency explained trial-wise modulation of observed ERP responses
n control participants only. We observed these effects mainly around
25–503 ms across left parietal and central electrodes. In state anxi-
ty, there was no significant effect of lower-level pwPEs about reward
ontingencies on EEG amplitudes. Taken together, the data suggest that
emporary anxious states in healthy individuals impair reward-based
earning in volatile environments, primarily through changes in uncer-
ainty estimates, potentially mediated by a degraded neuronal repre-
entation of lower-level pwPEs about reward contingencies, although
he latter remains speculative given the lack of significant differences in
wPE representation between the groups (see below for further discus-
ion). 

.1. States of anxiety bias computations of uncertainty during 

eward-based learning 

The threat of a public speaking task used in our experiment re-
uced both heart rate variability, which is consistent with previous
ndings on state anxiety ( Chalmers et al., 2014 ; Feldman et al., 2004 ;
orman and Sloan, 2000 ), and high frequency HRV (HF-HRV: 0.15-
.4 Hz), an index of autonomic inflexibility found across anxious con-
itions ( Friedman, 2007 ; Miu et al., 2009 ; Mujica-Parodi et al., 2009 ;
ittig et al., 2013 ). Beyond the initial induction where the effect of state
nxiety on HRV was strongest, modulation of computational estimates
f uncertainty persisted into the second task block. This suggests states
f anxiety have a diffuse and transient effect on computational estimates
f uncertainty during learning in volatile environments. It is important
o note though that we were not able to validate the HRV block-related
ffects with similar changes in the self-reported STAI inventory, as the
ata from this inventory were not acquired at the appropriate times.
ur interpretation of the results is therefore based on the assumption

hat we can use the HRV changes observed here as a proxy for the suc-
essful induction of state anxiety in our paradigm. This assumption is
urther supported by a previous study from our lab ( Sporn et al., 2020 )
here we used a similar approach in a motor learning task to success-

ully induce changes in state anxiety STAI scores (higher in the anxiety
roup), which was paralleled by a lowering of the same HRV proxy of
tate anxiety as used here. 

Our experimental manipulation had an adverse effect on reward-
ased learning. Having matched trait anxiety levels across the state anx-
ous and the control group, our results indicate that the changes ob-
erved in reward-based learning —lower learning rates due to changes
n belief uncertainty —can be linked to temporary anxious states inde-
endently of trait levels. These outcomes thus expand prior findings of
n association between high levels of trait anxiety and difficulties in
ecision-making tasks ( de Visser et al., 2010 ; Miu et al., 2008 ) and learn-
ng in volatile task environments ( Browning et al., 2015 ; Huang et al.,
017 ) to the realm of state anxiety. While we tested only a volatile en-
ironment where probabilistic contingencies changed regularly (as in
glesias et al., 2013 ; de Berker et al., 2016 ), a still unresolved question
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Fig. 5. Signatures of precision-weighted prediction 

errors on trial-wise ERPs. A) Trajectories of model- 

based estimates for both lower-level and higher-level 

pwPE for one representative control group participant 

across 400 trials. In green are higher-level pwPEs con- 

cerning volatility; in black are the absolute values of 

the lower-level pwPE concerning beliefs about the re- 

warding stimulus. This second trajectory was chosen 

as a regressor in our GLM analysis, whereas 𝜀 3 was 

excluded due to near-collinearity of 𝜀 3 and abs( 𝜀 2 ): 

Individual correlation values were around 0.9 (see 

main text). B) Effect of pwPEs on level 2 (abs( 𝜀 2 )) 

in controls. In the Cont group, pwPEs about reward 

outcomes correlated with activation changes across a 

left parietal and central region between 475 ms to 503 

ms, as shown in the topographical representation on 

the top at the time of the maximum peak of the cluster 

(496 ms post stimulus, P FWE -corrected = 0.00001, signifi- 

cant after controlling the FWE at 0.05, with a cluster- 

defining threshold of p < 0.001). An earlier cluster 

was also found as shown in the bottom topographi- 

cal representation, with activation between 425–464 

ms ( P FWE -corrected = 0.001) at frontocentral channels. C) 

The bottom panels show the average EEG response to 

the 40 highest ("High") and 40 lowest ("Low") pwPE 

values from each participant, and at P5 and FCz elec- 

trodes —representing the significant GLM cluster ob- 

tained in Cont participants (shown in B). The aver- 

aged EEG responses are displayed separately for StA 

High, StA Low, Cont High, and Cont Low. Both par- 

ticipant groups show an increased response in EEG 

activity during "High" relative to "Low" abs( 𝜀 2 ) trials 

at both electrode locations and between 475 − 503 ms. 

Shaded bars show 1.96 ∗ SEM. 
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s whether the anxiety-related modulations of uncertainty estimates are
xclusive to a volatile environment or would also emerge in stable en-
ironments. Given that previous research in trait anxiety showed that
earning is affected exclusively during volatile (not stable) experimen-
al phases ( Browning et al., 2015 ; Huang et al., 2017 ), we predict that
uring stable blocks state anxiety would not alter belief uncertainty.
oreover, our task did not allow for robust inferences on phasic volatil-

ty estimation (as reflected by parameters like the meta-volatility 𝜔 3 ).
dditional follow-up work should extend the current paradigm to also
onsider an environment with dynamic (as opposed to fixed) volatility,
o systematically assess whether state anxiety affects the estimation of
hasic volatility on top of the altered tonic volatility estimates observed
ere. 

By using the threat of public speaking instead of a specified aversive
utcome, our approach allowed us to investigate behavioural, physio-
ogical, and neural responses in anticipation of a future unpredictable
hreat. Alterations in anticipatory responses to upcoming uncertain
hreats have been proposed to be a common explanation for anxious
tates in healthy individuals and anxiety disorders alike ( Grupe and
itschke, 2013 ). Accordingly, our findings that anxiety leads to changes

n informational and environmental uncertainty could prove relevant
or understanding the alterations in decision-making and learning ob-
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Table 2 

Test statistics for lower-level precision-weighted prediction errors and trial outcomes. Each significant activation is ordered according to size (leftmost column). We 

provide both the cluster and peak p values with the family-wise error correction applied. Also given are the relevant statistics ( F and peak equivalent Z ) for each 

activation cluster and within each activation. 

Activation size 

(voxels) 

Cluster p value 

(FWE corrected) 

Peak p value (FWE 

corrected) Peak F statistic 

Peak equivalent Z 

statistic 

Peak latency 

(ms) 

Control Group: Lower-level 

pwPE: abs( 𝜀 2 ) 

1194 0.000 0.004 52.70 4.89 496 

342 0.001 0.021 38.36 4.43 457 

State Anxiety Group: Outcome 

2293 0.000 0.003 49.19 4.70 277 

10 0.040 0.041 30.26 4.09 289 

16 0.036 0.041 30.23 4.08 559 

6 0.042 0.043 29.89 4.07 680 

Control Group: Outcome 

1305 0.000 0.000 80.75 5.50 242 

1110 0.000 0.002 58.35 5.04 598 

298 0.002 0.003 51.97 4.87 281 

55 0.018 0.019 37.50 4.40 648 

63 0.016 0.025 35.60 4.32 574 

24 0.028 0,038 32.83 4.20 414 
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erved in anxiety disorders ( Bishop and Gagne, 2018 ; Browning et al.,
015 ; de Visser et al., 2010 ; Huang et al., 2017 ; Miu et al.,
008 ). 

Our approach is not the first in proposing a role of uncertainty es-
imates in cognitive biases in anxiety. A recent account of affective
isorders suggested that difficulties with uncertainty estimation under-
ie some of the psychiatric symptoms in these populations ( Pulcu and
rowning, 2019 ). This work distinguished between different types of
ncertainty, corresponding to irreducible, informational, and environ-
ental uncertainty as described here, and assigned a particular rele-

ance of environmental ( “unexpected ”) uncertainty in explaining anx-
ety. In fact, evidence from computational studies converges in linking
rait anxiety with difficulties in learning in unstable or volatile envi-
onments ( Browning et al., 2015 ; Huang et al., 2017 ). As shown by
rowning et al. (2015) , an inability to adapt to changes in a task struc-
ure can be measured by comparing a single volatile block to a single
table block. Alternatively, suboptimal learning in anxiety can be cap-
ured by focusing on volatile environments alone, in which the probabil-
ty of reward (or punishment) changes regularly across different blocks
 Huang et al., 2017 ). 

Here we followed the second approach to investigate reward-based
earning in a volatile environment. We investigated the adaptive scaling
f learning rates to estimates of environmental uncertainty on a trial-
y-trial basis by applying a computational model that explicitly incor-
orates learning about volatility in a hierarchical Bayesian framework.
he winning computational model that best explained our behavioural
ata was the 3-level HGF, where the third level is a mathematical de-
cription of volatility estimates and their variance. Our inferences about
hasic volatility estimation, as represented on this third level, are lim-
ted by the fact that our paradigm did not include marked changes in the
evel of volatility over time. Accordingly, we were not able to recover
erceptual parameters related to phasic volatility estimation. The fact
hat the model that included phasic volatility estimation was still a bet-
er explanation of the observed responses suggests that trial-wise updat-
ng of beliefs about the level of volatility may nevertheless play a role.
articipants still need to infer the adequate level of volatility as they per-
orm the task ( Iglesias et al., 2013 ; Weber et al., 2020 ). Similarly, the
hree-level HGF outperformed the two-level HGF in a task with compa-
able structure (and identical priors), further suggesting the validity of
he three-level HGF in identifying learning alterations in threatening or
tressful environments ( de Berker et al., 2016 ). 

We found that the state anxious participants’ estimates of tonic
olatility, as captured by the parameter 𝜔 , were significantly lower
2 
han in controls, which led to significantly reduced learning rates and
stimates of informational and environmental uncertainty. Beliefs about
he outcome tendency were thus estimated to be more precise during
nxiety, such that new and potentially revealing information about the
rue nature of hidden states had a smaller influence on the belief updates
n that level. Critically, an overly precise belief about the outcome ten-
ency might be inappropriate given the fluctuations in the true underly-
ng hidden state. Thus, a drop in informational uncertainty during state
nxiety might lead to biased learning, which here was further charac-
erised by a lower learning rate about stimulus outcomes. This finding
as confirmed in a separate model-free behavioural analysis: state anx-

ous individuals exhibited a higher error rate during task performance
elative to control participants. Our study thus provides novel and com-
elling evidence for abnormal precision (uncertainty) estimates under-
ying impoverished learning in healthy individuals experiencing tempo-
ary states of anxiety. Thereupon, the improper weighting of precision
ould be a general mechanism underlying a range of cognitive biases
bserved in healthy and psychiatric conditions, such as “hysteria ” or
utism ( Edwards et al., 2012 ; Lawson et al., 2017 ). 

Theories of aberrant precision estimates are typically formulated
sing a Bayesian or predictive coding framework ( Parr, Rees, Friston,
018 ). Precision is formalised as an attentional mechanism, calibrating
eural gain to regulate the influence of prior beliefs and sensory out-
omes on future expectations ( Friston and Kiebel, 2009 ; Feldman and
riston, 2010 ; Moran et al., 2013 ). Our results provide evidence for
his computational account of attention through altered uncertainty es-
imates. However, more “classical ” accounts of attention detailing a
imited resource capacity do not wholly explain our behavioural data
 Lavie, 1995 ; Lavie et al., 2004 ). Our results showed that RT was not
ffected by the anxiety manipulation (in line with Bishop, 2009 ). This
uggests deficient attentional resources or increased distraction are not
he primary driving factor behind our reported impaired learning per-
ormance under state anxiety. 

We also found that state anxiety led to a decrease in the precision of
eliefs about environmental volatility, and reduced learning about this
uantity. Learning about higher-level quantities thus depends upon the
ransmission of learning signals (precision-weighted PEs) from lower to
igher levels. As our simulations show, a reduction in tonic volatility
stimates does not only reduce learning about the contingencies gov-
rning observed stimuli and outcomes (Supplementary Fig. 6) but also
mpairs learning about volatility. In particular, it prevents a trial-by-trial
odulation of volatility estimates —learning —which would reduce the
ncertainty about this quantity (Supplementary Fig. 7). Therefore, the
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odel indicates that state anxious individuals remained uncertain about
he current rate of change in the environment in our task. However, to
xamine whether state anxiety induces changes to phasic volatility esti-
ation above and beyond this consequence of aberrant tonic volatility

stimates, future studies will have to confront participants with envi-
onments in which the rate of change is dynamic across the experiment.

Changes to the contingencies governing the outcomes in our task
ere abrupt (see Fig. 1 B), which is in contrast to the generative model of

he environment suggested by the HGF, where states evolve as Gaussian
andom walks and thus change slow and diffusively over time. While
he HGF has been successful in explaining and predicting human be-
aviour in such tasks (e.g., Iglesias et al., 2013 ; de Berker et al., 2016 ),
lternative models have been proposed based on a generative model
hich expects sudden changes ( Moens and Zénon, 2019 ; Nassar et al.,
010 ). In practice, both approaches (HGF and change-point models) can
uccessfully deal with both kinds of environments (sudden versus dif-
use changes), as a recent comparative analysis found ( Markovi ć and
iebel, 2016 ). However, this analysis also indicated that Bayesian infer-
nce and model comparison methods can accurately disambiguate be-
ween data generated by the HGF versus a (reformulation of a) change-
etection model. To understand whether participants use one or the
ther to infer on the dynamics of the environment, future work would
hus profit from directly comparing the recent reformulations of change-
oint models ( Markovi ć and Kiebel, 2016 ; Moens and Zénon, 2019 ) to
he HGF. 

Overall, the computational results confirm our hypothesis that state
nxious individuals choose their responses founded on a biased repre-
entation of uncertainty over the current belief states —at least when
ealing with volatile environments as assessed here. Overly precise be-
iefs may represent a strategy to regain a sense of control because uncer-
ainty is experienced as aversive ( Carleton, 2016 ), such as observed in
bsessive compulsive disorder ( Carleton, 2016 ) and ritualistic behaviour
 Lang et al., 2015 ). In turn, this emergence of biased estimates could in-
rease the symptoms of anxiety over time through inaccurate recursive
ssessments of threat from uncertainty, thereby fitting a profile of anx-
ous responses similar to those of anxiety-related disorders ( Grupe and
itschke, 2013 ; Pulcu and Browning, 2019 ). 

.2. Precision-weighted prediction errors modulate trial-by-trial ERP 

esponses 

The modulation of trial-by-trial ERP responses by lower-level pwPEs
n the control group aligns with previous studies combining EEG anal-
ses with the HGF, which revealed that low-level pwPEs are reflected
n trial-wise ERP responses during learning and perception in unstable
nvironments ( Stefanics et al., 2018 ; Weber et al., 2020 ). Some stud-
es also found higher-level pwPEs modulating brain responses, and sup-
orted that different hierarchically-related pwPEs (or related HGF quan-
ities) are represented across different brain regions specific to the task
emands ( Diaconescu et al., 2017a ; Iglesias et al., 2013 ; Weber et al.,
020 ). 

Here, however, we excluded higher-level pwPEs from the GLM anal-
sis due to near-collinearity of 𝜀 3 and abs( 𝜀 2 ) regressors. The fact that
e did not observe a significant modulation of EEG responses by lower-

evel pwPEs in the StA group is consistent with our finding of reduced
earning rates in this group. However, EEG responses to pwPEs were not
ignificantly different when directly contrasting the groups, which pre-
ents us from drawing strong conclusions about differential pwPE repre-
entations during state anxiety. The complementary visualisation of ERP
odulations to high and low pwPEs further suggested a similar profile of
RP amplitude changes for both groups at the peak electrodes showing
ithin-group effects to abs( 𝜀 2 ) in the control group. Thus, the specific
eural mechanism explaining the biased uncertainty estimates on re-
ard contingencies —which are related to lower-level pwPEs —observed

n state anxious participants remains elusive. 
More generally, the evidence for neural representations of pwPEs in
he control group is aligned with current predictive coding proposals.
hese view the brain as a Bayesian observer, estimating beliefs about
idden states in the environment through implementing a hierarchical
enerative model of the incoming sensory data ( de Lange et al., 2018 ;
oya et al., 2007 ; Friston, 2010 ; Rao and Ballard, 1999 ). In this frame-
ork, superficial pyramidal cells encode PEs weighted by precision,
nd these are also the signals that are thought to dominate the EEG
 Friston and Kiebel, 2009 ). This motivated us to assess the representa-
ion of pwPEs in brain responses, an approach followed by some of the
revious fMRI and EEG studies ( Diaconescu et al., 2017a ; Iglesias et al.,
013 ; Stefanics et al., 2018 ; Weber et al., 2020 ). 

Other model-based studies of trial-wise ERP responses like the P300
ssessed alternative Bayesian inference parameters, such as precision or
ayesian surprise ( Kolossa et al., 2015 ; Mars et al., 2008 ; Ostwald et al.,
012 ). The centrally-distributed P3a component around 340 ms was
dentified as an index of belief updating, whereas the later P3b wave-
orm of posterior topography was found to represent Bayesian surprise
 Kolossa et al., 2015 ). Despite these computational approaches to the
300 not being directly comparable to our pwPE results, they share a
imilar timeline and topography, as the centroparietal cluster in the Cont
roup overlaps with the location of the P3a and P3b waves as shown
n Kolossa et al., (2015) . The ERP modulation to low-level pwPEs in
ur study might thus partially contribute to explaining the P300 ampli-
ude changes obtained in the standard lose minus win ERP analysis con-
ucted here, which itself showed the expected topographic gradient of
he P300 component from central to posterior regions as shown in clas-
ical model-free ERP studies ( Hajcak et al., 2007 , 2005 ; Polich, 2007 ;
u and Zhou, 2009 ). Collectively, these results suggest that future stud-

es assessing the effect of subclinical (trait, state) anxiety on the neural
epresentation of computational quantities related to prediction updates
ould specifically target the topography and latency of the trial-wise
300. A state anxiety manipulation using the widely-used method of
he threat of shock ( Grillon et al. 2019 ) could potentially induce more
onsistent neural responses in StA participants and thus allow for dis-
rimination of the neural bases of pwPE in this group when compared
o control participants. 

It is important to note, interpretations concerning neuroanatomical
egions are limited in our EEG study as it provided exclusively sensor-
evel results. The anterior cingulate cortex (ACC) has been shown to
ontribute to encoding lower-level pwPEs in a task with a similar struc-
ure ( Iglesias et al. 2013 ). Intriguingly, state anxiety has been shown
o deactivate the ventrolateral prefrontal cortex (PFC) and rostral ACC
uring cognitive control tasks that crucially depend on these areas
 Bishop et al., 2004 ). Attention bias for threat in anxiety is also asso-
iated with alterations in ACC/PFC, specifically in the connectivity be-
ween dorsal ACC/dorsomedial PFC and the amygdala ( Grillon et al.,
019 ). Thus, one hypothesis that could be tested in future combined
MRI-EEG studies is whether state anxiety disengages the ACC and PFC
egions during reward-based learning, undermining their proper contri-
ution to tracking pwPE about stimulus outcome tendencies, but also
olatility. 

Of particular interest, decreased dorsolateral PFC activity also char-
cterises elevated trait anxiety levels, with detrimental consequences
or performance and attentional control ( Bishop, 2009 ). And portions of
he cingulate cortex and PFC are part of the central network underlying
nxiety disturbances ( Grupe and Nitschke, 2013 ). Thus, an additional
nteresting question for future studies would be to assess the role that
hese brain regions play in the modulation of hierarchically-related pw-
Es that may lead to the computational biases described in trait anxiety
 Browning et al., 2015 ; Huang et al., 2017 ). 
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