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Abstract 
The thesis explored the impact of personality on performance during category 

learning (CL) tasks, following motivational and reinforcing manipulations. In 

particular, the thesis explored how motivation and reinforcement affect 

performance during category learning tasks and, concurrently, the research 

aspired to clarify how reward sensitivity is modulated by individual differences 

in personality. According to findings which indicate that dopamine (DA) plays 

an important role in reward-based learning (Schultz, 1998; 2002), personality 

traits which may have a DAergic basis were considered. The thesis makes broad 

reference to the Reinforcement Sensitivity Theory (RST; Gray and 

McNaughton, 2000) and, in particular, to the Behavioural Activation System 

(BAS). Indeed, the BAS is believed to involve DAergic midbrain projections 

and be sensitive to rewards (Pickering and Gray, 2001). Therefore, the 

personality traits underlying the BAS are believed to have a DAergic nature and, 

subsequently, determine inter-individual variations in reward sensitivity. 

A series of behavioural experiments were conducted to explore the relationship 

between motivation and personality during CL tasks. Moreover, a biologically

inspired model was developed to simulate the behavioural data and capture 

individual differences. The model had a DAergic basis that represented some of 

the biological mechanisms that underlie procedural learning and that may occur 

within brain structures thought to be part of the BAS (Gray, 1987). The model 

was shown to be a useful tool to obtain further insights into the experimental 

data. 

Impulsivity was found to mediate procedural learning in a series of studies. 

Thus according to RST (Gray, 1987), the present research shows that 

impulsivity might represent the underlying BAS trait. However, contrary to 

RST, the model indicated that inter-individual variations in procedural learning 

were dependent on individual's sensitivity to reward prediction error (RPE) 

signals rather than rewards per se. Finally, the model simulations suggest that 

category learning under asymmetric payoffs is mediated by both explicit and 

implicit (i.e. procedural) processes. The implications of these findings are 

discussed in light of personality theories and in relation to future studies. 
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1.1 Chapter aims 

Chapter 1 

Category Learning 

This chapter aims to describe the processes underlying category learning and the 

potential tool represented by category learning tasks to explore reward-related 

learning and to investigate the personality and motivation interplay. 

This chapter presents both theoretical background and empirical evidence that 

indicate the basic principles and requirements of category learning performance. 

Moreover, it includes information on how both reward and motivation affect 

performance on category learning. This evidence indicates the existence of an 

association between cognition and motivation during category learning tasks. 

1.2 Category learning - Introduction 

Every day, individuals are faced with categorisation problems that they need to 

solve in order to produce adequate responses to deal with the circumstances. 

During categorisation, individuals learn to assign different objects to different 

categories (e.g. food vs. poison) and they also learn to produce different 

responses for each category (e.g. eat vs. leave; Ashby & Valentin, 2007). This 

process is referred to as category learning and it represents a fundamental skill 

for survival, although each task may vary in its survival importance (Maddox, 

Bohil & Dodd, 2003). In order to play such an important role in survival, 

category learning is involved in 'perception, thinking and language and is 

probably a significant factor in motor perception' (Hamad, 1987, p. 1). It can be 

concluded that the individual's ability to solve category problems plays a very 

important role in day-to-day effective human performance and survival (Ashby 

& Maddox, 2005). 

On a daily basis individuals are presented with several and diverse 

categorisation problems. Some categorisation problems require solutions that 
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cannot readily be expressed in terms of verbalisable rules, for example, the skills 

of the wine expert at identifying different types of wines. Other problems, 

however, can be more readily solved by using easily verbalised rules; these rules 

can be applied when identifying wine from grapefruit juice (Ashby, Alfonso

Reese, Turken & Waldron, 1998). 

Considering the important role played by categorisation skills in every-day-life, 

it is not surprising that several studies have attempted to identify the 

psychological processes involved in solving categorisation problems and, in 

particular, during category learning (CL). CL is characterised by the need to lay 

down a memory trace that can be accessed subsequently to improve 

categorisation efficacy in similar instances (Maddox & Ashby, 2004). 

In order to experimentally explore category learning, it is important that the 

main features of everyday categorisation problems are reproduced in the 

laboratory (Maddox, Bohil & Dodd, 2003). A main requirement to look at 

category learning is to have participants classify new, unfamiliar categories of 

objects. Otherwise, the experiment would really look at category representation 

rather than learning per se (Maddox, Bohil & Dodd, 2003; Maddox, Markman 

& Baldwin, 2007). Additionally, learning and expertise are mediated by 

different neural mechanisms (Ashby & Ell, 2002; Ashby, Ennis & Spiering, 

2007). For example, Parkinson's disease (PD) patients are impaired at learning 

new categories but do not lose old categories acquired before they became ill. 

Similarly, patients affected by agnosia who show inability to recall learnt, old 

categories are able to learn new categories (Ashby & Spiering, 2004). 

During a CL task, participants are presented with different stimuli and they are 

required to classify them as members of different categories. Categorisation will 

often first rely on guessing but it becomes more confident over trials thanks to 

the presentation of feedback on whether each response was correct or incorrect. 

In order to create the set of stimuli to be used in an experimental setting, it is 

essential to recreate stimuli that share the features typical of the category stimuli 

which are more commonly encountered in the real world. Maddox and 
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colleagues (2003) have indicated that there are few main properties that are 

common to the diverse categories encountered in the real world. 

Categories are characterised by several dimensions which are generally 

continuously valued rather than binary-valued, for example the range of 

sweetness in different types of wines. Categories usually have a graded structure 

so that the stimuli that constitute the category are symmetrically and uni

modally (normally) distributed around a prototype (i.e. the best representative of 

the category; e.g. typical flavour of red wines). Finally, everyday categories are 

probabilistic (i.e. they overlap), which implies that it is not possible to achieve 

perfect performance (i.e. 100% accuracy; Maddox, Bohil & Dodd, 2003). In 

other words, everyday categories are often constituted by a large (possibly 

infmite) number of stimuli whose dimensions are normally distributed and the 

categories overlap with each other rendering categorisation a difficult task. 

1.3 Decision-bound theory 

In order to understand the perceptual and cognitive processes involved in 

solving categorisation problems, researchers have opted to compare human 

performance with the performance of the optimal classifier, which is an ideal 

process that performs optimally. Optimality is defined as performance that 

maximises long-term rewards (Bohil & Maddox, 2001). The concept of the 

optimal classifier as well as the model framework is defmed in terms of signal 

detection theory (SDT). Thus, the measures used in the decision-bound model 

are equivalent to the ones set by SDT, i.e. response sensitivity (d') and response 

bias (beta or C). 

The decision-bound model suggests that people learn to aSSIgn different 

responses to different regions of perceptual space. They set a decision criterion 

that determines response regions related to the two categories and when 

categorising a stimulus, the individual needs to decide which region the stimulus 

belongs to. The optimal classifier is able to identify the relevant continuous 

dimension that determines category membership and it is also able to set a 

21 



criterion along the relevant dimension to ensure maximal long-run winnings 

(Bohil & Maddox, 2001; Maddox & Dodd, 2001). 

A typical circumstance where category learning is required occurs when an 

individual has to classify several stimuli into two categories (e.g. A and B). For 

example, when classifying red wine as a member of two different types (table 

vs. dessert wine) depending on its sweetness, sweetness represents the 

continuous relevant dimension (variable x). For any stimulus taken from 

variable x (xi), the optimal classifier estimates the probability of the stimulus 

given category A and B. The optimal classifier calculates the 'optimal decision 

function', which is computed from the likelihood ratio of the two category 

distributions and it is equal to: 

L(x) = function (xIB)/function(xIA) Eq.1.1 

where f(xIA) and f(xIB) indicate the likelihood of the stimulus (i.e. x) given 

categories A and B (Maddox & Dodd, 2001; Maddox & Dodd, 2003). The 

optimal classifier possesses complete knowledge of the category distributions 

and can perfectly record all of the observed stimuli. According to the optimal 

decision function, the optimal classifier will identify the stimuli x as a member 

of category A if the likelihood ratio is less than 1 and as a member of category B 

if the ratio is greater than 1 (Bohil & Maddox, 2001). 

Everyday categorisation is affected by the interplay of three factors, which are 

category discriminability, base-rates (prior probabilities) and costs and benefits 

to correct and incorrect responses (payoffs; Maddox, Bohil & Dodd, 2003). 

Category discriminability, which is also indicated as dprime (d'), refers to the 

'standardised distance between category means' (p .1175). The greater the d' 

value, the more distant the two category distributions and, therefore, the easier it 

is to assign stimuli to either category (higher accuracy). The d' value is 

represented in the optimal criterion function as the likelihood ratio, since the 

latter is affected by the two category distribution overlap. 
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Category base-rates indicate the probability of the occurrence of a particular 

category depending on previous instances. Asymmetric base-rates can lead the 

individual to over-classify new stimuli as members of the more frequently 

occurring category. For example, a doctor may be more likely to diagnose a 

patient with a disease (e.g. bird flu) if there is an epidemic. 

Finally, asymmetric payoff matrices can also occur in the real world and they 

also produce a bias in the decision making process. For example, correctly 

diagnosing bird flu is more beneficial than diagnosing a simple flu; indeed, in 

this case the correct categorisation has a greater survival value. 

The optimal classifier has perfect knowledge of these three factors which are 

then used to compute a decision criterion that allows reward maximisation 

(Bohil & Maddox, 2001; Maddox, Bohil & Dodd, 2003). The equation for the 

optimal decision criterion is represented below: 

p = [P(A)IP(B)] * [(VaIA - VbIA)/(VbIB - VaIB)] Eq.1. 2 

where peA) and PCB) indicate the base-rates of the two categories, ValA (i.e. an 

'a' response given an 'A' category stimulus) and VbIB represent the benefits of 

correct responses and VblA and ValB represent the costs of incorrect responses. 

After having formulated the decision function and the optimal criterion, the 

optimal classifier can formulate the optimal decision rule: 

If L(x) > p, respond B; otherwise respond A Eq. 1. 3 

Research results indicate that human beings implement the same strategy used 

by the optimal classifier to solve categorisation problems, although their general 

performance is not optimal. This is due to the fact that perceptual and criterial 

noise impairs human performance (Maddox & Dodd, 2001; Maddox, Bohil & 

Dodd, 2003). Perceptual noise is due to the trial-by-trial variability in the way 

the individual perceives each stimulus whereas criterial noise is due to trial-by

trial variability in the placement of the decision bound (Maddox & Bohil, 1998). 
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Even though human beings do not perform as optimally as the optimal 

classifiers, because of trial-by-trial noise, it seems that they use the same 

strategy only less effectively. Hence, the optimal decision bound can be used to 

assess and describe individuals' performance on CL tasks. However, since the 

noise element is always active, they have to be included in the mathematical 

equation that describes the optimal decision function, and it is now rewritten as: 

if L(x) > P + e, then respond B; otherwise respond A Eq.1. 4 

where IJ is the participants' average criterion decision over trials and e 

represents the error element due to perceptual and criterial noise. 

Compared to the optimal classifiers, human beings tend to show a smaller 

alteration in response bias when presented with asymmetric payoff matrices. 

This is due to the fact, that human participants are less willing to sacrifice 

accuracy in favour of reward (i.e. they adopt a conservative cutoff placement). 

When base-rates are symmetric, the decision criterion that maximises accuracy 

corresponds to the one that maximises reward (Maddox & Bohil, 2005; 

Maddox, Bohil & Dodd, 2003). 

1.4 COVIS - Explicit vs. implicit system 

As previously mentioned category learning relies on laying down a memory 

trace for subsequent use. It is nowadays widely accepted that memory is 

mediated by multiple systems depending on the type of information to be 

encoded (Ashby & O'Brien, 2005). Therefore, it is also accepted that CL is 

mediated by different types of category systems, depending on the 

categorisation problem. One of the most comprehensive multiple systems model 

is the COmpetition between Verbal and Implicit Systems (COVIS) model 

(Ashby et aI., 1998; a & Ashby, 2004). This theory of category learning is the 

first model that attempts to explain category learning at a neuropsychological 

level (Ashby et aI., 1998). Indeed, the COVIS model aims to identify the 

underlying neural structures that account for the behavioural performance. 
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The COVIS model suggests the existence of two independent systems that 

compete during learning: an explicit, rule-based system and an implicit, 

learning-based one. The explicit system uses logical reasoning and requires 

working memory and executive attention for efficient performance. In contrast, 

the implicit system is automatic, closely related to motor activity and relies on 

procedural learning so that its activation does not require conscious awareness 

(Ashby et aI., 1998; Keri, 2003). The explicit system is able to learn much faster 

than the implicit system, which instead learns in a slow and incremental way 

when, and only when, receiving trial-by-trial feedback (Ashby & Valentin, 

2005). Evidence to support the existence of both the explicit system and the 

implicit system comes from the fact that they seem to be activated during 

performance on two distinct category learning tasks: rule-based and 

information-integration learning tasks, respectively (see below for details). 

The two systems learn independently and they compete for response control 

throughout the task. Each system calculates a discrimination value every trial by 

estimating the distance between the stimulus and the criterion bound(s). The 

response is controlled by the system with the greatest discrimination value 

(Ashby & Maddox, 2005). 

One of the COVIS model's main assumptions is that individuals initially rely 

almost exclusively on the explicit system. Nonetheless, the explicit system is 

generally not effective at learning an information integration task; the implicit 

system, by contrast, is more effective when, and only when, it receives positive 

feedback (Ashby et aI., 1998). Under these conditions, the implicit system takes 

over, although never completely. In fact, on some trials the explicit system will 

still take over and respond (Ashby and Maddox, 2005). Evidence also shows 

that this shift in use from the explicit to the implicit system can also be produced 

by asking participants to respond quickly and/or impulsively or when 

participants are required to perform a simultaneous secondary verbal task (e.g. 

simultaneously counting backwards orally; Smith & Kemler-Nelson, 1984). 
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1.4.1 RB vs. II tasks 

At a psychological level, the evidence to support the existence of the two 

different systems comes from evidence showing that each system seems to be 

more effective at performing one of two different types of categorization tasks: 

rule-based and information-integration learning tasks (Ashby et aI, 1998; Ashby 

& Ell, 2001). 

These two types of CL tasks are qualitatively different. Rule-based tasks can be 

learnt by using some explicit reasoning through a process of hypothesis 

generation and testing. The optimal rule, which allows maximising accuracy, is 

usually verbalisable. A typical example of a rule-based task is the Wisconsin 

Sorting Card Test (WSCT) that requires participants to sort into different 

categories cards that vary on several binary-valued dimensions (colour, shape 

and number). In contrast, the optimal rule in information-integration tasks 

requires integrating information on several stimulus dimensions at a pre

decisional stage and the rule is not easily verbalized (Ashby & Maddox, 2005). 

In order to be able to verbalise the rule during an RB task, the classifier must be 

able to assign a semantic label to each dimension and, subsequently, identify the 

relevant dimension. Once the relevant dimension has been identified it is 

necessary to place a decision criterion along this continuous dimension in order 

to determine the two categories. In the easiest type of RB task, even though the 

stimuli may vary on several dimensions only one of them is the relevant one (i.e. 

uni-dimensional rule). As an example of a potential rule-based (RB) task take 

the lines below: 

III II \\\ \\ 

The stimuli are groups of lines that vary on three binary dimensions, which are: 

direction of the lines, colour of the lines (black vs. grey) and numerosity of 

group (2 vs. 3 items). One of these three dimension could be the relevant one, 

which should be used to formulate the optimal rule, while the others should be 
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ignored being irrelevant. For example, the relevant dimension could be the 

stimulus colour and the verbal, uni-dimensional rule could be as follows: "If the 

lines are black, respond A; otherwise respond B". 

Optimal rules to solve RB tasks are not necessarily uni-dimensionai. In fact, less 

frequently, the optimal rule may require combining information from several 

dimensions. In some cases it may be necessary to formulate a conjunctive, 

disjunctive or a exclusive-or ('xor') rule; all these rules can be verbally 

described (Ashby & Maddox, 2005; Ashby & Spiering, 2004). Formulating 

more complex verbalisable rules is more demanding on WM and individuals 

will stick to a simpler uni-dimensional rule, if it ensures effective performance 

(Ashby, et aI., 1998; Gluck, Shohamy & Myers, 2002; Ashy & Maddox, 2005). 

The optimal rule that maximises accuracy during an information-integration (II) 

task requires participants to integrate information from two or more stimulus 

dimensions at a pre-decisional stage. Therefore, the optimal rule is non

verbalisable. Even though both II tasks and conjunctive RB tasks require 

combining information from several dimensions, this is done differently in the 

two tasks. Indeed, during an RB task whose solution requires a conjunctive rule, 

information is combined only after decisions are made on the relevant 

dimensions (i.e. post-hoc rather than a-priori). 

An example of an II task is also illustrated by the eight line stimuli presented 

above. In the case of an II task, one level of each dimension is assigned a value 

of +1, for example: black, number of items equal 2 and left direction. Then, the 

optimal rule could be set as follows: "if the sum of values on the relevant 

dimensions > 1.5, then respond A; otherwise respond B". In contrast, a 

conjunctive rule would be: 'if the stimulus is black and contains two lines, then 

respond A; otherwise respond B' . 

Even though, the COVIS makes clear predictions of which system should be 

active depending on the CL task, the simple structure of the task does not 

determine the strategy that participants will actually employ (Gluck et aI., 2002). 

In some cases participants stick to an incorrect RB rule even if it is suboptimal 
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to solve the task (e.g. II task). This is expected to happen in situations where the 

implicit system is not sufficiently activated (i.e. no feedback is offered on a 

trial-by-trial fashion; Ashby Queller & Berrety, 1999). In other cases, an II rule 

may be employed to solve a more complex RB task (e.g. which may require a 

disjunctive rule; Maddox, Filoteo, Hejl & Ing, 2004; Ashby & Maddox, 2005). 

Hence, no prediction can be made about what strategy participants will adopt to 

maximise performance based on the type of task. Gluck and colleagues (2002) 

found that a high proportion of participants performing on the weather 

prediction task, a probabilistic II task, were using a singleton or a 1-

dimensional, rather than a multi-dimensional, strategy to solve the task. This is 

easily explained by the fact that the use of a singleton or a uni-dimensional rule 

was sufficient to produce effective performance (70%-75% optimal responding). 

The reviewed evidence indicates that it is not possible to infer what strategy 

participants will implement based on the task's structure (Shohamy, Myers & 

Gluck, 2008). Hence, formal models, which allow fitting of the participants' 

responses, provide a greater insight into participants' performance. They are a 

great tool to identify the strategy used by each participant. 

COVIS states that the main difference between the two systems is in the way 

they learn. In fact the explicit system is supposed to rely on logical reasoning 

which requires WM and attention whereas the implicit learning relies on 

implicit learning. Experimental data supports this assumption. Indeed, evidence 

shows that switching the location of the response keys (cf. switching hands 

position) impaired learning during an II task (Ashby, Ell & Waldron, 2003; 

Maddox, Bohil & lng, 2004). However, performance on an RB task was not 

affected by the switch phase manipulations. These results suggest that while the 

explicit system learns response labels the implicit system learns response 

locations. These [mdings support the idea that the latter system relies on 

procedural learning. 

Performance on an RB task was found to be impaired when participants had to 

simultaneously carry out a numerical analogue of the Stroop task, which 

requires both WM and attention effort (Waldron & Ashby, 2001; Zeithamova & 

Maddox, 2006). This impairment was not observed in participants performing 
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on an II task. Similarly, it was found that increasing the number of potential 

categories in an RB task also impaired performance on an RB task but not on an 

II task. These results indicate that increasing the demand on WM and attention 

resources impairs performance on RB tasks, which are highly dependent on 

these processes, but not on II tasks, which rely on procedural learning (Maddox, 

Ashby, Ing &Pickering, 2004). 

1.5 Neurobiological basis of the two systems 

At a neurobiological level, support to the existence and independence of the 

explicit and the implicit systems comes from evidence indicating that different 

brain areas underlie the activation of each system. Moreover, evidence also 

supports that activation in these areas is necessary to ensure effective 

performance on the different tasks (RB and II). Neural evidence that shows the 

existence and the independence of these two learning systems comes from 

neuroimaging data and neuropsychological studies on different patient 

populations (Ashby & Ell, 2001). 

As previously mentioned the two systems use different types of learning to 

perform CL tasks. The explicit system relies on logical reasoning whereas the 

implicit system relies on feedback (i.e. reward-related learning). More 

specifically, the explicit system applies hypothesis generation and testing to 

solve categorisation problems whereas the implicit system relies on procedural 

learning (Ashby & Valentin, 2005). Hence, it is expected that several brain 

structures would mediate performance of the two CL systems. 

A series of brain imaging studies have been carried out to identify the brain 

areas that are involved during performance on rule-based and information

integration tasks. Evidence shows that the neural circuitry found to mediate 

performance on II tasks corresponds to the one identified as underlying reward 

processing and the behavioural activation system (BAS; chapter 3). 
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1.5.1 Explicit system 

COVIS assumes that the explicit system solves CL problems by generating and 

testing hypotheses about category membership. fMRI studies have identified the 

brain areas that are active during RB tasks and that, therefore, mediate the 

activation of the explicit system. The main brain structures that were found to be 

active during the Wisconsin Card sorting test are the right dorso-lateral 

prefrontal cortex, the anterior cingulate and the head of the caudate (Rao et aI., 

1997; Filoteo et aI., 2005a). These areas are involved in working memory and 

executive attention, which are involved in hypothesis generation and testing as 

well as rule switching (Goldman-Rakic, 1995; Ashby, et aI., 1998; Ashby, Ell & 

Waldron, 2003; Ashby & Maddox, 2005, Ashby & O'Brien 2005). 

During the hypothesis testing phase the relevant rule is kept active in working 

memory by the reverberating loop between the lateral units in the prefrontal 

cortex and nuclei in the thalamus. If the outcome of the response emitted is not 

satisfactory (i.e. negative feedback), it is necessary to generate an alterative rule. 

An fMRI study carried out by Filoteo and colleagues (2005a) indicated that the 

head of the caudate is involved in processing feedback and, in particular, error 

signals. The anterior cingulate is active during the hypothesis generation phase 

and it is, therefore, responsible for the rule selection among all the possible rules 

(Ashby et aI., 1998; Ashby & Ell, 2001; Ashby & Spiering, 2004; Ashby & 

Ennis, 2006). Once a new rule has been selected, the system has to switch 

executive attention from the old to the new rule. COVIS assumes that the PFC 

sends a signal to the head of the caudate, which is responsible for this volitional 

switching between alternative rules (Ashby et aI., 1998; Ashby & Ell, 2001; 

Filoteo et aI., 2005a; Ashby & Valentin, 2005). The caudate activity is mediated 

by dopamine levels, with low levels of DA in the caudate being associated with 

a greater level of perseverative errors during RB tasks (Goldman-Rakic, 1995; 

Roberts, De Salvia, Wilkinson, Collins, Muir & Everitt, 1994; Ashby & 

Spiering, 2004; Ashby & Ennis, 2006). 
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Further evidence that supports the involvement of these brain areas during RB 

tasks comes from data collected on patients affected by Parkinson's disease 

(PD), who are impaired on RB tasks (Ashby, Noble, Filoteo, Waldron & Ell, 

2003; Filoteo et aI., 2005a; Price, 2006; Filoteo, Maddox, lng, Zizak & Song, 

2005b). PD is characterised by dopaminergic degeneration in the substantia 

nigra pars compacta (SNpc) and the ventral tegmental areas (VTA) whose 

projection sites include the PFC, the caudate and the anterior cingulate (Ashby 

et aI., 1998; Pinel, 2002). PD patients were impaired when performing on RB 

tasks compared to an age-matched sample composed of healthy controls 

(Ashby, Noble, Filoteo, Waldron & Ell, 2003). Recent evidence shows that 

learning deficits in PD patients during RB tasks is associated with impaired 

selective attention processes, which are mediated by the striatum and, in 

particular, the head of the caudate (Ashby et aI., 1998; Ashby, Noble, Filoteo, 

Waldron & Ell, 2003; Filoteo, Maddox, lng & Song, 2007). These researchers 

observed that increasing the number of irrelevant dimensions (up to 3) impaired 

patients' performance compared to matched-old and younger controls, i.e. the 

patients required more trials to reach criterion and committed more errors 

(Filoteo et aI., 2005b). These findings were replicated in a follow-up study 

where patients were found to be impaired in a I-dimensional RB task when 

there was unrelated variation on the irrelevant dimension. However, patients did 

not differ from the control group when performing on an RB task that required a 

conjunctive or a disjunctive rule, which requires a greater WM effort. These 

results support the findings that lower performance of PD patients is due to 

impaired attentional functioning rather than WM activity (Filoteo et aI., 2007). 

Further evidence that supports the involvement of nigrostriatal DA activity in 

strategy switching and cognitive flexibility comes from a study by Cools and 

colleagues (2003). These researchers compared performance of PD patients on 

and offDA precursor treatment (L-dopa) to healthy controls during performance 

on a switching task. Patients who were off the medication showed impaired 

switching and, therefore, performance compared to those on medication, who 

showed performance levels comparable to those of the control group. 
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These results suggest that PD patients in the early stages of the disease are 

impaired in the rule-switching rather than the hypothesis generation and testing 

phase. In fact, rule-switching is mediated by the activity of the head of the 

caudate which is a structure affected by the disease at the early stages. 

Subsequent damage of DA projections to the PFC should impair WM capacity 

and, therefore, further impair performance on RB tasks by disrupting rule 

retention during the hypothesis generation and testing (Ashby et aI., 1998; 

Ashby & Maddox, 2005; Filoteo et aI., 2007). Hence, different forms of 

impairment on RB tasks should be observed across the disease spectrum. 

1.5.2 Implicit system 

An fMRI study by Poldrack and colleagues (1999) observed brain activation 

during a feedback-based learning and paired-associated learning on the weather 

prediction task, which is a variation of an II task (Pickering, 2004). Results 

showed that the tail of the caudate was significantly activated during feedback

related learning whereas the medial temporal lobe (MTL) was active during 

observational learning. These results indicate that memory (mediated by MTL) 

is essential when learning the association between exemplars and category 

labels; whereas feedback processing (mediated by the head of the caudate) is 

essential for the implicit system to perform on II tasks. Activation of the tail of 

the caudate during II tasks was confirmed in a more recent fMRl study 

conducted by Nomura and colleagues (2007). Further support to the double 

dissociation between memory functions and probabilistic classification comes 

from a study comparing CL performance on a weather prediction task between 

PD and amnesic patients (Knowlton, Mangels & Squire, 1996). PD patients 

were found to be impaired on the probabilistic CL task but not on a multiple

choice questionnaire on the details of the layout and stimuli presented in the CL 

task, which tested declarative memory. The opposite pattern was observed in the 

amnesic patients. These results suggest that effective performance on II tasks 

requires the activation of the neostriatum (caudate and putamen) and that 

dysfunction of these brain area, typical of PD patients, disrupts procedural 

learning while memory remains intact. 
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The caudate receives inputs from visual and auditory association areas and the 

PFC and it sends excitatory signals back into the cortex via the globus pallidus 

and the thalamus (Carlsson, 2002). The caudate projects primarily to the 

premotor areas (e.g. Area 8 and the supplementary eye fields), which are 

responsible for ocular orientation and orienting responses, and to the 

supplementary motor area, which selects motor programs for limb movements 

(Ashby & Valentin, 2005; Ashby & Ennis, 2006; Ashby, Ennis & Spiering, 

2007). 

The caudate not only receives glutamate projections from the visual cortex but it 

also receives DA projections from both the VTA and the SNpc. These synapses 

are supposed to play a critical role during implicit learning and, therefore, 

during performance on II tasks (Ashby & Ennis, 2006; Ashby et aI., 2007). The 

effect of DA on the striatum has been found to playa key role in strengthening 

the cortical-striatal synapses (long term potentiation, LTP; Ashby et aI., 2007). 

Evidence shows that three factors are necessary to ensure learning and 

strengthening of these synapses, they are: I) strong pre-synaptic activation, 2) 

strong post-synaptic activation, and 3) DA firing (3-factor rule). Factors I and 2 

depend on the intensity of the stimulus and the sensitivity of the glutamatergic 

NMDA receptor, which has a high threshold of excitation. Noise and weak 

signals will not produce LTP but rather long term depression (LTD) which 

weakens stimulus-response associations. An incorrect response would also 

suppress DA firing and therefore produce LTD. 

In addition, evidence shows that for learning to occur DA has to be released 

shortly after the post-synaptic activation, i.e. before repolarisation has occurred. 

Several studies reported in the following section indicate that feedback (reward) 

timing is very important for implicit learning to occur. 

The COVIS model assumes that through a procedural learning process mediated 

by the 3-factor rule, the caudate learns to associate a specific visual input 

(stimulus) to a motor response. In other words, procedural learning involved 
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during II tasks produces strong associations between a stimulus and its 

corresponding response (i.e. correct categorisation response). 

Evidence that supports the central role of the basal ganglia (especially the tail of 

the caudate) in the implicit system and during II tasks comes from data from 

patients with basal ganglia disorders (i.e. PD patients; Knowlton et aI., 1996). 

Further studies suggest that PD patients are impaired on II tasks but only when 

the structure of the categories is complex. For example, a study carried out by 

Ashby and colleagues (2003) compared PD patients' performance to healthy 

controls not only on an RB task but also on an II one. Results showed that 

participants were not impaired on the II version, where the categories were 

linearly separable. However, studies observed that compared to a matched 

control sample, PD patients were impaired on more complex II tasks that require 

a quadratic decision bound for optimal performance (Maddox & Filoteo, 2001; 

Filoteo et aI., 2005b). 

PD is characterised by general dysfunction of the caudate. As previously 

mentioned, damage to the head of the caudate was found to be associated with 

impairment on RB tasks. Dysfunction in the tail of the caudate due to reduced 

DA activation in the area suggests that the caudate is not able to reinforce the 

correct SR association according to the 3-factor rule and, therefore, implicit 

learning is expected to be impaired in PD patients. 

1.6 CL & feedback 

Feedback facilitates the operations of both systems, although in different ways 

(Ashby et aI., 1998). In particular, it has been suggested that in the explicit 

system feedback guides the process of hypothesis testing and generation, 

whereas in the implicit system positive feedback works as a reward signal that 

automatically reinforces the adequate response (3-factor rule). In the implicit 

system, positive feedback has been found to act like a reinforcement signal and 

elicit dopamine release from the substantia nigra pars compact (SNpc) into the 

caudate. These dopamine projections strengthen the synapses responsible for the 
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correct stimulus-response association, thus producing learning (Maddox et aI., 

2004). 

Data that support these claims come from patients' data (Ashby et aI, 1998; 

Ashby & Ell, 2001). Empirical data further supports the dissociation between 

the two systems and their underlying neural mechanisms. In particular, the two 

systems seem to be differently affected by feedback manipulations. Ashby, 

Queller and Berrety (1999) observed that when participants received no trial-by

trial feedback, performance on an II task was impaired, whereas performance on 

an RB task was not affected. Additionally, participants were found to use an 

explicit rule to solve the II task when no feedback was offered (Ashby et aI, 

1999). Similarly, compared to feedback training, observational learning was 

found to impair learning on an II task but not performance on an RB task 

(Ashby, Maddox & Bohil, 2002) 

Feedback timing was also found to differently affect performance on an RB and 

on an II task. For example, Maddox, Ashby and Bohil (2003) observed that 

performance on an II task was effective when feedback was presented 

immediately following the response. However, results also showed that 

performance on the II task was impaired when the feedback signal was 

presented after a delay equal or greater than 2.5 secs. In contrast, performance 

on the RB task was not impaired by varying the feedback delay. These results 

were replicated by Maddox and Ing (2005) who observed that during an II task 

accuracy levels were lower when feedback presentation was delayed by 5 

seconds rather than immediate. Reduced accuracy was a result of the increased 

use of RB strategies in the delayed condition. 

A recent study by Ashby and O'Brien (2007) assessed the impact of different 

feedback manipulations during an II task. Participants were randomly allocated 

to one of four feedback conditions; the four conditions consisted of full 

feedback, partial feedback (80% probability), gain-only or loss-only feedback. 

In the last two conditions, feedback was administered at a rate of 80% on 

relevant trials. Results showed that participants used sub-optimal, explicit rules 

when performing under a gain-only or a loss-only matrix whereas they 
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implemented an II strategy when receiving both positive and negative feedback. 

In contrast, participants were found to learn to perform appropriately during an 

RB task under both gain- and 10ss- only matrices (Markman, Da1dwin & 

Maddox, 2005). 

However, performance on an RB task was affected by the available feedback 

processing interval (intertria1 interval; In). In fact, performance was impaired 

when participants did not have time to process the feedback signal (In = 0) in 

an RB task compared to those who had 2.5 seconds to process the feedback. 

Performance on the II task was not affected by this In manipulation. These 

results are due to the fact that short In impairs hypothesis testing (Maddox, 

Ashby & Bohi1, 2003; Maddox, Ashby, Ing & Pickering 2004). 

These results highlight a main difference between the two systems, the explicit 

system relies on logical reasoning, which requires effort, attention and WM; 

whereas the implicit system seems to learn effortlessly by automatically 

processing the feedback signaL 

According to the evidence reviewed in the two sections above, it seems that 

dopamine and feedback mediate performance under both types of CL tasks. 

Therefore, DA and feedback influence the functioning of the two systems by 

affecting the relevant processes that are essential for their performance. 

However, feedback and DA are only essential for the well-functioning of the 

implicit system which relies on procedura11earning (see chapter 2). 

1.7 CL & motivation 

In order to understand the way individuals learn and decide to act, it is necessary 

to understand the interplay between motivational and cognitive factors (Higgins, 

1997; Maddox, Markman &Ba1dwin, 2007). The motivation literature suggests 

that there are two types of goals: approach goals which have a positive end state 

which is desirable to attain; avoidance goals which have a negative end state, 

which is desirable to avoid (Maddox, Baldwin & Markman, 2006). 
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In particular, Higgins (1987; 1997) postulated that motivation can be influenced 

by regulatory focus, which affects decision making and cognitive processing. 

The regulatory focus theory suggests that there are 'different ways of achieving 

different types of desired end-states' (Higgins, 1997, p. 1281). In particular, 

Higgins suggested that individuals can have two types of regulatory focus: 

promotion and prevention. The promotion regulatory focus renders individuals 

sensitive to positive outcomes and it is characterised by a sensitivity to approach 

positive goals. On the contrary, prevention focus renders individuals sensitive to 

negative outcomes and it is characterised by a tendency to avoid possible 

mismatches to desired goals. 

The model suggests that individuals with a promotion focus should be more 

willing to maximise hits and avoid misses (errors of omissions). In contrast, 

individuals with a prevention focus are expected to be more willing to make 

correct rejections and avoid making a mistake (errors of commissions). Higgins 

(1987; 1997) suggests that regulatory focus represents a trait variable (chronic 

regulatory focus) since individuals seem to have a predisposition towards 

regulatory focus. Individual differences in chronic regulatory focus have been 

found to influence the way individuals approach a task in relation to its 

incentives. 

This account makes broad reference to the Reinforcement Sensitivity Theory 

(RST) by distinguishing between approach and avoidance stimuli. RST suggests 

that there are three systems that mediate responding to motivational factors; the 

behavioural activation system (BAS), Fight, Flight and Freezing system (FFFS) 

and the behavioural inhibition system (BIS; Corr, 2006; 2008). The BAS is 

more relevant to the regulatory focus theory and, in particular, its characteristics 

resemble the ones typical of the promotion focus. Indeed, the BAS is considered 

to be highly reactive to reward, leading to approach behaviour and positive 

affect (Smillie and Jackson, 2006; Smillie, Pickering & Jackson, 2006a). 

Additionally, the model framework proposes that regulatory focus does not only 

represent a chronic state but it can also be induced experimentally by 
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manipulating incentives (situational focus) and this has been shown to influence 

cognitive processing and decision-making during learning (Crowe & Higgins, 

1997; Maddox et aI., 2006; Maddox, et aI., 2007). Finally, the model suggests 

that individuals show higher performance when the induced regulatory focus 

matches the chronic regulatory state and when the induced regulatory focus 

matches the reward structure offered in the task (Shah, Higgins & Friedman, 

1998; Maddox et aI., 2007). This match is known as 'regulatory fit' between the 

two foci and it is predictive of performance on category learning (Higgins, 

1997; Maddox et aI., 2006, 2007). 

Shah and colleagues (1998) looked at the relationship between chronic 

regulatory focus and experimental regulatory focus manipulations. They had 

participants perform on an anagram solving task under either a prevention or a 

promotion regulatory focus. In the promotion framed condition, participants 

were told that they could win extra money (from $4 to $5) if they found 90% or 

more of the words. In contrast, during the prevention framed condition 

participants were told that they could avoid losing money (from $5 to $4) if they 

did not miss more than 10% of the words. Participants with a chronic promotion 

focus performed better under a promotion-framed condition (reward-oriented) 

than under a prevention-framed one. The opposite was true for individuals with 

a chronic prevention focus. 

Shah and colleagues (1998) carried out a follow up study using the same 

paradigm and observed how different payoff matrices affected individuals' 

performance during the anagram solving task. They had participants solving two 

types of anagram tasks (green and red) which had different payoffs matrices. 

The green anagram task offered a more rewarding payoff structure than the red 

anagram's one. In fact, if participants completed correctly the green anagram set 

they could win one point; otherwise they would not lose or win any points. 

Incorrect performance on the red anagram set led to the loss of one point, while 

correct performance ensured maintaining the points. Participants with a chronic 

promotion focus were found to be more motivated to maximise their 

performance on the green anagrams rather than the red ones. The opposite 

pattern of behaviour was shown by individuals with a prevention focus. 
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Similarly, evidence from recent studies on RST has shown that individuals with 

a highly reactive BAS perform better when the motivational manipulation offers 

reward (i.e. gain-only matrix) rather than punishment (i.e. loss-only matrix). For 

example, Smillie and colleagues (2007) had participants perform on a yes/no 

category learning task. The stimuli were vignettes that indicated the 

characteristics of hypothetical job candidates and participants had to decide 

whether they were suitable (yes-response) to the job or not (no-response). High 

BAS participants were found to perform more accurately when performing 

under a gain-only payoff matrix rather than under a loss-only matrix. 

These researchers carried out a further study that used the same design and 

aimed to assess the impact of asymmetric payoff matrices on learning. 

Participants performed on the same yes/no category learning task and 'yes' 

responses received either confIrmatory feedback (gain-only matrix) or corrective 

feedback (loss-only matrix). In contrast, the probability of receiving 

confIrmatory or corrective feedback following 'no' responses was equivalent 

across the two conditions (loss vs. gain payoffs). Results showed that high BAS 

individuals under the gain-only matrix developed a greater bias for responding 

'yes' than those under the loss-only matrix (Smillie, Dalgleish & Jackson, 

2007). Similar results were replicated in a go/no-go category learning task 

(Smillie & Jackson, 2006). Hence, these results show that BAS activation and 

chronic regulatory focus modulate the impact of experimental motivation 

manipulations and, therefore, performance on category learning tasks. 

1.8 Summary 

The present chapter offered a review of the theoretical background of category 

learning, particularly focusing on the COVIS modeL Moreover, it presented 

evidence from both neuro-imaging and behavioural studies which underlined the 

processes involved in solving category learning problems. 

The evidence also indicates that performance on CL tasks is affected by both 

motivation and cognition as indicated by studies manipulating reward, reward 
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structures and cognitive demands. According to the COVIS model, different 

manipulations affect performance differently depending on the features and 

requirements of the task as well as the active system that moderates 

performance. 

The review indicates that there exists extensive knowledge about the nature of 

different category learning problems and the skills and processes required for 

optimal performance. This knowledge renders these tasks ideal to explore the 

relationship between motivation and cognition during performance on CL tasks. 
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2.1 Chapter aims 

Chapter 2 

Dopamine 

This chapter anns to offer an overview of the central role played by 

dopaminergic pathways in processing reward and mediating motivation as well 

as motivated approach behaviour. More specifically, the chapter explores how 

dopamine activity mediates reward-related learning. Evidence from both human 

and animal studies is examined in order to assess the relationship between 

reward processing, DA activation and learning. 

2.2 DA and motivation 

Experimental manipulation through electrical or chemical stimulation of the 

brain has helped identify the reward pathway and the neurotransmitters involved 

in reward processing. Olds and Milner (1954) observed that rats would learn to 

lever press at a high rate (over 6000 times per hour) in order to obtain direct 

electrical stimulation in the limbic system. Administration of electrical 

stimulation seems to be more rewarding than the administration of any natural 

rewards (e.g. food). In a study where rats were presented with a forced-choice 

between lever pressing for natural rewards (i.e. food and water) and for 

electrical stimulations, results indicated that rats would chose electrical 

stimulation over natural rewards (Routtenberg & Lindy, 1965). Electrical 

stimulation was administered in the limbic area in both studies. For ethical 

reasons, human studies on electrical stimulation are very limited but results have 

shown that electrical stimulation in the limbic system is rated as extremely 

pleasurable in humans (Heath, 1964) 

Additionally, neurochemical studies have been conducted on animals to 

discover which neurotransmitters are involved in reward processing. Several 

studies observed that rats readily learnt to self-administer stimulants (e.g. 

cocaine) and opiates, which are highly addictive substances in humans for their 
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rewarding effect. These drugs administrations were associated with increased 

levels of dopamine (DA) in the limbic system (Bozarth, 1990). In summary, 

these results and many others indicate that dopamine is the central 

neurotransmitter involved in emotional and cognitive processes and, especially, 

in processing reward signals (Bozarth, 1994). 

The brain contains three mam dopaminergic systems that originate m the 

midbrain, in the substantia nigra pars compact (SNpc) and in the ventral 

tegmental area (VTA; Carlsson, 2002; see figure 2.1). These systems consist of 

a limited number of cells with highly branched axons, which allow the neuron to 

project to several brain regions and, in particular, the prefrontal cortex and both 

the ventral and the dorsal striatum. These areas are involved in processing 

rewards and mediating approach behaviour amongst various functions (Schultz, 

1998; Carlsson, 2002). 

Figure 2.1 Three main dopaminergic systems. From: Townsend MC (2006). Psychiatric 
Mental Health Nursing: Concepts of Care in Evidence-Based Practice (5th Ed.) 
Philadelphia, PA. F. A. Davis Company. 

Cells in the SNpc project to the neostriatum (caudate and putamen) that is 

located in the basal ganglia. These projections form the nigrostriatal system 

which is involved in movement control. Damage to this system is associated 

with symptoms typical of Parkinson's disease (PD). PD symptoms are generally 
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reduced by increasing DA levels in the basal ganglia. This result can be obtained 

by DA replacement therapy (administering Ldopa), DA receptor (DA2) agonist 

administration or inhibiting DA-breakdown (administration of MAO-B 

inhibiters; Julien, 2003). 

Cells in the VTA area project to the cerebral cortex (mesocortical system) and 

the limbic system (mesolimbic system; Carlsson, 2002). The mesocortical 

system mediates executive functioning, e.g. strategy planning and execution. 

Schizophrenia's symptoms are associated with dysregulation of this system and, 

in particular, with high levels of DA in the midbrain (Heinz, 2002). Typical 

antipsychotic drugs used in the treatment of SZ symptoms (e.g. haloperidol) 

work as DA receptor blockers (especially D2 receptors; Julien, 2003). In fact, 

schizophrenia is generally viewed to be characterised by dysregulation of the 

mesocortical (low DA) and the mesolimbic system (high DA) as well as their 

interaction (Julien, 2003). 

The mesolimbic system, in particular the DA projections to the nucleus 

accumbens (NAc), has been identified as a key part of the reward system and, 

therefore, it is considered to be central to rewarded behaviour and motivation 

processing (Bozarth, 1994). Drugs of abuse have been found to increase DA 

activation in the mesolimbic system in the same fashion as natural rewards (e.g. 

food; Bozarth, 1990; DiChiara & North, 1992). For example, an fMRI study 

showed that amphetamine injections increased activity in the ventral tegmental 

area and nucleus accumbens, whereas DA depletion blocked DA-activity 

enhancing effect (Jenkins, Sanchez-Pemaute, Brownell, Chen & Isacson, 2004). 

Similarly, administration of antipsychotic drugs has been found to reduce 

cocaine administration in rats (de Wit & Wise, 1977; Childress & O'Brien, 

2000). 

Animal studies have indicated that DA neurons show short, phasic activation 

when animals receive natural rewards and this activation is associated with 

motivated responses to approach the reward (Schultz, Dayan & Montague, 

1997; Schultz, 2002). DA neurons respond in the same way to different types of 

primary rewards (e.g. food and liquids) as long as they are not fully predicted 
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(Schultz, et aI., 1997). DA can discriminate between rewarding and aversive 

stimuli, in fact DA shows little or no phasic activation in response to aversive 

stimuli (Schultz et aI., 1997). For example, DA phasic activation was observed 

in monkeys when they found hidden food resulting from their self-initiated 

exploratory movement into a box (i.e. unpredicted rewards). In contrast, DA 

neurons did not show any activation in response to punishments or non-reward 

stimuli (Romo & Schultz, 1990). 

In a PET study conducted by Pappata and colleagues (2002) human participants 

performed on a number comparison task where they had to decide whether the 

number on the screen was greater or smaller than 5. As monetary feedback, 

participants experienced unpredicted sequences of winning and losing money. 

The study aimed to assess the relationship between monetary feedback and DA 

release, indexed by decreased [1lC]rac1opride concentration. Results showed 

that DA release in the mesolimbic system (especially, NAc) increased when 

participants experienced unpredicted rewards but no DA release was observed in 

response to losses (Pappata, et ai., 2002). 

Incentive motivation mediates behaviour which leads the individual to approach 

the (appropriate) primary rewards (e.g. water when thirsty) that are necessary 

for wellbeing, survival and reproduction (Bozarth, 1990, 1994). As a direct 

consequence, rewards induce positive motivational states in the individual. They 

also have direct behavioural consequences. Rewards and reward-related stimuli 

lead to immediate approach behaviour and they also enhance response learning 

for future circumstances. In fact, motivated behaviours lead to experiencing 

reward and this experience increases the chance of reproducing the same 

reward-related behaviour (response) when presented with similar circumstances 

in the future (eOIT, 2006). This process will be discussed further later in this 

chapter. 

fMRl techniques have been used in order to assess the role played by the 

striatum during reward-related learning during a gambling task (e.g. Delgado et 

ai., 2000; 2003). On each trial, participants were presented with a card, whose 

value could vary between 1 and 9, and they had to guess whether the value of 
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the card was higher or lower than 5. During the fIrst 0.5 second of the trial (i.e. 

the probabilistic cue period), participants saw one of fIve cues (star, circle, 

square, triangle or diamond). Participants were told to pay attention to the cues 

since each of them had a predicting value on the type of card that would follow 

(high vs. low). Participants had 2.5 seconds to make a guess and they received 

auditory, visual and monetary feedback, for each response they made; when the 

card was equal to fIve they did not receive any feedback (neutral condition). 

Participants performed under a predetermined pseudorandom reinforcement 

schedule. They received reward on 40% of their responses, symmetrically they 

also received punishment for 40% of their responses and they received neutral 

feedback on 20% of their overall responses. Results showed that the basal 

ganglia were activated when processing reward-related information, but not the 

other type of feedback. In particular, the fMRI data showed that the areas most 

active during reward processing were the ventral striatum (nucleus accumbens) 

as well as the dorsal striatum (caudate). 

As mentioned earlier, addictive drugs activate the DA midbrain reward system 

and, therefore, studies exploring the effects of these substances can offer a 

useful insight into normal appetitive motivation and motivated behaviour, which 

are characterised by a sensitivity to, and a tendency to approach, reward-related 

stimuli (e.g. food). Goal-directed behaviours are also mediated by the salience 

of the stimulus, which is associated with its rewarding value (Volkow, Fowler & 

Wang, 2003). The salience of a stimulus is relative to the circumstances 

encountered by the individuals and the salience value of potential alternative 

stimuli (Volkow et aI., 2003). For example, when experiencing thirst, water 

would have a high salience value and it would have a higher value than food

related stimuli. The higher the salience value associated with the stimulus, the 

greater the activation of the motivational system and, therefore, the motivational 

response. Evidence indicates that drugs of abuse are three-to-fIve times more 

rewarding than natural rewards, which would explain their high addictive 

potential (DiChiara, 2002). Prolonged chronic use (typical of addiction) leads to 

decreased sensitivity to the rewarding effect of natural rewards and, hence, 

drugs become the main motivational drive (Volkow et aI., 2003). For example, a 
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PET study showed that monetary rewards failed to activate midbrain DA 

activity in smokers but not in non-smokers (Martin-Solch et aI., 2000). 

As mentioned earlier, drugs of abuse mimic the effect of natural rewards and 

lead to increased activation in the VTA DA cells which project to the limbic 

system and, in particular, the nucleus accumbens. This activation thus leads to 

higher DA levels in the limbic system. A PET study by Volkow and colleagues 

(1999) showed that intravenous administration of methylphenidate (MP; a 

psycho stimulant drug) produced increased release of DA (phasic firing) from 

the VTA into the NAc. Increased DA activity was also found to be associated 

with participants' self-reports of experiencing 'high', with greater 'high' ratings 

reported by those administered the higher dose of MP. According to these 

results reward processing is mediated by phasic DA firing. 

Robinson and Berridge (2001; 2003) suggest that repeated use of drugs of abuse 

leads to alterations in the mesocortical limbic system and, by doing so, render 

the system hypersensitive to drugs and drug-related stimuli, which is responsible 

for further drug-seeking and consuming behaviours. In other words, extensive 

use of these substances increases the salience of drug-related cues, because of 

their positive incentive value, and it also leads to consummatory motivated 

behaviour. F or example, Mendrek and colleagues (1998) observed that 

compared to naIve rats, those pre-treated with amphetamine showed a greater 

break point (number of drug self-administrations) under a progressive ratio of 

administration (i.e. higher motivation). In other words, amphetamine pre

treatment sensitises the system to drugs, possibly, by modifying the meso limbic 

system and its reactivity to drugs and rewards in general. 

A study by Fiorino and Phillips (1999) shows that intraperitoneal (IP) injections 

of psycho stimulants should also increase the incentive properties of natural 

rewards and, therefore, enhance goal-directed behaviour to obtain them. More 

specifically, the study showed that amphetamine, as opposed to saline, 

administration facilitated sexual behaviour in male rats. Similar results were 

obtained by Wyvell and Berridge (2000) who observed that DA micro-injections 

into the NAc led to increased lever pressing for sucrose administration in the 
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presence of reward-related cues. An fMRI study by Knutson and colleagues 

(2004) explored the effect of one oral administration of amphetamine on 

performance during a monetary incentive delay (MID) task. During this task, 

human participants had to decide whether to respond to a stimulus or withhold 

their responses (go-nogo task), basing their decisions on the preceding cue. The 

cues indicated whether responding to the stimulus had a potential gain or a 

potential loss outcome. Results showed that amphetamine, compared to placebo, 

administration was associated with a blunted but prolonged activation of the 

ventral striatum during expectation of gains. Since ventral striatal activation is 

supposed to be an index of DA activation (Schultz, 2002), the results suggest 

that amphetamine administration increased tonic but reduced phasic DA 

activity. 

2.3 Learning and reward - DA mediation 

DA release is not only associated with natural rewards and consumption of 

addictive drugs. In fact, phasic DA release in the VTA has been found to be 

activated by visual and auditory conditioned stimuli that are predictive of 

rewards. This association occurs through learning and, more specifically, via 

classical and operant conditioning (Schultz, 1998). Hence, DA activation is 

related not only to the presentation of reward but also to reward prediction that 

can be elicited by conditioned cues (Schultz, et aI., 1997; Schultz, 1998; 

Knutson et aI., 2004). In fact, animal studies have indicated that DA neurons 

show phasic firing in response to visual and auditory stimuli that, following 

conditioning, act as reward predictors and are able to trigger approach behaviour 

(Schultz, et aI., 1997; Schultz, Tremblay & Hollerman, 2003; Schultz, 2006). 

Hence, the reward predicting cues adopt the values which are characteristic of 

the natural reward, according to classical conditioning processes. 

Classical and operant conditioning reflect associations between two events. In 

the case of classical conditioning the association made is between two stimuli 

(stimulus-stimulus association) whereas in the case of instrumental conditioning 
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the association learnt is between a stimulus and the adequate response (stimulus

response association), which leads to reward (Corr, 2006). 

On the one hand, the main assumption of the classical conditioning model is that 

after pairing a neutral stimulus with a stimulus with primary reward properties, 

the neutral stimulus acquires the rewarding properties of the natural reward and 

produces the same response (Corr, 2006). A few rewards seem to elicit innate 

vegetative or muscular responses but the majority of rewards are learnt 

throughout life (Schultz, 1998). 

On the other hand, the main assumption made by the instrumental conditioning 

model is that each response made by an individual is followed by feedback from 

the environment. Depending on the kind of feedback received, individuals will 

determine whether such actions should be re-enacted in the future when 

presented with similar circumstances. Thus, reward acts as a positive reinforcer 

by enhancing learning of a stimulus-response association which is of value to 

the individual (Schultz, 2006). 

The main difference between classical conditioning and instrumental learning is 

that in classical conditioning the outcome follows the stimulus without the need 

of any voluntary action to be produced, while in instrumental conditioning the 

outcome is obtained as a result of a voluntary response to the present stimulus or 

circumstance (Schultz, 2006). Rewards and DA activation reinforce both types 

of associative learning. In the case of classical conditioning, the stimulus 

conditioned becomes more salient and acquire properties typical of primary 

rewards (Schultz, et aI., 2003). In operant learning the correct response becomes 

more salient and, therefore, more likely to be adopted in the future (O'Doherty, 

2004). 

Animal studies have observed that after learning has occurred, the conditioned 

cue acts as a predictor of the reward probability, magnitude and timing (Abler, 

Walter, Erk, Kammerer & Spitzer, 2006). Moreover, the cue alone is able to 

elicit DA firing and approach behaviour (Schultz, et aI., 1997). DA firing to 

conditioned rewards shares the main characteristic of firing to natural rewards, 
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although the phasic response is slightly weaker (Schultz, 2002). Indeed, the 

magnitude of the activation is smaller and the number of neurons responding is 

lower than when firing is activated by primary rewards (Scultz, 1998; 2002). 

The timing of the firing is also modified. Indeed, prior to learning DA fires in 

response to unpredicted reward delivery (figure 2.2a) whereas once task 

performance is established, DA fires in response to the reward-predicting cue 

but not to the actual reward (figure 2.2b; Schultz, et aI., 1997; Mirenowicz and 

Schultz, 1994; Schultz, 2002). Observations have indicated that, following cue

reward learning, if no reward is delivered following the cue presentation, DA 

firing is depressed below basal firing rate at the time when reward would 

usually be delivered (Schultz, et aI., 1997; Schultz, 1998; figure 2.2c). 

No prediction 
Reward occurs 

Reward predicted 
Norewardoc:curs 

[;N~i~~; ';;~';I 
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Figure 2.2. DA cell recording of the relationship between DA activity and reward, evidence 
for reward prediction error (CS = conditioned stimulus; R = reward). From: Schultz W. 
(1998), Predictive reward signal of dopamine neurons, Journal of Neurophysiology, 80(1), 
pp.1-27. 

Several animal studies have indicated that following both classical and operant 

learning, conditioned stimuli can elicit DA phasic firing similar to activation 

caused by natural rewards. For example, in a study conducted by Ljungberg and 

colleagues (1991) monkeys learned to lever press when instructed by a light to 
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press the lever in order to receive liquid reward. DA neurons were found to 

respond both to reward administration and the conditioned stimulus. Similar 

results were obtained when monkeys were trained to reach out in order to obtain 

food morsels when a box door opened. In this study DA fIring was associated 

both to reward presentation and the conditioned stimulus (i.e. door opening). 

In a study by Schultz and colleagues (1993) monkeys were gradually trained to 

perform on a delayed response task via two transitional spatial tasks. In the three 

tasks, in order to receive a liquid reward monkeys had to learn to press the 

correct lever (right vs. left) when instructed by a light. Performance was 

dependent on two stimuli (lights), a trigger light and an instruction light. The 

former indicated when the response had to be made while the instruction light 

indicated which lever had to be pressed to receive the reward. DA activity was 

recorded at different stages of learning: the initial training stages and later stages 

when performance is established. Results indicated that during the training 

stage, DA cells fIred (especially in the VTA) in response to reward presentation 

and to both the instruction and trigger stimuli (CS). In the later stages of 

learning reward delivery did not lead to DA fIring whereas DA fIred in response 

to the two conditioned stimuli. These observations applied to the three different 

tasks. Additionally, data indicated that once monkeys reached stable 

performance, DA fIring in response to both primary rewards and conditioned 

cues was signifIcantly reduced (Schultz, 2003) 

These results were replicated in a study by Mirenowicz and Schultz (1994) 

where monkeys were trained to lever-press to obtain liquid reward when 

prompted by a sound. Results showed that during the initial stages, DA fIred in 

response to the presence of the conditioned stimulus (i.e. sound) as well as in 

response to reward delivery. In contrast, in the later stages of training, when 

conditioning had occurred, DA fIred only in response to the conditioned 

stimulus but not in response to the actual reward. Similar results were obtained 

by Hollerman and Schultz (1998) who observed that DA activity was greater 

during the early phase of learning while rewards were unpredictable but DA 

fIring stopped once learning had established. Results from these studies support 
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the assumption that the conditioned stimulus is also able to elicit the approach 

response that would have been elicited by primary rewards (Schultz, 1998). 

An fMRI study was conducted on humans to explore DA levels in the NAc 

during performance on a monetary incentive delay (MID) task with varying 

reward probability (0%,25%,50%, 75% and 100%; Abler et aI., 2006). Results 

indicated that during the reward prediction period, the phasic activity of the 

NAc increased linearly as a function of reward probability. Similarly, during the 

outcome period there was a linear relationship between the NAcc activity and 

RPE, so that the NAc activity was found to be higher with the most positive 

RPE. All these results show that DA activation is associated to reward 

unpredictability. Therefore, they support the claim that DA fires to primary 

reward stimuli only during learning but this activity stops once learning has 

established. 

Pessiglione and colleagues (2006) conducted an MRI study to explore the 

effects of L-DOPA (i.e. DA agonist) and haloperidol (i.e. DA antagonist) 

administration during performance on an instrumental learning task where 

participants had to respond to one of two stimuli, in order to earn money. Each 

stimulus was associated with a potential loss, gain or neutral monetary outcome. 

L-DOPA administration, compared with haloperidol, was found to enhance 

responding to the gain-related stimuli and it was also associated with increased 

activity in the ventral striatum, which reflected greater RPE signals. The 

opposite pattern was observed in participants who had been administered 

haloperidol, which inhibits DA activation. The results indicate that reward

related decision-making is modulated by DA function (especially, reward 

prediction error; RPE). 

Further evidence that indicates the important role played by DA in reward 

processing comes from patients' data. Indeed, never-medicated schizophrenics 

showed reduced activation in the ventral striatum (esp. NAc) during anticipation 

of reward while performing on a MID task compared to healthy controls (Juckel 

et aI., 2006a). Reduced striatal activation was positively correlated with both 

negative and (as a positive trend) with positive symptoms. The authors 
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suggested that reduced reward sensitivity resulted from high tonic DA activity, 

which decreases the signal-to-noise ratio and, therefore, interferes with normal 

processing of reward and reward-related cues (Juckel et aI., 2006a). In a follow

up study, schizophrenic patients treated with typical neuroleptics, showed a 

blunted activation of the ventral striatum, similar to that observed in the earlier 

study of unmedicated SZ patients (Juckel, et aI., 2006b). The researchers 

suggested that these effects are due to the primary effects of typical neuroleptics 

to block D2 receptors and, subsequently, blunt the reward system and worsen 

negative symptoms. These results suggest that higher tonic DA levels hinder DA 

phasic response to reward (prediction error). This assumption is supported by 

results showing that SZ patients treated with atypical neuroleptics, which do not 

blunt the DA system, showed the same levels of ventral striatal activation as 

healthy controls (Juckel et aI., 2006b). 

Finally, these observations are supported by the study by Knutson and 

colleagues (2004), which showed that during an MID task, amphetamine 

administration increased tonic DA levels but blunted DA phasic responses in 

response to potential gains (SZ-like activations). Murray and colleagues (2007) 

found that patients with positive psychotic symptoms showed lower DA 

activation in the ventral striatum, which was associated with weaker RPE 

signals, compared to healthy controls during performance on a reward learning 

task. During the task, participants had to respond to one of two stimuli to earn 

money. Each pair of stimuli was constituted by one high reward probability 

(RR) stimulus and one low reward probability (LR) stimulus. Results showed 

that patients tended to respond to the HR stimulus less frequently than the 

healthy controls (although this difference was non-significant). 

Evidence from human opiates addicts indicated that drug-related cues elicit 

drug-like positive motivational and physiological states (i.e. 'opiate-like 

euphoria'; Stewart, et aI., 1984, p.260). This phenomenon is observed in needle 

freak behaviour amongst former opiate addicts and it is associated with 

increased DA activation in the midbrain (Steward, 1984). These findings further 

indicate that conditioned cues acquire the same appetitive properties of primary 

rewards through associative learning. 
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As already noted, DA activation only occurs when reward incidence is 

unpredictable and it does not occur when reward delivery is fully predicted by a 

stimulus or a cue that has been previously experienced to precede rewards 

(Schultz, 1998; Schultz, 2002). Once a reward becomes fully predictable, DA 

phasic fIring and, subsequently, learning terminates (Hollerman & Schultz, 

1998). DA activity in response to reward is affected by the unpredictability of 

the reward timing and the actual occurrence of reward (Schultz, 2002; Schultz, 

et aI., 2003). 

Animal studies show that DA activation varies throughout learning and it also 

indicates that once learning has fully occurred DA fIring ceases (Mirenowicz & 

Schultz, 1994; Hollerman & Schultz, 1998; Schultz, 1998; Schultz et aI., 2003). 

In an fMRI study conducted by Delgado and colleagues (2005), human 

participants had to guess whether the value of a card they were about to see was 

high or low (card values ranged between 1 and 9). They were instructed to base 

their decision on the preceding cue. There were fIve different cues and each 

contained probability information of the next card value. Results showed that 

DA activity (in the caudate) was greater in the initial stages of performance and 

decreased as learning progressed and the cues became effective predictors of the 

card value and, therefore, reward. 

The loss of DA fIring cannot be attributed to reduced reward sensitivity, as in 

fact DA activity is reinstated when rewards are administered outside the task 

(Mirenowicz & Schultz, 1994; Hollerman & Schultz, 1998; Apicella, 

Ljungberg, Scarnati & Schultz, 2001). DA fIring seems to be related to reward 

unpredictability rather than reward presentation per se. Indeed, the main 

difference between learning and acquired knowledge lies in reward 

unpredictability. Once learning has terminated the reward occurrence can be 

predicted by the conditioned stimuli and DA does not fIre. 
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2.3.1 RPE 

The ability to make reward predictions is adaptive for the organism since it 

allows the animal (including humans) to produce adequate behavioural 

responses that will increase the chance of earning reward. In particular, animals 

seem able to predict the magnitude, probability and timing of the future reward 

based on their previous experience (Schultz et aI., 1997; Schultz, 1998). 

The data reported above indicate that DA fires in response to both unexpected 

and underpredicted rewards. Therefore, the data suggest that DA is responsive 

to reward unpredictability rather than to reward per se and that DA-driven 

learning only occurs when rewards are unpredictable (Schultz, 1998). 

During the early stages of learning during a go-nogo task, performance relies on 

guessing and reward is predicted to occur at a chance which represents a reward 

expectation (i.e. prediction). The reward prediction is then weighted against the 

actual reward outcome. The difference between the actual and the predicted 

reward represents the reward prediction error (RPE). If the RPE is different 

from zero, the reward is partially unpredictable and learning is required. 

Moreover, a correct response would lead to a reward, which represents a 

positive prediction error whereas an incorrect response would lead to a 

punishment or a non-reward, which represents a negative prediction error 

(Schultz, 2002). As learning progresses, RPE approaches zero, which represents 

total predictability of the reward. 

A study by Tobler and colleagues (2005a) indicated that the unpredictability of 

reward magnitude also leads to positive or negative RPE, if the reward obtained 

was greater or smaller than the predicted one, respectively. These results taken 

together suggest that, owing to the unpredictability of reward magnitude, 

probability or timing, animals formulate outcome expectations that can either 

match or mismatch the actual outcome. Thus, RPEs guide future behaviour and 

expectations (Schultz, 1998; Cromwell & Schultz, 2003). 
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Since DA neurons fIre in response to reward unpredictability, they may be 

sensitive to reward prediction errors and their phasic activation can be 

considered to reflect an RPE signal, which can be formalised in the equation 

below: 

Phasic DA response = f(Reward occurring - Reward expected) Eq.2.1 

where fO means "a function of'. 

A positive prediction error is associated with increased DA fIring whereas a 

negative prediction error is associated with DA depression below baseline levels 

(Schultz et at, 1993; Schultz, 1998; 2002). In a study by Schultz and colleagues 

(2003) when a monkey made a wrong response, reward delivery failed to occur, 

which led to DA depression at the time when reward delivery was expected. 

Since feedback was administered 500 msec after the response had been made, it 

is possible to affIrm that DA depression was not determined by the incorrect 

response per se but it was a direct result of mismatch between the reward 

prediction and the actual outcome (i.e. it reflects a negative RPE). 

Once learning has terminated and the individual has mastered performance on 

the task, the reward prediction will be equal to the actual reward. Therefore, the 

RPE value will be equal to zero and according to the equation above there will 

be no phasic DA activation (Schultz, 1998; 2006), and thus no DA-dependent 

learning. 

The assumption that the RPE is crucial to learning is supported by studies that 

explored Kamin's 'blocking' paradigm (Schultz, 2002; Corr, 2006). These 

studies indicate that once associative learning between a conditioned stimulus 

(CS) and a reward has occurred, a new CS cannot become conditioned to predict 

the reward in spite of being paired with the predictor. 

An fMRI study conducted by Tobler and colleagues (2005b) used the blocking 

paradigm to observe how blocking affects appetitive learning. They trained 

participants to respond to different visual stimuli. During the pre-training phase 
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one stimulus was followed by reward (A+) whereas the other was not followed 

by reward (B-). Participants had to indicate on what side of the screen the 

stimulus appeared by pressing the corresponding button. In the training phase 

the stimulus X was associated with A + to create the AX + compound which 

predicted reward; while the stimulus Y was associated with B- to create the 

BY + compound which also predicted reward. In the test phase, the X and Y 

stimuli were tested alone to assess appetitive learning. As expected, participants 

showed shorter R T in response to A and Y than to the neutral B stimulus and the 

blocked X stimulus. Behavioural results were associated with phasic activation 

in the putamen and the orbitofrontal cortex. Results showed that phasic 

responses were greater for the non-blocked stimulus (Y) than for the blocked 

one (X), which suggest that the blocked stimulus may have not led to phasic DA 

firing in the striatum, which is a critical brain area involved in reward prediction 

signals (Schultz, 1998). 

The fMRl study conducted by Tobler and colleagues (2005b) observed that the 

activation of the medial orbitofrontal cortex (OFC) was greater for non-blocked 

stimuli compared to the blocked ones. Moreover, this activation was positively 

associated with learning levels and it ceased when learning terminated. Similar 

observations were made for the ventral putamen. In fact, activation in the ventral 

putamen was associated with learning and it was only observed for non-blocked 

stimuli but not for the blocked ones. The OFC seems to be responsible for 

reward processing in relation to reward magnitude (Cromwell and Schultz, 

2003). 

These results suggest that the medial orbitofrontal cortex (OFC) and the 

putamen are also involved in processing reward prediction errors. O'Doherty 

(2004) reviewed several fMRl studies looking at conditioning of reward and 

results show that OFC and the ventral putamen are active during RPE 

processing. O'Doherty and colleagues (2001) also found that medial OFC 

showed increased activation that was proportional to the monetary reward 

magnitude. 
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Moreover, these researchers have suggested that coding of the RPE in the OFC 

may be mediated by DA projections into these regions (Tobler et aI., 2005b; 

O'Doherty, 2004). Contrary to DA responses that are sensitive only to reward 

occurrence/prediction, responses from these brain areas are capable of 

discriminating the different nature (e.g. liquid or visual) and magnitude of 

rewards and, therefore, can modulate motivated approach behaviour (Schultz 

1998; 2002). Subsequently, the striatum may use RPE information to learn the 

adequate motor response (Cromwell & Schultz, 2003). In fact, the striatum is 

involved in the control of movement as indicated by patients' data that indicate 

that damage to midbrain projections into the striatum is associated with PD 

(Carlsson, 2002). 

2.4 The three-factor neural model of learning 

The striatum receives projections from the midbrain DA system and sensory 

inputs from several areas of the cortex; for example the putamen receives inputs 

from somatosensory and motor areas while the caudate receives visual and 

auditory inputs from the associative areas. In contrast, the NAc receives input 

from the OFC. The striatum indirectly projects back into the prefrontal and 

premotor cortical areas (Ashby and Ennis, 2006). It is assumed that the striatum 

develops an abstract motor plan to deal with different stimuli and circumstances. 

The motor plan is subsequently sent to the premotor cortical areas, which will 

produce the actual motor response. In other words, the striatum is involved in 

creating adequate stimulus-response associations via procedural (i.e. implicit) 

learning (Schultz, 1998; Ashby et aI., 2007). 

Dopamine RPE signals have both immediate and long-term effects. The 

immediate effects of DA signals are to increase the signal-to-noise ratio, which 

filters incoming information into the striatum. In particular, strong rather than 

weak inputs are processed and this selection affects the behavioural response. 

Indeed, DA activity may act as a selective filter for reward-related stimuli which 

lead to a shift in favour of processing and approaching these stimuli (Schultz, 

1998; 2002; Franken, Booij & van den Brink, 2005a). Long-term effects ofDA 
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signals are associated with reward-related learning as a result of synaptic 

changes. In fact, DA firing is thought to act as a teaching or reinforcing signal at 

the synapse and, therefore, it produces synaptic plasticity according to Hebb' s 

theory (Sutton a& Barto, 1981; Schultz, 2002). 

The main assumption of Hebb's theory is that 'cells that fire together wire 

together' (Corr, 2006, p. 223). Indeed, Hebb suggested that an active synapse 

between a group of cells ('cell assembly') may lead to long-lasting structural 

changes that strengthen the synapse. A result of these structural changes is the 

increased effectiveness of the synapse. This is knows as a Hebbian synapse and 

neural evidence that supports this theory come from studies on long-term 

potentiation and long-term depression (LTP and LTD; Corr, 2006). LTP is 

associated with strengthening of synapses whereas LTD results in a weakening 

of synapses (Carlsson, 2002). 

Several experiments have shown that synaptic plasticity occurs when glutamate 

NMDA receptors are activated. Once the post-synaptic cell is partially 

depolarised by glutamate binding onto the NMDA receptor, the calcium ion 

channel, usually closed by a magnesium ion, opens allowing further 

depolarisation of the post-synaptic membrane (Carlsson, 2002). A strong pre

synaptic glutamate signal is necessary to obtain sufficient depolarisation in the 

post-synaptic cell to open the calcium channel (Carlsson, 2002; Ashby and 

Ennis, 2006). 

DA firing signals have been identified as the teaching signals that mediate 

implicit learning that requires the activation of the striatum (Schultz, 1998; 

Grace, Floresco, Goto & Lodge, 2007). Therefore, DA is also involved in long

term potentiation and log-term depression, which mediate procedural learning 

(e.g. during performance on an II CL task; see chapter 1). Many authors have 

suggested that three factors are involved in procedural learning, the three factors 

are: 1) pre-synaptic activation (glutamate signal), 2) post-synaptic activation 

(NMDA depolarisation) and 3) phasic DA signal (RPE; Ashby et aI., 1998; 

Ashby & Ennis, 2006; Ashby et aI., 2007; Seger, 2008). 
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Before neuroscientific data implicated DA as one of the three factors discussed 

above, a closely related three-factor model was formalised in the Rescorla

Wagner (1972) learning rule, and this can be interpreted as a rule that accounts 

for synaptic changes (Schultz, 2002). The Rescorla-Wagner's rule captures 

associative learning by assuming that over-repeated pairings of the 

unconditioned stimulus (DCS) and the reward learning progresses according to 

the rule in equation 2.2 below: 

AV= ap(l-V) Eq.2.2 

where A V represents the change in the associative strength (V) of the stimulus, 

a and p are constants indicating the saliency value of the unconditioned stimulus 

and the reward stimulus, respectively. Additionally, A represents the maximum 

associative strength that the reward can support (Schultz, 1998). The difference 

(A-V) indicates the unpredictability of the reward and, therefore, it represents the 

reward prediction error term. Indeed, when A=V the UCS fully predicts the 

reward and no further (associative) learning occurs. 

The three-factor rule of synaptic weight changes, which characterise operant 

conditioning (procedural learning), is expressed in the equation 2.3 below: 

Am = E *r* i * 0 Eq.2.3 

where AID indicates the change in a synaptic weight (strength), t is a learning 

rate constant, r represents the DA RPE signal (equation 2.1), i indicates the 

strength of the presynaptic input signal and 0 indicates the strength of the 

postsynaptic activation or output (Schultz, 2002). A positive RPE will determine 

LTP (AID will be positive) whereas a negative RPE will determine LTD (AID 

will be negative), i.e. a weakening of the stimulus-response activation which 

was not associated with the expected reward. Moreover, DA signals strengthen 

or weaken only the active synapses that are responsible for the response that led 

to the reward (or non-reward) and so can train appropriate stimulus-response 

associations (Ashby et ai., 2007). 
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In addition, evidence shows that for procedural learning to occur all three 

factors described by the model need to be present. Additionally, the timing of 

the DA signal is important for learning to occur. Indeed, DA has to be released 

shortly after the post-synaptic activation has occurred so that the DA signal can 

strengthen the active stimulus-response synapses that led to reward (Schultz, 

1998; Maddox et aI, 2004). In other words, the DA release needs to occur while 

the synapse is still depolarised otherwise the reinforcing DA signal will not be 

able to strengthen the correct stimulus-response association once it is no longer 

active. 

A study by Maddox and colleagues (2003) explored the impact of delayed 

feedback during performance on a procedural (II) CL task. They observed that 

delays as short as 2.5 seconds impaired performance compared to immediate 

reward delivery. These results indicate that the timing of reward administration 

is crucial to procedural learning. In order to ensure learning, rewards need to be 

administered within a few seconds of responding while the active synapse is still 

depolarised (Ashby et aI., 2007). 

According to the three-factor model, then, all three factors should be present to 

observe synaptic changes and procedural learning to occur. The stimulus input 

should be strong enough to elicit post-synaptic activation and each response 

should receive a reward. Indeed, if the stimulus is not sufficiently salient the 

post-synaptic cell will not be depolarised. Similarly, evidence indicates that 

procedural learning does not occur when trial-by-trial reward is not provided 

(Ashby et aI., 1999). 

2.5 Summary 

The aim of the chapter was to explore the role played by DA pathways in 

reward processing and assess how DA activation mediates reward-related 

learning. 
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Evidence from electrical and chemical stimulation studies and the addiction 

literature have identified the midbrain DA projections as the central system that 

is involved in reward processing and motivation. Moreover, animal and human 

studies have indicated that phasic DA firing is associated with reward 

processing and motivated responding. Hence, these results represent the main 

source of evidence that supports the central role played by DA in directing 

approach behaviour. 

These studies have allowed us to identify the basic principles underlying 

reward-processing, motivation and reward-related learning. Finally, the insight 

offered by animal and human research has allowed us to develop computational 

models that can formalise learning and facilitate further explorations of the topic 

of motivation and learning (see chapter 7). 
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Chapter 3 

Reinforcement sensitivity theory 

3.1 Chapter aims 

The present chapter aims to introduce the reader to personality and in particular 

to a major biological personality theory developed in the 1970s by Jeffrey Gray. 

This theory, now known as Reinforcement Sensitivity Theory (RST), states that 

individual differences in personality are determined by inter-individual variation 

in emotional-motivational systems. The theory offers a biological explanation 

for individual differences and personality. The theory postulates the existence of 

three systems which interact with each other for behavioural control. This 

chapter will introduce a brief history and overview of the model and it will 

present the three motivational-emotional systems. However, it will mainly focus 

on the system involved in reward processing and motivation in order to show 

the hypothesised links between reward-processing and personality. 

3.2 Introduction 

Eysenck's (1967) arousal theory is one of the main biological theories of 

personality and it considers personality and psychopathology as a continuum 

where clinical disorders lie at one extreme of normal behaviour (Eysenk, 1997). 

In 1944, Eysenck gathered individual data based on a medical checklist from 

700 neurotic individuals and factor-analysed the data. By doing so, he extracted 

two dimensions of personality: extraversion (E) and neuroticism (N; Carver and 

Scheier, 2003; Corr, 2006). These two factors are considered to be orthogonal 

and each factor is continuously distributed. In 1952, a third personality trait was 

added to the theory; this trait was psychotic ism, which was thought of as a 

measure related to psychotic conditions such as schizophrenia (Corr, 2006). 

Eysenck's theory aimed to build a link between personality and biological 

functions, especially focusing on cortical excitation and inhibition. In the 1960s, 

a particular structure in the brainstem had been discovered and it was held 

responsible for the regulation of cortical arousal, which is responsible for 
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alertness, concentration and sleep-waking cycles (Bullock and Gilliland, 1993). 

This structure was known as the 'Ascending Reticular Activating System' 

(ARAS) and it was supposed to activate or deactivate the cerebral cortex. 

Eysenck suggested that extraverts and introverts differed in their level of 

activation in the ARAS (i.e. cortical arousal). Moreover, differences in arousal 

were expected to determine individual differences in every day life. Low arousal 

characterised high extraverts who are defined as sociable, outgoing, and 

enthusiastic individuals (Hogan, 1997). In contrast, high arousal was considered 

typical of introverts who are defined as withdrawn, shy and reserved (Hogan, 

1997). Neuroticism was postulated to mediate sensitivity to emotional stimuli 

and situations (i.e. emotionality) and to regulate the activation of the autonomic 

nervous system (Gray, 1970; Corr, 2004). 

Starting from a critique to Eysenck's theory, Jeffrey Gray developed an 

alternative biological personality theory, the reinforcement sensitivity theory 

(RST; Gray, 1970; Corr, 2006). Indeed, after reviewing evidence from animal 

and human studies, Gray (1970) suggested that Eysenck's theory should be 

modified. This evidence indicated that introverts are more responsive to stimuli 

related to punishment and non-reward whereas extraverts are more sensitive to 

stimuli associated with reward and punishment relief. Moreover, neuroticism 

was considered to be responsive to reinforcing stimuli which are predictive of 

either punishment or reward. Hence, varying degrees of neuroticism reflect the 

overall levels of sensitivity to either reward or punishment. 

Following these observations, Gray (1970; 1987) suggested that the relationship 

between Nand E traits determines the sensitivity to reward or punishment and, 

therefore, the axes representing E and N should be rotated by 30° to obtain the 

personality components, which align more directly with the corresponding 

biological system. The two traits proposed by Gray are: Impulsivity and 

Anxiety. The impulsivity personality trait (Imp) ranges from E+/N+ (high Imp) 

to E-/N- (low Imp) while the Anxiety personality trait (Anx) ranges from E-/N+ 

(high Anx) to E+/N- (low Anx; Corr, 2002). In this scheme, impulsivity reflects 

sensitivity to reward whereas Anxiety reflects sensitivity to punishment. As 

impulsivity levels increase, reward sensitivity also augments whereas sensitivity 
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to punishment is constant (Smillie, Pickering & Jackson, 2006a). The opposite 

pattern was argued to be true for anxiety. 

RST is a theory-driven model of personality that relies on the assumption that 

individual differences derive from the variation in the activation of emotional 

and motivational systems across individuals (Smillie et aI., 2006a). Initially, the 

theory was interested in explaining animalleaming and, therefore, it aimed to 

explore the interplay between motivation, emotion and learning. In a subsequent 

stage, emotional and motivational biological systems were proposed to be 

related to personality. 

Over the years, some of the main RST principles have been reviewed in light of 

findings obtained in animal and human studies. These modifications have fmally 

led to a revised version of the theory (Gray & McNaughton, 2000; Corr, 2004a; 

McNaughton & Corr, 2004; Smillie, et aI., 2006a). The revised theory offers a 

more detailed description of the motivational-emotional systems, their functions 

as well as their neural basis (Corr, 2004a). 

3.3 Revised RST 

According to the revised version of RST model there are three main systems of 

emotion that mediate motivation and learning, which are the Behavioural 

Activation System (or Behavioural Approach System; BAS), the Fight, Flight 

and Freezing system (FFFS) and the Behavioural Inhibition system (BIS; 

McNaughton & Corr, 2004; Smillie et aI., 2006a, Corr, 2006). The BAS is 

sensitive to reward and reward-related stimuli (also punishment relief stimuli; 

Gray, 1970; Schultz, 1998) and it directs motivated behaviour towards positive 

goals. This system is associated with positive emotions/affect (Corr, 2006). 

Behaviour mediated by the BAS to obtain reward is known as 'Approach 

Behaviour' whereas BAS-directed behaviour which aims to obtain punishment 

relief is known as 'Active Avoidance' (Smillie and Jackson, 2005). 
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The BAS system is supposed to lie in neural regions which are involved in 

reward processing and motivation, i.e. the midbrain DA projections from the 

VTA and the SNpc into the striatum and the prefrontal cortex (Schultz, 1998; 

2002; Gray, 1987; Pickering, 2004; Corr, 2006). The FFFS represents the 

complement to the BAS as it is sensitive and responsive to both natural and 

conditioned stimuli associated with punishment (Corr, 2006; Smillie et aI., 

2006a). In the original version ofRST this function used to be performed by the 

BIS, but in the revised theory the BIS is a conflict resolution system (see details 

below). The emotional states associated with activation of the FFFS is fear and 

panic which are states experienced in the presence of threats and aversive 

stimuli. Thus, this system is considered to be associated with negative affect 

(Corr, 2006; 2008). The neural substrate of this system has been identified to be 

the amygdala, anterior cingulate, medial hypothalamus and the periaqueductal 

grey (McNaughton & Corr, 2004). 

The potential behavioural responses in the presence of threats and aversive 

stimuli are, as suggested by the name of the system, fight or freezing and flight. 

Which one of the three behaviours will be more dominant depends on the 

distance between the actor and the threat ('defensive distance'; Corr, 2006, p. 

540). The freezing and flight responses are viable only when there is sufficient 

distance from the threat; however flight occurs when escape is possible 

otherwise the animal will freeze (e.g. if caught in a trap). When the distance is 

small, the only possible response available is 'fight'. The personality correlates 

of the FFFS are unclear; however, since it is a fear system the high-end may 

represent traits, such as fearfulness, that are components of neuroticism (Corr, 

2008; Pickering, 2008). 

The BIS is a goal conflict detection and resolution system which becomes active 

when both the BAS and the FFFS system are concurrently and similarly active 

and, therefore, they are competing for control. In this type of situation, the 

individual is presented with a conflict of interest where both rewards and actual 

or potential punishments are present (e.g. drinking an extra glass of wine 

knowing one has to drive home and may be stopped by the police). Conflict can 
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also anse ill the presence of two competing rewards or two competing 

punishments (McNaughton & COIT, 2004). 

In order to resolve the conflict the BIS shows cautious approach behaviour 

which requires termination of any ongoing behaviour and it involves risk 

assessing and behavioural caution, increased arousal and attention in response to 

external stimuli (COIT, 2006). In other words, the BIS interrupts any ongoing 

behaviour to assess what strategy is optimal and it does so by evaluating both 

the circumstances and the reinforcement value (Smillie, et aI., 2006a). Hence, 

the BIS is supposed to be associated with the experience of anxiety states and, 

therefore, the relationship with the FFFS system (which is linked to fear) is 

unclear. The BIS resolves the situation by favouring the activation of either the 

BAS or the FFFS (COIT, 2006; 2008). However, it is generally organised so as to 

favour the FFFS by inhibiting the BAS and, subsequently, stimulating the FFFS. 

This is achieved by increasing the negative valence of the stimulus or situations 

(Smillie, et aI., 2006a; COIT, 2008). 

In line with the theory which stresses the important role played by the BIS in 

evaluating the emotional valence of stimuli and situations, the BIS is supposed 

to lie in neural areas such as the hypothalamus and the limbic system that are 

involved in activation of the autonomic nervous system and in mediating 

motivated behaviour and emotion, respectively (Gray, 1970; Carlsson, 2002; 

COIT, 2004a; COIT 2006). The main brain structures that underlie the BIS are the 

amygdala and the septo-hippocampal system (Gray, 1987; McNaughton & COIT, 

2004; Fowles, 2006). 

3.4 The interacting nature of the systems 

The original RST theory postulated that the three systems and their underlying 

personality traits were orthogonal and independent from each other (Gray, 

1987). However, more recent considerations have led to the conclusion that 

these systems (and possibly their associated traits) may actually be functionally 

interdependent (COIT, 2002a, 2004a; Smillie, et aI., 2006a). Indeed, it has been 
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indicated that the BAS and the FFFS systems compete for behavioural control 

by mutually inhibiting each other and, eventually, the conflict is resolved by the 

BIS which inhibits one of the two systems and indirectly enhances the other. 

Therefore, in order to observe a pure BAS or FFFS activation it is necessary to 

use a reward- or a punishment-only payoff matrix (Pickering and Gray, 2001) or 

if using mixed payoff matrices, it may be necessary to test only individuals who 

are hyper-sensitive to rewards or punishments, respectively (Corr, 2002b). 

Otherwise, it is necessary to render the rewards or the punishment highly salient 

(Corr, 2002b). If neither of these requirements is fulfilled, then all the three 

systems are active at the same time and, therefore, personality measures 

underlying the three systems may be found to mediate performance and 

participants' choices (i.e. joint subsystem hypothesis; Corr, 2002b). This is true 

in most situations experienced in every-day life as opposed to experimental 

settings. Moreover, this consideration may account for the mixed results 

obtained in studies exploring RST. Indeed, evidence in support of the revised 

RST comes from both psychometric and experimental observations and studies. 

For example, Pickering and Gray (2001) reviewed several studies that attempted 

to identify the BAS underlying personality traits but showed inconclusive 

results. They indicated that most of these studies used mixed incentives 

feedback which would account for the results showing an activation of either the 

FFFS alone or an interaction between FFFS and BAS in mediating reward 

processing. For example, in a study carried out by Ball and Zuckerman where 

participants saw a pair of stimuli on each trial, one being the target and the other 

the distractor, participants had to learn to discriminate the target stimulus from 

the distractor. The visual stimuli varied on eight bivariate dimensions, but only 

two of the eight dimensions were relevant to determine whether the stimulus 

was a target or not. Learning was reinforced by feedback (verbal vs. monetary) 

which was delivered either in a reward-only or a punishment-only matrix. 

Results showed that participants who scored high on the sensation seeking scale 

(a measure of impulsivity) and those who scored high on neuroticism performed 

better (i.e. required fewer trials to reach criterion) than their low scoring 

counterparts. These results show that potential FFFS- and BAS-related measures 

mediated performance, regardless of payoff matrix. Moreover, a study carried 
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out by Zinbarg and Revelle (1989) showed that both the BAS and the FFFS 

systems mediated learning during a discrimination go/no-go learning task where 

both punishment and reward cues were presented. Participants had to learn to 

discriminate between cues that predicted whether a key press would lead to 

monetary winning or to monetary loss (25 cents). Indeed, results showed that 

performance on the task (which was a measure of learning over trials) was 

mediated by an interaction between impulsivity and anxiety (Imp x Anx). In 

fact, individuals with low scores on impulsivity and high on anxiety and those 

with high scores on impulsivity and low on anxiety showed better performance 

than the other two combinations. A similar discrimination task was used by 

Zinbarg and Mohlman (1998) and the same personality measures were taken 

into consideration. Results showed that performance (i.e. avoidance learning) 

was mediated by an interaction between anxiety and impulsivity (Imp x Anx). 

Contrary to the original results, they observed that individuals who scored high 

on both impulsivity and anxiety learned to withhold responses to the punishment 

cues. However, when feedback was ego-relevant (i.e. winning or losing "IQ 

points") anxiety alone was found to be associated with performance. Hence, 

these results show that feedback manipulations can modulate and identify 

individual differences during learning. 

Contrary to the assumptions made by the original RST, impulsivity was found to 

mediate processing of punishments in a study that observed the impact of 

acoustic startle reflex during the presentation of emotionally valenced pictures 

(Corr, 2002b). According to RST predictions, results showed that anxiety 

increased the eyeblink reflex in response to slides showing negative stimuli but 

anxiety was also found to interact with impulsivity. Individuals who scored high 

on anxiety and low on impulsivity showed a greater startle response than those 

individuals who scored high on anxiety and impulsivity. These results suggest 

that Imp and Anx interact with each other and that Imp has antagonising effects 

onAnx. 

Overall, these studies can be considered to be inconclusive as tests of the 

original version of RST due to their mixed findings. However, in the light of the 

revised version of RST they simply seem to indicate that the feedback 
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manipulation was ambivalent since it offered both rewards and punishments 

(mixed payoff) and therefore it would activate both the reward and the 

punishment systems. Therefore, these results are probably unhelpful in the quest 

to identify the personality traits that underlie each individual system. These 

results, however, highlight the importance of employing the correct payoff 

matrix (reward-only or punishment-only matrices) in order to avoid ambivalent 

experimental conditions that lead to activation of the reward as well as the 

punishment systems. 

Further evidence in support of the claim that the three emotional systems and 

their related personality traits are not fully independent, but may be related, 

comes from evidence indicating that psychometric measures of the reward and 

the punishment systems overlap to a certain degree. An example of RST 

measures is represented by the scale developed by Carver and White (1994) to 

measure sensitivity of the reward and punishment systems, the BAS and the BIS 

(FFFS in the revised version of RST) systems, respectively. The scale contains 4 

subscales, three of these subscales measure the BAS activation [Drive (BAS-D), 

Reward Responsiveness (BAS-RR) and Fun Seeking(BAS-FS)] and one 

subscale measures BISIFFFS activation (punishment system). The three BAS 

scales were found to be positively correlated (as expected) amongst themselves 

[correlation between: BAS-D and BAS-RR: r = 0.34; BAS-RR and BAS-FS: r = 

0.41; BAS-D and BAS-FS: r = 0.36]. However, they were also significantly 

correlated with the BISIFFFS measure (r = -0.12 with Drive, r = 0.28 with 

Reward Responsiveness and r = -0.08 with Fun Seeking). The results obtained 

from these correlations indicate that the reward and punishment systems overlap 

to a certain degree. Hence, these results suggest that the reward and punishment 

systems (and their measures) are not entirely orthogonal but somewhat oblique 

to each other. 

Finally, formal modelling evidence also showed that successful simulation of 

self-reported trait scores expressing the BAS output required the inclusion of the 

BAS, BIS and FFFS activation values (i.e. weights). These simulations indicate 

that the BAS output is not only predicted by the activation of the BAS alone but 

by the activation of the FFFS and, if conflict is present, the BIS sensitivity and 
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reactivity (Pickering, 2008). In particular, BAS activation was positively 

correlated with the reward system level of sensitivity (reactivity value) but also 

negatively associated with the reactivity values of the two other systems. Neural 

model simulations also indicated that there was a negative relationship between 

the reward (BAS) system and the punishment (FFFS) system. Additionally, the 

simulation dealt with the case of conflict (when the reward and punishment 

systems had roughly equal activation levels) by controlling for the BIS. These 

simulations indicate that measures of the BAS-related trait(s), which could be 

interpreted as self-reported measures of general BAS output levels, are 

influenced by the activation of all three systems rather than the BAS reactivity 

alone (Pickering, 2008; Smillie et aI., 2006a). Therefore, the reward and the 

punishment systems interact with each other rather than being orthogonal to 

each other, as suggested by the original RST. 

In conclusion, evidence from the studies reviewed above indicates that in 

contexts offering mixed incentive values, and with individuals who are not 

reward or punishment hypersensitive, the three systems interact. In particular, 

the FFFS system is activated in the presence of punishments and it inhibits the 

BAS activation; in contrast, the BAS is activated by reward stimuli and it 

inhibits the FFFS. However, in cases where both rewards and punishments are 

present and they are roughly equivalent (i.e. goal conflict), the BIS also 

becomes activated to solve the conflict. The BIS decides whether to produce an 

approach or an avoidance response depending on the value of reward and 

punishment. It generally shows a bias towards the FFFS by augmenting the 

aversive value of the ambivalent stimuli and decreasing their positive value 

(Corr, 2004a; McNaughton& Corr, 2004). 

Following these observations, for the purpose of this chapter, in the next few 

sections attention will be focused on the BAS and its underlying neural substrate 

and personality traits. This choice is driven by the fact that the BAS is 

responsible for reward processing and motivation which is the main focus of the 

empirical studies reported in the following chapters. Nonetheless, according to 

the observations made in the section above it will be necessary to include 
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potential measures of both the BIS and FFFS when conducting empirical 

observations. 

3.5 BAS and DA 

As mentioned in the section above, the behavioural activation system is a 

motivational system that is sensitive to reward and once activated it mediates 

approach behaviour towards reward stimuli (Corr, 2006). Considering the 

assumption that the BAS is reactive to reward, it was suggested that the BAS 

lies within the brain areas that are involved in reward processing and 

motivation, i.e. midbrain DA projections (Schultz, 1998; Carver & White, 1994; 

Pickering & Gray; 2001). Midbrain DA has been found to fire phasically in 

response to unpredicted rewards and reward-related cues (Schultz, 1998; 2002). 

Therefore, midbrain DA projections have been identified as the main structures 

involved in reward processing and motivation (Gray, 1987; Fowles, 2006). 

RST suggests that BAS-related traits are a by-product of inter-individual 

differences in the level of sensitivity of the emotional system to rewards 

(Smillie, et aI., 2006a). Variations on the BAS-related trait measures correspond 

to BAS reactivity and, therefore, reactivity to rewards. Therefore, individuals 

scoring high on BAS-related traits are expected to show greater sensitivity to 

rewards than those with lower scores on the BAS-traits. Moreover, DA firing in 

response to rewards is expected to be greater in high BAS individuals. Since 

personality variations derive from differences in the sensitivity of the emotional 

system, the personality traits underlying the system are also expected to have the 

same biological basis. Thus, BAS-like traits are expected to be dopaminergic 

(Pickering & Gray, 2001). A study by Lee and colleagues (2007) has indicated 

that scores on the BAS-RR (Carver & White, 1994) were associated with 

density levels of the D2 dopaminergic receptor. However, these researchers 

observed that high scores were observed in individuals with reduced D2 density 

which could be associated with a greater synthesis and production of DA (Klein 

et aI., 2007; Lee, Ham, Cho, Lee & Shim, 2007). Indeed, receptor down-
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regulation is considered to represent a compensatory mechanism that maintains 

DAergic activity in equilibrium (Koob & LeMoal, 1997). 

3.6 BAS and personality 

The up-to-date literature is not conclusive in pinpointing which are the BAS

related traits and the debate is on-going. Even though Gray originally suggested 

that impulsivity represented the BAS underlying trait, empirical results do not 

fully support the claim. Moreover, recently it has been suggested that 

extraversion may be the actual BAS trait due to the fact that extraversion scores 

are associated with DA activity (Depue & Collins, 1999). There is an open and 

on-going debate on whether it is impulsivity or extraversion that underlies the 

BAS trait. Some of the evidence in favour of the two sides of the debate is 

reviewed below. 

The studies reviewed below contain evidence from behavioural, psychometric 

and neurobiological evidence to support either the extraversion or the 

impulsivity theory. The behavioural tasks fulfil the requirements, set by 

Pickering (2004), which determine whether the experiment classifies as an RST 

study effective at eliciting BAS activation and, hence, exploring BAS-related 

traits. As mentioned earlier, only gains payoff matrices should be used to be 

able to assess a pure BAS activation. Additionally, the task employed should 

index learning, especially reward-related learning, since it is affected by 

motivational factors which are mediated by DA activation and, therefore, BAS 

activity. In fact, DA firing enhances associative and procedural learning and it 

has been assumed to modulate BAS reactivity (Smillie, et aI., 2006a). 

3.6.1 Impulsivity as the BAS trait 

In the original RST, Gray (1970) suggested that impulsivity is determined by an 

additive combination of extraversion and neuroticism. However, psychometric 

observations indicated that impulsivity measures correlated with measures of 

sensation seeking, antisocial and non-conformity behaviour (Pickering and 
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Gray, 2001, p.120). Additionally, measures on these scales are associated with 

antisocial and delinquent behaviour, the use of alcohol and illegal drugs as well 

as psychopathy (Zuckerman, 1993). These measures have been found to be 

partly accounted for by Eysenck's psychoticism scale (Zuckerman, 1993). 

Hence, these authors suggested that measures from all these scales should be 

included in order to obtain reliable measures of the BAS trait. Therefore, 

impulsivity should be re-Iabelled as impulsive antisocial sensation seeking 

(ImpAss). The ImpAss component suggested by Pickering and Gray (2001) 

makes a broad reference to the Impulsive Unsocialised Sensation Seeking 

(ImpUSS) personality component proposed by Zuckerman (1993). The switch 

from the 'unsocialised' to the 'antisocial' definition was made to avoid any 

possible interpretation that failed socialisation must be due entirely to 

environmental or developmental mechanisms. 

Zuckerman (1993) pointed out that existing evidence showed that the ImpUSS 

component was associated with DA activity. In particular, high levels of DA 

activity were expected to be characterised by high scores on the ImpUSS scale. 

Zuckerman reviewed genetic and neuroanatomical evidence that indicated that 

ImpUSS (hence, ImpAss) had a dopaminergic basis and, therefore, it also 

supports RST claim that impulsivity (and impulsivity related traits) was the 

underlying trait ofthe BAS. 

Theoretical evidence that supports the view that impulsivity (or ImpAss) is the 

underlying personality component of the BAS system also comes from studies 

exploring substance use. Indeed, substances of abuse (e.g. nicotine, alcohol and 

opiates) have rewarding properties and they are able to activate DA firing in the 

mesolimbic pathway (Bozarth, 1990; Julien, 2003). Moreover, studies that 

investigated the impact of individual differences on substance use (cf. addiction) 

have found that personality traits such as impulsivity, venturesome, novelty- and 

sensation-seeking (i.e. ImpAss sub-factors) are good predictors of drugs and 

alcohol use (e.g. quantity and frequency) amongst college students (Waldeck & 

Miller, 1997; Ham & Hope, 2003). Similarly, smokers, compared to non

smokers, were found to score higher on Impulsivity (Mitchell, 1999; 2004) and 

similarly ecstasy users were found to score higher on ImpUlsivity than drug-
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naIve controls (Morgan, 1998). According to RST assumptions, this evidence 

seems to confirm that the ImpAss component is a good candidate as a BAS trait. 

In fact, RST suggests that the BAS is responsive to rewards and high BAS 

individuals should show greater reward sensitivity and approach behaviour to 

reward stimuli (i.e. as seen in drug use). 

Further empirical evidence from the field of substance use comes from a study 

conducted by Franken and Muris (2006). They assessed the relationship 

between scores on the BAS scale (Carver and White, 1994) and alcohol as well 

as drug use (e.g. cannabis, amphetamine, and opiates) among non-dependent 

college students. Alcohol use was measured in terms of quantity of alcohol use 

and frequency of binge drinking, whereas drug use was determined by the 

number of illegal substances ever used. Results showed that the BAS Fun

Seeking subscale was positively correlated with all three measures of use, while 

the BAS-Drive subscale was correlated only with the number of substances ever 

used. Hence, BAS Fun-Seeking seems to be a better predictor of drug use. This 

scale was found to be positively correlated with Novelty Seeking (r = .51, P 

<.001; Carver and White, 1994), which is a sub-factor of the ImpAss 

component. Smillie, Jackson and Dalgleish (2006) also reported that the BAS 

Fun Seeking subscale was a good predictor of the Impulsivity construct (r = .64, 

p < .001) that consisted of measures from the EPQ-P, Impulsiveness, Risk 

Taking and Sensation Seeking, which are subscales of the Eysenck Personality 

Profiler (EPP) Psychoticism trait. However, results also showed that the BAS 

Fun Seeking scale was also a good predictor of the BAS construct (r = .51, P 

<.001), which consisted of EPQ-E, PANAS positive affect and reward 

sensitivity (Smillie, Jackson & Dalgleish, 2006). Even though, the researchers 

considered these results ambivalent, they seem to indicate that both impulsivity 

and extraversion may represent the underlying BAS traits and represent different 

aspects of the BAS. Pardo and colleagues (2007) replicated the results obtained 

by Franken and Muris (2006) as they observed that alcohol use and frequency 

were predicted by BAS scores, assessed by the Sensitivity to Reward scale 

(SPSRQ; Torrubia, Avila, Molto, & Caseras, 2001). 

74 



Similar observations to the ones in the Franken and Muris' study were made on 

a clinical sample of addicted drug (heroin and/or cocaine) and alcohol users who 

reported higher scores on the BAS Fun Seeking as well as the BAS Drive scales 

compared to controls (Franken and Muris, 2006). These results indicate that 

high impulsivity scores are associated with drugs use, which is mediated by the 

rewarding effects of these substances. Therefore, these results suggest that 

impulsivity is a personality trait highly reactive to rewards and, therefore, they 

suggest that it may be the BAS trait. However, when considering individuals 

who show chronic use of the substances it is difficult to disentangle whether 

impulsivity score are the cause or the result of the use, or vice-versa. 

Nonetheless, results from occasional users seem to suggest that the personality 

trait is the precursor of chronic use. 

In a study by Stuertgen and colleagues (2005), a neuroendocrine challenge 

paradigm was used to investigate what personality trait was associated with DA 

variations and, therefore, BAS responsivity. Participants either received a 

capsule containing placebo or mazindol, which acts as a DA reuptake inhibitor 

and, consequently, reduces prolactin secretion by the hypothalamus. Results 

showed that individuals who score high on the Novelty Seeking (NS) scale 

showed general low levels of prolactin compared to those with low scores on the 

scale regardless of the drug manipulation. Moreover, high NS individuals 

showed a blunted response to mazindol. Overall, these results show that high NS 

scores are associated with higher DA levels and activity. Additionally, DA 

levels were not affected by administration of the DA agonist for individuals with 

high NS scores (due to a possible ceiling effect). 

A study conducted by Abler and colleagues (2006) offers further 

neurobiological evidence in favour of the ImpAss components as the BAS trait. 

These researchers carried out an fMRI study that revealed that midbrain DA 

activity in the NAc was involved in reward processing during a probabilistic 

monetary incentive task. Additionally, the results showed that NAc activity was 

positively correlated with personality scores on the Sensation Seeking (SS) and 

the Novelty Seeking (NS) scales. In particular, it was the Exploratory 

Excitability (NS!) subscale the Thrill and Adventure Seeking (TAS) subscale of 
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the NS and SS scales, respectively, that were found to be associated with NAc 

activity and, therefore, reward processing. These two subscales are measures of 

the ImpAss compound as NS 1 measures attraction to novel stimuli and TAS is a 

measure of the tendency to approach novel and risky stimuli (Abler, et aI., 

2006). 

Finally, Cools and colleagues (2007) found that the administration of a 

dopamine D2 receptor agonist (i.e. bromocriptine) improved performance 

during a match-to-sample task in individuals who scored high (cf. low) on the 

Barratt Impulsiveness Scale. These findings, thus, show a link between 

dopamine (D2 receptor) activity and impulsivity. 

3.6.2 Extraversion as the BAS trait 

Depue and Collins (1999) postulated the existence of a motivational system 

which is responsive to rewards and modulates motivated behaviour. This system 

was labelled as the 'Behavioural Facilitation System' (BFS) and it closely 

resembles the Behavioural Activation System postulated by RST. In line with 

RST, Depue and Collins state that the motivational system has a dopaminergic 

nature and, in particular, it involves the mesolimbic DA system. This suggestion 

implies that inter-individual differences are related to the activation of the 

projections from the VTA to the NAc. Contrary to RST they suggested that the 

underlying personality trait of the motivational system was extraversion rather 

than impulsivity, and indeed, they identified the agency sub-factor of 

extraversion as critical. Studies from their laboratory found that extraversion 

had a dopaminergic nature. For example, extraversion scores were found to be 

positively correlated with psychophysiological correlates of DA levels. Indeed, 

they suggested that variations in midbrain DA and, therefore, in the system 

sensitivity to rewards were also reflected in individual differences, e.g. 

extraversion. After reviewing several animal and the few available human 

studies, they developed a 'psychological threshold model', which states that 

individual differences in reward sensitivity and in reward responsivity (i.e. 

threshold) are mediated by midbrain DA transmission. In other words, extraverts 
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were postulated to have a lower threshold and so be more responsive to rewards. 

As a result, extraverts show more motivated behaviour in response to rewards 

than introverted individuals. 

Several researchers have found evidence that supports the claim that 

extraversion may be sensitive to rewards and reward-related cues and, therefore, 

that variations in extraversion may be determined by inter-individual differences 

in the reward system (BAS; Cohen, et aI., 2005). These results support the claim 

that extraversion represents the underlying personality trait of the Behavioural 

Activation System (BAS) proposed by Gray (1970; 1987) and that it mediates 

performance on reward-related learning tasks. For example, a study carried out 

by Pickering and colleagues found that during performance on a 'weather 

categorisation task' (i.e. a probabilistic information-integration, II, task\ 

performance was positively correlated with extraversion when learning was 

guided by reward (reward-dependent learning) whereas performance was 

mediated by psychoticism scores (EPQ-P, a measure of ImpAss) when learning 

was based on pure observation (i.e. paired-associative training; Pickering, 

2004). 

Similar observations were obtained in a study by Smillie, Dalgleish and Jackson 

(2007) where participants performed on a yes/no category learning task. The 

stimuli were vignettes that indicated the characteristics of hypothetical job 

candidates and participants had to decide whether they were suitable (yes

response) to the job or not (no-response). BAS reactivity was measured using 

the 17 Impulsiveness questionnaire (Eysenck, Pearson, Easting and Allsopp, 

1985) and the BAS scales developed by Carver and White (1994). Results 

showed that individuals who scored high on the BAS scales by Carver and 

White performed better under a gain-only payoff matrix than under a loss-only 

matrix. In contrast, the impulsivity measure was found to be a predictor of 

poorer performance on the task, regardless of feedback manipulation. 

I Optimal solution of II tasks requires participants to integrate information from several 
dimensions at a pre-decisional stage (see chapter I for a review) 
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These researchers carried out a further study that used the same design and 

aimed to assess the impact of asymmetric payoff matrices on learning. 

Participants performed on the same yes/no category learning task under either a 

gain only or a loss only payoff matrix. However, the internal payoff matrices for 

the two possible responses were asymmetric. In fact participants received 

predominantly more feedback for 'yes' responses (80%) than 'no' responses 

(10%). The same personality measures observed in the first study were collected 

in this second one. Results showed that participants with high scores on the BAS 

scale and under the gain-only matrix developed a greater bias for responding 

'yes' than those under the loss-only matrix. Impulsivity was not found to predict 

performance on the task. 

Overall, the three BAS scales were found to be highly positively correlated with 

extraversion (p smaller than .001; Carver & White, 1994) and, therefore, these 

results indicate that extraversion (or extraversion-related measures) is sensitive 

to reward manipulations. On the contrary, the present results suggest that 

impulsivity is not particularly sensitive to rewards. Therefore, these results 

support the claim that extraversion, rather than impulsivity, represents the best 

candidate to be the underlying BAS personality trait. 

Further evidence in support of the extraversion theory comes from 

neurobiological studies. For example, Cohen and colleagues (2005) ran an fMRI 

study to assess how DA variations affected both extraversion scores and reward 

sensitivity. In the study participants performed on a gambling task. The task had 

a go/no-go format where participants had to decide whether to respond or 

withhold their response based on evaluation of a prediction cue. In fact, one cue 

predicted that responding would lead to a low risk gamble whereas response 

withholding would lead to a high risk gamble. Results showed that extraversion 

variation was not related to different strategy in response to the cues and gamble 

magnitude. As expected, the medial orbitofrontal cortex (mOFC), the amygdala 

and the nucleus accumbens (NAc) were found to be active when participants 

received rewards. In particular, these areas were significantly more reactive in 

extraverts than introverts, regardless of reward magnitudes. A follow-up study 

explored how extraversion mediated activation of these brain areas in the reward 
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anticipation (prior to feedback) and the reward evaluation (following feedback) 

phase. Results showed that high extraversion scores were associated with 

greater DA activation in the mOFC, the amygdala and the NAc but only in the 

reward evaluation phases. Moreover, extraverts showed greater response to 

bigger compared to smaller rewards ($1.25 vs. $2.50). These results support the 

claim that extraversion has a dopaminergic basis and it mediates reward 

processing. Therefore, the further support the possibility that extraversion is the 

underlying personality trait of the BAS. 

Franken (2002) observed that scores on the BAS-Drive scale were positively 

correlated with positive craving and intention to drink alcohol following 

presentation of alcohol related cues. BAS-drive scores were found to be 

positively correlated with extraversion (r = 0.41, p<.OOl: Carver and White, 

1994) and it is considered to be a measure fairly closely related to extraversion. 

Hence, the present results suggest that extraversion may be the BAS-underlying 

personality trait and, therefore, scores on this scale mediate incentive 

sensitisation as described by Robinson and Berridge (2001, 2003). Robinson and 

Berridge suggest that prolonged drug use leads to a sensitisation of the 

mesolimbic system that renders the individual more responsive to the drug and 

drug-related cues. Together, these results suggest that following prolonged drug 

use, extraversion is associated with the changes experienced by the 

dopaminergic system (the neural basis of the BAS). Moreover, they indicate that 

extraversion mediates reward sensitivity to relevant stimuli. Therefore, they 

support the claim made by Depue and Collins (1999) that extraversion has a 

dopaminergic basis and, therefore, that it is represents the BAS-related trait. 

Finally, similar neurobiological evidence comes from an EEG study conducted 

by Wacker and colleagues (2006). In this study, extraverts and introverts 

performed an n-back task under the effects of either a placebo or a DA 

antagonist (sulpiride, which act as a blocker on D2 sites). The n-back task 

consisted of four levels of difficulty (0 to 3 back). During the task participants 

received trial-by-trial accuracy feedback and, depending on their performance, 

they could earn 1-Euro worth of goodies. This manipulation aimed to ensure an 

incentive experimental setting, i.e. a promotion regulatory focus (Higgins, 
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1997). The study is based on literature and previous studies indicating that EEG 

measures of activity in the frontal cortex and, in particular the anterior cingulate, 

are an index of Extraversion and they are modulated by dopaminergic activity. 

Indeed, midbrain DA projects to the cortex via the mesocortical DA pathway 

and DA mediates its functioning (Depue & Collins, 1999; Wacker, Chavanon & 

Stemmler, 2006). 

Results indicated that under the placebo condition, extraverts had lower R T 

scores than introverts, especially in the hardest (3-back) version of the task. 

Effective performance on the task requires WM activation, which has been 

found to be enhanced by DA (Ashby et aI, 1998). Hence, superior performance 

of extraverts over introverts could be due to higher DA levels and DA 

modulating effect on the PFC. These assumptions are supported by the results 

obtained in the study following administration of the DA antagonist. In fact, 

following sulpiride administration, introverts showed shorter response latencies 

than extraverts. As expected, these behavioural observations were matched by 

activations of the frontal cortex. 

3.7 Conclusions 

The studies reviewed above indicate that there is some evidence in favour of 

both extraversion and impulsivity as candidate BAS traits. The results of the 

studies, however, are not conclusive on the issue of whether it is extraversion or 

impulsivity (Imp Ass) that constitutes the BAS-related trait. In fact, both 

personality traits seem to mediate reward-related performance and scores on the 

two scales seem to be modulated by DA activation levels. The results reviewed 

in this chapter indicate that different BAS scales seem to be correlated with 

extraversion or impulsivity. Indeed, recent evidence shows that the three BAS 

subscales may describe conceptually different constructs in relation to the EPQ 

scales. Smillie, Jackson and Dalgleish (2006) found that BAS-D and BAS-RR 

reflect BAS variation and, therefore, reward sensitivity whereas the BAS-FS 

scale was found to reflect both BAS and impulsivity. Overall, these results 

suggest that the BAS scales may capture two different constructs; in particular, 
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BAS-RR and BAS-D may be purer measures of reward sensitivity whereas 

BAS-FS may be a broader term that captures both reward sensitivity and 

impulsivity. Heym, Ferguson and Lawrence (in press) have further suggested a 

three-factor model where each BAS subscales may capture a different 

constructs. They observed that EPQ-E was positively correlated with the three 

BAS subscales; however, the EPQ-P scale (i.e. an impulsivity measure) was 

found to be positively correlated with the BAS-FS scale and negatively with the 

BAS-D scale. These observations supports the conclusions drawn by Smillie 

and colleagues (2006) that BAS-D and BAS-RR are pure measures of the BAS. 

Additionally, Heym and colleagues suggested a further distinction between 

BAS-D and BAS-RR due to the positive relationship obtained between BAS-RR 

and the BIS scale. The researchers suggested that BAS-RR is a measure of 

future oriented reward sensitivity associated with worry and uncertainty (cf. 

BAS-D which is more responsive to immediate rewards). 

These results suggest that the different BAS subscales describe reward 

sensitivity in a slightly different fashion. Therefore, these results render it harder 

to determine whether impulsivity or extraversion is the underlying BAS trait 

and, therefore, solve the ongoing debate. However, Smillie and colleagues 

(2006) state that the fact that the three BAS scales may reflect different 

constructs does not take away the fact that they still index BAS activation. In 

conclusion, it may be possible that both personality components may represent 

BAS-related traits and influence reward-processing and learning. 

3.8 Summary 

The present chapter introduced the Reinforcement Sensitivity Theory that states 

that individual differences are determined by inter-individual differences in the 

reactivity of emotional-motivational systems. There are three systems that 

mediate the actions of the individual in every-day life: the behavioural 

activation system (BAS), the behavioural inhibition system (BIS) and the Fear, 

Fight and Flight system (FFFS). The BAS is responsive to rewards, whereas the 

FFFS is responsive to punishment. The BIS is a conflict resolution system 

which becomes active only in ambivalent situations where both the BAS and the 
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FFFS are active. Hence, the activation of the three systems interacts with each 

other and affects the final behavioural output. The chapter mainly focused on 

the BAS and reviewed the studies that attempted to identify the BAS-related 

trait. The debate is still open, and both extraversion and impulsivity seem to be 

plausible BAS-traits. Some of the studies reported in the following chapter 

attempt to shed more light on the debate. 
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4.1 Chapter aims 

Chapter 4 

Personality data 

The present chapter reviews the personality measures that were collected during 

the empirical studies. In each study, participants filled in a battery of 

questionnaires that included scales relevant to the main aim of the research. 

Several measures were included in order to fully capture individual variations in 

BAS reactivity. In this chapter, the different personality measures collected will 

be introduced and additionally a principal component analysis will be run in 

order to summarise the different measures and obtain fewer super-factors. 

4.2 Introduction 

The studies reported in the following sections aimed to explore the impact of 

individual differences on reward-related learning. According to RST, the 

emotional-motivation system sensitive to reward and responsible for approach 

behaviour to reward is the Behavioural Activation (Approach) System (BAS; 

Gray, 1970; Corr, 2004a; Corr, 2006; Smillie et aI., 2006a). RST also suggests 

that variations in the BAS characterise inter-individual differences in reward 

sensitivity and goal approach, which are reflected in personality traits. High 

BAS individuals are expected to show greater sensitivity and more frequent 

reward approach behaviours than their low BAS counterparts. Gray (1987) 

originally identified impulsivity as the personality trait underlying the BAS. He 

postulated that impulsivity was composed by Eysenck's extraversion and 

neuroticism and, in particular, it ranged from high E and high N (high 

impulsivity) to low E and low N (low impulsivity). Therefore it was necessary 

to include trait impulsivity measures in the battery administered to participants. 

However, as reviewed in the RST chapter there is evidence from empirical and 

psychometric studies that supports the original claim made by RST that 

impulsivity is the BAS-related trait. Indeed, the results obtained in these studies 
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indicate that impulsivity is associated with reward sensitivity and reward-related 

learning. Moreover, there is evidence that indicates that impulsivity levels are 

positively correlated with DA levels, which is in line with RST assumption that 

the BAS lies on midbrain DA system and that the BAS-related trait should also 

have a DAergic nature (Pickering & Gray, 2001). However, as reviewed in that 

same chapter, there is also some contrasting evidence that indicates that 

extraversion, and not impulsivity, is related to reward sensitivity and learning 

(Pickering, 2004; Smillie et aI., 2007). These data indicate that there is no 

conclusive empirical evidence in favour of one over the other theory 

(impulsivity vs. extraversion) and, therefore, the debate on which one is the 

BAS-related trait is still open. It is possible that both personality components 

may be independently associated with DA and, hence, represent different 

aspects of the BAS. For this reason it was decided to include measures of both 

the impulsivity and the extraversion components. 

There are several scales that measure different elements of these two main 

personality traits. In order to obtain a more complete representation of each trait 

it is necessary to include a wide range of these scales and questionnaires. 

Pickering and Gray (2001) have suggested that impulsivity is a higher-order 

personality component and, therefore, it is composed of several personality 

traits. They labelled this component Impulsivity Antisocial sensation seeking 

(ImpAss), which is a variation of the Impulsive Unsocialized Sensation Seeking 

(ImpUSS) component proposed by Zuckerman (1991; 1993)2. Pickering and 

Gray have also suggested that this component might be a better descriptor of the 

BAS and, hence, a better candidate as BAS-related trait. In fact, impulsivity is a 

complex trait component which is characterised by varied impulsive behaviours 

and different types of impulsivity measures (Evenden, 1999; Leshem & 

Glicksohn, 2007). Hence, in order to capture all the facets of impulsivity, it is 

necessary to consider several personality measures which are central to its 

defmition, such as novelty-, sensation-seeking and psychoticism scales 

(Pickering & Gray, 2001). Zuckerman originally suggested that ImpUSS was 

2 Pickering (2004) preferred the term antisocial over unsocialised because the former terms does 
not imply that the behaviour is exclusively determined by environmental factors 
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strongly related to the psychoticism (EPQ-P) scale developed by Eysenck. 

Indeed, the ImpUSS (revised ImpAss) component contains measures of the 

sensation seeking, impulsivity, inhibition and EPQ-P scales (Zuckerman, 1993; 

Gibbons & Rammsayer, 1999). The psychoticism scale is constituted by several 

elements, such as 'hostility, lack of empathy and non-conformity' (Eysenck, 

Eysenck & Barrett, 1985, p.25). 

Measures of positive schizotypy were also collected since this personality factor 

has been found to correlate with ImpAss scores and it plausibly also has a 

dopamiuergic nature (Pickering, 2004; Kumari et aI., 1999). Evidence to support 

the former claim comes from psychometric considerations. One of the best 

known questionnaires that measures schizotypy is the Oxford-Liverpool 

Inventory of Feelings and Experiences (OLIFE) scale developed by Mason and 

colleagues (1995). This scale contains four subscales, which are Positive 

Schizotypy, Negative Schizotypy, Cognitive Disorganisation and Impulsive 

Nonconformity. In contrast to the fIrst three scales, as previously mentioned, the 

Impulsivity Nonconformity (ImpNon) one does not represent behavioural and 

cognitive symptoms typical of schizophrenia. This scale rather describes 

behaviours more typical of personality disorders (e.g. reckless behaviour), such 

as borderline and antisocial personality disorder (Evenden, 1999; Gray, 

Fernandez, Williams, Ruddle & Snowden, 2002; Pickering, 2004). Moreover, 

the ImpNon sub scale contains seven items of the EPQ-P that is also a main 

measure of the ImpAss component (Gray et aI., 2002). Therefore, it is not 

surprising that ImpNon represents a good measure of antisocial and sensation 

seeking attitudes (hence, ImpAss). 

These observations highlight the importance of including measures of 

schizotypal traits (as measured by the OLIFE scale) as well as ImpAss measures 

since they seem to be inter-correlated. Indeed, including both measures should 

capture a greater variation of personality and, possibly, a more complete picture 

of the ImpAss component. Subsequently, this should lead to a greater 

understanding of the impact of personality on reward-related learning. 
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Evidence that indicates that positive schizotypy has a DAergic nature comes 

from evidence that identifies a close parallel in cognitive and attentional 

processes between positive schizotypy and schizophrenia. Schizotypal 

personality traits capture psychological and biological symptoms typical of 

schizophrenia across the healthy population (Mohanty, et aI., 2005; Koo, et aI., 

2006). Schizophrenia is characterised by DAergic dysregulation and, in 

particular, by high levels of DA in the midbrain (Julien, 2003; Mohanty et aI., 

2005). Empirical evidence has indicated that both schizophrenic patients 

displaying psychotic positive symptoms and normal individuals who score high 

on positive schizotypy measures show cognitive and attentional impairment 

(Koo et aI., 2006). Attentional impairment is characterised by the inability to 

'filter out' irrelevant information to facilitate processing of relevant information 

and it may account for the positive symptoms typical of schizophrenia (i.e. 

hallucinations and delusions; Mohanty, et aI., 2005; Corr, 2006). For example, 

studies using the latent inhibition paradigm indicate that compared to control 

healthy individuals, schizophrenic patients show attentional deficit (Corr, 2006). 

Latent inhibition is observed during stimulus-reward association learning is 

impaired when one of the stimuli had been previously presented with no direct 

consequences (Gray et aI., 1992; Pickering & Gray, 2001). Following this pre

exposure, the stimulus loses salience and the individual fmds it harder to learn 

the newly acquired (reward-predicting) valence of the stimulus in a second 

phase. As a direct effect of the pre-exposure phase, learning of the stimulus

stimulus association is retarded in the second (test) phase. This retardation is the 

phenomenon typical of LI and it is reduced in patients affected by positive 

symptoms of schizophrenia (Pickering and Gray, 2001; Gray et aI., 2002; Corr, 

2006). Blunted LI has also been observed among healthy individuals who score 

high on schizotypal personality trait as well as ImpAss measures (Pickering & 

Gray, 2001; Gray et aI., 2002; Weiner, Schiller & Gaisler-Salomon, 2003). This 

is in line with the idea that psychotic symptoms are represented across a 

continuum (Gray et aI., 2002). Indeed, during the test phase these individuals 

learn the new association faster than their low counterparts and this suggests that 

they perceive the stimulus as salient despite the pre-exposure phase (Pickering 

& Gray, 2001; Pickering, 2004). 
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Both animal and human studies have indicated that LI is modulated by DA 

activity (Kumari, et aI., 1999; Corr, 2006). In particular, reduced LI in 

schizophrenia has been found to be associated with lower levels of selective 

attention which are related to higher DA levels in the mesolimbic system (Gray, 

Pickering, Hemsley, Dawling & Gray, 1992; Pickering & Gray, 2001; 

Pickering, 2004). Indeed, administration to healthy individuals of low doses of 

amphetamine was found to decrease the LI phenomenon compared to placebo 

administration and higher amphetamine doses (Gray et aI., 1992). The latter 

results may be due to the fact that high amphetamine doses increase DA levels 

in the nigrostriatal system whereas the lower dose has more effect on 

mesolimbic DA levels; it is the mesolimbic DA system which is likely, along 

with mesocortical DA projections to mediate selective attention. In contrast, 

administration of high doses of antipsychotic and neuroleptic drugs (e.g. 

haloperidol), which act as blockers on D2 receptors, normalised latent inhibition 

in both animal and (healthy) human studies (Kumari, et aI., 1999; Weiner et aI., 

2003). Therefore, the fact that LI is a DA-dependent phenomenon and it seems 

to be affected by positive schizotypy is consistent with the proposed DAergic 

nature of positive schizotypy. 

Moreover, studies exploring latent inhibition (LI) have also supported the claim 

that ImpAss and positive schizotypy are inter-correlated scales as they 

independently mediated performance on the task (Pickering & Gray, 2001; Gray 

et aI., 2002). For example, a study carried out by Gray and colleagues (2002) 

showed that high scores on ImpAss and positive schizotypy components (of the 

OLIFE questionnaire, Mason, Claridge & Jackson, 1995) were positively 

associated with reduced LI. In this study, positive schizotypy was measured by 

the OLIFE scale known as Unusual Experiences. The ImpAss measure 

constituted scores on the Impulsivity Nonconformity OLIFE scale that captures 

behaviours related to impulsivity and risk taking. Hence, the effect of ImpNon 

on LI may be caused by its close association with ImpAss measures (i.e. 

sensation seeking, disinhibition and psychoticism) which have been found to 

have a blunting effect on this phenomenon (Gibbons & Rammsayer, 1999). 

However, further analysis also indicated the contribution of measures of positive 

schizotypy (Le. schizotypal traits) on LI was independent from the contribution 
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of ImpAss measures; whereas the ImpAss contribution was not additive to that 

of schizotypal personality traits. It is possible that the relationship observed 

between LI and ImpAss may be spurious and, hence, purely due to the fact that 

ImpAss measures are significantly inter-correlated with schizotypal personality 

traits. 

Measures of trait Anxiety were also included in this thesis because, as indicated 

by the revised version of RST, the personality traits underlying the reward and 

punishment systems, although orthogonal, interact when determining behaviour 

(Corr, 2004b; Smillie et aI., 2006a). Experimental and psychometric data have 

also indicated that the personality traits reflecting the level of activation of the 

reward and punishment systems are correlated (Zinbarg & Revelle, 1989; 

Carver & White, 1994). Similarly, formal and neural modelling has indicated 

the BAS output is not only mediated by the BAS activation but also by the 

activation of the punishment systems (Pickering, 2008). Therefore, these data 

indicate the importance of including anxiety measures even in studies that 

manipulate reward and aim to explore the BAS activation and reactivity. For 

example, Neuroticism scales were administered to participants as part of the 

questionnaire battery since N scores have been found to load onto the BISIFFFS 

component (Smillie & Jackson, 2006; Franken & Muris, 2006). 

4.2.1 Aim 

The PCA analysis was run in order to summanse the vanous personality 

measures collected in the several studies and extract the four main personality 

components that have been discussed above. These measures are: extraversion 

and ImpAss, which may be related to the BAS activation, positive schizotypy, 

as a dopaminergic trait dimension, and neuroticism which may be related to the 

BISIFFFS activation. 
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4.3 Method 

4.3.1 Personality measures 

Six personality questionnaires were collected during the experiments reported in 

the following sections. The questionnaires used are briefly reported below. 

Big Five Inventory (BFI; John, Donohue & Kentle, 1991) 

Table 4.1. BFI subscales 

Big Five Inventory (BFI 
Extraversion b5e 
Neuroticism b5n 
Conscientiousness b5c 
Agreeableness b5a 
Opennes b50 

The Big Five Inventory (BFI) consists of 44 items scored on 5-point Likert 

scales and it comprises five subscales that correspond to five personality traits 

(table 4.1). 

The extraversion subscale is characterised by traits such as activity and energy, 

dominance, sociability and positive emotions. The agreeableness scale 

represents a pro-social attitude towards those with a spirit of antagonism. This 

subscale includes traits such as altruism, trust and modesty. Conscientiousness 

describes the impulse control that facilitates goal-directed behaviour and it is 

characterised by traits such as organisation and good planning skills. 

Neuroticism is the opposite of emotional stability and it is characterised by traits 

such as anxiety, sadness and irritability. Finally, openness represents the breadth 

and depth of people's mental life. Thus, this dimension includes having wide 

interests, and being imaginative and insightful. 
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Behavioural inhibition/activation scales (BISIBAS; Carver & White, 1994). 

Table 4.2. BISIBAS subscales 

Behavioural inhibition/activation scales (BISIBAS) 
BAS - Reward Responsiveness BAS-RR 

BAS - Fun Seeking BAS-FS 
BAS-Drive BAS-D 

BAS - subscales total score BAS-Sum 
BIS BIS 

The BISIBAS Scales consist of 20 self-administered questions scored on 5-point 

Likert scales. The BIS scale includes seven items assessing anxiety about 

negative external events (e.g., "I feel worried when I think I have done poorly 

at something"). The BAS scale includes 13 items, which are subdivided into 

Drive (4 items, e.g., "I go out of my way to get things I want"), Reward 

Responsiveness (5 items, e.g., "When I get something I want, I feel excited and 

energized"), and Fun Seeking (4 items, e.g., "I crave excitement and new 

sensations"; table 4.2). A total score can also be calculated by adding the 

individual scores from the three subscales. 

Eysenck Personality Questionnaire - Revised (EQP-R; Eysenck, Eysenck & 

Barrett, 1985) 

Table 4.3. EPQ subscales 

Eysenck Personality Questionnaire - Revised (EQP-R) 
Extraversion EPQ-E 
Neuroticism EPQ-N 
Psychoticism EPQ-P 

The EPQ-R is a 100 item scale containing three personality subscales: 

Neuroticism (EPQN), Introversion-Extraversion (EPQE), and Psychoticism 

(EPQP; table 4.3). The EPQ-R also contains a validity scale, the Lie Scale 

(EPQL). Extraversion (24 items) is characterized by being outgoing, talkative 

and in need of external stimulation. Psychoticism (32 items) was initially 

proposed as a measure of the liability to the psychosis spectrum but contains 

items resembling certain personality disorders (antisocial, borderline and 

schizoid). It is characterised by traits such as aggression, non-conformity, 

inconsideration, anger and impulsiveness. Neuroticism (24 items) is a measure 
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of negative trait emotionality, which is characterised by high levels of negative 

affect such as depression and anxiety. Moreover, it is supposed to be associated 

with the activation of the autonomic nervous system (Phillips, Gossop & 

Bradley, 1986). Finally, the Lie Scale (20 items) is considered a measure of 

social conformity. Participants are invited to express their opinion by 

responding either yes or no to the questionnaires item whether they believe the 

item describes their behaviour or not. 

Sensation seeking scale V (SSS; Zuckerman, 1979) 

Table 4.4. SSS subscales 

Sensation seekin2 scale (SSS) 
Thrill and Adventure Seekin2 TAS 

Experience Seeking ES 
Disinhibition D 

Boredom Susceptibility BS 
SSS - subscales total score SSS - tot 

The Sensation Seeking Scale measure four subscales: Boredom Susceptibility 

(BS); the Thrill and Adventure Seeking (TAS); Experience Seeking (ES); and 

Disinhibition (Dis) scales. The scale contains 40 items, 10 for each subscale. 

Participants are invited for each item to select one of the two options presented 

that they consider applies to their way of thinking. Zuckerman (1994) defines 

sensation seeking as a trait describing the tendency to seek novel and intense 

sensations and experiences and the willingness to take risks for the sake of such 

experience. A total score can also be calculated by summing the scores from the 

four individual subscales (table 4.4). 

Oxford-Liverpool Inventory of Feelings and Experiences Scale (OLIFE; 

Mason, Claridge & Jackson, 1995) 

Table 4.5. OLIFE subscales 

Oxford-Liverpool Inventory of Feelings and 
Experiences Scale (OLIFE) 

Unusual Experiences UnEx 
Cognitive Disorganisation CogDis 
Introvertive Anhedonia Intan 

Impulsive Nonconformity ImpNon 
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The OLIFE is a broad measure of schizotypal personality. It contains 159 items 

which require participants to express whether they agree or disagree with each 

items by responding either yes or no. It contains four personality factors that 

closely correspond to the symptoms reported by patients affected by 

schizophrenia (table 4.5). Specifically, these factors relate to positive reality 

distortion symptoms, negative psychomotor poverty symptoms and positive 

thought disorder symptoms. The scales yielded by the OLIFE are: unusual 

experiences (positive schizotypy), cognitive disorganisation (disorganised 

schizotypy) and introverted anhedonia (negative schizotypy). In addition the 

OLIFE yields a fourth factor that consists of impulsive and 

antisocial/nonconformist character traits, which closely resembles Eysenck's 

psychoticism. The scale is referred to as impulsive nonconformity. As already 

noted, the content of this scale is related to particular personality disorders 

rather than schizophrenia per se, leading some to argue that this scale is not a 

measure of schizotypal personality but rather a factor of the ImpAss component 

(e.g. Pickering, 2004). The questionnaire also includes the social desirability 

(i.e. LIE) and Extraversion scales of the Eysenck Personality Questionnaire as 

well as the Schizotypal Personality Scale (ST A) developed by Clardige and 

Broks (1984; Mason et aI., 1995; Avons, Nunn, Chan & Armstrong, 2003). 

Schizotypal Personality Questionnaire (SPQ; Raine, 1991) 

Table 4.6. SPQ subscales 

Schizotypal Personality Questionnaire (SPQ) 
Subs cales Factors 
Ideas of Reference Cognitive- loR 
Odd beliefs/Magical thinking Perceptual OddBel 
Suspiciousness (CogPer) Susp 
Unusual Perceptual Experiences UPE 
Excessive Social Anxiety Interpersonal ESA 
No Close Friends NCF 
Constricted Mfect CA 
Suspiciousness Susp 
Odd Behaviour Disorganised OddBeh 
Odd Speech OddSp 
Total score SPQ 
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The SPQ is a self-report scale modelled on DSM-III-R criteria for schizotypal 

personality disorder and containing subscales for all nine schizotypal traits. The 

SPQ consists of 74 items. Participants are requested to express whether they 

agree with the items by responding yes or no. There are nine separate subscales, 

each reflecting a DSM-III-R criterion: ideas of reference, excessive social 

anxiety, odd beliefs or magical thinking, unusual perceptual experiences, odd or 

eccentric behaviour, no close friends, odd speech, constricted affect, and 

suspiciousness (table 4.6). Additionally, these nine scales can be further 

classified into three factors, which are: Cognitive-Perceptual, Interpersonal and 

Disorganised. As can be seen in table 4.6, suspiciousness loads onto both the 

intepersonal and the Cognitive-Perceptual factor. These three factors make 

broad reference to three of the OLIFE scales: Unusual Experiences, Introvertive 

Anhedonia and Cognitive Disorganisation. Finally, it is also possible to obtain 

an overall score of schizotypy (SPQ tot). 

4.3.2 Data analysis 

A principal component analysis (PCA) with Varimax rotation was carried out as 

an exploratory tool in order to obtain a summary of the personality data 

collected over the several studies. The use of the PCA aimed to reduce the 

observed personality variables into a limited number of factors which are more 

easily interpreted. Reducing the number of personality factors also decreases the 

number of potential follow-up comparisons and, therefore, reduces the 

possibility of incurring type-I errors. 

The choice of adopting a Varimax solution was driven by the intention of 

simplifying the solution and the structure of the extracted components and their 

discemability. In fact, following a Varimax rotation each scale tends to be 

associated with one of the extracted components. Overall, the presence of 

orthogonal factors renders interpretation of results easier in the analyses which 

are carried out. The regression analysis maximum power is obtained by having 

orthogonal predictors. 
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Several exploratory PCA were run in order to extract the more meaningful and 

complete trait components. In particular, these exploratory analyses included the 

three BAS subscales as well as subscales of the SSS. However, results showed 

that none of these subscales loaded strongly on any of the extracted components. 

Following these observations, it was decided to enter their total scores (i.e. BAS 

sum and SSS total), which gave a better solution (i.e. with fewer complex 

variables). The Chronbach's alphas for the total scales were 0.63 and 0.61 for 

the BAS and SSS scales, respectively. These alpha values suggest reasonable 

internal consistency of the scales and, therefore, reasonable communality among 

the subscales. 

Fifteen personality scales were entered In the PCA which were: BFI 

extraversion (b5e) and neuroticism (b5n) subscales, EPQ extraversion (E), 

psychoticism (P) and neuroticism (N) subscales, SPQ cognitive/perceptual 

(CogPer) and disorganised factors, the OLIFE unusual experiences (unex), 

cognitive disorganisation (CogDis), impulsive/non conformity (ImpNon), 

introvertive anhedonia (intan) and extraversion (ext) subscales, the BIS scale, a 

total score of the sensation seeking (SSS_tot) and the BAS scales (BASsum). 

The Chonbach's alpha reliability values for the scales entered in the PCA are 

reported in table 4.7. 

Table 4. 7. Chronbach's alpha reliability values for the fifteen scales entered in the PCA 

Scale Alpha score 
EPQ- Extraversion 0.86 
EPQ- Neuroticism 0.88 
EPQ- Psychoticism 0.72 
Bi2 five -Extraversion 0.86 
Bi2 five - Neuroticism 0.85 
BIS 0.79 
BAS total 0.63 
SPQ - C02nitive perceptual 0.80 
SPQ - Disor2anised 0.85 
OLIFE - Unusual Experiences 0.91 
OLIFE - Cognitive Disorganisation 0.87 
Impulsive Nonconformity 0.72 
OLIFE - Introvertive Anhedonia 0.77 
OLIFE Extraversion 0.86 
SSS total 0.61 
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4.4 Results 

Data were collected from a total of 232 participants. However, five participants 

took part in more than one of the studies. Data from these individuals were 

identified and their scores on the two sessions were replaced by the average 

score across the two sessions. The peA analysis was run on a data set that 

consisted of 227 cases. 

The distribution of these scales was not very far from a normal distribution and 

even a small variation has very little effect on the component solution offered by 

the peA. Additionally, normality is not a requirement when peA is used to 

summarise a large set of variables into a smaller number of factors (as in the 

present case; Tabachnick & Fidell, 2001). 

A few outliers were identified on a few of the scales: BIS, BASsum, EPQ-E, 

SPQ: cognitive perceptual, OLIFE:unex, OLIFE:intan, OLIFE:ext and SSS_tot. 

However, when comparing the original mean values to the 5% trimmed mean 

values they did not seem to be significantly different, which suggests that the 

more extreme values did not have a great impact on the mean, so they were left 

in the analysis (Pallant, 2001). Additionally, personality traits extend over a 

continuum and individuals are expected to score along the whole spectrum even 

though only a few individuals are expected to score near the extremes. 

Prior to performing the principal component analysis, the suitability of the 

dataset for the analysis was assessed (Tabachnick & Fidell, 2001). Inspection of 

the correlation matrix showed that there were several correlation coefficients 

higher than .3 (see appendix 1). In fact 35% of the total correlations showed a 

correlation coefficient of.3 and above. Moreover the KMO test value was .82 

(at a cutoff of 0.6) and the Barlett's test of Sphericity was significant (p <.001) 

which indicated that the data was suitable for factorising. 
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peA identified four factors with an eigenvalue higher than one (4.46, 3.78, 1.78 

and 1.06 respectively). The scree plot also showed a clear break after the second 

and the fourth components (figure 4.1). 

5 

Extraversion 

4 
Neuroticism 

3 

2 Positive schizotypy 

ImpAss 

o 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Component Number 

Figure 4.1. Scree plot 

The Varimax rotation (table 4.7) revealed the presence of a simple structure. In 

fact, all components showed a number of strong loadings and all variables 

loaded largely on only one component. The four factors explained 73.8% of the 

total variance, with the first component (i.e. extraversion) contributing 29.7%, 

the second component (i.e. neuroticism) 25.2%, the third component (positive 

schizotypy) 11.9% and the fourth component (i.e. ImpAss) 7.0% to the total 

variance. The extracted components resemble the expected factors. 

By considering the variables that loaded into each component, the four extracted 

components can be identified as measures of the four main personality 

components discussed in the introduction, which are: extraversion, neuroticism 

(anxiety), positive schizotypy (PS) and impulsive antisocial sensation seeking 

traits (ImpASS), respectively (table 4.8). 
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Table 4.8. Loading of the 15 scales on the 4 components foUowing a Varimax rotation 

Rotated Component Matrix 

b5 - extraversion 

ePCLe 

olife-intan 

olife-ext 

bassum 

b5 - neuroticism 

epCLn 

bis 

olife-cogdis 

spq-cognitive/perceptual 

spq-disorganised 

olife-unex 

epCLP 

olife-impnon 

sss_tot 

E 

• Loadings below 0.2 are omitted 

4.5 Summary 

.829 

.903 

-.749 

.926 

.588 

-.217 

.290 

.287 

N 

Component 

-.242 

.229 

.838 

.824 

.855 

.684 

.293 

PS ImpAss 

.293 

.285 

.310 

.900 

.687 .361 

.907 

.255 .775 

.223 .571 

.755 

A principal component analysis was run on relevant personality scales in order 

to extract four personality components to use in the analysis of the data obtained 

in the empirical studies that are reported in the following chapters. The PCA 

was implemented in order to reduce the number of personality measures 

collected during the experimental sessions. This was done to reduce multiple 

testing and therefore reduce the chance of incurring type-I errors. Therefore, the 

extracted four components are used in the following chapters to explore the 

relationship between performance and personality individual differences. 

The PCA aimed to extract personality traits that affect BAS activation and, 

therefore, may represent the system underlying traits. For this reason, both 

extraversion and ImpAss components were extracted since the debate is still on

going on which one of the two is the BAS-related trait. Additionally, a positive 

schizotypy component was also extracted because evidence shows that there is 

some overlap between ImpAss and positive schizotypy measures. Finally, a 

component representing the anxiety personality component was also extracted 
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due to evidence that BAS output may also be mediated by the activation of 

punishment systems. The anxiety component is labelled neuroticism since N 

measures loaded strongly onto this component. 

The peA results show that four scales load onto more than one component, 

which are: the BASsum, the Olife-cogdis, the OLIFE-impnon and the SPQ

disorganised scales. Another peA was run after excluding these scales and its 

results showed a cleaner components' solution (table 4.9). 

Table 4.9. Loading of the 11 scales following exclusion of those scales with multiple 
loadings 

Rotated Component Matrix 

Component 

2 3 4 

b5 - extraversion .846 

ep~e .924 

olife-intan -.775 .283 

olife-ext .943 

b5 - neuroticism -.219 .871 

ep~n .819 .264 

bis .856 

spq-cognitive/perceptual .919 

olife-unex .917 

epu .273 .795 

sss_tot .306 .797 

• Loadings below 0.2 are omitted 

A correlation was run between the original components and those components 

extracted by the peA with reduced scales in order to establish their relationship. 

Results showed that the components were strongly correlated (Rs => 0.96; table 

4.9). These results indicate that the two peAs extract roughly identical 

personality components. 
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Table 4.10. Correlations between the components extracted in the original PCA (e, n, p 

and i) and the 'reduced' PCA (eJeduced, nJeduced, pJeduced and iJeduced) 

Correlations 

e reduced n reduced p reduced i reduced 

e Pearson Correlation .983 .041 .026 -.003 

Sig. (2-tailed) .000 .535 .695 .966 

N 227 227 227 227 

n Pearson Correlation -.064 .979 -.023 -.022 

Sig. (2-tailed) .336 .000 .731 .743 

N 227 227 227 227 

p Pearson Correlation -.022 .006 .983 .000 

Sig. (2-tailed) .738 .929 .000 .995 

N 227 227 227 227 

Pearson Correlation -.006 -.004 -.037 .967 

Sig. (2-tailed) .925 .953 .581 .000 

N 227 227 227 227 

Following these observations, it was then decided to retain the four components 

extracted in the original PCA since its solution offers a more exhaustive 

summary of the personality traits that are of interest in the thesis. Moreover, the 

multi-loading scales loaded much more strongly onto one component (i.e. the 

predicted components), as most of the secondary loadings had loading 

coefficients lower than 0.3. 

The component solution obtained from the PCA shows that EPQ-P loads onto 

the JmpAss component rather than on the positive schizotypy component. These 

results are counterintuitive to Eysenck's main assumption that P is a measure of 

the psychoticism spectrum (Eysenck, Eysenck & Barrett, 1985). Nonetheless, 

the present results are in line with previous factor-analytical studies that 

observed that P failed to load onto psychotic-like components (Bentall, Claridge 

& Slade, 1989; Mason et aI., 1995; Claridge et aI., 1996). Bentall and colleagues 

(1989) carried out one PCA on the four EPQ scales and ten schizotypy scales. 

The PCA extracted three components, one component captured the positive 

symptoms typical of schizotypy, the second component captured the negative 

symptoms whereas the third factor that indexed a mixture of social anxiety and 

cognitive disorganisation. The EPQ-P scale was found to load on the first 

component (i.e. positive schizotypy). Subsequently, these researchers carried out 
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a second PCA on the same schizotypy trait scales and four schizophrenic 

symptoms scales. The PCA extracted a four-factor solution. The EPQ-P scale 

together with Chapman's hypomanic personality scale loaded on the forth factor 

which resembles disinhibited and antisocial-like behaviours. In a follow-up 

study, Claridge and colleagues (1996) extracted the same four-factor solution 

despite the fact that the four symptom scales were not included in the factor 

analysis. Vollema and van den Bosch (1995) reviewed nine factor analytical 

studies and they observed that, overall, these studies obtained the same 4-factor 

solution described above. In particular, the EPQ-P scale was found to load 

highly on a component that measures impulsivity and asocial ideas, which the 

authors labelled 'nonconformity'. This 'nonconformity' component captures 

behaviours that are more typical of patients with personality disorders (e.g. 

antisocial personality disorder) than those of schizophrenics (Pickering, 2004). 

Overall, these results and considerations are in line with the present results, 

since they suggest that the EPQ-P scale is a better measure of antisocial and 

disinhibited behaviours (as indexed by the ImpAss component) rather than 

positive schizotypy. 
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Chapter 5 

Impulsivity and delay discounting 

5.1 Abstract 

There is evidence that indicates that reward sensitivity (indexed by extraversion, 

psychoticism and other possible BAS measures) leads to disinhibited responding 

during performance on passive avoidance learning tasks (Patterson and 

Newman, 1993; Avila, 2001). Hence, the present study aimed to explore 

individual differences during a decision-making task that assessed both reward 

delay discounting and disinhibition. The task is a variation of the task 

implemented by Newman and colleagues (1992) where participants had to 

choose to respond to one of two stimuli in order to win money. The choice is 

between a stimulus that offers frequent reward (80% of responses, high reward 

stimuli) but is presented following a 10-second delay and a stimulus that offers 

more infrequent reward (40%, low reward stimuli) but allows immediate 

responding. Results indicated that there were two opposing processes in action 

and they were mediated by different aspects of impulsivity. In particular, one 

form of impulsivity was found to moderate disinhibited responding in response 

to low reward (LR) stimuli (i.e. proportion of LR responses) whereas reward

related impulsivity affected responding in relation to high reward (RR) 

responding (i.e. RT to RR stimuli). Results are discussed in light with this 

observation. The findings support the view that impulsivity is a multi

dimensional factor characterised by at least two major subtypes; these bear some 

resemblance between reward-related and rash impUlsivity (Dawe, Gullo & 

Loxton, 2004), which differently affected performance. Results are discussed in 

light of this observation. 

5.2 Introduction 

Behavioural (motor) impulsivity is characterised by the individual's inability to 

inhibit responding even though responding may not be advantageous. Inhibition 

has been studied by using behavioural tasks with a go/no-go or reversal learning 
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paradigm that requires passive avoidance learning (Arce & Santisteban, 2006). 

During a passive avoidance learning task, the individual needs to learn to 

withhold a response that had previously been associated with reward but it is 

subsequently associated with punishment, extinction or contingency reversal 

(Patterson, Kosson & Newman, 1987; Patterson & Newman, 1993). In other 

words, during perfonnance on a passive avoidance task, the individual needs to 

interrupt ongoing (dominant and/or rewarded) behaviour in order to avoid 

punishment and learn a new response strategy; s/he can do so by paying 

attention to feedback signals. Failure to do so results in perseverative responding 

and, hence, experiencing more punishment or non-reward signals. 

Patterson and Newman (1993) developed a four-stage model to explain 

disinhibited behaviour. In the first stage, perfonnance starts and the individual 

has to establish a stimulus-response association (i.e. dominant response). 

However, during the second stage contingencies change and so hinder ongoing 

responding; this, therefore, requires a behavioural change to cope with the new 

task contingencies (i.e. third phase; during the fourth phase, participants 

implement, or not, the new strategy). The authors suggested that coping with the 

task's new requirement is dependent on the individual's inhibition levels. 

Indeed, dis inhibited individuals are less likely to change their responding pattern 

than their inhibited counterparts, especially if the reward-related cues remain 

present. Moreover, they suggested that disinhibition is associated with high 

reward and low punishment sensitivity. In contrast, inhibited individuals are 

more likely to interrupt dominant responding to modify their behaviour 

according to the new contingencies' requirements (i.e. they show response 

modulation). 

Several studies explored the impact of "disinhibited" personality traits on 

inhibition; they have indicated that extraverts and psychopaths have lower levels 

of inhibition and show impaired perfonnance during reversal learning tasks 

(Patterson & Newman, 1993; Avila, 2001). For example, Newman and 

colleagues (1985) investigated passive avoidance during a go/no-go task. During 

the task participants were presented with six go (S+) and six no-go (S_) cues, and 

they had to learn to make or withhold a response depending on the predictive 
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cue that appeared on the screen. Participants earned money for correct responses 

and lost money for incorrect ones whereas no money was earned or lost when no 

response was made. They found that extraverts showed a deficit in inhibition 

and, as a consequence, they committed more errors of commission than 

introverts3
• In other words, extraverts found it hard to withhold a response that 

was strongly associated with reward even in the presence of no-go cues. The 

same paradigm was used to compare performance between individuals who 

scored high and low on psychoticism measures. Results indicated that high 

scorers on the psychotic ism measures made more passive avoidance errors (P A; 

i.e. errors of commission) than their low counterparts (Newman, Widon & 

Nathan, 1985). 

These findings were further replicated in a study conducted by Patterson and 

colleagues (1987). They had participants perform on a variation of the go/no-go 

task used in the study by Newman and colleagues (1985). In a first experiment, 

these researchers also found that extraverts committed more P A errors than 

introverts. In a second experiment, they had participants perform on the go/no

go task in one of two conditions that varied the length of the feedback interval. 

In one condition, the feedback was presented for five seconds (fixed-feedback 

interval). In the other condition, participants had control over the feedback 

presentation time (flexible-feedback interval). Hence, in the latter condition, 

they could move onto the next trial before the five seconds had expired. Results 

showed that the number of P A errors committed by individuals scoring high and 

low on the extraversion scale differed in the flexible feedback condition only. 

Even though there was a general tendency to initiate the next trial before the five 

seconds had expired, extraverts waited less than introverts to move onto the next 

trial. Moreover, this difference was also moderated by scores on the neuroticism 

scale (i.e. there was a significant E x N interaction). Indeed, neurotic extraverts 

made significantly more PA errors than neurotic introverts. No difference was 

observed between stable introverts and stable extraverts. These results suggest 

3 Pickering (2004) noted that it is a shame that analyses have focused on errors of commission to 
index inhibition deficits. He suggested that application of signal detection theory (SDT) models 
to the behaviour would be preferable and more informative. In fact, the pattern of results can 
change dramatically when analyses are run using SDT models rather than the error scores (see 
Pickering, 2004 for an example) 
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that extraverts and, in particular, neurotic extraverts spend less time processing 

feedback. This may account for the greater response perseveration observed in 

decision-making tasks. 

Moreover, a study by Newman and colleagues (1992) looked at inhibition in 

psychopathic and non-psychopathic offenders performing on a decision-making 

task where participants had to learn to inhibit immediate responding. During the 

task, participants were presented with two boxes on the screen and they had to 

decide which one they wanted to respond to in order to win money. Responding 

to one box led to more frequent winning than the other (high vs. low frequency 

reward). Participants could respond to the low frequency reward box straight 

away whereas they had to wait ten seconds to be able to respond to the high 

frequency box. There were two feedback conditions. There was a reward only 

condition, where participants won money in the rewarded trials, and a mixed

incentive condition, where participants earned money in the rewarded trials but 

lost money on the other trials. There was also a control condition where 

participants had to wait a 10-second delay before they could respond to either 

box. The experimental condition is a measure of both response inhibition (i.e. 

passive avoidance) and delay gratification (i.e. delay discounting). Indeed, in the 

experimental condition participants have to learn to withhold an immediate 

response in favour of a delayed response which is associated with long-run 

winning (Newman, Kosson & Patterson, 1992). In a typical delay discounting 

task, participants are presented with the choice between an immediate but small 

reward and a delayed but great reward (Monterosso & Ainslie, 1999; Arce & 

Santisteban, 2006). 

Overall, the results showed that, compared to performance on the control 

condition, psychopaths, performing under the mixed-incentive condition, were 

less likely to inhibit immediate responding. This led to infrequent reward 

relative to the delayed response that offered more frequent reward. This effect 

was significantly moderated by levels of anxiety. In fact, it was low anxious 

psychopaths that were found to show a deficit in inhibition compared to low 

anxious controls. However, there was no significant difference in performance 

between these two groups during performance on the reward-only condition. 
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It has been observed that there seems to be some fairly close similarities 

between the inhibition model suggested by Patterson and Newman and the 

Reinforcement Sensitivity Theory (RST; Patterson & Newman, 1993; Avila, 

2001). Avila (2001) suggested that inhibition can be explained in terms of the 

RST applied to the inhibition model. In particular, he suggested that the type of 

response produced in the third stage of the model may be mediated by inter

individual variation on the reward and punishment systems. Avila refers to the 

BIS when discussing the punishment system; however according to the revised 

version of RST, the punishment system corresponds to the fight-flight-freeze 

system (FFFS) while the BIS only becomes active in conflict situations (e.g. 

mixed incentive conditions; McNaughton & Corr, 2004; Smillie et aI., 2006a). 

Avila (2001) further suggested that disinhibition, as observed in the experiments 

reported above, would be expected in individuals with a hyperactive BAS and a 

weak BIS (weak FFFS according to the revised version of the reinforcement 

sensitivity theory). Indeed, high BAS individuals are more prone to pursue 

pleasure, and experience positive affect, in situations when they are presented 

with reward stimuli. Therefore, according to the disinhibition model they should 

be less likely to show passive avoidance even after contingencies have changed. 

Variations in the reactivity of the BAS determine the individual's sensitivity to 

reward and propensity to approach behaviour; a highly reactive BAS leads to 

disinhibited behaviour. 

Indeed, high BAS individuals were found to show impaired passive avoidance 

during procedural learning tasks (Avila, 2001). High BAS individuals showed 

response perseveration during passive avoidance tasks despite the fact that the 

stimulus-reward association had changed. Indeed, in a study conducted by Avila 

and Parcet (2000) participants performed on a procedural learning task where 

they had to learn to press one of two buttons in order to earn points. Responses 

to one button led to continuous winnings while responses to the other led to 

partial winnings. In a second phase, the dominant response underwent 

extinction. BAS measures were obtained by administering the reward sensitivity 

scale of the sensitivity to punishment and sensitivity to reward questionnaire 

(SPSRQ; Torrubia et aI., 1995). Results showed that high BAS individuals were 

more likely to respond to the continuous reward button in the first phase of the 
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task. Moreover, they were less likely to inhibit a dominant response that had 

been previously associated with reward, in spite of extinction. 

Similar results were obtained in other studies conducted by Avila which looked 

at the relationship between BAS scores and response rate during a continuous 

odd-even discrimination task (Avila, 2001). Participants earned points for 

correct responses and lost points for incorrect ones. The amount of points lost 

was constant whereas the amount of money earned was proportional to the R T. 

Results indicated that individuals with high BAS scores showed faster 

responding than low BAS individuals. In a second phase of the discrimination 

task (punishment phase), participants were informed that any response emitted 

in the presence of a punishment cue (i.e. a red circle presented together with the 

test stimuli) would result in losing 50% of the point total. High BAS individuals 

failed to inhibit their responding when the punishment cue appeared on the 

screen. 

Data collected on Parkinson Disease patients (PD) showed that administration of 

L-Dopa medication increased impulsive responding during a decision making 

task, similar to the one employed by Newman and colleagues (1992), to explore 

disinhibition in decision making (Cools, Barker & Sahakian, 2003). They 

compared PD patients on and off medication with healthy controls. Participants 

were presented with ten red or blue boxes (ratio of red to blue boxes varied over 

trials) and they had to decide whether a yellow token was hidden under the blue 

or red boxes. Participants had to accompany each decision with a bet. 

Depending on the outcome of their bet they would either win or lose the amount 

of points they had gambled. The task had two betting conditions, ascending and 

descending. In the ascending condition, the amount of points that participants 

could bet increased in a stepwise fashion (5, 25, 50, 75 and 95% of the total 

points) every five seconds. Participants had to press the 'bet' response to 

indicate that they were prepared to bet that amount of points. The opposite 

pattern was true in the descending condition. In other words, participants had to 

withhold from making the 'bet' response, if they intended to bet a large amount 

of points in the ascending bet condition, and also if they wanted to bet a small 

amount of points in the descending bet condition. Results showed that patients 
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on medication showed more dis inhibited responding. Indeed, they made smaller 

bets in the ascending condition and greater ones in the descending condition 

compared to patients off medication and controls, the last two groups showed 

similar patterns. However, results also indicated that patients on medication had 

accuracy levels equivalent to the ones obtained by the other two groups. 

PD is characterised by decreased levels of DA neurotransmission. In particular, 

in the early stages of the disease, DA activity is strongly depleted in the 

nigrostriatal system whereas DA depletion in the mesolimbic and mesocortical 

systems is more typical of later stages of the disease (Pinel, 2002, Cools, 2006). 

Hence, the researchers suggested that administration of the DA precursor (L

Dopa) would have a detrimental effect on performance of the 

ascending/descending decision making task. This was due to the fact that L

Dopa led to DA over-activity in the intact meso limbic system and, subsequently, 

impulsive/disinhibited-like responding. Indeed, the mesolimbic system is 

associated with reward-related learning as well as motor performance, which are 

both necessary aspects of the behavioural approach (BAS) system in the 

presence of reward (Patterson & Newman, 1993; Schultz, 1998; Avila, 2000). 

According to the four-stage inhibition model (Patterson & Newman, 1993), 

higher reward sensitivity (i.e. high BAS reactivity) should lead to greater 

disinhibited behaviour (i.e. more responding). 

The studies reported above, which indicated that extraverts or psychopaths show 

disinhibited behaviour during decision-making tasks, can also be explained 

according to the RST model. Patterson and Newman (1993) suggested that 

increased levels of disinhibition are greater in individuals who are sensitive to 

reward. Indeed, there is evidence indicating that extraversion is the underlying 

trait of the behavioural activation system (BAS); and thus extraversion is 

sensitive to stimuli associated with reward (Depue & Collins, 1999; Pickering, 

2004; Cohen, et aI., 2005; Smillie et aI., 2007). According to these 

considerations it is not surprising that extraversion scores are positively 

associated with performance impairments during reward-related decision 

making tasks that require disinhibition (e.g. reversal learning). As previously 

observed, the impact of extraversion on inhibition is moderated by 
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anxiety/neuroticism scores. Again, this is not surprising since many studies used 

mixed incentive payoff matrices which activate both the reward and punishment 

system, and the conflict resolution (BIS) system as well. Hence, the final BAS 

output would be a by-product of the reactivity of these systems rather than the 

BAS alone (COIT, 2002b; Smillie et aI., 2006a; Pickering, 2008). 

Similarly, the study by Newman and colleagues (1992) indicated that 

psychoticism moderates inhibition in the same fashion as extraversion. This is 

also predicted by RST since psychotic ism is captured by measures such as the 

EPQ-P scale which is one of the main scales that loads onto the ImpAss 

component (Zuckerman, 1993; Pickering, 2004). ImpAss traits have been 

identified as a possible candidate for the BAS trait. Gray originally identified 

impulsivity as the underlying personality trait of the BAS (Gray, 1970; 

Pickering, 2004; COIT, 2006) and there is empirical evidence that supports this 

claim (e.g. Stuettgen et aI., 2005; Franken & Muris, 2006; Pardo, Aguilar, 

Molinuevo & Torrubia, 2007; see chapter 3 for a review). 

Overall, these considerations and Avila's studies (Avila & Parcet, 2001; Avila, 

2001) suggest that inhibition tasks can be a useful tool to explore the BAS and 

identify its underlying traits. However, the results reported above in this chapter 

are still not conclusive in identifying the BAS-related personality trait(s). This is 

due to the fact that the inhibition paradigm has not been used directly to assess 

the RST assumptions and, subsequently, the methodology implemented by some 

of the studies reviewed in this chapter may have not been ideal. For example, 

most studies used mixed-incentive matrices and they did not fully measure and 

analyse personality measures in relation to the BAS. 

In the present study, it was decided to explore BAS reactivity (indexed using 

several possible BAS-related trait measures) by using the same decision-making 

task adopted in the study by Newman and colleagues (1992). Hence, it allows 

one to investigate the relationship between individual differences and reward 

sensitivity. The task adopted in the study by Newman and colleagues (1992) not 

only looked at inhibition but also at delay discounting, which is a measure of 

how quickly individuals discount a reward as a function of its delay in time 
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(Monterosso and Ainslie, 1999; Bickel, et aI., 1999). The delay discounting task 

is generally considered to be a behavioural measure of impulsivity and greater 

discounting is observed in individuals who score high on impulsivity (ImpAss 

measures; Mitchell, 2004; Field, Santarcangelo, Surnnall, Goudie & Cole, 

2006). In fact, impulsive individuals are more likely to prefer a small (less 

frequent) but immediate reward over a larger (more frequent) but delayed one 

(Monterosso & Ainslie, 1999; Kalenscher & Pennartz, 2008). 

Smokers have been found to show low levels of inhibition during response 

inhibition, gambling and delay discounting tasks (Grant, Contoreggi & London, 

2000; Powell, Sawkins & Davis, 2002). There is wide evidence that indicates 

that smokers as well as alcohol and drug users show greater discounting for 

monetary rewards compared to matched controls (Vuchinic & Simpson, 1998; 

Mitchell, 1999; Kirby, Petry & Bickel, 1999; Field et aI., 2006). Abstinent 

smokers have also been found to show steeper discounting of delayed cigarettes 

than monetary rewards (Field et aI., 2006; 2007). Bickel and colleagues (1999) 

also found that current smokers showed steeper delay discounting than ex

smokers and never smokers. Additionally, both heavy and light smokers showed 

greater delay discounting compared to never-smokers (Johnson, Bickel & 

Baker, 2007). These results indicate that smokers show disinhibited behaviour 

typical of impulsive individuals (i.e. high "rash" impulsiveness and reward 

sensitivity; Mitchell, 1999; Dawe & Loxton, 2004). Similar results have been 

observed during performance on the lOW A gambling task when substance users 

were found to prefer stimuli that led to immediate, large rewards but determined 

long-run losses compared to stimuli that led to long-run winnings in spite of 

more modest immediate rewards (Dawe et aI., 2004). Similarly, heavy drinking 

adolescents were found to show steeper delay discounting of both monetary and 

alcohol-related rewards compared to light drinking adolescents (Field et aI., 

2007). Grant and colleagues (2000) suggested that this could be related to the 

user's inability to inhibit drug use (immediate reward) in favour of long-term 

well-being (reward). Hence, smoking status was also recorded in the present 

study since it seems to mediate disinhibition and, possibly, BAS activity. 
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5.2.1 Aims of the present study 

According to the literature reviewed above, it was decided to use an inhibition 

paradigm to explore BAS activation and identify the BAS-related trait. It was 

decided to use the same task adopted by Newman and colleagues (1992) since 

the task explores both inhibition and delay discounting, which may be both 

mediated by BAS outputs. Only the control and the reward-only conditions, 

used in the original study, were included in the present study. This choice was 

determined by the main aim of the study to identify the BAS trait. Indeed, the 

mixed-matrix condition may activate both the reward and punishment systems 

and, therefore, it would make it harder to assess the BAS output and discern the 

pure BAS trait (Corr, 2004b)4. According to previous findings, it was predicted 

to fmd: i) more inhibited responding during the experimental condition than the 

control one; ii) high BAS individuals to show greater sensitivity to reward and, 

according to the four-stage inhibition model, to show more dis inhibited 

responding; iii) BAS-mediated behaviour to be associated with scores on the 

extraversion or the ImpAss personality component; and iv) smoking status was 

expected to modulate disinhibited responding, in particular smokers were 

expected to show more disinhibited responding than non-smokers during the 

experimental condition. 

Additionally, several measures of impulsivity were taken, in order to assess the 

relationship between the BAS-related personality trait(s) and measures of 

typical impulsivity. In fact, on top of the typical battery of questionnaires 

administered in every testing session (see chapter 4), participants completed the 

Dickman Impulsivity Inventory (DII) and also performed on a standard delay 

discounting (DD) task. The latter, as previously mentioned, is a behavioural 

measure of impulsivity and it closely resembles the paradigm used in the 

decision-making task. Hence, the study aimed to assess how performance on the 

DD task related to performance on the decision-making task and, consequently, 

how the two tasks related to the various personality measures. 

4 Moreover, the thesis aims to explore the impact of reward on learning and motivation and, 
subsequently, the neural model developed and implemented in the later studies is a reward-only 
model 
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The DII is a questionnaire which measures two sub-types of impulsivity, 

reckless behaviour (dysfunctional impulsivity) and reward-driven behaviour 

(functional impulsivity; Smillie & Jackson, 2006). Empirical evidence has 

indicated that functional impulsivity affects behavioural responses made by 

participants during performance on tasks that offer the chance to earn rewards 

(e.g. IOWA gambling task, the BART and go/no-go tasks: Franken & Muris, 

2005; Smillie & Jackson, 2006; Vigil-Co let, 2007). In contrast, dysfunctional 

impulsivity (DI) has been found to be associated with reduced inhibition in 

withholding a disadvantageous dominant response (e.g. reversal learning) which 

is a behaviour typically observed in individuals with high scores on impulsivity 

measures such as the h questionnaire (Franken, van Strien, Nijs & Muris, 2008). 

For example, a study by Smillie and Jackson (2006), participants had to learn to 

respond to the 'good numbers' (go cues) and withhold responses to 'bad 

numbers' (no-go cues) during a go-no/go task. Individuals with high scores on 

the DI scale showed disinhibited responding to the no-go cues regardless of 

payoff manipulation (reward-only vs. punishment-only). In contrast, individuals 

with high scores on the FI scale learnt to correctly respond to go cues in the 

reward-only condition but not in the punishment-only condition (Smillie & 

Jackson, 2006). These results suggest that there may be impulsivity measures 

that are related to reward sensitivity (i.e. the impulsivity of RST, a BAS-trait), 

and impulsivity measures that capture a more typical facet of impulsivity, 

characterised by a lack of forethought and reckless behaviour ("rash 

impulsivity"; Dawe & Loxton, 2004; Dawe et aI., 2004; Franken & Muris, 2005, 

2006). 

Hence, a further aim of the present study was to explore the relationship of these 

two scales with the personality components included in the study and the BAS 

outcome as well as measures. 
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5.3 Method 

5.3.1 Participants 

A total sample of 92 participants took part in this study. The age of the sample 

ranged from 18 to 39 years (mean = 23.82, s.d. = 5.13). There were 57 females 

and 35 males in the sample. The sample was recruited over two separate waves 

of testing, a summer and an autumn session. During the first wave of testing 

(Summer session), 32 participants (15 females and 17 males) were recruited and 

tested. They were recruited from the student population at Goldsmiths 

(University of London) and among non-students who lived in the local area. 

They were predominantly non-psychology students and received payment for 

their participation. They earned £10 for their participation (approximately 2 

hours). 

During the second wave of testing (Autumn session) 60 (42 females and 18 

males) participants were tested. The sample was constituted mainly by first year 

undergraduate Psychology students at Goldsmiths who took part to earn course 

credits. However, 38.3% of the second wave consisted of non-psychology 

students who received payment for their participation (£10 for approximately 2 

hours). Additionally to payment or credits, participants could also earn up to £2 

extra depending on their performance on this task. 

Participants in the Autumn study were slightly but significantly younger than 

those in the Summer session [22.87 (4.9) cf. 25.59 (5.12); t(90) = 2.50; p = 

.014]. 

All participants spoke fluent English that enabled them to complete the 

personality questionnaires. However, participants were invited to ask for 

clarification on any of the questionnaire items. 
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5.3.2 Design 

The present study assessed the impact of personality and reward frequency 

(payoff structure manipulation) on a decision-making task. In particular, it 

aimed to assess the impact of high and low reward frequency on participants' 

ability to inhibit responding and delay gratification as a function of their scores 

on BAS measures. 

The primary independent variable was reward frequency and it was run as a 

within-subjects factor with two levels, i.e. high and low reward frequency. In 

order to control for order effects, the two tasks were intertwined so that they 

were performed at the same time. Thus, any carry-over effects between the tasks 

should not occur as a result of order of presentation. The study assessed how 

different frequencies of reward affected the pattern of responding to stimuli 

associated with low and high reward frequency. 

The task consisted of an experimental and a control condition. The latter 

represented a baseline measure to assess whether participants were actually able 

to detect the different reward rates and, hence, maximise long-run winnings. The 

task simply aimed to assess reward-maximising strategies in relation to 

individual differences. 

5.3.3 Task and apparatus 

The task was run on a Mesh PC and a Mitsubishi 21" monitor with 1024 x 768 

pixel resolution in an artificially lit room. Each stimulus was computer 

generated by using Matlab routines from Brainard's (1997) Psychophysics 

Toolbox. Stimuli were flashed on a black background that filled the entire 

screen. Responses were made using the four (appropriately labelled) arrow keys 

on a standard keyboard. 

The stimuli were 2 squares that measured 4.5 cm * 4.5 cm and were displayed 

side by side with an edge-to-edge distance of 3.5 cm. The squares were 
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presented at the centre of the screen 9 cm from the bottom and top of the screen 

and also 9 cm from each side of the screen. 

The stimulus labels, button 11 A or button 21B, appeared below each 

corresponding stimulus box, depending on the task condition participants were 

performing and in accordance to the timing parameter of each condition. Figure 

5.1 illustrates the format of the task for those participants allocated to the first 

counterbalancing (CB) order (see below for CB details). 

Figure 5.1. Screen shots for the two tasks for those participants performing under CB 1. 
The two panels at the top represent the control condition (i.e. pink boxes) before and after 
the 10-second delay had expired on the left and the right, respectively. The two bottom 
panels represent the experimental condition. The colour-task combination was reversed 
for those participants allocated to CB 2. 

The expression 'Total winnings = £xx.xx' appeared above the two boxes. This 

expression kept participants continuously updated on the total amount of money 

they had earned. Every time participants responded to either box they also 

received a feedback message that was displayed for 2 seconds and then was 

immediately followed by the next trial. The feedback message informed 

participants on whether they had earned 3 pence or not. During reward trials, 
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participants received a message in green stating 'You win 3 pence' whereas 

during no reward trials, participants received the following message ' _____ _ 

_ _ ', drawn in white (i.e. 8 hyphens, as in the original study). 

Participants performed the task under two conditions, the experimental and the 

control condition. In order to control for possible order effects, the two tasks 

were intertwined. During the experimental condition, participants could respond 

either to the box on the left-hand side of the screen or to the one on the right

hand side of the screen. Responses to the box on the left were rewarded 40% of 

the trials (i.e. low reward response, LR) whereas responses to the box on the 

right were rewarded 80% of the total trials (i.e. high reward response, HR). The 

box on the left-hand side of the screen lit up as soon as the trial began, so that 

participants could respond straight away. In contrast, participants could respond 

to the high reward box only after a 10-second delay, when the box lit up. The 

control condition offered the same reward frequency structure as the 

experimental one. However, in the control condition in order to respond to either 

box participants had to wait until a 10-second delay had expired, whenever both 

boxes lit up simultaneously. If they responded to the high frequency feedback 

box on every single trial, they earned £1.92 (which was then rounded up to £2). 

Owing to the fact that the two tasks were essentially identical and intertwined, 

they were visually distinguished by the colour used to draw the boxes presented 

in the two conditions. This was done in order to render the two conditions more 

easily discernible. In fact, one of the tasks consisted of pink boxes and the other 

task consisted of two blue boxes. During the pink boxes task, in order to respond 

to the box appearing on the left-hand side of the screen participants had to press 

the up arrow key which was labelled as 'I' and for the alternative choice they 

had to press the down arrow key that was labelled as '2'. During the blue task, 

to respond to the box on the left-hand side of the screen participants had to use 

the left arrow key labelled as 'A' or press the right arrow key, labelled as 'B', to 

respond to the box on the right-hand side of the screen. Depending on the 

counterbalancing (CB) order participants experienced the pink boxes task as the 

experimental or control condition (see counterbalancing section below). 
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The whole real task was made up of 80 trials, 40 trials per each task. The task 

was programmed so that the order in which trials from the two tasks were 

presented was on a quasi-random sequence, identical for all participants. 

Participants could respond only using the appropriate task keys, and only once 

the boxes had lit up and the corresponding labels had appeared. Attempts to 

make premature key presses to unlit boxes were ignored and had no effect on 

the task processing or data storage. In both conditions, the feedback frequency 

was also controlled as the rewards were presented in a fixed quasi-random 

order5
. 

Prior to starting the real task, participants underwent a guided practice trial 

where they had to follow the instructions appearing on the screen. The practice 

trials were intended to get participants acquainted to the key presses required to 

respond to the boxes during the two tasks as well as to let them become familiar 

to the consequences of each press type (and, in particular, experience the 

different probabilities of feedback). Participants made 20 guided responses to 

the control condition boxes and 20 presses to the experimental condition boxes. 

They were instructed to respond ten times to the box appearing to the left-hand 

side of the screen (i.e. low reward frequency) and ten times to the box appearing 

on the right hand-side of the screen (i.e. high reward frequency) using the 

corresponding keys. They followed the same procedure for the control and the 

experimental condition. The probabilities of winning and the time delays were 

exactly the same as the ones adopted for the real trials. However, during the 

practice trials participants had no decisional power but simply had to follow the 

instruction on the screen. Participants were told to use the index finger of their 

dominant hand to press the key corresponding to the selected box to which they 

needed to respond. 

5 The mean proportion of reward received following HR and LR choices are close to the 
expected values (i.e. 40% and 80%) in both conditions as represented in the table below which 
reports the number of LR and HR responses, the % of rewarded response and the number of 
participants. Participants who made fewer than 8 LR responses, regardless of task condition, 
were excluded from this table since they have too few trials to meaningfully estimate 
proportIOns. 

LR-exp HR-exp LR-con HR-con 
# made 27.3(8.4} 15.0 (10.7) 17.2 (5.8) 27.6 (7.8) 

% reward 36% 82% 37% 81% 
N 78 82 55 89 
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5.3.4 Counterbalancing 

Counterbalancing was necessary in order to control for possible artefacts related 

to a possible emotional valence related to the colours of the squares, as well as a 

possible key bias. Participants were allocated to one of the CB orders depending 

on whether they had an even or odd ID code. Participants with an odd code were 

allocated to the first CB condition (CB 1), where the blue-box task was the 

experimental condition and the pink-box task was the control task. Participants 

with an even code were allocated to the second CB condition (CB 2), where the 

pink-box task was the experimental condition and the blue-box task represented 

the control condition task. 

5.3.5 Personality measures 

Participants completed several personality measures, which were: the Eysenck 

Personality questionnaire revised (EPQ-R), the Oxford-Liverpool inventory of 

feelings and experiences scale (OLIFE), the sensation seeking scale (SSS), the 

schizotypal personality questionnaire (SPQ), the big five inventory (BFI) and 

the BIS/BAS questionnaire. Four personality components were extracted after 

running a PCA with Varimax rotation on these scales (see chapter 4 for details). 

The four components extracted are: Extraversion (E), Neuroticism (N), Positive 

Schizotypy (PS) and impulsivity-antisocial (ImpAss). The PCA was run on 232 

participants, who constitute the overall number of participants tested. The 

components scores used in the present study are the corresponding scores 

extracted in the overall PCA involving 232 participants. 

5.3.6 Additional impulsivity measures 

Gray suggested that the underlying personality trait of the BAS was impulsivity. 

As already noticed, there is reason to believe that the impulsivity described by 

RST is one aspect of the multi-dimensional factor identified as impulsivity. 

Indeed, RST describes the BAS as reactive to reward and, hence, the BAS

related impulsivity is assumed to reflect reward sensitivity while rash 

117 



impulsivity describes disinhibited and thoughtless behaviour (Smillie and 

Jackson, 2006; Franken and Muris, 2006). In the present study, it was decided 

to include further measures of impulsivity that were not collected in the other 

studies and, therefore, were not included in the PCA analysis. These measures 

were included in order to see how they related to performance on the decision

making task and how they were associated with the other personality 

components which, as described in the PCA chapter, may be related to the BAS 

functioning. It was expected that the Dysfunctional Impulsivity scale of the 

Dickman Impulsivity Inventory would be positively correlated with the ImpAss 

component extracted in the PCA. The relationships between the additional 

impulsivity measures and the extracted personality components, especially 

ImpAss, are reported in table 5.2. 

Dickman Impulsivity Inventory (DII; Dickman, 1990) 

The inventory consists of 23 items, twelve of the items measure functional 

impulsivity and 11 of the items measure dysfunctional impulsivity. Participants 

have to express how much they agree with the statement of each item using a 6-

point Likert scale. The items that measure functional impulsivity capture 

impulsive behaviour directed to personal gain (e.g. item 18: 'I am good at taking 

advantage of unexpected opportunities, where you have to do something 

immediately or lose you chance'); whereas items measuring dysfunctional 

impulsivity capture reckless behaviour (e.g. item 12: 'I often say and do things 

without considering the consequences'). 

A study by Smillie and Jackson (2006) indicated that dysfunctional impulsivity 

(DI) was mainly associated with more typical measures of impulsivity and 

psychoticism (e.g. EPQ-P and sensation seeking), while functional impulsivity 

was mainly associated with measures such as extraversion, BAS (sum total 

score), but negatively with neuroticism and BIS scores. Empirical evidence, 

reviewed in the introduction, observed that the FI scale is positively associated 

with reward-driven responses whereas the DI scale is associated with 

disinhibited responding (Franken and Muris, 2005; Vigil Colet, 2006; Smillie 

and Jackson, 2006). Hence, it supports the claim that there may be different 
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types of impulsivity and, in particular, one that refers to sensitivity to reward 

(BAS) and one that underlies reckless behaviour (Smillie and Jackson, 2006; 

Franken and Muris, 2006; Vigil-Colet, 2007). In the present study, the 

Chronbach's alpha for the FI scale was 0.79 and the alpha value for the DI scale 

was 0.86, which indicates that the two scales have a reasonable internal 

consistency. 

Delay discounting task 

The delay discounting task required participants to choose between a large but 

delayed reward and a small but immediate one. In the case of the immediate 

reward, the magnitude is varied until the individual perceives the delayed 

reward to be as valued as the immediate one and, therefore, s/he would not mind 

waiting. This is the indifference point for a particular delay interval. Once the 

indifference point is reached for one time delay, the time interval is further 

increased and the same procedure is followed to calculate the indifference point 

of the new time delay. 

The delay intervals and reward magnitude were printed on separate 28 em x 13 

em cards. There were 27 cards for the reward magnitude and the values used 

were: 990,960,920, 850, 800, 750, 700,650,600,550,500,450,400,350,300, 

250,200, 150, 100, 80, 60, 40, 20, 10, 5 and 1. These values have been used in 

other studies although in the current version they expressed money in GB 

pounds rather than US dollars (Bickel, et aI., 1999). There were also two cards 

indicating £1000. There were 7 cards that represented the delay intervals, which 

were: 1 week, 2 weeks, 1 month, 6 months, 1 year, 5 years and 25 years. There 

was also one 'immediate' card. The cards were placed in front of the 

participants. The 'immediate' card with the variable reward magnitude cards 

were placed on the participant's left hand side whereas the '£1000' card and the 

variable delay interval cards were placed on the participant's right hand side. 

The first scenario presented to participants required them to choose between 

receiving £1000 pounds immediately and waiting a week for the £1000. The 

researcher turned through the 27 magnitude cards to alter the value of the 

immediate reward until the participants indicated that they preferred the delay 
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reward. At this point, the delay interval was increased by turning the cards to the 

next time delay. This same procedure was employed through the seven time 

delays. The opposite procedure was followed to collect discounting measures in 

the ascending order. 

The last immediate reward selected over the delayed reward in the descending 

sequence together with the first immediate reward selected over the delayed 

reward in the ascending sequence were recorded by the experimenter. The 

average of these values was taken as the indifference point for a specific delay 

interval. The 'temporal discount function' can be calculated using the obtained 

indifference points (Monterosso and Ainslie, 1999). 

The instructions given to the participants at the beginning of the task are as 

follows: 

"I am going to ask you to make some choices involving money. You will 
not receive any of the amounts shown, but I want you to make your 

choices as though you could really have the amount of money displayed. 
The options are printed on cards on the table in front of you. To your left 
is an amount of money you can have immediately and to your right is an 
amount of money you can have after waiting a period of time. There are 

no right or wrong answers. I do not expect you to select one choice or the 
other. The choices you make are completely up to you. Just select the 
consequence you want, not the consequence you think that I want". 

The researchers gave the following instructions to guide choice through the 

actual task. These instructions were given during the descending condition: 

"For your first choice, you can choose between £1000 delivered 
immediately and £1000 given to you after a delay of I week. Point to the 

choice you would prefer". 

When participants pointed to the immediate £1000, as most participants did, 

instructions followed: 

"Now I will change the amount that you are being offered today. Keep 
choosing the option that you want". 
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In the few instances where participants preferred the delayed reward, 

instructions followed: 

"Now I will change the amount of time you would have to wait to obtain 
the £1000. Between £1000 delivered immediately and £1000 given to you 

after a delay of 2 weeks, which one would you prefer." 

5.3.7 Procedure 

The study method and procedure were approved by the Psychology Department 

Ethics Committee (DEC) at Goldsmiths, University of London. Testing was 

conducted in a testing room in the department. Participants sat at a desk in front 

of a computer screen, a keyboard and stereo speakers. On entering the testing 

room, participants were reminded that all the collected data and information 

would remain anonymous and be treated with confidentiality. They were also 

informed that they had the right to withdraw from the study at any time and for 

any reason. In order to guarantee anonymity, each participant was allocated a 

unique ID code that became the only means of identifying the data. 

Participants were automatically allocated by the task programme to one of the 

two counterbalancing order depending on whether they had an even or odd ill 

code. Depending on the CB order, the colour of the two boxes for the 

experimental and control condition varied (i.e. either blue or pink; see 

counterbalancing section above). 

Prior to the practice trials, participants were presented with some information on 

the two tasks they were going to carry on during both the practice and the real 

tasks. They were told which key presses were required and the response-timing 

issues related to the two conditions. Additionally, during the practice trials, 

participants had to follow the instructions on the screen, telling them which key 

press was required. Participants were invited to keep track of the winnings in 

relation to each key press. 
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Once the practice trials were over, participants were invited to express any 

doubt that may have risen during the practice and to ask for clarification. If no 

doubt was expressed, participants started the real task straight away. An 

information screen was presented prior to the actual task to remind participants 

of the two tasks they were about to perform and the key presses required. The 

instructions presented to participants were as follows: 

"You will carry out two tasks at the same time. They are the same tasks 
that you have seen during the practice trials. One task consists of two pink 

boxes whereas the other task consists of two blue boxes. 

Responses to the blue boxes can be made using the keys labelled as A and 
B for the box on the right and the box on the left, respectively. 

Responses to the pink boxes can be made using the keys labelled as I and 
2 for the box on the right and the box on the left, respectively. 

ALL RESPONSES SHOULD BE MADE BY USING THE INDEX 
FINGER OF YOUR DOMINANT HAND. 

Despite the fact that the two tasks are presented at the same time, they are 
independent and should be considered separately. Your strategy should 

not rely on the tasks' inter-relationship. 

In this part of the experiment, after you press a key, the computer will give 
you monetary feedback. In fact, you will earn 3 pence on a randomly 

selected percentage of your responses. 

You will be able to monitor the number of money you earned for that trial 
and your running total. You should try to earn as much money as 

possible." 

Since they were quite long, instructions were presented over two separate 

screens. Participants were also verbally reminded that their strategy should not 

be affected by the order of presentation of the two tasks. The researcher also 

stressed the fact that in this part of the experiment participants had to decide 

which box they wanted to respond to and that they could earn up to £2 

depending on their performance. Once again they were urged to earn as much as 

possible. 

Participants were invited to sit in front of the computer in a comfortable way, in 

order to move as little as possible during the trials. They were encouraged to 
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express any doubts about the task and to start only once they felt completely 

confident about the task instructions. At this point, the experimenter left the 

testing room to let participants carry out the task on their own. 

The delay discounting task was always performed as the last task of the session. 

The descending condition was run prior to the ascending one. The researcher 

manually noted the responses given by the participant in order to subsequently 

calculate the indifference points. 

5.3.8 Data analysis 

A data processing programme was developed to create an overall summary file 

that could be exported from Matlab into SPSS and, therefore, allow statistical 

analysis on the data. The programme extracted three main measures for each of 

the two conditions. They were: the number of low reward and high reward 

responses and their corresponding reaction times. Analyses were carried out on 

the overall 80 trials. 

Additionally, the data obtained from each participant on the delay discounting 

task was individually fitted by both the exponential and the hyperbolic decay 

fitting model using non-linear regression in SPSS. 

The hyperbolic function assumes that discounting decreases in proportion to the 

time delay, in particular discounting is greater with short time delay and smaller 

as the time delay increases (equation 10.3): 

V d = Vi/(l +k*D) Eq.l0.l 

In contrast, the exponential function assumes that the value of the reward 

decreases by a fixed amount constantly over time (equation 10.4): 

Eq.l0.2 
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In both equations Vd is the value of the delayed reward, Vi represents the value of 

the immediate reward (i.e. 1000), D represents the delay and k is the discounting 

rate constant. Previous studies indicated that the hyperbolic function is more 

effective at capturing human data (Kalenscher et aI., 2008). Prior to fitting the 

data via non-linear regression all delay intervals were transformed into months 

[e.g. I-week = (1130)*7 = 0.23]. 

5.4 Results 

The main dependent measure was the proportion of responses to the box which 

offered less frequent but immediate rewards both in the experimental and in the 

control conditions. These responses are referred to as the low reward (LR) 

responses in the rest of the chapter. Results showed that a few participants made 

LR response after the IO-second delay had expired. In fact, a few participants 

reported having initially withheld LR responses for ten seconds because they 

had noticed that waiting seemed convenient regardless of task condition. 

However, most of them made only a few of such responses. Seventeen 

participants out of the total sample (N = 92) made delayed LR responses 

between I and 5 times, however 2 participants made 8 delayed LR responses 

and one participant committed delayed LR responses 22 times out of the total 40 

trials. It was decided to exclude participants who had committed more than 5 of 

those responses because they cannot be considered as impulsive reward-driven 

choices. 

Hence, the final sample included in the following analyses comprised 89 

participants. All three participants excluded had performed under the second 

counterbalancing (CB 2; experimental task had pink boxes). Additionally, it was 

decided to explore the impact of individual differences on RTs in response to 

the LR stimulus in the experimental condition and in response to the high 

reward (RR) stimulus (i.e. following the lO-second delay). 
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5.4.1 Task performance - responses to the low reward (LR) stimuli 

5.4.1.1 Behavioural data 

A mixed-design ANOV A was run to explore the pattern of responding between 

the control and the experimental condition across all the trials. The primary 

dependent measure was the proportion of LR responses made by participants in 

the two task conditions. Each task consisted of forty trials. Task condition was 

entered as a repeated-measure factor with two levels (control vs. experimental). 

The counterbalancing condition was entered as a between-subject variable with 

two levels (e.g. experimental task used blue boxes vs. pink boxes). This was 

done in order to assess whether the task features affected performance. 

Results showed that there was an extremely significant main effect for the 

amount of LR response made across the two task conditions [F(1,87) = 123.94, 

p <.001]. Participants responded significantly more frequently to the low reward 

box during the experimental condition (mean = 24.6, s.d. = 10.7) than during the 

control one (mean = 12.4, s.d. = 7.8). Moreover, the main effect of CB was 

significant [F(1,87) = 10.02, p = .002]. As visually represented in figure 5.2, 

participants in CB 1 tended to commit more LR responses than those in CB 2 

regardless of the task condition. However, the 2-way interaction between task 

condition and CB condition was non-significant [F(1, 87) = 1.14, ns]. 
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Figure 5.2. Proportion of low reward responses in the control and experimental condition 
as a function of CB group 

5.4.1.2 Personality data 

Prior to running any analysis to assess the impact of personality during 

performance on the decision-making task, scores on the four personality 

components obtained in the PCA were compared across the two CB conditions. 

The independent t-tests showed that there were no significant sampling error 

effects and that scores across the two CB conditions did not differ (p values 

greater than .26). Following these results and the previous results, which showed 

that performance on the tasks was not critically influenced by CB condition, CB 

was not included in the following analyses. Table 5.1 summarises the 

correlations between the four personality components extracted in the PCA and 

the proportion of LR responses (out of 40 trials) in the two task conditions. No 

correlation was found to be significant. 
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Table 5.1. Correlations between the personality components and the proportion of LR 
responses in the control (con) and the experimental (exp) conditions 

Positive 

Extraversion Neuroticism sChizotypy ImpAss 

Pearson Correlation -.017 -.102 .149 -.104 

Sig. (2-tailed) .876 .340 .163 .334 

N 89 89 89 89 

Pearson Correlation -.021 -.100 .140 -.033 

Sig. (2-tailed) .845 .350 .190 .761 

N 89 89 89 89 

An ANCOV A was run to explore the effect of personality on performance. As 

in the analysis reported in the previous section, the main DV was the number of 

LR responses and task condition was entered as a repeated measure. The four 

personality components were entered as continuous covariates. None of the 

personality components was found to mediate performance on the control or 

experimental task (ps > 0.5). 

5.4.1.3 Performance and other impulsivity measures 

As previously mentioned in the method section, other measures of impulsivity 

were collected in the present study. A behavioural measure of impulsivity was 

collected using the delay discounting task and further psychometric measures of 

impulsivity were also collected by administering the Dickman's Impulsivity 

Inventory (Dickman, 1990). Two participants from the first wave of testing did 

not perform on the delay discounting task so that the sample size on that test is 

equal to 90. The obtained hyperbolic k scores were positively skewed so a log 

transformation was applied to the data to obtain a more normal distribution. The 

recoded scores are used in the analyses reported below. Finally, in the second 

wave of testing (N = 60), smoking status was also recorded. 

Correlations were run to assess the relationship between the four personality 

components extracted in the PCA and the extra impulsivity measures taken 

during the testing session (table 5.2). After correcting for multiple tests, the 

correlations showed that functional impulsivity was still positively correlated 

with extraversion (r = .50, P < .001) and negatively with neuroticism (r = - 40, P 
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<.001); dysfunctional impulsivity was also positively correlated with 

extraversion (r = .30, p = .005). 

Table 5.2. Correlations between the impulsivity measures and the four personality 
components (FI = functional impulsivity; DI =dysfunctional impulsivity; recoded_hyp_k = 
delay discounting) 

Positive 
Extraversion Neuroticism schizotypy ImpAss Recoded hyp k 

FI Pearson Correlation .500 ·.402 -.179 .221 

Sig. (2-tailed) .000 .000 .094 .038 

N 89 89 89 89 

DI Pearson Correlation .294 .015 .186 .239 

Sig. (2-tailed) .005 .891 .081 .024 

N 89 89 89 89 

Pearson Correlation -.091 .019 .062 -.146 

Sig. (2-tailed) .397 .861 .563 .174 

N 88 88 88 88 

As can be noticed in table 5.2, scores on the dysfunctional scale are positively 

correlated with scores on the delay discounting task (r = .22, p = .042) and the 

ImpAss component (r = .24, p = .024). 

The scores on the functional and dysfunctional scales and the delayed 

discounting measure are generally considered to be impulsivity measures 

(Monterosso and Ainslie, 1999). Hence, it was decided to establish their 

relationship with the number of disinhibited (impulsive) responses made by 

participants during the decision-making task. Impulsive behaviour in the 

decision-making task is characterised by LR responses in the experimental 

condition. Hence, as a fIrst step, correlations were conducted as an exploratory 

tool to observe the relationship between impulsivity measures and LR responses 

in the experimental task (labelled as pc_Ie in table 5.3). Results showed that 

scores on the dysfunctional scale and the delay discounting task were 

signifIcantly, although weakly, correlated with disinhibited responding in the 

experimental condition. In contrast, the relationship was absent in the control 

condition (the percentage of low reward responses is denoted pcl_c). 
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Table 5.3. Correlations between the impulsivity measures and the proportion of LR 
responses in the experimental (pc_Ie) and the control (pc_Ic) condition 

pc 1e pc 1c 

FI Pearson Correlation .074 .136 

5i9. (2-tailed) .489 .204 

N 89 89 
DI Pearson Correlation .223 .044 

5i9. (2-tailed) .035 .679 

N 89 89 

Recoded_hyp_k Pearson Correlation .227 .053 

5i9. (2-tailed) .033 .621 
N 88 88 

A multiple regression was run with dysfunctional impulsivity and discounting 

scores as predictors of the number of LR responses in the experimental 

condition. The model explained a significant 6.3% of the DV variance [F(2,85) 

= 3.91, p = .024]. The delay discounting scores contributed a proportion of 

unique variance equal to 17% while the dysfunctional scores contributed a 

unique variance equal to 18%. However, both contributions only showed a trend 

[dysfunctional: t(85) = 1.77, P = .085; discounting: t(85) = 1.79 P = .083]. As 

predicted by the correlation results, dysfunctional impulsivity and the 

discounting scores combined were found to be non-significant predictors of the 

number ofLR responses made in the control condition [F(2,82) =.17, ns]. 

Further analyses were carried out by running two separate ANCOV A to explore 

the relationship between these two impulsivity measures (i.e. dysfunctional 

impulsivity and delay discounting) and task condition. The ANCOVAs' results 

showed that there was a trend for the 2-way interaction between condition and 

the delay discounting measures [F(1,86) = 3.21, P = .077] while the 

condition*dysfunctional impulsivity (DI) interaction also just failed formal 

significance [F(1,87) = 3.51, P = .064]. Post-hoc analyses were carried out to 

explore these interactions after transforming both the delay discounting and the 

DI measures into binary-valued factors. In spite of the loss of power caused by 

applying a median-split technique on the continuous data, results showed that 

the delay-discounting*condition interaction was still significant [F(1,86) = 7.57, 
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p = .007]. Figure 5.3 indicates that individuals who showed a greater tendency 

to discount delayed rewards (high impulsive participants) made significantly 

more responses to the LR stimuli than their low counterparts. Both groups made 

similar numbers of LR choices in the control condition. 
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Figure 5.3. Relationship between the proportion of LR responses and delay discounting 
(i.e. impulsivity) scores 

Results also showed that the DI*condition interaction was just significant 

[F(l,87) = 3.94, P = .050] and individuals with high scores on the scale 

responded to the LR stimuli more frequently than their low counterparts. 

Moreover, both groups made similar numbers of LR choices in the control 

condition (figure 5.4). 
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Figure 5.4. Relationship between dysfunctional impulsivity (DI) scores and the proportion 
of LR responses 

5.4.1.4 Smoking status 

Fifteen of the 60 participants tested in the second wave of the experiment 

identified themselves as smokers. On average they reported having smoked for 

8.9 years (s.d. = 3.5) and smoking 10.3 (s.d. = 3.7) cigarettes a day. There were 

9 female and 6 male smokers in the total sample. Their age ranged from 18 to 36 

years, with a mean equal to 23.9 years (s.d. = 5.69). 

One of the non-smokers made 8 delayed LR responses and, therefore, it was 

excluded from the analyses reported below (non-smokers: N = 44). It was 

decided to compare smokers and non-smokers scores on the impulsivity 

measures (delay discounting, functional and dysfunctional impulsivity) and the 

four personality components. Levene's test showed that the variances of these 

variables were not statistically different between smokers and non-smokers. 

Independent sample t-tests indicated that there was a significant difference 

between smokers and non-smokers on the ImpAss component scores [t(57) = -

3.44, P = .001] and there was a non-significant trend on the extraversion 

component scores [t(57) = l.58, P = .12]. In particular, smokers scored higher 
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than non-smokers on the ImpAss component but non-smokers scored higher 

than the smokers on the extraversion component (table 5.4). 

Table 5.4. Comparison between smokers and non-smokers mean (s.d.) scores on the 
ersion and the ImpAss component (scores are standardised scores from the P extrav CAl 

Mean S.d. 

Extraversion Smokers -.29 1.31 
(N= 15) 

Non- .20 .95 
smokers 
(N =44) 

ImpAss Smokers .72 .77 
(N= 15) 

Non- -.24 .98 
smokers 
(N=44) 

5.4.1.5 Smoking status and performance 

Further analyses were run in order to assess whether the relationship between 

individual differences and performance varied as a function of smoking status. 

Smoking status was treated as a between-Ss factor and each personality 

component and the impulsivity measures were entered individually as a 

covariate in several mixed-design ANCOVAs. The analyses indicated that only 

ImpAss and the delay discounting scores interacted with smoking status in their 

effects on performance on the task as described below. 

ImpAss component 

As predicted, results showed that when ImpAss was entered into the ANCOV A 

there was a significant main effect of task [F(I,55) = 11.10, p = .002]. The two

way ImpAss*task interaction was significant [F(I,55) = 4.5, p = .038] and the 3-

way task*smoking status*ImpAss interaction was also significant [F(1,55) = 

6.23, P = .016]. Additionally, there was a non-significant trend for the 2-way 

interaction between smoking status and task [F(I,55) = 3.70, p = .06]. 

Post-hoc tests were conducted to explore the interactions observed. A median 

split technique was implemented to transform the ImpAss component into a 
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binary-valued factor. A mixed-design ANOV A was run with smoking status and 

the ImpAss bivariate variables as independent factors and task condition as the 

repeated-measures factor. In spite of the reduced power caused by recoding the 

ImpAss variable into a binary factor, results showed that there was still a 

significant trend for the 2-way-interaction between ImpAss and task [F(1,55) = 

3.13, p = .08] and the 3-way interaction between ImpAss, task and smoking 

status [F(1,55) = 3.32, p = .07]. 

Figure 5.5 visually exemplifies the interaction between task and ImpAss scores. 

High ImpAss participants were those who showed the largest difference 

between the control and the experimental conditions with only a small 

difference being evident for the low ImpAss participants. These results resemble 

the previous findings for dysfunctional impulsivity but only when smoking 

status is taken into account. 
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Figure 5.5. Relationship between ImpAss scores (median split) and the proportion of low 
reward responses (LR) in the two conditions 

The task*smoking interaction was not significant [F(1,55) = 2.12, ns], although 

there was a trend in the earlier analysis. Figure 5.6 shows that smokers tended to 

respond to the LR stimuli less frequently than non-smokers especially in the 

experimental condition. 
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Figure 5.6. Relationship between smoking status and the proportion of low reward 
responses (LR) in the two conditions 

In order to explore the 3-way interaction, the two smoking sub-samples were 

analysed separately after applying a split file filter on smoking status. A mixed

design ANCOV A with the ImpAss component entered as a covariate and task 

condition as a within-Ss variable. 

The results indicated that the task*ImpAss interaction was significant in the 

smokers' sub-sample [F(1,13) 5.32, P = .038] but not in the non-smokers group 

[F(1,42) = .22, ns]. In the 'smoker' sub-sample, high ImpAss individuals tended 

to respond more frequently to the LR box in the experimental than in the control 

condition while low ImpAss individuals responded to the LR box with 

approximately equal frequency across both tasks (figure 5.7). 
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Figure 5.7. Relationship between ImpAss scores and the proportion ofLR responses in the 
smokers' sub-sample 

In contrast, among non-smokers participants with high and low scores on the 

ImpAss component showed equivalent performance in the two task conditions 

(figure 5.8). Indeed, high and low ImpAss individuals made significantly more 

LR responses in the experimental than the control condition. 
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Figure 5.8. Relationship between ImpAss scores and the proportion of LR responses in the 
non-smokers' sub-sample 
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Hyperbolic K ( discounting measure) 

The ANCOV A results indicated that there was a significant main effect of task 

[F(1,55) = 32.35, P < .001]. Task condition was found to interact with the 

discounting measure [F(1,55) = 7.35, P = .009] and the 3-way interaction 

between smoking-status, task type and discounting measure was also significant 

[F(1,55) = 5.27, P = .025]. The 2-way task*smoking status interaction only 

showed a trend [F(1,25) = 2.76, P = .102]. 

Post-hoc analyses were run to explore these interactions. The delay discounting 

measure was transformed into a binary-valued variable by applying a median 

split on the factor. The new binary hyperbolic k factor was then entered into the 

ANOV A as a between-Ss variable. The 2-way interaction between task and 

discounting measure was still highly significant [F(1,55) = 9.28, P = .004]. 

However, due to the loss of power caused by applying a median split technique 

on the discounting measure, the 3-way interaction was no longer significant 

[F(1,55) = 2.08, P = .16]. Figure 5.9 illustrates the two-way interaction and it 

indicates that the increase in LR responses from the control to the experimental 

condition was significantly different for low k and high k (impulsive) 

participants. The increase was significant for both the high k [t(29) = 6.86, P < 

.001] and the low k [t(28) = 4.08, P < .001]. However, those participants who 

obtained a high impulsivity score made significantly more LR responses than 

those with low impulsivity scores in the experimental task [t(57) = -2.07, P = 

.043]. In the control condition, the groups did not differ [t(57) = .58, ns]. 
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Figure 5.9. Relationship between the proportion of LR responses and delay discounting 
(impulsivity) scores 

After applying a split-file filter on smoking, one further mixed-design ANOV A 

was carried out to explore the 3-way interaction. Results showed that the 

interaction between the discounting task scores and task was significant for the 

smokers [F(l,13) = 7.14, p = .019] but not the non-smokers [F(1,42) = .20, ns]. 

Figure 5.10 indicates that high impulsive smokers made more LR responses in 

the experimental condition than in the control condition. In contrast, those who 

scored low on the discounting measures showed a very similar pattern of 

responding on the two tasks. 
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Figure 5.10. Relationship between delay discounting (impulsivity) scores and the 
proportion of LR responses in the smokers' sub-sample 

Figure 5.11 illustrates that non-smokers showed a similar pattern of responding 

in the task regardless of their impulsivity scores on the delay discounting task 

condition. 
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Figure 5.11. Relationship between delay discounting (impulsivity) scores and the 
proportion of LR responses in the non-smokers' sub-sample 
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Even though the impact of the ImpAss component and the impulsivity 

discounting measures seem to affect smokers' performance on the task in a very 

similar fashion, these two factors do not correlate with each other among 

smokers (N = 15; r = .20, p = .47). So their impact on performance is likely to 

be independent. 

Dysfunctional impulsivity (DI) 

A further ANCOV A was conducted to assess whether the mediating effect of 

dysfunctional impulsivity was moderated by smoking status. Results showed 

that, contrary to the ImpAss component and the impulsivity measure indexed by 

the delay discounting task, any effect of dysfunctional impulsivity upon 

performance on the task was not affected by smoking status. Indeed, the 2-way 

interaction between DI and condition showed only a non-significant trend 

[F(1,55) = 2.45, p =.12] whereas the 3-way interaction between DI, condition 

and smoking status was non-significant [F(1,55) = 1.01, ns]. 

Overall, the results show that impulsivity scores affected performance on the 

task. However, the impact of the ImpAss component on the task seems to be 

detectable only in smokers, possibly due to the fact that smokers had higher 

ImpAss levels than non-smokers. As a result the effect of ImpASS component 

was detectable only when smoking status was included in the analyses. By 

contrast, the impact of delay discounting impulsivity was found to be significant 

without including smoking status. Nonetheless, for the latter the effect of 

impulsivity on the task seems to be significantly present in the smokers, rather 

than the non-smokers. The effect of dysfunctional impulsivity showed yet 

another pattern: a trend was found for DI which mediated performance 

independently of smoking status. 

Since the present task represents an approach-approach conflict, it may activate 

the BIS system and, therefore, it is possible that BIS-related traits (e.g. N) 

predict disinhibited responding (i.e. LR choices). Indeed, Newman and 

colleagues (1992) found that the effect of psychopathy on LR choices was 

dependent on anxiety scores. In order to test whether N interacted with 
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impulsivity scores on LR choices, 3 further ANCOV As were run with each of 

the impulsivity measures (separately) and N as a covariate. Results showed that 

N scores did not significantly interact with impulsivity scores to predict 

disinhibited responding (ps > .65). 

5.4.2 Task performance - reaction time (RT) and personality 

5.4.2.1 RTs to high reward (HR) responses 

It was decided to run a few correlations to assess the relationship between RTs 

for the HR responses and the various personality components. This decision was 

driven by the consideration that reaction time scores related to HR responses are 

a good measure of reward reactivity since they show how quickly participants 

respond to stimuli associated with reward. In a few instances, participants made 

no response to the high reward stimuli in the experimental condition. Hence, the 

corresponding RTs (equal to 0) were labelled as missing data and excluded from 

the analysis. After applying this exclusion criterion, the sample used in the next 

analyses was equal to 82. The HR RTs in both conditions are measured from the 

actual onset of the stimuli (i.e. excluding the 10-second delay). 

A repeated-measure t-test showed that the RTs in the control condition were 

significantly longer (mean = 1.69, s.d. = 3.59) than in the experimental one 

(mean = 1.39, s.d. = 3.91; t(81) = -4.06, p <.001). Table 5.5 indicates that there 

was a positive correlation between RTs and neuroticism (r = .22, p = .043) and a 

trend for a negative correlation between functional impulsivity and RTs (r = -

.21, p = .061). Similar correlations were obtained between RTs to the HR in the 

control condition and functional impulsivity (r = -.22, p = .037) and neuroticism 

(r = .21, p = -.047). These results show consistency and suggest that both 

functional impulsivity and neuroticism may affect reward reactivity during 

performance of decision making tasks of the type used in the present study. 
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Table 5.5. Correlations between personality and impulsivity measures with reaction times 
to the high reward stimuli in the experimental (RT_2e) and the control (RT_2c) conditions 
(FI = functional impulsivity and DI = dysfunctional impulsivity; DD = delay discounting) 

Positive 
Extraversion Neuroticism schizotypy ImpAss FI 01 DO 

RT_2e Pearson Correlation .154 .224 .126 -.030 -.208 .022 -.084 
51g. (2·tailed) .167 .043 .258 .788 .061 .842 .456 
N 82 82 82 82 82 82 81 

RT_2c Pearson Correlation .132 .211 .137 -.001 -.222 -.004 -.189 
51g. (2·tailed) .218 .047 .199 .992 .037 .967 .077 
N 89 89 89 89 89 89 

Two separate multiple regressions were run with functional impulsivity and 

neuroticism (N) scores as predictors ofRTs to the HR stimuli in both conditions. 

The model explained a significant 6% of the DV variance in the control 

condition [F(2,79) = 3.58, P = .033]. The functional impulsivity scores 

contributed a proportion of unique variance equal to 18% while the neuroticism 

scores contributed a unique variance equal to 17%. However, both contributions 

were non-significant [FI: t(79) = 1.56, P = .12; discounting: t(79) = 1.50 P = .14]. 

The model explained 5% of the DV variance in the experimental condition and 

showed a non-significant trend [F(2,79) = 2.93, P = .06]. Both predictors made 

small contributions to the dependent variable [standardised beta coefficients: PI 

= 15% and neuroticism = 17%] and were non-significant [FI: t(79) = 1.27, p = 

.21; discounting: t(79) = 1.48 p = .14] 

Overall, these results seem to show that there may be two processes active 

simultaneously during the task. Indeed, on the one hand, it seems that high 

scores on 'rash' impulsivity (as indexed by the DI scale, scores on the delay 

discounting task and ImpAss scores) may lead participants to choose the low 

reward stimuli in the experimental condition. On the other hand high scores on 

functional ('reward-sensitive') impulsivity do not lead to responding to the 

immediate LR stimuli (in the experimental condition) rather than the delayed 

high reward stimuli. Additionally, reward-sensitivity (assuming this is what is 

indexed by high functional impulsivity and low neuroticism scores) speeds 

responding once the HR stimuli are present and responding is possible (in both 

conditions). 

141 

88 



5.4.2.2 RTs to low reward (LR) responses 

In a few instances, participants made no response to the low reward stimuli in 

the control condition and they were excluded from the analysis (since they 

represent missing data). After applying this exclusion criterion, the sample used 

in the next analyses was equal to 88. 

It was decided to conduct further correlations to explore the relationship 

between the personality measures collected in the study and reaction times 

(RTs) to the low reward stimuli during the experimental condition. Indeed, LR 

responses during the experimental condition are a measure of rash 

impulsiveness as discussed earlier. However, results did not show any 

significant relationship between LR responses in the experimental task and any 

of the personality traits (table 5.6) 

Table 5.6. Correlations between LR responses in the experimental task and the personality 
components collected in the study (FI = functional impulsivity and DI = dysfunctional 
impulsivity; DD = delay discounting) 

Positive 

Extraversion Neuroticism schizotypy ImpAss FI 01 DO 
RT_1e Pearson Correlation .038 .031 .029 .142 .071 .031 -.102 

Sig. (2·tailed) .727 .774 .789 .187 .511 .776 .345 
N 88 88 88 88 88 88 

5.4.2.3 RTs and smoking status 

Further analyses were run in order to assess whether the relationship between 

individual differences and reaction times varied as a function of smoking status. 

Smoking status was treated as a between-Ss factor and each personality 

component and the impulsivity measures were entered individually as a 

covariate in several mixed-design ANCOV As. Smoking status was not found to 

moderate the relationships between RTs in response to HR stimuli and the 

personality measures (ps > .2). In addition, the inclusion of smoking status in the 

analysis did not uncover any relationship between the personality factors and 

RTs in response to the low reward (LR) stimuli in the experimental condition 

(ps > 2). 
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5.5 Discussion 

The present results replicated the original [mdings by Newman and colleagues 

(1992) and showed that that overall participants tended to respond to the low 

reward (LR) stimuli more frequently in the experimental condition compared to 

the control condition (i.e. disinhibited behaviour). This pattern of responding 

allowed participants to achieve two independent goals, which were on the one 

hand the attempt to speed up performance by responding straight away (LR in 

the experimental task) and on the other hand to increase their winnings (RR 

response in the control task). 

Additionally, results indicated that disinhibited responding observed in the 

experimental condition was mediated by individual differences. In particular, 

impUlsivity was found to enhance responding to LR stimuli, which is a measure 

of behavioural disinhibition. There were three impulsivity measures that 

mediated performance during the experimental task, which were: dysfunctional 

impulsivity, the hyperbolic k scores obtained from the delay discounting task 

and, once smoking status was taken into account, the ImpAss component. In 

fact, smokers who scored high on the ImpAss component were more likely to 

respond to LR stimuli than smokers with low scores on the ImpAss component. 

Not only the ImpAss effect on performance was dependent on smoking status 

but also the effect of both ImpAss and delay discounting impulsivity was found 

to be stronger in smokers. Finally, the results indicated that the speed at which 

HR responses were made (i.e. a reward sensitivity measure) was mediated by 

individual differences and, in particular, by scores on the functional impulsivity 

scale and the neuroticism component. Indeed, participants who scored high on 

the functional impulsivity (FI) scale or low on the neuroticism (N) scale tended 

to respond faster to the HR stimuli (in either condition) than those participants 

who scored low on FI or high on N (under both conditions). 

The present results suggest that two opposite processes were active during 

performance on the decision-making task and each process was mediated by a 

different subtype of impulsivity. Hence, the results are in line with evidence that 
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indicates that impulsivity is a multi-dimensional factor and it suggests that there 

are several subtypes of impulsivity, which are: rash impulsiveness and reward 

sensitivity (Dawe & Loxton, 2004; Franken & Muris, 2005 & 2006; Smillie et 

aI., 2007; Vigil-Colet, 2007; Franken et aI., 2008). In particular, the present 

results suggest that these two subtypes of impulsivity mediate the two opposing 

processes involved during performance on the task, disinhibited responding to 

LR stimuli in the experimental task and approach behaviour to reward in 

response to HR stimuli in the control task. Rash impulsiveness measures were 

found to capture disinhibited responding as indexed by the proportion of low 

reward (LR) responses in the experimental condition whereas reward sensitivity 

measures captured reward approach behaviour as indexed by the reaction times 

in response to the high reward (HR) stimuli. 

Therefore, the fmdings are in line with the suggestion made by Dawe and 

Loxton (2004) that reward sensitivity (a BAS-related process) may account for 

the tendency to respond in the presence of reward cues whereas rash 

impulsiveness may be responsible for perseverative, disinhibited responding in 

spite of punishment or non-reward (i.e. thoughtless behaviour). However, these 

researchers conclude by saying that rash impulsiveness is a better predictor of 

disinhibition than reward sensitivity whereas the latter is necessary only for the 

establishment of the dominant response (Dawe et aI., 2004). 

The task adopted in the present study is the type of task most commonly 

employed to explore 'typical' impulsivity (Monterosso & Ainslie, 1999; 

Evenden, 1999; Dawe et aI., 2004; Arce & Santisteban, 2006). Subsequently, 

the three impulsivity measures found to moderate LR responding in the 

experimental condition seem to be a good measure of rash impulsiveness rather 

than reward sensitivity (Dawe & Loxton, 2004; Dawe et aI, 2004). Indeed, the 

dysfunctional impulsivity scale and scores on the delay discounting task are 

well-established measures of impulsivity and disinhibition (Monterosso & 

Ainslie, 1999; Eveden, 1999; Smillie & Jackson, 2006; Franken & Muris, 2006). 

It is not surprising that the impUlsivity measure indexed by performance on the 

delay discounting task turned out to be the best predictor of performance on the 

experimental condition, since it is the closest measure in process terms. In fact, 
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both tasks look at the impact of response disinhibition in response to immediate 

but smaller (less frequent) rewards and delayed but larger (more frequent) 

rewards. The ImpAss component was found to be a good predictor of 

disinhibited behaviour only once smoking status was taken into account. This 

may be due to the fact that disinhibition can only be observed with very high 

scores of impulsivity. Indeed, in the second wave of testing the ImpAss scores 

were significantly lower among non-smokers (mean = -.24, s.d. = .98) than 

smokers [mean = .72, s.d. = .77; t(57) = -3.44, p = .001]. The three impulsivity 

measures, which predict dis inhibited responding, have been previously found to 

correlate with personality traits that capture behaviours in the healthy population 

that resemble mild versions of behaviours typical of psychopaths. For example, 

the dysfunctional impulsivity (DI) scale has been found to positively correlate 

with personality traits such as EPQ-P and Sensation Seeking (Smillie & 

Jackson, 2006). Additionally, both EPQ-P and SSS scores were positively 

loaded onto the Imp Ass component extracted in the principal component 

analysis (peA; chapter 4). Thus, the results seem to be consistent with the 

original findings obtained by Newman and colleagues (1992) who found that 

(low-anxious) psychopaths made more dis inhibited responding as high 

impulsivity scores (DI scale, delay discounting scores and lmpAss component) 

were found to mediate disinhibited responding, in the present study. 

Overall, the results indicate that disinhibition is moderated by smoking status 

since impulsive smokers showed the greatest levels of disinhibition (as indexed 

by an increased choice of LR responses in the experimental condition). These 

results are in line with previous research that found that smokers and other drug 

users show high levels of disinhibition during response inhibition, gambling and 

delay discounting tasks (e.g. Grant et aI., 2000; Powell et aI., 2002). 

Disinhibited behaviour in smokers is generally associated with high impulsivity 

levels (Bickel et aI., 1999; Field et aI., 2006). The positive relationship observed 

between performance on the decision-making task (i.e. proportion of LR 

response choice) and impulsivity index on the delay discounting task is very 

interesting and reassuring. Indeed, it indicates that even though the scenarios in 

the delay discounting task are based on hypothetical decisions between 

immediate rewards and rewards delayed over long time periods (e.g. weeks, 
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months and years), the impulsivity score obtained from the task is a good 

predictor of thoughtless, disinhibited behaviours and choices (Field et aI., 2006). 

Moreover, delay discounting scores were found to be correlated with impatience 

for real rewards over a 10-second interval. Hence, the present results confIrm 

the utility of the delay discounting task as a measure of impulsivity despite the 

fact that it only presents imagined rewards and reward-scenarios (Kalenscher & 

Pennartz, 2008). Additionally, among smokers these scores are related to 

relapse, following abstinence (Bickel et aI., 1999; Mitchell, 1999,2004; Field, et 

aI., 2006). Nonetheless, exposure to smoking-related cues was not found to 

increase impulsive responding during performance on a delay discounting task 

even though it increased self-reported craving scores (Field et aI., 2007). 

As previously mentioned, reward sensitivity may have been captured in the 

present study by reaction times (RTs) to high reward (HR) stimuli. These 

fIndings are in line with results obtained by Nichols and Newman (1986) who 

observed that when performing a pattern-matching task with a reward only 

feedback, extraverts showed faster reaction times than introverts. Hence, in the 

study extraversion (as an index of reward sensitivity) was found to mediate 

approach behaviour. These results seems to confIrm the assumption made by the 

reinforcement sensitivity theory (RST; Gray, 1987; Nichols & Newman, 1986) 

that individuals who are sensitive to reward (high BAS) show enhanced 

approach behaviour to reward as indexed by faster reaction times to reward

related stimuli. The study conducted by Nichols and Newman (1986) supports 

the claim that extraversion (rather than impulsivity) is the BAS underlying 

personality trait (Pickering, 2004; Smillie et aI., 2006a). In the present study, it 

was found that individual differences related to reward sensitivity were 

prominent when participants responded to high reward stimuli, regardless of 

condition. Indeed, results indicated that there was a negative relationship 

between RTs to the HR stimuli and functional impUlsivity. In other words, 

individuals who scored high on the functional impulsivity scale tended to 

respond faster to the box that offered more frequent reward than their low 

scoring counterparts. Functional impulsivity (FI) was the personality trait that 

mediated approach behaviour and, therefore, the results suggest that FI may be a 

measure of the BAS. Smillie and Jackson (2006) have found that functional 
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impulsivity correlates with several BAS-measures (i.e. Carver & White's BAS 

measures and the Torrubia and colleagues' Sensitivity to Reward scale). 

Moreover, they observed that high scores on the FI scale were also found to be 

positively associated with reward approach behaviour during performance on a 

go/no-go task. Therefore, these data are consistent with the idea that PI is a good 

BAS measure. This effect is seen once the 'choice' issues were resolved, either 

by waiting in the experimental condition or by being in the control condition. In 

the control condition, the response can be planned during the 10-second delay 

and there is a simple choice to pick the one that pays more; whereas, in the 

experimental condition, the choice is more complex (i.e. amount vs. delay) and 

it seems to allow disinhibited responding. 

It may be argued that the experimental condition represents an approach

approach conflict (i.e. participants need to decided whether to respond 

immediately for a low-probability reward or whether to withhold responding for 

a high-probability reward). According to the revised RST, an approach

approach conflict should activate the BIS (Corr, 2006; 2008). Disinhibited 

participants, who respond to the LR stimuli more frequently than the HR stimuli 

in the experimental condition, should have a weak BIS (together with a strong 

BAS). A strong BIS, by contrast, would inhibit immediate responding and 

gather additional information to inform their choices. Therefore, individuals 

with high rash impulsivity and low anxiety (i.e. low BIS) scores are expected to 

show dis inhibited responding. This is in line with the findings obtained by 

Newman and colleagues. Nonetheless, the neuroticism mediating effect, 

predicted by the above argument, was missing in the present study. 

It is also possible that the presence of no-reward trials may have been perceived 

by some (especially high N) participants as non-rewarding (punishing), despite 

the fact that they had been informed that on some pre-defined trials they would 

receive no feedback (reward) and reassured that these instances were 

independent from their performance. Indeed, during the debriefmg some 

participants referred to no-reward trials as 'wrong' since they had won no 

money. It may be possible in future studies to replicate the fmdings and assess a 

pure BAS activation effect by manipulating payoff magnitude rather than 
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frequency in a reward only payoff structure. In this way, participants would earn 

money on every trial and this would remove the 'punishing' effect of no-reward 

trials. 

The present results fail to replicate the studies that indicate that the BAS 

mediates disinhibition as indicated by studies carried out by Avila (2001). 

However, Avila administered a purpose-built BAS measure to assess individual 

differences in reward-reactivity (i.e. the sensitivity to reward (SR) scale from 

the SPSRQ, Torrubia et aI., 1995) rather than standard personality components 

whose relationship with the BAS is still not well-established (e.g. extraversion 

and ImpAss; see chapter 3). The goal of the present research is interested in 

understanding how reward sensitivity relates to broad measures of personality 

and less interested in purpose-built questionnaires (e.g. the SR scale). Purpose

built scales include self-report items on how much one responds to rewards and, 

therefore, it is of much less interest to investigate how such scales relate to 

experimental measures, which index objective responses to rewards. Such 

studies are inherently circular. However, Franken and Muris (2006) have also 

observed that the SR scale was found to load onto both reward-related 

impulsivity and rash impulsiveness. In the present study scores on the 

dysfunctional impulsivity (DI) scale, which has been identified as a measure of 

rash impulsiveness (Franken and Muris, 2006; Smillie and Jackson, 2006), was 

found to be a predictor of rash impulsive responding, characterised by a 

tendency to respond more frequently to the low reward (rather than the high 

reward) stimuli in the experimental condition. 

Moreover, the decision-making task employed in the present study may have 

been a measure closer to response disinhibition as indexed in the delay 

discounting task rather than passive avoidance tasks (Patterson and Newman, 

1993; Avila, 2001). In fact, the passive avoidance (PA) tasks may be able to 

capture the processing related to reward-sensitivity and the personality traits 

underlying reward sensitivity (e.g. SR scale and E). These tasks may reflect the 

four-step disinhibition model, developed by Patterson and Newman (1993). 

Indeed, P A tasks require participants to withhold a dominant response that has 

been acquired in the first stage of the task in order to establish an alternative 
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strategy that can allow efficient learning once the task contingencies have 

changed. The four-stage model suggests that individual differences related to 

reward sensitivity determines how efficient participants are in their response 

modulation. The task implemented in the present study does not follow the 

pattern typical of P A tasks and, therefore, the processes involved may be 

different. 

In conclusion, the results indicate that there were two opposing processes that 

were active during performance on the decision-making task and that each 

process was related to one of the two subtypes of impulsivity (i.e. rash 

impulsivity and reward sensitivity; Dawe et aI., 2004). More specifically, high 

scores on measures of rash impulsiveness (i.e. ImpAss, dysfunctional 

impulsivity and delay discounting scores) led to disinhibited responding 

whereas reward sensitivity measures mediated approach behaviour in response 

to high reward stimuli once any response conflict had been resolved (BAS

related process; McNaughton & Gray, 2004). The two processes are opposite in 

direction and, therefore, it is possible that rash impulsiveness and approach 

behaviour compete for control, in individuals depending on their scores on one 

of the two impulsivity scores. 

The results are m line with the literature which suggests that dis inhibited 

behaviour (e.g. delay discounting task) is typical of impulsivity and, in 

particular, rash impulsiveness. Indeed, performance on the decision-making task 

was dependent on scales which are well-established measures of rash 

impulsiveness (dysfunctional impulsivity and delay discounting scores). 

Moreover, the disinhibition effect is greatest in smokers and in the case of the 

ImpAss component it is dependent on smoking status. The study further 

replicates the findings obtained in the original study (Newman et aI., 1992) 

where overall participants tended to respond to the HR stimuli less frequently in 

the experimental than the control condition. The original study also showed that 

low-anxious psychopaths made more LR responses than low-anxious controls. 

Nonetheless, the original study did not analyse potential inter-group differences 

in R Ts to the HR stimuli, which may have captured BAS-related processes. The 

present findings on R T measures are exploratory and require replication. 
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Finally, the results, therefore, support the view of impulsivity as a multi-faceted 

factor and indicate the importance of using the appropriate tools (e.g. behaviour, 

cognitive and psychometric measures) in order to assess the aspect of 

impulsivity that is being explored in the study (Franken et aI., 2008). 
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Chapter 6 

The impact of partial feedback during a rule-based and 

an information-integration category learning task 

6.1 Abstract 

Previous studies have indicated that individuals who score high on ImpAss

related measures can sometimes perform better on simple rule-based (RB) CL 

tasks (Zuckerman and Ball, 1990; Pickering, 2004; Tharp, 2007 [Phd]). These 

results were interpreted as suggesting that high scores on ImpAss measures are 

associated with higher levels of a relevant cognitive ability (e.g. working 

memory or selective attention). The present study aimed to replicate these 

findings on an RB task and it also assessed the impact of individual differences 

during performance on an information-integration (II) task. Additionally, it also 

assessed the impact of partial feedback during performance on the RB and II 

task. According to COVIS (Ashby et aI., 1998; Ashby et aI., 1999) performance 

on the II task should be impaired by partial feedback whereas RB performance 

should not be affected by this manipulation. Results on the RB task do not fully 

replicate the original studies on individual differences but they do support the 

assumptions made by COVIS. However, results indicated that the II task was 

too difficult for participants to learn and, therefore, it is not possible to draw 

final conclusions. These [mdings are discussed in terms of task and stimuli 

complexity. 

6.2 Introduction 

Performance on CL tasks often requires the participants to classify new and 

continuously distributed stimuli into separate categories. Performance on CL is 

initially based on guessing but over time categorisation decisions become more 

accurate as learning occurs. One of the main multiple systems models of CL is 

the COmpetition between Verbal and Implicit System (COVIS) model (Ashby 
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et aI., 1998). As discussed in chapter 1, COVIS suggests the existence of two 

independent systems that compete during learning: an explicit, rule-based 

system and an implicit system. The explicit system relies on logical reasoning 

and working memory whereas the implicit system is closely related to motor 

activity and procedural learning (Ashby et aI., 1998; Maddox & Ashby, 2004; 

De Caro, Thomas & Beilock, 2008). Thus, one of the main assumptions made 

by the COVIS is that feedback facilitates the operations of both systems 

although it operates in different ways for the two systems (Maddox & Ashby, 

2005). In particular, it has been suggested that the explicit system uses feedback 

to test whether the selected rule is correct or rule-switching is required. In 

contrast, in the implicit system positive feedback works as a reward signal that 

automatically reinforces the adequate response (i.e. DA-driven procedural 

learning). 

One main assumption made by the COVIS model is that category learning tasks 

are differently affected by reward depending on the system that is involved. For 

example, it has been found that people can learn complex, non-verbal rules (i.e. 

procedural learning), when feedback about accuracy is offered on a trial-by-trial 

basis. However, in the absence of feedback, people adopt simple verbal rules for 

both rule-based and information-integration tasks (Ashby et aI., 1998). Indeed, 

Ashby and colleagues (1999) carried out a study where participants had to learn 

either a rule-based or information-integration task without any form of accuracy 

feedback. Results showed that during unsupervised learning participants were 

able to efficiently learn the rule-based task whereas they were not able to master 

the more demanding information-integration task. (Participants were able to 

learn the information-integration task in the feedback condition.) Therefore, 

these fmdings indicate that procedural learning requires reward. Additionally, 

they also indicate that in the absence of a trial-by-trial feedback, participants 

adopt verbalisable, uni-dimensional rules that are not effective in solving 

information-integration-like tasks (Waldron & Ashby, 2001). 

Similarly, Ashby and colleagues (2003) replicated the fmdings obtained in the 

previous study. In fact, they found that observational training impaired learning 

on an information-integration task compared to feedback training. However, 
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feedback did not improve performance on a rule-based category task more than 

observational training. Further support to the assumption that the implicit 

system is more highly dependent on reward comes from a study carried out by 

Maddox and colleagues (2003). They compared the impact of delayed feedback 

on both a rule-based and an information-integration task. Results showed that 

during performance on an information-integration task, delayed feedback caused 

a decrease in response accuracy and an increase in the use of rule-based 

strategies. On the contrary, the feedback manipulation did not affect 

performance on the rule-based task. 

Moreover, CL tasks have been identified as a useful tool to observe how 

different personality traits mediate learning and also to identify the BAS-related 

traits that mediate the activation of the system (Pickering, 2004). 

Ball and Zuckerman (1990) offered the first study which used a CL task to 

assess individual differences related to BAS activation. The CL task used in the 

study presented participants with a pair of stimuli on each trial, one being the 

target category and the other the distractor. Participants had to learn to 

discriminate the target stimulus from the distractor. The visual stimuli varied on 

8 bivariate dimensions, such as letter type (X or T), letter size (large or small), 

letter colour (black or white), border shape (circle or square) and so on. Two of 

the eight dimensions (letter type and border shape) were relevant to determine 

whether the stimulus was a target or not; in fact the target stimulus was always a 

T letter with a square border. The other 6 dimensions were irrelevant (i.e. 

uncorrelated with being a target). Learning was reinforced by feedback (verbal 

vs. monetary) which was delivered either in a reward-only or a punishment-only 

fashion. Once participants had reached the appropriate performance criterion 

(i.e. five correct responses in a row) the relevant dimensions became irrelevant 

and a new dimension became predictive of target status. 

Results showed that individuals who scored high (in the top decile of a large 

sample) on the sensation seeking scale (SS; a measure of ImpAss) required 

fewer trials to reach criterion compared to those who scored low (bottom decile) 

on the same scale. However, this difference was not affected by the feedback 
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manipulation (reward-only vs. punishment-only). Results also showed that 

participants who scored high on Neuroticism (N) learnt faster in the pre-shift 

phase but the opposite was found in the post-shift phase (stable individuals were 

better). The researchers suggested that the difference observed between high and 

low SS individuals may be due to higher cognitive abilities of high SS-scoring 

individuals compared to low SS scorers. In particular, the authors offered two 

explanations to account for the results. It was suggested that high SS individuals 

either adopted a more beneficial risk-taking strategy during the first few trials of 

the task that allowed them to discover the correct rule specifying the target more 

quickly; or had superior executive attention abilities, which allowed them to 

focus on the relevant and ignore the irrelevant dimensions (Ball & Zuckerman, 

1990). According to COVIS, these results indicate that compared to individuals 

with low ImpAss scores, those with high scores may possess higher levels of 

cognitive abilities which are advantageous during RB tasks. 

Pickering (2004) replicated Ball and Zuckerman's fmdings in two studies 

assessing the impact of ImpAss measures on performance on CL tasks of the RB 

kind. The first task presented visual stimuli that varied on two dimensions, 

which were: the height of a rectangle (relevant dimension) and the position of an 

internal line segment (irrelevant dimension). The personality measures included 

in the study were Novelty Seeking (NS) as a measure of the ImpAss construct 

and Harm Avoidance (HA) as a (control) measure of Anxiety. Both measures 

are part of the Tridimensional Personality Questionnaire (TPQ) developed by 

Cloninger (1989). HA was not found to correlate with overall performance on 

the task, whereas participants scoring high on NS were found to perform better 

than those scoring low on NS. A follow-up study was carried out using the same 

stimuli. The second study consisted of two phases, a learning phase and a rule

switch phase. In the learning phase, the position of the internal line segment was 

the relevant dimension while the height of the rectangle was the irrelevant one. 

In the rule-switch phase, an extra dimensional switch occurred so that the height 

of the rectangle became the relevant dimension. Participants were not informed 

about the rule-switch. The personality measures included in the second study 

were the EPQ-P scale (EPQ, Eysenck, Eysenck & Barrett, 1985), a measure of 

ImpAss, and the Unusual Experiences scale (UnEx from the OLIFE, Mason et 
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aI., 1995), a measure of schizotypal personality. Results showed that EPQ-P 

scores were positively correlated with performance during the leaning phase but 

not the rule-switch phase of the task, while UnEx was negatively correlated with 

performance during the rule-switch phase of the task but not the learning one. 

These studies support the assumption that high ImpAss measures (e.g. SS, NS 

and EPQ-P) are associated with greater executive attention ability that leads to 

optimal performance on a CL task whose solution requires a simple uni

dimensional rule to be selected from several possibilities. However, Tharp 

(2007) has found that high ImpAss individuals were impaired during 

performance on CL tasks that required the use of a more complex conjunctive 

rule. Indeed, high ImpAss participants in Tharp's study showed a preference for 

simple, uni-dimensional rules. Thus, Tharp speculated that high ImpAss 

participants may be relatively cognitively inflexible. It is possible that a relative 

lack of flexibility may be beneficial in very simple uni-dimensional tasks (like 

the ones used by Ball and Zuckerman and Pickering) since too much flexibility 

may over-complicate the search for possible solutions. However, the lack of 

flexibility is 'exposed' and counterproductive in more complex tasks that 

require a multidimensional solution. 

6.2.1 Aims of the present study 

The present study aims to replicate Pickering'S findings (2004) that showed that 

high ImpAss scores are associated with greater cognitive performance and better 

performance on simple RB tasks. The study aimed to extend the analysis to 

explore the impact of individual differences during performance on an 

information-integration task. Following the results obtained by Tharp, it is 

expected that high ImpAss scores may be associated with cognitive inflexibility, 

which was found to impair performance during a CL task that required a 

conjunctive-rule strategy. Therefore, high ImpAss scores might be associated 

with impaired performance on II tasks. However, in Tharp's study, participants 

could perform reasonably well (around 80% accuracy) using a simple uni

dimensional rule-based strategy. In the present study, high ImpAss-scoring 

155 



participants may persevere with a simple RB solution only if it achieves a 

reasonable, although suboptimal, level of performance. Therefore, the prediction 

about ImpAss impairing performance is dependent upon how well the 

suboptimal strategy is at solving the categorisation problem. 

Additionally, the study aims to explore the impact of feedback manipulations 

during performance on an RB and an II CL task. In particular, the study 

manipulated feedback frequency during CL. According to previous research, 

feedback manipulation should not affect performance on the RB task although it 

is expected to impair performance on the II task and, possibly, induce 

participants to resort to an RB strategy. 

6.3 Rule-based task 

The present study attempted to observe the effects of probabilistic feedback on 

category learning during a rule-based learning task. According to the COVIS 

model's assumptions, performance on rule-based task should not be affected by 

feedback manipulation (Ashby et aI., 1998; Maddox & Ashby, 2005). Hence, 

participants should still learn the optimal rule even when receiving feedback on 

a low frequency basis. In fact, they should be able to compensate for the limited 

amount of information about their performance accuracy by maintaining 

cognitive control over the task by employing working memory and attention. 

Participants also performed on a working memory (WM) task in order to assess 

the relationship between performance on the RB task and WM scores. De Caro 

and colleagues (2008) found that performance on a rule-based (RB) task was 

positively associated with WM scores. These results are in line with the 

literature that suggests that the explicit system is dependent on working memory 

for hypothesis generation and testing (Ashby et aI., 1998; De Caro et aI., 2008). 

Finally, at odds with the above predictions, there are possible mechanisms 

through which the feedback manipulation in the current study might affect RB 

task performance. DAergic activity has been found to modulate neural processes 

in the head of the caudate and this structure of the explicit system is argued to be 
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responsible for rule selection and switching. Indeed, low levels of DA in the 

caudate have been found to be associated with a greater level of preservative 

errors during RB tasks (Ashby et aI., 1998; Ashby & Spiering, 2004; Ashby & 

Ennis, 2006). Therefore, it may be possible that probabilistic feedback may have 

an impact in DAergic levels and, therefore, impair rule-based learning. 

6.4 Method 

6.4.1 Participants 

An opportunity sample was drawn from the student population at Goldsmiths 

(University of London). Participants were recruited through advertisement 

around the college campus. The sample was made up of 64 participants, 32 

males and 32 females. All but one were right-handed. All participants were aged 

between 18 and 39 (mean age = 26.7; s.d. = 4.41). Participants were guaranteed 

confidentiality. They were tested in one sitting that lasted approximately 1 hour 

and 15 minutes. They all received £7.50 for their participation. 

6.4.2 Design 

The present study was interested in assessing the impact of partial feedback on 

learning during a rule-based category learning task. The independent variable of 

interest was, therefore, represented by feedback frequency. This IV was a 

between-subjects factor with two levels. In fact, in one condition participants 

received feedback on 37.5% of their responses (i.e. low feedback frequency 

condition). In the high feedback frequency condition participants received 

feedback on 75% of their responses. 

The study was interested in assessing the impact of the IV on learning (i.e. the 

dependent variable). Learning was assessed by accuracy levels that were 

recorded by the computer as correct responses. 
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6.4.3 Personality measures 

Participants completed several personality measures, which were: the Eysenck 

Personality questionnaire revised (EPQ-R), the Oxford-Liverpool inventory of 

feelings and experiences scale (OLIFE), the sensation seeking scale (SSS), the 

schizotypal personality questionnaire (SPQ), the big five inventory (BFI) and 

the BIS/BAS questionnaire. Four personality components were extracted after 

running a PCA with Varimax rotation on these scales (see chapter 4 for details). 

The four components extracted are: Extraversion (E), Neuroticism (N), Positive 

Schizotypy (PS) and impulsivity-antisocial (ImpAss). The PCA was run on 232 

participants, who constitute the overall number of participants tested. The 

components scores used in the present study are the corresponding scores 

extracted in the overall PCA involving 232 participants. 

6.4.4 Working memory measure (WM task) 

It was decided to include a measure of WM ability in the battery of 

measurements, since explicit system is dependent on working memory for 

hypothesis generation and testing (Ashby et aI., 1998; De Caro et aI., 2008). 

Thus, high scores on the WM task were expected to be associated with greater 

performance on the task. In particular, the task used is a measure of memory 

scanning ability (Stenberg, 1966). The task is composed of 14 trials. During 

each trial the participant is presented with a set of letters to memorise. The first 

four trials consist of sets of 4 letters and they function as practice trials. The 10 

experimental trials present sets of 6 letters. 

Following the presentation phase (2.5 seconds), participants were presented with 

single letters on the screen and had to decided whether they were members of 

the preceding set or not by responding 'yes' or 'no' using the corresponding 

keys that were the y and the n key on the keyboard, respectively. Participants 

scored one point per correct identification of targets and distracters. During the 

experimental trials they were presented with 12 single letters (6 targets and 6 
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distractors), hence they could score a maximum of 12 points per trial. There 

were 10 experimental trials so that the maximum total score was equal to 120. 

6.4.5 Task and apparatus 

The task was run on a Mesh PC and a Mitsubishi 21" monitor with 1024 x 768 

pixel resolution in an artificially lit room. Each stimulus was computer 

generated by using Matlab routines from Brainard's (1997) Psychophysics 

Toolbox. Stimuli were flashed on a black background that filled the entire 

screen. The stimuli were constituted by sine wave gratings (Gabor patches) that 

was enclosed in a 200 x 200 pixel frame. Each stimulus varied in spatial 

orientation and spatial frequency. The optimal rule that maximised performance 

was unidimensional and was determined by spatial frequency. In fact, the rule 

was as follow: 'when spatial frequency is high, the stimulus belongs to B; 

whereas when spatial frequency is low it belongs to category A'. The category 

discriminabilities (d') were equal to 3. The category distribution parameters are 

summarised in table 6.1. 

Table 6.1. Mean, standard deviation and covariate of category A and category B 

Mean SD Covariance 

Category Angle 90 37 .0001 

A Frequency 0.05 0.01 

Category Angle 90 37 -.0178 

B Frequency 0.08 0.01 

The task consisted of 140 trials including the CL (real) and the filler task trials 

and it was so designed to have 70 stimuli that belonged to category A and 70 

that belonged to category B. The two category stimuli were created by sampling 

from two normal distributions, which were randomly generated and described 

variation in spatial frequency. The mean score of the normal distribution used to 

generate category A stimuli was equal to 0.05, whereas for the category B 

distribution was 0.08. Both distributions had a standard deviation equal to 0.0l. 

The two normal distributions overlapped to some extent. However, the spatial 

frequency values (Xl) were rounded to two decimal points before computation of 
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the spatial frequency, f, using the formula below. The result was the following 

distribution of values of Xl (table 6. 2). The choice of using numbers with only 

two decimal points for the spatial frequency dimension was made to render the 

task perceptually easier and, therefore, create a task that was not extremely 

difficult to ensure learning across participants. This was done to compensate for 

the lack of feedback and, especially, the added filler task (see below), which 

might disrupt performance. 

Table 6.2. Spatial frequency of the Gabor patches 

Spatial frequency 

.03 .04 .05 .06 .07 .08 .09 

Cat A 5 13 25 24 3 0 0 N=70 

CatB 0 0 0 1 24 28 17 N=70 

Spatial orientation, 0, (irrelevant dimension) for category A and category B 

stimuli was sampled from one normal distribution that had a mean equal to 90 

and a standard deviation equal to 40. Each random sample value described 

above (xl, x2) was converted to a stimulus by deriving the frequency, f= xl * 2 

* 1t, and orientation, 0 = x2 * 1t 1180. 

Stimuli were presented until participants pressed either the A key or the B key. 

In order to facilitate learning, participants were given visual, auditory and 

monetary feedback (in feedback trials). In fact, fOllowing each response, 

participants received a feedback message that informed theme whether they 

were 'correct' or 'wrong' together with a high-pitched or a low-pitched noise, 

respectively. For each correct response, participants were rewarded with the 

gain of 5 pence. All these monetary gains would cumulate across each correct 

trial. All different types of feedback were simultaneously presented for 600 

msec and followed by 1,000-msec ITI. 

Participants in the two feedback conditions received the same absolute amount 

of feedback responses (i.e. feedback messages). However, those allocated to the 

low feedback received half the frequency of feedback trials as those in the high 

condition. In fact, participants in the low feedback condition received feedback 

160 



on 37.5% of their responses whereas those in the high condition received 

feedback on 75% of their responses. 

However, if feedback occurred on half the amount of trials in the high feedback 

condition compared the low feedback one and, therefore, the feedback trials 

were further apart in the low feedback condition. This artefact might, thus, place 

a higher demand on working memory during the low feedback condition to 

retain the rule across trials. 

In order to counteract this possible higher working memory workload in the low 

feedback condition, extra filler trials were added. These extra trials asked 

participants to perform a 'task' which required them to press either the category 

A or the category B key following the instructions that appeared on the screen 

(e.g. 'Press the category A response key'). No feedback was given for these 

trials and each response was simply followed by 1,000-msec ITL The number of 

filler task trials in the high condition was the equivalent of the extra no-feedback 

trials in the low feedback condition. Table 6.3 represents the proportion of 

feedback, no-feedback and filler task trials out of a sample of 10 trials. 

Table 6.3. Ratio of feedback (tbk), no-feedback (no fbk) and filler task trials out of a 
sample of 10 trials 

Fbk Nofbk Filler 

High 3 1 6 

Low 3 5 2 

Hence, over the whole task (140 trials), participants in both conditions received 

the same total amount of feedback trials (42). However, those participants in the 

high condition performed half (56) the amount of CL trials compared to those in 

the low feedback condition (112). Nonetheless, this difference was counteracted 

by the 56 extra filler-task trials (see table 6.4). After introducing the filler task 

trials in the task, there were still approximately equivalent number of stimuli 

from both categories in both feedback conditions (high: 26 A vs. 30 B; low: 58 

A vs. 54 B). 
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Table 6. 4. Trial structure in the two feedback conditions (FBK = feedback; CL = category 

learning) 

FBK 

CL trials FBK Filler Total 

trials forCL 0/0 trials trials 

task 

High 56 42 75% 84 140 

FBK 

Low 112 42 37.5% 28 140 

FBK 

The 56 trials in the high feedback presented the same stimuli that were used in 

the corresponding 56 trials in the low feedback condition version of the task 

(matched trials). Additionally, the two conditions were matched to have 28 filer 

task trials in common; this was done to ensure that the two conditions were 

matched as far as possible. 

Trials in both conditions were presented according to a fixed quasi-random 

order, the same for all participants, in order to avoid any possible order effects. 

6.4.6 Procedure 

The study method and procedure were approved by the Psychology Department 

Ethics Committee (DEC) at Goldsmiths, University of London. Testing was 

conducted in a testing room in the department and it took place in one session 

that lasted 1 hour and 15 minutes. Participants sat at a desk in front of a 

computer screen, a keyboard and stereo speakers. 

On entering the testing room, participants were reminded that all the collected 

data and information would remain anonymous and be treated with 

confidentiality. They were also informed that they had the right to withdraw 

from the study at any time, for any reason. In order to guarantee anonymity, 

each participant was allocated a unique ID code that became the only means of 

identifying the data. 
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Participants were randomly assigned to one of the two conditions. They were 

presented with written instructions on the computer screen. The instructions 

informed participants that a series of stimuli would be individually presented on 

the screen. Their task was to learn, by trial and error, to classify these stimuli 

into category A and category B. They had to do so by pressing the 'z' key or 

the' /?' key for category A and category B respectively. They were also informed 

that in order to facilitate their performance, they would receive visual feedback 

on whether their response was either correct or incorrect. In fact, the computer 

would flash the word 'correct' when the participant's response was correct or 

'wrong' when their response was wrong. These two messages were 

accompanied by noise feedback. Additionally, they also received monetary 

feedback. In fact, for each correct response participants were rewarded with the 

gain of 5 pence and did not lose any money for incorrect responses (i.e. it was a 

reward-only condition). Each time they made a correct response, they were 

presented with the total amount of their winnings. Hence, a promotion focus was 

used in the task (Maddox, Baldwin & Markman, 2006; Markman, et aI., 2005). 

They were also informed that feedback was not always available and, therefore, 

in some of the trials they would not receive any feedback following their 

response. The researcher verbally stressed the fact that the lack of feedback was 

completely independent of the participants' performance and was simply 

devised to make the task more complicated. The instructions also introduced the 

filler task, so participants were informed that from time to time the computer 

would have presented them with written instructions that would have requested 

them to press either the category A or the category B key. They were invited to 

simply follow the instructions. They were also informed that no feedback would 

have been given during these trials. However, in case of an incorrect key press 

(i.e. any key other than the two being used; ?I and 'z') they would receive a 

'wrong key' message. 

Participants were invited to sit in front of the computer in a comfortable way, in 

order to move as little as possible during the trials. Participants were encouraged 

to express any doubts about their understanding of the task and to start only 

once they felt completely confident about the task instructions. At this point, the 
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experimenter left the testing room to let participants carry out the task on their 

own. 

6.4.7 Data analysis 

A data extraction programme was developed in Matlab to create an overall 

summary file that could be exported from Matlab into SPSS and, therefore, 

allow statistical analysis on the data. The main extracted measure was accuracy 

indexed by the proportion of correct responses (pc) calculated both across the 

overall task and on the matched 56 trials. Additionally, formal modelling was 

also applied to these trials to explore participants' performance and establish the 

type of strategy that participants used compared to the strategy they were 

expected to use. 

These 56 matched trials consisted of all the real task trials experienced by the 

participants in the high feedback condition and only half of the trials for those in 

the low condition. Because of the way the task was programmed, the stimuli on 

these trials were identical across the two conditions. 

One other aspect of the design is worth noting. In the high feedback condition 

participants received the total amount of feedback trials (i.e. N = 42) but in the 

matched trials in the low feedback condition they received only 36 feedback 

messages. This difference was due to the fact that the low feedback condition 

was programmed fIrst and then the same feedback sequence was applied to the 

high condition. However, since some of the real trials in the low condition were 

actually fIller trials in the high feedback the sequence had to be slightly 

modifIed for the high feedback condition. Nonetheless, across the whole task 

both groups received 42 feedback signals. The key feature is that both the high 

and low feedback conditions offer the same amount of feedback signals (42) 

over the whole task, which contained the same number of trails (140) and, 

hence, lasted the same time in the two conditions owing to the fIller trials. The 

critical difference between the two conditions is the feedback frequency. Indeed, 
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in the low feedback condition, the feedback trials were interspersed with larger 

number of non-feedback trials compared to the high feedback condition. 

6.5 Results 

6.5.1 Behavioural data 

A t-test was carried out to assess whether the accuracy scores, across the overall 

task, varied between the high and low feedback frequency conditions. The t-test 

showed that there was no statistical difference between the two feedback 

conditions [t (62) = .482, ns]. 

However, as overall levels of performance were quite low (proportion of correct 

responses equal to 59% and 57% for the low and high feedback condition, 

respectively), it was decided to re-run the analysis after removing the 'non

learners'. Participants were identified as 'learners' when they showed a 

proportion of correct responses significantly greater than or equal to chance 

scores. This was done using the binomial distribution which allows one to 

calculate for a single participant the minimal levels of performance that should 

be regarded as significantly (p < 0.05) above chance (0.5) across the whole task. 

Participants in the low feedback condition were identified as 'learners' when 

they showed a proportion of correct responses equal or greater than .58, whereas 

those in the high feedback condition were identified as learners if they achieved 

accuracy scores equal or greater than .607. The filter indicated that 27 

participants from the whole sample size (N = 64) performed above chance 

levels, i.e. 41 % of the sample performed above chance overall. These results 

indicate that the task was too hard for participants to perform optimally. Thus, 

they suggest that the task was not ideal to explore the impact of partial feedback 

on learning since the learning rate is at or close to chance level. Equivalent 

numbers of participants from the two feedback conditions were classified as 

learners: 14 from the low and 13 from the high feedback conditions. All the 

analyses reported below are based on 'learners' performance. 
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Once 'non-learners' were removed, results indicated a small difference between 

the two feedback frequency conditions that did not reach statistical significance 

[t(25) = 1.55, p = .134, 2-tailed]. Participants in the low feedback condition 

seem to perform numerically better than those in the high feedback condition as 

they made a higher proportion of correct responses (pc; table 6.5). This 

difference could be an indirect result of the fact that participants in the low 

feedback condition had twice as many trials to learn the strategy and improve 

their performance. Hence, extensive practice on an RB task could have 

enhanced performance. 

Table 6.5. Proportion of correct responses (pc) after excluding non-learners 

Condition Mean SD 

Low .737 .056 

PC overall (N=14) 

High .701 .065 

(N=13) 

It was subsequently decided to test whether this difference would be significant 

(for participants who had received equivalent amount of feedback) when 

participants were responding to the same stimuli. In order to test this hypothesis, 

it was necessary to compare participants' performance on the 56 trials that were 

equivalent for participants in the high and in the low feedback condition (i.e. 

matched trials). 

As summarised in table 6.6, the performance of learners did not differ on the 

matched trials across the two conditions [t (25) = .410, P = .68]. In other words, 

performance does not seem to be significantly enhanced by higher feedback 

frequency. 
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6.6. Proportion of correct (pc) responses comparing performance on the matched trials 
and after excluding non-learners 

Condition Mean SD 

Low .711 .06 

PC matched (N=14) 

High .701 .06 

(N=13) 

Post-hoc power analyses were carried out using the G*power program (Buchner 

et aI., 1997). It was necessary to enter three types of information, the alpha value 

(.05 for a one-tailed test), the sample size of the two groups (nl = 14 and n2 = 

13) and the effect size (d). According to Cohen's effect size conventions, the d 

value was set equal to 0.3 since a 'small' to 'medium' effect was expected. 

Results showed that the power was very low [power(l- beta) = 0.1876] which 

suggests that the test may have not been powerful enough to detect any 

difference between the two groups. The loss of power is due to the small sample 

size retained once non-learners were removed. 

6.5.2 Association between performance and covariate (CV) measures 

Correlations were run to assess any possible relationship between CV measures 

(i.e. age and gender) and performance on the task, indexed by the correct 

proportion of responses on the overall task (pc_overall) and on the matched 56 

trials (pc_matched). Given the similarity of performance across high and low 

feedback condition, the two conditions were pooled. 

Table 6.7, shows that there is a negative correlation between age and the overall 

proportion of correct responses for the overall task (r = -.41, 0 = .035) and the 

matched trials (r = -0.46, p = .017). The results indicate that older participants 

made a higher proportion of correct responses than younger participants. 
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Table 6.7. Correlations between CV measures, WM scores and accuracy levels (i.e. 
proportion of correct responses, pc) for aU trials and the matched trials 

Correlations 

wmtestcorr pc matched pc overall 

gender Pearson Correlation .044 -.312 -.302 

Sig. (2-tailed) .828 .114 .125 

N 27 27 27 

age Pearson Correlation .117 -.457 -.408 

Sig. (2-taiJed) .562 .017 .035 

N 27 27 27 

Contrary to COVIS which states that performance on an RB task is dependent 

on executive attention and working memory (WM), the scores on the WM task 

were not found to be significantly correlated with the accuracy scores across the 

overall task (r = .13, ns) or across the matched trials (r = .03, ns). 

6.5.3 Performance and personality 

Four between-subject ANOVAs were carried out to explore the impact of the 

four personality components and the feedback manipulations on the degree of 

learning, measured as accuracy levels by the proportion of correct responses 

(pc). Because of the observations made above, it was decided to run the 

ANOVA using the pc on the matched trials as the DV. Results showed that the 

2-way interaction between Positive Schizotypy (PS) and feedback condition just 

failed to be significant [F(1,23)= 3.86, p = .062]. None of the other personality 

components was found to have any affect on accuracy [Fs < 1.4, p > .24]. 

In order to explore this interaction, a multiple regression was run with PS as a 

predictor of pc scores on the matched trials after applying a split file on the 

feedback condition variable. Results indicated that the model was not a good 

predictor of the DV variance in the high feedback condition [F(I,ll) = 1.035, 

ns] but it explained a significant 24% of the DV variance [F(1,12) = -2.245, P = 

.044] in the low feedback condition. Positive schizotypy scores contributed 54% 

of unique variance in the low feedback model. Results indicated that individuals 

with low scores on the PS component showed greater accuracy (higher pc 

scores) than their high counterparts (beta = -.54). 
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6.5.4 Model fitting 

As described in the method section, the stimuli presented in the task varied on 

two dimensions, i.e. Gabor frequency and angle. The relevant dimension was 

the frequency of the Gabor sine-waves hence, participants were expected to use 

this dimension to perform effectively on the task. Nonetheless, it is possible that 

participants may have used the angle dimension or a combination of the two 

dimensions, or worse case scenario the may have been guessing throughout the 

task. 

Hence, the data had to be fitted by 5 different models, these were: 

1 - a guessing model, which has 1 free parameter 

2a - a unidimensional rule model, which uses the frequency dimension (2 

parameters ) 

2b - a unidimensional rule model, which uses the angle dimension (2 

parameters) 

3 - a two-dimensional rule model, which uses a conjunctive rule (4 parameters) 

4 - a two-dimensional rule model, which uses an information integration (II) 

rule (3 parameters) 

All five models were applied to each participant's data usmg maxImum 

likelihood methods. Each of the models 2a-4 estimated two types of parameters, 

which were: decision criterion in the relevant dimension and 'noise'. The 

decision criterion is a boundary, in the perceptual space occupied by the stimuli, 

which may be being used by a participant to separate stimuli in category A from 

those in category B. In a single dimensional model it is the value on that 

particular dimension which is used to separate categories. In a conjunction rule 

model two such boundaries are required, one for each dimension, so that 

category A might for example be described as being above value x on 

dimension 1 and also above value y on dimension 2. For a two-dimensional II 

model the decision boundary is a line (specified by 2 parameters: a particular 

slope and intercept) in the plane representing the two dimensions upon which 
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the stimuli vary. The noise parameters are the standard deviation of normal 

distributions. Noise is assumed to exist in perceptual processes (i.e. a participant 

does not have perfectly accurate perception of where a particular stimulus lies in 

perceptual space) and in decision processes (a participant may place their 

decision boundary with some degree of unintended variation from trial to trial). 

A single noise parameter represents the combination of these independent 

sources of noise variance. Each model is initially compared to a saturated model 

which has no free parameters and describes the data perfectly. 

The goodness of each model was compared to the goodness of fit of the other 

models by comparing the Akaike Information Criterion6 (AlC; Dayton, 2003). 

The AlC score was calculated on the basis of the free parameters and it is an 

estimate of the goodness of fit. It penalises the model with extra free parameters 

so that the lower the AlC score, the better the fitting (i.e. closer to the saturated 

model; Maddox, Ashby and Bohil, 2003). 

The models were fitted to 56 trials in total. The trials take into considerations 

were the overall 56 of the high feedback condition and the corresponding 56 

matched trials in the low feedback condition. This trial matching for analysis 

purposes was possible since the stimuli presented on the matched 56 trials were 

equivalent (showed exactly the same Gabor patches) across the two conditions. 

The decision to apply the data fitting only to the matched trials was driven by 

the possibility that model fitting discrepancies would be more detectable if you 

used the greater number of task trials in total that were collected from 

participants in the low feedback condition. Using the matched trials allowed us 

to compare pc scores on equivalent trials that showed the same stimuli in both 

conditions. Moreover, compared to other solutions, the use of the matched trials 

allowed us to include all feedback trials and, therefore, be able to compare 

performance on the main N, feedback frequency. 

However, the analysis is slightly conservative since in the high feedback 

condition participants received the total amount of feedback (i.e. N = 42) but in 

6 Ale = 2r - 21nL, where r is the number of free parameters and L is the log likelihood of the 
model (Maddox et aI., 2003) 
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the matched trials in the low condition they only received 36 feedback 

messages. As already noted, this difference is due to the fact, that the low 

feedback condition was programmed first and then the same feedback sequence 

was applied to the high condition. However, since some of the real trials in the 

low condition are actually filler trials in the high feedback the sequence had to 

be slightly modified for the high condition. Fitting was applied to all 64 

participants in the attempt to obtain greater insight into participants' strategies 

during the task. 

6.5.4.1 Fitting results 

1- Fitting using a guessing model 

The guessing model describes the situation where participants are randomly 

assigning the stimuli to one of the two categories, regardless of the stimuli's 

dimensions. This model has only one free parameter (guessing probability for 

one of the category responses, from 0 to 1). Results showed that the guessing 

model was significantly poorer than the saturated model in all but 5 of the 64 

total cases (7.8%). This confirms that most of the subjects were doing something 

other than guessing. 

2 - Fitting through a uni-dimensional rule model 

The uni-dimensional models reported below describe the situation in which 

participants categorise the stimuli into two categories in relation to a decision 

criterion set on one of the varying dimensions. After setting a criterion on one of 

the dimensions (e.g. frequency), participants assign the actual stimulus to one or 

the other category depending on whether the stimulus value on the relevant 

dimension exceed or is below the set criterion. Since the Gabor patches vary on 

two dimensions (spatial frequency and orientation), there are two possible uni

dimensional (UD) rules that could be implemented and, thus, two UD models 

were fitted. Each UD model has two free parameters, which are: decision 

criterion and noise (see below). 
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2a- Fitting through a unidimensional rule model based on the spatial 

frequency dimension 

The present model describes the optimal situation where participants select 

spatial frequency as the relevant dimension and place a criterion on this 

dimension to categorise the Gabor patches. This would be the optimal rule since 

spatial frequency was set as the relevant dimension in the program. 

Results indicated that the uni-dimensional model related to Gabor frequency 

was not significantly worse than the saturated one for 22 cases. This indicates 

that 34% of the whole sample used frequency as a relevant dimension to classify 

the Gabor stimuli. 

2b- Fitting through a unidimensional rule model based on the spatial 

orientation (angle) dimension 

The present model describes the situation where participants select spatial 

orientation as the relevant dimension and place a criterion on this dimension to 

categories the Gabor patches even though spatial orientation was not the 

relevant dimension in the actual task. Results of this fitting indicated that this 

un model was not significantly worse than the saturated one for 19 cases. This 

indicates that 30% of the whole sample used angle as the relevant dimension to 

classify the Gabor stimuli. 

Comparison of the two uni-dimensional models 

Overall, it seems that a uni-dimensional model fits 40 out of the 64 participants 

(i.e. 62.5% of the overall sample). Table 6.8 indicates that data from one of the 

40 participants who used a uni-dimensional rule was well fitted by both the 

angle and frequency models. 
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Table 6.8. Preliminary results obtained following the fitting of both uni-dimensional 
mod els (frequency vs. an!!:le) 

Angle Frequency Both 

dimension dimension dimensions 

N (tot= 64) 18 21 1 

It was decided to compare the fitting of the two models to assess which one 

offered the best fitting for this participant. In order to do so the AlC values of 

the two models were compared. The model with the lowest AIC value was 

selected and identified as the best fitting uni-dimensional model. 

Following AlC comparisons, 21 participants were found to use frequency as the 

relevant dimension as opposed to 19 participants who were using the irrelevant 

dimension (i.e. angle) as the relevant dimension to base their decisions. Finally, 

24 participants were not fitted by a uni-dimensional model (table 6.9). 

Table 6.9. The proportion of participants using either angle or frequency as the relevant 
dimension to categorise the Gabor stimuli 

Cumulative 
Frequency Percent Valid Percent Percent 

No rule 24 37.5 37.5 37.5 

Angle 19 29.7 29.7 67.2 

Frequency 21 32.8 32.8 100.0 

Total 64 100.0 100.0 

Five of the 24 participants not fitted by any of uni-dimensional models were 

guessing. However, performance of 19 participants was not fitted by a uni

dimensional rule, which means that for 32% of the whole sample was not using 

any of the above fitted models. This suggests that they might have been using 

alternative strategies which are not based on the two dimensions (i.e. non

dimensional rules; e.g. sequence of key presses on the keyboard). Indeed, 

participants verbally reported having used alternative strategies following 

debriefing. None of the fitting models developed here accounts for non

dimensional rules since learning was defmed as using the relevant dimension to 

classify the Gabor patches. It is also possible that those 19 participants could 

have used a more complex strategy (e.g. a conjunctive or an II rule). This 
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possibility is explored by models 3 and 4 which test whether participants may 

have implemented a conjunctive or an II rule, respectively, to categorise the 

stimuli. The results are reported below. 

3 - Fitting through a 2-dimensional model, using a conjunctive rule 

A conjunctive rule model captures the situation where participants categories the 

stimuli using information from the two dimensions. Individuals adopting a 

conjunctive rule set a decision criterion on both dimensions, for example 'if the 

stimulus value is above value Xl on dimension 1 (criterion 1) and below value X2 

on dimension 2 (criterion 2), then the stimulus is a member of category A; 

otherwise it is a member of category B ')'. Hence, the information from the two 

dimensions is combined after the criteria are separately set on each dimension 

(post-decisional). The conjunctive model fitted below aims to assess whether 

some participants used information from both spatial frequency and orientation 

to categorise the Gabor stimuli. 

Results indicated that the conjunctive model fitted data from 27 participants 

non-significantly worse than the saturated model. However, the 27 data files 

fitted by the conjunctive rule were all also fitted by one of the uni-dimensional 

models. It was decided to compare the conjunctive model to the best-fitting uni

dimensional rule. Comparison of the conjunctive and the uni-dimensional 

models was carried out by comparing their corresponding AlC values. The 

model with the lowest AlC value was identified as the best fitting uni

dimensional modeL These comparisons showed that the conjunctive model was 

better than the uni-dimensional model for four of the 27 data sets compared. 

Table 6.10 below indicates that after fitting the conjunctive rule model, 17 

participants were using the angle dimension, 19 used the frequency (relevant) 

dimension and 4 used both dimensions (in a conjunctive fashion) to formulate 

their decision rule. 
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Table 6.10. Frequency of participants implementing one of the two uni-dimensional rules 
or the conjunctive rule 

Cumulative 
Frequency Percent Valid Percent Percent 

No rule 24 37.5 37.5 37.5 

Angle 17 26.6 26.6 64.1 

Frequency 19 29.7 29.7 93.8 

Conjunctive 4 6.3 6.3 100.0 

Total 64 100.0 100.0 

4 - Fitting through a 2-dimensional model, using an II rule 

The II model describes the situation where participants apply an information

integration (II) strategy to determine category membership of the different 

stimuli. As in the case of a conjunctive rule model, when using an II strategy 

participants combine information from the two dimensions but they do so at a 

pre-decisional level (i.e. implicit learning). 

Results indicated that the II two-dimensional model was worse than the 

saturated model in all but two cases. The p values corresponding to these two 

cases were equal to .07 and .13. However, these two cases were also fitted by 

the angle uni-dimensional model. It was decided to compare the goodness of fit 

of the relevant uni-dimensional model with the goodness of fit of the two

dimensional one. 

Comparisons were made by contrasting the AlC values for these two models. 

Results showed that the uni-dimensional model fitted the data better than the II 

model, hence table 6.10 above represents a good summary of the fitting results 

from these analyses. 40 participants (62.5% of the sample) used a uni

dimensional rule to learn the task whereas 24 (37.5%) participants failed to use 

an effective dimensional rule. 

The results from the model fitting were calculated in relation to feedback 

condition and this indicated that the strategy used was partially affected by the 

feedback condition participants had been allocated to (X2
(3) = 13.2 P = .004). 

Indeed, participants in the high feedback condition were less likely to apply a 
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dimensional rule to solve the categorisation task but when they did, they were 

more likely (9/14) than participants in the low feedback condition (10/26) to use 

frequency as the relevant dimension (i.e. to use the correct rule). Moreover, they 

selected this dimension more frequently than the spatial orientation one, which 

was actually irrelevant. In contrast, almost equivalent number of participants in 

the low feedback condition used the relevant or the irrelevant dimension to 

formulate their rule. Tables 6.11 and 6.12 below summarise the strategy used by 

participants in the two feedback conditions. 

Table 6.11. Summary of the strategy used in the low feedback condition 

Cumulative 

Frequency Percent Valid Percent Percent 

No rule 6 18.8 18.8 18.8 

Angle 14 43.8 43.8 62.5 

Frequency 10 31.3 31.3 93.8 

Conjunctive 2 6.3 6.3 100.0 

Total 32 100.0 100.0 

Table 6.12. Summary of the strategy used in the high feedback condition 

Cumulative 

Frequency Percent Valid Percent Percent 

No rule 18 56.3 56.3 56.3 

Angle 3 9.4 9.4 65.6 

Frequency 9 28.1 28.1 93.8 

Conjunctive 2 6.3 6.3 100.0 

Total 32 100.0 100.0 

As observed by comparing table 6.11 and table 6.12, participants in the low 

feedback condition were significantly more likely to use a dimensional strategy 

than those under high frequency feedback [i(l) = 9.6, p = 0.02]. However, 

participants receiving low frequency feedback were also more likely to 

implement the irrelevant angle dimension to formulate the optimal rule; 

however, this difference just failed to be significant [X2(1) = 3.6, P = 0.06]. 

Participants who employed the correct dimension to formulate the unI

dimensional rule were significantly more likely to achieve accuracy scores 

above chance level than those who employed any of the other two strategies [i.e. 
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incorrect dimension or conjunctive strategy; X2 
(3) 

summarised in table 6.13. 

44.70, P < .001], as 

Table 6.13. Proportion of participants using one of the three dimensional strategy across 
learners and non-learners 

Count 

Accuracy scores above 

chance 

.00 1.00 Total 

rule No rule 19 5 24 
Angle 17 0 17 
Frequency 0 19 19 
Conjunctive 1 3 4 

Total 37 27 64 

When considering the raw data, learners were identified as those participants 

who performed above chance during the task. According to this method, twenty

seven participants had been identified as learners whereas the model-fitting 

analysis indicated that only 22 participants used a dimensional strategy to 

classify the stimuli. This suggests that 5 of the 'learners' had managed to score 

above chance either using an alternative, non-dimensional strategy. Moreover, 

only 19 of the 22 individuals who scored above chance and used a dimensional 

rule actually used the appropriate uni-dimensional rule based on the frequency 

dimension. Three of them used a conjunctive rule which also allowed them to 

have higher accuracy levels possibly because they set the criterion correctly on 

the frequency dimension and only added some noise by combining this criterion 

with the criterion set on the irrelevant dimension. In other words, 19 of the 27 

individuals who performed above chance used the correct rule, three used a 

conjunctive rule and the remaining 5 used a non-dimensional strategy. 

Seventeen of the 37 participants who performed below chance had used the 

incorrect uni-dimensional rule based on angle and one used a conjunctive rule. 

Hence, 18 non-learners used an incorrect dimensional strategy whereas 19 of 

them must have used a non-dimensional strategy, which was sub-optimal. 
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The relationship between the type of strategy used and the proportion of correct 

responses (performance above chance) can be explained by considering the 

accuracy performance levels that could have been obtained using one of the 

three rule strategy throughout the task (i.e. the matched 56 trials). Indeed, if 

participants had implemented the optimal rule which relied on frequency as the 

relevant dimension, they could have obtained an accuracy score equal to 95%. 

The reason why 100% accuracy could not be reached is due to the fact that some 

of the trials (i.e. 3 trials of the total 56) were wrongly assigned to categories and 

did not follow the optimal rule (see table 6.2). Participants using the conjunctive 

rule (i.e. 'if frequency> .065 and angle> 90, then respond B') could have 

obtained an accuracy level of 68%. Therefore, accuracy levels obtained using 

either of these two strategies would have allowed participants to perform above 

chance (i.e. above the 61% cutoff employed in the high feedback condition). 

However, a uni-dimensional rule using angle as the relevant dimension could 

only allow one to reach an accuracy level equal to 52%, which is below the 

individual subject above-chance cut-offlevel. 

6.5.5 Individual differences and strategy used 

Further analyses were carried out to assess whether there was a relationship 

between personality and the strategy used, as indexed by the best fitting models. 

As a preliminary analysis it was decided to assess whether the use of a 

dimensional strategy was associated with any of the personality components 

extracted in the peA, scores on the WM task and accuracy scores as indexed by 

the proportion of correct responses on the matched trials (pc_matched). The 

variable that coded whether participants had used a dimensional rule or not was 

labelled strategy used and it coded the use of a dimensional rule as 1 and no 

dimensional rule as o. In order to explore any possible relationship, a few point

biserial correlations were run to explore the data. 

Results showed that there was a positive correlation between the number of 

correct responses in the WM and the strategy used (r = .26, p = .035). These 
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results suggest that participants who perform better on the WM task were more 

likely to use a dimensional rule than those who scored low. These results are in 

line with the COVIS model that suggests that performance on an RB task 

requires logical reasoning and hypothesis testing which relies on the WM task. 

However, WM scores were not significantly associated with the UD 

implemented (angle vs. frequency coded as 1 and 2, respectively; r = .21, ns). 

Results also indicated that the interaction between the strategy used (yes = 1 or 

not = 0) and neuroticism just failed to be significant (r = -.24, P = .060). There 

was also a trend for a negative correlation between positive schizotypy factor 

and the strategy used (r = -.21, P = .09). Finally, there was a positive correlation 

between the pc scores on the matched trials and the strategy used (r = .37, p = 

.003), which indicated that the use of a dimensional strategy as opposed to 

guessing and/or using non-dimensional strategies was associated to higher 

accuracy levels. 

Following, the correlational results, a logistic regression was run with N, PS and 

WM scores entered as predictors and strategy used as the DV. Results suggest 

that the model entered is a good predictor of the strategy used (r: (3) = 11.71, P = 

.008) and that the Nand WM covariates were good predictors in the model (N: 

Exp(B) = .54 X
2
(1) = 4.80, P = .028; WM: Exp(B) = 1.1 X2(l) = 4.09, P = .043). 

Positive schizotypy was found to be a weaker predictor in the model (Exp(B) = 

.63 X2(1) = 2.41, P = .12, 2-tailed). An independent t-test was run to explore the 

relationship between N scores (DV) and the strategy used (IV). Results showed 

that there was a non-significant trend for the effect of strategy on neuroticism 

[t(62) = 1.92, p = .060]. Indeed, participants who implemented a dimensional 

strategy scored lower on the N component (-0.32) than those participants who 

used a non-dimensional strategy (0.22). 

Subsequently it was decided to assess whether personality and WM scores may 

have affected which one of the dimensional rule participants used as a relevant 

one during performance of the task. 

179 



As indicated in table 6.14, high Neurotics (cf. low N) were more likely to use 

the relevant dimension (frequency) to formulate their categorisation strategy 

whereas they did not differ in their choice of conjunctive rule. Hence, it was 

decided to run an independent-sample t-test to compare performance of high and 

low neurotics in relation to the two uni-dimensional models (angle vs. 

frequency). The t-test showed that neuroticism scores significantly differed 

among participants who used the relevant dimension and those who failed to do 

so [t(34) = 2.16, P = .038]. Indeed, participants who used the relevant dimension 

(frequency) scored higher on neuroticism (-.02) than those who used the 

irrelevant dimension (i.e. angle; N: -.77). 

Table 6.14. Frequency of participants using one of the three dimensional rules (angle, 
frequency or conjunctive) across the two feedback conditions 

Count 

Neuroticism 

Low High Total 

Angle 12 5 17 

Frequency 9 10 19 

Conjunctive 3 4 

Total 22 18 40 

Finally, it was decided to compare performance on the task for those 19 

participants who adopted the correct uni-dimensional strategy. Results showed 

that performance, measured by the pc on the matched trials, did not vary across 

the two feedback conditions [t(17) = .27, P = .79]. The proportion of correct 

responses on the matched trials did not correlate with any of the personality 

components taken into consideration in the study (p >.224). 

6.6 Discussion 

Preliminary analysis showed that participants in the low feedback condition did 

not perform statistically more poorly than those in the high feedback condition. 

These results are in line with COVIS that states that performance on an RB task 

should not be affected by feedback manipulations (Ashby et aI., 1998; Ashby et 

aI., 1999). However, it is possible that the study was not able to detect any 
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difference between the two groups as an effect of feedback manipulation 

because of the low levels of power. 

WM ability was positively associated with the correct use of a dimensional 

strategy, which is in line with COVIS' assumption that performance on an RB 

task relies on WM and executive attention abilities. 

Fitting behavioural data with the formal model offered a greater insight into the 

strategy used by participants to categorise the stimuli during the task. In 

particular, it showed that a few of those participants who scored above chance 

may have not necessarily used the correct strategy. These results indicate that 

using a specific CL task does not necessarily predict the strategy that 

participants will actually use. Hence, it further supports evidence which 

highlights the importance of using formal models to obtain clearer and more 

reliable information about the task (Gluck, et ai., 2002; Tharp, 2007) 

Overall high neurotics were more likely to use the relevant dimension and so 

implement the correct rule. This may be due to the fact that the low feedback 

frequency condition may be perceived as punishing. Therefore, the regulatory fit 

between a BIS trait (N) and (punishing) partial feedback manipulation could 

enhance performance. Indeed, Maddox and colleagues (2006) have observed 

that regulatory fit enhances cognitive flexibility which, subsequently, facilitates 

performance on simple CL tasks which require a simple solution (e.g. uni

dimensional rule). 

Results also found a weak trend for participants who scored low on the PS trait 

component to be more likely to use a dimensional rule than their high 

counterparts. Among the general population PS scores reflect behaviours and 

thoughts with resemblance to the positive symptoms typical of SZ. One of the 

main characteristics of SZ patients is impaired executive attention abilities 

which often result in impaired filtering of irrelevant information (e.g. 

dimensions and/or stimuli). One source of evidence for this claim is provided by 

studies that explored SZ patients and healthy controls performance on LI tasks. 

Results indicated that LI was reduced in SZ patients as opposed to controls and 
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also in high PS participants (cf. low PS participants; see Pickering and Gray, 

2001 for a review). It is possible that high PS individuals find it harder to filter 

out irrelevant information of the task (e.g. trial sequence) or other features of the 

stimuli (irrelevant dimension) and consider them to be relevant for efficient 

categorisation. Participants with high scores on PS may consider irrelevant 

information presented in the filler task as potentially relevant to classification, 

for example the sequence of filler trials or the instructions presented on the 

screen during this task (e.g. 'press the category A key'). 

Some of the PS measures are correlated with ImpAss measures (Pickering, 

2004). In the present study positive schizotypy was found to be negatively 

correlated with the strategy used. These results suggest that individuals with 

high scores on this component were less likely to use a dimensional strategy to 

solve the task. Individuals who score high on ImpAss traits have been found to 

show superior performance than their low counterparts when performing on 

simple uni-dimensional tasks of the type administered in this study (Pickering, 

2004; Tharp, 2007). However, it is possible that the Gabor patches presented in 

this study may be more complex than the stimuli used in the previous ones. This 

is suggested by the fact that participants performed around chance level. 

In fact, even though the stimuli presented in the previous studies also varied on 

two dimensions (with only one of them being relevant) the dimensions that were 

used were perhaps more salient and easier to identify. For example, in Tharp 

study the stimuli varied on 4 binary valued dimensions and the relevant 

dimension was background colour. In Pickering's studies, the relevant 

dimensions were height of the rectangle or the location of an inner line. 

Although, the angle variation of the Gabor is quite salient the frequency of the 

waves is more complex to perceive. Some participants reported perceiving the 

Gabor patches as tri-dimensional (not just 2D) and they used the shade between 

the waves as the relevant dimension which is a slightly more complex 

perception of the stimulus variations than the simple line frequency. The shade 

is a by-product of the distance (frequency) of the lines as well as grey variation 

within the stimulus. Hence, the stimuli used may have been perceived to be 

complex and requiring a more complex rule. High ImpAss perceiving the task as 
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complex could have shown impaired performance due to cognitive inflexibility 

that is typical of high ImpAss on more complex tasks (Tharp, 2007). 

Participants may have also perceived the task to be complex because of its 

structure and in particular because of the inclusion of the filler task trials. 

During debriefmg, it was reported by some participants that they had perceived 

the presence of the filler task to be relevant for the main categorisation task. 

Verbal reports by participants stated that they had developed rules related to 

features of the filler task. This occurred despite explicit instructions that the 

filler task and its features were irrelevant to task performance. 

The fact that participants may have experienced the task as complex explains 

why four participants employed a more complex conjunctive rule and it also 

suggests that they may have used a different, non-dimensional strategy. ln fact, 

they may have resorted to a more complex rule and eventually to procedural 

learning. This would not be surprising since previous research has found that an 

II rule may be employed to solve complex RB tasks (Maddox, Filoteo, Hejl & 

lng, 2004; Ashby & Maddox, 2005). It is possible that a more complex strategy 

would be employed if the individual assumed that a complex rule is more 

appropriate. 

6.7 Information-integration study 

6.7.1 Aim of the study 

The second study of this chapter aimed to explore individual differences when 

performing on an alternative version of the task. Because of limited cognitive 

flexibility, and/or a preference for simple uni-dimensional task solutions, high 

ImpAss participants are expected to be more impaired than their lower-scoring 

counterparts according to results obtained in previous studies (Tharp, 2007). 

Simultaneously, the study aimed to explore whether induced regulatory fit 

between personality trait and feedback manipulation can enhance performance 

during an II task. 
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Additionally, the task compared performance under high and low feedback 

frequency manipulation to investigate how feedback manipulation affects 

learning on an II task. According to the results obtained by Ashby et al. (1999), 

it was predicted that partial feedback should impair learning in the II task, 

especially under the low feedback condition. The study aimed to assess whether 

participants will automatically interpret no-feedback trials as 'non-reward', 

despite the fact that they were explicitly told that the no-feedback trials were 

unrelated to their performance level. The reason why no feedback was expected 

to be interpreted as non-reward relies upon one of COVIS main assumptions 

that feedback is automatically processes by the implicit learning system of the 

model (Ashby et aI., 1998; Maddox & Ashby, 2005). 

Finally, the study explored the relationship between performance on the II task 

and WM scores. COVIS suggests that performance on the II task is dependent 

on the implicit system which relies on procedural learning rather than more 

explicit hypothesis testing processes (Ashby et ai., 1998; Ashby, Queller & 

Berrety, 1999; Maddox & Ashby, 2004). However, there is recent evidence that 

indicates that WM scores mediate performance on II tasks. De Caro and 

colleagues (2008) showed that scores on a WM task were negatively associated 

with performance on an II task. Indeed, participants who scored high on the 

WM task required more trials to reach the learning criterion on the II task. De 

Caro and colleagues argued that individuals with high WM capabilities might be 

engaging the explicit system rule system to test complex but ineffective rules 

and so perform less well than low WM participants who were relying more upon 

procedural learning better suited to performing the II task well. In contrast, 

Tharp and Pickering (under review) found that high WM scores were associated 

with greater accuracy scores and the use of a multi-dimensional (MD) strategy 

during the identical II task to that used by De Caro and colleagues. They 

concluded that De Caro and colleagues' results might be a product of procedural 

inadequacies concerning the learning criterion adopted in their study. 
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6.S Method 

6.8.1 Participants 

An opportunity sample was drawn from the student population at Goldsmiths 

(University of London). Participants were recruited through the research 

participation scheme run by the psychology department and they all received 3 

course credits for their participation. The sample was constituted of 76 

psychology students, 66 females and 10 males. All students were aged between 

18 and 48 (mean age 21.04 years; s.d. = 5.53). Participants were guaranteed 

confidentiality. They were tested in one sitting that lasted approximately 1 hour 

and 15 minutes. 

6.8.2 Design 

As in the study with the rule-based task, the main independent variable was 

feedback frequency which was treated as a between-subjects factor with two 

levels: high and low. In the low feedback frequency condition, participants 

received feedback on 37.5% of their responses, whereas in the high feedback 

frequency condition participants received feedback on 75% of their responses. 

The study was interested in assessing the impact of the IV on performance 

during the II task, which was assessed by considering the proportion of correct 

responses during the category learning task. In addition to course credits, 

participants could also earn money depending on their performance. They won 5 

pence for each correct response and lost no money for incorrect ones. This was 

done to maintain a parallel with the RB version of the task and to have 

participants perform under a reward-only condition and be induced with a 

promotion focus. Participants were randomly allocated to the high or low 

feedback condition. 

6.8.3 Stimuli and materials 

The stimuli for the information-integration task were generated by rotating the 

original stimuli by 45° and then shifting the spatial frequency and spatial 
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orientation by an amount that resulted in a d' equal to 3, as for the rule-based 

task (see table 6.15). 

Table 6.15. Mean, standard deviation and covariate of category A and category B 

Mean SD Covariance 

Category Angle 108 30 0.251 

A Frequency 0.05 0.015 

Category Angle 72 29 0.272 

B Frequency 0.08 0.014 

As in the RB task, the values used to draw both the spatial frequency and the 

orientation of the Gabor patches was rounded by two decimal points, which 

should render the task perceptually easier. This was done to compensate for the 

difficulty of the task, lack of 100% accuracy feedback and the inclusion of the 

filler task. The stimuli distribution for the II and the RB task are presented 

below in figure 6.1 below. 
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Figure 6. 1. The stimuli presented in the a panel (top) represent the stimuli created for the 
RB task while those in the b panel represent the stimuli created for the n task. Category A 
stimuli are represented by the blue circles whereas category B stimuli by the red crosses. 
The left-hand side panels represent the stimuli drawn for the high feedback condition and 
the right-hand side panels represents those stimuli drawn for the low feedback condition. 
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The Gabor stimuli were produced and presented in the same fashion as in the 

rule-based task by using Matlab routines from Brainard's (1997) Psychophysics 

Toolbox. 

Owing to the fact that IT tasks are harder than RB tasks, the number of total 

trials was doubled so that the whole task consisted of 280 trials. The ratio of 

feedback, no-feedback and filler task trials was identical to the ratio in the rule

based task (table 6.16). 

Table 6.16. Ratio of feedback, no-feedback and filler task trials out of a sample of 10 trials 

Feedback No Filler 

feedback task 

High 3 1 6 

Low 3 5 2 

The low feedback condition consisted of 224 trials presenting CL stimuli while 

the high condition presented half as many trials (112). The 112 trials presented 

the same stimuli as the matching 112 trials in the low feedback condition. 

As in the RB version of the task, the original 280 trials were created to have 

equal numbers of stimuli sampled from the two category distributions. Once the 

filler task trials were introduced there were still roughly equivalent numbers of 

the two category stimuli in both conditions (high: 52 A vs. 60 B; low: 116 A vs. 

108 B). 

6.8.4 Procedure 

The procedure followed in the information-integration task was identical to the 

one adopted in the rule-based task. Participants were presented with exactly the 

same instructions used in the rule-based task. 
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6.8.5 Personality measures 

Participants completed several personality measures, which were: the Eysenck 

Personality questionnaire revised (EPQ-R), the Oxford-Liverpool inventory of 

feelings and experiences scale (OLIFE), the sensation seeking scale (SSS), the 

schizotypal personality questionnaire (SPQ), the big five inventory (BFI) and 

the BISIBAS questionnaire. Four personality components were extracted after 

running a peA with Varimax rotation on these scales (see chapter 4 for details). 

The four components extracted are: Extraversion (E), Neuroticism (N), positive 

schizotypy (PS) and impulsivity-antisocial (ImpAss). The peA was run on 232 

participants, who constitute the overall number of participants tested. The 

components scores used in the present study are the corresponding scores 

extracted in the overall peA involving 232 participants. 

6.8.6 Data analysis 

A data extraction programme was developed in Matlab to create an overall 

summary file that could be exported from Matlab into SPSS and, therefore, 

allow statistical analysis on the data. The main measure was accuracy, indexed 

by the proportion of correct (pc) responses. The study was mainly interested in 

the pc measures both on the overall task and on the matched 112 trials. 

Additionally, formal modelling was used to explore participants' performance 

and establish the type of strategy that participants used compared to the strategy 

they were expected to use. 

These 112 trials consisted of all the real task trials experienced by the 

participants in the high feedback condition and only half of the trials for those in 

the low condition (the matched trials). Because of the way the task was 

programmed, the stimuli on these trials were identical across the two conditions. 

According to the observations made for the RB version of the task, it was 

decided to run the majority of the analyses on these matched trials. 
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6.9 Results 

6.9.1 Behavioural data 

A t-test was carried out to assess whether there was a significant difference in 

the overall proportion of correct responses between the high and low feedback 

frequency conditions. The t-test showed that there was no statistical difference 

between the two feedback conditions [t (74) = 0.37, ns]. 

However, it was decided to re-run the analysis after removing 'non-learners'. 

Participants in the high feedback condition were identified as 'learners' when 

they showed a proportion of correct responses significantly higher than chance 

scores. 

Participants in the low feedback condition were identified as 'learners' when 

they showed a proportion of correct responses equal or greater than .55, whereas 

those in the high feedback condition were identified as learners if they achieved 

accuracy scores equal or greater than .58, across the whole task. Fifty-four 

participants (71 % of the overall sample) were identified as 'learners' and were 

included into the analysis whereas 'non-learners' were excluded. There were 

approximately equal numbers of learners in the two feedback conditions, there 

were 25 in the high and 29 in the low condition. 

Even once 'non-learners' were removed, results still indicated that there was no 

significant difference between the category learning success of participants in 

different feedback frequency conditions [t (52) = .162, ns]. Indeed, table 6.17 

shows that the proportion of correct responses is virtually identical in the two 

feedback conditions. 
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Table 6.17. Proportion of correct (pc) responses on the overall task after excluding non

learners 

Condition Mean SD 

Low .646 .052 

PC overall (N=29) 

High .643 .045 

(N=25) 

As for the analysis of the RB version of the Gabor task, it was decided to test 

whether this difference would still be non-significant after participants had 

received equivalent amount of feedback and were responding to the same 

stimuli. In order to test this hypothesis, it was necessary to compare participants' 

performance on the matched 112 trials. The matched trials consisted of all the 

real task trials experienced by the participants in the high feedback condition 

and only half of the trials for those in the low condition. Because of the way the 

task was programmed, the stimuli on these trials were identical across the two 

conditions. 

However, the analysis is slightly conservative since in the high feedback 

condition participants received the total amount of feedback (i.e. N = 84) but in 

the matched trials in the low condition they received only 72 feedback 

messages. This difference is due to the fact, that the low feedback condition was 

programmed first and then the same feedback sequence was applied to the high 

condition. However, since some of the real trials in the low condition are 

actually filler trials in the high feedback the sequence had to be slightly 

modified for the high condition. 

As summarised in table 6.18, learners in the two feedback conditions did not 

differ across the two conditions [t (52) = -1.10, ns]. In other words, performance 

was not enhanced by higher feedback frequency. 
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Table 6.18. Proportion of correct (pc) responses comparing performance on the matched 
trials and after excluding non-learners 

Condition Mean SD 

Low .629 .055 

PC matched (N=29) 

High .644 .045 

(N=25) 

Post-hoc power analyses were carried out using the G*power program (Buchner 

et aI., 1997). It was necessary to enter three types of information, the alpha value 

(.05 for a one-tailed test), the sample size of the two groups (nl = 29 and n2 = 

24) and the effect size (d). According to Cohen's effect size conventions, the d 

value was set equal to 0.3 since a 'small' to 'medium' effect was expected. 

Results showed that the power was low [power = (1- beta) = 0.2878] which 

suggests that the test may have not been powerful enough to detect any small to 

medium difference between the two groups. The loss of power is due to the 

relatively small sample size obtained once non-learners were removed. 

Obviously, if the effect size were bigger than that assumed above, then this 

sample size would have much higher levels of power. 

6.9.2 Performance and covariate (CV) measures 

Correlations were run to assess any possible relationship between CV measures 

(i.e. age and gender) and performance on the task, measured by the correct 

proportion of responses on the overall task (pc_overall) and on the matched 112 

trials (pc_matched). 

Neither gender nor age correlated with the accuracy scores on the overall trials 

or on the matched trials (p >.5). Performance on the WM task positively 

correlated with the proportion of correct responses both on the overall trials (r = 

.34, p = .013) and on the matched trials (r = .26, p = .056). These data 

apparently go against the COVlS assumption that performance on II tasks relies 

191 



on procedural learning and, therefore, does not rely on WM. Tharp and 

Pickering (under review) also showed that accuracy levels achieved during 

performance on an II CL task was positively correlated with WM scores. 

6.9.3 Performance and personality 

A between-subject ANCOV A was carried out to explore the impact of the four 

personality components and the feedback manipulations (between-Ss IV) on the 

degree of learning, indexed by the proportion of correct responses (pc). Because 

of the observations made above, it was decided to run the ANCOV As using the 

pc on the matched trials as the DV. The four personality components were 

entered simultaneously as covariates. Analyses included learners only. Results 

showed that the main effect of feedback condition was non-significant in the 

ANCOV As [Fs < .62 , ps > .44]. However, there were significant main effects 

of N [F (1,49)= 4.80, p = .033] and ImpAss [F(1,49) = 5.68, p = .021]. After 

applying a median split on the personality variables, two separate independent

sample t-tests were run in order to explore these main effects. Individuals with 

high scores on the N components were more accurate (mean = .65, s.d.= .05) 

than their low counterparts [mean = .62, s.d. = .046; t(52) = -2.27, P = .028]. 

Similarly individuals with high ImpAss scores also showed a trend to be better 

(mean = .65, s.d. = .05) at the task than those with low score [mean = .62, s.d. = 

.05; t(52) = -1.80, P = .078]. 

A multiple regression was run with Nand ImpAss scores as predictors of pc 

scores on the matched trials. The model explained a significant 17% of the DV 

variance [F(2,51) = 6.24, P = .004]. N scores contributed a greater proportion of 

unique variance [32%; t(51) = 2.44, p = .018] while ImpAss made a smaller 

unique contribution of 23%, although this contribution showed only a trend 

[t(51) = 1.73, p = .090]. 

6.9.4 Model fitting 

Like the RB version, the stimuli presented in the task varied on two dimensions, 

i.e. Gabor frequency and angle. The optimal rule required participants to 
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integrate infonnation from both dimensions. Nonetheless, it is possible that 

participants may have used the angle or the frequency dimension individually to 

fonnulate a uni-dimensional rule which would lead to poor perfonnance. 

Hence the data had to be fitted by the same five models used to fit the RB task 

although the parameters values were modified to account for the fact that the 

stimuli used in the II version of the task were different from the ones used in the 

RB task as they were produced by rotating the original ones. The models were: 

1 - a guessing model, which has 1 free parameter 

2a - a uni-dimensional rule model, which uses the frequency dimension (2 

parameters) 

2b - a uni-dimensional rule model, which uses the angle dimension (2 

parameters) 

3 - a two-dimensional rule model, which uses a conjunctive rule ( 4 parameters) 

4 - a two-dimensional rule model, which uses an infonnation integration (II) 

rule (3 parameters) 

The Gabor task used in this study is a complex infonnation-integration task and, 

therefore, participants are expected to use an II strategy that requires them to 

combine infonnation from both dimensions at a pre-decisional level. However, 

all five models were fitted because it is possible that the task was too hard for 

participants to derive the correct strategy and participants may have 

implemented a simpler rule (uni-dimensional or conjunctive; Gluck et aI., 2002) 

The models were fitted to the matched 112 trials in total, for the same reasons 

elucidated in the RB section. Basing the data analysis on the matched trials 

allowed us to compare pc scores on equivalent trials that showed the same 

stimuli in both conditions. Moreover, compared to other solutions, the use of the 

matched trials allowed us to include all feedback trials and, therefore, to be able 

to compare perfonnance on the main IV, feedback frequency. Fitting was 

applied to all 76 participants in the attempt to obtain greater insight into 

participants' strategies during the task. 
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6.9.4.1 Modelling results 

1- Fitting through a guessing model 

The guessing model was always significantly worse than the saturated model; it 

did not fit any of the data sets well. 

2a- Fitting through a uni-dimensional (UD) rule model based on the spatial 

frequency dimension 

Results indicated that the UD model using spatial frequency as the relevant 

dimension did not lead to a significantly worse fit than the saturated model for 9 

cases. This indicates that 11.8% of the whole sample used frequency as a 

relevant dimension to classify the Gabor stimuli. 

2b- Fitting through a uni-dimensional rule model based on the spatial 

orientation (angle) dimension 

Results of this fitting indicated that the UD model using the spatial orientation 

(i.e. angle) as the relevant dimension did not lead to a significantly worse fit 

than the saturated model for 14 cases. This indicates that 18.4% of the whole 

sample used frequency as a relevant dimension to classify the Gabor stimuli. 

Results on the uni-dimensional model indicate that both angle and frequency 

were used as relevant dimensions, although angle was used more frequently. 

Indeed, 23 participants out of the whole sample (N = 76) used a uni-dimensional 

rule to establish the membership of the stimuli. 

3- Fitting through a 2-dimensional model based on a conjunctive rule 

Results showed that the conjunctive rule on both dimensions model was not 

significantly worse than the saturated model for 16 cases. However, 14 of these 

16 cases fitted by the conjunctive rule were also fitted by one of the UD models. 

Hence, the goodness of fit of the best-fitting uni-dimensional model was 

compared to the goodness of fit of the conjunctive model. Comparisons were 
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made using the AlC values of the two models. The results obtained from the 

comparisons showed that of the 14 overlapping cases, 10 were better fitted by 

the conjunctive model than the un models whereas 4 were best fitted by the UD 

models (see table 6.19 for a summary). 

Table 6.19. Data files fitted by the uni-dimensional and the conjunctive rule model prior 
and following comparisons 

Prior to Following 

comparison comparisons 

I-dimension 9 13 

Rule Conjunctive 2 12 

Both 14 0 

4 - Fitting through a 2-dimensional model based on an information 

integration (II) rule 

Results indicated that the II two-dimensional model was worse than the 

saturated model in all cases, which suggests that the actual task may have been 

too difficult for participants to switch to a linear rule that contained both 

dimensions. Even though the fitting results showed that the II model was 

significantly worse than the saturated model, further comparisons were carried 

out between the II model and the I-dimensional and conjunctive models. In fact, 

comparisons of the AlC values indicated that the II model seemed to fit the data 

better than the UD models for seven participants. Nonetheless, these 7 

participants were best fit by the conjunctive model. 

Overall, the modelling results show that 25 of the 76 participants tested were 

using a dimensional rule to learn to classify the Gabor task. Strategy users were 

evenly sampled from both feedback conditions (high = 12 & low = 13). 

Nonetheless, the dimensional rule was suboptimal since those 25 participants 

used a UD or a conjunctive rule rather than the optimal II rule. 

Table 6.20 below shows that participants who scored below chance levels did 

not use any dimensional rule. However, these results do not explain how the 
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remaining 29 participants managed to score above chance without using any 

dimensional strategy. 

Table 6.20. Cross-tabulation oflearners (pc above chance) with the strategy used variable 

Count 

Accuracy above chance 

No Yes Total 

Dimensional No 22 29 51 
strategy 

Yes 0 25 25 

Total 22 54 76 

6.9.5 Individual differences and strategy used 

Further analyses were carried out to assess whether there was a relationship 

between personality and the strategy used (dimensional vs. non-dimensional), as 

indexed by the best fitting models. 

As a preliminary analysis it was decided to assess whether the use of a 

dimensional strategy was associated with any of the personality components 

extracted in the peA and/or scores on the WM task - as observed when 

analysing the raw data on the proportion of correct responses. In order to do so a 

few point-biserial correlations were run to explore the data. The only personality 

trait that was found to be significantly correlated with strategy used 

(dimensional = 1 vs. non-dimensional = 0) was N (r = .305, P = .007). The 

positive sign of the correlation means that high neurotics were significantly 

more likely to use a dimensional rule to perform on the task than their low 

counterparts. The use of a dimensional rule was also very positively correlated 

with the proportion of correct responses made (r = .68, p < .001) 

However, there was only a weak trend for a positive correlation between WM 

and the pc scores on the matched trials (r = .26, P = .056). 
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6.10 Discussion 

Analysis of the behavioural data indicated that even though it was a difficult 

task, fifty-four of the 76 participants (71 % of the sample) performed above 

chance ('learners') and that superior performance was associated with higher 

scores on the N and ImpAss personality components. Contrary to COVIS 

predictions, higher performance on the II CL task was associated with higher 

performance on the WM task. Moreover, the feedback manipulation was not 

found to alter performance in the two groups. These [mdings also contradict the 

COVIS model which states that performance on II tasks is highly dependent on 

feedback. As in the case of the RB version of the task, it is possible that no 

effect was detected due to low power. 

However, once the data had been fitted with the formal models it was apparent 

that participants who had performed above chance were not using the optimal 

rule (an II rule). In fact, 23 of those 54 participants performing above chance 

were found to use a uni-dimensional rule that treated frequency or angle as the 

relevant dimension. The modelling data also showed that two participants were 

using a conjunctive rule that combined information from both the spatial 

frequency and the angle dimension. The remaining 31 'learners' were not using 

a dimensional rule, which suggests they may have being basing their 

categorisation on aspects of the task or the stimuli which were not directly 

related to the two stimulus dimensions. As for the RB version of the task, they 

could have considered the filler task relevant to categorisation. Some 

participants reported that they thought there was logic in the alternating of filler 

and real trials (e.g. 'after two filler trials in a row, the Gabor stimulus belonged 

to Category A'). Other participants considered relevant the instructions given in 

the filler trials (e.g. 'If! were asked to press the category A key, the following 

(Gabor) stimulus was a member of category B'; or vice-versa). This occurred 

despite specific instructions that such rules would not apply. 

Participants who adopted this type of alternative strategy reported having 

generally adopted (sub-optimal) uni-dimensional rules at the beginning of the 
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task but they gave them up as trials went on as they did not seem to enhance 

performance. Since results indicated that uni-dimensional rules were associated 

with above chance performance, the preliminary use of a uni-dimensional rule 

and the subsequent use of an alternative strategy may account for those 29 

participants performing above chance. However, it is possible that due to the 

changes of strategy as the task progressed, none of the formal models could 

offer a good fit of the data across the whole task. 

It is hence possible that not only different strategies could have been applied to 

solve the task but also that the alternative dimensional rules were sufficient to 

perform above chance, as observed in the weather prediction task (Gluck et aI., 

2002). In fact, results showed that the conjunctive rule appeared to be an 

effective strategy as, indeed, the participants using a conjunctive rule during the 

RB task could reach accuracy levels above chance (68%; 69% in the II task). 

The use of the uni-dimensional rule that used angle as the relevant dimension, 

allowed participants to reach accuracy levels that were only at chance (i.e. 52%; 

70% in the II task). Nonetheless, the accuracy level obtained using the irrelevant 

dimension may have been sufficiently high for participants to have the 

impression that their strategy was effective. 

Participants may have stuck to the uni-dimensional strategy, because there were 

not enough resources (feedback signals) for the implicit system to take over and 

procedural learning to occur. It is possible that even the feedback frequency 

used in the high feedback condition (75%) was not sufficient for implicit 

learning to occur. The lack of trial-by-trial feedback may have rendered the task 

harder and, similarly, the introduction of the irrelevant filler task trials may have 

had a similar effect. As noted, the presence of filler task trials led some 

participants to use alternative strategies (e.g. task trial sequence). Finally, pc 

scores indicate that the use of an RB strategy worked quite well which may have 

been another reason why participants continued using it throughout the task. 

After making these considerations, it is not surprising to find WM ability to be 

associated with the proportion of correct responses scored by learners, which is 

in line with the results showing that learners used explicit rules that require WM 
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and executive attention ability. Additionally, it is possible that WM resources 

may have been also employed when using alternative strategies, e.g. a rule 

based on the filler-real trials sequence. Hence, the results indicating that WM 

was positively associated with performance on the II task do not necessarily 

contradict COVIS assumption that performance on II tasks requires the 

activation of the implicit system that does not rely on working memory or 

logical reasoning. The results, instead, are consistent with the fitting findings 

that indicate that participants solved the II task using a uni-dimensional rule, a 

strategy which is more typical of the explicit system, which relies on WM and 

attention abilities. These results are in line with the results obtained by Tharp 

and Pickering (under review) who found that accuracy scores on an II CL task 

were positively related with WM scores. Moreover, they found that participants 

who scored high on the WM task were more likely to develop and implement an 

MD strategy to solve the task. These authors suggested that high WM scorers 

are more likely to abandon an incorrect strategy and, therefore, implement more 

complex ones. Thus, these authors found contrasting results to those obtained by 

De Caro and colleagues (2008), who found that participants with high WM 

scores required more trials-to-criterion to learn the II task. Tharp and Pickering 

(under review) suggest that De Caro and colleagues' results might be a by

product of the task procedures they adopted. Tharp and Pickering suggest that 

high WM scorers may be more likely to abandon an incorrect strategy and, 

therefore, implement more complex ones. By contrast, perseveration with a 

simple strategy, by low WM scorers may very well have allowed them to pass 

the easy criterion adopted by De Caro et al. This could well have occurred 

without the low WM participants having learned the task effectively and 

certainly without them engaging implicit system proceduralleaming (for more 

details see Tharp and Pickering, under review). However, it is not possible to 

draw such conclusions in the present study since, due to the complexity of the 

task and the small trial size, participants failed to implement the optimal II 

strategy. 

Individuals with high scores on the N or ImpAss trait components were more 

likely to score above chance although high N, but not high ImpAss, participants 

were more likely to use a dimensional rule than their counterparts who, as 
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previously mentioned, may have resorted to alternative strategies. However, 

ImpAss was generally a weaker predictor of participants' performance (i.e. 

accuracy; according to the results obtained from the multiple regression), which 

may explain why ImpAss scores did not predict whether participants would use 

a dimensional strategy or not. The analysis loses power because of the limited 

sample size once 'non-fitted' participants were excluded. Hence it may have not 

been able to capture the weaker impact of ImpAss. 

Superior performance by high Neurotic participants may be a by-product of the 

feedback manipulation. Some participants may have experienced the no

feedback trials as punishing, especially if they were fairly confident of their 

responses. According to RST, N is the underlying trait of the behavioural 

inhibition system (BIS) and the fight-flight-freeze system (FFFS) that is 

sensitive to conflict or punishment, respectively. It is possible that the design of 

the study produced a regulatory fit between N scores and the feedback 

manipulation. This regulatory fit could increase cognitive flexibility in high 

neurotic individuals and, therefore, increase their performance. 

6.11 Overall discussion 

The results obtained in the present study highlight the importance of using 

formal models to further explore the data and assess what strategy participants 

are using. In this way, it is possible to identify learners from non-learners. In 

fact, the behavioural data analysed in the two studies identified several learners 

when considering individuals who scored above chance. However, after fitting 

the formal model to the data it was possible to see that some individuals, who 

had been identified as learners, were using highly suboptimal, non-dimensional 

strategies. This was particularly true in the II version of the task where 54 

participants were found to perform above chance but the formal model indicated 

that none of them was using the optimal II rule and, approximately, half of the 

'learners' was using a sub-optimal uni-dimensional rule. These observations 

suggest that accuracy scores are much less meaningful if they are not presented 

together with an analysis of the strategy used. These observations are in line 
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with previous studies that indicated that model fitting offers a great insight into 

behaviour and, therefore, a better understanding of individual differences 

(Gluck, et aI., 2002; Tharp, 2007). 

Contrary to expectations ImpAss was not significantly associated with the type 

of strategy adopted by participants, but neuroticism was found to be associated 

with the strategy used. In fact, high N scorers were found to be more likely to 

implement the optimal strategy (cf. low scorers) in the RB task whereas high N 

scorers were, more likely to use a sub-optimal (uni-dimensional) rule in the II. 

Nonetheless, the sub-optimal strategy was associated with levels of performance 

above chance. Thus, the use of the sub-optimal strategy was able to achieve 

satisfactory accuracy levels in both the RB and the II task, as mentioned earlier. 

Overall, these considerations indicate that neurotic participants showed superior 

performance (cf. stable participants). These results may be a by-product of the 

feedback manipulations. Indeed, no-feedback trials could have been perceived 

as punishing. Hence, even though a reward-only condition was adopted it is 

possible that it was perceived as a mixed-incentive condition. This may have 

produced a regulatory fit between the feedback (especially its punishing or 

conflict inducing aspect) and high FFFSIBIS individuals (high N). As 

mentioned before, the regulatory fit would enhance cognitive flexibility which, 

subsequently, improved performance. It is possible that, in order to induce a 

pure BAS activation, it is necessary to have purely rewarding manipulations 

rather than mixed-matrices, which elicit simultaneous FFFS or BIS activation 

(Pickering, 2004). The use of a gain-only matrix, thus, may be more appropriate 

to explore the BAS. 

During non-feedback trials, individuals may have responded having the belief of 

being correct. Hence, they would have expected a 'correct' message and to earn 

5 pence but received no feedback, which would have been perceived as 

punishing. According to the reward prediction error learning model, this 

mismatch between predicted and actual reward would have produced LTD on 

the stimuli-response association and, therefore, un-learning of the correct 

response. This mechanism could account for the limited learning. 
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Results also indicated that the feedback manipulation was not effective in either 

task. In fact, as predicted by COVIS, the feedback manipulation did not affect 

the way participants learnt to perform the RB task. However, the fact that only a 

few participants used the optimal type of rule (19 in the RB task and none in the 

II task) indicates that feedback frequency manipulation and, possibly, the 

introduction of a concurrent task impaired learning. Impaired learning was 

indexed by the fact that 17 participants used an incorrect dimensional strategy to 

set their rule and that 24 used no dimensional rule at all in the RB task. 

Moreover, contrary to COVIS assumptions, the feedback manipulation did not 

affect learning on the II task when comparing the two feedback conditions. 

However, power analyses showed that the statistical power was low in both 

studies and therefore, it may have not allowed detection of a significant effect of 

small to medium effect size. Low power may have been generally caused by the 

small sample size in the two studies. Indeed, power levels mcrease as a 

monotonic function of sample size, all other things being equal. 

However, it is very difficult to draw exhaustive conclusions from these results 

since results suggest that many participants did not learn through the task: most 

participants did not base their strategy on a dimensional rule and the few who 

used a dimensional rule developed a sub-optimal (uni-dimensional) strategy. 

These results also suggest that the feedback frequency may have been too low 

for implicit learning to occur and it is also possible that the filler task interfered 

with performance on the II task. 

These observations suggest that this type of feedback manipulation may be too 

drastic and, thus, not adequate to observe potential individual differences during 

performance CL tasks (as indicated by the low proportion of participants 

implementing the appropriate strategy). It may be necessary to implement more 

subtle variations of reward manipulations that may be more effective in 

uncovering small variations in performance mediated by individual differences. 

Decision-bound models suggest that during categorisation, individuals learn to 

assign different responses to different regions of perceptual space, obtained by 

placing a decision bound (or criterion; Bohil & Maddox, 2001; Maddox & 
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Dodd, 2003). The theory further states that base-rate and payoff manipulations 

produce a bias in the criterion location. Markman and colleagues (2005) 

observed that asymmetric payoff matrices produced a bias in the criterion 

location and that the extent of the bias was mediated by regulatory focus, which 

characterises a sensitivity to reward or a sensitivity to punishment (promotion 

and prevention regulatory focus, respectively). These definitions indicate that 

there is a broad overlap between RST and the regulatory focus theory (RFT; 

Beauducel et aI., 2005). Hence, for future studies it was decided to take into 

consideration the RFT literature in order to explore RST. In particular, a 

promotion focus is employed in the remaining studies in order to encourage the 

activation of the BAS. Moreover, a gain-only matrix is also implemented 

following earlier considerations. 

203 



Chapter 7 

Neural model 

7.1 Chapter aims 

The present chapter introduces a biologically-constrained neural model able to 

simulate and predict human individual differences effects in learning data as 

well as to test certain theoretical assumptions. This dopaminergic model was 

developed to represent some of the biological mechanisms that underlie 

procedural learning and that may occur within brain structures thought to be part 

of the BAS (Gray, 1987). The present chapter describes the structure of the 

model and tests the validity of the model to simulate human behaviour. 

Simulation results showed that the model was able to simulate the response bias 

shown by participants performing on a category learning (CL) task with 

asymmetric reward payoffs (Markman et aI., 2005). The numerous 

simplifications of the model are also described. 

7.2 Introduction 

The study reported in the previous chapter failed to observe any significant 

effect of a feedback manipulation on performance during CL tasks. Overall, the 

results showed that the task was hard and that only a small proportion of 

participants implemented the appropriate rule. Therefore, due to the low power 

it may have not been possible to observe any significant effect. Moreover, it is 

possible that the task design was not optimal to explore reward-related learning 

as a function of personality traits and motivation, characterised by a biological 

mechanism (i.e. BAS). Indeed, it is possible that the impact of reward on the 

task was small as indicated by the fact that participants implemented a simple 

dimensional rule in both RB and II tasks. It has been suggested that participants 

tend to implement simpler rules when they ensure above-chance performance, 

regardless of the task design (Gluck, 2002; Shohamy et aI., 2008). There is 

204 



evidence that indicates that the explicit system, which is responsible for 

developing simple verbal rules, does not require trial-by-trial feedback (Ashby 

et aI., 1998; Ashby et aI., 1999; Maddox & Ashby, 2004). Thus, these 

considerations suggest that performance on the Gabor CL tasks used in the 

previous chapter may have been largely reliant on the explicit system rather than 

the implicit system. Hence, future studies should develop a task whose 

performance is dependent on the implicit system, which is thought to be much 

more sensitive to reward manipulations than the explicit system. In this way, it 

is possible to explore reward-related learning and the mediating effect of 

personality traits. 

BAS-related traits are believed to be associated with dopaminergic activity and, 

therefore, goal-driven approach behaviour (Gray, 1987). Moreover, DA activity 

has been found to mediate reward sensitivity and approach behaviour and, 

therefore, it has been suggested as a key substrate of the implicit system 

(Schultz, 1998; Ashby et aI., 1998). Thus, it was decided to develop a DAergic 

neural model capable of testing the relationship between personality and 

behaviour, determined by their common biological mechanism (i.e. midbrain 

DA projections; Pickering & Gray, 2001). Indeed, inter-individual variations in 

the system reactivity could be used to simulate differences in personality traits 

(e.g. BAS-like traits). 

There is a growing literature that suggests that personality traits may represent 

the endophenotypes for psychiatric disorders (Benjamin, Ebstein & Belmaker, 

2001; Gottesman & Gould, 2003; Rommelse et aI., 2008). Indeed, personality 

traits are heritable and extreme scores are associated with psychopathology (e.g. 

high impulsivity is associated with ADHD, addiction and pathological 

gambling; Eisenberg et aI., 2007). Therefore, personality traits may represent 

individual's characteristics closer to the geneticibiological mechanism 

underlying the BAS than the pathological conditions. However, there is 

evidence that indicates that this relationship is not so straightforward. 

Personality dimensions (i.e. complex higher-order trait measures) represent the 

phenotype for the present research and their relationship with underlying 
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biology and genotypes is pretty modest. Hence, there is little evidence that they 

are stronger than the relationships with psychopathology. 

In the thesis, personality dimensions (indexed by complex higher-order trait 

measures) are referred to as the phenotype and their relationship with the 

underlying biology and genotypes is pretty modest. In contrast, endophenotypes 

are measures of interest, associated with the actual phenotype, that are expected 

to be simpler and, therefore, more strongly correlated with genes and biological 

mechanisms than phenotypes (Gottesman & Gould, 2003; Rommelse et aI., 

2008). They are, thus, easier to measure reliably and are more amenable to 

scientific study. Thus, the present research aims to identify the endophenotypes 

that are closely related to the biological substrate of interest (i.e. dopaminergic 

system, BAS). 

There is evidence that shows that the association between behaviour (e.g. task 

performance; i.e. endophenotype) and personality is quite weak and difficult to 

detect in empirical studies, owing to the weak relationship between phenotypes 

and genotypes (cf. stronger relationship between endophenotypes and 

genotypes). Since the relationship between endophenotypes and phenotypes is 

driven by their common biological/genetic basis, the endophenotype-phenotype 

relationship is weakened by the weak phenotype-genotype relationship. This 

latter relationship is attenuated by the interplay between genetic and 

environmental factors (Munafo, Clark, Payne, Walton & Flint, 2003; Pardo, 

Aguilar, Molinuevo & Torrubia, 2007). In fact, it has been found that 30-60% of 

variance in personality traits is determined by genetic factors while the rest of 

the variance is influenced by environmental factors (Blum et aI., 2000; Reuter, 

Schmitz, Corr & Hennig, 2006; Reuter, 2008). 

For example, there is evidence that indicates that A1+ polymorphism on the 

dopamine D2 receptor (DRD2) gene is associated with high scores on 

personality traits such as extraversion and novelty seeking (Ozkaragoz & Noble, 

2000). The presence of the Al allele on the DRD2 gene is associated with a 30-

40% reduction in DRD2 receptor sensitivity (Lee et aI., 2007; Davis et aI., 

2008). A meta-analysis conducted by Munafo and colleagues (2003), however, 

indicates that these results are inconsistent. Indeed, there are several studies that 
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have failed to capture the relationships between genotype and individual 

differences (e.g. Jonsson et aI., 1997; Sullivan et aI., 1998). Moreover, the meta

analysis highlighted the fact that genetic effects on complex traits are modest, 

especially when compared to the relationship between genotype and 

endophenotypes (i.e. behavioural measures collected in lab-based studies). 

Together with genetic variance, environmental factors, such as stress, have been 

found to mediate pathological behaviour (e.g. alcoholism; Bau & Salzano, 1995; 

Bau, Almeida & Hulz, 2000). For example, stress factors together with DA 

levels (indexed by DRD2 polymorphism) were found to be good predictors of 

extraversion scores, although they accounted for only 8% of the variation on the 

personality scores (Ozkaragoz & Noble, 2000). 

Cohen and colleagues (2005) conducted an fMRI study to explore the 

relationship between extraversion and reactivity of the mesolimbic DA system 

as a function of the Al + polymorphism during a go-no/go gambling task. 

Results showed that extraversion did not affect decision making, although 

extraverts showed greater brain activation in reward-processing areas (i.e. 

nucleus accumbens, amygdala and orbitofrontal cortex) during reward delivery 

(cf. reward anticipation). Indeed, extraversion scores explained 33% of the inter

individual differences observed in brain activation. In contrast, the presence of 

the Al DRD2 allele was associated with lower brain reactivity to reward 

delivery. The results illustrate that there is a significant relationship between the 

genotype and brain activation (as indexed by the fMRI measures). Additionally, 

fMRI measures are also associated with measures of extraversion (i.e. 

phenotypes). Overall, the results show that brain activation is a possible 

endophenotype of extraversion. There was a weak trend correlation between the 

presence of the Al allele and low scores on extraversion; however, power was 

extremely low as the sample included fewer than 20 participants. The weak 

relationship might also be due to the inherently weak relationship between 

genotype and phenotype. The authors also suggested that this relationship may 

have been weakened by environmental factors (i.e. stress). 

Another study by Reuter and colleagues (2006) identified the relationship 

between scores on Carver and White's BAS scales and DA activity (indexed by 
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prolactin levels). These researchers found that individuals who scored high on 

the BAS scales (especially, BAS-drive, BAS-FS and BAS-total) had greater DA 

levels than their low scoring counterparts. Nonetheless, this effect was quite 

weak as indicated by an eta squared value equal to 0.083 (i.e. 8% of the variance 

is explained by personality). Similarly, the DRD4 polymorphism was found, in 

the original studies, to explain 4% of the variance of the Novelty Seeking scale 

(Benjamin et aI., 2001). Overall, these studies illustrate that the relationship 

between genotypes and phenotypes is weak and that even biological markers, 

which are closely related to the genotype (e.g. prolactin), show only a moderate 

relationship with personality traits (i.e. phenotype). 

In contrast, genetic polymorphisms have been found to be better predictors of 

specific behaviours (e.g. alcohol use) than they are predictors of broad 

individual differences. Indeed, Blum and colleagues (2000) have suggested that 

alcoholism is associated with the presence of the A1+ allele on the DRD2 gene. 

Comings and colleagues (1991) found that among alcoholics 42.3% carried the 

A1+ allele whereas 14.5% of the non-alcoholics carried the A1+ allele. Similar 

results had been reported by Bau and colleagues (2000) and Ponce and 

colleagues (2003). The latter researchers found that individuals who carried the 

Al + allele were three times more likely to become severe alcoholics compared 

to those carrying the Al- allele. A meta-analysis by Noble (1998) also reported 

that severe alcoholics were 1.5 to 3-times more likely to carry the A1+ allele 

than non-alcoholics. 

There is also evidence of a weak relationship between personality traits and 

behaviours related to the same genetic variance. This can be observed, for 

example, when considering reward-related personality traits (BAS-traits) and 

alcohol/drug use in relation with low DRD2 receptor sensitivity (Blum et aI., 

2000). BAS-like traits have been found to be positively and significantly 

correlated with alcohol use and frequency among healthy participants. For 

example, Franken and Muris (2006) found that Carver and White's BAS-fun 

seeking scale was significantly correlated with the number of illegal drugs used 

(r = .35, p <.01), alcohol use (r = .24, P <.01) and binge-drinking (r = .25, P 

<.01). BAS-drive was also found to be correlated with the number of illegal 
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drugs used (r = .18, p <.01). Similar results were obtained in a study by Pardo 

and colleagues (2007) that showed that Corr's BAS scale [BAS = (Ex2)+N+P] 

was not only significantly correlated with alcohol use frequency and quantity, 

but it was also a reasonable predictor of these variables. Indeed, the BAS factor 

accounted for 13% and 12% of the variance of frequency and use, respectively. 

These results indicate that alcohol use is related to both DRD2 genotypes and to 

personality scores; although the relationship between personality and genotype 

is usually weak. The reason why the relationship between personality and 

behaviour (e.g. alcohol use) is quite weak and difficult to detect may be due to 

two main factors: the weak relationship between the measured broad trait and 

genetic variance and the added noise typical of lab measures further weakens the 

relationship (Cohen et aI., 2005). 

Following these observations, the use of a neural model represents a useful tool 

to explore the efficacy of laboratory tasks at capturing the relationship between 

the biological mechanism and associated behaviours. Given the weak 

relationships described above, it is necessary to ensure that the task-biology 

relationship is strong. Thus, a biologically-rooted model may therefore provide a 

useful test to of the extent to which the task design really is sensitive to the 

phenomenon of interest. Moreover, the neural model is a useful tool to explore a 

theory's main assumptions (pickering, 2008). Hence, a neural model was 

developed that captures the impact of DAergic function during performance on 

reward-related learning tasks. Since, midbrain DA has been proposed as the 

BAS substrate, individual differences in DAergic function are good candidates 

to represent BAS variations and, therefore, mirror individual differences on 

reward sensitivity and approach (Pickering, 2004). In other words, BAS-related 

personality traits are expected to represent the phenotype of the biological, DA

based mechanism(s). Therefore, a strong relationship between the model's 

simulated biological mechanism and its simulated behavioural responding on 

the task is likely to be necessary for the task to be useful in testing biological 

theories of personality. With typical sample sizes, it is only with a strong 

relationship of this kind that it will be possible to detect a significant 

relationship between real lab behaviours and the participants' measured 

personality traits. The latter real relationship is weakened by the fact that the 
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simulated biological parameter in the model is only weakly related to 

personality traits (as the studies reviewed above demonstrate). It is further 

weakened by added noise in task performance due to empirical testing (Lee et 

aI., 2007) and the gene-environment interaction (described earlier). Hence, only 

a strong simulated relationship will survive through to the laboratory. The 

present chapter presents the rationale and the structure of the DAergic neural 

model and, additionally, it tests its ability at predicting performance on a CL 

task with asymmetric payoffs. 

7.3 Model description 

The computational model developed in the thesis is an actor-critic model which 

resembles the architecture of the basal ganglia and simulates reinforcement 

learning (Suri & Schultz, 1999; Joel, Niv & Ruppin, 2002). Thus, the model 

consists of two sub-networks, the critic sub-network which is responsible for 

predicting future rewards in relation to sensory stimuli and the actor sub-unit 

which is responsible for choosing how to respond to the presented stimuli 

(Sutton & Barto, 1988; Suri & Schultz, 1998; Joel et aI., 2002). The reward 

prediction signal, formulated by the critic sub-network, is constantly updated 

thanks to comparison of the predicted reward with the actual reward (i.e., to give 

a reward prediction error, RPE). 

The model is a neurally-based model that suggests that learning during 

performance on the CL task is mediated by reward prediction errors (RPEs). As 

described in chapter 2, RPEs are determined by the difference between the 

expected and the actual reward (equation 7.1). 

RPE = reward which occurred - reward which was expected Eq. 7.1 

where a positive RPE indicates that the reward occurrence is not fully predicted 

(Schultz, et aI., 1993). A negative RPE, by contrast, indicates that the actual 

reward is smaller than predicted. Existing evidence has indicated that DA cells 

change their firing rate in response to reward unpredictability, rather than 

reward per se, and that DA-driven learning occurs only when rewards are 
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unpredictable (Schultz, 1998; 2002). Moreover, changes in DA firing, in 

response to unpredicted reward, represents an RPE signal. The present model 

calculates the RPE signal by subtracting the reward prediction signal from the 

actual reward received following a categorisation response. Hence, following a 

response that leads to a reward greater than the expected one (positive RPE), the 

DA cells increase their firing and the rewarded stimulus-response association is 

strengthened; by contrast, this association is weakened when the actual reward is 

smaller than the predicted reward (i.e. negative RPE, and associated DA cell 

firing decrease). Learning ceases when the actual reward is equal to the expected 

one (i.e. when RPE = 0). 

The present model is a DAergic model and it is in line with evidence that 

indicates that DAIRPE signals playa key-role in synaptic plasticity, as indicated 

by studies investigating long-term potentiation and depression (LTP & LTD; 

Carlsson, 2002; Corr, 2006; Ca1abresi, Picconi, Tozzi & DiFilippo, 2007; 

Surmeier, Ding, Day, Wang & Shen, 2007; Schotanus & Chergui, 2008). The 

DA signal acts as a reinforcement signal that is responsible for adapting the 

strength of synapses (i.e. weights); this mirrors the reinforcement signal 

employed in computational models using the temporal-difference (TD) 

algorithm (Sutton & Barto, 1988). Learning, in the corticostriata1 synapses 

represented in the model, occurs according to the so-called 3-factor learning rule 

(Pickering & Gray, 2001; Schultz, 2002; Ashby et aI., 2007). Indeed, the DA 

signal has been identified as one of three factors that mediate learning within the 

3-factor model. It can account for both LTP/LTD and procedura11earning in the 

striatum (Joel et aI., 2002; Ashby & Ennis, 2006). 

The three factors operating in this model are: 1) the pre-synaptic activation 

(glutamate signal), 2) post-synaptic activation (NMDA receptor depo1arisation) 

and 3) DA signal (for more details refer to chapter 2). In the present DAergic 

model, the three factors are: 1) cortical input to the striatal units, 2) 

activationldepo1arisation of the striatal units and 3) DA signal (i.e. RPE). 

Therefore, in line with COVIS the current model is an implicit model, since it 

relies on gradual procedural learning (Ashby et aI., 1998; Pickering & Gray, 

2001; Ashby & Ennis, 2006). 
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As noted, the present model has an actor-critic architecture (Joel et aI., 2002; 

Seger, 2008). The critic sub-network is loosely based on the model developed 

by Brown and colleagues (1999), which aimed to simulate classical 

conditioning. Thus, the present model is an extension of this model since it 

aimed to simulate procedural learning and, therefore, a response unit (actor) is 

also included (Suri & Schultz, 1998; Joel et aI., 2002). The actor sub-network is 

based on the so-called visual corticostriatal loop, which represents one of the 

main corticostriatal loops involved in category learning (Seger, 2008). Figure 

7.1 illustrates the basic structure of the model. 

Stimulus 

........ .... ........ 
I II 

I 

Reward 

Response 

Excitatory • • • • • Inhibitory 

Figure 7. 1. The basic structure of the neural model 

• : ..... Reward Prediction 

• • • • • • • • • • •• 

Reward Prediction Error 
(RPE) 

_ • Reinforcement 

The model encompasses two striatal cells and a midbrain DA cell (red cell). The 

dopamine cell is either in the ventral tegmental area (VTA) or in the substantia 

nigra pars compacta (SNc). The model includes a ventral striatal cell and a 

dorsal striatal cell (labelled 'a' and 'b', respectively), following evidence that 

indicates that both types of striatal cell communicate with DA neurons to 

mediate implicit learning (O'Reilly and Munakata, 2000; Joel et aI., 2002; 

Seger, 2008). The ventral cell is a striatal cell within the so-called motivational 

(limbic) corticostriatal loop (Seger, 2008). It has been suggested that this cell 

lies within the nucleus accumbens (Nac; Schotanus & Chergui, 2008). The 

dorsal striatal cell lies within body and tail of the caudate, within the so-called 
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visual (associative) corticostriatal loop (Seger, 2008). The dorsal striatum is 

considered to be responsible for motor functions and habit (implicit) learning 

whereas the ventral striatum serves motivation and reward processing 

(Schotanus & Chergui, 2008; Seger, 2008). The two striatal cells receive coded 

stimulus input from the visual cortex (Brown et aI., 1999; Seger, 2008). There is 

evidence that indicates that each striatal cell receives up to 10000 inputs from 

the cortex and that the compression ratio between cortical neurons and striatal 

neurons is 10:1 (Ashby & Ennis, 2006; Ashby et aI., 2007; Seger, 2008). 

The ventral striatal cell, which represents the critic network, receives input from 

the visual cortex (Brown et aI., 1999). The cortical input is glutamatergic in 

nature and leads to depolarisation of the striatal cells (Brown et aI., 1999). The 

critic network is responsible for formulating the reward prediction (RP) signal 

which is a GABAergic inhibitory signal (projecting to the VTAlSNc cell; 

Brown et aI., 1999; Joel, et aI., 2002; Seger, 2008). The dorsal striatal cell 

represents the actor sub-network implicated in a neural pathway supporting 

stimulus-response (SR) associations (Ashby & Ennis, 2006; Seger, 2008). The 

actor also receives cortical input from the visual cortex and it, subsequently, 

associates an "abstract" response selection with the stimulus information (Ashby 

et aI., 2007; Seger, 2008). The abstract response selection is projected, via the 

thalamus and the globus pallidus (GPi and GPe; i.e. internal and external), to the 

premotor cortex where it forms the input into the so-called 'motor' 

corticostriatal loop (especially, Brodmann Area 8) which produces an actual 

motor response (Ashby et aI., 2007; Seger, 2008; figure 7.2). Figure 7.2 

illustrates that the striatum sends inhibitory GABAergic signals to the globus 

pallidus and this inhibitory signal releases the tonic inhibition on the thalamus 

which, subsequently, sends an excitatory signal to the (premotor) cortex. 
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Figure 7. 2. Structure of the corticostriatal visual loop 

The actor in the present model represents a simplification of the visual loop 

presented by Seger (2008) since it only includes the excitatory glutamatergic 

cortical projections into the striatum (i.e. body and tail of caudate). The present 

model makes a sweeping simplification that once a response choice (i.e. to 

respond with a category A response) is made within the dorsal striatal (caudate) 

cell then that choice is accurately transmitted through the output side of the 

visual loop to the input of the motor loop and, hence, out to the appropriate 

effector systems (in this example, those responsible for pressing the category A 

key). The loop structure was grossly simplified since the model is not interested 

in reproducing the complex processes involved in response-making. 

According to Brown and colleagues (1999), midbrain DA cells receive both fast 

indirect excitatory input from the pedunculopontine tegmental nucleus (PPTN) 

and delayed transient inhibitory signals from striosomal neurons in the ventral 

striatum. The PPTN receives excitatory input from the hypothalamus, which 

responds to primary rewards, and matrisomal neurons of the ventral striatum, 

which respond to both primary and secondary rewards (Brown et aI., 1999; 
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Schotanus & Chergui, 2008). In the present model (see Figure 7.1), the DA cell 

processes the excitatory PPTN input (i.e. "actual" reward) and the inhibitory 

striosomal ventral striatal input (i.e. the output of the reward prediction unit) in 

order to compute the reward prediction error (RPE) signal. The RPE signal then 

projects to both kinds of striatal cells although it has a different function on each 

cell. On the corticostriatal synapses of the limbic striatal cell, the co-occurrence 

of the RPE signal at a Dl receptor and glutamatergic activation (mediated by 

timed calcium spikes in response to the stimulus input) are involved in updating 

the reward prediction signal for future trials and, therefore, learning (i.e. it is a 

so-called "adaptive" critic). In contrast, the RPE signals, acting on both the D 1 

and the D2 receptors of the caudate cell, act as a learning signal that strengthens 

the correct SR association (i.e. adapting another set of corticostriatal synapses; 

Joel et aI., 2002; Seger, 2008; Schotanus & Chergui, 2008). 

Learning on both striatal cells is expected to follow the 3-factor Hebbian rule 

(i.e. with both LTP and LTD; Schultz, 1998; Brown et aI., 1999; O'Reilly & 

Munakata, 2000; Joel et aI., 2002; Ashby et aI., 2007). Long-term potentiation 

(LTP) and long-term depression (LTD) are both responsible for long-term 

plasticity of glutamatergic synapses in corticostriatal areas (Calabresi et aI., 

2007; Surmeier, et aI., 2007; Schotanus & Chergui, 2008). Schotanus and 

Chergui (2008) have observed that dopamine D 1 receptors play a critic role in 

LTP in the NAc (i.e. ventral striatum) and the dorsal striatum; moreover, they 

observed that a synergistic interaction between D 1 and D2 receptors evoke LTD 

in the dorsal striatum. Thus, synaptic plasticity (and learning) in the dorsal 

striatum is dependent on both D 1 and D2 receptors. 

As described below, the debated mechanisms (of which various kinds have been 

discussed; Joel et aI., 2002) which mediate reward timing (which is essential for 

implicit learning to occur; see chapter 2) are not relevant in the present model. 

Therefore, they are stripped out of the present model. The model assumes that, 

at the time when the DA cell produces an RPE on a particular trial, there are a 

dorsal striatal cell and a ventral striatal cell which are in the appropriate 'active' 

state so that a burst of DA cell firing, or a brief period of inhibition of DA cell 

firing, can produce synaptic weight changes. However, for simplicity in the 
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present model both the actor and the critic were updated on a trial-by-trial basis 

rather than in real time during each learning trial. This was done since the model 

is not attempting to capture reaction times (RTs) within trials. 

7.3.1 Model algorithms 

The stimuli are coded as a vector of N units, XO
U

\ each unit of which represents 

output from cortical neurons; the cortical units are coding perceptual 

representations. The stimuli in the task to be simulated were small dots which 

appeared either in one of the 650 horizontal locations (i.e. along an imaginary 

horizontal line) or in one of 650 vertical locations (i.e. along an imaginary 

vertical line). The dots were displayed within a 650*650 display box shifted 

somewhat from the centre towards the left-hand side of the screen. Thus, the 

stimuli were coded in a 650-element vector which represented the pixels lying 

along the imaginary horizontal (or vertical) line on the screen. The stimuli 

consisted of dots with a 7 -pixel radius (parameter Kr = 7 to reflect this) centred 

at a pixel location on trial n denoted by Kn (Kn values lie between 8 and 643 

inclusive)7. The small (plus or minus 7-pixel) extensions of the dots to the 

left/right of (or abovelbelow) the horizontal (vertical) line, where the stimuli lay, 

were ignored by the stimulus coding adopted. Hence, xo
ut was formulated as: 

Eq.7.2 

Ashby and colleagues (2007) have implemented a radial basis function (RBF) to 

produce an alternative coding pattern. The authors suggest that RBFs are an 

effective way to model sensory units during a categorisation task. The use of an 

RBF determines that the cortical units that project to the striatum are either off 

(activation = 0) or they are positively activated within the interval [0 1]. 

According to the RBF, the activation of a cortical unit is dependent on the 

distance between the stimulus location (i) and its prototypical centre (Kn) at trial 

n: 

7 It was decided the use the "colon" notation which is typical of many programming systems 
(e.g. Matlab); for example 1:5 means 1 to 5 (1,2,3,4 &5); so Kn =8:643 
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RBF(n) = exp[-1.*dist / (2.* a * a)] Eq.7.3 

where a is a constant that represents the width of the stimulus and dist is equal 

to: 

Eq. 7.4 

Simulations showed that the coding expressed in equation 7.2 and the RBF 

approach (equation 7.3) produced essentially similar results and, therefore, it 

was decided to adopt the simpler coding method (equation 7.2) throughout the 

thesis. 

In the model, the cortical stimulus coding outputs all project to a single (limbic) 

striatal cell which represents the critic, reward prediction (RP) unit (cell a in 

figure 7.1). The input into the RP (RPiD) unit is equal to: 

RPiD = rptonic + ~ Xio
ut * wrp Eq. 7.5 

where wrp represent the weights from the cortical units into the ventral striatal 

"reward prediction" unit (i.e., the critic) and rptonic is a tonic input into the RP 

unit. For simplicity, the RP output was set equal to the input in the model. The 

wrp values are initially set equal to 0 for each simulated participant. Moreover, 

they were updated following each response as a function of the 3-factor rule (i.e. 

error correction learning). The tonic reward prediction input (rptonic) is 

assumed to be computed early in training by frontal brain structures (e.g. 

orbitofrontal cortex, OFC; Cromwell & Schultz, 2003; O'Doherty, 2004). The 

processes involved in formulating this signal are not included in the modeL 

However, the inclusion of this parameter is important since it ensures that some 

reward prediction signal is present from the first trials (if rptonic were not 

present orland wrp were initialised at 0, there would be no reward prediction 

error in the first trials). For this reason, the rptonic value was set at, or around, 

0.5 since this value represents the average reward values on offer in the task (see 

below). 
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Dayan has used a parameter which closely resembles the rptonic parameter 

implemented in the present model and he labelled it as the reinforcement 

comparison signal (Dayan, 1990). Moreover, Williams (1992) refers to a similar 

parameter which he labelled reinforcement baseline term. These parameters are 

based on Sutton and Barto's work (1981). Overall, this evidence indicates that 

reward prediction signals have been consistently employed in neural models that 

attempt to simulate reward-mediated learning. Dayan has observed that it speeds 

up or slows down learning of a specific behaviour although it does not affect the 

chosen end-behaviour (personal communication). 

The cortical units also project outputs to a set of dorsal striatal units (Yj) which 

is responsible for selecting a response (i.e. categorization) when a visual 

stimulus is present. The input to Yj (where j is either equal to 1 or 2, in a 2-

category task) is given by the equation below: 

Eq.7.6 

where Wij represent the SR weights which are initialized using a normal 

distribution with a mean equal to 0.3 and a standard deviation equal to 0.02. The 

SR weights are updated following the 3-factor learning rule throughout the task, 

on a trial-by-trial basis. 

The response selection units are activated in a winner-take-all (WTA) fashion. It 

has been suggested that this could be included in the model by implementing 

lateral inhibition between striatal response units (Suri & Schultz, 1998; 1999). 

However, it has recently been suggested that lateral inhibition may not represent 

a biologically plausible process in the striatum (Bar-Gad et aI., 2000; Joel et aI., 

2002). Brown and colleagues (1999) have suggested that lateral inhibition in the 

striatum may be too weak to affect decision making. Therefore, it was decided 

to simplify this step by implementing a simple function to reproduce a winner

take-all rule. This was obtained by setting the activation of the unit with the 

largest net input (as specified in equation 7.6) equal to I [cf. the other(s) which 

are set to 0]; the winning unit determines the to-be-executed response for a 

particular trial (e.g. yrt = 1 and ytut = 0, for i t= j). 
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As already noted, the model does not include a response effector module 

responsible for expressing the selected response by pressing the button that 

corresponds with the response selected by the response module (Yj). Indeed, it 

was assumed that the transfer from the response selection unit to the response 

effector unit was error-free. Hence, the selected response (i.e. j) corresponds to 

the active response selection unit (Yj), which has an output equal to I (cf. Yi = 0 

for the other units). 

One of the main assumptions is that following a response, participants generally 

receive a reinforcement from the environment as a direct consequence of the 

action. The goal of the individual is to produce actions that maximise reward

earning (O'Reilly & Munakata, 2000). During performance on a CL task, the 

reinforcement is usually provided by the task itself (i.e., as computer-generated 

feedback); participants generally receive such reinforcement following each 

response they produce. Hence, the computational model needs to include a 

neural reinforcement signal (denoted as rf) that codes the actual reinforcement 

(see simulation section for more details). 

The rf values in the model represent the size of the excitatory reward input from 

the brain's reward system (e.g. PPTN) into the dopaminergic midbrain cells 

(SNcNTA). The literature shows that these DA cells compute a reward 

prediction error (RPE) signal and, therefore, respond to novel and unpredicted 

stimuli (Schultz, 1998; Pickering & Gray, 2001; Schultz, 2002). The RPE signal 

represents the difference between the actual reward received following each 

response (i.e. rf) and the predicted reward computed by the critic (i.e. rpout). 

Hence, in the computational model, the raw RPE is denoted as RPE* and equal 

to: 

RPE* = (rf _ rpout) Eq. 7.7 

The raw RPE* was, subsequently, thresholded so that small positive or negative 

signals (i.e. those with an absolute value smaller than 0.05) were set equal to 0 
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and, therefore, produced no effect. The thresholded RPE* signals (RPE) are 

calculated using equation 7.8: 

Eq.7.S 

If RPE*:2:: 0, RPE = max (RPE* - On 0); else if RPE*< 0, RPE = min(RPE*+ On 0) 

where Or is the threshold with a value equal to 0.05. Therefore, for positive 

RPE* the recoded RPE is recoded as 0 if the raw signal is between 0 and Or, 

otherwise it is set equal to (RPE* - Or). For negative raw RPE values that are 

below -Or the RPE value is set equal to (RPE* + Or); otherwise O. 

According to the 3-factor learning rule, the RPE signal represents the teaching 

signal that mediates learning and the updating of the learning weights (i.e. Wij 

and rpwt), which are adjusted over trials. Models that implement the 3-factor 

learning rule stress the importance of the timing of the reward prediction error to 

ensure strengthening of the appropriate synapse (i.e. weights; Schultz, 1998; 

Suri & Schultz, 1998; Brown et aI., 1999; Pickering & Gray, 2001; Ashby & 

Ennis, 2006; Ashby et aI., 2007). For this reason, computational models 

generally aim to generate a reward prediction signal able to predict both the size 

and the timing of the reward (Sutton & Barto, 1988; Suri & Schultz, 1998; 

O'Reilly & Munakata, 2000). Therefore, these models propose that RPE signals 

update the weights that code both size and timing. Nonetheless, the timing 

considerations were not critical to the present model and, therefore, were 

excluded as part of the model simplification. The RP unit coded only the 

reinforcement value (i.e. magnitude) in the present model. The model assumed 

that both the limbic and the caudate striatal units are activated at an appropriate 

time (in relation to the reward timing) so that their weights could be 

appropriately updated. 

The change in weights from the cortical stimulus coding unit into the reward 

prediction unit at trial n is given by equation 7.9: 

if RPE:2:: 0, Arpwt(n) = b I *RPE*g(rpout)*xtut ; 

Eq.7.9 
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where bI is a learning parameter that sets the learning rate of the RP unit with 

positive RPE signals; whereas b2 is an extinction parameter of the RP unit with 

negative RPE signals. The g(rpout) function represents the activation of the 

reward prediction unit and it is equal to: 

Eq. 7.10 

so that any output (greater than 0) from the RP unit is coded as 1 and the unit is 

considered active and ready to have its weights adjusted by an RPE 

(reinforcement) signal. Once the weight change (Arp~ had been calculated for 

trial n, the weight value was updated at the end of each simulated trial: 

Eq. 7.11 

The change in weights to the response selection unit was computed in a similar 

fashion (equation 7.12): 

Eq. 7.12 

where b3 and b4 represent the learning and extinction rates of the actor (SR) unit 

in response to positive and negative RPE signals, respectively. Only one of the 

actor (response selection) units is active on any trial (with an activation and 

output value of I), as a result of the WTA algorithm described earlier. 

Finally, the weights are updated at the end of each trial according to equation 

7.13: 

Eq. 7.13 
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7.3.2 Main model parameters 

The model description indicates that the model contains several parameters and 

their values affect learning during reward-related learning. Indeed, several 

parameters indirectly affect the magnitude of the RPE' signal and, therefore, 

modulate the learning rate. The main parameters and the values adopted in the 

various simulations are reported in appendix I. 

7.4 Preliminary simulations 

The present RPE-model was used to simulate the data obtained in a study by 

Markman, Baldwin and Maddox (2005), in order to assess the efficacy of the 

model at capturing human performance during performance on a 'notionally' 

rule-based CL task with asymmetric payoffs. The category learning stimuli 

consisted of single small dots whose location on the screen varied along one of 

two imaginary lines (vertical vs. horizontal) on the screen (from the left or right 

of the screen or from the bottom to the top of the screen). Participants were 

instructed to learn to classify the stimuli via trial and error through the use of 

feedback. The simple rule required participants to classify stimuli on one side of 

the screen as A and those on the other half of the screen as B. In the task, the 

positions of each category A stimuli on the screen was sampled from a random 

distribution centred around 275 pixels from the left-hand side of the screen and 

a s.d. of 100; whereas category B were sampled from a random distribution with 

mean 375 and the same s.d. ofy. The mean and s.d. value were chosen to ensure 

an overlap between the two distributions. Thus the task is probabilistic and it is 

impossible to achieve 100% accuracy as there is overlap in the distributions 

from which the two stimuli were created. However, participants can learn to 

place a simple decision criterion to optimise task performance. In order to 

maximise accuracy, participants should place their decision bound midway 

between the means of the distributions from which category A and category B 

stimuli were sampled (i.e. at 325 pixels). However, the best criterion was 

difficult to identify through learning as there were many errors even with the 

optimal accuracy criterion because of the probabilistic nature of the task. 
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Participants performed under three biased payoff matrix conditions: a mixed, a 

loss and a gain payoff matrix. Under all matrices category A stimuli offered a 

higher payoff. In the mixed matrix, participants earned points for correct 

responses and lost points (-100) for incorrect ones. However, they earned more 

points for making correct responses to category A (200) than category B (0) 

stimuli. In the loss payoff matrix condition, points were lost for all responses. 

Nonetheless, participants lost fewer points for being correct than incorrect (-

411) but the points lost for correct category A responses ( -111 points) were 

smaller than those lost for correct category B responses (-311 points). In the 

gain payoff matrix condition, participants won points for all responses. They 

gained more points for being correct than incorrect (100) but earned more points 

for making correct category A responses (400) than correct category Bones 

(200). Taking into consideration RST, the gains condition seems likely to be the 

purest BAS-activating condition since it delivers only rewards. 

According to the decision bound theory, in each of the three asymmetric payoff 

conditions, the criterion bound should be shifted away from the optimal 

accuracy criterion towards the optimal reward criterion (Maddox, Bohi1 & 

Dodd, 2003). In the study, the optimal criterion for maximising reward (or 

minimising losses) should be placed further away from the centre of the high 

payoff category from the optimal bounds for maximising accuracy (see figure 

7.3). The bias towards the optimal reward criterion enabled participants to miss 

very few high payoff category A stimuli at the expense of making more errors 

on the low payoff category B stimuli. Therefore, participants gained more points 

than if they had maximised accuracy. 
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Figure 7. 3. Category distributions and the optimal accuracy criterion (solid black) and the 
optimal reward criterion (dashed blue) 

Markman and colleagues (2005) also manipulated regulatory focus. In fact, they 

had half of their participants perform under a so-called 'promotion' regulatory 

focus and the other half under a 'prevention' regulatory focus. The promotion 

focus was induced by telling participants that they could win tickets for a $50 

draw if their points total exceeded a specific score at the end of the task. The 

prevention focus was induced by giving the draw tickets at the start and telling 

them that they could keep the tickets only if their score at the end was above the 

criterion. Hence, the framing of the task urged participants to maximise their 

winnings (and so sacrifice accuracy). 

Results showed that participants in the mixed matrix did not show any response 

bias regardless of the regulatory focus into which they were induced. 

Nonetheless, under the gain payoff matrix, participants with a promotion focus 

placed their decision bound closer to the optimal reward criterion (criterion at 

approximately 430 pixels on average) compared to participants with a 

prevention focus. In fact participants with a prevention focus placed their 

criterion bound closer to the optimal accuracy criterion (approximately 325 

pixels). The complementary pattern of results was observed under the loss 

payoff matrix. 
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7.4.1 Simulation aims 

The present simulations aim to capture the response bias in favour of the high

payoff category under the gain-only matrix observed among those participants 

who had been induced with a promotion focus. These simulations aimed to 

assess whether this effect can be captured by a realistic biological, DA-based 

mechanism. The DA mechanisms within the model are those that are thought to 

mediate reward sensitivity and are part of a system which controls approach 

behaviour (i.e. the BAS according to RST; see chapter 3). 

7.4.2 Methods 

In the task implemented by Markman and colleagues (2005), participants 

received a reinforcement on every trial following their response. The feedback 

in the task was constituted by the amount of points earned on each triaL In order 

to simulate performance on the task, each response was followed by a 

reinforcement in the model, too. Thus, the actual reinforcement values (i.e. 

points) were recoded into a neural reinforcement signal (i.e. parameter rf 

described above). In other words, several rf values were mapped onto the 

different points (i.e. rewards) during the simulations. The simplest mapping 

assumes a direct, linear relationship between the reward and the rf values. Table 

7.1 offers an example of the reward-rfmapping during a 2-category task with an 

asymmetric payoff matrix. 

Table 7. 1. Linear transformation of the reward values (i.e. points) into rf values for an 
asymmetric payoff matrix ( tI = correct vs. X = incorrect) 

High payoff Low payoff 

category category 

II X II X 

Points 400 100 200 100 

rfvalues 1 0.25 0.5 0.25 

An alternative, linear rf-reward mapping is presented below for a 2-category 

task with a symmetric payoff matrix where the two categories offer the same 
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amount of points for correct (300 points) and incorrect (100 points) responses 

(table 7.2). 

Table 7. 2. Linear transformation of the reward values (i.e. points) into rf values for a 
symmetric payoff matrix ( 01 = correct vs. X= incorrect) 

High payoff Low payoff 

category category 

-.I X -.I X 

Points 300 100 300 100 

rfvalues 0.75 0.25 0.75 0.25 

The two payoff matrices produce the same total reward with equal numbers of 

responses to each category. 

7.4.2.1 Model parameters 

The rptonic parameter was set to be equal to 0.5. In order to capture the 

response bias, the rf values (tables 7.1 and 7.2) were multiplied by a constant 

value (=0.5) so that the actual rfvalues were 0.5, 0.375, 0.25 and 0.125 (for 400, 

300,200 and 100 points, respectively). Moreover, the RP learning rates were set 

equal to 0.10 (b1 and b2 = .05 * scalerl, where scalerl = 2) and the SR 

learning weights were set equal to 0.10 (b3 and b4 = .05 * scaler2, where 

scaler2 = 2). The parameters and their values are summarised in table 7.3. 

Table 7. 3. Parameters' values implemented in the simulations 

Symbol Description Value 

rptonic Reward prediction tonic value 0.5 

m Scales the rf values 0.5 

bI and b2 Learning rates of the RP unit 0.05*scalerl 

b3 and b4 Learning rates of the SR unit 0.05*scaler2 

Scalerl It scales the learning rate of RP unit 2 

Scaler2 It scales the learning rate of RP unit 2 
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7.4.5 Simulation results 

Three-hundred simulated subjects were created to capture the human behaviour. 

The actual criterion location was extracted from the simulated data by fitting 

each data set via a uni-dimensional formal model. The model assumes that 

participants based their categorisation on the relevant dimension (i.e. location on 

the screen). Data from each simulated 'participant' was fitted independently 

and, using maximum likelihood methods, the model estimated two parameters 

(i.e. pixel position of the decision bound and 'noise'; see chapter 6 for previous 

examples of formal model fitting of decision boundaries in uni-dimensional 

models). The goodness of the model solution is estimated against an imaginary 

saturated model with no free parameters (the saturated model captures the data 

perfectly). The middle 100 trials were included in the analysis (i.e. trials 26 to 

125 out of the total of 150) as in the original study. 

Results showed that the mean (s.d.) simulated deciosn bound (aka "criterion") 

was equal to 423.23 (19.2) while the noise level was equal to 284.55 (25.9) 

under the asymmetric payoff. This is a good replication of the criterion shown 

by participants under a gain-only asymmetric payoff matrix in the study by 

Markman and colleagues (2005) participants in the asymmetric gains condition 

with a promotion focus. Figure 7.4 shows the typical learning pattern displayed 

by simulated participants. 
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Figure 7. 4. Typical learning pattern observed in the simulated data 
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In contrast, under a symmetric payoff matrix, the criterion was equal to 326.75 

(s.d. = 14.7) while the noise level was 292.66 (s.d. = 18.5). The latter condition 

was not included in the study by Markman and colleagues; however, it was 

interesting to simulate this condition to confirm that it does not produce any 

response bias and, therefore, confirm the biasing 'force' specifically produced 

by the asymmetric payoffs. 

7.5 Discussion 

The present chapter presents a DAergic model based on actor-critic models of 

reinforcement learning that resembles the biological nature of both the BAS and 

the implicit system postulated by the COVIS model. The model was able to 

simulate the mean behavioural data obtained in a study by Markman and 

colleagues (2005) where participants showed a response bias during a CL task 

with asymmetric payoffs. Nonetheless, the formal model showed that the 

simulated data does not look very "categorical" as indicated by the high noise 

levels and the observed learning pattern (figure 7.4). The formal model that was 

fitted to the simulated data is one in which participants set a criterion (pixel 

position) and decide if the stimulus is one side of that criterion (category A) or 

the other side (category B). The formal model should therefore be applied only 

when the underlying data produce a somewhat step-like function in response 

choices at the criterion. The step-like function is an intrinsic property of a 

boundary-based formal model. However, the formal model includes perceptual 

noise in perceiving the true position of the stimulus and also noise in the 

positioning the criterion on a particular trial. This noise acts to "soften" the step 

function into a sigmoidal shape. However, even data which lack any step or 

sigmoidal shape can be captured by the formal model, as long as the noise 

parameter is allowed to grow unrealistically large. 

It is clear from the simulated data shown above that there is no step-like 

behaviour in these simulated data and the estimated noise parameters are so high 

because the best fitting decision curve is almost linear. Under these conditions 

the formal model does not meaningfully apply to the simulated data even though 
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it produces estimates for the decision criterion and the noise. It is unlikely that 

real human data on this task will look like this [although Markman and 

colleagues (2005) do not comment on the steepness of the category boundaries 

in the data from individual participants]. 

However, despite the above problems with the nature of the "decision curve" in 

the simulated data, the neural model seems to have the potential to simulate the 

reward-related effects of payoff matrices. Therefore, the neural model may be 

able to capture a more categorical ('steep') learning curve following the addition 

of a categorical, perceptual module to the basic model described in this chapter. 

Indeed, the RPE neural model presented in this chapter is an implicit learning 

model of the kind proposed in COVIS. The categorical behaviour lacking in the 

simulations seems likely to be a property more naturally occurring within the 

other, rule-based explicit system described by COVIS. It is, thus, likely that the 

current single system implicit model will therefore need the addition of a second 

(rule-based) system in order to develop a better simulation of real human data. 

This will be discussed in the next chapter in relation to the data collected in the 

next empirical study. 

The model is used in the remaining empirical chapters to simulate the 

relationship between inter-individual variations on the biological mechanism 

and performance on RB CL tasks. These simulations allow one to assess a priori 

the effectiveness of the task in capturing the personality-behaviour relationship, 

and also offer further insights into the data in relation to RST. 

The model is biologically realistic although it has a very simplified structure; for 

example it is constituted by individual cells (cf. nuclei) and some processes are 

not represented (e.g. thalamic projections). Additionally, the model simplifies 

the response selection processes (and especially those involved in the to-be

added explicit system; see chapter 8 for details). Nonetheless, it is potentially 

effective at capturing human behaviour and, therefore, it represents a good 

starting point for developing more biologically-valid models. Indeed, 

simplification is an essential element of neural modelling (Pickering, 2008). 
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Chapter 8 

The interaction between personality and payoff 

structure in category learning 

8.1 Abstract 

A study carried out by Markman and colleagues (2005) assessed the impact of 

asymmetric payoff matrices during learning on a rule-based category learning 

task. The task required participants to learn to classify probabilistic stimuli into 

two categories via trial and error through the use of feedback. In order to solve 

the categorization problem, participants had to learn to place a simple decision 

criterion to sort the stimuli into two categories and so optimise the points gained 

during the task. Participants performed under a gain payoff matrix where both 

correct and incorrect responses earned points, although one category offered 

higher payoffs for correct responses than the other. Consistent with signal 

detection theory (SDT), participants were found to place their decision criterion 

away from the optimal accuracy bound and closer to the optimal reward bound 

(i.e. they showed a response bias). The present study replicated these findings. 

Indeed, participants were found to show a response bias under asymmetric 

payoffs that, although less marked, resembled the bias observed by Markman 

and colleagues. However, no response bias was observed under symmetric 

payoffs. Additionally, the study explored the impact of individual differences on 

criterion placement in relation to the reinforcement sensitivity theory. Positive 

schizotypy was found to be positively associated with the criterion shift. Results 

were interpreted in the light of RST using the neural model described in the 

previous chapter. However, due to the design of the study, the results were not 

conclusive. 

8.2 Introduction 

As stated in the chapter 1, in order to fully understand the processes underlying 

individual differences in learning and decision-making, it is necessary to 
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understand the interplay between motivation and cognition (Higgins, 1997; 

Maddox, Markman & Baldwin, 2007). Signal detection theory suggests that 

during categorisation, individuals learn to assign different responses to different 

regions of perceptual space, obtained by placing a number of decision bounds 

(or criteria; Maddox, Bohil & Dodd, 2003); for n categories, one needs to 

employ (n-1) decision bound(s). Evidence further indicates that base-rate and 

payoff manipulations produce a bias in the criterion location (Maddox & Bohil, 

1998; Bohil & Maddox, 2001; Maddox & Bohil, 2005; Maddox, Baldwin & 

Markman, 2006). Hence, according to these considerations, and following the 

conclusions drawn from the CL study reported in chapter 6, reward payoff 

and/or base-rate manipulations may be an effective way to explore individual 

differences in motivational and cognitive factors. 

The study by Markman et al. (2005) explored the relationship between 

motivation and cognition by assessing the impact of motivation during 

performance on a CL learning with asymmetric payoff matrices (see chapter 7 

for details). In particular, the study looked at the influence of regulatory focus 

on classification learning. Beauducel and colleagues (2005) have highlighted the 

parallel between regulatory focus theory (RFT; Higgins, 1987) and 

reinforcement sensitivity theory (RST; Gray & McNaughton, 2000). Indeed, 

both theories suggest that there are different types of goals depending on their 

valence (positive or negative). Goals with a positive valence are referred to as 

rewards and as approach goals by RST and RFT, respectively, and both theories 

suggest that they lead to approach behaviour towards the desired goal. RST 

suggest that the behavioural activation system (BAS) is responsible for 

processing reward-related stimuli and mediating approach behaviour. Hence, the 

results obtained in the study by Markman and colleagues (2005) raise some 

interesting questions for RST, particularly in relation to the BAS. 

Of particular interest are the results obtained under a gain-only matrix, since 

inter-individual differences in BAS reactivity should affect performance in this 

condition. The results showed that under the gain payoff matrix, participants 

placed their decision criterion away from the optimal accuracy bound and 

towards the optimal reward bound, but only if they had been induced with a 
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promotion focus. In other words, they tended to over-classify probabilistic 

stimuli as members of the high payoff category (i.e. they showed a response 

bias). Participants obtain higher winnings when placing the criterion close to the 

optimal reward, compared to the optimal accuracy, criterion. Those participants 

who had been induced with a prevention focus, by contrast, failed to show this 

response bias and they placed their criterion bound close to the optimal accuracy 

criterion. The complementary pattern was observed under the loss payoff 

matrix. Therefore, the study found that having participants performing under an 

asymmetric payoff matrix would make their decision bound deviate from the 

optimal accuracy criterion towards the optimal reward one, but only when there 

was a regulatory fit between the induced regulatory focus (promotion or 

prevention) and the payoff manipulation used (i.e. rewards or losses). 

Maddox and colleagues (2006; 2007) suggested that regulatory fit enhances 

cognitive flexibility, which allows participants to consider alternative strategies 

to maximise their performance depending to the task specifications. Due to the 

study frame and instructions, the participants' goal is to maximize gains and, 

consequently, to sacrifice accuracy. In this case, cognitive flexibility should 

increase the shift from the optimal accuracy criterion to the optimal reward 

criterion. Maddox and colleagues (2007) have speculated further on these results 

and suggested that 'regulatory fit' between the situational focus and the payoff 

structure may enhance cognitive flexibility by increasing the release of DA from 

the ventral tegmental area (VTA) to brain areas involved in working memory 

(e.g. anterior cingulate and prefrontal cortex) and episodic memory 

consolidation (hippocampus). Dopamine release from the VTA also projects 

widely to the limbic system which is involved in emotions and emotion-related 

memory formation (and so it may support positive affect generally; Carlsson, 

2002). Additionally, as noted earlier, midbrain DA neurons are involved in the 

processing of rewarding stimuli (Schultz et aI., 1997). 

Even though the study by Markman and colleagues did not test RST, the results 

indicate that this paradigm may be an effective tool to explore this model and, in 

particular, the BAS. Indeed, as already noticed, these authors have suggested 

that regulatory fit leads to greater phasic DA activity in the mesolimbic system 

(Maddox et aI., 2006), which is considered to be a major part of the neural basis 
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of the BAS (Gray, 1987; Pickering, 2004; Corr, 2006). Therefore, under these 

conditions, the BAS should become strongly activated and, subsequently, should 

take control of responding. In particular, RST predicts that high BAS trait 

individuals should show a greater shift towards the optimal reward criterion than 

low BAS trait individuals (Smillie & Jackson, 2006; Smillie et aI., 2007). Based 

on these considerations, the task appeared to represent a good tool to explore the 

BAS system and, in particular, to assess how different levels of BAS activation 

are captured by differences in BAS-related personality traits. 

The neural model, described in chapter 7, was able to capture the response bias, 

observed in the original study. Moreover it offered an entirely different account 

of the data than the flexibility account presented by Markman and Maddox. The 

simulations indicated that the bias is driven by a DAergic mechanism that 

closely resembles components of the implicit system described by the COVIS 

model and the BAS motivational system described by RST (Ashby et aI., 1998; 

Gray, 1987; Pickering & Gray, 2001). The response bias should, therefore, be 

correlated with inter-individual differences in reactivity of the DAergic system 

and, therefore, the personality traits stemming from such reactivity (e.g. BAS

like traits, according to RST; Pickering and Gray, 2001). 

Simulations, run using the neural model described in the previous chapter, 

showed that the task was theoretically able to reveal a strong association 

between the neurobiology (i.e. DA activation) and the response bias on the task 

implemented by Markman and colleagues (r = -.71, P <.001; see later in this 

chapter for more details). Since certain personality traits may represent the 

phenotype of the BASIDA system, a strong correlation between the response 

bias measure and the variation in the reactivity of the biological mechanism 

suggests that the response bias might be a good endophenotype of BASIDA 

system variability. Thus, this increases confidence that it might be possible to 

detect the relationship between the endophenotype (response bias) and the 

phenotype (personality trait scores) in real empirical data, as both are affected 

(to differing extents) by the same underlying biological variations. A strong 

biology-endophenotype relationship is needed as phenotype*gene and 

phenotype biology associations are usually quite weak in personality research. 
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This occurs because both genetic and environmental factors account for 

personality variance (Blum et aI., 2000; Ozkaragoz & Noble, 2000; Benjamin et 

aI., 2001; Munafo et aI., 2003; Pardo et aI., 2007). This relationship is further 

weakened by empirical noise in the measurement of the phenotype (e.g. self

report bias, Lee et aI., 2007; Eisenberg et aI., 2007). 

8.2.1 Aims of the study 

The present study aims to replicate and extend the findings obtained by 

Markman and colleagues who found that participants shifted their criterion 

towards the optimal reward bound to maximise their winnings. These results are 

somewhat counterintuitive to COVIS assumptions, which suggest that reward 

manipulations should not affect performance during an RB CL task. As 

discussed in chapter 1, there is evidence that indicates that participants are able 

to implement the optimal verbal rule when performing on an RB task without 

accuracy feedback (e.g. Queller et aI., 1999). It is possible that partial feedback 

manipulations do not affect learning on an RB task since efficient learning can 

occur even without any form of accuracy feedback (Ashby et aI, 1999; Ashby et 

aI., 2002). However, more subtle manipulations of feedback may actually affect 

learning in the way observed in the study by Markman and colleagues (2005). 

As noted above, these authors have interpreted the findings by arguing for 

dopaminergically-mediated changes in cognitive flexibility triggered by the 

feedback signals in their general motivational context. Thus, they suggested that 

reward feedback can affect performance on RB CL tasks, but not directly 

through its reinforcing properties. Their account rather suggests that reward 

feedback affects the executive attention and working memory processes that are 

critical to performance on RB CL tasks. 

The present study has two main aims. The first aim is to explore how the BAS 

mediates performance on the task in relation to the feedback manipulation and 

the second aim is to identify the underlying BAS-related traits. In order to 

ensure a pure activation of the BAS system, it was decided to have participants 
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perform under a gain-only payoff matrix and participants were all induced with 

a promotion focus. 

In order to assess how BAS activation mediated the response bias from the 

optimal accuracy criterion towards the optimal reward criterion, a baseline 

measure was also collected. In order to do this, performance on the asymmetric 

condition was compared to performance on a symmetric payoff condition. 

According to RST, high BAS activation, which is associated to increased levels 

of phasic DA activity, leads to (reward) approach behaviour. Therefore, 

according to RST high BAS individuals should show the greatest shift in bias 

across the two task conditions. Nonetheless, evidence from the field of addiction 

shows that rather than increased reward sensitivity, it is reduced reward 

sensitivity that leads to approach behaviour (i.e. drug use; Honkanen, Hytia, 

Korpi & Ahtee, 1999; Volkow et aI., 1999; Blum et aI., 2000; Davis & 

Woodside, 2002). This model of addiction is known as reward deficiency 

syndrome (RDS; Blum et aI., 2000). According to RDS, reduced reward 

sensitivity is determined by hypodopaminergic function8
. Additionally the 

model predicts that low BAS individuals should be the ones who show the 

greatest shift in approach behaviour as indexed by the response bias measure. 

Simulation of the data via the neural model will allow one to investigate these 

two models in relation to the empirical data. 

The empirical and theoretical evidence is currently inconclusive on which 

personality trait underlies the BAS system. Indeed, there is an ongoing debate 

on whether extraversion or impulsivity is the true BAS-trait. Thus, the present 

study aims to shed some light on this debate. According to the original theory 

(Gray, 1970; 1987; Corr, 2006), impulsivity-like personality traits should 

mediate performance on the task used by Markman and colleagues (2005) and 

determine the shift from the optimal accuracy criterion towards the optimal 

reward criterion in the asymmetric payoff condition. Nonetheless, there is 

8 Genetic and imaging studies have shown that DA hypofunction is caused by lower density of 
D2 receptors in the mesolimbic system (Volkow et aI., 1997; Noble, 1998; Pohjalainen et aI., 
1998). In particular, the presence of the Al allele on the D2 receptor gene (i.e. DRD2) is 
associated with a reduction (30-40%) in D2 receptors density (pohjalainen et aI., 1998; Blum et 
aI., 1999; Reuter, et aI., 2006). 
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growing evidence that extraversion is the personality trait underlying the BAS 

(Depue and Collins, 1999; Smillie, Jackson & Dalgleish, 2006) and, therefore, 

one may predict that extraversion might mediate the shift in bias across the two 

task conditions. 

8.3 Method 

8.3.1 Participants 

An opportunity sample was recruited around Goldsmiths campus. It comprised 

both students and non-students over the summer holiday. 

The sample was made up of 64 participants, 32 males and 32 females. All 

participants but one were right-handed. All participants were aged between 18 

and 39 (mean age = 26.7; s.d. = 4.41). 

Participants were guaranteed confidentiality. They were tested in one sitting that 

lasted approximately 1 hour and 15 minutes and they received £7.50 for their 

participation. 

8.3.2 Design 

The present study assessed the impact of payoff matrices on performance during 

a category learning task. In particular, the study sought to compare the impact of 

a symmetric and an asymmetric payoff matrix. Therefore, the primary 

independent variable was payoff matrix and it was run within-subjects with two 

levels, which were: symmetric and asymmetric. The order in which the two 

payoff matrices were encountered was counterbalanced across participants and 

represented the other IV which was run as a between-Ss factor. In order to 

obtain optimal winnings, the asymmetric payoff matrix was designed to require 

adoption of a signal detection decision index (~) equal to 3, whereas the 

symmetric matrix required a neutral response bias signified by a ~ equal to 1. 

The structure of the two payoff matrices is summarised in table 8.1. 
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Table 8.1. Structure of the payoff matrices and performance criteria adopted for the two 
task conditions (>I = correct vs. X= incorrect; Asym = asymmeritc vs. Symm. = symmetric) 

High payoff Low payoff Performance 

category category criterion9 

Matrix If! X If! X 

Asym. 400 100 200 100 33700 

Symm. 300 100 300 100 31600 

The study assessed the impact of different types of payoff matrices (IV) on 

decision bound location that constitutes the main dependent variable. 

8.3.3 Task and apparatus 

The task was run on a Mesh PC with a Mitsubishi 21" monitor with 1024 x 768 

pixel resolution in an artificially lit room. 

Each stimulus was computer generated by usmg Matlab routines from 

Brainard's (1997) Psychophysics Toolbox. Stimuli were flashed on a black 

background that filled the entire screen. Each stimulus was a small circular dot 

(14 pixels in diameter) that appeared on the computer screen. The stimuli 

appeared within a 650*650 pixels box that delineated the attention space 

participants had to concentrate on. The dots would appear at varying positions 

along an imaginary line 650-pixel in length running either horizontally or 

vertically along the box's vertical or horizontal midlines. Participants performed 

two perceptual classification tasks one after the other and, in each task, one 

spatial dimension (vertical or horizontal) varied whereas the other was kept 

constant. The order of the spatial orientation was counterbalanced over the two 

tasks, across participants (see counterbalancing section below). 

The stimuli for category A and category B were generated by sampling from 

two independent but overlapping normal distributions, thus making the task 

9 The performance criterion for each condition was set at 80% of the points that the optimal (i.e. 
reward maximising) classifier obtains over 150 trials, relative to 0% accuracy. 
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probabilistic. The distribution used to generate one category of stimuli had a 

mean equal to 275 whereas the one used to generate the other category of 

stimuli had a mean equal to 375. Both distributions had a standard deviation 

equal to 100. These numbers were used to determine the position (in pixels) of 

the stimulus dots, as described below. As in the original study, the mean and 

standard deviation values were chosen so that the signal detection 

discriminability of the two categories (d'; pronounced d prime) was equal to 1, 

which rendered the task very difficult. This decision was guided by evidence 

showing that when the categorisation task is difficult, motivational factors have 

a greater impact on the way participants perform (Markman et aI., 2005). 

The dots were drawn, centred at these random, varying positions, measured 

from the left-hand end of the imaginary horizontal box mid-line (in the 

horizontal task) or from the top of the vertical box mid-line (in the vertical task). 

For half of the participants, in the first task category A stimuli had a mean 

position of 275 whereas category B stimuli had a mean position of 375. This 

assignment was reversed for the other half of the participants. The stimulus 

location was reversed in the second task. Similarly, for half the participants, in 

the first task category A stimuli were high payoff stimuli. This assignment was 

reversed for the other half of the participants. For each participant, this 

assignment was reversed in the second task they completed. In the symmetric 

task condition both categories had an equal payoff, therefore assigning one 

category as high payoff had no effect on the payoffs earned, but it was done for 

symmetry. This is summarised in the counterbalancing section below. 

The stimuli in both tasks were presented in one of two fixed quasi-random 

orders to all participants. Each stimulus appeared on the screen until the 

participant responded. 

8.3.4 Counterbalancing 

It was decided to implement counterbalancing across participants in order to 

avoid possible order and handedness effects. There were four crossed 

counterbalancing factors: order of task condition (vertical or horizontal given 
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first); order of payoff matrices (asymmetric vs. symmetric given first); order of 

mean location for the categories (i.e. category A stimulus on left/top of screen 

[i.e. mean category location 275 pixels) in first or second task]; allocation of 

high payoff to the two categories (i.e. category A = high payoff vs. category B = 

high payoff). Therefore, there were 16 possible combinations (cells) and each 

cell had 4 participants per cell, allocated at random. 

8.3.5 Personality measures 

Participants completed several personality measures, which were: the Eysenck 

Personality questionnaire revised (EPQ-R), the Oxford-Liverpool inventory of 

feelings and experiences scale (OLIFE), the sensation seeking scale (SSS), the 

schizotypal personality questionnaire (SPQ), the big five inventory (BFI) and 

the BISIBAS questionnaire. Four personality components were extracted after 

running a PCA with Varimax rotation on these scales (see chapter 4 for details). 

The four components extracted are: Extraversion (E), Neuroticism (N), Positive 

Schizotypy (PS) and impulsivity-antisocial (ImpAss). The PCA was run on 232 

participants, who constitute the overall number of participants tested. The 

components scores used in the present study are the corresponding scores 

extracted in the overall PCA involving 232 participants. 

8.3.5 Working memory measure (WM task) 

A measure of WM ability was included in the battery of measures. In particular, 

the task used is a measure of memory scanning ability (Stenberg, 1966). The 

task is composed of 14 trials. During each trial, the participant was presented 

with a set of letters to memorise. The first four trials consisted of sets of 4 letters 

and they functioned as practice trials. The experimental trials presented sets of 6 

letters. 

Following the presentation phase (2.5 seconds), participants were presented with 

single letters on the screen and had to decided whether they were members of 

the preceding set or not by responding 'yes' or 'no' using the corresponding 
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keys (i.e. the 'y' and the On' key on the keyboard). Participants scored one point 

per correct identification of targets and distracters. During the experimental 

trials they were presented with 12 single letters (6 targets and 6 distractors), 

hence they could score a maximum of 12 points per trial. Since there were 10 

experimental trials, the total possible score was equal to 120. 

8.3.6 Procedure 

The study method and procedure were approved by the Psychology Department 

Ethics Committee (DEC) at Goldsmiths, University of London. Testing was 

conducted in a testing room in the department (University of London). 

Participants sat at a desk in front of a computer screen, a keyboard and stereo 

speakers. On entering the testing room, participants were reminded that all the 

collected data and information would remain anonymous and be treated with 

confidentiality. They were also informed that they had the right to withdraw 

from the study at any time and for any reason. In order to guarantee anonymity, 

each participant was allocated a unique ID code that became the only means of 

identifying the data. Participants were randomly allocated to one of the 16 cells, 

depending on their ID number. 

All participants were given a so-called promotion focus. Indeed, they 'were told 

that the task consisted of two tasks and that, for each task, they could win an 

entry into a £25 draw. In order to win the entry, they had to exceed a certain 

amount of points (i.e. performance criterion; table 8.1). One draw was held for 

all 64 participants. 

The participants were presented with written instructions on the computer 

screen. Instructions informed participants that a series of stimuli would be 

individually presented on the screen. Their task was to learn, by trial and error, 

to classify these stimuli into category A and category B. They had to do so by 

pressing the 'z' key or the'/?' key for category A and category B respectively. 

The two keys were covered by a sticky label marked as A or B, in order to make 
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it eaSIer for participants to remember which key corresponded to which 

category. 

For each response they made, participants received auditory, textual and visual 

feedback. The auditory feedback was represented by the sound of a ringing cash 

register for correct responses, whereas for incorrect responses it was a mildly 

unpleasant buzzer sound. The textual feedback presented participants with 

information on their performance for each response. Participants were not 

explicitly told whether their response was right or wrong (i.e. accuracy 

feedback). Instead, they were told how many points they had won and the 

maximum they could have won on that trial. Feedback was presented for 300 

msec. and followed by a 100-msec inter-trial interval (ITI). 

The visual feedback displayed all the points that participants had won which 

were accumulated on a vertically oriented "point meter" displayed on the right

hand side of the computer screen. The meter consisted of a 765 pixel tall x 50 

pixels wide rectangle and it was set to zero at the beginning of each task. The 

performance criterion was presented as a horizontal line across the meter and 

was labelled 'Bonus'. The performance criteria for each matrix are shown in 

Table 8.1. The region above the criterion line was labelled 'Yes' whereas the 

one below it was labelled 'No', which indicated whether the participant had won 

the ticket or not (figure 8.1). The screen shot is taken on the first trial of the task 

where no points have yet been won. The point meter was updated following 

each response at a rate of I pixel per 50 points. The part of the meter that 

changed flashed three times to stress the idea that the points were increasing. 
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Figure 8.1. Screenshot of the task layout 

Each task consisted of 3 blocks of 50 trials each. At the end of each of the fIrst 

two blocks, participants received an inter-block message that informed them of 

their performance. The message represented a lottery ticket that was struck 

through by a red cross and had a message saying: 

'If that had been the end of this section of the experiment, you would not 

have earned an entry into the lottery'. 

However, it was not possible to have won the lottery ticket at this stage of the 

task. At the end of each task, participants were presented with a message that 

represented the same ticket as the one in the inter-block message. The ticket was 

either crossed out or not depending on whether participants had reached the 

performance criterion or not. The window dialog also reported a message 

saying: 

'That is the end of this section of the experiment and you earned enough 
points to get an entry into the £25 lottery'. 
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if participants had reached the performance criterion. Otherwise, the message 

would read: 

'That is the end of this section of the experiment and you did not 
earn enough points to get an entry into the £25 lottery'. 

The subsequent window offered participants a summary on their performance, 

the message said: 

'That is the end of this section of the experiment. 
[Sorry, but] you earned (number of) points, which means 

that you did [did not] earn an entry into the lottery for £25'. 

At the end of the first task participants also received a message that informed 

them: 

'You can take a short break now if you would like. Press any key when 
you are ready to continue on to the next section. You need to earn xxxxx 

points in order to win an entry.' 

At the end of the two tasks, participants were debriefed by a message which 

said: 

'This is the end of this experiment. Thanks for your participation! 
You earned x entries into the £25 lottery,' 

Please tell the experimenter you have finished, and 
that you earned x entries'. 

Depending on their performance over the two tasks, x could be 0, 1 or 2. 

Participants were invited to sit in front of the computer in a comfortable way, in 

order to move as little as possible during the trials. Participants were encouraged 

to express any doubts about the task and to start only once they felt completely 

confident about the task instructions. At this point, the experimenter left the 

testing room to let participants carry out the task on their own. 
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8.3.8 Data analysis 

A data processing programme was developed to create an overall summary file 

that could be exported from Matlab into SPSS and, therefore, allow statistical 

analysis on the data. The programme extracted five main measures for each of 

the asymmetric and symmetric conditions, which were: proportion of correct 

responses (PC), mean reaction time (RT), the location parameter (C), beta and 

dprime. These last three values were calculated using formulae from signal 

detection theory (SDT; Stanislaw and Todorov, 1999; Maddox & Dodd, 2001; 

Bohil and Maddox, 2001). The location parameter (C) reflects where subjects 

place their decision boundary. The C parameter is such that a score equal to zero 

indicated an optimal accuracy criterion placement. The value was recoded (in 

relation to the counterbalancing condition) so that a positive value reflected a 

bias away from the centre of the high payoff category towards the maximal 

reward criterion. 

However, calculated SDT measures do not offer a rigorous measure of how 

payoff manipulations affect the decision criterion location. They can be 

calculated on a set of data even when the participant did not perform in 

accordance with the assumptions of SDT. Hence, a formal SDT model was 

fitted to the data. The use of a formal model allows one to establish whether 

each participant was actually solving the categorisation problem by 

implementing the appropriate uni-dimensional rule. The appropriate rule is 

based on the relevant dimension, which was the location of the stimulus on the 

screen (i.e. left or right in the horizontal condition vs. up or down in the vertical 

condition). The formal modelling was able to identify individuals who did not 

use a criterion to solve the task (as implied by the SDT model) and they were 

excluded from the analysis as they are a source of noise. Simply calculating 

SDT scores does not assess whether a particular participant has used an SDT

like strategy to guide their performance. Including the SDT scores from 

individuals who are not using an SDT -like model is comparable to measuring 

the diameter of (orange) tennis balls in a study that aims to assess the impact of 
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a fertiliser on the size of oranges. The measure itself would be easily computed 

(i.e. a diameter) but it would be meaningless. 

Following Markman and colleagues' data analysis, only the middle 100 (out of 

the total 150) trials were analysed. The decision was made since the first 25 

trials constitute practice and familiarisation trials where the appropriate rule was 

being established by participants, whereas the last 25 may constitute noisy 

responses since participants had often started reaching criterion by then. 

Finally, the results obtained in the empirical study were further explored by 

simulating the data through the neural model described in the previous chapter. 

The neural model allows one to obtain insight into the neuro-biological 

processes that may underlie the behaviour choices as well as the relationship 

between individual differences and behaviour. 

8.4 Results 

8.4.1 Human data analysis 

Owing to equipment failure, data from one participant (out of the total N = 64) 

was not recorded during performance on the asymmetric task, when the 

symmetric task had been performed first (CB matrix order 2). 

8.4.2 Preliminary analysis 

8.4.2.1 Proportion of correct responses 

Preliminary analyses were conducted on the proportion of correct responses in 

the two task conditions only taking into consideration the mid-100 trials. The 

analysis observed that the proportion of correct (pc) responses was close to 

chance levels in both task conditions. Indeed, it was equal to 51 % in the 

symmetric condition and 47% in the asymmetric condition. Even after excluding 

those participants who did not use the adequate uni-dimensional rule, pc levels 

were equal to 52% and 47% in the symmetric and the asymmetric condition, 
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respectively. The proportion of correct responses did not differ as a function of 

matrix condition [t(62) = 1.16, ns]. These pc scores were not much higher when 

looking at all 150 trials or the last 100 (table 8.2). 

Table 8.2. Proportion of correct (pc) responses in the two conditions tasks when analysing 
allIS o trials (All lSOT or the last 100 trials (last lOOT) 

Asymmetric Symmetric 

Last All 150 Last All 150 

100 T T 100 T T 

PC mean .48 .48 .52 .51 

(s.d.) (.15) (.13) (.14) (.14) 

8.4.2.2 Reaction time scores 

Table 8.3 summarises the reaction time (RT) scores in the two task conditions 

and, as expected by looking at the table, a paired-sample t-test indicated that RT 

scores were not significantly different across the two matrix conditions [t(62) =-

1.65, ns]. 

Table 8.3. RT scores across the two task conditions in seconds 

Asymmetric Symmetric 

RT mean (s.d.) 1.20 (.79) 1.07 (.46) 

8.4.2.3 Points earned 

Participants gained points throughout the task and aimed to reach the 

performance criterion to be able to earn entries into the £25 lottery. The 

performance criterion for the asymmetric condition was equal to 33700 while 

the criterion for the symmetric condition was equal to 31600. Table 8.4 shows 

the amount of points earned across the two conditions by the whole sample and 

by those participants who had implemented the appropriate uni-dimensional 

strategy 10 • 

10 This is assessed by the formal model fitting described below 
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Table 8.4. Points (mean and standard deviation) earned by the overall sample (N = 63) and 
articipants who implemented the optimal uni-dimensional rule (UD; by those p N = 35). 

Asymmetric Symmetric 

Overall 33523.8 33231.7 

sample (N=63) (2683.0) (2298.4) 

UD-users 35045.7 34497.1 

(N=35) (1210.1) (1451.5) 

Those participants who implemented the appropriate rule gained more points 

than the overall sample (i.e. which included participants who used alternative 

strategies). Moreover, results showed that, amongst those participants who used 

the appropriate uni-dimensional rule (i.e. UD-users), the difference of gained 

points across conditions was almost significant [t(34) = 2.03, P = .051, 2-tailed]. 

Participants gained more points in the asymmetric rather than in the symmetric 

condition (table 8.4). 

8.4.2.4 Model fitting 

The stimuli presented in the two task conditions consisted of dots that varied on 

one dimension, which was their location on the screen. Location was the 

relevant dimension and participants needed to use it to develop the appropriate 

strategy to solve the categorisation problem. Hence, a uni-dimensional model 

which used location as the relevant dimension was fitted to the data as well as a 

guessing model. The two formal models were run for each participant's data 

individually and separately on the data collected in the asymmetric and the 

symmetric task conditions. Moreover, the goodness of each model was 

compared to the goodness of fit of the saturated model with no free parameters. 

The saturated model described the data perfectly. All models' parameters were 

fit using maximum likelihood estimation. 

1 - Fitting by a guessing model 

The guessing model describes the situation where participants are randomly 

assigning the stimuli to one of the two categories, regardless of the location of 
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the stimuli on the screen. This model has only one free parameter (guessing 

probability for category A, from 0 to 1). Results showed that the guessing 

model's fit to the data was worse than that of the saturated model in all cases. 

2 - Fitting by a uni-dimensional rule model based on spatial location 

The present model describes the situation where participants select spatial 

location as the relevant dimension and place a criterion on this dimension to 

categorise the dots. 

Results indicated that the one-dimensional (UD) model was not significantly 

worse than the saturated model for 35 cases. These 35 participants belonged 

equally to the two payoff matrix conditions, in fact 18 performed on the 

asymmetric task first and 17 performed on the symmetric task first. This 

indicates that 55% of the whole sample clearly used spatial position as a 

relevant dimension to classify the stimuli. Figure 8.2 illustrates the typical 

distribution of data that was well-fitted by the uni-dimensional model (figure 

8.2a) and the distribution typical of data not fitted by the uni-dimensional model 

(figure 8.2b). 
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Figure 8.2. It illustrates the distribution typical of data that was well-fitted by the uni
dimensional model (figure a) and the distribution of data that was not fitted by the data 
(figure b). The red stars represent the actual data whereas the blue circles represent the 
best-fitting uni-dimensional model. 

The remaining 45% of the sample did not use the appropriate strategy to 

perform on the task but it was not found to be guessing either. These results 

suggest that those participants who did not use the correct dimensional rule may 

have been using alternative strategies. During debriefing some participants 

verbally reported having treated the distance between the last stimulus on the 

screen and the latest stimulus as the relevant dimension to formulate their 

decisions. Hence the rule they developed could have been: 'if the distance of the 

latest dot from the last one is great the category belongs to category A, 

otherwise it belongs to category B'. These participants are occasionally referred 
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to as non-learners in the chapter to indicate the fact that they failed to implement 

the appropriate UD strategy. 

The UD formal model identified the actual (fitted) decision criterion placed by 

each individual who employed the appropriate rule. The decision criterion was 

also calculated using signal detection theory (C ll
). Correlations were run to 

establish the relationship between the calculated and the fitted criteria and they 

were found to be highly positively correlated (table 8.5). Since the fitted 

criterion is used to eliminate poor-fitting participants, the correlations were 

conducted only including those 35 participants who were well-fitted by he UD 

model. 

Table 8.5. Correlations between the fitted and the calculated criteria only for those 
participants well-fitted by the uni-dimensional model 

calculated a calculated s 

Pearson Correlation -.209 .967 
Si9. (2-tailed) .227 .000 
N 35 35 
Pearson Correlation .962 -.230 
Si9. (2-tailed) .000 .184 
N 35 35 

These results suggest that the calculated criteria are close to the actual fitted 

criteria. Nonetheless, the latter scores are a more reliable index of performance 

(pixel vs. standardised measure) and they identify those participants who are 

well-described by the optimal rule and, therefore, exclude those who were using 

an alternative strategy (i.e. source of noise). Thus, the dependent variables, used 

in the following analyses, primarily use the fitted, rather than the calculated, 

decision criterion. 

11 C = -O.5.*(norminv(phit)+norminv(pfa)), where phit represents the proportion of correct 
responses made to category B stimuli whereas pfa represents is the proportion of false alarm 
responses made to category A items 
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8.4.2.5 Behavioural data 

Some preliminary analyses were carried out to explore the behavioural data and 

observe where participants placed their decision criteria under the two payoff 

matrix conditions. In a fIrst stage, analyses were carried out with criteria 

obtained from the formal model (i.e. fItted criteria) since, as previously 

discussed, the fItted criteria are a more informative measure of performance. 

A mixed-subjects ANOVA was run with two main IVs, which were: payoff 

matrix and payoff matrix order. Payoff matrix had two levels (symmetric vs. 

asymmetric) and it was a within-subject factor. The payoff matrix order had two 

levels (symmetric fIrst vs. asymmetric fIrst) and it was a between-subject factor. 

The analysis included only those participants who used the appropriate strategy 

(N = 35). Results indicated that there was a signifIcant 2-way interaction 

between payoff*matrix order [F(1, 33) = 6.09, p = .019]. The main effect of 

payoff was non-signifIcant [F(1,33) = 1.73, ns] and neither was the main effect 

of matrix order [F(1,6l) = .23, ns]. Figure 8.3 indicates that when participants 

performed on the asymmetric task condition fIrst, they showed a positive 

response bias in the asymmetric task and they showed no bias in the symmetric 

task. This is the pattern expected if participants shift their criterion to maximise 

winnings in the asymmetric task condition. However, participants who 

experienced the symmetric task fIrst showed a bizarre pattern of responding. In 

fact, they showed a positive bias in the symmetric condition and no bias in the 

asymmetric condition. 
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Figure 8.3. Relationship between the fitted decision criterion across the two task conditions 
and matrix order (decision criterion equal to 325 pixels indicates that the criterion is 
placed at the optimal accuracy criterion) 

Post-hoc t-tests were carried out to assess whether the difference between 

criterion location in the asymmetric and the symmetric conditions was 

statistically different depending on the order of the payoff conditions. A 

repeated t-test showed that, for those participants who experienced the 

symmetric task first, the difference between the asymmetric and the symmetric 

criteria was significant [t(16) = -3 .32, p = .004]. In contrast, this difference was 

not significant for those individuals who experienced the asymmetric condition 

first [t(17) = .71, ns]. 

Owing to the observation that performance of those who experienced the 

symmetric task first was bizarre and counterintuitive (i.e. higher shift in bias in 

the symmetric payoff matrix condition), data from these participants were 

excluded from further analysis. 

In the asymmetric condition, these 18 participants placed their criterion at a 

mean of 34l.84 pixels (s.d. = 3l.1) and showed a mean noise level equal to 

98.28 (s.d. = 47.2). These results indicate that the response bias in the present 

study is much lower than the bias observed in the original study by Markman 

and colleagues (approximately 430). In the symmetric condition the criterion 

was set at 334.89 pixels (s.d. = 22.3) with a noise level 73.49 (s.d. = 4l.9). The 
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asymmetric criterion was statistically above the optimal accuracy criterion [325; 

t(17) = 2.30, p = .035 2-tailed] and the symmetric criterion was non

significantly above the optimal accuracy criterion [t(17) = 1.89, P = .077]. As 

already noted, there was no significant difference in criterion placement 

between the two payoff conditions. 

8.4.2.6 Correlations between criterion location measures and the amount of 

points earned during the task 

A set of correlations was carried out to assess the relationship between the fitted 

criterion measures, the proportion of correct responses and the number of points 

earned during the two task conditions. This set of correlations indicated that 

there was a significant trend for a positive correlation between the amount of 

points earned and the criterion used during the asymmetric payoff matrix 

condition (r = .42, P = .08). Hence, consistent with expectations, the greater the 

response bias (i.e. towards the optimal reward criterion), the greater the amount 

of points earned. Results also showed a negative correlation between the number 

of points earned and the decision criterion set during the symmetric payoff 

matrix condition (r = -.55, p = .02). Those participants who were closer to the 

optimal accuracy criterion in the symmetric task (mean = 325; i.e. they showed 

lower criterion biases) were more accurate and, as a direct consequence, gained 

more points. 

Overall these results indicate that behavioural performance on the two 

conditions required different strategies in order to maximise winnings. Indeed, 

participants had to place their criterion closer to the optimal accuracy criterion 

in the symmetric condition but shift their criterion away from it, closer to the 

optimal reward criterion, in the asymmetric condition in order to maximise their 

winnings. 
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8.4.2.7 Correlations between measures of task performance and scores on 

the working memory task 

Correlations were run between the scores on the working memory task (i.e. the 

proportion of correct responses) and scores on the category learning task, 

indexed by the decision criteria and the number of points earned in the two 

conditions. Results showed that there was no significant correlation between any 

of these measures (p > .23; table 8.6). 

Table 8.6. Correlations between scores on the working memory (WM) task and task 
performance measures (fitted = criterion calculated by the formal model; score = points 
earned; a, asym = asymmetric; s, symm = symmetric) 

WM scores Pearson Correlation 

Sig. (2-tailed) 

N 

fitted a 

-.013 

.960 

18 

8.4.2.8 Performance and personality 

fitted s 

-.300 

.226 

18 

asym score symm score 

.238 

.342 

18 

.293 

.239 

18 

The analyses reported below aimed to establish the relationship between the 

four personality components extracted through the PCA (chapter 4) and 

performance during the two task conditions, in particular the fitted criterion. 

These analyses were also only conducted for the data of those participants who 

experienced the asymmetric task first and who developed the appropriate 

strategy (N = 18). 

8.4.2.9 Correlations between personality and the criteria set during the 

symmetric and the asymmetric task 

A series of correlations assessed the relationship between the four extracted 

personality components and the criterion location scores. Results showed that 

there was a significant positive correlation between scores on the positive 

schizotypy (PS) component and the fitted criterion in the asymmetric task (r = 

.56, P = .016; table 8.7). Hence, participants with high scores on the PS 

component tended to show a greater criterion bias than their low counterparts 
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during performance on the asymmetric task. None of the personality 

components was significantly correlated with the decision criterion shown 

during the symmetric conditions. 

Table 8.7. Correlations between the four personality components and decision criteria in 
the two task conditions (fitted_s = criterion set in the symmetric condition; fitted_a = 
criterion set in the asymmetric condition) 

fitted a fitted s 

Extraversion Pearson Correlation -.354 .006 
Sig. (2-tailed) .150 .980 
N 18 18 

Neuroticism Pearson Correlation .092 .328 
Sig. (2-tailed) .718 .184 
N 18 18 

Positive schizotypy Pearson Correlation .557 -.115 
Sig. (2-tailed) .016 .649 
N 18 18 

Impass Pearson Correlation -.150 -.124 
Sig. (2-tailed) .552 .625 
N 18 18 

8.4.2.10 Mixed between-within measures ANCOV As 

Several ANCOV As were run to assess the impact of personality factors on the 

decision criterion during the two tasks. Since the personality components were 

continuous factors, it was necessary to treat them as covariates. Owing to the 

small sample size included in the analyses once participants who did not apply 

the appropriate positional decision rule were excluded (non-learners), each 

personality component was entered separately. 

Results supported the observations made in the exploratory correlational 

analyses and they showed that positive schizotypy affected the shift in bias 

across the two task conditions. In fact, there was a significant 2-way interaction 

between positive schizotypy scores and payoff [F(1,16) = 4.76, P = .044]. As 

observed in the behavioural analyses, the main effect of payoff was not 

significant [F(1,16) = .43, ns]. 
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These results support the correlation results and, therefore, it was decided to 

further explore the impact of positive schizotypy on performance. 

In order to gain a better understanding of the significant interaction between 

positive schizotypy and payoff, it was decided to calculate the criterion shift 

across conditions (i.e. asymmetric criterion - symmetric criterion). The 

correlation identified a significant correlation between the two factors (r = .48, P 

= .044), which is expected since this analysis is mathematically identical to the 

interaction between PS and payoff, observed in the ANCOVA analysis. The 

Scatterplot visually exemplifies the present results (figure 8.4). 

o 

o 

o 

-1 
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o 

o 

o 

o 

R Sq Unear = 0.229 

o 

2 

Positive schizotypy (standardised scores) 

Figure S.4. Scatterplot summarising the relationship between positive schizotypy and the 
criterion shift across condition (shift = asymmetric - symmetric) 

A further graphical aid to understand the present results was used by applying 

the median split technique on the PS component, in order to transform it into a 

binary valued factor, which was coded as 1 for low scores and as 2 for high 

scores. However, the median split technique was used purely as a visual aid 

(figure 8.5) rather than as an analysis tool since, owing to the small sample size, 

power was very low. 
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Figure 8.5. Relationship between the fitted decision criterion across the two task conditions 
and scores on the positive schizotypy component 

8.4.2.11 Relationship between covariance measures, personality 

components and strategy used 

Point-biserial correlations were run in order to establish whether the type of 

strategy used (appropriate uui-dimensional rule coded as 1 vs. alternative 

strategies coded as 0) in the two conditions was associated with scores on the 

WM task and/or any of the personality components. Results showed that scores 

on the WM task were not associated with the type of strategy implemented 

during performance (r = -.01, ns). Moreover, a trend for a significant negative 

correlation was found between scores on the extraversion component and the 

type of strategy used in the symmetric condition (r = -.33, P = .06). Hence, 

according to these results it seems that introverts were more likely to use the 

appropriate uui-dimensional rule in the symmetric task. No personality 

component was found to be associated with the type of strategy implemented in 

the asymmetric task (ps > 0.18). 

As expected, the use of the appropriate uuidimensional strategy was positively 

correlated with the amount of points earned in both the asymmetric condition (r 

= .84, P < .001) and the symmetric (r = .66, p < .001) condition. 
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8.4.2.12 Non-learners 

Results showed that among non-learners who performed the asymmetric task 

first, the accuracy levels were non-significantly below chance levels in both task 

conditions {asymmetric: 48%, [t(13) = -.96, ns]; symmetric: 47%, [t(13) = -.66, 

ns]}. Hence, in the present study the use of alternative strategy was associated 

with lower accuracy and greater response bias in the asymmetric task; similarly, 

they showed a negative bias in the symmetric condition (table 8.8). The noise 

levels were significantly higher among those participants who did not 

implement a uni-dimensional strategy than among those who used the 

appropriate dimensional strategy in both the asymmetric [t(30) = 8.0, p <.001] 

and the symmetric condition [t(30) = 5.6, P <.001]. 

Table 8.8. Criteria and noise levels shown by those participants who implemented a uni
dimensional strategy (UD-users; N = 18) and those who implemented an alternative 
strategy (non-UD users; N = 14). 

Crit a Noise a Crit s Noise s 

UD users 341. 84 (31.1) 98.28 (47.2) 334.89 (22.3) 73.49 (41.9) 

Non-UD users 344.70 (35.5) 260.52 (68.2) 304.95 (53.3) 214.43 (97.0) 

Overall, the results are inconclusive due to the aberrant behaviour observed in 

participants who experienced the symmetric task condition first and due to the 

limited number of participants who learnt to implement the optimal rule. 

8.4.3 Preliminary simulations 

8.4.3.1 Preliminary simulations with the RPE-based neural model 

Preliminary simulations were conducted in order to ensure that the RPE-model 

could capture human behaviour. Indeed, in the previous chapter, it was observed 

that the model could simulate the response bias in the asymmetric task but could 

not capture category learning, as indicated by the fact that the simulated data 

had very high noise levels and did not reproduce the step-like learning function 

observed in the human data (figure 8.7). The simulated data were fitted using 
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the same fonnal model used to extract the fitted criterion in the human data and 

chapter 7. 

The RPE-based model was able to reproduce the shift in bias across the two task 

conditions observed by Markman and colleagues (2005) and in the present 

study. The values used for the SR and RP learning rate parameters were the 

same as the ones used in chapter 7, to simulate the data from the Markman and 

colleagues' study. The reinforcement (rf) values are the same used in the 

simulations reported in chapter 7 (table 8.9) 

Table 8.9. Reinforcement (rt) values used for the two payoff conditions 

High payoff Low payoff 

category category 

~ X ~ X 

Asymmetric 1 0.25 0.5 0.25 

Symmetric 0.75 0.25 0.75 0.25 

These rf values were multiplied by a constant value (i.e. m) equal to 1 (cf. m 

was set equal to 0.5 in chapter 7) and the rptonic value had to be set equal to 0.3 

(cf. rptonic = 0.5 in chapter 7) to simulate the human data. All other parameter 

values, however, were maintained from the simulations in the previous chapter 

data (table 8.10). 

Table 8.10. Parameters' values implemented in the simulations 

Symbol Description Value 

rptonic Reward prediction tonic value 0.3 

m Scales the rf values 1 

b11b2 Learning rates of the RP unit 0.05*scalerl 

b31b4 Learning rates of the SR unit 0.05*scaler2 

Scaler! It scales the learning rate of RP unit 2 

Scaler2 It scales the learning rate of RP unit 2 
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As predicted, in the asymmetric condition, simulated 'participants' showed a 

response bias in favour of the high payoff category as captured by a criterion 

equal to 340.30 (s.d. 53.3). In contrast, they showed no response bias in the 

symmetric task as indicated by a criterion location mean equal to 325.43 (s.d. 

16.0). 

However, the simulated 'participants' showed noise mean levels much higher 

than those shown by those human participants, who were well-fitted by the uni

dimensional model (table 8.11). 

Table 8.11.Simulated and actual (human) criteria and noise levels obtained in the 
asymmetric and the symmetric condition (asy = asymmetric, sym = symmetric) 

Criterion asy Noise asy Criterion sym Noise sym 

Simulated 340.30 (53.3) 248.38 (52.1) 325.43 (16.0) 292.66 (18.5) 

(N=300) 

Human 341.84 (31.1) 98.28 (47.2) 334.89 (22.3) 73.49 (41.9) 

(N=18) 

Owing to the high noise levels, the model showed quite flat learning functions 

rather than the step-like learning functions displayed by human participants 

(figure 8.6). 
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Figure 8.6. The figures represent the learning functions observed across typical 
participants from the simulated (left) and the human (right) data in the asymmetric (top) 
and the symmetric (bottom) task conditions. The red stars represent the actual data 
whereas the blue circles the model fitting data. 

These observations indicate that even though the model is able to capture the 

response bias observed in the empirical data, it was not able to capture the 

learning process shown by a significant number of the human participants. 

Nonetheless, the simulated flat learning curves resemble the learning patterns 

observed among those participants who were not fitted by the uni-dimensional 

model (i.e. participants using an alternative strategy; figure 8.7). 
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Figure 8.7. Learning functions observed among those participants who were not fitted by 
the uni-dimensional formal model (i.e. were guessing or using an alternative strategy). The 
red stars represent the actual data whereas the blue circles the model fitting data. 

Additionally, both the simulated 'participants' and the human participants, who 

failed to implement the appropriate dimensional strategy, showed similar high 

levels of noise (i.e. noise> 200; table 8.12). 

Table 8.12. Noise levels shown by simulated 'participants' and those participants who did 
not use a dimen metric) sional strategy (non-UD; asy = asymmetric vs. sym = sym 

Noise asy Noise sym 

Simulated 248.38 (52.1) 292.66 (18.5) 

(N =300) 

Non-UD 260.52 (68.2) 214.43 (97.0) 

(N=14) 

Overall, these results suggest that two processes may be simultaneously active 

and mediate different aspects of learning. Indeed, the data shows that the RPE

based process may be involved in mediating reward-related learning which 

establishes the relationship between stimuli and appropriate responses. 

According to these results, reward-related learning is mediated by DA activity 

but it is not able to capture the actual categorical, step-like decision function. In 

other words, the DA-based, implicit system is involved in gradually fme-tuning 

the solution to the categorisation problem (i.e. which stimuli belong to which 

category), but does not develop a uni-dimensional strategy. A rule-based process 

may be active during performance on this task (which is formally at least a RB 

CL task) and this may allow participants to develop a dimensional strategy more 

rapidly, and one which has sharper category boundaries. 
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Thus, a revised version of the model was developed to capture the learning 

process observed in the behavioural data. The revised model adds an explicit 

rule-based module to the more implicit, RPE-mediated, process described in this 

section. 

8.4.3.2 Rule-based component of the Model 

The revised version of the model includes both the implicit process from the 

original model and an explicit, rule-based process that is able to capture the 

step-like categorisation function observed in much of the human behavioural 

data. As described in the previous section, the implicit learning is captured by 

the RPE model and is, thus, mediated by the BAS. 

The revised model relies on participants applying an explicit, rule-based strategy 

to learn to categorise the different stimuli into the relevant categories. For 

simplicity, the explicit module is not modelled in a neural fashion but it is 

implemented mathematically. This simplification of the model is justified by the 

fact that the functioning of the explicit model is not at the heart of the 

simulations. The explicit module solves the categorisation problem by 

implementing a simple and verbal rule (e.g. stimuli on the left of the screen 

belong to category A; otherwise B). This rule is based on signal detection theory 

(SDT) and it accounts for the patterns of generalisation observed during the 

task. 

According to signal detection theory (SDT), the participants are expected to split 

the perceptual space into two regions associated with category A and category B 

by identifying the 'optimal decision bound' (Bohil & Maddox, 2001; Maddox & 

Dodd, 2001). This perceptual decision criterion facilitates the task of classifying 

stimuli as members of either category by applying a uni-dimensional strategy. In 

the present neural model, the optimal rule requires participants to split the 

screen into two equal spatial zones and use this as a perceptual decision bound. 
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Hence, equation 7.6 is modified in order to include an explicit rule unit that 

ensures that the one-dimensional strategy has been implemented with a sharp 

categorical boundary to solve the categorisation problem (equation 8.1): 

Eq.8.1 

where Cj (which is either 0 or 1) is defined below in equation 8.2. The rulebias 

parameter is a biasing output which represents the output from a "rule" module 

and it determines how strongly participants apply the explicit rule to solve the 

categorisation problem. This parameter determines the relative influence of the 

rule module during performance on the task with the actor units receiving the 

biasing input. The size of rulebias parameter (which can take any positive 

value), relative to the inputs from the "raw" cortical representation of the 

stimulus, determines the degree of rule influence. Hence, in the revised neural 

model, the inputs into the actor units are a combination of inputs from the 

cortical stimulus coding units (gated by SR weights Wij) and a perceptual rule 

bias signal applied to one of the response selection units. The same winner-take

all rule for the response selection that was used in the RPE-only model is 

implemented in the revised version of the model. Once again, the model 

includes a simplification that is probably at odds with the real underlying neural 

architecture. In the model, convergence of the rule and SR procedural 

information occurs at the striatum where response selection occurs between 

competing responses. The anatomy of corticostriatal projections (Seger, 2008) 

suggests that the likely convergence of different kinds of cortical inputs will 

take place on the output side of (i.e. downstream of) the striatum. The behaviour 

of the model is unlikely to be greatly affected by this simplification. 

A perceptual rule is used to determine which actor unit receives the rulebias 

input. The rule is quite simple and it relies on the assumption that category 

membership is determined by comparing the perceived position of the stimulus 

on trial n (K'[n]) to the decision bound (threshold, 9; equation 8.2): 

if K' [n] <= 9 then Cl = 1 and Cz = 0; otherwise, Cl = 0 and Cz = 1 Eq. 8. 2 
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This decision process is in line with the signal detection theory (SDT) model, 

the simulated participants are expected to split the perceptual space into two 

regions associated with category A and category B by identifying the 'optimal 

decision bound' (Bohil & Maddox, 2001; Maddox & Dodd, 2001). However, 

the present model does not assume that the participants are striving for a 

perceptual division of the screen which would optimise their decision making 

accuracy. Rather, it assumes that the perceptual division is based on principles 

of simplicity, i.e. dividing the screen into equal-sized zones. In many tasks, as in 

the current one, this perceptual division coincidentally does correspond to the 

optimal accuracy decision bound. 

For a task with x categories, the rule model requires x-I threshold(s) to solve 

the categorisation problem. This perceptual decision criterion facilitates the task 

of classifying stimuli as members of each category. In the present neural model, 

the simulated 'participants' are expected to split the screen into x spatial zones 

after identifying a decision bound that divides up the stimulus space into equal

sized zones. According to equation 8.2, during perfonnance on a 2-category 

task, stimuli with pixel location values lower than the threshold are associated 

with the response selection unit denoted by the value j=1. For simplicity it is 

assumed that this is the response selection unit that most often leads to the 

correct response for that stimulus. In doing this the counterbalancing used in the 

real experiment is ignored. A further assumption is that the correct mapping 

(e.g., 'left' screen stimuli should receive a button A response), for a particular 

subject, is acquired rapidly during the first few trials of the task and this process 

is not modelled. 

There are simple ways to capture the rule module in a somewhat more neural 

fashion, in future refinements of the model. For example, one might employ a 

cortical module which recodes the raw pixel value of the stimulus into a simple 

high-level representation of its global screen position (e.g. as a pair of binary 

inputs [10] if the stimulus is on the left; and [01] if the stimulus is on the right). 

This could then serve as another source of input to the striatal actor and critic 

units, with modifiable synapses trained in the same fashion as the synapses from 

the pixel-position, topographic representation which is currently employed. 
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Maddox and Bohil (1998), amongst many others, have indicated that human 

signal detection performance is characterised by trial-by-trial error which is 

caused by both perceptual and criterial noise. Perceptual noise is variability in 

the way participants perceive identical stimuli over trials whereas criterial noise 

indicates the variability in the way participants place their criterion over trials 

(i.e. the spatial zones discussed above). Over trials, participants can show 

different responses to similar stimuli due to both types of noise. Therefore, the 

present neural model includes noise in order to simulate more human-like 

performance data. The effects of the noise parameter were added to the actual 

stimulus location on trial n (K[n]) in order to capture its effect on performance 

(equation 8.3): 

K'[n] = K[n] + E[n] Eq.8.3 

where E[n] represents the error element, determined by combined perceptual 

and criterial noise, on trial n. E]n] is a random variable drawn from a normal 

distribution with mean equal to 0 and standard deviation equal to pnoise. This is 

one of the main parameters in the model whose value varies across the 

simulations. Having set the pnoise value equal to 50 implies that on 95% of 

trials participants will perceive the centre of the stimulus as being within +/- 100 

pixels of the true value. Thus, over trials perceptual and criterial noise (which 

are combined here into a single error term here) vary stimulus perception and so, 

indirectly, affect the criterion location process. 

8.4.3.3 Preliminary simulations with the rule-based model 

Preliminary simulations were conducted in order to capture the behavioural data 

displayed by human participants (i.e. decision bound and noise). The 

simulations were conducted using a learning parameter (scaler) equal to 2, 

rulebias was set equal to 0.6, rptonic was set equal to 0.5 and rf values were 

set equal to 0.8, 0.6, 0.4 and 0.2 for 400, 300, 200 and 100 points, respectively 

(since m, the rf scaler, was set equal to 0.8). This set of parameter values (set A) 

was chosen due to its ability to capture the behavioural data of those individuals 
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who were well-fitted by the formal model and, following preVIOUS 

considerations, those who had experienced the asymmetric task first 1 2 
• Indeed, 

the simulated criterion and noise level values were close to those values 

observed among human participants (table 8.13). Thus, the stimulus set 

implemented in the neural model produced a good simulation of the data from 

the human participants who were well-fit by the uni-dimensional formal model. 

Table 8.13. Simulated and actual (human) criteria and noise levels obtained in the 
asymmetric and the symmetric condition (asy = asymmetric, sym = symmetric) 

Criterion asy Noise asy Criterion sym Noise sym 

Simulated 341.67 (8.9) 69.82 (8.8) 327.15 (9.0) 59.79 (10.0) 

(N =300) 

Human 341.84 (31.1) 98.28 (47.1) 334.89 (22.3) 73.49 (41.9) 

(N=18) 

A possible reason why the human participants showed a slight bias in the 

symmetric condition may be as a result of a carry-over effect from having 

experienced the asymmetric task first. 

8.4.3.4 Procedural module parameters 

The model was also found to be able to simulate various magnitudes of response 

bias as a function of the SR learning weight parameter that modulates the 

learning rate (Awjj) by scaling the RPE signal (equation 8.4). 

Eq.8.4 

where b3 and b4 represent the learning and extinction rates of the actor (SR) unit 

with positive and negative RPE signals, respectively. The b3 and b4 parameters 

are equal to: 

12 Simulations were run to capture perfonnance of those participants who had experienced the 
asymmetric task first; in fact the model could not capture the aberrant behaviour displayed by 
those participants who experienced the symmetric task first. Moreover, the model was 
insensitive to the order in which the two conditions were tested 
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Eq.8.5 

where the scaler! parameter scales the learning rate of the SR association. In 

these simulations reported above scalerl was set equal to 2, so that the b3 and b4 

parameter were equal to 0.1. Decreasing the scaler! value from 2 to 1 and, 

therefore, b3 and b4 to 0.05 significantly reduced the response bias to 326.45 

(9.90) and the noise level was also reduced (mean = 49.09, s.d. = 9.2); in 

contrast increasing b3 and b4 to 0.2 produced a response bias equal to 346.20 

(10.96) and a noise level equal to 110.85(12.60). 

Similarly, it is possible to modify the degree of response bias by varying the 

value of the tonic reward prediction input (i.e. rptonic). Indeed, as shown above 

an rptonic value equal to 0.5 and scaler equal to 2 were found to produce a 

response bias on average equal to 341.67 (s.d. = 8.90) pixels and a mean noise 

level equal to 69.82 (s.d. = 8.84). However, when leaving all parameters 

constant but increasing the reward prediction input to 0.6, both the mean 

response bias and noise level are increased [mean criterion = 355.63 (s.d. = 

9.34); mean noise level = 105.06 (s.d. = 11.29)]. 

As implied by the dramatically reduced noise parameters in the simulations with 

the revised neural model, this was now also able to simulate the step-like 

learning function observed in the empirical data (figure 8.8). 
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Figure 8.8. Simulated 'behavioural' data in the two task conditions. The red stars 
represent the actual data whereas the blue circles the model fitting data. 

An alternative set of parameter variation was also tested (set B), which had a 

scaler value of 1.5, the rf values were 0.25, 0.5, 0.75 and 1 (for 100, 200, 300 

and 400 points, respectively, since m was set equal to 1) while rulebias was set 

equal to 0.35. These values were chosen due to their ability to capture human 

behaviour. Simulations obtained using the alternative set of variables (set B) 

showed very similar results to the ones obtained by using set A 13. This is not 

surprising since the two variable sets are not entirely independent (cf. inter

related) since both reward magnitude and the scaler parameter indirectly 

mediate learning by affecting the size of the RPE signal on each trial. Hence, 

simulations using the different parameter sets offered very similar simulation 

results. 

13 The simulated asymmetric criterion was equal to 342.69 (s.d. = 10.0) and the noise level was 
58.75 (s.d. = 11.7), whereas the symmetric criterion was equal to 322.21 (s.d. = 7.8) and the 
noise level was 48.94 (s.d. = 9.5) 
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Explicit module parameters 

Figure 8.9 visually represents the distribution of the decision bound for the 

asymmetric condition, following 300 simulations using parameter set A. It was 

noticed that there was a great variation across the decision bound set by the 

simulated 'participants' and this variation must be caused by individual 

variation across the simulations. This variation could, therefore, be due to the 

fact that the initial input weights into the actor unit are individually randomized, 

as this was one of the only features that was different between simulated 

'participants' . 

Simulated criteria 

Figure 8.9. Histogram representing the tabulated frequencies of the criteria simulated with 
pnoise = 50 

The parameter that set perceptual noise also added inter-individual differences 

on the decision bounds. Indeed, each simulated participant was due to 

experience a stimulus centred at 310 pixels on trial n of the task, but the 

perceived position was of the stimulus was cantered at 310 ± perceptual noise. 

Therefore, the same stimulus could be classified differently by different 

'participants' depending (randomly) on the amount of noise experienced. Thus, 

it was decided to reduce the value of the perceptual noise (pnoise = 50). Indeed, 

the greater the noise, the greater the difference in allocation of category 

membership across 'participants'. By trial-and error, it was found that one could 

decrease the criterion variation by setting pnoise equal to 12.5. 
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However, simulation results obtained with pnoise equal to 12.5 were not very 

efficient at reproducing the human data. In fact, the simulated noise level was 

much lower (mean = 52.64 and s.d. = 2.3) than the one set by human 

participants (mean = 98.28 and s.d. = 47.1). Subsequently, the step-like learning 

function was steeper than the one observed in humans (figure 8.10). 
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Figure 8.10. Simulated learning function with pnoise = 12.5 

Following these considerations, it was decided to run the simulations using the 

original pnoise value (50) since it seems to capture the human data better than 

pnoise equal to 12.5. 

The rule bias parameter determines how strongly participants apply the 

appropriate explicit rule, where the higher the value of rulebias, the more the 

performance is influenced by the rule module which sets the decision boundary 

symmetrically at 325 pixels in both conditions. Thus, if the rulebias value is 

decreased from 0.6 to 0.3, the response bias increases (357.99 and s.d. = 11.1) 

and so does the noise level (114.6, s.d. = 14.5). This reflects the relatively 

greater influence of the implicit RPE learning system on performance. 

Additionally, using a rulebias value of 0.3 also simulated much flatter learning 

curves (figure 8.11), explaining the increase in the noise parameters. 
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Thus, when the rulebias values is decrease, the impact of the explicit module is 

small and, simultaneously, the implicit module takes over and produces a 

greater response bias (as well as increased noise level). 

In conclusion, the present results indicate that the revised version of the neural 

model, which combines an explicit and an implicit system, is capable of 

capturing both the response bias and the learning function displayed by 

participants in the two task conditions. Moreover, as shown above, the model is 

able to simulate variation in response bias as a function of the learning rate 

(mediated by scaler). After the parameter values that offered the best 

simulations had been identified, individual differences (BAS-variation) were 

then included in the model to explore whether it could also simulate the 

behaviour-personality relationship observed in the empirical data. It was decided 

to report the simulation results obtained using the parameter set A14. 

14 Simulations run using parameter set B produced similar results and, therefore, led to the same 
conclusions 
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8.4.3.6 Simulations with individual differences 

Since, the BAS has been identified as a motivational-emotional system that 

relies on the DA system (Gray, 1987; Pickering, 2004; Corr, 2006), the present 

model assumes that the magnitude of RPE signals may be modulated by inter

individual variation, which resembles BAS variation. Thus, the added variation 

is referred to as simulated 'BAS' variation since the BAS is a plausible 

candidate for individual differences in reward-related learning. 

There are 4 sub-models that were tested, which were: BAS variation on the 

effectiveness of the reward signal projecting to the DA cell (model 1); BAS on 

both striatal cells and, subsequently (model 2); the separate impact of BAS 

variation on each striatal cell [i.e. actor (model 3) and critic sub-units (model 

4)]. Adding BAS variation on the reward cell captures individual differences in 

sensitivity to actual rewards. This sub-model resembles the classical view in 

which RST describes the BAS system as sensitive to reward and reward-related 

stimuli (Corr, 2006). In particular, individuals with a highly responsive BAS are 

expected to perceive the reinforcement signal more strongly and, therefore, the 

coded reinforcement value (rt) has a larger impact on the DA cell (cf. low BAS 

individuals). 

The other neural sub-models assume that 'BAS' variation acts directly on the 

effectiveness of the RPE signal (i.e. RPE = RPE*BAS) and, by doing this, it is 

able to add variance to the strengthening or weakening of active synapses under 

a positive or negative RPE. The sub-model with the BAS acting on the striatal 

cell denoted as 'a' in figure 7.1 (i.e. model 4; see chapter 7) captures the impact 

of individual differences on the RPE signal acting on the synapses of the reward 

prediction (RP) critic cell. In contrast, the sub-model with the BAS acting on the 

striatal cell denoted as 'b' (model 3; see figure 7.1) captures the impact of 

individual differences on the RPE signal acting on the actor synapses of the SR 

cell. 

In each sub-model, the 'BAS variance' is added simply by multiplying the 

relevant parameter (i.e. rf or RPE) by a 'BAS value' for each simulated 
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participant. Initial simulations are run with a random uniformly distributed BAS 

variation which ranged between 0 and 2. 

The two striatal cells are innervated by RPE-DA signals (Brown et aI., 1999; 

Joel et aI., 2002; Seger, 2008). Thus, the weights of these corticostriatal 

synapses are mediated by DAergic firing according to the 3-factor learning rule 

(Ashby et aI., 2007; Seger, 2008). Hence, the strengthening of these synapses 

(i.e. learning) is highly dependent on DAergic activity and, more specifically, on 

D1 and D2 receptors sensitivity (Calabresi et aI., 2007; Seger, 2008; Schotanus 

and Chergui, 2008). Schotanus and Chergui (2008) have observed that D1 

receptors seem to mediate learning in the areas where the critic is located; 

whereas both D 1 and D2 receptors mediate learning in areas when the actor is 

located. BAS variation on the SR (actor) cell captures the inter-individual 

variation in sensitivity to the RPE signal with high BAS scores associated to 

greater responsiveness to RPE and, therefore, enhanced SR associative learning 

and unlearning. Finally, BAS variation on the RP (critic) cell captures individual 

differences in sensitivity to RPE and, thus, learning and unlearning the reward 

prediction for each stimulus. The parameter values used in the simulations 

reported below are summarised in table 8.14. 

Table 8.14. Parameters' values implemented in the simulations 

Symbol Description Value 

rptonic Reward prediction tonic valne 0.5 

rulebias Strength of explicit module 0.6 

m Scales the rf values 0.8 

Pnoise Perceptual and criterial noise 50 

bI and b2 Learning weights of the RP unit 0.05*scalerl 

b3 and b4 Learning weights of the SR unit 0.05*scaler2 

Scalerl It scales the learning rate of RP unit 2 

Scaler2 It scales the learning rate of SR unit 2 
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Modell: BAS on the reward cell (inter-individual differences in 

sensitivity to rewards) 

Simulations using this sub-model were run first, since this sub-model represents 

the action of the BAS according to the classical assumptions made by RST 

(Gray, 1987; Corr, 2006). Simulations with a model with the BAS acting as a 

multiplier on the reward inputs to the DA cell showed a negative correlation 

between the BAS value and the fitted criterion (r = -0.50, P <.001) in the 

asymmetric task. The relationship between the BAS and the fitted criterion is 

visually represented in figure 8.12 and appears to be curvilinear. Indeed, the 

relationship between the BAS and performance is negative for those 

'individuals' with BAS scores between 0.4 and 1.2, whereas it is flat above 1.2 

and positive for those with BAS scores below 0.3. 

420 r----..--.---,------..---.--,------..---.--,------, 

i" 
~0~~0~.2-0~.4~70.76~0~.8-~~1.72~1~.4-~1.6~~1.78~2 

"BAS· parameter value 

Figure 8.12. The scatterplot represents the relationship between the BAS variation and the 
fitted criterion in the asymmetric task for 300 simulated subjects with random uniform 
BAS parameter variation 

If the relationship between 'reward sensitivity' and the behaviour in the 

asymmetric condition is strongly curvilinear as represented in figure 8.13, then 

it is likely that this relationship would be diffIcult to detect in real data using 

linear techniques (e.g. correlation and regression analyses). This diffIculty 

would become more acute when one attempts (in real data) to observe the 

relationship between a personality trait and the task behaviour, assuming that the 

two would be related by virtue of their shared relationship with the underlying 
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biology. As the personality trait relationships with underlying biological 

parameters are relatively weak (Blum et aL, 2000; Reuter et aL, 2006; Lee et aL, 

2007; see chapter 7), and the task and biology may relate non-linearly, it is 

possible that the trait*task relationship may be undetectable in an experimental 

study with a typical sample size. 

During the symmetric condition, the weak correlation between the BAS 

variation and the fitted criterion was of borderline significance (r = -0.11, p = 

0.051). Figure 8.13 suggests that this correlation is mainly an effect of the fact 

that 'individuals' with BAS scores lower than 0.5 on average showed a slight 

positive bias (i.e. criterion> 325) that is not observed amongst those who scored 

higher than 0.5. 
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Figure 8.13. The scatterplot represents the relationship between the BAS variation and the 
fitted criterion in the symmetric task for 300 simulated subjects with random uniform BAS 
parameter variation 

Model 2: BAS variation on both of the striatal cells 

The next simulation conducted with the revised model was the model with the 

BAS acting as a multiplier on both striatal cells. Results showed that, for the 

asymmetric condition, the rule model could capture a positive relationship 

between the BAS variation and the fitted criterion (r = 0.59, p <.001). This 

relationship is presented in the scatterplot below (figure 8.14). 
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Figure 8.14. BAS*behaviour relationship in the asymmetric task for 300 simulated subjects 
with random uniform BAS parameter variation 

The relationship between the BAS and the criterion was non-significant in the 

simulated symmetric condition (r = -.07, ns; figure 8.15). 
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Figure 8.15. BAS*behaviour relationship in the symmetric task for 300 simulated subjects 
with random uniform BAS parameter variation 

Model 4: BAS on the critic reward prediction cell (RP; striatal cell 'a'; 

see figure 7.1 in chapter 7). 

The results showed that this model was also able to capture the step-like 

learning function but the correlation between the BAS and the fitted criterion 

was significant but weak (r = -0.14, p = .012). The relationship between the 
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BAS and the criterion was non- significant in the symmetrical condition (r = 

0.08, ns). 

Model 3: BAS on the actor stimulus-response cell (SR cell; striatal cell 

'b'; see figure 7.1 in chapter 7) 

The simulated data showed a positive correlation between the BAS and the 

asymmetric criterion (r = .76, P <.001), as visually represented in figure 8.16. 
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Figure 8.16. The scatterplot represents the relationship between the BAS variation and the 
fitted criterion in the asymmetric task for 300 simulated subjects with random uniform 
BAS parameter variation 

As expected, the correlation between the BAS and the fitted criterion was non

significant (r = -0.09, ns) in the symmetric condition (figure 8.17). 
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Figure 8.17. The scatterplot represents the relationship between the BAS variation and the 
fitted criterion in the symmetric task for 300 simulated subjects with random uniform BAS 
parameter variation 

It is possible to conclude that the correlation observed from the model with BAS 

acting as a multiplier on both of the striatal cells was driven from the strong 

correlation observed in the model where BAS acts on the SR cell. Moreover, the 

results indicate that as a strong correlation exists in the model, it should be 

possible, using the same paradigm, to detect a similar relationship between 

performance on the task and the BAS-trait in an empirical study. However, as 

the correlation between personality trait scores and the biological equivalent of 

the BAS parameter is likely to be quite modest, the correlation between trait 

scores and behaviour on the task is likely to be even more modest. For example, 

imagine that the correlation between personality trait scores and the biological 

equivalent of the BAS is equal to 0.3. In addition, the model shows that the 

correlation between the simulated behaviour and the BAS parameter may be of 

the order of 0.75. Thus, the upper limit of the correlation between the 

personality trait scores and the actual behaviour is equal to 0.23 (= 0.3*0.75). 

This is a weak correlation, but it could be captured with 80% power in a sample 

size of 113 in an empirical study. Such sample sizes are plausible in personality 

research. However, due to various exclusions in the present experiment, the 

current study is underpowered and it was unlikely to detect such a small effect. 

These considerations indicate the importance of the model in determining the 

upper limit of the effect size (e.g. Cohen's d or Pearson's r) and, therefore, 

determining the sample size necessary to detect the trait*behaviour relationship 
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m an experimental study. Nonetheless, the present results showed that the 

correlation between positive schizotypy and behaviour had a correlation 

coefficient greater than 0.5 and it was significant, in spite ofthe small sample (N 

= 18). 

Overall, these simulations further support previous observations that indicate 

that the present CL task may be a useful tool to explore the relationship between 

the BAS and behaviour owing to the results that show a strong simulated 

relationship between the biology and behaviour. Moreover, it appears that the 

best-simulating models are the sub-model where the BAS acts as a multiplier on 

the reward cell (model 1) and the sub-model where the BAS acts as a multiplier 

on the SR cell (model 3). 

8.5 Discussion 

The results obtained in the study replicate the fmdings, obtained by Markman 

and colleagues (2005) that showed that reward manipulations affect 

performance on a nominally RB task. Indeed, participants in the present study 

showed a tendency to place their decision criterion away from the optimal 

accuracy criterion and closer to the optimal reward criterion under asymmetric 

payoffs. In other words, they identified probabilistic stimuli more frequently as 

members of the high payoff category than as members of the low feedback 

category. The response bias shown by participants in the present study was 

much more conservative than the bias in the original study. Obviously, this may 

result from sample differences across the two studies. Participants in the present 

study seemed to have been less willing to sacrifice accuracy as much as those in 

the original study. The current results are in line with evidence that shows that 

humans show smaller response biases in favour of winnings than the biases 

produced by the optimal classifier (Maddox & Bohil, 2005; Maddox, Bohil and 

Dodd, 2003). 

Under the symmetric payoff matrix condition, by contrast, participants placed 

their criterion close to the optimal accuracy criterion (i.e. criterion shift across 
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payoff conditions). However, this shift in bias across conditions was observed 

only for those participants who experienced the asymmetric condition prior to 

the symmetric one. Those participants who experienced the symmetric task prior 

to the asymmetric task showed an aberrant pattern of responding (i.e. positive 

bias in the symmetric task). Since these latter results were not simulated by the 

neural model and counterintuitive to the initial predictions, data from this CB 

order was excluded. Results further indicated that the shift in bias, observed for 

those participants who experienced the asymmetric task first, was mediated by 

individual differences. In particular, individuals who scored high on positive 

schizotypy were found to show a greater shift in bias than their low scoring 

counterparts. However, the fact that the order of task presentation had such a 

profound effect upon task behaviour limits the conclusiveness of these findings. 

The behavioural fmdings are somewhat counterintuitive to the COVIS model 

which postulates that the reinforcing aspects of reward manipulations should not 

have affected performance on RB tasks of the type used in this study. 

Nonetheless, the present results showed that an asymmetric payoff matrix led to 

a response bias in favour of the high payoff category. Queller and colleagues 

(1999) found that reward frequency manipulations did not impair learning on a 

rule-based CL task. Similarly, several studies have indicated that learning on an 

RB task could occur in the absence of trial-by-trial feedback (Waldron & 

Ashby, 2001; Ashby et aI., 2003). These results may be explained by the fact 

that due to their simple structure, participants can learn RB tasks regardless of 

feedback manipulations. Nonetheless, it is possible that more subtle reward 

manipulations (e.g. variations in reward magnitude) may affect performance on 

an RB task by activating the implicit system. Additionally, in the present study 

participants were openly asked to respond quickly. Ashby and colleagues (1998) 

have suggested that such an instruction may lead to the activation of the implicit 

system. 

There are various ways to resolve this tension with COVIS. The first would be 

to argue that reward feedback from the asymmetric payoff matrix acts as a 

source of information as well as a source of reinforcement. The explicit system 

could, in principle, manipulate feedback information consciously and explicitly, 
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in working memory, to adjust the decision criterion. However, this does not 

seem very plausible and it does not fit with the verbal reports from participants 

who did not mention any deliberate asymmetry in their criterion placement. A 

second approach, followed by Maddox and colleagues (2006) is to propose an 

indirect effect of the reward feedback, via regulatory fit, on cognitive flexibility 

in the explicit system (discussed earlier). Finally, the approach, encapsulated in 

the modelling, is to argue that the criterion placement is an implicit learning 

process driven by the reinforcing properties of reward and this is superimposed 

upon the workings of the explicit system. The latter is perceptually-guided and it 

solves the task in the way described by COVIS. 

Overall, the modelling results indicate that the explicit and implicit learning 

systems mediate different aspects of performance on the CL task. The explicit 

system is involved in solving the categorisation problem whereas the implicit 

system mediates the response bias. Evidence to support the co-activity of the 

two systems during performance on the task also comes from participants' 

verbal reports. Indeed, several participants were able to verbally describe the 

dimensional strategy that they had implemented to categorise the stimuli. In 

spite of showing a response bias in the asymmetric task (which was detected by 

the formal model in the data), they reported not using feedback information in 

their decision-making process. Thus, these verbal reports also seem to indicate 

that feedback processing was implicit. In the present model, the bias is produced 

by the 'statistical' properties of the RPE-based learning rules. 

The reason why the two systems are active at the same time may be due to the 

fact that the structure of the task never completely favoured activation of the 

explicit system over the implicit system. Indeed, it is possible that the explicit 

system becomes active during the first trials in order to solve the categorisation 

problem whereas the implicit system may become active at a later stage (i.e. 

once a perceptual criterion has been adopted). In this second stage of learning, 

the criterion is perhaps fme-tuned by the implicit learning process and so can be 

moved away from the optimal accuracy criterion and closer to the optimal 

reward boundary to maximise winnings. Indeed, this response bias is mediated 

by the implicit system according to simulations run using the neural model. 
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Scores on the WM task were found not to be associated with the decision bound 

shown by participants during the task. This is not surprising since the working 

memory ability is a process typically involved in the functioning of the explicit 

system while decision bound position was dependent on the functioning of the 

implicit system. Since both the implicit system and the BAS rely on the same 

midbrain DA projections, it was expected that BAS activation would mediate 

decision location. 

Measures of positive schizotypy were included in the study due to the overlap 

with the impulsivity construct. Moreover, positive schizotypy is likely to have a 

partly doparninergic basis (Kumari, et aI., 1999; Weiner et aI., 2003; Pickering, 

2004; see chapter 4 for more details). Hence, association between PS scores and 

criterion location consistent with the idea that PS may represent a DAergic trait. 

Positive schizotypy scales capture the positive symptoms typical of 

schizophrenia (Pickering, 2004). Schizophrenia is characterised by a 

dysregulation of the DA system and, in particular, by higher tonic DA levels 

(Julien, 2003; Juckel et aI., 2006a, 2006b). High tonic DA levels have been 

found to hinder reward sensitivity by blunting the phasic DA response to reward 

(prediction error; Juckel, et aI., 2006b; Knutson et aI., 2004). In a study by 

Juckel and colleagues (2006a) reduced phasic DA activity was found to be 

positively associated both with negative and, trend-wise, with positive 

symptoms of schizophrenia. In a study by Murray and colleagues (2007), 

patients with positive psychotic symptoms showed reduced RPE signals in the 

ventral striatum and a non-significant trend to respond to high frequency reward 

stimuli less frequently than healthy controls. According to these results, positive 

schizotypy could modulate reward sensitivity due to its relationship with DA 

activity (i.e. lower phasic DA firing; see chapter 2 for more details). Positive 

symptoms are associated to DA dysfunction in the striatum, which also 

processes reward (Carlsson, 2002; Murray et aI., 2007). Hence, scores on the 

positive schizotypy component might be expected to relate to performance on 

the present task, which is mediated by the striatum (Heinz, 2002; Murray et aI., 

2007). Future studies investigating the BAS and its underlying trait should 

include measures of extraversion, impulsivity and positive schizotypy in order 
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to assess which trait mediates perfonnance on the task according to RST 

predictions. 

However, hypodopaminergic-induced reward deficiency in schizophrenia is 

generally identified as one of the negative symptoms of schizophrenia (i.e. 

emotional and motivational deficits, such as 'apathy' and 'avolition'; Heinz, 

2002 p.14; Julien, 2003; Juckel, et aI., 2006b), which are not indexed by the 

positive schizotypy construct (cf. the introvertive anhedonia scale of the OLIFE 

questionnaire; Mason et aI., 1995). Introvertive anhedonia is a measure of 

negative schizotypy and was not included in the present study. Negative 

symptoms are caused by a DAergic dysfunction in the prefrontal cortex 

(Carlsson, 2002; Heinz, 2002; Juckel et aI., 2006a). Thus, negative schizotypy 

may be related to the BAS and, in particular, anhedonia may correspond to an 

underactive BAS. It would be more complex to simulate prefrontal 

hypodopaminergic activity and its effects using the current modelling. It is 

possible that reducing the rptonic signal may (indirectly) capture that effect. 

As already indicated, the main limitation of the present study is that the sample 

size is quite small, especially once those participants who were not using the 

appropriate strategy or showed an aberrant response pattern (i.e. participants 

who experienced the symmetric task first) were excluded from the analyses. 

Nonetheless, the model simulations indicated that the CL task could be a useful 

tool to explore the impact of reward manipulation during learning and the 

relationship between behaviour and the trait. Indeed, the neural model identified 

a strong biology*behaviour relationship that suggests it should be possible to 

detect the weaker personality-behaviour relationship in the empirical data even 

with a moderate-size small sample. 

Furthennore, the neural simulations indicated that the best sub-model candidates 

were the model with the BAS on the SR cell (i.e. actor unit; especially model 3) 

and the model with the BAS on the DA cell (model 1). 'Best' here indicates the 

model revealing individual differences that are more likely to be detectable in 

real data. Obviously, the real relationship between personality and the biological 

parameter might lie in the critic, within the ventral striatum. If this were true, the 
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model would strongly suggest that the current task would not show measurable 

relationship with personality. Thus, the modelling and behaviour results 

combined might allow us to rule out some locations as places where the 

biology*personality relationship is located. 

The results obtained in the simulations offer a deeper understanding of the 

behavioural data obtained in the study. The models make differing assumptions 

about the way reward affects performance during the task and, in particular, how 

the BAS responds to reward manipulations and mediates reward-related 

learning. Indeed, simulations obtained using model 1 showed that there was a 

complex curvilinear relationship between the BAS parameter (reaction to the 

excitatory reward signal) and the criterion set in the asymmetric condition. Over 

the greatest linear portion of this curve, the relationship was negative suggesting 

that low reward sensitivity might be associated with greater approach behaviour 

(indexed by the response bias). The human data, instead, captured a positive 

correlation between positive schizotypy and the criterion location in the 

asymmetric condition. Therefore, these observations could suggest that high 

scores on PS are associated with low reward sensitivity. The direction of these 

relationships are, therefore, consistent with evidence that suggests that high 

scores on positive schizotypy, as an index of the positive symptoms of 

schizophrenia, are associated with lower phasic DA activity (Mason et aI., 1995; 

luckel et aI., 2006a,b). These results are also broadly in line with the reward 

deficiency syndrome (RDS) model which postulates that greater approach 

behaviour towards reward stimuli is determined by DAergic hypofunction 

(Blum et aI., 2000). This argument follows because, all other things being equal, 

low sensitivity to excitatory reward input to DA cells would reduce DA activity. 

In contrast, model 3 simulations captured a linear positive correlation between 

the BAS variation (on RPE signals) and the decision bound. BAS variation in 

this model determined the effectiveness of the reward prediction error (RPE) 

signals for SR learning. Thus, high scores on positive schizotypy (as a BAS

trait) would need to be associated with greater RPE signals and, subsequently, 

more efficient SR learning during the task, in order to produce the direction of 

the association with the response bias observed in the asymmetric condition. 
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According to this model, 'BAS variation' mediates the individual's sensitivity to 

RPE signals rather than sensitivity to reward per se. This would represent an 

alternative process to account for BAS-driven individual differences in reward

related learning and, especially, approach behaviour. The simulations offer 

plausible explanations to account for the empirical data although these results 

and these considerations are not conclusive and further testing and simulations 

are required to obtain a deeper insight into the data. 

Formal modelling was a very useful exploratory tool to analyse the data since it 

allows one to identify those participants who are using the appropriate uni

dimensional strategy and those who are either guessing or using an alternative 

strategy. This is very important since, as pointed out by Gluck and colleagues 

(2002), task structure is not normally a good predictor of the strategy actually 

implemented by participants. Additionally, as mentioned in previous chapters, 

inclusion in the analysis of data from those participants not performing 

according to the task is a source of noise since the data do not capture the 

phenomenon tested in the study. Hence, in future studies formal modelling 

should be implemented where possible to ensure that the desired phenomenon 

has been captured and it is analysed. 

In conclusion, the present results replicate the original findings obtained by 

Markman and colleagues (2005) as they show that participants place their 

decision criterion away from the optimal accuracy criterion towards the optimal 

reward criterion under asymmetric payoff compared to symmetric payoff. 

Moreover, the study identified the personality trait that mediates the response 

bias as positive schizotypy. Owing to the great overlap between PS and the 

impulsivity construct and the simulation results obtained with model 3, it is 

possible that the PS component in the present study may represent a surrogate 

measure of impulsivity. Due to the low statistical power, in a sample of 18 

participants, it was not possible to test this hypothesis using regression 

techniques. Thus, PS may have appeared to be the BAS-trait purely due to its 

strong association with impulsivity. As discussed earlier these results are far 

from conclusive and replication is required to draw any conclusion. 

Nonetheless, the simulations add validity to the present results and the need for 
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replication. The main aim of the next study is to replicate the present results 

with a bigger sample size and trying to remove any order effect. The next study 

should also aim to identify the BAS-related trait and test whether positive 

schizotypy is an alternative BAS-trait candidate or just a proxy measure of 

impulsivity. 
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Chapter 9 

Motivation and personality during the learning and 

reversal phase of category learning task 

9.1 Abstract 

The present study aimed to replicate and extend the findings obtained in the 

previous chapter after addressing issues in the task design. Hence, the primary 

goal of the study was to explore the impact of asymmetric payoffs on decision 

bound and the mediating effect of individual differences on performance (i.e. on 

the response bias). Additionally, the task included a reversal learning phase 

where an inter-dimensional rule-switch was implemented in the symmetric 

condition whereas a payoff switch was implemented in the asymmetric 

condition. In particular, this aspect of the study explored the impact of the BAS

related personality dimension(s) on reversal learning since reward sensitivity 

has been identified as one of the factors that affects response moderation in 

passive avoidance tasks (Patterson and Newman, 1993; Avila, 2001). Due to the 

complexity of the task and the relatively small number of trials, only a few 

participants learnt to perform appropriately in the reversal phase. However, in 

the learning phase, participants were found to over-classify the probabilistic 

stimuli as members of the high payoff category and this bias was mediated by 

scores on the impulsivity component. In particular, low impulsivity scores were 

associated with greater response bias in the asymmetric task. Results were 

discussed in relation to RST and following the simulation results obtained with 

the neural model described in chapter 7. 

9.2 Introduction 

The present study aims to replicate and extend the findings reported in chapter 

8. The study showed that during performance on a CL task with an asymmetric 

payoff matrix, participants showed a tendency to place their criterion bound 

away from the optimal accuracy criterion and closer to the optimal reward 
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criterion (i.e. show a response bias). The study also observed that, when the 

asymmetric payoff matrix was experienced first, such a response bias was not 

present during performance under a symmetrical payoff matrix. These results 

are in line with the main assumptions of signal detection theory that states that 

everyday categorisation is influenced by the costs and benefits of correct and 

incorrect responses (payoffs; Maddox, Bohil & Dodd, 2003; Maddox and Dodd, 

2003). Additionally, individual differences were found to mediate the shift in 

bias across the two task conditions (asymmetric vs. symmetric matrix). In 

particular, participants who scored high on the positive schizotypy (PS) 

component were found to show a greater shift in bias than their low counterparts 

under asymmetric payoffs. In the previous chapter, it was suggested that the 

modulating effect of PS on performance may be due to the fact that PS is a 

proxy measure for impulsivity which, together with extraversion, is a main 

BAS-trait candidate. However, the previous results are not conclusive due to 

the small sample size and the fact that these results were observed only in one 

counterbalancing group and, therefore, may be caused by order effects. 

Thus, the main aim of the present study is to replicate the previous behavioural 

findings (i.e. shift in bias) and further explore the relationship between 

personality and behaviour after trying to eliminate any possible complicating 

order effects. Additionally, the study aimed to explore the impact of personality 

under changing task contingencies. For this purpose, the task is composed of 

two phases: a learning phase that resembles the original study and a reversal 

learning phase. The learning phase requires participants to learn to solve the 

categorisation problem whereas the reversal-learning phase requires participants 

to interrupt a dominant response to develop a new, optimal strategy. Personality 

traits that underlie the BAS are expected to mediate performance on the learning 

phase (as rationalised and observed in chapter 8) and perhaps in the reversal 

phase, too. Indeed, rule-switching has been found to be mediated by DArgic 

firing in the nucleus accumbens (NAc; Joel et aI., 2002; Cools et aI., 2006; 

2007), which RST considers to be a major substrate of the BAS biological 

system (Pickering and Gray, 2001; Corr, 2006). 

Moreover, it has been suggested that perseveration is caused by hypersensitivity 

to reward (Patterson et aI., 1987; Avila, 2001). Therefore, personality traits that 
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are related to reward-sensitivity (i.e. BAS-related traits) might be expected to be 

associated with a reduced ability to inhibit a response previously accompanied 

by reward (Patterson and Newman, 1993; Avila, 2001). In particular, extraverts 

have been found to show a deficit in their ability to inhibit a dominant response 

(i.e. show response perseveration; Pearce-McCall and Newman, 1986; Patterson 

and Newman, 1993). In a study by Patterson and colleagues (1987), participants 

performed on a go/no-go discrimination task. The task required participants to 

learn to respond when presented with one of the six go stimuli (S+) and to 

withhold their response when presented with one of the six no-go stimuli (S_). 

Extraverts were found to respond to the S_ stimuli more frequently than 

introverts (i.e. passive avoidance errors). These results indicate that extraverts 

are less likely than introverts to inhibit a response (a go button press) that is 

associated to reward, when responding to the S_ stimuli. There is also evidence 

that indicates that neuroticism modulates the effect of extraversion in response 

perseveration (Nichols and Newman, 1986). 

In line with the assumption that response perseveration is caused by reward 

sensitivity and enhanced by approach motivation, high BAS individuals were 

found to show a reduced ability at inhibiting a dominant response once the 

contingencies of the task changed (Avila, 2001). In a series of tasks, participants 

had to perform on a continuous odd-even discrimination task, where they had to 

learn to withhold responding when an aversive cue (i.e. a red circle) appeared on 

the screen together with the target stimulus. As predicted, results showed that 

high BAS individuals who scored high on the Sensitivity to Reward (SR) scale 

were less likely to inhibit their responding when the red circle appeared on the 

screen. However, these results are not specific to reward. Indeed, the lack of a 

control condition does not allow us to assess whether disinhinbited responding 

would occur when no (or small) rewards are administered. Thus, it is not 

possible to conclude whether the disinhibited responding is due to reward 

sensitivity or purely to impulsivity. Moreover, there is evidence that indicates 

that impulsivity is associated with reduced error processing as indexed by event

related potentials; in particular high impulsive individuals have been found to 

show low amplitude error-related negativity (ERN; Ruchsow et aI., 2005; 

Franken et aI., 2007). ERN represents a negative RPE deflection usually 
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observed following erroneous responding. Moreover, ERN has been found to 

reflect a negative RPE and to mediate response switching (Asako et aI., 2004; 

Atsushi and Asako, 2004). 

Pickering (2004) conducted a study where participants were presented with 

visual stimuli that varied on two dimensions, i.e. the height of a rectangle and 

the position of an internal line segment. The CL task had two phases, which 

were a learning and rule-switch phase. In the learning phase, the position of the 

internal line segment was the relevant dimension while the height of the 

rectangle was the irrelevant one. In the rule-switch phase, an extra dimensional 

switch occurred so that the height of the rectangle became the relevant 

dimension. Results showed that EPQ-P scores (i.e. ImpAss measure) were 

significantly and positively correlated with performance during the leaning 

phase but not the rule-switch phase of the task, while scores on the Unusual 

Experience scale were significantly, negatively correlated with the rule-switch 

phase of the task but not the learning phase. However, these differences between 

the phases were not significant. Thus, Pickering's results tentatively suggest that 

ImpAss enhances performance on a simple RB task but not during rule-switch. 

Similarly, Tharp (2007) found that ImpAss scores were negatively associated 

with performance on a more complex, conjunctive RB task and also during 

reversal learning of a simple, uni-dimensional RB task. Indeed, he found that 

extraversion was positively associated with performance during the learning 

phase. In contrast, during the rule-switch phase impulsivity was found to be 

negatively associated with performance while scores on the schizotypal 

personality trait (Unusual Experiences; Mason et aI., 1995) were positively 

associated with performance. Tharp suggested that impaired performance 

observed across the high impulsive individuals during both initial learning and 

reversal learning was due to low cognitive flexibility. 

The neural model, implemented in the previous study, was found to be an 

effective tool to simulate the human data and offers an explanation of the 

personality-behaviour relationships observed in the data (see chapter 8). The 

neural model suggests that performance on the CL task employed by Markman 

and colleagues (2005) was mediated by both the explicit and the implicit 
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systems. The explicit system seems to be involved in learning the gross 

perceptual basis of category-membership whereas the implicit system seems to 

process the feedback signals and, subsequently, mediate the process involved in 

setting the decision bound to fme-tune category decisions in order to increase 

winnings. However, these conclusions seem to be at odds with the COVIS 

model that suggests that performance on an RB task, such as this one, should be 

guided by the explicit system alone and not affected by feedback manipulations. 

Therefore, it was decided to include several practice trials prior to the 

experimental task in order to get participants acquainted to the task and develop 

their knowledge of the appropriate uni-dimensional rules for use in the 

experimental task. During the practice trials, which otherwise followed the same 

procedure used in the experimental task, participants received accuracy 

feedback following each response. Accuracy feedback was used in order to aid 

learning and activate the explicit system. Thus, the task aims to assess whether 

under an asymmetric payoff matrix, participants show a response bias during the 

experimental task as a result of the activation of the implicit system that takes 

control of performance as learning occurs over trials. 

9.2.1 Study aims 

Following from the previous fmdings and the simulation results, it was expected 

that in the learning phase participants would show a shift in bias across the two 

task conditions and that the shift would be mediated by individual differences. 

Hence, the task should allow us to identify the underlying personality trait(s) 

mediating the response bias. According to RST, the personality trait(s) should 

reflect BAS functioning (i.e. impulsivity or extraversion) or, if the previous 

findings are reliable, positive schizotypy. 

The second aim of the study was to observe how individual differences 

mediated performance during the reversal learning phase, which required 

response inhibition of a previously reinforced response in favour of a new 

strategy. This new strategy should maximise performance once the task's 

contingencies have changed. According to the existing literature, failure to 
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exhibit response modulation (i.e. to show perseveration) may be due to reward 

over-sensitivity and/or low cognitive flexibility (Patterson and Newman, 1993; 

Pickering, 2004; Tharp, 2007). Both accounts suggest that response 

perseveration is mediated by midbrain DA activity and, therefore, suggest that 

the activation of the BAS should mediate response modulation. 

The study makes a further distinction in the type of reversal learning required by 

participants. In fact, during the reversal phase of the symmetric task participants 

experience an intra-dimensional shift (i.e. the stimulus-response assignments are 

swapped) whereas in the reversal phase of the asymmetric task, they experience 

a reward switch. Indeed, the payoff matrix is reversed so that the category that 

offered low payoffs in the learning phase offers high payoffs in the reversal 

phase. This dissociation may identify different processes and personality traits 

activated during reversal learning. 

9.3 Method 

9.3.1 Participants 

Participants were drawn from an opportunity sample recruited over the summer 

holiday around Goldsmiths and it consisted of both students and non-students. 

The sample was made up of 32 participants, 16 males and 16 females. All but 

three participants in the sample were right-handed. All participants were aged 

between 18 and 38 (mean age = 25.2; s.d. = 4.7). 

Participants were guaranteed confidentiality. They were tested in one sitting that 

lasted approximately 1 hour and they each received £8.50 for their participation. 

9.3.2 Design 

The present study assessed the impact of payoff matrices on performance during 

a category learning task. In particular it was interested in comparing the impact 

of a symmetric and an asymmetric payoff matrix on response bias. Therefore, 
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the independent variable was payoff matrix and it was run within-subjects with 

two levels, i.e. symmetric and asymmetric. The study assessed the impact of 

different types of payoff matrices (IV) on decision bound location (i.e. the 

dependent variable). The two payoff matrices were identical to the ones used in 

the previous study (table 9.1). 

Table 9.1. Structure of the payoff matrices and performance criteria adopted for the two 
task conditions ( ., = correct vs. X= incorrect) 

High payoff Low payoff Performa 

category category nee 

Matrix .; X .; X criterion 

Asym. 400 100 200 100 35900 

Symm. 300 100 300 100 33700 

9.3.3 Task and apparatus 

The task was run on a Mesh PC and a Mitsubishi 21" monitor with 1024 x 768 

pixel resolution in an artificially lit room. Each stimulus was computer 

generated by using Matlab routines from Brainard's (1997) Psychophysics 

Toolbox. Stimuli were flashed on a black background that filled the entire 

screen. 

Participants performed the symmetric and the asymmetric task in an intertwined 

fashion, in order to avoid any possible order effects caused by the order of 

presentation of the two task conditions (as was observed in chapter 8). The 

stimuli in both tasks were presented in a fixed quasi-random order to all 

participants. Each stimulus appeared on the screen until participants responded. 

In order for participants to be aware of the fact that they were performing on 

two different tasks, each task presented different stimuli although they were 

equivalent in presentation. It was expected that in this way, participants would 

be encouraged to use different approaches to deal with the two conditions. 
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In one of the tasks participants had to learn to categorise graphical 'bars' that 

appeared on the screen; in the other task participants learnt to classify small 

circular dots (as in the previous chapter). In both tasks, the stimuli appeared 

within a 650*650 pixel box that delineated the stimulus space which participants 

had to concentrate on. The bars always appeared along an imaginary line 650-

pixel in length running horizontally. The bars all started at pixel number 1 on 

the left-hand side of the stimulus box and ended at a horizontal position which 

corresponded to the centre of the circular dots presented in task implemented in 

chapter 8. Hence, the relevant dimension that determined which category the 

stimuli belonged to was bar-length, whereas the bars' width was constant and 

equal to 40 pixels (approx. 1.5 cm). In the other task, as in the task presented in 

chapter 8, the stimuli were small circular dots (14 pixels in diameter, 

approximately .525 cm). The dots would appear at varying positions along an 

imaginary line 650-pixel in length running vertically. The relevant dimension 

for this task was location of the dot along the imaginary vertical line. 

The stimuli for the two tasks were created in the same way as the stimuli 

implemented in the previous study to ensure that the two tasks were equivalent. 

In the bar task, participants had to classify stimuli as members of category 1 or 

category 2. The stimuli for category 1 and category 2 were generated by 

sampling from two independent but overlapping normal distributions, thus 

making the task probabilistic. The distribution used to generate category 1 

stimuli had a mean score equal to 275 whereas the one used to generate category 

2 stimuli had a mean equal to 375. Both distributions had a standard deviation 

equal to 100. 

In a similar fashion, the stimuli in the dot task had to be classified into either 

category A or category B. The stimuli used in the dot task were generated in 

exactly the same way as the ones used in the bar task. Category A stimuli had a 

mean equal to 275 pixels and category B stimuli a mean of 375, with both 

distributions having a standard deviation of 100. The dots were drawn, centred 

at these random, varying positions, measured from the top of the imaginary 

vertical line. 
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In the bar task, they had to press the 'up arrow' key or the 'down arrow' key to 

classify the stimuli into category 1 or category 2, respectively. In the dot task, 

they had to press the 'left arrow' key or the 'right arrow' key to classify the 

stimuli into category A or category B, respectively. The arrow keys were 

selected as response keys due to their proximity on the keyboard. The proximity, 

in fact, allows participants to press each one of them by just using one finger 

and, therefore, avoid any possible handedness effects. Participants were clearly 

instructed to use 'the index finger of your dominant hand'. The corresponding 

keys were covered by a sticky label marked as 1,2, A and B as necessary. This 

was done in order to make it easier for participants to remember which key 

corresponded to which category. Participants were also informed that category 

membership was independent from the sequence/order in which trials of the two 

different tasks were presented. Hence, a strategy based on trial sequence (i.e. if 

two dots trials appear in a row, the subsequent stimuli) would not be effective. 

The task consisted of320 trials, the first 160 trials constituted the initial learning 

phase whereas the last 160 made up the reversal learning phase. Each phase 

consisted of an equivalent number of trials from the two task conditions. Prior to 

performing on the experimental task, participants carried out a practice session 

which consisted of 160 trials. During the practice trials, participants were 

exposed to 80 trials of the bar task and 80 of the dot task. The task presentation 

in the practice was identical to the one in the experimental task so that 

participants had the opportunity to learn the appropriate category memberships 

that ensured optimal performance. The only difference was in the feedback 

signals received by participants. Indeed, during practice, participants received 

only accuracy messages (i.e. correct/incorrect) following each response. 

9.3.3.1 Practice trials 

During the practice session, participants received visual and auditory accuracy 

feedback following each response. The visual feedback informed them on 

whether their response was 'correct' or 'wrong'. The word correct was written 

in green whereas the wrong word appeared in red to underline the nature of the 

feedback. The auditory feedback consisted of a high-pitched tone for correct 
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responses whereas incorrect responses were accompanied by a low-pitched tone. 

Once the practice trials were over, participants were invited to express any 

questions and when any doubts were solved, the experimental session started. 

The practice trials were included in order to ensure participants would develop a 

uni-dimensional, rule-based strategy and, therefore, ensure the activation of the 

explicit system prior to the experimental task. In this way, it can be assumed that 

any response bias observed in the experimental task is due to the activation of 

the implicit system under an asymmetric payoff matrix. Indeed, over trials the 

implicit system is expected to take control of performance and over-ride the 

explicit system, as indexed by the response shift. 

9.3.3.2 Learning phase 

The procedure implemented in the learning phase of the task was equivalent to 

the one used in the previous study and it aimed to replicate those previous 

findings. In fact, during the two tasks, participants had to learn by trial and error 

to classify the stimuli on the screen into two categories. Depending on the 

counterbalancing order, one task (i.e. bar vs. dot) constituted the symmetric 

condition whereas the other task constituted the asymmetric condition. 

Participants had to learn to classify the bar stimuli into category 1 and 2 and the 

dots task into category A and B. Category 1 or category A represented the high 

payoff category (i.e. 400 points if correct) depending on which task (bar or dot) 

was used for the asymmetric condition according to the counterbalancing order 

(see below). It was decided not to counterbalance which category offered the 

higher payoffs in the asymmetric task since results from the previous study 

showed that such counterbalancing was probably not necessary. 

Participants received feedback for each response they made. Contrary to the 

previous study, the feedback message informed them only about how many 

points they earned but offered no information about how many they could have 

won on that trial. It was suspected that receiving both types of information may 

have been perceived as a form of 'accuracy' feedback that may have, 
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subsequently, hindered the shift from the optimal accuracy criterion to the 

optimal reward criterion in the asymmetric task. 

Additionally, when participants earned 100 points and were informed that they 

had the potential to have won 200, 300 or 400 points on that trial, they could 

have experienced the feedback message as negative feedback and therefore 

activated the punishment system (FFFS). If this were the case, this could have, 

subsequently, affected the BAS output (eorr, 2004a; Smillie et aI., 2006; 

Pickering, 2008). 

9.3.3.3 Reversal learning phase 

In the reversal learning phase, the tasks were presented in the same fashion as in 

the learning phase although the contingencies had changed. Hence, participants 

had to withhold from using the old response strategy and switch to a new and 

optimal strategy. In the symmetric task, it was the categories' location that had 

been reversed. In fact, during the reversal phase category All stimuli had a 

mean location equal to 375 pixels and category B/2 stimuli a mean of 275 (cf. 

275 for All and 375 for B12 in the learning phase). 

In contrast, in the asymmetric condition the high payoff category was switched, 

so that category B/2 became the high payoff category (i.e. 400 points for correct 

responses) and category All the low payoff one (i.e. 200 points for each correct 

trial). 

Participants were not informed about the presence of the reversal learning phase 

or the need to switch rules. The two learning phases were presented as one task 

and, therefore, there was no break between the two phases. Hence, the task 

presentation and the feedback messages were kept identical as in the first phase 

of the task. 

During both learning phases, participants received visual feedback for each 

response they made. In contrast to the feedback used in the previous study no 

auditory feedback was given in the present study. This was done in order to 
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ensure that performance was reward-, rather than accuracy-, driven. Indeed, the 

use of auditory feedback may have been interpreted as a source of accuracy 

feedback by participants. Following this logic, the visual feedback did not offer 

any form of accuracy signal and only informed participants on the amount of 

points they had earned following their response (cf. the amount of both potential 

and actual points as in the previous study). Feedback was presented for 300 

msec and followed by 100-msec ITI. 

9.3.4 Counterbalancing 

Counterbalancing (CB) across participants was necessary to control for 

confounding variables, such as bias produced by the task representation (i.e. 

horizontal vs. vertical) or possible key-mapping bias. Hence, it was decided to 

counterbalance across participants which task was run as the asymmetric or the 

symmetric condition. There were only two possible alternative CB orders, i.e. 

asymmetric-dots and symmetric-bars (CBl) vs. asymmetric-bars and 

symmetric-dots (CB2). Participants were automatically allocated to one of the 

two CB orders by the computer depending on the odd or even-numbered ID 

code they had been allocated to. 

9.3.5 Personality measures 

In line with the previous study, the main personality measures included were the 

four personality components extracted in the principal component analysis 

(PCA, see chapter 4 for details). Participants completed several personality 

measures, which were: the Eysenck Personality questionnaire revised (EPQ-R), 

the Oxford-Liverpool inventory of feelings and experiences scale (OLIFE), the 

sensation seeking scale (SSS), the schizotypal personality questionnaire (SPQ), 

the big five inventory (BPI) and the BIS/BAS questionnaire. Four personality 

components were extracted after running a PCA with Varimax rotation on these 

scales. The four components extracted are: Extraversion (E), Neuroticism (N), 

Positive Schizotypy (PS) and impulsivity-antisocial (ImpAss). The PCA was run 

on 232 participants, who constitute the overall number of participants tested. 
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The components scores used in the present study are the corresponding 

components scores extracted in the overall PCA involving 232 participants. 

Additional measures of impulsivity were also collected in this study. Gray 

suggested that the personality trait corresponding to the BAS was impulsivity. It 

was, hence, decided to collect measures of the Dickman Impulsivity Inventory 

(DII; Dickman, 1990. See chapter 5 for details). The DII captures two sub-types 

of impulsivity (which are related to reward-sensitive and rash impulsivity). In 

this way, it is possible to explore how different types of impulsivity relate to 

performance on the decision-making task and to the four personality 

components as discussed in chapter 4. The extracted components include 

measures that are supposed to be related to the BAS output (e.g. extraversion, 

impulsivity and positive schizotypy). 

9.3.6 Procedure 

The study method and procedure were approved by the Psychology Department 

Ethics Committee (DEC) at Goldsmiths, University of London. Testing was 

conducted in a testing room in the department. The experimental procedure in 

the present study resembled the procedure adopted in the previous study, since it 

aimed to replicate and extend those findings. In particular, all participants were 

given a promotion focus as they were told that they could win two entries into a 

£25 draw. They could earn an entry in each task, depending on their 

performance. Indeed, in order to win the entry, they had to exceed a certain 

amount of points (i.e. performance criterion; table 9.1). Participants could earn 

one entry in each task so the criteria were calculated across the overall 160 trials 

which constituted each task. One draw was held for all 32 participants. 

Prior to performing on the experimental task, participants carried out a practice 

session that consisted of 160 trials. The 160 trials contained equal amount of 

trials from the two tasks that were presented, like in the experimental task, in an 

intertwined fashion. A set of written instructions was presented to participants 

on the screen before they carried out the practice session. The instructions 

closely resembled the ones presented in the study described in the previous 
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chapter. However, the description of the two tasks and the necessary key presses 

had to be edited to account for the changes in the task. They were presented with 

written instructions on the computer screen. Participants were informed that 

their task was to learn, by trial and error, to classify different stimuli into 

category A and category B, or category 1 and category 2 depending on the task 

(i.e. dot and bar, respectively). 

Initial instructions were presented to remind participants about the structure of 

the task and to inform them that during this session they had the possibility of 

earning up to two entries into the £25 lottery, depending on their performance. 

Following each response, participants earned points (described earlier). All the 

points that participants won were added up on a vertically oriented "point 

meter" displayed on the right-hand side of the computer screen. The meter 

consisted of a 765 pixel tall x 50 pixels wide rectangle and it was set to zero at 

the beginning of each task. The performance criterion was presented as a 

horizontal line across the meter and was labelled 'Bonus'. The performance 

criterion for each task was set at 80% of the points that the optimal classifier 

would obtain over the overall trials of each task (i.e. 160), relative to 0% 

accuracy. Each task offered the chance to win an entry into the lottery. Thus, 

they had different criteria depending on the payoff matrix structure (i.e. 

asymmetric vs. symmetric; table 9.1). The point meter was updated after each 

response at a rate of 1 pixel per 50 points. The part of the meter that changed 

flashed three times to stress the idea that the number of points was increasing. 

The task consisted of 4 blocks of 80 trials and at the end of each block, the task 

stopped to give participants the chance to take a short break if they needed a 

break. The break was not compulsory and participants could choose to carry on 

with the task but if they decided to take a break, its length was totally subjective. 

As in the previous study, at the end of the two tasks, participants were debriefed 

by a message which informed them on the number of lottery tickets they had 

earned (i.e. 0, 1 or 2). 
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9.3.7 Data analysis 

A variation of the formal model implemented in the preVIOUS study was 

developed in order to fit the data and to obtain the actual criterion location (cf. 

calculated 'C' using signal detection theory, SDT). As mentioned in the 

previous chapter, the use of the formal model allows us to identify and exclude 

those participants who were not using the appropriate uni-dimensional rule 

based on the relevant dimension. 

As already noticed, the task comprised two task conditions related to the 

structure of the payoff matrix (asymmetric vs. symmetric payoff matrix). Each 

condition consisted of 160 trials each. The first half of each task constituted the 

learning phase whereas the second half of the task represented the reversal 

learning phase of the task. Hence, each half of the two tasks can be perceived as 

a separate phase. The stimuli had been randomly generated to have equal 

number of trials for each task condition across the two phases. However, within 

each learning phase there was an uneven number of trials of each task (bars vs. 

dots). In the initial learning phase (first 160 trials), there were 81 trials of the 

vertical dots and 79 trials of the horizontal bars task. The opposite was true for 

the second half of the task (i.e. reversal learning). Depending on the CB, each 

task was associated with either the asymmetric or the symmetric task. 

Regardless of task type/condition it was decided to include all trials up to the 

79th so that the two conditions could be comparable on the amount of learning. 

In order to maintain symmetry with the procedure adopted in the previous study, 

it was decided to exclude the first 25 trials since they only represent 

familiarisation (Markman, et aI., 2005). Thus, the analyses were only run on 54 

trials, which are referred to as the 'last' trials. No end trials were removed since, 

due to the small number of trials, no (learning) ceiling effect was expected to be 

reached by the 79th trial , and this was supported by scores on the proportion of 

correct (pc) responses made which were below maximum accuracy in all four 

halves of the task (see table 9.2 below). 
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Finally, the results obtained in the empirical study were further explored by 

simulating the data through the neural model. As mentioned in the previous 

chapter, the neural model may help explain the human behaviour observed in 

the present study from a neurobiological perspective. 

9.4 Results 

9.4.1 Human data 

This result section explores participants' performance during the two task 

conditions across the two learning phases. The results section is constituted by 

two sub-sections which summarise the results of each learning phase separately 

(learning vs. reversal phase). Participants' performance is mainly indexed by 

their decision criteria across the two conditions which were extracted using the 

formal model for the two learning phases. 

9.4.1.1 Preliminary analysis 

9.4.1.1.1 Proportion of correct responses 

Preliminary analyses were conducted on the proportion of correct (pc) responses 

in the two task conditions. Hence, as for the rest of the analyses reported below, 

only the 'last' 54 trials were include in the proportion of correct responses 

analysis. The analysis showed that overall pc scores were above chance levels 

across the two payoff conditions and in the two learning phases (table 9.2). 

Table 9.2. Mean and standard deviation values of the proportion of correct responses in 
the two task across the two learning phases including all participants (pc = proportion of 
correct responses, asy = asymmetric; sym = symmetric; Ih = learning phase; 2h = reversal 

h ) pi ase 

pc_asy_lh pc_sym_lh pc_asy_2h pc_sym_2h 

Mean 0.59 0.61 0.59 0.53 

SD 0.09 0.09 0.08 0.094 

The fact that participants performed above chance is not surprising since they 

had extended training during the practice trials and accuracy analysis showed 
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that in the last 54 (out of 80 practice) trials, participants had achieved pc scores 

above chance level in both tasks [i.e. dots and bars; dots: mean = 0.62 and s.d. = 

0.10; bars: mean = 0.59 and s.d. = .08]. Further results showed that 81.3% of the 

sample performed above chance in the learning phase for both the symmetric 

and asymmetric condition. In contrast, in the reversal phase of the asymmetric 

condition 84.4% of the sample scored above chance whereas only 62.5% of the 

sample scored above chance in the symmetric condition. 

Those participants who were identified by the formal model as guessing or using 

an alternative strategy were removed. Following exclusion of these participants, 

the overall sample size included in the analysis was equal to 17 in the learning 

phase whereas it was equal to 7 in the reversal phase (see modelling sections). 

The average proportion of correct (pc) responses increased numerically for all 

conditions, but for the reversal phase of the symmetric task (table 9.3). In fact, 

in the symmetric task, participants performed at chance level in the reversal 

phase. 

Table 9.3. Mean and standard deviation values of the proportion of correct responses in 
the two task across the two learning phases including only those participants that 
implemented the relevant uni-dimensional strategy (asy = asymmetric; sym = symmetric; 
Ib = learnin . phase; 2h = reversal phase) 

pc_asy_lh pc_sym_lh pc_asy~h pc_sym_2h 

Mean 0.65 0.66 0.64 0.50 

S.D. 0.05 0.06 0.07 0.12 

Paired-sample t-tests indicated that the difference in accuracy scores between 

the asymmetric and the symmetric condition was statistically significant in the 

second half of the task [t(16) = 2.11, p= .051]. Results also showed that during 

the symmetric task, the difference in pc scores across the two learning phases 

was significant [t(16) = 3.17, p =.002] whereas it was just a trend in the 

asymmetric task [t(16)=1.7, p = .11, 2-tailed]. A 2x2 mixed-design ANOVA 

with CB order (i.e. bars vs. dot) as a between-Ss IV and payoff condition as the 

within-Ss IV showed that CB did not affect accuracy scores. In fact, the CB 

main effect was non-significant [F(I,15) = 1.88, ns] and, similarly, the 

CB*payoffinteraction was also non-significant [F(1,15) = 1.75, ns]. 
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9.4.1.1.2 Reaction time scores 

Table 9.4 summarises the reaction time (RT) scores in the two payoff conditions 

across the two learning phases. The RT scores are very similar across phases. 

However, a paired-sample t-test indicated that participants were statistically 

faster at responding during the reversal phase than the learning phase under 

asymmetric payoffs [t(3l) = 2.27, P = .030]. This is explained by the fact that 

even though the payoff structure was switched, the categories and the response 

structure were identical in the two phases. Hence, the extended practice may 

have enhanced speeding up responding in the second half of the task. 

Table 9.4. RT scores in the two task conditions across the two learning phases (asy = 

asymmetric; sym = symmetric; Ih = learning phase; 2h = reversal phase 

Asylh Symlh Asy2h Sym2h 

RTmean 1.46 (.49) 1.47 (.51) 1.29 (.36) 1.38 (.42) 

(s.d.) 

In contrast, RTs were equivalent across the two phases under symmetric payoffs 

[t(31) = 1.00, ns]. 

In order to further investigate R T scores in the asymmetric condition, a 

difference score was calculated by subtracting the R T scores in the second half 

of the score from the RT scores in the fIrst half of the task (i.e. RT difference 

scores) and it was correlated with the four personality components. Results 

indicated that there was a trend for a correlation between positive schizotypy 

and the RT difference score (r = .31, p = .087). All other correlations were close 

to zero (ps > .2). As visually represented in fIgure 9.1, participants with high 

scores on the positive schizotypy scale were the ones that showed the greatest 

R T reduction in the second half of the asymmetric task. 
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Figure 9.1. Scatterplot that indicates the relationship between positive schizotypy and the 
RT difference measure in the asymmetric task (axis: x = standardised PS scores; y = RT 
difference) 

9.4.1.1.3 Points earned 

Participants gained points throughout the task and aimed to reach the 

performance criterion to earn entries into the £25 lottery. Table 95 shows the 

amount of points won by the overall sample (N = 32) and the points earned by 

those participants who had used the appropriate uni-dimensional rule, as 

indicated by the formal model. For symmetry with the rest of the analysis, the 

point scores are calculated across the last 54 trials. 
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Table 9.5. Mean and s.d. scores on the amount of points earned in the two tasks across the 
two learning phases by the overall sample and those participants who used the appropriate 
unidimensional rule roD-users) 

Asy1h Sym1h Asy2h Sym2h 

Overall 11459.4 11975.0 12009.4 1110.0 

sample (910.8) (997.7) (1265.8) (1016.0) 

UD-users 12041.2 12494.1 12158 11153.0 

(N= 17) (512.4) (629.0) (1219.7) (1273.8) 

Those participants who implemented the appropriate uni-dimensional strategy 

gained more points than those who were guessing or using alternative strategies. 

Further t-tests were run to explore the pattern of earned points among those 

participants who implemented the appropriate strategy. The results showed that 

participants earned significantly more points in the symmetric task than the 

asymmetric task during the learning phase [t(16) = -2.13, p = .049] whereas the 

opposite pattern was a borderline trend in the reversal phase [t(16) = 2.08, P = 

.054]. The opposite pattern observed in the reversal phase may be due to the fact 

that participants gained significantly less points in the symmetric task in the 

reversal phase compared to the learning phase of the task [t(16)= 3.61, p = .002]. 

This may be due to the fact that the intra-dimensional switch applied in the 

reversal phase of the symmetric task required learning of new response key 

mappings rather than just further fme tuning of a decision boundary. In contrast, 

the difference in points earned across the two phases of the asymmetric 

condition was non-significant [t(16) = -.34, ns]. 

9.4.1.2 Learning phase 

9.4.1.2.1 Model fitting 

The stimuli presented in the two task conditions consisted of dots or bars that 

varied in one dimension, i.e. location on the screen. Location was the relevant 

dimension and participants were expected to develop a uni-dimensional rule 

based on location in order to successfully solve the categorisation problem. 

Hence, a uni-dimensional model which used location as the relevant dimension 

was fitted to the data together with a guessing model. The two formal models 
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were used to fit the data collected in the asymmetric and the symmetric task 

conditions. Figure 9.2 illustrates the step-like learning functions typical of the 

data that was well-fitted by the uni-dimensional model (figure 2a) and the 

distribution typical of data fitted by the guessing model (figure 2b). Moreover, 

the goodness of each model was compared to the goodness of fit of the saturated 

model with no free parameters. 
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Figure 9.2. It illustrates the distribution typical of data that was well-fitted by the uni
dimensional model (figure a) and the distribution of data fitted by the guessing model 
(figure b). The red stars represent the actual data whereas the blue circles represent the 
model fitting. 
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1 - Fitting through a guessing model 

The guessing model describes the situation where participants were randomly 

assigning the stimuli to one of the two categories, regardless of the location of 

the stimuli on the screen. This model has only one free parameter (guessing 

probability for category A, from 0 to 1). Results showed that the guessing model 

was not significantly worse than the saturated model for 8 cases out of the 

asymmetric and 7 cases out of the symmetric task conditions. However, none of 

the cases coincided. 

2 - Fitting through a uni-dimensional rule model based on spatial 

location 

The present model describes the situation where participants select spatial 

location as the relevant dimension and place a criterion on this dimension to 

categorise the dots. This family of models includes the optimal rule since 

location on the screen was the relevant dimension in the task. The model was 

applied to data collected across both payoff conditions. 

The formal model showed that for 21 (out of 32) participants the um

dimensional model was not significantly worse than the saturated model in the 

asymmetric task condition. Those 21 participants showed a criterion mean equal 

to 351.27 (47.37) and a noise level equal to 95.51 (84.52). This decision 

criterion value was statistically different from the optimal accuracy criterion [i.e. 

325; t(20) = 2.54, P = .010]. Additionally, the formal model also showed that for 

24 participants the uni-dimensional model was not significantly worse than the 

saturated model in the symmetric condition. These fitted cases placed their 

criterion around 333.98 pixels (66.85), which is not statistically different from 

the optimal accuracy criterion [t(23) = .66, ns]. Moreover, they showed a mean 

noise level equal to 97.41 (80.55). 
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9.4.1.2.2 Comparison of the two models 

As noted above, the uni-dimensional model fits 21 and 24 cases in the 

asymmetric and the symmetric task conditions, respectively. However, 8 of the 

21 fitted data sets collected in the asymmetric task were also fitted by the 

guessing model and 6 of the 24 fitted data sets from the symmetric condition 

were also fitted by the both model. 

It was decided to compare the two models in order to assess which one offered 

the best fitting for these participants. Comparisons were made by weighing the 

Akaike Information Criterion15 (AIC; Dayton, 2003). The AlC score was 

calculated on the basis of the free parameters and it is an estimate of the 

goodness of fit. It penalises the model with extra free parameter so that the 

lower the AIC score, the better the fitting (i.e. closer to the saturated model; 

Maddox, Ashby & Bohil, 2003). 

Results indicated that the uni-dimensional model offered a better fit than the 

guessing model for all but two cases. In fact, a data set from one participant was 

best fitted by the guessing model in the asymmetric task and another data set 

from the symmetric task was also best fitted by the guessing model. These two 

cases were excluded from the fmal sample. 

Further analyses showed that for 17 participants, the UD model was non

significantly worse than the saturated model in both conditions. These 17 

participants belonged equally to the two CB orders; in fact 8 performed under 

CB 1 (i.e. asymmetric task consisted of dots that varied in location on a vertical 

dimension and the symmetric task consisted of a bar varying in length over a 

horizontal dimension) while 9 participants performed under CB 2. Across these 

17 cases, the criterion location was equal to 340.38 (30.93) and 336.27 (37.43) 

in the asymmetric and the symmetric condition, respectively. The noise level 

was equal to 65.68 (46.76) in the asymmetric and 77.86 (69.85) in the 

symmetric condition. Paired-sample t-tests indicated that, across the two payoff 

15 Ale = 2r - 2lnL, where r is the number of free parameters and L is the log likelihood of the 
model (Maddox et aI., 2003) 
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conditions, neither the criteria were significantly different [t(16) = .320, ns] nor 

the noise levels [t(16) = -.79, ns], among those participants who used the 

appropriate strategy. 

In conclusion, these results suggest that 47% of the sample failed to implement 

the relevant uni-dimensional strategy but they were not guessing either. They 

will be referred to as 'non-learners' to indicate that they failed to learn to use the 

appropriate strategy but not that their performance was at or below chance (see 

below). These participants may have been using alternative strategies that 

ensured above chance, although sub-optimal, performance. 

As in the previous study, some participants reported having treated the distance 

between the last stimulus on the screen and the new stimulus as the relevant 

dimension to formulate their decisions. Additionally, some participants reported 

having used the sequence of 'dots' and 'bar' trials to formulate a strategy. 

Hence, the sort of rule they developed could have been along the following 

lines: 'if a 'bar' trial follows two 'dot' trials then the stimulus belongs to 

category A, otherwise it belongs to category B'. Once again this occurred 

despite specific warnings in the instructions that such rules and strategies would 

not be helpful. 

9.4.1.2.3 Correlation between the strategy used and personality components 

Point-biserial correlations were run ill order to assess whether there was a 

relationship between any of the personality components and the strategy used. 

The variable that codes the type of strategy implemented was labelled strategy 

used and coded as 1 the use of a uni-dimensional strategy and as 0 guessing or 

using an alternative strategy. In the asymmetric task, positive schizotypy was 

found to be significantly correlated with the type of strategy implemented by 

participants (r = -.38, p = .03). Indeed, those participants who implemented the 

appropriate uni-dimensional strategy scored lower on the standardised PS 

component (mean = -.024 and s.d. = .78) than those who were guessing or using 

an alternative strategy (mean = .658 and s.d. = .89). No correlation was 
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significant between the strategy used in the symmetric task and positive 

schizotypy (r = -.005, ns) or any of the other personality components (p >.63). 

9.4.1.3 Behavioural data 

Some preliminary analyses were carried out to explore the behavioural data and 

observe where participants placed their decision criteria under the two payoff 

matrix conditions. Only data from those participants who had implemented the 

appropriate dimensional strategy was included (N = 17). The mean and standard 

deviation values for the (fitted) criteria under both payoff conditions are 

presented in table 9.6. A I-sample t-test indicated that the criterion location just 

failed to be significantly different from the optimal accuracy criterion (325) in 

the asymmetric condition [t(16) = 2.05, P = .057] but the criterion did not differ 

from the optimal accuracy level in the symmetric condition [t(16) = 1.24, ns]. 

Table 9.6. Fitted criteria for the asymmetric (asy) and the symmetric (sym) conditions 
across those participants who used a uni-dimensional strategy (UD-users) and the overall 
sample 

Criterion asy Criterion sym 

UD-users 340.38 (30.9) 336.27 (37.4) 

Overall sample 346.40 (51.7) 330.29 (68.8) 

These results indicate that the overall sample showed a numerically greater bias 

than the bias showed by those participants who implemented a uni-dimensional 

strategy (UD-users). The fitted criterion of the overall sample was significantly 

different from the optimal accuracy criterion [t(31) = 2.34, p = .03]. 

Nonetheless, the greater bias might have been determined by the use of 

alternative (non-dimensional) strategies, which may have relied on the implicit 

system more strongly than on the explicit system. Indeed, participants who did 

not use a uni-dimensional strategy showed a pattern of responding that 

resembled the data simulated by the purely RPE-based implicit model (see non

learners section). 

A mixed-design ANOVA was carried out with payoff matrix as the main IVs 

with two levels (symmetric vs. asymmetric) and it was run as a within-subject 

factor. The main DV was the decision criterion. Counterbalancing order was 
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also included in the analysis as a between-Ss factor in order to assess whether it 

affected performance. Results from a mixed-subjects ANOV A indicated that 

neither the main effect of payoff matrix [F(1,15) = .07, ns] nor the matrix*CB 

interaction [F(l,l5) = .95, ns] were significant. 

9.4.1.3.1 Performance and personality 

The analyses reported below aimed to establish the relationship between the 

four personality components extracted through the peA (chapter 4) and 

performance during the two task conditions, in particular the decision criterion. 

Preliminary correlations were run to assess the relationship between the four 

personality components and the criterion location as well as the criterion shift 

score (table 9.7). In the asymmetric condition, participants are expected to place 

their criterion away from the optimal accuracy criterion (325) closer to the 

optimal reward criterion (i.e. above 325). Hence, the criterion shift score was 

obtained by subtracting the criterion location in the symmetric condition from 

the criterion location in the asymmetric condition and, therefore, it should on 

average be positive if the expected response bias is occurring in the asymmetric 

condition. 

Table 9.7. Correlations between the four personality components and the criteria set in the 

two payoff conditions (a = asymmetric; s = symmetric) and their difference score (shift) 

Crilerion_a Criterion s Criterion shift 

E Pearson Correlation -.262 .092 -.218 
Sig. (2-tailed) .310 .725 .400 
N 17 17 17 

N Pearson Correlation .378 -.279 .419 
Sig. (2-tailed) .134 .278 .094 
N 17 17 17 

PS Pearson Correlation -.149 .059 -.129 
Sig. (2-tailed) .569 .823 .623 
N 17 17 17 

ImpAss Pearson Correlation -.415 .417 -.539 
Sig. (2-tailed) .097 .096 .026 
N 17 17 17 
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Results showed that there was a trend for a negative correlation between scores 

on the ImpAss component and the criterion decision placed during the 

asymmetric task (r = - 0.42, p = .097). Moreover, there was a significant trend 

for a positive correlation between ImpAss scores on the decision criterion in the 

symmetric task (r = .42, p = .096). These results suggest that the impact of 

ImpAss on performance varies depending on the payoff manipulation. Finally, 

there was a negative correlation between ImpAss scores and the shift in criterion 

across the two conditions (r = -.54, P = .026). There was also a trend for a 

positive correlation between neuroticism and the shift in bias (r = .42, P = .094). 

The scatterplot, reported below (figure 9.3), displays the negative relationship 

between scores on the ImpAss component and the criterion shift. Participants 

who scored high on the ImpAss components showed the smallest criterion shift 

(i.e. small bias in the asymmetric task) 
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Figure 9.3. The scatterplot summarises the negative correlation between ImpAss scores 
and the criterion shift values 

9.4.1.4 Further analyses 

In order to gain a better understanding of the two (near-) significant correlations, 

the median split technique was implemented on the relevant personality 
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components, in order to transform them into binary valued factors coded as 1 for 

low scores and as 2 for high scores. Two independent mixed-design ANOVAs 

were run to further explore these relationships, the binary-valued personality 

factors were entered as between-Ss factors in the ANOV As. 

9.4.1.4.1 ImpAss 

Due to the loss of power caused by transforming the ImpAss component into a 

binary-valued factor and the small sample size, the interaction between ImpAss 

and payoff was only a trend [F(1,15) = 2.87, P = .11]. Figure 9.4 shows the 

relationship between the ImpAss factor and payoff condition. The figure 

indicates that participants with low scores on the ImpAss measures show a 

greater bias during the asymmetric payoff condition compared to those 

participants with high scores on the ImpAss traits l6
. 

360.00 

c::: .g 350.00 

.l!! -5 
c::: 
o 
·iii 
.g 340.00 
"'C 
"'C 

'" = ii: 

330.00 

'\ 
\ 
\ 
\ 
\ 

Asymmetric 

\ 
\ 
\ 
\ 
\ 

Task 
Symmetric 

ImpAss 

-- Low 
- High 

Figure 9.4. Relationship between the decision criterion across the two task conditions and 
scores on the Imp Ass component 

16 Power analyses carried out using the G*Power program with n = 7 and an expected small to 
medium effect size (d = .3) showed that the actual test's power for a repeated measure t-test was 
equal to 0.1741, which is very low. However, even with low power there was a trend for the low 
ImpAss individuals to show a positive bias towards the high payoff category under the 
asymmetric condition compared to the symmetric condition [t(6) = 1.96, P = .098, 2-tailed]. 
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An independent t-test showed that the difference in criterion placement during 

the asymmetric task across low and high ImpAss individuals just failed to be 

significant [t(15) = 2.05, P = .058]. 

9.4.1.4.2 Neuroticism 

Despite the loss of power caused by recoding the neuroticism component into a 

binary-valued factor, the neuroticism by payoff interaction was significant 

[F(1,15) = 6.82, P = .020]. Figure 9.5 shows the relationship between the 

neuroticism (N) factor and the payoff condition. Participants with high scores on 

the N component showed a shift in bias during the asymmetric task condition 

and no bias during the symmetric task. In contrast, individuals with low scores 

on the neuroticism component showed the opposite pattern, i.e. a bias in the 

symmetric task and no bias in the asymmetric task condition 17. 
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Figure 9.5. Relationship between the decision criterion across the two task conditions and 
scores on the neuroticism component 

17 Even with very low power, post-hoc tests on neuroticism showed that there was a trend for a 
difference in criteria between the asymmetric and the asymmetric task for participants with both 
high [t(8) = 1.82, P = .104, 2-tailed] and low [t(7) = -1.97, P = .089, 2-tailed] scores on the 
neuroticism component. 
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9.4.1.4.3 Dickman's impulsivity inventory 

Correlations were run to assess the overall relationship between the four 

personality components extracted in the PCA (especially extraversion and 

impulsivity) and the two impulsivity scales of the Dickman impulsivity 

inventory (functional and dysfunctional impulsivity; table 9.8). 

Table 9.8. Correlation between the four personality components and functional and 
dysfunctional impulsivity 

E N PS ImpAss 

FI Pearson Correlation .441 -.552 -.242 .131 

Sig. (2-tailed) .011 .001 .183 .476 

N 32 32 32 32 
DI Pearson Correlation .325 .038 .342 .371 

Sig. (2-tailed) .070 .838 .055 .036 
N 32 32 32 32 

Results indicated that functional impulsivity was significantly and positively 

correlated with extraversion (r = .44, p = .01) and negatively correlated with 

neuroticism (r = -.55, p = .001). In contrast, dysfunctional impulsivity was 

significantly correlated with the ImpAss component (r = .37, p = .04) while its 

positive correlation with positive schizotypy just failed to be significant (r = .32, 

p = .06) and the correlation with extraversion showed only a trend (r = .33, p = 

.07). Hence, these results support the view that extraversion is a better measure 

of reward-sensitivity (impulsivity) whereas ImpAss measures are better 

measures of rash impulsiveness (Smillie and Jackson, 2006). 

The significant correlation between dysfunctional impulsivity and the ImpAss 

component is in line with the literature that suggests that they measure the same 

type of impulsivity (i.e. rash impulsivity; Dawe, 2004; Smillie and Jackson, 

2006). Hence, it was decided to calculate a composite score for measures on the 

standardised ImpAss component and the dysfunctional impulsivity (DI) factor. 

This was done in order to further explore the relationship between impulsivity 

and behaviour (i.e. criterion placement). This composite impulsivity factor was 

obtained by transforming the DI scores into z scores and, subsequently, 

averaging these scores with the scores on the standardised ImpAss component 
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{i.e. [Z(ImpAss)+Z(DI)]/2}. Further correlations were run between the new 

composite impulsivity score, the decision criteria and shift score for those 

participants who had used the appropriate uni-dimensional strategy (table 9.9). 

Table 9.9. Correlations between the composite impulsivity scores and the criteria set in the 

two payoff conditions (a = asymmetric; s = symmetric) and their difference score (shift) 

Impulsivity composite score Pearson Correlation 

Sig. (2-tailed) 

N 

Criterion a 

-.469 

.057 

17 

Criterion s Criterion shift 

.238 

.358 

17 

-.443 

.075 

17 

Results show that the negative correlation between the composite impulsivity 

score and the criterion location in the asymmetric condition just failed to be 

significant (r = -.47, p = .06) whereas the correlation between impulsivity and 

the criterion location in the symmetric task was non-significant (r = .24, ns). 

Nonetheless, the correlation between impulsivity and the criterion shift showed 

a trend (r = -.44, P = .075). Hence, the composite score confirms the results 

reported above and it shows a stronger correlation between impulsivity and 

criterion location in the asymmetric task. Impulsivity does not seem to moderate 

the criterion location in the symmetric condition. The scatterplot displays the 

negative correlation between impulsivity and the shift score (figure 9.6). 
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Figure 9.6. The scatterplot summarises the negative correlation between the composite 
impulsivity score scores [(ImpAss + DI)/2] and the criterion shift values (when the 
criterion shift score is equal to 0, the criterion was placed near the optimal accuracy 
criterion) 

9.4.1.4.4 Correlations between criterion location measures, personality and 

the amount of points earned during the first phase of the task 

A set of correlations was carried out to assess the relationship between the fitted 

criterion measures and the number of points earned during the two task 

conditions. This set of correlations did not identify any significant correlation 

between the decision criteria set during the asymmetric task and the number of 

points earned (p >.22). However, there was a trend for the correlation between 

impulsivity and the number of points earned during the symmetric task [r = 

.440, p = .08], which suggests that impulsive individuals may have been more 

accurate than their counterparts and, therefore, earned more points. 

9.4.1.4.5 Non-learners 

Results showed that non-learners had an accuracy level equal to 0.54 (.08) and 

0.55 (.10) in the asymmetric and the symmetric task, respectively (cf. UD-users: 

asymmetric= .65, s.d. = .05; symmetric = .66, s.d. = .06]. The accuracy level of 

non-learners was significantly above chance in the symmetric task [t(14) = 2.21, 
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p = .04] whereas in the asymmetric condition, accuracy was just a non

significant trend above chance [t(14) = 1.76), p = .10]. However, an independent 

t-test showed that non-learners achieved significantly lower accuracy scores 

than UD-users in the asymmetric [t(30) = -5.1, p<.OOl] and the symmetric task 

[t(30)= -3.7, p<.OOl]. Moreover, a chi-square test showed that non-learners 

earned significantly fewer tickets overall than learners (l(2) = 12.42, p = .002; 

table 9.10). None of the personality components was found to be correlated with 

the accuracy scores (ps >.2). 

Table 9.10. Number of tickets earned by learners vs. non-learners 

Tickets earned 

0 1 2 

Learners Yes 1 8 8 

No 7 8 0 

Overall, these results indicate that the use of an alternative strategy (cf. 

appropriate strategy) hindered performance compared to the use of the 

appropriate strategy, although it ensured accuracy levels above chance. 

Finally, the results indicated that non-learners showed a greater response bias and 

higher noise levels than those participants who implemented the appropriate 

strategy (i.e. learners; table 9.11). 

Table 9.11Criteria and noise levels shown by those participants who implemented a uni
dimensional strategy (UD-users; N = 17) and those who implemented an alternative 
stratein' (non-UD users; N = 15) on the asymmetric (a) and the symmetric s) conditions 

Criterion a Noise a Criterion s Noise s 

Non-UD users 355.22 (66.8) 278.93 (57.3) 323.52 (93.8) 225.52 (96.7) 

un users 340.38 (30.9) 65.68 (46.8) 336.27 (37.4) 77.86 (69.8) 

The learning pattern displayed by non-learners resembles the learning pattern (i.e. 

flat learning curves) simulated using the purely implicit model (see chapter 8). 

These observations suggest that non-learners may be more strongly relying on the 

implicit system, rather than the explicit module, to solve the categorisation 

problem. Therefore, non-learners might be using an alternative strategy that relies 

on procedural learning alone which would, subsequently, account for the strong 
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response bias (and lower accuracy) observed in this sub-sample. Indeed, 

simulations run with low rulebias values (e.g. 0.3), which reduced the impact of 

the explicit module on learning, produced a strong response bias, high noise 

levels and flat learning curves (see chapter 8). 

9.4.1.5 Reversal learning phase 

9.4.1.5.1 Model fitting 

During the reversal learning phase, participants performed on the same tasks 

they had performed on during the first phase, although they had to learn a new 

strategy to perform optimally on the tasks. In fact, in the symmetric task, 

categories and responses were simply swapped (intradimensional shift) while 

the payoff structure stayed the same; whereas in the asymmetric task the high 

and low payoff categories were simply reversed (i.e. payoff shift) while the 

categories' location stayed the same. Hence, the same two formal models were 

fitted to the data, i.e. a uni-dimensional model which used location as the 

relevant dimension and a guessing model. As in the previous section, the two 

formal models were run to fit the data collected in the two task conditions. 

1 - Fitting through a guessing model 

Results showed that the guessing model was not significantly worse than the 

saturated model for 9 and 5 cases in the asymmetric and the symmetric task 

conditions, respectively. 

2 - Fitting through a uni-dimensional rule model based on spatial 

location 

Results indicated that during the asymmetric task, the I-dimensional model was 

not significantly worse than the saturated one for 20 cases out of the total 32. 

Fifteen of these 20 cases had learnt the appropriate rule during the first half of 

the task. During the symmetric task, the I-dimensional model was not 

significantly worse than the saturated model for 9 cases. Seven of these 9 cases 
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had previously used the appropriate rule in the first phase of the task and, 

subsequently, showed the appropriate rule shift. Moreover, formal modelling 

was implemented to assess whether some participants were using a non-switch 

dimensional rule. Results showed that for six participants the non-switch 

dimensional model was non-significantly worse than the saturated model. Thus, 

these six participants had used the appropriate strategy in the learning phase and 

continued using it during the reversal phase. However, five of the six 

participants were able to implement the appropriate rule-switch strategy in the 

asymmetric task condition. Despite the fact that they had failed to show the 

appropriate rule-switch in the symmetric task, they were retained in the final 

sample since they were adopting a uni-dimensional rule. 

9.4.1.5.2 Comparison ofthe two models 

Results indicated that the uni-dimensional (UD) model was not significantly 

worse than the saturated model for 20 cases in the asymmetric task condition. 

However, 9 of the 20 fitted data sets collected in the asymmetric task were also 

fitted by the guessing model. In contrast, the UD model was not significantly 

worse than the saturated model for 15 cases in the symmetric task condition but 

three cases were also fitted by the guessing model. 

It was decided to compare the two models in order to assess which one offered 

the best fitting for these participants. Comparisons were made by weighing the 

AlC values of the two models against each other, for those cases where the 

guessing and the UD model were both non-significantly worse than the 

saturated model. The model with the lowest AlC value was selected and 

identified as the best fitting (Dayton, 2003; Maddox et aI., 2006). As in the 

previous section, results indicated that the UD model offered a better fit than the 

guessing model for all overlapping cases in the symmetric condition. However, 

four cases were found to be better fitted by the guessing model than the UD 

model for the asymmetric condition. Hence, the uni-dimensional model fitted 16 

cases in the latter condition. 

322 



9.4.1.5.3 Model fitting - summary 

Overall, the formal model indicated that the uni-dimensional model was non

significantly worse than the saturated model for 16 participants in the 

asymmetric task and for 15 participants in the symmetric task. 

In the asymmetric condition, out of the 16 participants who implemented the 

appropriate strategy thirteen had used the appropriate uni-dimensional strategy 

in the learning phase of the task. In contrast, three participants who had not 

implemented the correct strategy in the learning phase were able to do so in the 

reversal phase (table 9.12). 

Table 9. 12. Proportion of learners and non-learners across the two phases of the 
asymmetric task 

Learners reversal 

Yes No 

Learners Yes 13 8 

original learning No 3 8 

It was decided to create a variable that coded whether the 15 cases fitted by the 

UD model also showed the appropriate switch in response bias during the 

reversal phase. The variable coded 1 all those criterion values that were below 

325 and 0 those that were above this value (i.e. old response bias). Eleven of the 

16 participants fitted by the uni-dimensional model showed the appropriate shift 

in bias (i.e. placed their criterion below 325) while 5 failed to show the shift. 

Moreover, results showed that among the 13 participants who had used a 

dimensional strategy in both learning phases of the asymmetric task, nine 

showed the appropriate shift in bias. In addition, all but one of the participants, 

who adopted the uni-dimensional rule only in the reversal phase, showed the 

appropriate (switched) response bias. These 16 cases showed an asymmetric 

criterion mean equal to 300.06 (55.17) and a noise level equal to 106.35 (85.01). 
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For the symmetric condition, the formal model identified 15 that were fitted 

non-significantly worse by the uni-dimensional model than the saturated model. 

Thirteen of these cases had also used the appropriate strategy in the learning 

phase (table 9.13). 

Table 9. 13. Proportion of learners and non-learners across the two phases of the 
symmetric task 

Learners reversal 

Yes No 

Learners Yes 13 11 

original learning No 2 6 

Among these 15 participants, the criterion mean was equal to 332.65 (94.53) 

and the noise level was equal to 177.88 (99.12). The noise level was high and, 

following a data inspection, it was detected that seven cases that were well-fitted 

by the formal model (p > .05) had very high noise levels. Indeed, four had a 

noise level equal to 300 (i.e. the upper limit) whereas three cases had noise 

levels above 200 (i.e. 209.30, 235.73 and 298.90). Once individuals with such 

high noise levels were removed, the retained sample (N = 8) showed a 

symmetric criterion equal to 336.22 (44.24) and a lower noise level (mean = 

100.88, s.d. = 59.56). 

Finally, analysis showed that 7 cases applied the appropriate uni-dimensional 

rule in both task conditions. They showed a criterion equal to 300.21 (s.d.= 

48.23) and 330.70 (s.d.= 44.72) in the asymmetric and the symmetric condition, 

respectively. The noise level in the asymmetric condition is equal to 85.41 (s.d.= 

67.82) and in the symmetric task 100.84 (s.d.= 64.33). 

9.4.1.6 Preliminary analysis 

9.4.1.6.1 Correlation between the strategy used and personality components 

As done for the data collected during the learning phase, point-biserial 

correlations were run in order to assess whether there was a relationship 
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between any of the personality components and the strategy used. The variable 

that codes the type of strategy implemented was labeled strategy used and coded 

as 1 the use of a uni-dimensional strategy and as 0 guessing or the use of other 

strategy. None of the correlations was found to be significant (p > .20). 

9.4.1.6.2 Correlation between criterion location measures and the amount 

of points earned during the reversal learning phase of the task 

As expected, the correlation results showed that there was a significant positive 

correlation between the amount of points earned in the asymmetric condition 

and the decision criterion implemented (r = .63, p = .009) for those 16 

participants fitted by the uni-dimensional model. No significant correlation was 

found in the symmetric condition (r = .21, ns) for those 8 participants fitted by 

the formal model. 

9.4.1.6.3 Individual differences and rule-switch during the symmetric task 

After removing those participants who were guessing or using an alternative 

strategy in the second half of the symmetric task (total N = 15), correlations 

were run between the four personality components and the strategy used. A 

variable was created that coded whether participants had implemented the 

appropriate rule-shift (N = 9) or whether they persevered using the old rule (N = 

6). This variable coded the appropriate switch as 1 and no switch as 2. During 

this learning phase participants had to learn to reverse their strategy by 

switching the previously learnt category-location association. Results showed 

that there was a negative correlation between extraversion and the rule applied (r 

= -.54, P = 0.04). Indeed, those individuals who showed the appropriate switch 

scored higher on the extraversion component (mean = 0.17 and s.d. = .89) than 

those participants who failed to apply the appropriate switch (mean = -1.33 and 

s.d. = 1.61). 

The same extraversion by strategy correlation was observed when including 

only those 8 participants that had noise levels equal or below 200 (r = -.72, p = 

.046). This correlation indicates that extraverts were more likely to show the 
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appropriate rule-switch than introverts. Therefore, it seems that the modulating 

impact of extraversion is strong enough to be detected in a small sample size 

despite the greatly reduced power. 

9.4.1.6.4 Individual differences and rule-switch during the two learning 

phases 

A variable was computed in the SPSS syntax, to code the strategy used by 

participants across the asymmetric task. The variable coded those participants 

who had used the appropriate uni-dimensional strategy in the fIrst half of the 

task as 1, those who had used the appropriate strategy in both phases of the task 

as 2 and those who had not used the appropriate strategy at any stage as O. Table 

9.12 shows that, out of the 21 participants who had used the appropriate strategy 

in the fIrst half the asymmetric task, 13 were able to show the appropriate shift 

in response bias whereas 8 failed to implement the appropriate shift. 

Correlations were run in order to establish whether there were individual 

differences between those participants who used the appropriate strategy in both 

learning phases and those who only used it in the fIrst half of the task. Hence, 

those participants coded as 0 were excluded from the analysis. Results showed 

that there was no signifIcant correlation between the strategy used and the any 

of the four personality components (Ps > .63). Hence, the present results suggest 

that personality did not mediate performance variations across the two phases of 

the asymmetric task. 

A repeated-measure t-test showed that the shift in bias across the two learning 

phases of the asymmetric task was signifIcant among those participants who had 

implemented the appropriate strategy in both phases [t(12) = 2.96, P = .012]. 

Indeed, participants showed a higher bias in the fIrst half (mean = 337.67, s.d. = 

29.26) and a reversed bias in the switch phase of the task (mean = 291.45, s.d. = 

53.05). Subsequently, a shift score was calculated by subtracting the criterion 

scores in the second half of the task from the criterion cores in the fIrst half of 

the task. Correlations were run between the shift scores and the four personality 

components. However, none of the personality components was found to 
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correlate with the shift score (p >.30). No personality component enhanced the 

appropriate shift in bias from the learning phase to the reversal phase. 

9.4.1. 7 Behavioural data 

It was decided to run some exploratory analysis only including those 

participants who implemented the optimal uni-dimensional strategy in both task 

conditions (N = 7). 

9.4.1.7.1 Correlations between personality and decision criteria shown in 

the two task conditions 

Preliminary correlations were run to assess the relationship between the four 

extracted personality components and the criterion location measures as well as 

the criterion shift score. The criterion shift score was calculated by subtracting 

the criterion in the asymmetric condition from the criterion in the symmetric 

condition, since participants are expected to place their criterion below the 

optimal accuracy bounds (325); thus, the shift scores should on average be 

positive. 

Results showed that there was a trend for the correlation between neuroticism 

and the criterion location set in the asymmetric task (r = .69, p = .086). This 

correlation suggests that there is a trend for stable, compared to neurotic, 

participants to show the appropriate shift in bias. 

Owing to the small sample size, it was not possible to further explore the data 

from the reversal phase. However, it was decided to explore how performance 

varied in the task conditions across the two learning phases. Hence, a repeated 

measure ANOV A was run with learning phase and task condition entered as 

repeated measure factors with two levels each (pre vs. post-shift and asymmetric 

vs. symmetric). The ANOV A is run on the 17 participants who were found to 

use the appropriate uni-dimensional strategy in both tasks during the pre-shift 

phase of the task. Results showed that there was a significant main effect for 
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learning phase [F(1,16) = 13.00, p = .002] while there was only a trend for the 

main effect of task condition [F(I,16) = 3.10, P = .097]. Moreover, there was a 

significant interaction between task phase and task condition [F(1, 16) = 6.50, p 

= .021], which suggests that criterion location varied across the task phases in 

relation to the task condition (figure, 9.7). 

340 

t: .g 320 

~ 
" "C 

'" :;; 300 
u.. 

280 

<:.------- £'1 

Asymmetric Symmetric 

Task 

Task phase 
-- Pre-shift 
- Post-shift 

Figure 9.7. Criterion location in the two task conditions across the learning phases 

A paired sample t-test indicated that, among these 17 participants, the criterion 

shift across the two learning phases was statistically significant in the 

asymmetric task [t(16) = 3.89, P = .001]. In the post-shift phase participants 

placed their criterion around 271.37 (64.43) and showed a noise level equal to 

162.12 (116.82). The noise level is higher than in the pre-shift phase since 5 of 

the participants included were not significantly fitted by the uni-dimensional 

model and they these cases had noise levels equal to 300. 

In contrast, the criterion location set in the symmetric task was not statistically 

different across the two task conditions [t(16) = 1.44, ns]. In the post-shift 

phase, the 17 participants placed their criterion around 317.23 (59.73) and 

showed a noise level equal to 202.52 (107.41). The reason why on average these 

participants showed a high noise level is due to the fact that 6 cases were not 
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fitted by the formal model in the post-shift phase of learning and had noise 

levels equal to 300. 

A 2*2 ANCOVA was conducted in order to assess whether decision criterion 

was affected by individual differences by entering the personality components 

as covariates. Due to the small sample (N = 17), each personality factor was 

entered separately. Results showed that there was a non-significant trend for the 

correlation between ImpAss and task condition [F(I,15) = 4.17, P = .059]. 

Moreover, there was a significant main effect of phase [F(I,15) = 11.83, p = 

.004] and the 2-way interaction between task condition and phase was also 

significant [F(1, 15) = 6.45, p = .023] 

A median-split technique was applied to the ImpAss component and the binary

coded factor was entered in the ANOV A as a between-Ss factor. Results showed 

that the task*ImpAss interaction was still a non-significant trend [F(1,15) = 

4.01, P = .064]. This interaction is graphically represented in figure 9.8. 
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Figure 9.8. Criterion location across the two task conditions for high and low impulsive 
individuals 

9.4.1.7.2 Non-learners 

Results showed that non-learners had an accuracy level equal to 0.58 (.08) and 

0.54 (.07) in the asymmetric and the symmetric task, respectively. The accuracy 
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level was above chance levels in the asymmetric task [t(24) = 5.13, P <.001] and 

the symmetric task [t(24) = 2.89, P =.008]. Correlations were run to establish 

any possible relationship between accuracy scores and the personality 

components. There was a non-significant trend for accuracy scores in the 

asymmetric task to positively correlate with functional impulsivity (r = .39, P = 

.056) and extraversion (r = .38, P = .064). 

Non-learners showed the appropriate switch in bias during the asymmetric task 

(mean = 303.38 and s.d. = 91.3) while they placed their criterion close to the 

optimal accuracy bound during the symmetric task (mean = 325.03 and s.d. = 

82.1). Correlations were run between the personality components and the 

criteria and they showed a trend for the correlation between functional 

impulsivity (FI) and the criterion set in the asymmetric task (r = -.35, P = .08). 

The correlation results also showed that FI was positively correlated with 

extraversion (r = .47, P = .02) and negatively correlated with neuroticism (r = -

.50, P = .01). 

Overall results from both learning phases indicated that the use of an alternative 

strategy allowed participants to show accuracy levels above chance and show 

the appropriate response bias, which maximised winnings, in the asymmetric 

condition. This suggests that those participants who did not learn to implement 

the optimal strategy must have used an alternative and reasonably effective 

strategy. This might have been mostly dependent on the implicit system and, 

therefore, not captured by the formal modelling (following earlier 

considerations). 

9.4.2 Neural model simulations 

Owing to the fact that participants had experienced an extensive practice session 

which consisted of 160 trials in total, 80 trials from each task (i.e. bars and 

dots), the simulations included the practice trials. This was done to account for 

the training effect of the practice trials on the experimental session. Indeed, 
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learning was expected to occur over the practice trials when participants should 

have been able to develop the appropriate strategy to solve the task. Learning 

during the practice session should be reflected by changes in the learning 

weights in the neural model. 

Simulations were run separately for each payoff condition (asymmetric vs. 

symmetric). Thus, the simulations were run across 240 trials which included the 

160 trials of the experimental task and 80 practice trials. The practice trials 

corresponded to the task in the experimental session (bars vs. dots). The 

stimulus sequence used in the simulations corresponded to the sequence 

experienced by the actual participants during the experiment. 

A parameter set that was able to simulate the behavioural data was identified by 

trial-and-error which was able to fit those parameters to the requirements of the 

present task. In order to successfully simulate the behavioural data the scaler 

parameter was set equal to 2, rulebias was set equal to 0.65 and the reward 

prediction signal (rptonic) was set equal to 0.5. The level of perceptual noise 

(pnoise) was set equal to 50 as for the simulation reported in the previous study. 

During the practice trials, participants received accuracy feedback informing 

whether their responses were correct or incorrect. The accuracy feedback signals 

were coded into rf values equal to 1 for correct responses and 0 for incorrect 

responses. In contrast, during the experimental task the rf values were coded as 

1, 0.75, 0.5 and 0.25 which represent a linear transformation of the actual 

reward values, i.e. 400, 300, 200 and 100, respectively. 

The rf multiplier was set equal to 0.5 (i.e. rf = rf. *0.5) throughout the 

simulations. Thus, the actual rf values were equal to 0.5, 0.375, 0.25 and 0.125 

(for 400,300,200 and 100 points, respectively) in the experimental task and 0.5 

and 0 (for correct and incorrect responses, respectively) in the practice trials. 

The parameter values used in the simulations reported below are summarised in 

table 9.14. 

331 



Table 9. 14. Parameters' values implemented in the simulations 

Symbol Description Value 

rptonic Reward prediction tonic value 0.5 

rulebias Strength of explicit module 0.65 

m Scales the rf values 0.5 

Pnoise Perceptual and criterial noise 50 

bl and b2 Learning rates of the RP unit 0.05*scalerl 

b3 and b4 Learning rates of the SR unit 0.05*scaler2 

Scalerl It scales the learning rate of RP unit 2 

Scaler2 It scales the learning rate of RP unit 2 

The parameter values reported in table 9.14 were used at the start of the 

simulations (i.e. first trial of the practice session) and the learning weights were 

updated following each triaL Simulations of the experimental session would, 

therefore, implement the updated learning weights which should reflect the 

learning occurred over trials (as expected to occur in the human data). 

9.4.2.1 Preliminary simulations of the behavioural data 

Preliminary simulations were run to check that the model and the parameter set 

could capture criterion and noise mean values close to the ones observed in the 

empirical data. The simulated criteria and noise levels for the asymmetric and 

symmetric conditions are reported in table 9.15 together with the fitted criteria 

shown by human participants. 

Table 9. 15. Simulated and actual (human) criteria and noise levels obtained in the 
asymmetric and the symmetric condition (erit = criterion; a = asymmetric, s = symmetric) 

erit a Noise a erit s Noise_s 

Simulated 339.59 (13.7) 85.62 (19.2) 320.32 (13.3) 73.81 (14.7) 

(N =300) 

Human 340.38 (30.9) 65.78 (46.8) 336.27 (37.4) 77.86 (69.8) 

(N = 17) 

The results reported in table 9.15 show that the neural model was able broadly 

to capture the mean ofthe human data. 
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9.4.2.2 Preliminary analyses to simulate the relationship between behaviour 

and individual differences 

Simulations were separately run for the two payoff sub-conditions (i.e. 

asymmetric vs. symmetric) and the parameter set presented above was kept 

constant across all the simulations reported in the following sections. These 

initial simulations capture a BAS variation that ranges uniformly from 0 to 2. 

9.4.2.3 Individual differences on the reward cell 

The correlation between the criterion and the personality variance was non

significant in the asymmetric condition task (r = 0.08, ns; figure 9.9). Once 

again there was a clear tendency for non-linearity in the relationship, as 

observed in chapter 8. 
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Figure 9,9, Scatterplot of the asymmetric condition for 300 simulated subjects with 
random uniform BAS parameter variation 

In contrast, there was a weak correlation in the symmetric condition (r = .17, P = 

.003). As observed in chapter 8, the relationship between the BAS variation and 

the fitted criterion is curvilinear. Indeed, the relationship between the BAS and 

performance is negative for those 'individuals' with BAS scores between 0.7 

and 1.2, whereas it is flat above 1.2 and positive for those with BAS scores 

below 0.7. 
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Thus, the overall positive correlation presumably derives from the fact that there 

are slightly higher criteria observed for those individuals with "BAS" parameter 

values below 0.5 (figure 9.10) 
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Figure 9.10. Scatterplot for the symmetric condition for 300 simulated subjects with 
random uniform BAS parameter variation 

9.4.2.4 Individual differences on the RPE signal acting on the actor 

synapses of the SR cell 

Simulations of the asymmetric condition showed that criterion was positively 

correlated with personality (r = .64, p <.001). Instead, there was no significant 

correlation in the symmetric condition (r = .07, ns). Figure 9.11 visually 

represents these relationships. 
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Figure 9.11. Scatterplot for the BAS*trait relationship in the asymmetric condition (figure 
A) and the symmetric condition (figure B), for 300 simulated subjects with random 
uniform BAS parameter variation 

9.4.2.5 Individual differences on the RPE signal acting on the synapses of 

the critic (RP) cell 

In line with the results obtained in the previous chapter, the simulations showed 

that there was no significant correlation between BAS variation and the criterion 

placement under the asymmetric condition (r = -.08, ns) or the symmetric 

condition (r = .02, ns). 

9.4.2.6 Individual personality simulations 

The preliminary simulations above indicate that the model with personality 

acting as a multiplier on the RPE signals impacting on the SR cell is the best 

candidate to simulate and explain the human data. These results are in line with 

the results and observations in chapter 8. Thus, further simulations were run 
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usmg this model to simulate the human data with individual values of 

personality variance. Simulations were only run to simulate the data from the 

learning phase since, due to the small sample size, the behaviour data from the 

reversal phase were inconclusive. 

9.4.2.7 Personality on the SR cell 

Taking figure 9.11 into consideration, it seems that it should be possible to 

capture criterion and noise levels close to the ones observed in the human data 

by considering a normal distribution of the BAS variance with a mean value of 1 

and a standard deviation of 0.25. These values should also be able to simulate 

the trait*criterion relationship, observed in the asymmetric condition. 

Three hundred and forty simulations were carried out and then sub-divided into 

twenty groups of seventeen 'participants', in order to obtain groups with the 

same samples size of the human data analysed in the learning phase. 

In the overall sample (N = 340), the correlation between personality and 

criterion was significant (r = .51, P <.001; figure 9.12). 
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Figure 9.12. Scatterplot of the relationship between personality and criterion in the 
asymmetric condition (N = 340) 

Nonetheless, the results in the twenty sub-groups are of greater interest since 

they consist of the same sample size as the human data and, therefore, have 
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similar power levels. Across the 20 sub-groups, the correlation coefficients 

ranged between 0.22 and 0.82, with a mean value equal to 0.5 (s.d. = 0.17). 

The correlation was significant for twelve of the twenty sub-groups with 

correlation coefficients ranging from 0.47 to 0.82 (mean = 0.6, s.d. = 0.11). In 

three of the sub-groups, the correlation showed a non-significant trend [group 1: 

r = 0.45, p =0.07; groups 2: r = 0.42, P =0.09; group3: r = 0.42, P = .101]. 

However, the correlation was non-significant in five of the sub-groups. Overall, 

these results indicate that despite the small sample size, it might be possible to 

detect the correlation between the trait parameter and the criterion in an 

empirical study. Additionally, the criterion and noise mean values were close to 

the scores in the human data. Indeed, the criterion mean ranged between 333.13 

(13.61) and 345.21 (16.21) and the noise level ranged between 69.74 (26.52) 

and 96.03 (23.72). The overall criterion and noise level values are reported in 

table 9 .16 (together with the actual scores). 

Table 9. 16. Simulated and actual criterion in the asymmetric condition 

Criterion Noise 

Simulated 340.14 (14.9) 85.58 (25.4) 

(N=340) 

Human 340.38 (30.9) 65.78 (46.8) 

(N = 17) 

These results across the sub-groups support the findings obtained m the 

empirical data. 

9.5 Discussion 

The present study replicated the behavioural data obtained in the study reported 

in chapter 8 and the results obtained by Markman and colleagues (2005). 

Indeed, under asymmetric payoffs participants showed a tendency to place their 

decision criterion away from the optimal accuracy criterion towards the optimal 

reward one. Moreover, the study showed that the response bias was mediated by 

individual differences and, more specifically, impulsivity was found to be 
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negatively associated with the bias. These results suggest that impulsivity is the 

underlying personality trait of the BAS system, at least if one assumes that the 

response bias in this task is a BAS-mediated phenomenon. The model 

simulations are a weak test of the latter assumption since the model simulates a 

positive relationship between response bias and the parameters within the 

biologically-inspired model, which is built so as to reflect probable features of 

the BAS. 

Results further identified the presence of a trend that indicated that high scores 

on the neuroticism (N) component were positively associated with a shift in bias 

across the two conditions. In particular, individuals with high scores on the N 

component showed a response bias in the asymmetric condition and no bias in 

the symmetric condition. The opposite pattern was observed for low N 

individuals. Since the two tasks were intertwined, it is possible that some 

participants may have not been able to distinguish which task offered symmetric 

payoffs. Thus, it is possible that low N participants were less likely to identify 

which task had an asymmetric payoff matrix. Neuroticism has been identified 

as the underlying personality trait of the conflict resolution system (i.e. BIS; 

eOIT, 2006) and, therefore, these results indicate that the BIS system became 

active during performance on the task. Indeed, feedback signals that indicated 

participants had earned fewer points than 400 may have been perceived as 

'punishing' which would have activated the FFFS system. Simultaneous 

activation of the BAS and the FFFS could have caused the activation of the BIS 

system in order to solve the conflict. Individuals with a more reactive BIS 

system (high N) may have been more sensitive to the emotional/motivational 

factors (i.e. feedback signals) and this could have enhanced learning, altering 

criterion placement. 

In the study reported in the previous chapter, neuroticism was not found to 

mediate performance during the task. Hence, it is possible that in the previous 

task receiving a message about the amount of potential winnings, together with 

the amount of actual points won, may have been perceived as more rewarding. 

However, this does not seem especially plausible and goes against the opposing 

reasoning advanced earlier; that reasoning led to the change in procedures used 
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in the present study. Nonetheless, the payoff structure implemented in the 

present study (together with the intertwined design of the task) may have 

rendered it more difficult to identify which task was the asymmetric task. It is 

possible that having presented participants with information on both the actual 

and the potential points might have helped participants to distinguish between 

the two tasks. 

Simulations run using the neural model were able to capture the relationship 

between a plausible BAS parameter (i.e. simulated underlying biology) and 

performance and, therefore, they validate to some extent the results obtained in 

the present study. The results showed that impulsivity (i.e. a BAS-trait 

candidate) mediated the response bias in the asymmetric task. The simulations 

also offer further insight into the empirical data. In fact, the human data was best 

simulated by the sub-model which has 'BAS-variation' acting on the RPE 

projections affecting the synapses on the stimulus-response actor cell. Thus 

these results suggest that the BAS may be characterised by responsivity to the 

RPE signals rather than to reward per se. In particular, the data seem to indicate 

that individuals who score low on impulsivity are more reactive to RPE signals 

(i.e. which might be described as high BAS-sensitivity). This was indicated by 

the fact that low impulsives showed greater response biases than their high

scoring counterparts. In other words, these results seem to indicate that high 

BAS individuals show the greater learning due to high sensitivity to the reward 

prediction signal which guides SR learning. Thus, consistent with some 

biological accounts of RST, BAS reactivity is associated with greater DA 

receptor reactivity to reward-related (in this case, RPE) signals. However, 

contrary to RST, this sensitivity is in response to RPE rather than reward per se 

and it is related to low (cf. high) scores on impulsivity. 

The neural model is a reward-only model and, therefore, it cannot capture the 

modulatory effect of neuroticism observed in the human data, assuming that the 

neuroticism effect is related to perceived losses during the task. However, the 

neuroticism effect observed in the human data may have hindered the 

BAS*behaviour relationship from being observed in the empirical data. 
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The simulations produced reasonably strong associations (i.e. correlations of 

about 0.5). However, the corresponding real personality*behaviour correlations 

will have also been weakened by the series of factors previously mentioned (see 

chapter 8). In fact, the neural model simulates the relationship between the 

biology (i.e. effects of midbrain DA activity) and behaviour, which is usually 

stronger than the association between personality and behaviour (Munafo et aI., 

2003; Cohen et aI., 2005). Finally, empirical studies also include external 

variations (not present in the simulations) that add noise and variance to the data 

and, subsequently, it may further weaken the phenomenon under study. This 

implies that the real personality*behaviour correlations would be expected to be 

considerably weaker than the simulated biology*behaviour correlation of around 

0.5, although it was still possible to observe a significant relationship in a 

sample of only 17 participants. 

One of the main limitations to drawing conclusions from the present study was 

the small sample size, and low retention, as many participants failed to learn to 

perform on the task. In particular, the data from the reversal learning phase 

indicated that only a very small number of participants learnt to perform on the 

task by applying the appropriate switched strategies. Thus, the data from this 

phase are inconclusive due to small sample size (i.e. low power). This does not 

allow one to fully explore the dataset to detect any possible relationship between 

personality and behaviour (i.e. response bias). 

The data showed that individuals with low scores on the positive schizotypy 

(PS) component were significantly more likely to use the appropriate uni

dimensional strategy (cf. guessing/other dimensional) than their high-scoring 

counterparts during the learning phase. Owing to the overlap between the 

ImpAss and the PS components, these results are in line with the fmdings 

obtained by Pickering (2004) who showed that impulsivity measures (e.g. EPQ

P) were positively correlated with performance on a rule-based CL task with 

stimuli varying on continuous dimensions. Moreover, current results showed 

that individuals who scored high on the impulsivity component showed a non

significant trend to earn more points in the symmetric condition than their low 

counterparts in the symmetric condition. These results suggest that high scorers 
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on the ImpAss component led to superior performance (i.e. greater accuracy 

levels) and these conclusions are in line with previous results obtained by 

Pickering (2004) and Tharp (2007) who found that high ImpAss individuals 

perform better than low ImpAss individuals during simple rule-based tasks. 

These researchers concluded that Imp Ass is associated with efficient 

performance during uni-dimensional RB tasks but, on the contrary, they show 

inefficient performance during more complex (i.e. conjunctive) tasks and/or rule 

switch learning. Tharp suggested that this is due to generally low cognitive 

flexibility typical of high ImpAss individuals. 

In the reversal phase, extraversion was found to significantly enhance learning 

on the symmetric payoff task condition. These results suggest that extraverts 

were able to switch their strategy once contingencies on the task had changed. 

These results seem to be counterintuitive to the literature that indicates that 

extraverts are impaired at inhibiting a dominant response (previously associated 

with reward) due to their hypersensitivity to reward (Patterson et aI., 1987; 

Avila, 200 I). However, the present findings support the view that enhanced 

rule-switching behaviour is due to greater cognitive flexibility (Pickering, 2004; 

Tharp, 2007). As previously mentioned, there is a great overlap between the 

regulatory focus theory and RST. For example, a high functioning BAS is 

characterised, just like the promotion focus, by a greater sensitivity to reward 

and a tendency to approach potential reward-related goals. Hence, it is possible 

that the greater cognitive flexibility shown by extraverts in the present study was 

determined by the regulatory fit between the experimental manipulation and the 

participant's chronic 'promotion' focus (i.e. high BAS individuals). Maddox and 

colleagues (2006) have suggested that regulatory fit leads to greater cognitive 

flexibility, which could have facilitated rule-switching in the present study. 

These results are in line with a study conducted by Tharp (2007) where 

extraversion was found to facilitate learning during a conjunctive RB task with a 

gain-only payoff matrix. The regulatory fit theory may account for the fact that 

the present results do not replicate those obtained by Patterson and colleagues 

(1993) and Avila's that used a mixed-payoff matrix and, therefore, did not lead 

to a regulatory fit. 
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Overall, the results are not conclusive, due to the small sample size and the 

small size effect (i.e. response bias). Indeed, just above half of the participants 

implemented the appropriate dimensional rule and performed above chance. 

This may be due to the increased difficulty added to the task by its intertwined 

structure which may have required additional working memory effort. Similarly, 

the small number of trials may have not allowed participants to show the 

appropriate response bias to maximise winnings. Moreover, the small effect size 

may have been due to the task pre-exposure during the practice trials. This 

should have encouraged participants to use the appropriate uni-dimensional 

strategy and placed their criterion close to the optimal accuracy criterion as 

accuracy feedback is symmetric across all categories. Originally, the practice 

session had been included to ensure the activation of the explicit system during 

the experimental categorisation task. In this way, it would have been possible to 

explore the activation of the implicit system over trials and how it mediated 

performance (i.e. response bias) under asymmetric payoffs. However, the 

practice trials may have strengthened the activation of the explicit system while 

dampening the activation of the implicit system and, subsequently, led to a 

smaller response bias. Hence, these results may suggest that practice trials may 

have been detrimental to exploring the behaviour under evaluation (i.e. response 

bias); nonetheless, inclusion of these trials ensures that it is the activation of the 

implicit system that leads to the response bias. However, future studies should 

probably not include such an extensive practice in order to obtain a greater 

effect size. 

Following these considerations, it seems necessary to replicate the present 

behavioural and psychometric [mdings in a bigger sample. In order to ensure 

learning and, therefore, greater retention of datasets for the analysis, it is 

necessary to render the task simpler. Owing to the results obtained in this and 

the previous chapter, inclusion of two task conditions (asymmetric vs. 

symmetric) may hinder performance: the results may have been affected by 

either order effects and/or overly-complicated task structure (i.e. the 

simultaneous requirement to perform the two conditions). Therefore, it may be 

necessary to have participants perform only on the asymmetric task, since it has 
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already been established that an asymmetric payoff matrix leads to a response 

bias in comparison to a symmetric payoff structure. 

A follow-up study would also allow us to test the validity and efficiency of the 

neural model at predicting human behaviour on a similar categorical task as a 

result of the biology-behaviour-trait relationship. The follow-up study reported 

in the next chapter aims to further replicate the results obtained in this chapter as 

well as further testing of the neural model. The task explores how categorisation 

is mediated by a variety of payoffs of different magnitudes. 

The current model suggests that learning in the 3-factor rule is highly dependent 

on the phasic firing of the mesolimbic and the nigrostriatal DA cells and their 

projections into the caudate, which reinforce the active and correct SR synapses. 

BAS functioning is also believed to vary depending on the DA activity of these 

systems (Pickering and Gray, 2001), therefore individual differences in BAS 

functioning should affect the rate of learning (i.e. the formation of SR 

associations). Hence, the general assumption is that individuals with a highly 

reactive BAS should learn SR associations in a more efficient way (through 

faster development of stronger synaptic connections) than those with a less 

reactive BAS. Learning relies on the reward prediction signals and the 

magnitude of the response they induce at their target synapses. The simulations 

in the present chapter suggest that the BAS is responsive to RPE signals (cf. 

reward per se) and, therefore, it is possible that BAS variations may affect 

learning as a function of RPE magnitude. The following study attempts to 

address this issue more directly by manipulating RPEs over a wider range of 

values. 
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Chapter 10 

Motivation and personality in response to several 

payoffs varying in magnitude 

10.1 Abstract 

The present study aimed to extend the fmdings obtained in the previous chapter. 

The study explored how individual differences mediated decision bound 

placement under an asymmetric matrix with several payoff magnitudes. 

Additionally, it aimed to assess the efficacy of the neural model at simulating 

human data. Results showed that impulsivity mediated learning and, in 

particular, that participants who scored low on impulsivity showed greater 

criterion shifts than their high-scoring counterparts. Consistent with the results 

of the previous chapter, the neural model results suggested that learning was 

dependent on the dopaminergic reward prediction error (RPE) signals that are 

responsible for the formation of SR association (according to the 3-factor rule; 

Pickering and Gray, 2001). Moreover, RST postulates that DAergic activity is 

the substrate of the behavioural activation system (BAS; Gray, 1987). 

Therefore, the present results suggest that BAS is responsive to DA-RPE signals 

rather than to reward per se as originally postulated by RST. 

10.2 Introduction 

Data from the two previous studies indicated that participants tend to over

classify probabilistic stimuli as members of the high payoff category during an 

RB category learning task with an asymmetric payoff matrix. Moreover, the 

previous studies indicate that this response bias was mediated by individual 

differences. In particular, the study reported in chapter 9 identified impulsivity 

as the personality trait that affects the magnitude of the bias. Contrary, to RST 

prediction it seems that high BAS activation (of processes responsible for the 

bias) is associated with low scores on impulsivity. However, due to the small 
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sample size included in the analysis the study needs replication. The present 

study aims to replicate these fmdings. 

The neural model simulations offered a further insight into the human data. In 

fact, simulation results indicated that both the explicit system and the implicit 

system were active during perfonnance on the simple RB CL task and they 

mediate different aspects of learning. According to COVIS predictions, the 

explicit system was involved in solving the task in general tenns by applying a 

simple and easily verbalised uni-dimensional rule, which was probably 

developed fairly early on during the practice trials. In contrast, the implicit 

system was found to mediate SR learning and, therefore, be responsible for the 

response bias observed under an asymmetric payoff matrix. In other words, the 

explicit system detennines a boundary that is needed, to solve the categorisation 

problem, but sets it at a perceptually symmetric position; the implicit system, by 

contrast, gradually adjusts that boundary via reward-based learning in a biased 

fashion which helps to maximise winnings under asymmetric payoffs. The 

simulations showed that BAS variation could lead to individual differences on 

this task by affecting SR learning, which is guided by RPE-DA signals. In other 

words, BAS variability might reflect responsivity to RPE-DA signals (c£ 

responsivity to reward per se). In particular, the model showed that simulated 

high BAS individuals were more responsive to RPE signals and, therefore, 

showed faster and greater SR learning, as indexed by the response bias. 

Therefore, high BAS activation is associated with increased effectiveness of the 

RPE-DA projections from the SNpc to the medium spiny neurons in the striatum 

which, subsequently, strengthen the appropriate SR association in corticostriatal 

synapses. Indeed, DA firing has been identified as one of three fundamental 

factors involved in SR learning, according to the 3-factor learning rule (Schultz, 

1998; Pickering and Gray, 2001). This model accounts for DA-driven synaptic 

plasticity in the striatum (Pickering and Gray, 2001; Schultz, 2002; Corr 2006; 

see chapter 2). The COVIS model also assumes that this same 3-factor model is 

the substrate of the implicit system (Pickering, 2004). 
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Shohamy and colleagues (2008) have reviewed behavioural, computational and 

neuro-imaging data on probabilistic learning (in particular, the so-called 

'weather-prediction' task) and have concluded that optimal learning improves 

over trials. More specifically, there is evidence that indicates that performance 

seems to be initially driven by the explicit system (i.e. MTL), which implements 

simple strategies; whereas over time the implicit system becomes more 

dominant as the appropriate SR associations are strengthened. In particular, the 

evidence reviewed by these authors indicates that incremental learning was 

driven by the basal ganglia and it was dependent on strengthening of the SR 

association through a DAergic error-correcting, phasic signal (i.e. RPE signals). 

Therefore, these data support the simulation results obtained in the previous 

chapters that indicate that the two systems may be involved at different stages, 

and in different aspects, of learning. 

One of the main aims of the study was to replicate and extend the data obtained 

in the previous studies. In order to replicate the results, several changes were 

applied to the task design in order to facilitate performance. Indeed, the tasks 

implemented in the previous two chapters proved quite difficult as indicated by 

the low proportion of participants performing above chance usmg the 

appropriate, dimensional strategy. Therefore, it was decide to lower the 

difficulty of the task and enhance learning by increasing the discriminability of 

the categories (d prime) used in the task. Stimuli were generated so that the task 

had a d prime equal to i 8 (cf. d' = I in the previous studies). By doing this, it is 

expected that a greater proportion of participants should learn to perform using 

an appropriate rule in the task and, therefore, the final sample size should be of a 

reasonable size (i.e. power). 

Additionally, the task implemented in the previous chapter may have been 

difficult because participants performed simultaneously on the two tasks, which 

were presented in an intertwined fashion. This may have proved demanding on 

working memory and hindered overall performance. However, running the two 

conditions separately raised order effect issues (chapter 8). Hence, it was 

18 The d prime (d') value in this task indicates the discriminability of 'adjacent' categories; see 
below 
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decided to lower the level of difficulty of the task by having participants 

perform only in the asymmetric payoff condition. There was no need to include 

the symmetric payoff matrix condition, since the two previous studies have 

already shown that asymmetric payoffs lead to a response bias in relation to 

symmetric payoffs. 

Finally, in order to increase the likelihood of detecting the predicted association 

between behaviour and a 'trait' measure of BAS variation, it was decided to 

include a behavioural measure of impulsivity together with the usual battery of 

questionnaires. Following RST predictions and results from the previous study, 

trait impulsivity seems the best BAS-trait candidate and it should be the BAS 

measure that best predicts performance on the task. The decision to include a 

behavioural measure of impulsivity (i.e. an endophenotype) was guided by the 

fact that behavioural measures are expected to be more reliable indexes of 

individual differences than self-reported, psychometric measures of impulsivity 

(Lee, et aI., 2007). Indeed, self-report measures are limited by response bias 

induced by participants' interpretation of the questionnaire items and by the fact 

that the self-report measure may not be capturing the facet of impulsivity 

assessed in the study (e.g. reward evaluation, or behavioural inhibition; 

Eisenberg et aI., 2007). Indeed, Eisenberg and colleagues (2007) found that DA 

activity, as indexed by the DRD2 and the DRD4 genetic polymorphisms, was 

associated with greater delay discounting (i.e. impulsivity). In contrast, there 

were weak effects on questionnaires: a trend main effect of the genetic variance 

on the total SSS score, but no effect on any of the Barratt Impulsive Scale (BIS) 

or the Eysenk Impulsivity Questionnaire (EIQ) scales. Nonetheless, the delay 

discounting (DD) scores were positively correlated with the BIS motor 

impulsivity and EIQ impulsivity subscales. Hence, these results confirm that the 

personality measures indexed impulsivity but the behavioural measure of 

impulsivity (i.e. delay discounting) was most strongly correlated with the 

genetic variance (i.e. biological mechanism). 

The behavioural index of impulsivity included in the present study was the delay 

discounting task, which is a standardised measure of impulsivity (Monterosso 

and Ainslie, 1999; Eve den, 1999; Dawe, 2004). Indeed, impulsivity is often 
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operationally defined as the tendency to choose small but immediate rewards 

over larger but delayed rewards (this is delay discounting; Bickell et aI., 1999; 

Field et aI., 1999; Richards et aI., 1999). High impulsive individuals tend to 

discount delayed rewards more than low impulsive individuals. There IS 

empirical evidence that supports the claim that delay discounting is a 

behavioural measure of trait impulsivity (Eisenberg et aI., 2007). Richards and 

colleagues (1999) have found that the hyperbolic discounting coefficient is 

positively correlated with standardised impulsivity measures (i.e. EPI

impulsivity and extraversion as well as SSS-disinhibition). 

There is also evidence that indicates that the decision-making processes 

involved during performance on the delay discounting task resemble the 

processes involved in reward-related learning and, more importantly, relies on 

reward prediction error (Daw and Doya, 2006; Kable and Glimcher, 2007; 

Murray, et aI., 2007; Kalenscher and Pennartz., 2008). Indeed, Kalenscher and 

Pennartz (2008) describe hyperbolic delay discounting as constant updating of 

reward values over trials following Pavlovian learning. Moreover, these authors 

suggest that with practice participants learn to predict future (expected) rewards 

in relation to reward-related cues. This reward representation is constantly 

updated and future, predicted rewards are constantly discounted throughout 

learning. If there is a mismatch between the actual and the predicted reward, a 

reward prediction error can be computed (equation 10.1) 

Eq.l0.l 

where ()t is the error term at time t, , and r is the delay discounting term, rt is the 

actual reward a time t, whereas (rVt - Vt-1) represents the predicted reward. As 

in the operational learning formulae reported in chapter 2, the reward prediction 

error term acts as a reinforcement signal according to the 3-factor rule. 

Following these considerations, the authors proposed a computational model 

that explains delay discounting in terms of implicit learning. Indeed, they 

suggest that RPE-DA signals strengthen SR learning and, therefore, guide 

decision-making processes according to equation 10.2: 
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Eq.l0.2 

where AWij,t denotes the strength of the synapse between the pre- (j) and post

synaptic (i) neuron and c is the learning constant. In other words, the 

computational model suggests that delay discounting is mediated by DA-frring 

changes in the striatum. 

Probabilistic discounting, which is equivalent to delay discounting, has been 

found to be mediated by dopamine and, in particular, RPE-DA signals 

(Richards, et aI., 1999; Wade et aI., 2000; Pessiglione et aI., 2006; Murray et aI., 

2007; Kalenscher et aI., 2008). For example, Pessiglione and colleagues (2006) 

have observed that during performance on a probabilistic task, L-Dopa 

administration (cf. haloperidol) was associated with increased responding to 

high-probability stimuli under a gain-only matrix. In contrast, L-Dopa 

administration did not affect learning under a loss-only matrix. Additionally, 

increased RPE signals in the ventral striatum were observed following L-Dopa 

(cf. haloperidol) administration. RPE-DA signals can also control learning 

during a reward-mediated learning task of the type implemented in the present 

and the two previous chapters, as indicated by the neural model and by previous 

studies (Hollerman and Schults, 1998; Tobler et aI., 2005; Abler et aI., 2006; 

Juckel et aI., 2006a). In particular, it has been found that reward-dependent 

learning is mediated by DA activity in the striatum primarily through D1 

receptors (Beninger and Miller, 1998; Frank et aI., 2007; Klein et aI., 2007) 

According to the evidence, it was expected that a behavioural measure of 

impulsivity such as delay discounting (i.e. an endophenotype for trait 

impulsivity) should be a more reliable and specific measure of impulsivity than 

a self-report personality questionnaire (i.e. the phenotype). Thus, it should be 

more strongly correlated with behavioural responding on the CL task (i.e. bias) 

than self-reported psychometric measures of impulsivity (Eisenberg et aI., 2007; 

Lee, et aI., 2007). There is extensive evidence that shows that the specific 

biological markers (such as those simulated in the model) are correlated 

relatively weakly to individual differences on trait measures (explaining at most 

10% of the variance; Bau and Salzano, 1995; Blum et aI., 2006; Reuter et aI., 
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2006). Subsequently, it can be assumed that there is a weak association between 

the personality and task behaviour as a direct result of their mutual association 

with the underlying biology. Indeed, the impulsivity*task correlations observed 

in the human data reported in the previous chapters were quite weak, despite the 

fact that the simulated behaviour*biology correlation was strong (up to r = .70). 

Therefore, it was assumed that a behavioural measure of impulsivity might be 

closer to the (BAS-mediated) task behaviour assessed in the study. 

In order to extend the [mdings from the previous study, the present study aims 

to explore the impact of several payoff magnitudes on learning. The previous 

studies show that participants showed a response bias when presented with two 

categories that offered asymmetric payoffs. In contrast, the present study 

explores how several payoffs of differing magnitude affect learning and, 

possibly, response bias. 

RST suggests that learning according to the 3-factor model is highly dependent 

on the phasic firing of the mesolimbic and the nigrostriatal DA cells and their 

projections into the caudate that reinforce the active and correct SR synapse. 

BAS functioning is also believed to vary depending on the DA activity of these 

systems and, therefore, individual differences in BAS functioning should affect 

the rate of SR learning (Pickering and Gray, 2001). Hence, RST predicts that 

high BAS individuals should learn more efficiently than low BAS individuals. 

Learning relies on the reward prediction signals and their magnitude. The 

simulations from the previous chapter suggest that the BAS is responsive to 

RPE signals (cf. reward per se). Therefore, it is possible that BAS variations 

may affect learning as a function of RPE magnitude, which represents the 

teaching signal that guides learning. Following these considerations, high BAS 

individuals are expected to show superior learning than low BAS individuals 

thanks to their greater sensitivity to RPE signals. 

The use of several payoffs varying in magnitude also offers the chance to test 

the efficacy of the neural model to simulate the human, behavioural data (i.e. 

response bias) in response to different payoffs and the impact of individual 

variation in BAS-reactivity to a variety of payoffs. 
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10.2.1 Study aims 

The present study aims to extend the findings obtained in the previous studies 

and to assess how BAS variation mediates response bias in relation to a greater 

variety of payoff magnitudes. Moreover, the study aims to explore the impact of 

payoff matrix switch in the second half of the study. More specifically, the study 

explores the impact of switching from an asymmetric payoff matrix to a 

symmetric matrix, where correct responses earn either greater or smaller gains 

than any of the correct responses in the learning phase. Finally, the present study 

also has as a main goal to test the validity of the two individual differences sub

models and further assess which one is best at capturing the human data and, 

therefore, interpret the results. 

10.3 Method 

10.3.1 Participants 

Participants were an opportunity sample recruited at Goldsmiths. The sample 

consisted of 60 participants, 18 males and 42 females (70% female). Fifty-four 

participants (i.e. 90% of the sample) were right-handed. All participants were 

aged between 18 and 39 (mean age = 22.9; s.d. = 4.9). 

The majority of the sample (62%) was recruited through the research 

participation scheme run by the psychology department and they all received 4 

course credits for their participation. The remaining 38% of the sample 

comprised students from other departments within Goldsmiths. These 

participants received £12 for their participation. Participants were guaranteed 

confidentiality. Testing consisted of one sitting that lasted approximately 2 

hours. 
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10.3.2 Design 

The aim of the present experiment was to assess the impact of payoffs of 

varying size during learning on a CL task. Therefore, an asymmetric payoff 

matrix was used where payoffs varied in magnitude. 

In particular, the study was interested in assessing the impact of reward 

magnitude on the decision criteria set by participants during a CL task that 

required participants to categories stimuli into four categories. The task 

consisted of two phases: a learning phase and the subsequent "payoff-shift" 

phase. In the learning phase, the primary independent variable was payoff 

matrix which had four within-subjects levels that characterised the magnitude of 

the payoffs earned for correct responses (i.e. highest, high, low and lowest). The 

different payoff values offered by the four different categories are summarised 

in table 10.1. 

Table 10.1. Payoff values used for correct and incorrect responses in the two learning 
phases of the task 

Phase-> Learning Shift Shift All 

conditio conditio phases 

n highest n lowest 

Payoff! Correct Correct Correct Incorrect 

Highest 400 467 133 100 

High 333 467 133 100 

Low 267 467 133 100 

Lowest 200 467 133 100 

In the payoff-switch phase, the payoff matrix was altered in such way that 

correct responses to any of the four categories offered the same amount of 

points (i.e. symmetric payoffs). The main IV in the second half of the task was 

payoff structure and it was run as a between-subjects factor with 2 levels (i.e. 

higher vs. lower). Indeed, one matrix condition offered more points for correct 

responses than any of the categories in the fIrst task (467 points) while the other 
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matrix condition offered fewer points than any of the categories in the first task 

(133 points). 

10.3.3 Task and apparatus 

The task was run on a Mesh PC and a Mitsubishi 21" monitor with 1024 x 768 

pixel resolution in an artificially lit room. Each stimulus was computer 

generated by using Matlab routines from Brainard's (1997) Psychophysics 

Toolbox. Stimuli were flashed on a black background that filled the entire 

screen. 

The category learning task required participants to learn to categorise small 

circular dots (14 pixels in diameter, approximately .525 cm) as members of one 

of the four categories. The stimuli appeared within a 600*600 pixels display box 

that delineated the attention space participants should focus on. The dots always 

appeared along an imaginary, horizontal 600-pixellong line which ran along the 

horizontal midline of the display box. 

The relevant dimension that determined category membership was location of 

the dot across the imaginary horizontal line. The stimuli had to be classified as 

members of category A, B, C or D. The stimuli for the four different categories 

were generated by sampling from four independent but overlapping normal 

distributions, thus making the task probabilistic. In the two previous studies the 

mean and standard deviation values (of the categories' distributions) were 

chosen so that the signal detection discriminability of the two categories (i.e. d 

prime) was equal to 1. However, results from these studies have shown that a d 

prime (d') equal to 1 made the task very hard for participants to learn 

successfully. In fact, a high proportion of participants failed to implement the 

appropriate uni-dimensional strategy. Hence, it was decided to increase the d' 

value to render the task easier and, hence, enhance learning. This was also 

necessary since the present task is harder than the two tasks reported in the 

previous chapters since participants have to classify the stimuli as members of 

one of four categories (cf. two categories in the previous studies). The increased 
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numbers of categories was expected to add some requirement for extra cognitive 

and short-term memory effort. 

The d' value was increased from 1 to 2, following the results obtained in a pilot 

study which tested the impact of a d' of 1.5 and 2 (see appendix 2). Stimuli were 

generated by sampling from 4 independent but overlapping normal distributions. 

Hence, in order to develop stimuli with a d' equal to 2, the standard deviation 

value was chosen to be 50 pixels whereas the distance between the centre of 

adjacent categories was equal to 100 pixels. The distribution used to generate 

category A stimuli had a mean pixel location equal to 150, the one used to 

generate category B stimuli had a mean equal to 250, the one for category C 

stimuli had a mean equal to 350 and, [mally, the one for category D stimuli a 

mean equal to 450. The dots were drawn, centred at these random, varying pixel 

positions, measured from the left-hand end of the imaginary vertical line. The 

stimuli were presented in a fixed quasi-random order to all participants. Each 

stimulus appeared on the screen until participants responded. 

During the task participants were expected to learn to categorise the different 

stimuli into the four different categories. In order to facilitate learning, 

participants received feedback for each response they made and the feedback 

they received was in the form of points. Indeed, as soon as they responded they 

received a message on the screen below the stimuli which told them how many 

points they earned and how many they could have earned, as in the task reported 

in chapter 8. Indeed, results obtained in chapter 9 indicated that neuroticism (N) 

scores mediated performance in the learning phase. N may have been found to 

mediate performance because earning 100 points may have been perceived as 

punishing compared to 200, 300 and 400 points earned for correct responses. 

However, this N effect was not found in the first study. This may have been due 

to the fact that, in chapter 8, the presentation of the potential points that could 

have been won, together with the actual points won, may have attenuated the 

'punishing' effect of earning 100 points. Indeed, the perspective of a potential, 

greater earning may have been perceived as rewarding. It is possible that 

including both types of information is perceived as more rewarding and, 

therefore, may lead to a pure BAS activation. Additionally, information on 
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actual and potential rewards may be more informative and enhance learning. In 

conclusion, following results from the previous studies, it appears that both 

auditory and visual feedback may enhance learning without impacting on the 

response bias. Thus, participants were told how many points they had won and 

how many they could have won since both type of information seem to be useful 

for learning. 

The participants made their responses by pressing some specific keys on the 

keyboard. They had to press the 'up arrow' to make an A response, the 'down 

arrow' key to make a response D, a 'right arrow' key response for category B 

and, finally, a 'left arrow' response for category C. The choice of this key was 

guided by the fact that this key mapping would have allowed making responses 

just by using 'the index finger of the dominant hand' to avoid any possible 

handedness effect. 

The corresponding keys were covered by a sticky label marked as A, B, C and D 

as necessary. This was done in order to make it easier for participants to 

remember which key corresponded to which category. Visual feedback 

informed participants on the amount of points they had earned as well as the 

amount of potential points that could have been earned in that trial. Feedback 

was presented for 300 msec and followed by 100-msec IT!. 

Participants received both visual and auditory feedback for each response they 

made. The auditory feedback was represented by the sound of a ringing cash 

register for correct responses, whereas for incorrect responses it was an 

unpleasant buzzer. 

As mentioned in the design section, the task consisted of two phases: the 

learning phase and the payoff-switch phase; each phase constituted a separate 

(sub-)task. The task comprised 240 trials in total; the learning phase consisted of 

180 trials (45 trials per category) whereas the switch phase consisted of 60 trials 

(15 trials per category). The two phases were presented as two separate tasks 

and each task offered participants the chance to earn one entry into the lottery, 

depending on their performance. 
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10.3.3.1 Learning phase 

The learning phase aimed to assess the impact of the asymmetric payoff matrix 

on learning during an RB category learning task and, therefore, extend previous 

findings. As mentioned in the design section, during the learning phase, 

participants were exposed to the asymmetric payoff matrix which offered 

different amount of points for correct responses to the different categories (table 

1 0.1). Incorrect responses to any category earn participants 100 points. The 

structure of the asymmetric payoff matrix was counterbalanced across 

participants to account for potential artefacts determined by the stimulus 

location on the screen (see below for details). 

10.3.3.2 Payoff-switch phase 

The switch phase aims to explore possible behavioural changes (change in 

response bias) during the task as a result of a switch in the structure of the 

payoff matrix. This phase consisted of only 60 trials and it represents an 

exploratory analysis of the potential carry-over effect from a task with 

asymmetric payoffs to one that delivers symmetric payoffs. 

A symmetric payoff matrix was implemented in the switch phase so that all 

categories offered the same amount of points for correct responses (table 10.1) 

As in the learning phase of the task, participants earned 100 points for incorrect 

responses. The switch phase had two switch conditions (higher vs. lower) and 

participants were randomly allocated to either condition depending on their 

experimental number code. Under the lower payoff matrix correct responses to 

any category earned participants 133 points, which represents the lowest amount 

of points on offer compared with the points previously earned during the 

learning phase. On the contrary, under the higher payoff matrix participants 

earned 467 points for correct responses regardless of category type, which is the 

highest amount of points on offer compared to the points earned in the learning 

phase. Incorrect responses still earned 100 points as in the learning phases. 
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10.3.4 Counterbalancing 

Only two forms of counterbalancing (CB) were used across participants. The 

first type of CB was used to avoid any possible effect of stimulus location 

interacting with payoff magnitude. Indeed, participants may have found it easier 

to learn to correctly respond to the categories close to the edge of the box (A and 

D) and may have over-classified ambivalent stimuli from categories Band Cas 

members of the two edge categories (categories A and D). In other words, 

participants may have shown a tendency to over-classify ambiguous stimuli as 

members of the near-the-edge categories independently on their payoff and, 

possibly, this would reduce the effect of the asymmetric matrix on the response 

bias. Hence, the first type of CB aimed to counteract any possible location-bias. 

This was achieved by having two alternative matrix structures (PO matrixl and 

PO matrix2) counterbalanced across participants, while keeping constant the 

location of the categories across participants. The first 30 participants performed 

under CBl (POmatrixl) and the last 30 under CB2 (POmatrix2). The points 

earned for correct responses to the different categories are presented below in 

table 10.2 for the two different PO matrices. 

Table 10.2. Payoff matrix ofthe four categories across the two counterbalancing orders 

Cat A CatB CatC CatD 

(150 (250 (350 (450 

pixels) pixels) pixels) pixels) 

POl 333 200 400 267 

P02 200 333 267 400 

The second CB was used in the payoff-switch phase in order to ensure random 

allocation of participants to either of the two switch conditions. Participants 

were automatically allocated to one of the two switch CB condition by the 

computer depending on the ID code they had been allocated. Participants with 

an odd ID code experienced CBA (higher: 467 points) whereas those with an 

even ID code were allocated to CBB (lower: 133 points). Thus, there were two 

crossed counterbalancing conditions (i.e. 112; AJB). 
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10.3.5 Personality measures 

Participants completed several personality measures, which were: the Eysenck 

Personality questionnaire revised (EPQ-R), the Oxford-Liverpool inventory of 

feelings and experiences scale (OLIFE), the sensation seeking scale (SSS), the 

schizotypal personality questionnaire (SPQ), the big five inventory (BFI) and 

the BIS/BAS questionnaire. Four personality components were extracted after 

running a PCA with Varimax rotation on these scales (see chapter 4 for details). 

The four components extracted are: Extraversion (E), Neuroticism (N), Positive 

Schizotypy (PS) and impulsivity-antisocial (ImpAss). The PCA was run on 232 

participants, who constitute the overall number of participants tested. The 

components scores used in the present study are the corresponding scores 

extracted in the overall PCA involving 232 participants. 

Additional impulsivity measures were also included to assess their impact 

during the CL task and to explore their relationship with other personality 

components which, as described in the PCA chapter, are expected to be related 

to the BAS output. The additional impulsivity measures were the delay 

discounting (DD) task and the Dickman Impulsivity Inventory (DII; Dickman, 

1990; see chapter 5). In the present study, the Chronbach's alpha for the FI scale 

was 0.73 and the alpha value for the DI scale was 0.86, which indicates that the 

two scales have a reasonable internal consistency. The instructions and 

procedure reported in chapter 5 for the DD task were also implemented in the 

present study (thus, consult chapter 5 for details). 

10.3.6 Procedure 

The study method and procedure were approved by the Psychology Department 

Ethics Committee (DEC) at Goldsmiths, University of London. Testing was 

conducted in a testing room in the department. The procedure used in the 

present study closely resembled the procedure followed in the previous two 

studies. The instructions and the task layout followed the format used in the 
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other studies although they allowed for the different requirements and structure 

of the task (i.e. 4 categories). 

All participants were given a so-called promotion focus. Indeed, they were told 

that they could win two entries into a £25 draw per task. In order to win an 

entry, they had to exceed a certain amount of points (i.e. performance criterion; 

table 10.3) for the learning or switch phases of the task (considered separately). 

One draw was held for all 60 participants. 

The performance criterion in the learning phase was the same for the two CB 

groups (i.e. 37100). Nonetheless, in the switch phase the performance criterion 

varied depending on the CB condition participants performed in. The 

performance criterion for the two phases are summarised in table 10.3. 

Table 10.3. Performance criteria in the different phases of the task and counterbalancing 

condition (CB) 

Learning Switch phase 

Phase CBl (467 CB2 (133 

points) points) 

Performance 37100 17200 7000 

Criterion 

Participants read the instructions on the computer screen and were encouraged 

to ask questions for clarification if needed. Once participants reported being 

ready to start, the experimenter left the room only to return at the end of both 

tasks. The symmetric payoff matrix condition always followed the learning 

phase with the asymmetric payoffs. No practice trials were included in the 

present study since modelling results from the previous study suggest that 

extended practice may have hindered the activation of the implicit system and, 

therefore, the response bias. 

Instructions informed participants that a series of stimuli represented by circular 

dots would be individually presented on the screen and that they would need to 
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learn, by trial and error, to classify them into category A, B, C or D by pressing 

the corresponding keys. 

As in the previous studies, points earned were added up on a vertically oriented 

"point meter" displayed on the right hand of the computer screen. The meter 

consisted of a 765 pixel tall x 50 pixels wide rectangle and it was set to zero at 

the beginning of each task. The performance criterion was presented as a 

horizontal line across the meter and was labelled 'Bonus'. Contrary to the two 

previous studies, where the performance criterion for each condition was set at 

80%, in the present study it was necessary to set the performance criterion at 

67% of the points that the optimal classifier would obtain over the overall trials 

of each task (i.e. 180 and 60), relative to 0% accuracy. This was a necessary 

measure since, due to the extra effort required by the task as a result of having 

four categories, the pilot study showed that even with a d' equal to 2 the task 

was too hard for participants to obtain 80% of the points earned by the optimal 

classifier. In the pilot study participants reached 67% accuracy levels and, 

therefore, this level was used in the actual task. Indeed, 67% was considered to 

be a more realistic target that would have prevented participants to experience 

frustration but rather maintained a promotion focus. The 67% accuracy level 

was implemented for the learning phase and for the two payoff-switch 

conditions, although for the latter it was obviously calculated on a far smaller 

number of trials. 

The region above the criterion line was labelled 'Yes' whereas the one below it 

was labelled 'No', which indicated whether the participant had won the entry or 

not. The meter was updated following each response. In the learning phase, it 

was updated at a rate of 1 pixel per 52 points regardless of CB order. In the 

switch phase, the meter was updated at a rate of 1 pixel per 37 points in CB 1 

and a rate of 1 pixel for 15 points in CB2. The part of the meter that changed 

flashed three times to stress the fact that points had been earned. 

The learning phase task consisted of 2 blocks of 80 trials each. Participants had 

the chance to take a break at the end of the first block and before starting 

performance on the second task. The instructions presented to participants 
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during the inter-block and inter-task breaks closely resembled those used in the 

original study (chapter 8; see Appendix 3 for the instructions). 

10.3.7 Data analysis 

Each data set was fitted using a formal model that could extract the actual 

criterion location which, as previously mentioned, is a more useful measure of 

decision bound than the criterion calculated following SDT formulae. The 

formal model was applied to the last 160 trials of the learning phase. Indeed, it 

was decided to exclude the initial 20 trials since they constitute 

practice/familiarisation trials and, therefore, their inclusion would include noise 

in the analyses. Despite the fact that the first 20 trials were excluded, similar 

numbers of trials of the four categories were included. Formal fitting was not 

meaningful for the reversal phase due to the small number of trials on which the 

fitting would have been based. As already noted, this phase of the study was 

largely exploratory anyway. 

As in chapter 5, prior to analysing the delay discounting data, all delay intervals 

were transformed into months [e.g. I-week = (1/30)*7 = 0.23]. Subsequently, 

data obtained from each participant was individually fitted by both the 

exponential and the hyperbolic decay fitting model using non-linear regression 

in SPSS. 

The hyperbolic function assumes that discounting decreases in proportion to the 

time delay, in particular discounting is greater with short time delay and smaller 

as the time delay increases (equation 10.3): 

Eq.l0.3 

In contrast, the exponential function assumes that the value of the reward 

decreases by a fixed amount constantly over time (equation 10.4): 

Eq.l0.4 
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In both equations V d is the value of the delayed reward, Vi represents the value of 

the immediate reward (i.e. 1000), D represents the delay and k is the discounting 

rate constant (i.e. 0.1). Consistent with previous studies, the hyperbolic function 

offered a better fit to the data than the exponential function (Monterosso and 

Ainslie, 1999; Richards, et aI., 1999; Kalenscher et aI., 2008). 

10.4 Results 

The present results explore participants' performance during the two phases of 

the 4-category category learning task (i.e. learning and payoff switch phase). 

Hence, the section is subdivided into two parts, a first section which describes 

the main results obtained during the learning phase and a second section which 

describes the secondary results for the switch phase. 

10.4.1 Learning phase 

10.4.1.1 Preliminary analyses 

10.4.1.1.1 Proportion of correct responses 

Preliminary analyses were conducted to assess the accuracy level achieved by 

participants during the initial learning phase of the task. Accuracy was indexed 

by the proportion of correct responses across the four categories. The analysis 

indicates that the proportion of correct responses was above chance levels (i.e. 

25%) across the four categories and regardless of payoff matrix condition (table 

10.4). Indeed, a mixed-design ANOVA on accuracy indicated that the 

interaction between PO matrix condition and the category type was non

significant [F(3,56) = .11, ns]. 

362 



Table lOA. Mean and standard deviation values of the proportion of correct across the 
four categories in the two payoff conditions (N = 60) 

Proportion of correct responses 

Cat A CatB CatC CatD 

PO matrix 1 0.62 0.46 0.48 0.55 

(.16) (.18) (.18) (.18) 

PO matrix 2 0.60 0.44 0.47 0.56 

(.25) (.19) (.19) (.22) 

Table 10.4 also indicates that participants were more accurate when responding 

to category A and category D stimuli than stimuli belonging to category Band 

C. Indeed, during briefing several participants verbally reported that they were 

quite confident in their categorisation of stimuli A and D. This may be due to 

the fact that the near the edge 'location' of these stimuli made them more 

discernible (e.g. 'category A stimuli are the ones closest to the left-hand edge of 

the screen'). Additionally, stimuli from category A and D overlapped with only 

one other category (B and C, respectively) whereas stimuli from categories B 

and C probabilistically overlapped with two other categories (i.e. A and C vs. B 

and D, respectively). Indeed, the main effect of category was found to be 

significant [F(3,56) = 7.50, P <.001] and the contrasts showed that the 

proportion of correct responses was statistically greater for category A than 

category B stimuli [F(I,58) = 21.5, p<.001] and, similarly, participants made 

significantly more correct responses to category D than category C stimuli 

[F(1,58) = 5.5, P = .023]. 

A similar pattern of responding was observed among participants who were 

using a uni-dimensional strategy (as identified by the formal model; see below). 

Table 10.5 reports accuracy level for those participants implementing a 

dimensional strategy regardless of payoff (PO) matrix conditions since previous 

analysis showed that accuracy was not mediated by payoff condition. 
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Table 10.5. Mean and standard deviation values of the proportion of correct responses 
across the four categories for those participants (N = 38) that implemented a uni-
d' . I ImensIOna stratein' 

Proportion of correct responses 

Cat A CatB CatC CatD 

Mean 0.71 0.51 0.52 0.67 

(s.d.) (.12) (.19) (.17) (.09) 

10.4.1.1.2 Points earned 

Participants gained points throughout the task and aimed to reach the 

performance criteria to earn entries into the £25 lottery. Participants could earn 

one entry in each task. In order to earn an entry during the learning phase of the 

task, they had to earn 37100 points. The overall sample (N = 60) earned 35581 

(s.d. = 4915) points on average, whereas those participants (N = 38) who had 

use a uni-dimensional rule to perform on the task earned an average of 38004 

(s.d. = 3794) points [cf. those guessing/using an alternative strategy earned 

31176 (s.d. = 3400) points on average]. An independent sample t-test showed 

that those participants who implemented a dimensional strategy earned 

significantly more points than those who were guessing/using an alternative 

strategy [t(58) = -6.97, p <.001]. This observation accounts for the fact that 26, 

of the 27 participants who earned an entry during the learning phase of the task, 

had implemented a dimensional rule. 

10.4.2 Model fitting 

As described in the method section, the stimuli presented in the task were dots 

that varied on their horizontal location across the screen. Therefore, the relevant 

dimension was spatial location and participants were required to use this 

dimension to perform effectively on the task. As in the previous experiments, 

participants were expected to use a dimensional rule that allows them to split the 

perceptual space into 'categorical space'. Since the present task consists of four 

categories, participants have to set three decision criteria in order to split the 
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perceptual space. Two models were implemented to fit the behavioural data: a 

uni-dimensional model and a guessing model. 

The uni-dimensional model has four free parameters which are the three 

decision boundaries between categories and a noise parameter. The uni

dimensional model assumes that participants used spatial location as the relevant 

dimension. The guessing model has three parameters and predicts that 

participants were guessing their responses across all four categories. The three 

free parameters are the probability of guessing category A, Band C (guessing of 

category D is not free to vary and is given by the probabilities of the other 3 

categories). 

The two models were applied to each participant's data for the last 160 trials. By 

using maximum likelihood methods each model estimated its parameters. Each 

model is initially compared to a saturated model which has no free parameters. 

The goodness of fit of each model was compared to the goodness of fit of the 

other models by comparing the Akaike Information Criterion19 (AlC; Dayton, 

2003; Motulsky and Christopoulos, 2004). The AlC score was calculated on the 

basis of the free parameters and it is an estimate of the goodness of fit. It 

penalises the model with extra free parameter so that the lower the AlC score, 

the better the fitting (i.e. closer to the saturated model; Maddox, Ashby and 

Bohil, 2003). 

10.4.2.1 Fitting results 

Results showed that the guessmg model was significantly worse than the 

saturated model for all cases, whereas the dimensional model was not 

significantly worse than the saturated model for 5 cases of the whole sample. 

However, by exploring the individual plots it became evident that some 

participants were well-fitted by the uni-dimensional model (even though this fit 

19 Ale = 2r - 21nL, where r is the number of free parameters and L is the log likelihood of the 
model (Maddox et aI., 2003) 
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was significantly worse than the fit offered by the saturated model). Hence, 

further observations and analyses were carried out using these models. 

1 - Fitting through a uni-dimensional model 

Following data-fitting via the formal model, it was possible to notice that some 

participants were well-fitted by the uni-dimensional (UD) model. Those data 

files that were fitted by the uni-dimensional model also had 'noise' values below 

150 (cf. bad fitting cases with noise above 150; see figure 10.1). Therefore, it 

was decided to use noise as the cut-off inclusion criterion and to include into 

future analysis those participants with noise levels equal or below 150 pixels. 

Thirty-eight of the 60 participants met this requirement and they were classified 

as using a UD strategy. 

0.9 

0.8 

~ 0.7 

:- 0.6 
a: 
g 0.5 

~ 0.4 

~ 0.3 

0.2 

0.1 

B 

Model (0) vs. o.t. (x) 

" " 

Binned stimulus va lues 

0.9 

0.8 

~ 0.7 

=- 0.6 
a: 
g 0.5 
~ 

~ OA 

~ 0.3 

0.2 

0.1 

A 

Model (0) vs. 0.,. (x) 

" 
" 

" 

Binned stimulus values 

Figure 10.1. It illustrates an example of good fit (figure A) and example of bad fit (figure 
B) of the data through the use of a uni-dimensional model. The stars represent the actual 
responses and the circles (unified by the lines) the model fitting for the four categories 
(blue: category 1, pink: category 2, green: category 3 and red: category 4) 
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2 - Fitting through a guessing model 

For those 38 participants who were found to be well fitted by the Ulll

dimensional model, it was decided to compare the AlC value of the best fitting 

model with the AlC value of the guessing model in order to assess whether the 

data were better explained by the guessing model. In order to do so, the AlC 

values of guessing model were compared to the AlC values of the uni

dimensional model. The AlC comparison indicated that the UD model offered a 

better fit than the guessing model in all 38 cases. 

For those 22 participants who were not found to be fitted by the unI

dimensional, AlC comparisons were also held to establish whether the guessing 

model may have fitted these data and accounted for those participants' 

performance on the task. The AlC values of the guessing model were separately 

compared to the AlC values of the UD model and these comparisons showed 

that 16 of the 22 cases, not well fitted by the UD model, were better-fitted by the 

guessing model (i.e. AlC values were lower for the guessing model than for the 

UD model). Figure 10.2 illustrates an example of good fitting through the 

guessing model. 

Figure 10.2. It illustrates an example of good fit of the data through the use of a guessing 
model. The stars represent the actual responses and the circles (unified by the line) the 
model fitting for the four categories (blue: category 1, pink: category 2, green: category 3 
and red: category 4) 

Overall, the model fitting results indicate that 38 participants were usmg a 

dimensional rule whereas 16 were guessing and six cases were not fitted by any 
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of the models tested in this chapter. These participants may be referred to as 

non-learners since they fail to learn to perform appropriately on the task. 

Nonetheless, it is possible that they may have been using alternative strategies 

considering participants' self-report and accuracy levels among non-learners 

(see below). 

10.4.2.2 Strategy used and personality correlation 

Point-biserial correlations were run in order to assess whether there was a 

relationship between any of the personality components and the strategy used, 

i.e. uni-dimensional vs. guessing/other strategy. The variable that codes the type 

of strategy implemented was labelled strategy used and coded as 1 for a uni

dimensional strategy and as 2 for guessing/other. No correlation was found to be 

significant (Ps > .24). 

10.4.2.3 Behavioural data 

Some analyses were carried out to explore the behavioural data and observe 

where participants placed their decision criteria during the learning phase of the 

task. 

The mean and standard deviation values for the (fitted) criteria for those 

participants implementing a UD strategy (N = 38) are presented in table 10.6. 

The criteria do not seem to differ across the two feedback conditions. 

Table 10.6. Mean and standard deviation of the three criteria fitted by the uni-dimensional 
model across the matrix conditions (N = 38) 

Criterion 1 Criterion 2 Criterion 3 Noise 

PO 182.97 300.13 420.84 80.27 

Matrix 1 (26.4) (14.0) (23.8) (31.7) 

PO 191.77 303.21 413.31 79.62 

Matrix 2 (27.3) (21.0) (20.7) (33.3) 
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A mixed-design ANOV A confirmed this initial observation and indicated that 

the criterion locations did not differ across the two PO matrix conditions, as the 

PO condition*criterion interaction was non-significant [F(2,35) = 1.08, ns]. 

Hence, it was decided to merge the data from the two PO matrix conditions in 

the following analyses. Table 10.7 represents the overall criteria and noise levels 

regardless of payoff condition. 

Table 10.7. Mean and standard deviation of the three criteria and noise levels, regardless 
f ff d·ti o payo con I on 

Criterion 1 Criterion 2 Criterion 3 Noise 

Mean 187.60 301.75 416.88 79.93 

(s.d.) (26.90) (17.83) (22.25) (31.60) 

For optimum accuracy, in the present task the criteria should be set at 200, 300 

and 400 pixels, respectively?°. One-sample t-tests were run to assess whether the 

fitted criteria were statistically different from the optimal accuracy criteria. 

Results showed that criterion 1 and 3 were significantly different from the 

optimal accuracy criterion [200 and 400, respectively; criterion 1: t(37) = =-

2.84, P = .007; criterion 3: t(37) = 4.68, p<.OOI]. In contrast, criterion 2 was not 

found to be significantly different from the optimal accuracy criterion [i.e. 300; 

t(37) = .61, ns]. 

Further analyses were carried out to assess the relationship between the criteria 

and personality traits among those participants who implemented the 

appropriate UD rule. 

10.4.2.4 Correlations between the four personality components and the 

criteria set across the task 

A few exploratory correlations were run between the four personality 

components extracted in the peA (chapter 4) and the criteria set during the task 

(table 10.8). The correlations showed that positive schizotypy was negatively 

20 The optimal accuracy criteria are determined by calculating the distance midpoint between 
mean-pixel location of adjacent categories; e.g. the accuracy criterion between category A and 
category B is equal to the mean score oftheir mean distribution value [i.e. (150+250)12 = 200]. 
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correlated with criterion 2 scores (r = -.35, p = .03). No other correlation was 

significant (ps > .14). 

Table 10.8. Correlations between the criteria fitted by the uni-dimensional model and the 
four personality components (E = extraversion, N = Neuroticism, PS = positive schizotypy 
and 1= ImpAss) 

E N PS 

Criterion 1 Pearson Correlation .064 .003 -.242 -.088 

Sig. (2-tailed) .703 .985 .142 .601 

N 38 38 38 38 

Criterion 2 Pearson Correlation -.139 -.075 -.347 -.154 

Sig. (2-tailed) .406 .656 .033 .357 

N 38 38 38 38 

Criterion 3 Pearson Correlation .099 .120 -.133 .157 

Sig. (2-tailed) .555 .475 .425 .348 

N 38 38 38 38 

10.4.2.5 Correlations between the criteria set across the task and the 

impulsivity measures 

Further correlations were run between the three criteria and the impulsivity 

measures collected in the present study, i.e. measures of functional and 

dysfunctional impulsivity (Dickman's scale) and delay discounting measures as 

indexed by the hyperbolic k scores (see data analysis section). 

Preliminary correlations were run to assess the relationship between the four 

personality components extracted in the peA and the impulsivity measures 

collected in the present study [i.e. DU's functional impulsivity (FI) and 

dysfunctional impulsivity (DI) measures; table 10.9]. 

Table 10.9. Correlation between the PC A-extracted personality components and the DII 
measures (FI = functional impulsivity; DI = dysfunctional impulsivity; E = extraversion, N 
= Neuroticism, PS = positive schizotypy and I = ImpAss) 

E N PS 

FI Pearson Correlation .514 -.146 -.100 .351 

Sig. (2-tailed) .001 .381 .551 .031 

N 38 38 38 38 

01 Pearson Correlation .206 .258 .347 .312 

Sig. (2-tailed) .215 .118 .033 .056 

N 38 38 38 38 
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Results show that extraversion was positively correlated with functional 

impulsivity (r = .51, P = .001) and so was the ImpAss component (r = .35, P = 

.031). In contrast, dysfunctional impulsivity was correlated with the positive 

schizotypy component (r = .35, p = .033) and its correlation with ImpAss just 

failed to be significant (r = .31, P = .056). 

The hyperbolic k scores were highly positively skewed and contained a few 

possible outliers, hence it was decided to run correlations between the scores 

and the criteria using Spearman's rho. Delay discounting scores were found to 

be positively correlated with dysfunctional impulsivity (r = .37, p = .035). 

The correlations assessing these impulsivity measures and the criteria scores 

showed a non-significant trend for a negative correlation between criterion 2 

and dysfunctional impulsivity (r = -.28, P = .09). None of the other relationship 

with FI or DI was significant (ps > .23). There was also a significant negative 

correlation between delay discounting scores and criterion 1 (in the criterion 

used between category A and category B; rho = -.36, p = .026; figure 10.3). 
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Figure 10.3. The Dcatterplot shows the relationship between delay discounting scores and 
criterion 1. 

Results also showed that there was a non-significant trend for a positive 

correlation between the delay discounting measure and criterion 3 (rho = .28, P 
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= .09). The correlation between criterion 2 and the delay discounting measure 

was non-significant (r = -.10, ns). 

A difference scores was computed, subtracting criterion 1 scores from criterion 

3 scores, and it was correlated with the personality components. Spearman's 

Rho identified a strong positive correlation between the difference score and the 

hyperbolic K scores (rho = .43, P = .007; figure 10.4). No other correlation was 

found to be significant (ps > 0.3). 
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Figure 10.4. The Dcatterplot represents the relationship between delay discounting scores 
and the difference score 

The hyperbolic k scores were recoded by applying a logarithm transformation in 

order to render the data more normally distributed. This transformation allows 

one to further explore the present results using parametric methods (e.g. 

multiple regression, ANCOV A). Simple contrasts were run to compare criterion 

1 and criterion 3 in relation to the delay discounting measure (i.e. the recoded 

hyperbolic K). 

10.4.2.5.1 Delay discounting (DD) 

A mixed-design ANCOV A was run in order to explore the relationship between 

the impulsivity delay discounting scores and the criterion locations set during 

372 



the learning phase of the task. The recoded hyperbolic K scores were entered as 

a covariate while criterion was entered as repeated measure factor. Results 

showed that the 2-way interaction between the criteria and the impulsivity 

measure (i.e. DD scores) was significant [F(1.5, 53.11) = 4.37, p = .027]. 

10.4.2.6 Non-learners 

This section considers data from those participants who failed to implement the 

appropriate uni-dimensional strategy (i.e. non-learners). Results showed that 

non-learners had accuracy levels equal to 38% (s.d. = .100) which was 

significantly above chance (0.25; t(21) = 6.2, p <.001). This observation 

indicates that despite the fact that they were not using the optimal strategy, they 

may have been implementing an alternative strategy effective enough to score 

above chance level. 

These results suggest that 16 of the 22 learners who were reasonably well fit by 

the guessing model cannot have been simply guessing (or else they would have 

achieved accuracy scores around 25%). This is explained by the fact that the 

guessing model did not offer as good a fit as the saturated model, but it offered a 

better fit than the dimensional model (according to A1C scores). However, 

overall non-learners earned fewer lottery entries than learners [l(2) = 31.29, p 

<.001; table 10.10]. 

Table 10.10. Number of lottery tickets earned by learners (N = 38) and non-learners (N = 
22) 

Tickets earned 

0 1 2 

Learner Yes 0 12 26 

No 7 15 0 

Non-learners tend to earn 14 tickets in the reversal phase (14/16 vs. 1116 in the 

learning phase). This suggests that the extended practice on the CL may have 

allowed non-learners to show levels of accuracy high enough to earn an entry 

into the lottery in the reversal phase (i.e. last 60 trials). 
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Correlations were run to establish the relationship between the guessmg 

parameter values (gl - g3) and the different personality traits. Results showed 

that there was a significant correlation between the delay discounting measure 

and g3 (i.e. the guessing parameter between categories C and D; rho = .46, P 

<.04). Similarly, there was a negative trend for the correlation between the DD 

measures and gl (i.e. the guessing parameter between categories A and B; rho = 

-.42, p <.06). Finally, there was a positive correlation between g2 and positive 

schizotypy (r = .53, p = .01). It is of particular interest that the same personality 

traits that were found to mediate criterion location among learners mediate 

performance among non-learners. Indeed, it strengthens the assumptions that 

non-learners might have been using an alternative strategy that might have been 

mediated by DAergic mechanism. Indeed, as mentioned earlier, the guessing 

model offers a significantly worse fit than the saturated model and, therefore, it 

is possible that alternative processes may have been mediating performance. 

Moreover, accuracy scores, indexed by the proportion of correct responses, were 

positively correlated with functional impulsivity (r = .48, p = .02) and its 

negative correlation with positive schizotypy was just significant (r = -.43, p = 

.048). In contrast, there was no significant correlation between accuracy and 

personality among learners (ps >.34). 

10.4.3 Payoff switch phase 

It was not possible to fit the data through the formal model due to the small 

number of trials included in the reversal phase, which contained 15 stimuli of 

each category. Hence, overall performance levels (e.g. accuracy) were explored 

among those 38 participants who had successfully implemented a uni

dimensional strategy in the learning phase. There were equal numbers of 

participants from the two payoff switch condition (higher and lower). 
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10.4.3.1 Preliminary analyses 

10.4.3.1.1 Proportion of correct responses 

Preliminary analyses were conducted to assess the accuracy level achieved by 

participants during the payoff switch phase of the task. Accuracy was indexed 

by the proportion of correct responses across the four categories (table 10.11). A 

mixed-design ANOVA on accuracy showed that there was a significant main 

effect of category type [F(3,34) = 29.07, P <.001]. In fact, as in the learning 

phase, participants showed greater accuracy for stimuli that appeared closer to 

the external edges of the box (i.e. stimuli from categories A and D). These 

results can be explained by the same rationale presented earlier. Additionally, 

there was a significant main effect of switch condition [F(1,36) = 4.35, P = 

.044]. Indeed, participants in the higher reversal condition showed greater 

accuracy (.72, s.d. = .06) than those in the lower condition (.67, s.d. = .08). 

Table 10.11. Mean and standard deviation values of the proportion of correct across the 
{: . . h ff d" our categones In t e two payo con ltions 

Proportion of correct (pc) responses 

Cat A CatB CatC CatD 

Switch_higher 0.82 0.65 0.63 0.78 

(N = 19) (.10) (.16) (.13) (.06) 

Switch lower 0.85 0.56 0.56 0.73 

(N = 19) (.09) (.21) (.16) (.16) 

The ANOV A also indicated that the interaction between switch condition and 

the category type was non-significant [F(3,56) = .28, ns]. Thus, the accuracy 

levels across the two conditions were merged (table 10.12). 
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Table 10.12. Proportion of correct responses for the four categories regardless of payoff 
switch condition 

Proportion of correct (pc) responses 

Cat A CatB CatC CatD 

Mean 0.84 0.61 0.59 0.75 

(s.d.) (.10) (.19) (.15) (.12) 

The accuracy levels across the four categories were found to be significantly 

above chance level (i.e. 0.25; I-sample t-tests: ts > 11.7, ps<.OOl). 

10.4.3.1.2 Points 

Owing to the high accuracy levels achieved in the switch phase of the task, fifty

two participants out of the whole sample earned one entry in this second half of 

the task. Participants allocated to the higher switch (i.e. 467 points won for each 

correct response and 100 for incorrect responses) condition had to earn 17200 

points to earn an entry whereas those allocated to the lower switch condition 

(i.e. 133 points earned for correct responses and 100 for incorrect ones) had to 

earn 7000 points to earn an entry into the £25 lottery. On average, participants 

performing under the higher switch condition earned 21916 points (s.d. = 1412) 

while those under the lower switch condition earned 7336 (s.d. = 154). All 38 

participants earned an entry in the lottery during the reversal phase. 

10.4.3.2 Behaviour and personality across the task 

It was decided to assess the impact of payoff switch on accuracy and, therefore, 

accuracy levels between the last 60 trials of the learning phase and the 60 trials 

of the reversal phase were analysed across all four categories. Accuracy was 

indexed by the proportion of correct responses. A mixed-design ANOV A was 

run with phase as a repeated measure factor with two levels (learning vs. 

reversal), category as a repeated measure factor with four levels and switch 

condition as an independent factor with two levels. Overall, results indicated 

that there was a significant main effect of phase [F(1,36) = 30.34, p <.001], 
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which indicates that accuracy improved over trials (i.e. in the reversal phase; 

table 10.13). 

Table 10.13. Accuracy levels across the four categories in the last 60 trials of the learning 
phase d th I h an e reversa PI ase 

Cat Cat Cat Cat 

A B C D 

Learning last .78 .51 .55 .65 

60 trials (.14) (.22) (.21) (.17) 

Reversal .85 .61 .60 .74 

phase (.10) (.17) (.18) (.09) 

Similarly, there was a significant main effect of category [F(I,36) = 29.40, p 

<.001] since accuracy for categories A and D was greater than for categories B 

and C (table 10.13). The main effect of switch condition was also significant 

[F(1,36) = 5.63, p = .023]. The latter result indicates that, even though accuracy 

levels are higher in the reversal phase, the proportion of correct responses is 

higher for categories A and D, rather than Band C, in the reversal phase as in 

the learning phase. None of the interactions was found to be significant (ps >. 

4). 

Each personality component was entered as a covariate into several ANCOVAs 

that explore the impact of individual differences on accuracy. The ANCOV As 

had two repeated measure factors, i.e. phase (two levels) and category (four 

levels). However, none of the personality component was found to mediate 

learning significantly (Fs <.3, ps > .2). 

It was then decided to assess how performance (i.e. accuracy) improved across 

the overall task. The learning phase was broken down into three blocks of 60 

trials each and data from the reversal phase was also included and it constituted 

the fourth block. A mixed-design ANOV A was run with phase as a repeated 

measure factor with four levels (i.e. each 60-trial block), category as a repeated 

measure factor with four levels and switch condition as an independent factor 

with two levels. The main effect of phase [F(2.25, 80.95) = 48.69, p <.001] and 
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category [F(2.29, 82.41) = 19.26, P <.001] were significant. The switch 

condition factor did not seem to affect performance as none of the interactions 

was significant (ps > .2). Thus, switch condition was excluded from further 

analysis. 

The personality measures were individually entered as covariates into several 

repeated-measure ANCOV As. Results showed that neuroticism was the only 

personality component that affected accuracy scores. Indeed, there was a 

significant interaction between neuroticism and phase [F(2.3,83.19) = 3.48, p = 

.03] whereas there was a non-significant trend for the 3-way interaction between 

category, phase and neuroticism [F(6.9, 247) = 1.99, p = .06]. The contrasts 

indicated that the interaction involved the linear trend [F(l,36) = 6.82, p = .013]. 

Therefore, the linear trend components were extracted and correlated with 

scores on the neuroticism component. The correlation showed a negative 

relationship between these two measures (r = -.38, p = .02). These results 

suggest that participants with low scores on neuroticism showed better learning 

improvements across the four learning blocks (i.e. greater accuracy increases) 

than their high scoring counterparts. 

10.4.4 Neural model simulations 

10.4.4.1 Preliminary simulations of the behavioural data 

In the previous chapters, it has been shown that the neural model is able to 

capture the human behaviour including individual differences observed in the 

actual experiments. These results not only support the empirical [mdings but 

also the validity of the CL task to capture the behaviour under study (i.e. 

response bias) as well as the relationship between behaviour and personality. 

Initial simulations were conducted in order to assess the validity of the task to 

portray the behavioural data during the present task. 

As in the previous chapters, the simulated data were subsequently fitted by the 

formal model in order to obtain the decision boundaries. In order to keep the 

378 



analysis of the simulated data close to the analyses of the empirical data the 

initial 20 trials were excluded from further analyses since they represent 

familiarisation and practice trials and, therefore, would add noise to the data. 

The simulations below all generated 300 simulated 'participants', unless 

otherwise stated. 

Initial simulations attempted to capture decision criteria close to the criteria 

observed in the human data. These simulations were run without any inclusion 

of individual differences and were separately run for the two payoff matrix 

counterbalancing orders. Following preliminary simulations (see appendix 4), it 

was found that it was necessary to adopt two values of perceptual noise (cf. 

original noise level equal to 50) in order simulate the higher accuracy scores, 

observed in the human data, for categories A and D (cf. categories B and C). 

The two pnoise values were set equal to 40 and 60 for the stimuli at the edge 

and in the middle of the display, respectively. 

Additionally, the simulations indicated that participants had initially placed their 

decision bounds close to the perceptual criteria (i.e. 150, 300 and 450 pixels) 

and learning was characterised by the shift away from the perceptual bounds and 

closer to the optimal accuracy bounds i.e. 200 300 and 400 (figure 10.5). 

379 



0.01 

0.009 

F 0.008 

r 
e 0.007 

q 0.006 
U 

e 
n 

0.005 

c 0.004 
y 

0.003 

0.002 

0.001 

Optimal accuracy bound 

\ \ 

100 200 300 400 500 600 

Stimulus location 

Figure 10.5. Criterion shift from the perceptual bounds (black lines) towards the optimal 
accuracy bounds (cyan lines) 

Finally, the preliminary simulations indicated that partially asymmetric payoff 

matrices had to be implemented, in order to simulate the human data. The 

partially asymmetric matrices recoded the reinforcement values (points) 

following correct categorisations into an rf value of 0.75 apart from the 400 

points, which were coded into an rf value of 1 [i.e. PO matrix 1: 0.75; 0.75; 1; 

0.75; while PO matrix 2: 0.75; 0.75; 0.75; Ifl. Indeed, participants verbally 

reported not having paid attention to the 'point' feedback; although they 

reported having noticed the 400 points more frequently than the other payoffs so 

it was assumed that the 400 points particularly may have affected learning and 

criterion placement. Additionally, the reward prediction (rptonic) parameter 

was set equal to 0.5 and the scaler equal to 2. 

21 These rf values code winnings received following correct responses for categories A to D, 
whereas an rfvalue equal to 0.25 was used to code winnings for incorrect responses. 
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The simulations obtained using these parameter values were able to capture the 

criteria and noise level observed in the human data (table 10.14). 

Table 10.14. Human and simulated criteria (s.d.) under the revised asymmetric matrices 
across the two payoff matrices (sim = simulated; hum = human; POI = PO matrix 1 and 
P02 = PO matrix 2) 

Criterion 1 Criterion 2 Criterion 3 Noise 

Sim_POl 178.98 300.02 432.71 82.79 

(N =300) (10.7) (8.2) (11.7) (9.5) 

Sim_P02 180.33 303.35 418.02 79.38 

(N=300) (10.3) (7.7) (12.0) (8.9) 

Hum POI 182.97 300.13 420.84 80.27 

(N = 18) (26.4) (14.0) (23.8) (31. 7) 

Hum P02 191.77 303.21 413.31 79.62 

(N =20) (27.3) (21.0) (20.7) (32.3) 

Additionally, these matrices also simulated the accuracy asymmetry for the edge 

stimuli that were observed in the human data (table 10.15). Therefore, these rf 

values were selected to be used for all simulations reported below. 

Table 10.15. Simulated and human accuracy level under the revised asymmetric matrices 
sim = simulated; hum = human; POI = PO matrix 1 and P02 = PO matrix 2) 

Cat A CatB CatC CatD 

Sim_POI 0.67 0.59 0.59 0.59 

Sim P02 0.67 0.60 0.52 0.65 

Hum POI 0.68 0.53 0.54 0.66 

Hum P02 0.73 0.48 0.50 0.68 

The model was also able to capture the step-like learnmg curve observed among 

those human participants who had implemented the appropriate, UD rule (figure 

1O.6a). In contrast, a purely RPE-driven, implicit system captured the learning 

pattern observed among those participants who failed to implement the optimal 

rule (figure 10.6b). Similar simulation results had been observed when 

simulating the 2-category task implemented in the previous two chapters (see 

chapter 8). 
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Figure 10.6. Figure A represented the simulated, step-like learning function obtained with 
the revised neural model whereas figure B represented the learning function simulated via 
the implicit, RPE-driven model alone. The stars represent the actual responses and the 
circles (unified by the lines) the model fitting for the four categories (blue: category 1, 
pink: category 2, green: category 3 and red: category 4) 

Further simulations were run to explore the impact of individual differences (i.e. 

along the "BAS" parameter) on criterion placement. The parameter values used 

for the next simulations, are the values that were able to capture the decision 

bounds described above (table 10.16). 
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Table 10.16. Parameters' values implemented in the simulations 

Symbol Description Valne 

rptonic Reward prediction tonic value 0.5 

rulebias Strength of explicit module 0.4 

m Scales the rf values 1 

Pnoise Perceptual and criterial noise 40160 

bl and b2 Learning rates of the RP unit 0.05*scalerl 

b3 and b4 Learning rates of the SR unit 0.05*scaler2 

Scaler! It scales the learning rate of RP unit 2 

Scaler2 It scales the learning rate of RP unit 2 

10.4.4.2 Preliminary analyses to simulate the relationship between 

behaviour and individual differences 

In the two previous chapter, it was observed that two models were best at 

capturing the trait*behaviour relationship. One model has BAS variation acting 

on the reward input to the DA cell, although nonlinearities made this model less 

likely to account for linear relationships observed in real human data. The other 

model has BAS variation acting as a mUltiplier on the reward prediction error 

(RPE) signal affecting learning at synapses in the SR pathways (on the actor 

units). Thus, in the present chapter several simulations were run using those two 

models to simulate the empirical data. Additionally, further simulations were 

run using the model with BAS acting on the RPE projections to the critic unit in 

order to assess whether this model could also account for the human data 

(although, it had previously failed previously to do so). Simulations were 

separately run for the two payoff sub-conditions (i.e. POmatrix 1 and POmatrix 

2). These initial simulations capture a BAS parameter variation that ranges 

randomly and uniformly from 0 to 2. 

10.4.4.2.1 Individual variance on the reward input to the DA cell 

Results showed that the simulated criteria and, in particular, the noise levels 

were not particularly close to those observed in the human data (table 10.17). 
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Previous simulations had 'BAS' values set at 1 for all simulated participants, 

adding BAS variation in the range 0-2 adds variance to the simulation. 

Table 10.17. Simulated criteria (s.d.) with BAS on the reward cell compared to the human 
data (sim = simulated; hum = human; POI = PO matrix 1 and P02 = PO matrix 2) 

Criterion 1 Criterion 2 Criterion 3 Noise 

Sim POl 161.24 300.88 446.46 115.56 

(33.3) (10.6) (35.4) (80.80) 

Sim P02 163.23 302.70 434.27 110.95 

(31.8) (10.8) (34.2) (79.0) 

Hum_POI 182.97 300.13 420.84 80.27 

(N = 18) (26.4) (14.0) (23.8) (31.7) 

Hum_P02 191.77 303.21 413.31 79.62 

(N =20) (27.3) (21.0) (20.7) (32.3) 

Overall, simulations under both PO matrices indicate that the stronger 

correlations are between the BAS variance and criteria 1 and 3 whereas the 

BAS*criterion 2 relationship are much weaker. 

POmatrix 1 (points: 333 200 400 267 for categories A to D, respectively) 

Results showed that there was a significant, positive correlation between 

criterion 1 and the BAS variation (r = .74, p <.001) and a negative correlation 

between criterion 3 and the BAS (r = -.72, p <.001). However, the criterion 2* 

BAS variation correlation was non-significant (r = 0.07, ns). All these 

relationship are visually represented in figure 10.7. Panel 'a' and panel 'c' show 

a strongly curvilinear relationship as observed in the previous chapters for this 

model. 
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Figure 10.7. Scatterplots indicating the relationship between "BAS" variation and the 
fitted criteria under POmatrix 1 (N = 300). Figure A illustrates the relationship between 
criterion 1 and BAS variation, figure B the non-significant BAS*criterion 2 relationship 
and figure C the relationship between criterion 3 and BAS variation 

As observed in the human data, the simulated data showed that the um

dimensional model was non-significantly worse than the saturated model for 37 

'participants' out of the whole sample (N =300). Thus, approximately 12% of 

the sample was well-fitted by the uni-dimensional model. This ratio resembles 

the ratio observed in the human data where the uni-dimensional model was non

significantly worse than the saturated model for 3 out of the 30 (10%) 

participants who performed under PO matrix 1. It was decided to apply the same 

exclusion criterion applied to the human data and, therefore, to exclude data sets 

with noise levels above 150. 

After applying this exclusion criterion, the sample was equal to 231 (77% of the 

actual sample) and the mean criterion values were close to the values obtained 

in the whole sample; indeed, criterion 1 = 176.59 (s.d. = 12.8), criterion 2 = 

300.99 (s.d. = 8.8) and criterion 3 = 430.22 (s.d. = 13.8). The noise level was 

equal to 75.96 (27.8). The correlations were weaker than those observed in the 
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unfiltered simulations (BAS*criterion 1: r = .41, P <.001; BAS*criterion 2: r = 

.15, P = .03 and BAS*criterion3: r = -.34, P <.001). 

PO matrix 2 (points: 200 333 267 400 for categories A to D, respectively) 

Results showed that there was a significant, positive correlation between 

criterion 1 and the BAS variation (r = .70, P <.001) and a negative correlation 

between criterion 3 and BAS variance (r = -.65, p < .001). Finally, the BAS 

(variation) *criterion 2 correlation was significant but very weak (r = .13, P = 

.02). All these relationship are visually represented in figure 10.8. As in the 

previous simulations, the relationships reported in panels 'a' and 'c' are strongly 

non-linear. 
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Figure 10.8. Scatterplots indicating the relationship between "BAS" variation and the 
fitted criteria under PO matrix 2 (N = 300). Figure A illustrates the relationship between 
criterion 1 and BAS variation, figure B the non-significant BAS*criterion 2 relationship 
and figure C the relationship between criterion 3 and BAS variation 

As observed in the human data, the simulated data showed that the uru

dimensional model was non-significantly worse than the saturated model for 37 
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'participants' out of the whole sample (N =300). Thus, approximately 16% of 

the sample was well-fit by the uni-dimensional model. This ratio is slightly 

higher than the ratio observed in the human data where the uni-dimensional 

model was non-significantly worse than the saturated model for 2 out of the 30 

(7%) participants who performed under PO matrix 2. It was decided to apply the 

same exclusion criterion applied to the human data and, therefore, to exclude 

data sets with noise levels above 150. 

Following the exclusion of those simulate participants, the sample was equal to 

234 (78% of the actual sample) and the mean criterion values were close to the 

values obtained in the whole sample; indeed, criterion 1 = 177.14 (s.d. = 1l.8), 

criterion 2 = 300.28 (s.d. = 8.9) and criterion 3 = 419.84 (s.d. = 12.6). The noise 

level was equal to 73.82 (28.4). The correlations were weaker than those 

observed in the unfiltered simulations (BAS*criterion 1: r = .33, p <.001; 

BAS*criterion2: r = .16, P = .02 and BAS*criterion3: r= -.18, p = .005). 

10.4.4.1.2 Individual variance on the RPE signal projections to the synapses 

in the SR pathway 

The simulated criteria under this sub-model also offer a close fit, especially in 

terms of noise, to the empirical data under both payoff manipulations (table 

10.18). 

Table 10.18. Simulated criteria (s.d.) with BAS variance on the SR cell compared to the 
human data (sim = simulated; hum = human; POI = PO matrix 1 and P02 = PO matrix ~ 

Criterion 1 Criterion 2 Criterion 3 Noise 

Sim_P01 176.42 300.76 433.75 79.29 

(15.8) (8.3) (14.2) (16.9) 

Sim_P02 177.54 303.52 422.60 76.91 

(16.1) (8.2) (16.5) (15.5) 

Hum POI 182.97 300.13 420.84 80.27 

(N = 18) (26.4) (14.0) (23.8) (3l.7) 

Hum P02 19l.77 303.21 413.31 79.62 

(N = 20) (27.3) (2l.0) (20.7) (32.3) 
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POmatrix 1 (points: 333 200 400 267) 

The simulation results showed that the correlation between criterion I was 

positively correlated with BAS variation (r = .78, P <.001) while criterion 3 was 

found to be negatively correlated with the BAS (r = -.58, P <.001). The 

correlation between criterion 2 and the BAS variance was significant but weak 

(r = .17, P = .002). Figure 10.9 presents the actual scatterplots that describe these 

relationships, whcih are linear with little evidence of non-linearity. 
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Figure 10.9. Scatterplots indicating the relationship between "BAS" variation and the 
fitted criteria under POmatrix 1 (N = 300). Figure A illustrates the relationship between 
criterion 1 and BAS variation, figure B the non-significant BAS*criterion 2 relationship 
and figure C the relationship between criterion 3 and BAS variation. 

As observed in the human data, the simulated data showed that the unI

dimensional model was non-significantly worse than the saturated model for 12 

'participants' out of the whole sample (N =300). Thus, approximately 4% of the 

sample was well-fit by the uni-dimensional model. This ratio is roughly 

equivalent to the ratio observed in the human data where the uni-dimensional 

model was non-significantly worse than the saturated model for 3 out of the 30 
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(10%) participants who performed under PO matrix 1. It was decided to apply 

the same exclusion criterion applied to the human data and, therefore, to exclude 

data sets with noise levels above 150. Results showed that all of the simulated 

'participants' had noise levels below 150, and so the correlations were not 

weakened by any exclusions. 

POmatrix 2 (points: 200 333 267 400) 

Results showed that under POmatrix 2, there was a strong correlation between 

criterion 1 and the individual variance on the BAS parameter (r = .79, P <.001) 

and a weaker but still significant BAS*criterion 3 correlation (r = -.66, p <.001). 

The BAS*criterion 2 correlation was significant but very weak (r = .28, P 

<.001). All these relationships are illustrated in figure 10.10. Once again the 

simulated relationships are linear. 
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Figure 10.10. Scatterplots indicating the relationship between "BAS" variation and the 
fitted criteria under PO matrix 2 (N = 300). Figure A illustrates the relationship between 
criterion 1 and BAS variation, figure B the non-significant BAS*criterion 2 relationship 
and figure C the relationship between criterion 3 and BAS variation 

389 



As observed in the human data, the simulated data showed that the UnI

dimensional model was non-significantly worse than the saturated model for 12 

'participants' out of the whole sample (N =300). Thus, approximately 4% of the 

sample was well-fit by the uni-dimensional model. This ratio is roughly 

equivalent to the ratio observed in the human data where the uni-dimensional 

model was non-significantly worse than the saturated model for 2 out of the 30 

(7%) participants who performed under PO matrix 2. It was decided to apply the 

same exclusion criterion applied to the human data and, therefore, to exclude 

data sets with noise levels above 150. Results showed that all of the simulated 

'participants' had noise levels below 150, and so the correlations were not 

weakened by any exclusions. 

These preliminary results support the efficacy of the task to examine both 

behavioural responses to asymmetric payoffs and the relationship between 

behaviour and inter-individual variation. Indeed, the simulated data shows that 

there seems to be a strong relationship between the simulated biology and the 

behaviour. The fact that a strong biology*behaviour association is simulated 

suggest that the task may be able to uncover the personality*behaviour 

relationship. Nonetheless, as discussed above, the trait*behaviour correlation 

would be weaker due to the generally weaker association observed between task 

measures and personality (Franken and Muris, 2006; Pardo et aI., 2007). 

10.4.4.1.3 Individual variance on the RPE signals projecting to the synapses 

on the reward prediction (RP) cell 

Simulations conducted with this sub-model showed a good fit to the human data 

(table 10.19) although the model was not able to capture the relationship 

between the BAS and the criteria. Indeed, the correlations were mostly weak 

and non-significant. 
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Table 10.19. Simulated criteria (s.d) with BAS on the RP cell compared to the human data 
(sim = simulated; hum = human; POI = PO matrix 1 and P02 = PO matrix 2) 

Criterion 1 Criterion 2 Criterion 3 Noise 

Sim POI 179.08 299.87 433.38 81.53 

(10.7) (8.9) (11.5) (15.0) 

Sim P02 180.16 303.72 417.64 78.53 

(lOA) (8.1) (12.6) (13.5) 

Hum POI 182.97 300.13 420.84 80.27 

(N = 18) (2604) (14.0) (23.8) (31.7) 

Hum P02 191.77 303.21 413.31 79.62 

(N = 20) (27.3) (21.0) (20.7) (32.3) 

POmatrix 1 

These simulations showed that the correlation between BAS and criterion 1 was 

significant but weak (r = .20, P <.001) and so were the correlations between 

BAS variation and criterion 2 (r = .36, p <.001) and criterion 3 (r = -.20, P 

<.001). The scatterplots (figure 12.11) indicate that the relationships between 

BAS variation and criteria 1 and 3 are very weak although it shows the same 

patterns simulated by the model where BAS mediates the RPE projections to the 

SR pathway. However, an effect on criterion 2 has not been observed in the 

previous simulations. 
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Figure 10.11. Scatterplots indicating the relationship between "BAS" variation and the 
fitted criteria under PO matrix 1 (N =300). Figure A iUustrates the relationship between 
criterion 1 and BAS variation, figure B the non-significant BAS*criterion 2 relationship 
and figure C the relationship between criterion 3 and BAS variation 

As observed in the human data, the simulated data showed that the Ulll

dimensional model was non-significantly worse than the saturated model for 9 

'participants' out of the whole sample (N =300). Thus, approximately 3% of the 

sample was well-fit by the uni-dimensional model. This ration is roughly 

equivalent to the ratio observed in the human data where the uni-dimensional 

model was non-significantly worse than the saturated model for 7% of the 

sample who performed under PO matrix 1. It was decided to apply the same 

exclusion criterion applied to the human data and, therefore, to exclude data sets 

with noise levels above 150. As observed in the simulations using model 2, 

results showed that all of the simulated 'participants' had noise levels below 

150. 
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POmatrix 2 

Similarly, under PO matrix 2 the correlation between criterion 3 and BAS 

variance was weak but significant (r = .23, P <.001) and so was the correlations 

between BAS variance and criterion 2 (r = .14, P = .02). Criterion 1 was not 

significantly correlated with individual differences (r = .09, ns). These 

relationships are reported in figure 10.12. 
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Figure 10.12. Scatterplots indicating the relationship between "BAS" variation and the 
fitted criteria under POmatrix 2 (N = 300). Figure A illustrates the relationship between 
criterion 1 and BAS variation, figure B the non-significant BAS*criterion 2 relationship 
and figure C the relationship between criterion 3 and BAS variation 

As observed in the human data, the simulated data showed that the UnI

dimensional model was non-significantly worse than the saturated model for 1 

'participants' out of the whole sample (N =300). It was decided to apply the 

same exclusion criterion applied to the human data and, therefore, to exclude 

data sets with noise levels above 150. As observed in the simulations using 

model 2, results showed that all of the simulated 'participants' had noise levels 

below 150. 
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Thus, as in the two previous studies, the latter sub-model is not able to simulate 

the behaviour*BAS relationship. In contrast, the sub-model with personality 

acting as a multiplier on the reward input to the DA cell (model 1) and the one 

with personality as a multiplier on the RPE signals projecting to the SR cell 

(model 2) are the best candidates to explain the human data. However, model 1 

captures a curvilinear relationship between BAS variation and the criteria (cf. 

the linear relationship in the human data) and simulates noise levels higher than 

the levels observed in the human data. Thus, it reinforces the earlier view that 

model 2 might represent the best candidate to explain the human data and it is 

assessed in the next section. 

10.4.5 Simulations using normally distributed 'BAS' variance 

10.4.5.1 Learning phase 

In the preliminary simulations, sub-model 1 and 2 appeared to be the best 

candidates to capture the behavioural data obtained in the present study. 

However, model 1 seems the less good candidate owing largely to the non

linearity of the simulated BAS*behaviour relationships. In this section, the two 

models will be further tested to assess whether they can efficiently simulate the 

present data using normally distributed simulated personality variance. 

Additionally, these extra analyses may identify the model that best explains the 

human data. 

In order to assess the efficacy of the model at simulating the empirical data, it 

was decided to simulate 10 subgroups of 40 participants each in order to 

reproduce a sample size similar to the human sample (N=38), whose data was 

reported in the result section. Each sub-group should contain roughly equal 

numbers of simulated 'participants' from each payoff condition as in the human 

data (PO matrix 1 = 18 vs. POmatrix2 = 20). Thus, it was necessary to simulate 

a total of 400 data sets (200 in each payoff condition). 

394 



1004.5.1.1 Individual differences on the reward input to the DA cell (model 

1) 

By exploring the scatterplots presented above (figures I and 2), it can be seen 

that there are quite strong but non-linear relationships between personality and 

criterion 1 as well as personality and criterion 3 under both payoff matrices. 

These relationships are however roughly linear for simulated individual 

differences corresponding to BAS parameter values below 0.5; whereas values 

above 0.5 are associate to flat, non-significant relationships. 

Hence, it was decided to conduct the simulations for individuals with a BAS 

parameter mean equal to 0.4 and a standard deviation equal to 0.1 (values of the 

BAS parameter falling at or below zero were set to 0). The s.d. value cannot be 

increased much beyond this as, at the upper end, the values start to involve more 

and more of the flat portion of the simulated BAS-behaviour curve and, thus, are 

not effective as a means of adding individual differences. The model was not 

able to capture the "noise" values shown by human participants (table 10.20). In 

this case, noise is the value of interest to evaluate the goodness of the model 

fitting. The higher a participant's noise value the less sharp the implemented 

category boundaries. Obviously, by moving from the uniform distribution 

simulations (mean =1, range 0-2), to a normal distribution with a mean of 0.4, 

chosen so as to fall on the most linear portion of the BAS-behaviour simulation 

curve, this change of mean may have an effect on the quality of the simulations. 

Additionally, a BAS mean value equal to 0.4 causes the strength of the reward 

effect to be low (0.4 vs. 1 on average). 
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Table 10.20. Simulated criteria for model 1 using normal distributed variance (sim = 
simulated; hum = human; POI = PO matrix 1 and P02 = POmatrix 2) 

Criterion 1 Criterion 2 Criterion 3 Noise 

Sim POI 144.05 298.49 467.84 181.46 

(N = 200) (20.8) (11.0) (22.5) (30.0) 

Sim P02 154.26 297.10 437.72 163.86 

(N = 200) (17.8) (9.6) (18.1) (23.8) 

Hum POI 182.97 300.13 420.84 80.27 

(N = 18) (26.4) (14.0) (23.8) (31.7) 

Hum P02 191.77 303.21 413.31 79.62 

(N = 20) (27.3) (21.0) (20.7) (32.3) 

As for the human data, it was decided to exclude from further analysis those 

participants that had noise levels above 150 pixels. After applying this exclusion 

criterion, ninety simulated participants only were retained (29 from PO matrix 1 

vs. 61 from PO matrix 2). The criteria and noise levels of these participants are 

reported in table 10.21, which shows that the simulated noise levels were still 

higher than the human noise levels. 

Table 10.21. Simulated criteria for model 1 for those participants with noise levels below 
150 pixels (sim = simulated; hum = human; POI = POmatrix 1 and P02 = PO matrix 2) 

Criterion 1 Criterion 2 Criterion 3 Noise 

Sim POI 164.41 299.45 446.66 139.49 

(N = 29) (10.1) (8.6) (10.2) (6.5) 

Sim P02 167.56 298.44 424.53 138.00 

(N = 61) (10.6) (8.9) (13.2) (8.0) 

Hum POI 182.97 300.13 420.84 80.27 

(N = 18) (26.4) (14.0) (23.8) (31.7) 

Hum P02 191.77 303.21 413.31 79.62 

(N = 20) (27.3) (21.0) (20.7) (32.3) 

Owing to the low retention rate and the simulated high noise levels, the model 

does not seem good at capturing the human data and, therefore, not a good 

candidate to explain human behaviour. Thus, no further analyses were 

conducted on the data simulated using this model. 
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10.4.5.1.2 Individual differences in the effect of the RPE signals projecting 

to synapses on the SR cell (model 2) 

By exploring the scatterplots presented above (figures 10.3 and 10.4), it was 

noticed that there were quite strong relationships between BAS variation and 

criterion 1 as well as personality and criterion 3 under both payoff matrices. The 

figures also suggest that a normal distribution with a mean of 1.1 could be used 

to capture the human data. In order to maximise individual differences, a large 

standard deviation relative to the mean was adopted. In fact, a standard 

deviation equal to 0.25 was used to simulate the human data. Again simulated 

BAS values randomly falling at or below 0 were set equal to O. 

Overall analysis of the total sample showed that these values could capture the 

mean data (i.e. criteria and noise level; table 10.22) as well as the 

BAS*behaviour relationship (see below). 

Table 10.22. Simulated criteria for model 1 using normal distributed variance (sim = 
simulated; hum = human; POI = POmatrix 1 and P02 = PO matrix ~ 

Criterion Criterion Criterion Noise 

1 2 3 

Sim POl 181.05 300.35 430.96 83.16 

(N = 200) (11.5) (8.1) (11.8) (11.4) 

Sim P02 181.96 303.97 417.19 80.04 

(N = 200) (11.3) (8.0) (12.3) (11.4) 

Hum POl 182.97 300.13 420.84 80.27 

(N = 18) (26.4) (14.0) (23.8) (31.7) 

Hum P02 191.77 303.21 413.31 79.62 

(N = 20) (27.3) (21.0) (20.7) (32.3) 

It was decided to apply the same exclusion criterion applied to the human data 

and, therefore, participants with noise levels above 150 were excluded from 

further analysis. However, none of the simulated participants had such high 

noise scores and, therefore, the whole sample was retained (N = 400; 200 for 

each PO condition). 

397 



PO matrix 1 

According to the human data, the simulations identified a moderately strong and 

significant correlation between criterion I and BAS variation (r = .46, p <.001) 

whereas the correlation between BAS and criterion 3 was significant, although a 

little weaker (r = -.37, p <.001). As expected, criterion 2 did not significantly 

correlate with personality variation (r = .12, ns). These relationships are 

represented in figure 10.13. 
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Figure 10.13. Scatterplots indicating the relationship between "BAS" variation and the 
fitted criteria under POmatrix 1 (N =200). Figure A illustrates the relationship between 
criterion 1 and BAS variation, figure B the non-significant BAS*criterion 2 relationship 
and figure C the relationship between criterion 3 and BAS variation 

PO matrix 2 

According to the human data, the simulations identified a strong and significant 

correlation between criterion 3 and BAS variation (r = .52, P <.001) whereas the 

correlation between the BAS and criterion 3 was significant, although weaker (r 

= -.32, p < .001). There was also a weak, but significant, correlation between 
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BAS variation and criterion 2 (r 

represented in figure 10.14. 
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Figure 10.14. Scatterplots indicating the relationship between "BAS" variation and the 
fitted criteria under PO matrix 2 (N = 200). Figure A illustrates the relationship between 
criterion 1 and BAS variation, figure B the non-significant BAS*criterion 2 relationship 
and figure C the relationship between criterion 3 and BAS variation 

Further analyses were conducted on the 10 sub-groups within the 400 simulated 

data sets. Each subgroup consisted of 40 simulated 'participants' and within 

each subgroup half of the 'sample' was simulated using POmatrix 1 (PO 1) and 

the remaining half using POmatrix 2 (PO 2). Table 10.23 reports the mean and 

standard deviation values of the criteria and noise level observed in these 10 

samples across the two payoff conditions. 
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Table 10 23. Simulated criteria and noise level in the 10 sub-group (GPS) 

GPS Criterion 1 Criterion 2 Criterion 3 Noise 

1 
PO 1 183.87 (10.0) 301.15 (5.0) 428.3 1 (8.8) 83.64 (9.7) 

P02 184.81 (9. 1) 304.37 (6.7) 41 7.24 (7.6) 80.82 (8.5) 

2 
POl 180.33 (9.7) 298.62 (9.7) 430.31 (11 .6) 85.2 (7.0) 

P02 180.68 (9.9) 302.79 (8.7) 41 5.08 (11.2) 83.70 (8.9) 

3 
PO 1 176.46 (10.4) 298.03 (9.1) 432.09 (13 .1) 84.80 (13.4) 

P02 176.38 (11.1) 299.60 (10.9) 413 .83 (10.2) 79.07 (1 5.3) 

4 
PO 1 182.52 (10.8) 297.34 (7.5) 428.16 (12.6) 79.26 (12.4) 

P0 2 183.40 (10.7) 301.62 (5.6) 411.86 (12.3) 75.48 (11.5) 

5 
PO 1 179.75 (1 2.6) 303.09 (6.8) 433.68 (10.6) 78.40 (12.9) 

P02 181.38 (13 .0) 306.71 (7.3) 422.61 (11.2) 77.39 (12.9) 

6 
POl 178.01 (11.2) 300.09 (7.7) 433.05 (12.6) 85.53 (11.4) 

P02 178.54 (11.7) 304.43 (7.9) 41 8.80 (13 .6) 82.92 (11.4) 

7 
PO 1 185.41 (11.7) 301.68 (8.4) 433 .87 (10.4) 79.57 (12.0) 

P02 187.01 (12.0) 305.94 (7.5) 421.73 (1 3.6) 77.70 (10.8) 

8 
POl 181.29 (14.1) 300.50 (9.4) 429.77 (14.6) 83.67 (12.2) 

P02 182.70 (13 .1) 304.13 (7.6) 416.24 (1 2.8) 79.95 (10.2) 

9 
POl 181.00 (9.7) 304.52 (8.8) 430.00 (12.0) 85.70 (11.9) 

P02 182.41 (8.2) 308.36 (8.2) 41 8.26 (14.2) 82.28 (12.7) 

10 
POl 181.83 (13 .1) 298.47 (6.4) 430.37 (1 2.1) 85 .81 (8.4) 

P02 182.32 (12.4) 301.80 (6.5) 416.26 (12.2) 81.09 (9.7) 

Ten separate mixed-design ANCOVAs were run with criteria as a repeated

measure factor and payoff matrix as a between-measure factor, whereas BAS 
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variation was entered as a covariate. The ANCOV AS aimed to assess how 

different factors affected learning and, in particular, criterion location. Results 

showed that the main effect of criteria was significant for all 10 subgroups (Fs > 

322.1, ps <.001) while the 2-way interaction between BAS and criteria was 

significant for 9 of the 10 subgroups (Fs > 5.8, ps < .006). The main effect of 

payoff condition was non-significant in all groups (Fs < 2.1, ps > .16). 

Moreover, the 2-way interaction between criteria and payoff matrix condition 

was non-significant for all groups (Fs < .09, ps >.89) and neither was the 3-way 

interaction between BAS, criteria and PO matrix (Fs <.02, ps > .98). These 

results indicate that individual variation in RPE sensitivity mediated 

performance (i.e. criterion location) whereas the payoff matrix had no impact on 

performance, as observed in the human data. 

It was, subsequently, decided to explore the strength of the behaviour*BAS 

variation relationship in each sub-groups (table 10.24). The correlations were 

run for each subgroup regardless of payoff condition since the ANCOVA's 

results showed that this variable did not affect performance. 

Table 10.24. Criteria*BAS variation correlations across the 10 sub-groups 

Criterion 1 Criterion 2 Criterion 3 

Subgroup 1 r= .16, ns r= -.002, ns r= -.01, ns 

Subgroup 2 r = .67, P <.001 r= -.03, ns r =-.46, p=.003 

Subgroup 3 r =.46, p =.003 r = .13, ns r = -.25, ns 

Subgroup 4 r =.35, p = .03 r =.32, p = .04 r = -.33, p= .04 

Subgroup 5 r =.66, p <.001 r =.28, p = .08 r= -.22, ns 

Subgroup 6 r =.45, p=.004 r =.33, p =.04 r=-.17,ns 

Subgroup 7 r =.58, p <.001 r= -.07, ns r= -.41, p=.009 

Subgroup 8 r =.55, p <.001 r =.33, p = .04 r= -.31, p=.051 

Subgroup 9 r =.40, p= .010 r= .04, ns r = -41, p=.008 

Subgroup 10 r=.59, p<OOI r =.35, p=.03 r = -.25, ns 

The simulated data indicated that the strongest correlation was between criterion 

1 and BAS variation, which was positive and significant in all but one of the 10 

sub-groups. In contrast, the negative correlation between criterion 3 and BAS 
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variation was only found to be significant in four sub-groups and just failed to 

be significant in another group (r = -.31, p = .051). Finally, criterion 2 was also 

found to be significantly, although weakly, correlated with BAS in four 

subgroups and the correlation was a non-significant trend in one further group (r 

= .28, p .08). 

In the analysis of the human data, a difference score was calculated by 

subtracting criterion 1 scores from criterion 3 scores. This difference score was 

found to be positively correlated with participants' score on the delay 

discounting (DD) task (rho = .43, p = .007). Similarly, the simulated data could 

capture this relationship as indicated by the fact that the simulated personality 

variance was negatively correlated with the difference score (r = -.53, p <.001) 

across the overall simulated sample (N = 400). Additionally, this correlation was 

significant in 9 of the 10 simulated sub-groups (rs> -.41, ps <.009). 

10.4.5.1.3 Simulations overview 

Overall, the simulations indicated that the sub-model with BAS acting on the 

RPE projections to the SR cell was the best candidate model to capture and 

further understand the human data. In fact, the criteria and, especially, the noise 

levels simulated using model 2 are closer to the values displayed by human 

participants (cf. model 1). The model can also potentially simulate the 

correlation observed between criterion 2 and personality (i.e. positive 

schizotypy) observed in the human data. However, this effect was quite weak 

and observed only in a third of the sub-groups and was equivalent in size to the 

human sample. It is, therefore, unlikely that the present study procedure, used 

with human participants, would be able to detect it. One also needs to consider 

what it would mean for a specific simulated individual differences effect in the 

biology to underlie a correlation between delay discounting and some aspects of 

task performance (for criteria 1 and 3) and underlie a correlation between 

schizotypal personality and another index of task performance (criterion 2). This 

would mean that delayed discounting and schizotypal personality would share 

underlying biology and should correlate. In the present study positive 

schizotypy and DD scores did not correlated (rho = .08, ns); similarly there is no 
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literature that reports relationships between delay discounting and positive 

schizotypy. One study by Heery and colleagues (2007) showed that 

schizophrenic patients, on antipsychotic medication, showed steeper discounting 

during a DD task than healthy controls. Delay discounting was found to be 

negatively correlated with negative symptoms whereas no correlation was found 

between DD scores and positive symptoms. 

10.4.5.2 Reversal phase 

As mentioned above, owing to the small number of trials included for each 

category in the reversal phase, it was not possible to use the formal model to fit 

the data. Thus, the simulated performance levels, indexed by the proportion of 

correct responses (i.e. accuracy) were analysed. Following the results that 

indicate that model 1 could not capture the human data, accuracy scores were 

only simulated using model 2 (BAS variation on the RPE projections to the 

actor unit). 

Simulations of the last 60 trials, which constitute the reversal phase, were run 

straight after the simulations of the learning phase. During the payoff switch 

phase, the rf values were coded as 1.17 and 0.33 which represent a linear 

transformation of the actual reward values, i.e. 467 and 133, respectively. In 

other words, simulations included the total 240 trials that were run as one long 

session. In this way performance during the reversal phase would be affected by 

the weight changes occurred during the learning phase. It was decided to 

simulate 10 subgroups of 40 participants each in order to reproduce a sample 

size similar to the human sample (N=38) whose data was reported in the result 

section. Each sub-group should contain equal numbers of simulated 

'participants' from each switch condition as in the human data (lower = 19 vs. 

higher = 19). Thus, it was necessary to simulate a total of 400 data sets (200 in 

each switch condition). 

The simulated accuracy scores are reported in table 10.25 and they are close to 

the accuracy scores obtained by the human participants in both switch 

conditions. 
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Table 10.25. Proportion of correct responses across the four categories in the simulated 
and the human partici I)ants in the two switch conditions (sim = simulated; hum = human 

Proportion of correct responses 

Cat A CatB CatC CatD 

Sim higher 0.89 0.66 0.53 0.68 

(N = 200) (.07) (.09) (.11) (.09) 

Sim lower 0.81 0.56 0.45 0.61 

(N = 200) (.08) (.10) (.10) (.08) 

Hum higher 0.82 0.65 0.63 0.78 

(N = 19) (.10) (.16) (.13) (.06) 

Hum lower 0.85 0.56 0.56 0.73 

(N = 19) (.09) (.21) (.16) (.16) 

Further analyses were conducted separately on the 10 subgroups in order to 

assess whether the neural model could simulate the results obtained in the 

human sample. Thus, 10 mixed-design ANOV As were run to assess the impact 

of category type and switch condition on accuracy scores. In line with the 

human data, results showed that the main effect of category type was significant 

(Fs> 87.5, ps <.001) in all 10 groups. As in the human data, greater accuracy 

was achieved for those categories closer to the external edge of the display box 

(categories A and D). Similarly, the main effect of switch condition was also 

significant (Fs > 17.7, ps < .001) in the 10 groups. Indeed, overall 'participants' 

simulated under the high reversal condition showed greater accuracy (0.69 and 

s.d. = .04) than those simulated under the lower condition (0.61 and s.d. = .06). 

These results compare with the corresponding figures for the human participants 

[switch_ 467: 0.72 (.06); switch_133: 0.67 (.08)]. In line with the human data, 

the 2-way interaction between category and switch condition was non

significant in all 10 groups (Fs < 1.8, ps >.17). These results replicate the human 

data and indicate that the neural model is able to simulate the accuracy pattern 

observed in the human data (as well as the categorical bounds). As for the 

human data, it was decided to merge the accuracy score for each category across 

the two switch conditions (table 10.26). 
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Table 10.26. Simulated and human accuracy scores across the four categories regardless of 
switch condition 

Proportion of correct (pc) responses 

Cat A CatB CatC CatD 

Simulated 0.85 0.61 0.49 0.64 

(N = 400) (.09) (.11) (.11) (.09) 

Human 0.84 0.61 0.59 0.75 

(N =38) (.10) (.19) (.15) (.12) 

The accuracy scores for the four categories were above chance levels (i.e. 0.25; 

I-sample t-tests: t> 42.7, P <.001). Overall, these results show that the model 

was able to capture the proportion of correct responses (i.e. accuracy scores) 

scores observed in the human data during the reversal phase. 

10.5 Discussion 

The present behavioural results replicate and confirm the results obtained in the 

previous chapters. In fact, participants shifted their decision bounds away from 

the perceptual bounds to maximise performance (i.e. they demonstrate a 

criterion shift). The use of the neural model offered a further insight into the 

human data. The simulation results confirmed that the criterion shift processes 

were mediated by the implicit system whereas the explicit system was involved 

in solving the categorisation problem by initially setting perceptually-driven 

decision boundaries and using these as the basis of uni-dimensional rules to 

systematically classify the stimuli into the different categories. As previously 

observed, the criterion shift was found to be mediated by individual differences. 

In particular, results confirm a primary role of impulsivity as indexed by the 

behavioural measure of the delay discounting. More specifically, low impulsive 

individuals were found to show a greater shift than their high scoring 

counterparts for criterion 1 and for criterion 3. 

The neural model produced similar relationships between criteria 1 and 3 and 

the biological mechanism underlying individual differences. Nonetheless, the 

model captured a trait*behaviour relationship opposite in sign to the human 

impulsivity data; in fact the model showed that high trait individuals showed the 
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greatest shifts in response bias. Taking the empirical and simulated data into 

account jointly, the present results suggest that low impulsivity scores might 

correspond to high trait reactivity (at least as reactivity is captured in neural 

model 2; i.e. elevated synaptic plasticity in the striatum in response to RPE 

signals). As expected the simulated relationships were stronger than those 

observed in the human data, since the biology*task behaviour associations are 

usually stronger and easier to detect than trait*task behaviour associations 

(Munafo et aI., 2003; Cohen et aI, 2005). 

The behavioural measure of impulsivity indexed by delay discounting 

(hyperbolic K) was found to be the only personality measure to relate to 

criterion shifts significantly and, therefore, to the underlying learning processes 

responsible for the shifts. These results seem to support the claims that 

behavioural, compared to self-report, measures are a better index of individual 

differences (Lee et aI., 2007; Eisenberg et aI., 2007). Nonetheless, delay 

discounting (DD) scores were positively correlated with scores on the 

Dickman's dysfunctional impulsivity (DI) scale although not with the ImpAss 

component (SSS, OLIFE-impulsivity/non-conforrnity and EPQ-P). These 

correlational results indicate that both the DI scores and the DD scores measured 

a similar construct of impUlsivity whereas the ImpAss component may have 

captured somewhat different or varied facets of the trait. Overall, these results 

indicated that the delay discounting scores may be a more reliable 

endophenotype of BAS reactivity and variation than the more commonly 

employed phenotypic measures of impulsivity. At least, this seems to be true for 

the relationship with performance on a reward-related CL task. 

Moreover, because the delay discounting scores may have been found to be 

associated with the criteria placed in the CL task, this supports the existing 

arguments that claim that they rely on the same biological mechanism. Indeed, 

there is evidence that suggest that decision-making during the DD task is guided 

RPE-DA signals (Pessiglione et aI., 2006; Kalenscher and Pennartz, 2008). The 

neural model of the thesis also showed that during the CL task implicit learning 

(i.e. as reflected in criterion placement) is guided by the dopaminergic RPE 

signals. According to the 3-factor model, RPEs act as a teaching signal that 
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strengthens the SR association to, subsequently, guide responding and decision

making (Pickering and Gray, 2001; Schultz, 2002). 

Two neural sub-models showed that BAS variation affected the activation of the 

implicit system in such a way as to affect the criterion shifts. One sub-model 

suggested that BAS affects reward processing by acting on the reactivity of the 

DA cell to reward whereas the second sub-model had BAS mediating SR 

learning by acting on the cortico-striatal synapses of the actor cell (Joel et aI., 

2002). The results showed that both sub-models were able to simulate the 

human data to some extent. In fact, they both captured the criterion shift and the 

relationship between BAS variation and the criteria. However, the sub-model 

with BAS acting on the SR cell could better capture the human data (i.e. mean 

criteria and, particularly, noise levels). Additionally, this model could capture 

the linear relationship between the criteria and the BAS variance, as observed in 

the human data. In conclusion, the simulation results indicated that BAS 

variation is possibly related to responsivity to the dopaminergic teaching RPE 

signal, which is responsible for the strengthening of SR associations according 

to the 3-factor rule. The simulations make it less likely that BAS variation is 

related to responsivity to reward per se. This argument holds at least for BAS 

variations that affect criterion shifts in the present CL task. These fmdings 

replicate the results from the previous study where the data could be simulated 

by the sub-model with the BAS on the SR cell but not the sub-model with BAS 

on the reward cell. These results offer a new view of RST, revising the 

assumption of BAS variation as responsivity to reward and reward-related 

stimuli which, subsequently, lead to approach behaviour (Corr, 2006). This 

older conjecture was based on theoretical assumptions rather than empirical 

data. The present data bring theory and data much closer together. Nonetheless, 

the present findings are not fully conclusive and, therefore, further research is 

necessary to confirm them. 

One of the main limitations with the present study is due to the fact that the 

perceptual decision bounds do not correspond with the optimal accuracy 

bounds. As the learning process moves the criteria from the (assumed) initial 

perceptual, symmetric bounds, the shift observed is small owing to the relatively 
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small number of trials per category and the gradual nature of procedural learning 

under the 3-factor rule. Thus, one cannot confidently determine whether the 

shift is moving towards optimum accuracy or optimum winnings as both these 

optimal bounds are shifted in the same directions away from the initial 

perceptual bounds. However, the simulations reported in the previous chapters 

have indicated that shifts away from the optimal accuracy bounds, towards the 

optimal reward bounds, are simulated by the model. 

The simulations suggested that participants might have initially split the display 

box (600*600-pixel) into 4 equally spaced areas using the perceptual-symmetry 

bounds (i.e. at 150, 300 & 450 pixels). These perceptually-driven bounds could 

then be used to formulate their dimensional strategy. However, over trials, and 

under the influence of implicit learning processes mediated by RPE signals, 

participants would first have shifted their criterion to a position closer to the 

optimal accuracy bounds (200, 300 & 400 pixels), which creates four unequally 

spaced regions. In this way, participants' performance increases accuracy

related winnings. It could be suggested that increasing the number of trials 

further may have allowed participants to further maximise their winnings by 

shifting the criterion away from the accuracy bound closer to the optimal reward 

bound. However, this may not be the case since the neural model indicated that 

the human data were best simulated by implementing a symmetric, rather than 

the actual asymmetric, payoff matrix. Participants' self-report support this 

observation. During debriefing, several participants reported not having paid 

much attention to the visual feedback (i.e. points earned). Although, they were 

mostly able to recall the 400-point feedback signals and none of the other point 

values. Since the task was quite complex and demanding, participants may have 

relied solely on the auditory feedback in order to limit the effort of processing 

feedback and direct them to solve the categorisation problem. It is, therefore, 

possible that participants relied more strongly on the auditory feedback than the 

visual feedback and this would have not allowed them to notice that different 

categories earned different amount of points for correct responses. Thus, 

contrary to arguments raised earlier, based on the results obtained in the 2-

category tasks, the inclusion of auditory feedback may have limited the impact 

of the visually-presented point feedback due to higher cognitive demand of the 
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4-category task. Future replications should exclude auditory feedback in favour 

of the visual feedback, presenting both the potential and the actual amount of 

points (see chapter 9). Moreover, alternative task designs, where the perceptual 

and the optimal accuracy criteria overlap, may be more suited to detect a 

response bias towards the optimal reward criterion (see chapter 11 for 

examples). 

Owing to the small number of trials included in the reversal phase, it was not 

meaningful to extract the criteria values using the formal model. However, 

overall analysis of performance (i.e. accuracy levels) indicated that learning 

continued over the trials of the reversal phase. Accuracy was assessed over four 

blocks of 60 trials (3 from the learning task and last from the reversal task). 

Accuracy increased in a linear fashion across the four blocks and it was greatest 

in the last block (i.e. reversal phase). Participants who scored low on 

neuroticism were found to show greater learning over the whole task than their 

high-scoring counterparts. Stable individuals may have a chronic promotion 

focus (cf. prevention focus in neurotics) that fits the induced focus (i.e. low N 

participants may experience a regulatory fit; Maddox et aI., 2006). Regulatory 

fit is expected to improve cognitive flexibility and, therefore, may have 

enhanced performance for stable (cf. neurotic) participants. 

Overall, these results indicate that participants carried the strategy learnt in the 

first task over to the second task despite the fact that they were presented as two 

independent tasks. However, results indicated that participants who performed 

under the higher switch condition achieved higher accuracy than those 

participants under the lower switch. This effect was also captured by the 

simulations. It is possible that by the switch phase, participants had efficiently 

learnt to solve the categorisation task as a direct result of practice. Indeed, they 

seem to have applied the same strategy used in the learning phase. Thus, 

participants may have had more available cognitive resourced to process visual 

feedback. As participants mostly noticed the 400 points in the learning phase, 

comparison of the switch (467 vs. 13 3) points to 400 points may have affected 

RPE-driven performance on the task. Indeed, receiving 467 points would have 

produced a positive RPE signal which would have further strengthened the 
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correct SR association (e.g. stimulus on the far left-hand side of the screen 

belongs to category A). 

Nonetheless, the present results confirm that implicit reward-driven learning, as 

indexed by criterion shifts to maximise performance, is affected by individual 

differences. Simulated high BAS individuals have been found to show greater 

learning thanks to their increased sensitivity to the RPE-DA signals which 

strengthens correct SR associations. Certain impulsivity measures were the ones 

which reproduced the simulated pattern of BAS-behaviour correlations. 

Therefore, these observations are in line RST's original assumptions (Gray, 

1987), the present study identifies impulsivity as the personality component that 

mediates learning and, therefore, impulsivity may represent the BAS-trait. 

However, contrary to the original assumption high BAS activity was found to be 

associated with low scores on impulsivity. Similar results had been observed in 

the study in the previous chapter. Nonetheless, further replication is required to 

confirm these fmdings. 
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Chapter 11 

Summary and discussion 

The thesis offered a detailed review of the literature of category learning (CL), 

dopamine and the reinforcement sensitivity theory (RST) and drew the links 

between them. Owing to the evidence that indicates how performance on CL 

tasks is mediated by dopaminergic functioning, and because the BAS has a 

dopaminergic nature, the CL paradigm was identified as a useful tool to explore 

reward-related learning and identify the BAS-related traits (Ashby et aI., 1998; 

Pickering and Gray, 2001; Pickering, 2004; Corr, 2006). 

11.1 General aims of the thesis 

The initial three chapters set the premises upon which the experiments reported 

in the thesis were designed and developed. The main assumption made was that 

biologically-based personality traits would mediate learning. More specifically, 

BAS-related traits were expected to mediate performance on CL tasks as a 

function of reward manipulations. Hence, the first aim of the thesis was to 

further explore reward-mediated learning. The second aim was to establish the 

relationship between reward-related learning and personality. In particular, the 

aim was to identify the underlying personality traits of the BAS system, owing 

to the dopaminergic nature of both the BAS and reward-dependent learning 

(Ashby et aI., 1998; Schultz, 1998; Gray, 1987; Corr, 2006). Presently, there is 

contrasting evidence that indicates that either extraversion or impulsivity may be 

good candidates (e.g. Gray, 1987; Depue and Collins, 1999; Franken and Muris, 

2006). Hence, the empirical data reported in the thesis bring further empirical 

evidence into the ongoing debate to help the field advance towards a solution. 

One key aim of the thesis, which arose during the process, was to develop a 

neural model that could capture dopaminergic activity during reward-related 

learning and it was able to simulate the behavioural data obtained in the 

empirical studies. Moreover, the implementation of a neural model allows one 
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to test initial predictions prior to the actual data collection and, therefore, to 

construct sound empirical tests that are able to explore the interrelation between 

personality and behaviour. 

Another key theme of the thesis was to use formal models of the task to clarify 

the strategy and processes employed by participants in order to extract the 

appropriate dependent variables (DVs) from task performance (hence, excluding 

potential confounding measures). In order to do so, formal signal detection 

theory 'decision-bound' models were fitted to the performance data using 

maximum likelihood estimation. 

In the initial studies the results were contrasting. In particular, the 'Gabor' tasks 

(chapter 6) failed to observe a direct behaviour-personality relationship. This 

may be a result of the fact that the relationship between behaviour 

(endophenotype) and personality traits22 (phenotypes) are quite weak (Blum et 

aI., 2000; Munafo et aI., 2003) and, therefore, it may be hard to detect this 

relationship in noisy empirical data (Lee et aI., 2007; Eisenberg et aI., 2007). 

As discussed in chapter 8, the use of a neural model to simulate the relationship 

between the biological mechanism and behaviour may represent a good 

indicator of the trait-behaviour relationship, driven by their common genetic 

nature. Nonetheless, genetic factors only account for 30-60% of the variance in 

individual differences (Blum et aI., 2000; Reuter et aI., 2006). Any single 

biological parameter is likely to be accounting for a much smaller proportion of 

the trait variance. Moreover, the Gabor tasks seemed to have been too hard for 

many participants to learn to apply the appropriate dimensional strategy and 

maximise performance. Indeed, the formal modelling showed that only a third 

of the sample used the relevant dimensional strategy in the rule-based task 

whereas none of the participants used the optimal rule during the information 

integration task, which was even more difficult. Finally, the possibility that 

motivational manipulations may affect performance differently depending on 

22 Personality measures, indexed by questionnaires, are referred to as the phenotype explained 
by BAS variation (i.e. biological substrate); whereas behavioural measures, indexed by 
performance on a CL task, are referred to as endophenotypes which are assumed to have a closer 
relationship with the underlying biology. 
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the task structure cannot be discounted. Indeed, there are several sub-types of 

categorisation tasks and within each type the category membership structure can 

vary (probabilistic vs. deterministic), as can the nature of the stimuli dimensions 

(continuous vs. discrete). The use of a neural model could also help test these 

hypotheses prior to data collection. Hence, simulating the data via a neural 

model represents an effective tool to explore the efficacy of the task design and, 

if necessary, improve it. 

Following these observations, a neural model was developed which could 

corroborate whether the empirical CL task was a useful tool. It allowed us to 

explore the relationship between motivation, cognition and personality during an 

RB category learning task prior to actual data collection. Additionally, the 

neural model also helped gain further understanding of the human data. 

This final section offers a synthesis of the work reported in the thesis and it 

describes both the implications and limitations of the findings obtained in the 

different studies. The main findings are discussed in relation to the existing 

literature, previous research and the rationale and aims that underlie the thesis. 

Finally, ideas and suggestions for future research are also presented, using the 

neural model where appropriate to anticipate possible findings. 

11.2 Main findings 

11.2.1 Impulsivity and decision-making 

In the task reported in chapter 5, participants were presented with a decision

making task that required them to choose between an infrequent but immediate 

reward and a more frequent but delayed (10 seconds) reward. Results suggested 

that two different processes were active during performance on the task and that 

each process was mediated by one subtype of impulsivity. Hence, these results 

are in line with the literature that indicates that impulsivity is a multi-faceted 

factor and that each aspect of impUlsivity mediates different impulsive 

behaviours (Evenden, 1999; Franken and Muris, 2005 & 2006; Smillie et aI., 
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2007; Vigil-Colet, 2007). In particular, the results were consistent with the idea 

that rash impulsiveness and reward sensitivity may be distinguished (Dawe and 

Loxton, 2004). Rash impulsiveness measures [i.e. delay discounting (DD) 

performance, dysfunctional impulsivity and ImpAss trait scores] were found to 

be good predictors of 'response disinhibition'. Specifically, participants who 

scored high on these impulsivity measures tended to respond more frequently to 

the immediate but infrequent rewarding (i.e. low frequency reward; LR) 

stimulus than to the more frequently rewarding but delayed (i.e. high frequency 

reward; HR) stimulus. These results are in line with the literature that indicates 

that this type of responding is typically impulsive (Bickel et aI., 1999; Wade et 

aI., 2000). Additionally, the relationship between disinhibited behaviour and 

impulsivity scores was moderated by smoking status. Consistent with the 

literature, smokers scored higher on the impulsivity measures and showed 

greater dis inhibited responding (e.g. DD scores and LR responses; Mitchell, 

1999; Bickel, et aI., 1999). Moreover, the relationship between disinhibited 

responding and impulsivity measures (i.e. ImpAss component) was dependent 

on smoking status. 

On the other hand, the results suggested that 'reward sensitivity' (i.e. functional 

impulsivity; FI; Smillie and Jackson, 2006) mediated the response latencies in 

response to the stimuli that offered more frequent but delayed rewards (HR). 

Indeed, individuals who scored high on the FI sub-scale showed shorter reaction 

times in response to the frequently rewarded stimuli (i.e. HR; approach 

behaviour). Hence, the latter form of impulsivity seems to be a BAS-related 

process and its self-report measure may represent the BAS-related trait. Future 

studies exploring the impact of individual differences on response disinhibition 

should also aim to disentangle the potential effect of these two processes. 

The results also offer insights concerning one of the main criticisms generally 

directed to the DD task, as a behavioural measure of impUlsivity: namely that it 

generally represents imaginary reward scenarios with long delays (i.e. weeks 

and years; Kalenscher and Pennartz, 2008). The present results show that delay 

discounting (DD) scores are a good predictor of impulsive responding in the 

decision-making task with shortened delays and real rewards. Therefore, they 
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support the validity of the delay discounting task as a measure of impulsivity. 

Indeed, the DD scores were a good measure of disinhibited responding and, 

therefore, impulsivity, in the study. 

Owing to the strong relationship between the dis inhibited responding on the DD 

task and on the decision-making task, it seems plausible to assume that they rely 

on similar processes and brain functions. There is growing evidence that 

indicates that delay discounting is a function of learning guided by the 

dopaminergic reward prediction error (RPE) signals (Daw and Doya, 2006; 

Kable and Glimcher, 2007; Kalenscher and Pennartz, 2008). These 

considerations are supported by the findings reported in chapter 10, where DD 

scores were found to be positively correlated with reward-related learning on a 

CL task, which is mediated by RPE signals, at least as captured by the neural 

simulations. It is possible that RPE signals may mediate decision-making on the 

task implemented in chapter 5 owing to its relationship with performance on the 

DD task. Therefore, it may well be possible to develop a neural sub-model 

capable of simulating decision-making on the 10-second delay task 

implemented in chapter 5, after implementing some changes to the existing 

neural modeL The main change would require applying a hyperbolic temporal 

discounting function to formulate the reward prediction signal to delayed 

rewards. Since the decision-making task does not require setting a step-like 

boundary between stimuli in different categories (cf. a uni-dimensional CL 

task), decision-making may purely rely on the implicit system so that the 

explicit module may be less involved. 

Moreover, reward magnitude should be coupled with reward probability in order 

to capture the impact of temporal discounting. Indeed, it has been suggested that 

humans may perceive temporal delays as uncertainty (i.e. probability; 

Kalenscher and Pennartz, 2008), which would also be easier to transform into a 

parameter and associate with a numerical value. There is neuroimaging and 

patient data which indicate that firing in the ventral striatum varies linearly as a 

function of reward prediction error under a monetary incentive delay (MID) task 

with varying reward probability (Abler et aL, 2006; luckel et aL, 2006a; 2006b). 

Abler and colleagues (2006) defined the RPE as the difference between the 

expected probability of occurrence and the actual reward occurrence. This 
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evidence indicates that RPE, as a function of either reward magnitude or 

probability, activate the same brain areas. Thus, it follows that the neural model 

developed in the thesis (chapter 7) should be able to simulate performance on a 

probabilistic paradigm such as the decision-making task in chapter 6. Indeed, as 

described above, relatively few changes may need to be applied to the model in 

order to capture the task requirement in the simulations. This future work would 

offer a test of the model as it would allow us to assess whether the same 

personality variations in the model explain the correlation between simulated 

performance on two distinct tasks. 

11.2.2 Reward manipulation and performance on a CL task 

The behavioural results obtained in chapters 8 and 9 showed that asymmetric 

payoffs in a CL task lead to a response bias in favour of the high payoff 

category. Participants, performing on an RB CL task, were found to over

classify probabilistic stimuli as members of the category that offered the greatest 

gains (i.e. they showed a response bias). The response bias was not observed 

during performance on the same RB task under symmetric payoffs. Thus, these 

results show that performance on an RB CL task is mediated by manipulations 

of reward magnitude. These results are somewhat counterintuitive under the 

COVIS model which postulates that performance on RB tasks should not be 

affected by the reinforcing and motivating properties of reward manipulations 

(Ashby et ai., 1998; Maddox and Ashby, 2004). Indeed, existing evidence 

showed that learning during an RB task could occur with no trial-by-trial 

feedback (Ashby et ai., 1999), following pure observational learning (Ashby et 

ai., 2002) and regardless of the timing of the feedback (5-to-1O-second delay; 

Maddox, Ashby & Bohil, 2003). However, in chapter 10, feedback may have 

enhanced accuracy during an RB task by facilitating the correct criterion shift, 

away from the perceptual and, towards the optimal accuracy bounds. 

Reward manipulations were not found to affect learning per se since participants 

were able to develop a uni-dimensional strategy to classify probabilistic stimuli 

as members of different categories. However, reward manipulations were 
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responsible for the response bias observed under asymmetric payoffs. The 

neural model simulations helped understanding the behavioural data in relation 

to the COVIS model. The RPE-based model was able to simulate the response 

bias under asymmetric payoffs but it failed to capture the step-wise category 

boundary function that characterised effective learning (i.e. development of a 

uni-dimensional rule). The RPE model is a purely DAergic model that explains 

implicit learning via the 3-factor learning rule (i.e. LTP and LTD), where DA 

projections from the SNpc into visual associative striatal cells strengthen the 

appropriate SR associations in corticostriatal synapses (Schultz, 1998; Joel et 

aI., 2002; Seger, 2008). The present model closely resembles the implicit system 

described by COVIS which describes the basal ganglia as the main substrate of 

the implicit system and procedural learning as a function of the 3-factor rule and 

(Ashby et aI., 1998; Ashby & Ennis, 2006; Ashby, Ennis & Spiering, 2007). The 

two models also indicate that the DA learning signal is derived from the 

difference between the expected and the actual reward, which has been found to 

guide learning in the basal ganglia (i.e. RPE; Schultz, 1998; Ashby et aI., 2007). 

The step-like category boundary function was captured by the revised neural 

model, which includes the explicit system that is responsible for implementing 

the optimal dimensional rule. According to signal detection theory (SDT), the 

explicit system solved the categorisation problem by splitting the perceptual 

space into regions associated to the different categories (Bohil & Maddox, 

2001). This feature was added to the neural model in an abstract and formal 

way, without attempting to specify the neural mechanisms in any detail. The 

success of the simulations with the revised model suggests that both the explicit 

and the implicit system are involved during learning on a nominally 'rule-based' 

CL task. In particular, the simulation results suggest that the explicit system 

mediates the categorical nature of learning whereas the implicit system, 

activated by the asymmetric payoffs, is responsible for the fine-tuning of 

criterion placement. 

Data from the intertwined, 2-category task indicated that participants developed 

a modest response bias even following extended practice under symmetric 

accuracy feedback. These results, therefore, are consistent with the idea that the 
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two systems mediate different aspects of learning and may become active at 

different stages of the task. More specifically, the explicit system may become 

active during the first trials of the task in order to mediate RB learning whereas 

the implicit system may become active over trials as participants experience 

asymmetric payoffs. 

Following these considerations, these results can be reconciled with the COVIS 

model. In fact, the COVIS postulates that the two systems learn independently 

and they compete for response control throughout the task (Ashby et aI., 1998). 

Moreover, it states that the explicit system is able to learn faster than the 

implicit system which, by contrast, learns in an incremental fashion over trials 

following trial-by-trial feedback (Maddox & Ashby, 2004; Ashby & Valentin, 

2005; Shohamy et aI., 2008). During the RB CL task, the explicit system may 

have learnt to solve the categorisation problem over the initial trials (and the 

details of this process were not explicitly modelled in the revised neural model); 

whereas in later trials the implicit system may have taken over and mediated the 

response bias. This is supported by results from the intertwined task where the 

implicit system became active during the experimental task to maximise 

performance, even though the explicit system had probably established task 

success fairly early during practice. The basal ganglia have been found to be 

responsible for a shift in strategy implemented by participants over trials. 

Indeed, during performance on a weather prediction task participants were 

found to implement a simple sub-optimal rule in the first stages of the task 

whereas they were found to be using the optimal, complex rule in the last block 

of the task (Gluck, et aI., 2002; Shohamy et aI., 2008). Moreover, there is 

computational, pharmacological and patient evidence to indicate that gradual, 

procedural learning is mediated by SR learning driven by RPE-DA signals in the 

basal ganglia (Shohamy et aI., 2008). It is possible that a similar shifting process 

took place during performance on the tasks reported in the last chapters where a 

more optimal strategy was characterised by a criterion shift. In the studies 

reported in the chapter 8 and 9, the shift increased performance by increasing 

winnings relative to the optimum accuracy strategy. By contrast, in the study 

reported in chapter 10, the shift increased performance by maximising accuracy. 

However, it is not possible to tell whether biases beyond maximum accuracy 
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(towards further increased winnings) would be established with further training. 

Indeed, the neural model, which was able to capture the human data, showed 

that response bias in the three studies could be explained by SR learning driven 

by RPE signals in the striatum (see below). 

In conclusion, even though explicit learning may not be highly reliant on 

feedback since learning has been found to occur under observational and 

unsupervised training (Ashby et aI., 1999; Maddox & Ashby, 2004), subtle 

manipulations of reward (e.g. payoffs and base-rate) may affect categorisation, 

as suggested by signal detection theory (SDT; Maddox & Dodd, 2003). The 

present work strongly suggests that some of these subtle effects may be due to 

activation and engagement of the implicit system. 

11.2.3 Impulsivity and response bias 

Results obtained in the blocked, 2-category task (chapter 8) showed that positive 

schizotypy was the personality component that was associated with the criterion 

shift; participants who scored high on this component showed a greater response 

bias than their low scoring counterparts. However, results from this study were 

inconclusive and hard to interpret due to the small sample size and observed 

order effect. Therefore, the relationship between criterion and personality is also 

considered inconclusive. 

Impulsivity was found to be the personality dimension that significantly 

mediated the response bias observed in the RB CL tasks when rewards were 

presented under an asymmetric matrix. In fact, in the intertwined 2-category 

task (chapter 9), the ImpAss component was found to be negatively correlated 

with the criterion shift. Similarly, in the 4-category task (chapter 10), criterion 

shift was found to be negatively correlated with the behavioural measure of 

impulsivity, indexed by the delay discounting (DD) task. These results indicated 

that individuals who scored low on impulsivity showed a greater criterion shift 

(i.e. a smaller distance between criterion 1 and criterion 3) than their high 

scoring counterparts. 
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Criterion shift in both tasks increased the amount of points earned over trials. 

Indeed, the criterion shift observed in the intertwined task meant that 

participants shifted their criterion away from the optimal accuracy bounds closer 

to the optimal reward bound. In other words, participants tended to over

categorise probabilistic stimuli as members of the high payoff category and, 

therefore, increased their winnings by increasing their chance to respond 

correctly to the high payoff category. In the 4-category task, participants shifted 

their criteria away from the initial perceptually determined category bounds 

towards the optimal accuracy bounds. In this way, they increased their winnings 

by moving in the direction of maximising accuracy. 

These observations support the assumption, made in chapter 8, that criterion 

shift represents approach behaviour towards reward and, therefore, that it 

represents a good measure of BAS-mediated behaviour (the criterion shift can 

also be conceptualised as an endophenotype of impulsivity, which is in tum the 

phenotype of the BAS). The criterion shifts observed in the studies increase the 

amount of reward gained. RST has suggested that the BAS represents the bio

motivational system responsive to reward and reward-related stimuli and, 

subsequently, it directs approach behaviour towards appetitive goals 

(McNaughton and Corr, 2004; Smillie, Pickering & Jackson, 2006). Therefore, 

inter-individual differences observed across the task should reflect individual 

differences in BAS sensitivity. The present results support one of the main RST 

assumptions, which stipulates that impulsivity is the underlying personality trait 

of the BAS (Gray, 1987; Corr, 2006). However, the present fmdings are 

counterintuitive to the original theory since they indicate that low (cf. high) 

scores on impulsivity are associated with high BAS sensitivity and approach 

behaviour. The simulations, run using the neural model, further support that low 

impulsivity scores correspond to high BAS activation (see below). Future 

replication may be necessary to confirm these preliminary results. 
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11.2.4 Delay discounting and response bias 

In the 4-category task, the delay discounting scores were the only impulsivity 

measure to be significantly correlated with criterion shift. Nonetheless, scores 

on the dysfunctional impulsivity (DI) subscale were found to be positively 

correlated with DD scores. This association supports that the two measures 

index a similar construct of impulsivity (i.e. rash impulsiveness; Evenden, 1999; 

Dawe et aI., 2004; Smillie and Jackson, 2006), even though DD was the only 

significant performance predictor. 

A possible reason why DD, but not DI, scores were found to mediate criterion 

shift in the CL task may be due to the fact that, as an endophenotype, DD is 

argued to be a more valid index of biobehavioural individual differences than 

the self-report psychometric impulsivity scores (Lee et aI., 2007; Eisenberg et 

aI., 2007). Moreover, there is evidence that indicates that performance on a 

decision-making task with delayed/probabilistic feedback (e.g. DD task) is 

mediated by DA-RPE signals in the striatum (Abler et aI., 2006; Kalenscher and 

Pennartz, 2008). These same DAergic processes have been postulated to 

underlie the implicit system and, therefore, mediate the response biases in the 

CL tasks. Finally, according to RST, the BAS has a dopaminergic nature and, 

more specifically, RST suggests that the DA projections to the striatum 

represent its biological basis (Pickering and Gray, 2001; Corr, 2006). Following 

these considerations, it can be assumed that performance on the DD task, the CL 

task and BAS-related individual differences share some common biological 

mechanism. The link between the biology and questionnaire measures of BAS

related individual differences are assumed to be the weakest and, thus, the 

associations involving the questionnaire measures are likewise expected to be 

the weakest in the set. 

Recent studies have suggested that personality traits may represent 

endophenotypes for psychiatric disorders (Benjamin et aI., 2001; Rommelse et 

aI., 2008). For example, extreme scores on impulsivity measures (e.g. Novelty 

Seeking) have been found to be associated with addiction, pathological 
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gambling and ADHD. Additionally, variance of impulsivity measures has been 

found to be explained by genetic factors (e.g. the Al allele of the D2 dopamine 

receptor gene) that mediate DA activity (Benjamin et aI., 2001; Eisenberg et aI., 

2007). In the kind of work presented in this thesis, however, impulsive 

personality traits are taken to represent the phenotype of the BAS and are the 

"end point" of the investigations. The work is made more important and relevant 

by the evidence indicating that extreme scores on BAS-trait measures are 

associated to pathological behaviours (e.g. addiction and gambling; Ham and 

Hope, 2003; Franken and Muris, 2006; Vigil-Colet, 2007). 

Studies on addiction have indicated that the relationship between 

endophenotype and phenotype is generally quite weak despite the fact that they 

are both related to the same genetic variance (Blum et aI., 2000; Franken and 

Muris, 2006; Pardo et ai. 2007). These weak relationships are due to the fact 

that, even though the genotype is a good predictor of the endophenotype (i.e. 

task behaviour), genes only explain 30-60% of the variance in personality 

variance (the phenotype; Noble, 1998; Munafo et aI., 2003; Reuters et aI., 2006). 

Any single biological component is likely to explain much less personality 

variance. Therefore, psychometric impulsivity traits may be expected to be only 

weakly associated with task performance despite the fact that they rely on the 

same biological mechanism. In contrast, DD scores may have been more 

strongly associated with the performance on the CL task especially, since DD is 

a behavioural measure of impulsivity that relies on the same biological 

mechanisms that was found to mediate biases in category learning (Murray et 

aI., 2007; Kalenscher and Pennartz, 2008). Hence, the relationship between DD 

scores and criterion shift may be due to their common biological mechanism 

(i.e. DA activity in the striatum, i.e. BAS; figure 11.1). In Figure 11.1 the 

criterion shifts in the CL task, and the DD scores may both be regarded as 

endophenotypes; as both are presumed to be related to the underlying biology 

more strongly than the link between biology and phenotype. It is reasonable to 

suppose that the two endophenotypes would correlate together more strongly 

than either endophenotype would correlate with the phenotype. 
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Figure 11.1. Relationship between personality, biology and behaviour (other factors 
indicate confounding factors) 

As previously discussed, a study by Eisenberg and colleagues (2007) supports 

the above arguments. Indeed, these researchers found that individuals who 

carried an A1 23 allele showed greater temporal discounting during the DD task 

than those individuals who did not carry the allele. Genetic variance was not 

found to be associated with any of the self-report psychometric measures of 

impulsivity, despite the fact that they were associated with DD scores. These 

authors concluded that DD scores (as an endophenotype) may be a more reliable 

measure of the phenotype (i.e. impulsivity trait) than self-report measures, 

muddled by biases and subjective interpretations (i.e. confounding factors 

labelled as other factors in figure 11.1). 

11.3 Model simulations 

The use of the neural model to simulate the human data has proved to be a 

useful tool to further understand the empirical data as well as to develop future 

studies. 

23 The presence of the Al allele on the D2 receptor gene has been fount to be associated with a 
30-40% reduction in D2 receptors density (pohjalainen et aI., 1998; Blum et aI., 1999; Reuter, et 
al.,2006) 
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Indeed, the use of several sub-models has allowed us to assess how BAS 

variation might mediate response bias. Results have shown that BAS variation 

may lie in responsivity to reward prediction error (RPE) rather than to reward 

per se. This is a shift from the position originally stated in RST (Gray, 1987; 

Pickering and Gray, 2001; Smillie, Pickering & Jackson, 2006). Indeed, when 

simulating data from the two CL tasks that offered reliable data (i.e. intertwined 

and 4-category tasks), the sub-model with BAS acting as a multiplier on the 

RPE signal which projected to the dorsal striatal (actor SR) cell was able to 

capture the human data better than the model with BAS variation affecting 

sensitivity of the reward cell (i.e. on projections to VTAlSNc). In the former 

model, individual differences (i.e. BAS variations) modulate the sensitivity to 

RPEs within the dopaminergic projections to the dorsal striatal cells. These 

RPEs are responsible for strengthening the SR association. Therefore, individual 

differences vary the extent of SR learning. The simulations indicate that 

individuals who are more responsive to RPEs (which logically should be 

deemed high BAS individuals) learn faster and more efficiently how to shift 

their criteria during CL tasks in the direction of maximising their winnings. In 

conclusion, the results suggest that individual differences (BAS variations) do 

not reflect an individual's sensitivity to rewards but to the DA-RPE signals. 

Nonetheless, the results confirm the dopaminergic nature of the BAS and its 

impact on reward-related learning according to the 3-factor rule (Pickering and 

Gray, 2001). 

The simulation results indicated that individual differences in sensitivity of the 

ventral striatal cell to RPE signals (i.e. the reward prediction cell itself, within 

the critic sub-network) were not effective at leading to individual differences in 

learning. This is a strong result as the model learning mechanisms are identical 

in both the actor and the critic sub-networks. The reason for the difference must 

therefore lie in the function of the two sub-networks within the overallieaming 

process. 

The biological realism of the neural model might be enhanced by considering 

the different DAergic receptors involved in synaptic plasticity in the two cells. 

Schotanus and Chergui (2008) have observed that synaptic plasticity in the 
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ventral striatum is linked to LTP mediated by D 1 receptors; whereas in the 

dorsal striatum synaptic plasticity is driven by both L TP, mediated by D I 

receptors, and LTD which is mediated by a synergic interaction between D 1 and 

D2 receptors. This is immediately of interest as the reported links between 

impulsivity and dopaminergic processes have been primarily for D2-like 

receptor type. More specifically, for example, the Al polymorphism on the 

dopamine D2 receptor (DRD2) gene has been found to be quite robustly linked 

with variations on impulsivity measures (e.g. delay discounting and novelty 

seeking; Benjamin et aI., 2001; Eisenberg et aI., 2007). Thus, individual 

differences that characterise inter-individual differences in D2 receptor 

sensitivity should affect leaming that is partly dependent on these receptors 

(dorsal striatum) but not learning that relies exclusively on Dl receptors (ventral 

striatum). Hence, these observations suggest that even though Dl receptors are 

the probable mechanism that mediates synaptic learning in the ventral striatum, 

the critic unit is not affected by individual differences in RPE sensitivity. Thus, 

even if there were individual differences (i.e. in some other trait than 

impulsivity) that were related to D 1 receptors functioning, the neural model 

suggests that they would not affect performance on the responses biases 

observed in the current CL task. The current CL task is a poor index of 

individual differences that might affect learning within the ventral striatal 

synapses of the critic network. 

By contrast, individual variance on D2-related personality traits could affect 

learning in the actor sub-network since D2 receptors have been found to be 

involved in LTD in dorsal striatum. It is possible that D2 receptors may also 

mediate LTP by indirectly inhibiting it (Calabresi et aI., 2007). 

In order to test the above ideas, BAS variation could be added only on negative 

RPE signals (i.e. LTD; cf. LTP) in the actor network. Thus, simulations were re

run for the 4-category CL task (chapter 10) using the revised model with BAS 

variation acting only on negative RPE signals projecting to the SR cell (i.e. actor 

network). Simulations were run with BAS variation ranging uniformly across 0 

and 2 for the two payoff conditions. The simulated criteria and noise levels are 

close to the values observed in the human sample (table 11.1). 
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Table 11.1. Human criteria and simulated criteria obtained using two perceptual noise 
values (sim = simulated; hum = human; POI = PO matrix 1 and P02 = PO matrix 2) 

Criterion 1 Criterion 2 Criterion 3 Noise 

Sim POI 177.47 299.80 435.81 80.57 

(N =300) (15.1) (9.8) (13.9) (25.1) 

Sim P02 178.16 304.42 420.75 78.84 

(N =300) (14.7) (8.8) (13.7) (23.6) 

Hum POI 182.97 300.13 420.84 80.27 

(N = 18) (26.4) (14.0) (23.8) (31.7) 

Hum P02 191.77 303.21 413.31 79.62 

(N = 20) (27.3) (21.0) (20.7) (32.3) 

POmatrix 1 

Results showed that BAS variation was significantly correlated with criterion 1 

(r = .69, p <.001), criterion 2 (r = .56, p <.001) and criterion 3 (r = -.52, P 

<.001). These correlations are graphically represented in the scatterplots below 

(figure 11.2). 
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Figure 11.2. Relationship between the BAS variation and the simulated criterion 1 (figure 
A), criterion 2 (figure B) and criterion 3 (figure C) under PO matrix 1 

POmatrix 2 

Results showed that BAS variation was strongly significantly correlated with 

criterion 1 (r = .70, P <.001) and criterion 2 (r = .37, p <.001). The correlation 

between criterion 3 and BAS variation was significant but weak (r = -. 12, 

p<.OOI). These relationships are visually represented in figure 11.3. 
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Figure 11.3. Relationship between the BAS variation and criterion 1 (figure A), criterion 2 
(figure B) and criterion 3 (figure C) under PO matrix 2 

These simulations show that the revised version of the actor, where the BAS 

variation acts only on LTD, produces results which are not very different from 

those simulated by the original actor model (BAS variation on both L TP and 

LTD; table 11.2). 

Table 11.2. Correlations between the simulated criteria (CI-C3) and the BAS variation 
obtained using the original model, with BAS variation acting on both L TP and LTD on the 
actor network (L TP+L TD), and the model with BAS variation acting only on LTD (i.e. 
LTD) 

LTP+LTD LTP+LTD LTD LTD 

PO I P02 POI P02 

CI r= .78, r= .79, p r= .69, r= .70, 

p <.001 <.001 P <.001 P p<.OOl 

C2 r=.17, r= .28, r= .52, r= .37, 

p=.002 P <.001 p<.OOI P <.001 

C3 r= .58, r = -.66, r= -.52, r = -.12, 

P <.001 P <.001 p<.OOI P <.001 
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In other words, the observations made by Schotanus and Chergui (2008) were 

used to constrain the neural model so that BAS variations (linked to impulsivity) 

were added only to process to have a known D2-receptor involvement. This is 

appropriate as impulsivity is primarily linked to dopeminergic processes 

involving the D2-receptor subtype (Benjamin et aI., 2001; Eisenberg et aI., 

2007). Had the data indicated that D2-related learning processes were located 

mainly in the ventral striatum, then the current neural model would not have 

been able to explain correlations between impulsivity and the category learning 

criterion shifts. This is because BAS variations on either LTP or LTD, when 

added to the ventral striatum (critic) were unable to generate individual 

differences in simulated CL behaviour. 

Overall, the simulations offered a fresh and objective insight into the empirical 

data. Indeed, if the model had not been implemented the results would have 

been interpreted in light of the theory and variation on the BAS-measure(s) 

would have been considered to reflect differences in reward sensitivity. In 

contrast, the results are distinct from the existing theory and suggest a revision 

may be necessary. However, further replication of these results is required to 

support their empirical validity and more conclusively support the revised model 

of BAS sensitivity. 

Additionally, the neural model represents a useful tool to develop future studies 

and, in particular, CL tasks able to capture the relationship between behaviour 

and BAS-traits. The section above introduced evidence that show that it is hard 

to detect the relationship between the endophenotype and the phenotype even 

though this relationship should be stronger than that between phenotype and the 

genotype. In order to capture the desired personality-behaviour relationship, it is 

important to develop and implement a task (endophenotype) whose performance 

is highly dependent on the biological mechanism. Since personality is conceived 

as a phenotype, a strong relationship between biological mechanism and task 

behaviour implies a greater chance of detecting a significant relationship 

between the task behaviour and personality trait measures. For this reason, tasks 

should be used for research purposes only if the simulated relationship between 

behaviour and biological mechanism show strong correlation coefficients. A 
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cut-off would be arbitrary but one might propose the need for simulated 

correlations equal to or greater than 0.7 (see chapter 8 for detailed mathematical 

reasoning). The criterion shift measures in the present tasks would just about 

qualify under this cut-off. 

In other words, neural models should be used to test the efficacy of a specific 

task at assessing the relationship between behaviour and the biological 

mechanism (e.g. BAS). By doing this, it would be possible to assess the utility 

of the task as well as identify and rectify potential flaws in the task design prior 

to data collection. This would prevent spending money and time collecting data 

for a study with a poor design. The efficacy of the 4-category task was not fully 

assessed by the neural model prior to data collection (as the neural model was 

evolving during the thesis and data-collection had to proceed on timetable 

before the model was fully developed). Had the full model been available, 

simulations would have shown the task flaws (e.g. independent perceptual and 

maximum accuracy bounds), which do not allow us to conclude whether 

participants were shifting their criteria closer to the optimal reward bounds 

rather than the optimal accuracy bounds (see Appendix 4 for details). 

Markman and colleagues (2005) interpreted their results in relation to the 

regulatory focus theory (RFT) and they concluded that the regulatory fit 

between the induced regulatory focus and the payoff manipulation facilitated 

cognitive flexibility and, thereby, allowed a criterion shift. Specifically, it was 

suggested that regulatory fit enhanced cognitive flexibility thanks to increased 

midbrain DAergic firing (SNcNTA), which projects to cortical areas involved 

in working and episodic memory (Maddox et aI., 2006; 2007). In other words, 

Maddox and colleagues proposed a way for a reward manipulation to affect an 

RB task other than through its directly reinforcing effects. However, the model 

simulations indicate that the criterion shift was mediated by an alternative 

mechanism, which is dependent upon the reinforcing properties of RPE signals. 

Hence, in the original study, the induced regulatory focus may have affected 

performance by, indirectly, affecting the impact ofRPE on learning. 
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It was speculated the regulatory focus influenced the activity of the critic sub

network. The critic is considered to play a crucial role in learning to predict 

future rewards and, by affecting RPEs, it indirectly mediates learning on the 

actor sub-network (Suri and Schultz, 1998; Joel et aI., 2002). It was speculated 

that the critic would not be active under a prevention focus, where participants 

receive the ticket prior to performance and their aim is not to lose it (cf. win it). 

This derived from the assumption that the critic is involved in the mechanism 

that is sensitive to reward and prone to approach behaviour (i.e. dopaminergic 

mechanism, BAS). The assumption is supported by simulations run for the 

asymmetric condition of the blocked 2-category task (chapter 8) using the 

original parameter values and setting the rptonic value equal to 0 across all 

trials. This turns off the critic circuit's influence on the task so that all rewards 

remain unpredicted. Indeed, the data showed that the simulated 'participants', in 

the asymmetric payoff condition, placed their criterion close to the optimal 

accuracy bounds (mean = 329.52 and sd = 13.1) as in the study by Markman and 

colleagues. The simulated noise level was low (mean = 29.36 and sd = 10.7)24. 

Setting the rptonic value equal to 0 mediates learning by affecting the RPE 

signals. Indeed, when rptonic is set to 0, the critic never develops a reward 

prediction and, therefore, the RPE signals are always equal to the rf values (cf. 

the normal situation in which they reflect the difference between the actual 

reward, i.e. rf, and the reward prediction). This implies that learning weights 

would be updated less efficiently (especially following incorrect responses) 

during the task and, therefore, implicit learning is impaired and performance is 

at chance. For example, following an incorrect response the RPE signal would 

be equal to 0.25 and, therefore, the incorrect SR association would be 

strengthened rather than weakened. When rptonic is different from 0 and 

reward predictions can be learned, the RPE signal following an error is usually 

negative as the received reward is generally less than the reward expected. 

On the other hand, the explicit module can efficiently categorise the stimuli, 

especially those far from the decision bounds and less efficiently those close to 

24 Simulations of the symmetric condition similarly showed that participants placed their 
criterion close to the optimal accuracy criterion, 320.72 (10.9) and a low noise level (mean = 
26.09 and (9.8) 
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the boundaries. Thus, decision bound(s) would be implemented to solve the 

categorisation problem but the bound(s) would be determined by the explicit 

module rather than the implicit module, since learning in the latter is impaired. 

The decision bounds set by the explicit module would be close to the optimal 

accuracy bounds since this module is not responsive to payoff manipulations. 

Overall, these simulations support the assumption that the regulatory focus 

manipulation may affect performance by acting on the critic network (cf. 

regulatory fit). 

11.4 The utility of the formal model 

The formal model used to fit the human data proved to be a useful tool in 

determining which strategy participants had actually implemented to solve the 

categorisation problem. In particular, the model was able to establish whether 

each participant had implemented the appropriate strategy or an alternative one. 

Indeed, there is evidence that indicates that participants do not necessarily 

implement the appropriate rule as predicted by the researcher (Gluck et aI., 

2002; Shohamy et aI., 2008). In a study by Gluck and colleagues (2002), 90% of 

the participants were found to use a simple, singleton strategy to solve an 

information integration task rather than the optimal, multidimensional strategy. 

Nonetheless, they were found to perform above chance levels since the simple 

rule was associated with 75% accuracy. Similarly, participants, who performed 

above chance during an IT task, were found to be using simpler, uni-dimensional 

strategies following data fitting via a formal model (Ashby and O'Brien, 2007). 

These authors also indicated that the use of a uni-dimensional rule could ensure 

78% accuracy on the task. Overall, these results indicate that accuracy scores are 

not a good predictor of the type of strategy implemented since alternative, non

optimal rules may sometimes ensure performance well above chance level. 

In the IT-version of the Gabor task (chapter 6), the formal fitting showed that 

none of the participants used the optimal IT strategy. Nonetheless, 71% of the 

sample showed accuracy levels above chance despite the fact that they were 

using simpler and alternative strategies. In fact, a third of the sample used 
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alternative dimensional strategies (i.e. uni-dimensional or conjunctive rules) and 

the rest used a non-dimensional strategy. Similar results were observed in the 

simpler RB version of the Gabor task where 27 (out of 64) participants were 

found to perform above chance although only 19 of them had implemented the 

appropriate strategy. 

The formal model had a double-function in the analysis of the RB CL tasks 

reported in the last three chapters. The formal model extracted the actual 

criterion and also evaluated whether this was a 'meaningful' measure of 

performance for each individual participant. Thus, the fitted criterion is a more 

accurate measure of decision bound than the standardised criterion (C) that can 

be calculated using equations of Signal Detection Theory (SDT). Moreover, as 

for the Gabor tasks, the model could identify those participants who had 

implemented the optimal uni-dimensional strategy. Since the studies 

investigated how participants shifted their decision criterion (i.e. showed a 

response bias) in response to reward manipulations, it was important to measure 

response bias meaningfully. This was achieved by (conservatively) including in 

the analysis only those participants whose data was well-fitted by the criterion

based model. In each study, approximately half of the sample implemented the 

appropriate rule whereas the rest of the sample was found to be either guessing 

or using an alternative strategy. However, among the latter group accuracy 

levels were generally at or above chance level. These results further support the 

view that accuracy scores are not a good index of the strategy implemented by 

participants since scores above chance do not imply that the optimal rule was 

implemented. It is, therefore, possible that non-dimensional strategies, driven by 

alternative processes, may ensure accurate performance and produce a response 

bias. This claim is supported by the neural model simulations which indicated 

that the learning pattern observed among those participants who implemented 

alternative strategies resembled the learning curve simulated by the RPE-only

based model (cf. the revised RPE model incorporating an explicit model). 

However, there was no good way to measure the response bias shown by these 

participants, as the formal model could not accurately capture their behaviour. It 

might have been possible to calculate the SDT location parameter (C) for these 

participants. The calculated C scores would represent a measure of response bias 
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but they would be meaningless. Indeed, the calculations of the C parameter rest 

on assumptions about the behaviour of a participant (e.g. the use of a decision 

bound) that did not apply to these participants; the lack of fit to the assumptions 

of SDT was indicated by the formal modeL Therefore, it was decided to apply a 

conservative approach and exclude those participants from the data analysis. 

Even though, the neural model simulated qualitatively similar behaviour, when 

the implicit procedural module dominated the rule-based module, there is no 

simple quantitative index (like C) which can capture the behaviour observed. 

These observations suggested that different processes may lead to the same 

apparent behaviour (i.e. response bias); although the study may be interested in 

exploring only those processes involved in optimal, uni-dimensional 

performance that can be quantified. The formal model is able to identify the 

participants implementing the optimal processes and showing the behaviour of 

interest, and separate them from those using the irrelevant ones. Inclusion of 

participants who are using alternative strategies and processes would represent a 

source of noise to the analysis of the phenomenon of interest. This is especially 

true since the quantitative measure of performance (i.e. decision bound) is an 

inappropriate measure of performance for the participants that were excluded 

from the analysis (as discussed above). Indeed, repeating a metaphor used in 

chapter 8, the inclusion in the analysis of data from those participants who failed 

to implement the appropriate strategy would correspond to measuring the 

diameter of tennis balls in a study interested in assessing the impact of fertiliser 

on orange growth. In other words, the diameter can be calculated but is not 

meaningful, as the study presumes that the measure (i.e. orange diameter) is 

something amenable to change. Computational models have been identified as a 

more reliable tool to exclude noise and irrelevant measures than self-reports and 

accuracy scores (Gluck et aL, 2000; Shohamy et aL, 2008). 

11.5 Limitations of the studies 

Following the formal fitting of the human data, it became evident that some of 

the tasks may have been too complex and hard for participants to perform 
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optimally. This was indicated by the low retention rates after formal modelling. 

Indeed, in the rule-based CL tasks with asymmetric payoff matrices 

approximately half of the sample was found to use the appropriate strategy and, 

therefore, was retained in the analysis. Several factors may have played a role in 

rendering the task(s) hard and, subsequently, preventing the majority of the 

sample to perform optimally. 

The main factor that may have hindered learning during the tasks may have 

been the complexity of the categorisation problem that derived from the great 

overlap between stimuli from different categories. This may particularly apply 

to the 2-category tasks that used a d prime equal to 1, which is responsible for 

the great overlap between the two categories. The choice of this d prime value 

was driven by the fact that it had been used by Markman and colleagues (2005) 

following the rationale that motivational factors affect performance only when 

the task is difficult. Future studies could use a greater d prime value (e.g. 1.5) to 

ensure learning across the majority of the sample. This d' value will not allow 

participants to reach optimal (100%) accuracy. 

Learning during the 2-category tasks was also affected by the use of the two 

payoff matrix conditions as two independent tasks which presented stimuli in a 

slightly different fashion (vertical vs. horizontal). Having two independent tasks 

raised issues about order of presentation. In the study reported in chapter 8, the 

two conditions were presented as two separate tasks and the order of 

presentation was counterbalanced across participants. In this way, half of the 

sample experienced the asymmetric condition prior to the symmetric condition 

whereas the opposite order was experienced by the other half of the sample. 

Results showed that those participants who experienced the symmetric task first 

showed an aberrant pattern of responding (i.e. response bias only in the 

symmetric task condition). This pattern could not be fully understood but it is 

possible it may be an artefact of the task counterbalancing. Moreover, among 

those participants who experienced the asymmetric task first, a weak response 

bias was observed during the symmetric task. This bias was indexed by the fact 

that the criterion was non-significantly shifted away from the optimal accuracy 

bound. It is possible that this bias was due to a carry-over effect from the 
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preceding asymmetric task since participants may have tended to classify 

probabilistic stimuli in the symmetric condition as members of the category that 

offered greater gains in the asymmetric task. 

In the study in chapter 9, the above kind of order effect was removed by having 

participants perform the two tasks simultaneously by presenting them in an 

intertwined fashion. This task design increased the cognitive and working 

memory demand of the task since participants had not only to solve the 

categorisation problems but also to retain simultaneously two separate rules and 

apply the appropriate one depending on the task. Moreover, two different sets of 

response-keys were used to respond in the two tasks. Thus, participants had also 

to learn to associate one of the key-sets to the different tasks and, subsequently, 

each key to the correct category. Key-mapping may have added extra cognitive 

and mnemonic effort to the already complex task design. The task complexity in 

this case may account for the fact that approximately half of the sample failed to 

learn to perform on the task. 

Key-mapping in the intertwined task and the 4-category task was worsened by 

the fact that the keys for the two tasks were chosen to mismatch the actual 

category location. This was done to avoid biases due to response position 

compatibility, although more reflection shows that these concerns were probably 

not well-founded. For example, in the intertwined task the up and down arrows 

were used to classify the horizontal stimuli whereas the left and right arrows 

were used to categorise the vertical stimuli; this almost certainly added 

complexity to the task and, subsequently, to learning. This complexity adds 

noise to the categorisation process and, doubtless, requires several trials to be 

overcome. Therefore, future studies could make the key-mapping more 

straightforward by eliminating the mismatch element above in order to facilitate 

learning (e.g. left arrow may correspond to stimuli on the left-side of the screen, 

category A). On reflection, this seems unlikely to be a problem but will facilitate 

the rapid establishment of the correct rule-based behaviour (which is not 

explicitly modelled but is assumed to occur over a small number of early trials). 

Similarly, in the 4-category task the stimuli corresponded to an arbitrarily 

assigned arrow-key rather to a more logical key-mapping. In the future, the key-
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mapping should be simplified to allow learning and a 4-button box may be used 

to map each key to the actual category location on the screen (e.g. far-left key 

would correspond to category A vs. far-right key would correspond to category 

D). 

A potential task design, which removed any possible issue raised by task 

presentation, would require the two conditions to be presented in the same task. 

Hence, the 2-category task design could be replaced with a 3-category task. 

Hence, participants would be presented with a task where they have to learn to 

classify probabilistic stimuli into three different categories. Each category would 

offer different payoffs for correct responses and equal payoffs for incorrect 

responses. For example, the high payoff category could offer 400 points and 

correspond to the category on the left-hand side of the display (category A) 

whereas the two other low payoff categories could offer 200 points and appear 

in the middle and on the right-hand side ofthe display (category B and C). 

Several factors may be held responsible for the relatively small response bias 

obtained in the three studies. The extended practice trials participants 

experienced prior to performing the experimental session of the intertwined task 

may be responsible for the small criterion shift observed in the asymmetric task, 

compared to the symmetric task. It is possible that extensive practice, which 

offered symmetric accuracy feedback, may ensure efficient category learning by 

implementing the optimal accuracy criterion. This may imply that during the 

experimental session, the activation of the implicit system was dampened by the 

previous activation of the explicit system. Or, indeed, there may have been some 

"inertia" within the implicit system itself: once it had settled on particular 

bounds for the symmetric practice trials feedback processing may be less careful 

and so little further adjustment of the bounds may have taken place. 

Subsequently, the criterion shift towards the optimal reward bound was 

constrained by the well-established placement of the bound close to the optimal 

accuracy one. Therefore, future studies should avoid including extended practice 

trials or, where necessary, include the minimum number of trials for participants 

to get acquainted with the task. 
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In the 4-category task, it became evident that the inclusion of auditory feedback 

may have been detrimental to performance on the task. Indeed, the task 

simulations showed that participants probably perceived all 'positive' payoffs 

(apart from the 400 points) as equivalent. This fitted with the participants' 

verbal reports. In other words, the asymmetric matrix was treated as a much 

more symmetric matrix and this may partly account for the fact that reduced 

response biases (towards optimal reward bounds) were observed in the study. 

This effect may be exaggerated by the fact that participants relied on the 

auditory rather than the visual feedback. Several reasons may explain why 

participants relied on auditory feedback and ignored the visual feedback. One 

reason may be related to the fact that the task was cognitively demanding due to 

the task design (e.g. stimuli overlapping, several categories, key-mapping) and 

therefore, participants attempted to minimise the information to be processed. 

Therefore, they would rely on just one source of feedback (i.e. auditory) and re

direct the processes that may have been involved in processing the visual 

feedback to process different information (e.g. update or maintain the rule). It is 

also possible that visual feedback was mostly discarded since the differentials in 

the payoffs were quite small and may have not been perceived as very 

informative. The 400 points, which were identified by the neural model to affect 

decision bounds, were the only payoff value to be reported as being 'noticed' by 

participants. 

11.6 Future directions 

Several potential future studies have emerged that may extend the previous 

findings and resolve some of the issues discussed earlier that may have hindered 

the results. Moreover, the section presents potential extensions that could be 

applied to the model to render it more neurally valid as well as to increase its 

simulation potential. 
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11.6.1 Payoff manipulation on category learning 

A future study should attempt to replicate the findings obtained in the 4-

category task after improving the task design in order to enable participants to 

display a criterion shift more easily (i.e. towards the optimal reward bounds) in 

order to increase winnings. 

Indeed, the original study failed to observe this type of response bias due to the 

task design, where the perceptual bounds and the optimal accuracy bounds did 

not overlap. This has resulted in learning being characterised by participants 

shifting their bounds away from the perceptual bounds to increase their 

winnings. The study aimed to explore a criterion shift towards the optimal 

reward bounds. Such a criterion shift was observed in the study by Markman 

and colleagues (2005) as well as the studies reported in chapters 8 and 9. 

Nonetheless, in these studies maximum accuracy and perceptual bounds 

overlapped exactly. Hence, it may be the case that participants are able to place 

their criterion closer to the optimal reward bound when the perceptual bound is 

close (or corresponds) to the optimal accuracy criterion early in the task. 

Following these considerations, an alternative set of stimuli was generated that 

had the perceptual bounds overlapping with the accuracy bounds; these stimuli 

could be used in a follow-up study. 

The proposed task consists of 180 trials in total and there would be an equal 

number of trials for each of the four categories, just as in the original task. 

Stimuli were generated by sampling from 4 independent but overlapping normal 

distributions. The stimuli mean values were 100,200,400 and 500 for category 

A, category B, category C and category D, respectively. These values were 

chosen since they allowed the optimal accuracy bounds to correspond with 150, 

300 and 450 pixels, which correspond to the perceptual bounds within the 

600*600 display box. The standard deviation value for all categories was equal 

to 50. Following the choice of mean and standard deviation, the d prime 

between category A and B was equal to 2 and so was the d' between category C 

and D. In contrast, d prime was equal to 4 between category Band C, which 
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should enhance categorisation across these two categories. The previous study 

showed that participants achieved poorer levels of accuracy for stimuli from the 

central categories (cf. stimuli from the categories near the edges of the display 

box). 

Simulations were run usmg the same parameter values that were used to 

simulate the original 4-category task. In particular, the reward prediction tonic 

value (rptonic) was set to 0.5, the rulebias value was set equal to 0.4. Owing to 

the results reported in chapter 10 where participants achieved greater accuracy 

levels for those categories closer to the external edge of the display box 

(categories A and D), two different levels of noise were used for stimuli close to 

the edges of the perceptual box (pnoise = 60) and those close to its edges 

(pnoise = 40). These are the same noise values implemented to simulate the data 

from the 4-category task. Indeed, the task simulated in this section has the same 

structure as the 4-category task and, therefore, learning is expected to follow a 

similar pattern (i.e. easier categorisation for the stimuli belonging to the near

the-edge categories). The two simulated asymmetric payoff matrices (i.e. POI 

and P02) were identical to the one used in chapter 10 (table 11.3). 

Table 11.3. Payoff matrix of the four categories across the two payoff (PO) 
count erbalanclDl:!; orders 

Correct Incorrect 

Cat Cat Cat Cat All 

A B C D 

POl 333 200 400 267 100 

P02 200 333 267 400 100 

As in the previous studies, the points were recoded into a linear variable (rt) that 

coded 400, 333, 267 and 200 points into 1, 0.83, 0.67 and 0.5, respectively. The 

study should present only visual feedback to inform participants on the number 

of points they earned and the potential points they could have earned in each 

trial. This should be done to prevent participants from relying solely on auditory 

feedback and, therefore, not focusing on the payoffs. 
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11.6.1.1 Predictions 

Predictions were made following the changes implemented in the task such as 

the use of visual feedback, only, having the optimal accuracy and perceptual 

bounds coincide and, [mally, the use of larger d prime values (for the middle 

categories). In particular, participants were expected to place their criterion 

closer to the optimal reward bounds to maximise their point winning, relative to 

the optimal accuracy bounds. 

11.6.1.2 Preliminary simulations with no individual differences (i.e. no BAS 

variation) 

Initial simulations were run without any inclusion of individual differences and 

were separately run for the two payoff matrices. Simulations consisted of 300 

data sets per payoff condition (PO I and P02). The simulated data was then 

fitted using the formal model to extract the actual criteria. 

Results showed that the simulated participants showed the predicted response 

bias that was characterised by the tendency to over-classify probabilistic stimuli 

as members of the high payoff categories (table 11.4). The simulated 

'participants' in general placed their criteria away from the optimal accuracy 

bounds in the direction of the optimal reward bounds. 

Tablell.4. Simulated criteria and the calculated optimal reward criteria across the two 
asymmetric payoff matrices (sim = simulated; optimal = calculated optimal reward 
criteria) 

Criterion 1 Criterion Criterion Noise 

2 3 

SimPOl 172.84 302.58 456.32 86.40 

(N =300) (11.3) (10.3) (10.2) (10.4) 

SimP02 155.49 304.40 434.44 85.44 

(N =300) (9.9) (10.3) (10.7) (11.3) 

Optimal 171.15 286.27 464.64 --
POl 

Optimal 128.85 304.16 435.36 --
P02 
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The simulations suggest that the model would be able to simulate human data, 

which is characterised by more conservative biases than the optimal classifier 

(Bohil & Maddox, 2001; Maddox & Dodd, 2001). All the simulated criteria (1 

to 3) were found to be significantly different than the optimal accuracy criteria 

(i.e. 150,300 and 450, respectively) both under PO matrix 1 (\ts\ > 4.3, p <.001) 

and under PO matrix 2 (\ts\ > 7.4, p <.001). Thus, even though, the simulated 

criterion shifts towards the optimal reward bounds seem small, they are 

significant. 

11.6.1.3 Behaviour and BAS variation 

Inter-individual differences were simulated by using a uniform distribution of 

BAS parameter values that ranged between 0 and 2. The simulations were only 

run for the model that had BAS variation acting as a multiplier on the RPE 

projections to the synapses of the SR cell (i.e. actor network). This choice was 

driven by the results, obtained in the previous chapters, which showed that this 

was the model that best captured the human data. The simulated criteria and 

noise levels are reported in table 11.5. 

Table 11.5. Simulated criteria and noise mean and sd values for the two payoff matrices 

Criterion 1 Criterion Criterion Noise 

2 3 

POI 168.50 301.97 453.19 83.22 

(N =300) (12.7) (10.6) (11.9) (26.1) 

P02 155.03 304.46 438.67 82.34 

(N =300) (10.1) (11.2) (11.3) (24.6) 

PO matrix 1 

Results showed that BAS variations was significantly correlated with criterion 1 

(r = .45, p <.001) and criterion 3 (r = .44, P <.001; figure 11.4). The correlation 

between criterion 2 and BAS variation was significant but weak (r = .09, ns) 
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Figure 11.4. Relationship between the BAS variation and criterion 1 (figure A), criterion 2 
(figure B) and criterion 3 (figure C) under PO matrix 1 

PO matrix 2 

Results showed that BAS variation was weakly correlated with criterion 1 (r = -

.22, P <.001) and criterion 2 (r = .33, p <.001). In contrast, the correlation 

between criterion 3 and BAS was non-significant (r = .01, ns). These 

relationships are reported in figure 11.5. 
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Figure 11.5. Relationship between the BAS variation and criterion 1 (figure A), criterion 2 
(figure B) and criterion 3 (figure C) under PO matrix 2 

The correlations under this payoff matrix may have been weak due to the fact 

that the simulated criteria were close to the optimal accuracy bounds (i.e. very 

small criterion shift towards the optimal reward bounds). Indeed, these criteria 

were close to the criteria bounds simulated under a symmetric payoff matrix. 

Under the symmetric matrix correct responses earned 300 points (coded as rf = 

.75) and incorrect responses received 100 points (rf = .25). The simulations 

were run with no individual differences (i.e. no BAS variation) and using the 

same parameter values reported earlier. Despite the fact that the payoff matrix 

was symmetrical, the simulated criteria were significantly different from the 

optimal accuracy criteria (\ts \> 7.5, ps <.001; table 11.6). Results showed that 

under the symmetric payoff matrix, criteria were placed close to the optimal 

accuracy/perceptual bounds although they were pushed inwards slightly by the 

lower noise value chosen for the stimuli near the edges (i.e. stimuli near the 
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edges of the box are expected to be perceived more consistently over time than 

those stimuli in the middle). 

Table 11.6. Simulated criteria under a symmetric payoff matrix 

Criterion 1 Criterion 2 Criterion 3 Noise 

Symmetric 163.38 304.54 445.34 86.12 

(N = 300) (9.8) (10.5) (10.4) (11.1 ) 

This phenomenon was expected to be in action following the simulation results 

obtained for the 4-category task study (see Appendix 4). This phenomenon may 

antagonise the shifting force induced by the asymmetric payoffs, when they are 

in opposition, and it would explain the low shift in criterion 3 under PO matrix 1 

and the low shift in criterion 1 under PO matrix 2. In contrast, the criterion shift 

would be enhanced when the two forces act in the same direction (e.g. criterion 

3 under PO 2). Simulations using a noise value equal to 50, regardless of 

stimulus location, showed criterion placement close to the optimal accuracy 

bounds [i.e. criterion 1: 157.73 (9.9); criterion 2: 304.52 (10.7) and criterion 3: 

450.26 (10.1)] under symmetric payoffs. 

Overall, results show that the use of the asymmetric payoff matrix described 

earlier is effective at producing a weak criterion shift towards the optimal 

reward bounds. However, the simulated response biases (table 11.5) are quite 

small and, therefore, it may not be possible to detect them in noisy empirical 

studies. Subsequently, the BAS-behaviour relationship may also be weak. This 

small shift may be due both to the near-the-edge force and the small difference 

across payoffs. The small differential across the payoffs may also be harder to 

detect under testing conditions. Therefore, using greater payoff differentials may 

produce greater criterion shifts in both simulated and empirical data. This 

hypothesis was tested in further simulations with greater payoff differentials. 

In order to reduce the complexity of the task, only two payoff values were 

implemented (i.e. high = 400 points and low = 150 points) for correct responses 

whereas incorrect responses earned 100 points. The points were recoded into rf 

values equal to 1,0.375 and 0.25 for 400, 150 and 100 points, respectively. 
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The use of only two payoff values for correct responses (i.e. 400 vs. 150) allows 

us to test the impact of asymmetric payoffs in comparison to a symmetric matrix 

during the same task. Therefore, it eliminates all potential problems encountered 

in the previous studies such as carry-over effect and over-complicating 

performance. The payoff matrices are presented in table 11.7. 

Table 11.7. Asymmetric payoff matrices 

Correct Incorrect 

Cat Cat Cat Cat All 

A B C D 

POI 400 150 150 400 100 

P02 150 400 400 150 100 

11.6.1.4 Preliminary simulations with no individual differences (Le. BAS 

variation) 

Two PO matrix structures were used to assess whether the location of the high 

payoff categories (mid or side of the screen) would have different impact on the 

criterion shift. This is particularly important since, due to the edge-effect, a 

response bias seems to be present under symmetric payoffs (table 11.6). The 

original 4-category study did not find any difference in criterion across the two 

payoff matrices, nonetheless all payoffs were perceived as equivalent. Hence, it 

is useful to control for stimulus location even though this may require 

subdividing the main sample into smaller sub-groups. 

The present simulations used the same parameters and parameter values that 

were implemented in the previous simulations. Results showed that simulated 

'participants' showed the predicted response bias as they tended to over-classify 

probabilistic stimuli as members of the high payoff categories (table 11.8). 

Nonetheless, the simulated criteria were lower than the optimal reward criteria 

and this suggests that the model was able to simulate human data which is 
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characterised by more conservative biases than the optimal classifier (Bohil & 

Maddox, 2001; Maddox & Dodd, 2001). 

Table 11.8. Simulated criteria under the two asymmetric payoff matrices (sim = simulated; 

optimal = calculated optimal criteria) 

Criterion 1 Criterion Criterion Noise 

2 3 

SimPOl 180.23 304.06 425.33 93.59 

(N= 300) (11.3) (10.8) (11.4) (10.5) 

SimPO 2 143.58 306.01 468.55 108.17 

(N = 300) (10.5) (10.3) (11.1 ) (11.7) 

Optimal 194.80 300.00 405.21 --
POl 

Optimal 105.21 300.00 494.79 --

P02 

One-sample T-tests showed that the three simulated criteria (1- 3) were 

significantly different from the optimal accuracy bounds under both payoff 

matrix conditions (POI: Itsl > 6.5, ps <.001; P02: Itsl > 10.1, ps <.001). 

11.6.1.5 Behaviour and BAS variation 

Inter-individual differences were simulated by using a uniform distribution of 

BAS parameter values in the range of 0-2. Following early observations, the 

simulations were only run for the model that had BAS variation acting as a 

multiplier on the RPE projections to the synapses of the SR cell (i.e. actor 

network). The simulated criterion shifts under this matrix were a little greater 

than the shifts observed using the original payoff matrix (table 11.9) 
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Table 11.9. Simulated criteria when BAS acts on the RPE cell 

Criterion I Criterion 2 Criterion 3 Noise 

POI 175.73 303.67 429.30 91.24 

(14.8) (11.0) (12.9) (30.1) 

P02 136.73 303.82 468.37 109.38 

(22.5) (11.2) (21.2) (43.7) 

PO matrix I 

The simulations under PO matrix 1 showed that there was a positive correlation 

between criterion 1 and the BAS variation (r = .64, p <.001) and the correlation 

between BAS and criterion 3 was also significant (r = -.46, p <.001). The 

correlation between criterion 2 and the BAS, by contrast, was significant but 

very weak (r = .20, P <.001). The scatterplots below visually represent these 

relationships (figure 11.6). 
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Figure 11. 6. BAS-behaviour relationship under PO matrix 1 
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PO matrix 2 

The simulation results showed strong correlations between the criteria and the 

BAS variation. In particular, the BAS was negatively correlated with criterion 1 

(r = -.83, p <.001) and positively with criterion 3 (r = .82, P <.001). In contrast, 

the correlation between criterion 2 and the BAS was weak (r = .15, P =.01). 

Figure 11 .7 represents these relationships. 
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The lower BAS*criteria correlations simulated under PO matrix 2 (cf. PO 

matrix 1) may be due to the fact that the criterion shift was enhanced by the 

'inward-force' produced by the noise values used for the edge-categories. 

Indeed, an inward criterion shift was observed under symmetric payoffs (table 

11.6). Thus, under PO 1 the criterion shift might have not been purely due to 

BAS variation and, therefore, the correlations under PO matrix 1 were weaker 

than under PO matrix 2. 
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Overall, these simulations indicate that the revised task design could be 

implemented in a future study to explore the relationship between BAS 

variations and criterion shift towards the optimal reward bounds in empirical 

data. 

11.6.2 Probabilistic feedback on category learning 

As mentioned in the previous sections one of the main limitations of the studies 

was their high complexity and low d prime values. Evidence from the study in 

chapter 10, has indicated that increasing the d prime value from 1 to 2 enhanced 

learning on the RB task. However, in the two Gabor studies a d prime equal to 3 

was implemented and the learning rate was still quite low. In fact, only a third of 

the sample used the optimal rule in the RB task whereas none of the participants 

implemented the optimal, implicit strategy in the information-integration (II) 

task. Participants performing the II task were found to use alternative 

dimensional strategies (e.g. conjunctive and uni-dimensional rules). It was also 

suggested that participants may have used alternative, non-dimensional 

strategies that could not be identified by any simple formal model. The reason 

why participants found it hard to identify the optimal rule amongst the several 

potential rules may be due to the complexity of the stimuli. Indeed, the stimuli 

varied along two continuous dimensions and information from both dimensions 

had to be taken into account to solve the categorisation problem. This is 

particularly true for the II task since the information from both dimensions had 

to be combined at a pre-decisional level. Nonetheless, results from the RB task 

also showed that several participants used the irrelevant dimension to solve the 

task. Overall, these observations indicate that the task and stimulus complexity, 

the probabilistic feedback, and possibly the low number of trials, impaired 

performance during both the RB and the II tasks. Owing to the task complexity, 

greater training extending over several sessions, should have been offered to 

participants to develop the optimal strategy. Indeed, published studies ofRB and 

II tasks that required participants to learn to classify Gabor stimuli into different 

categories have often included hundreds of trials. For example, in a study by 

Ashby and colleagues (2003), which explored the impact of delayed-feedback 
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on learning, four blocks of 80 trials each constituted both the RB and II tasks. In 

a recent study that explored the impact of partial feedback during learning on an 

II task, learning was assessed over five sessions that consisted of 600 trials 

(Ashby and O'Brien, 2007). 

Alternatively, the use of a simpler task may have allowed us to detect the impact 

of probabilistic feedback on category learning. Indeed, probabilistic feedback 

may be found to affect learning on the RB tasks reported in the last three chapter 

of the thesis. These tasks are quite simple since the stimuli vary on only one 

continuous dimension (i.e. location of the stimuli on an imaginary vertical or 

horizontal line). In those tasks, reward magnitude manipulations (i.e. 

asymmetric payoffs) have been found to produce a tendency to over-classify 

probabilistic stimuli as members of the high payoff category (i.e. create a 

response bias). Moreover, neural model simulations have indicated that reward 

processing and response bias were mediated by DAergic activity in the striatum. 

More specifically, higher RPE-DA firing was found to be positively associated 

with greater reward-related learning and, therefore, bias. Gain-only payoffs 

offered in a probabilistic fashion should affect learning in a similar fashion since 

it should be processed by the same brain areas included in the neural model and 

be involved in the 3-factor learning rule model (Ashby et aI., 1998; Pickering 

and Gray, 2001). 

One of the main goals to be achieved in the future is to develop the neural model 

in such a way as to be able to simulate the effects of probabilistic rewards. This 

would require substituting reward magnitude with reward frequency and 

calculate the reward prediction signal as the difference between the actual 

reward occurrence and the predicted occurrence, which will reflect the past 

frequency of occurrence. Thus, the neural model implemented to simulate 

learning under probabilistic reward could be a variation of the delay discounting 

model (presented above). The main difference relies on the fact that the latter 

model should simulate the processes that mediate forced-choice decision 

making whereas the former should include the explicit system processes 

involved in categorisation solving. 
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Simulations showed that the implicit model alone was not able to solve the 

categorisation problem in a human-like fashion because of its inability to 

generalise responses to similar stimuli over learning. This may have been due to 

the low overlap between stimuli and the limited number of trials. The model 

includes a perceptual module which is responsible for applying the appropriate 

rule and, therefore, solving the categorisation problem. This module is 

mathematically expressed, although it is not neurally described. Hence, future 

work should attempt to build into the model the neural processes underlying the 

perceptual module. Bar-Gad and colleagues (2000) have suggested that the basal 

ganglia may be responsible for compressing the inputs from the cortex (i.e. 

dimensionality reduction). This process allows the projection of a great number 

of inputs to a small number of units while it maintains intact the information. 

Indeed, it has been proposed that the compression ratio between cortical neurons 

and striatal neurons is 10:1 (Ashby and Ennis, 2006; Ashby et aI., 2007; Seger, 

2008). This data compression may lead to the transformation of the cortical 

inputs into binary-signals (e.g. category A and category B). During each trial, 

one of the signals would be on whereas the other would be off. For example, if a 

stimulus were located at pixel location lower than 325, the on-signal would 

correspond to category A (i.e. on-off, 10 vs. 01 when stimulus belongs to 

category B). Dimensionality reduction is mathematically obtained by 

implementing principal component analysis, which summarises the cortical 

input into smaller components (Bar-Gad et aI., 2000; O'Reilly and Munakata, 

2000). In relation to category learning tasks, the extracted components should 

correspond to the different categories. Bar-Gad and colleagues have suggested 

that dimensionality reduction is mediated by a 3-factor Hebbian learning rule 

where reinforcement signals from the dopaminergic (SNcNTA) cell playa key 

role in the process (Reinforcement Driven Dimensionality Reduction; RDDR). 

In this way, the system become more efficient at extracting information for 

reward-related inputs (cf. non-rewarded inputs). Joel and colleagues (2002) 

suggested that this process may underlie the actor sub-network to facilitate the 

response selection. Thus, RDDR may be implemented in the model to neurally 

describe the categorisation processes (i.e. explicit module). 

452 



Finally, it would be useful to extend the present (gain) neural model in such a 

way that it could simulate performance under a loss-only matrix as well as a 

mixed matrix (as described by Markman and colleagues, 2005). There is 

evidence that indicates that aversive learning is partly mediated by the striatum. 

Indeed, during performance on a Pavlovian delay conditioning task, the striatum 

was found to process positive RPE signals to both appetitive and aversive 

outcomes (Seymour et aI., 2007). However, the appetitive RPE corresponded to 

activation in the anterior striatum whereas the aversive RPE to the posterior 

striatum. Moreover, Daw and colleagues (2002) have suggested that the 

temporal difference (TD) model can be implemented to capture RPE signals in 

relation to negative rewards/losses. The aversive RPE signal has been proposed 

to have a serotonergic nature (Daw et aI., 2002; Seymour et aI., 2007). In other 

words 5HT is believed to be involved in aversive learning. This is in line with 

animal studies and RST model since there is evidence that indicates that genes 

of the serotonin systems are associated with BIS- and FFFS-like traits (e.g. 

neuroticism and anxiety; Reuter, 2008). Future work should aim to implement a 

punishment prediction error system, similar to the system, suggested by Daw 

and colleagues, which could simulate aversive learning under a loss-only and a 

mixed-matrix. 

11. 7 Conclusions 

In summary, the thesis explored the relationship between motivation, 

biologically-based personality traits and performance during category learning. 

In particular, it explored the impact of the BAS on learning novel categories. 

The use of the CL paradigm was driven by the literature that indicates that 

effective CL is dependent upon the same DAergic projections that constitute the 

biological substrate of the BAS (Maddox & Ashby, 2004; Pickering, 2004; Corr, 

2006). The main fmding showed that impulsivity was the personality trait that 

mediated categorisation under asymmetric payoffs; more specifically, low 

impulsivity scores were associated with a criterion shift that worked to 

maximise rewards. Both self-report and behavioural measures of impulsivity 

(Le. delay discounting task) were found to predict the response bias. 
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Nonetheless, the behavioural measure seemed a more reliable index of 

impulsivity and, therefore, it may represent a more valid BAS endophenotype 

than the psychometric indices used as impulsivity phenotypes. The validity of 

the behavioural measure of impulsivity was further confirmed in a computerised 

short-delay version of delay discounting: the decision-making task. 

The human data together with the simulated data reinforced the COVIS 

assumption that two systems are required to capture the detailed patterns of 

performance on CL tasks. The explicit and implicit systems are thought to be 

independent and compete for control throughout the task (Ashby et ai., 1998). 

Indeed, the explicit system was responsible for implementing the appropriate 

rule-based strategy whereas the implicit system worked to optimise performance 

(i.e. winnings) by producing the criterion shifts. The modelling further assumed 

that explicit learning may be dominant in the early stages of the task whereas the 

implicit system learns in an incremental fashion following trial-by-trial 

feedback. The insight offered by the neural simulations indicates the importance 

of the model to analyse and interpret the results. Moreover, it highlights the 

utility of a priori simulations to assess the efficacy of the task design at 

exploring the personality-behavioural-biological relationship of interest. 

Therefore, future studies would benefit greatly from testing the validity of the 

task by using neural simulation, prior to data collection, in order to ensure the 

use of an optimal task design able to capture the phenomenon under study. The 

next step should aim to extend the present neural model so that it could simulate 

performance on different task types (e.g. decision-making task) and CL tasks 

with alternative types of feedback manipulations. As mentioned above, one of 

the immediate steps would be to implement the changes necessary for the model 

to simulate performance on an RB CL task under probabilistic feedback and 

with differing types of payoff matrices, including losses and mixed incentives. 
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Appendix 1 

Correlations 

b5 - b5- spq-cognitiv spq-disor 
extraversion neuroticism bis bassum epgy ep_Q. e epQ. n e/perceQlual ganised olife-unex olife-cogdis olife-intan olife-impnon olife-ext sss tot 

b5 - extraversion Pearson Correlation 1 -.213* -.093 .354* .097 .778* -.173* .114 -.066 .069 -.218* -.471* .300* .776* .272*' 

8ig. (2-tailed) .001 .160 .000 .145 .000 .009 .087 .326 .298 .001 .000 .000 .000 .000 

N 227 227 227 227 227 227 227 227 227 227 227 227 227 227 227 

b5 - neuroticism Pearson Correlation -.213* 1 .638* -.031 -.062 -.338* .699* .113 .268* .192* .553* .296* .062 -.299* -.158* 

8ig. (2-tailed) .001 .000 .643 .350 .000 .000 .090 .000 .004 .000 .000 .356 .000 .017 

N 227 227 227 227 227 227 227 227 227 227 227 227 227 227 227 

bis Pearson Correlation -.093 .638* 1 .198* -.160* -.220* .559* .105 .197* .116 .493* .097 .062 -.159* -.142* 

8ig. (2-tailed) .160 .000 .003 .016 .001 .000 .114 .003 .081 .000 .147 .356 .017 .033 

N 227 227 227 227 227 227 227 227 227 227 227 227 227 227 227 

bassum Pearson Correlation .354* -.031 .198* 1 .098 .395* .039 .121 .143* .156* .051 -.297* .292* .416* .176*' 

8ig. (2-tailed) .000 .643 .003 .143 .000 .556 .070 .031 .019 .442 .000 .000 .000 .008 

N 227 227 227 227 227 227 227 227 227 227 227 227 227 227 227 

epqy Pearson Correlation .097 -.062 -.160* .098 1 .126 -.020 .250* .327* .251* .097 .058 .490* .075 .331*' 

8ig. (2-tailed) .145 .350 .016 .143 .058 .760 .000 .000 .000 .147 .382 .000 .260 .000 

N 227 227 227 227 227 227 227 227 227 227 227 227 227 227 227 

ep~e Pearson Correlation .778* -.338* -.220* .395* .126 1 -.264* .060 -.079 .058 -.301* -.658* .320* .931* .345*' 

8ig. (2-tailed) .000 .000 .001 .000 .058 .000 .366 .238 .386 .000 .000 .000 .000 .000 

N 227 227 227 227 227 227 227 227 227 227 227 227 227 227 227 

ep~n Pearson Correlation -.173* .699* .559* .039 -.020 -.264* 1 .259* .410* .357* .769* .306* .252* -.216* -.087 

8ig. (2-tailed) .009 .000 .000 .556 .760 .000 .000 .000 .000 .000 .000 .000 .001 .191 

N 227 227 227 227 227 227 227 227 227 227 227 227 227 227 227 

spq-cognitive/perceptual Pearson Correlation .114 .113 .105 .121 .250* .060 .259* 1 .588* .793* .442* .177* .434* .076 .078 

8ig. (2-tailed) .087 .090 .114 .070 .000 .366 .000 .000 .000 .000 .007 .000 .256 .240 

N 227 227 227 227 227 227 227 227 227 227 227 227 227 227 227 

spq-disorganised Pearson Correlation -.066 .268* .197* .143* .327* -.079 .410* .588* 1 .611* .567* .253* .535* -.075 .177*' 

8ig. (2-tailed) .326 .000 .003 .031 .000 .238 .000 .000 .000 .000 .000 .000 .261 .008 

N 227 227 227 227 227 227 227 227 227 227 227 227 227 227 227 

olife-unex Pearson Correlation .069 .192* .116 .156* .251* .058 .357* .793* .611* 1 .532* .192* .504* .058 .048 

8ig. (2-tailed) .298 .004 .081 .019 .000 .386 .000 .000 .000 .000 .004 .000 .387 .473 

N 227 227 227 227 227 227 227 227 227 227 227 227 227 227 227 

olife-cogdis Pearson Correlation -.218* .553* .493* .051 .097 -.301* .769* .242* .267* .332* 1 .378* .353* -.278* -.044 

8ig. (2-tailed) .001 .000 .000 .442 .147 .000 .000 .000 .000 .000 .000 .000 .000 .508 

N 227 227 227 227 227 227 227 227 227 227 227 227 227 227 227 

olife-intan Pearson Correlation -.471* .296* .097 -.297* .058 -.658* .306* .177* .253* .192* .378* 1 -.029 -.676* -.284" 

8ig. (2-talied) .000 .000 .147 .000 .382 .000 .000 .007 .000 .004 .000 .666 .000 .000 

N 227 227 227 227 227 227 227 227 227 227 227 227 227 227 227 

olife-impnon Pearson Correlation .300* .062 .062 .292* .490* .320* .252* .234* .335* .304* .353* -.029 1 .302* .343" 

8ig. (2-tailed) .000 .356 .356 .000 .000 .000 .000 .000 .000 .000 .000 .666 .000 .000 

N 227 227 227 227 227 227 227 227 227 227 227 227 227 227 227 

olife-ext Pearson Correlation .776* -.299* -.159* .416* .075 .931* -.216* .076 -.075 .058 -.278* -.676* .302* 1 .307*' 

8ig. (2-tailed) .000 .000 .017 .000 .260 .000 .001 .256 .261 .387 .000 .000 .000 .000 

N 227 227 227 227 227 227 227 227 227 227 227 227 227 227 227 

sss_tot Pearson Correlation .272* -.158* -.142* .176* .331* .345* -.087 .078 .177* .048 -.044 -.284* .343* .307* 1 

8ig. (2-tailed) .000 .017 .033 .008 .000 .000 .191 .240 .008 .473 .508 .000 .000 .000 

N 227 227 227 227 227 227 227 227 227 227 227 227 227 227 227 



Appendix 2 

TableA2.1. The table reports the main parameter of the neural model and the parameter 
values implemented to simulate the human data from the various studies 

2-cat 2-cat 4-
Symbol Description blocked intertwin category 

Markman task ed task 

Or Threshold for the 0.05 
raw RPE signal 

W mean Mean to generate SR 0.3 
weights from 
cortical inputs 

Wsd Std. to generate SR 0.02 
weights from 
cortical inputs 

Scalerl Learning rate on the 2 
RP unit 

Scaler2 Learning rate on the 2 
SR unit 

bland Learning rates of RP 0.05* scaler I 
b2 unit 

b3 and Learning rates of SR 0.05* scaler 2 
b4 unit 
0 Category threshold 325 200-300-

(bound) 400 
nx Number of cortical 650 600 

units 
Pnoise Perceptual and 50 50 50 40&60 

criterial noise 
rulebias Strength of explicit 0 0.6 0.65 0.4 

module 
m Reinforcement (rf) .5 .8 .5 1 

values multiplier 
Rptonic Reward prediction .5 .5 .5 .4 

tonic value 



Appendix 3 

Pilot studies for the 4-category task (chapter 10) 

Introduction 

In the two previous studies, a d' equal to 1 had been selected to render the task 

difficult enough to allow motivational factors to come into play (Markman et aI., 

2005). However, in the present study the number of categories is doubled (from 

2 to 4) which renders the task more complex and, subsequently, requires extra 

working memory effort. Hence, it was decided to increase the d prime value in 

order to facilitate and, therefore, ensure sufficient learning (i.e. accuracy above 

chance level). Nonetheless, the d prime value could not be too high otherwise 

the task would be too easy and no emotional factors would come into play and 

mediate performance. A pilot study was conducted in order to establish whether 

a d' equal to 1.5 was sufficient to ensure sufficient performance during a 

probabilistic rule-based CL task. 

Task 

The task used in the pilot study was the same 4-category RB task implemented 

in the learning phase task during the experimental testing session. Hence, the 

pilot consisted of 180 trials in total. The task also closely resembled the 

structure and format of the studies reported in the previous chapters. During the 

pilot participants had to learn to classify stimuli varying in location across an 

imaginary, 600-pixel long horizontal line into four categories. They received 

visual and auditory feedback for each response they made. The feedback was 

given in points according to the payoff matrices described in the main chapter. 

The aim of the task was to earn as many points as possible to win an entry into a 

£25 lottery. As in the experimental session, participants had to reach a 

performance criterion in order to earn the ticket. The performance criterion was 

set at 40800 points, which corresponds to 80% points earned by the optimal 

classifier. 
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Pilot with a d prime value equal to 1.5 

Only three participants were tested using a d' equal to 1.5 since it was clear 

straight away that this value was far too small to ensure learning on the task. 

Participants 

An opportunity sample was tested and it consisted of 3 female psychology 

postgraduate whose mean age was equal to 28.3 (s.d. = 4.0). 

Results 

The proportion of correct responses for each participant was calculated, in order 

to assess the level of accuracy achieved with a d' equal to 1.5 (table A3.1). 

Table A3.1. Accuracy levels with a d prime equal to 1.5 

Participants # correct Accuracy (%) Points won 

1 51 28.3 28032 

2 100 55.6 37401 

3 48 26.7 28467 

Looking at table A3.1 it can easily be observed that 2 ofthe 3 participants were 

performing at chance level (0.25). Overall, those three participants reached a 

very low proportion of correct (pc) responses over the 180 trials constituting the 

main, pre-payoff switch phase (pc: mean = 32.25, s.d. = 21.9). The proportion of 

correct responses reached by these three participants is just above chance (25% 

for a four-category task). Similarly, the total amount of points earned was way 

below the bonus criterion which (mean = 31233, s.d. = 5342). These results 

suggest that a d prime equal to 1.5 in a category learning tasks with a high 

working memory demand may be too smalL 

490 



Pilot with a d prime value equal to 1.5 

A second pilot study was subsequently carried out in order to assess whether a d 

prime equal to 2 could enhance participants' learning above chance levels. 

Performance with a d prime equal to 2 showed to be more promising both by 

looking at the data and from participants' verbal reports. Eight participants were 

tested under this condition. 

Participants 

The 8 participants were sampled from the student population at Goldsmiths. The 

sample included 6 postgraduate and 2 undergraduate psychology students. The 

mean age was 29.38 (s.d. 10.11). 

Results 

Table A3.2 shows that under this condition, six of the eight participants 

performed above chance levels. However, their accuracy level was below 100%, 

which suggests that the task was not. Hence, these results indicate that a d prime 

equal to 2 offers a good balance in difficulty. Indeed, results show that learning 

occurs above chance level but it does not reach optimal accuracy (100%). 

Therefore, the task is still hard enough to let emotional come into play and 

mediate performance (i.e. response bias) according to the observations made by 

Markman and colleagues (2005). 

Table A3.2. Accuracy levels with a d' equal to 2 

Participants # correct Accuracy (%) Points won 

1 109 60.6 41032 

2 45 25 27661 

3 96 53.3 37065 

4 108 60 39800 

5 43 23.9 25565 

6 70 38.9 32192 

7 93 51.7 37292 

8 97 53.9 38.097 
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The variation in performance across the pilot sample during this pilot resembles 

the pattern observed in the studies reported in chapters 8 and 9. In these studies, 

some participants did not learn to perform on the task; others were quite good 

(i.e. accuracy levels of 60%) and the majority of participants lied somewhere 

between the two extremes. 

Overall, these results indicate that it is necessary to implement a dprime equal to 

2 for the 4-category task, in order to ensure learning above chance levels. 

However, the data also showed that among those participants who performed 

above chance, only one of them earned enough points to win an entry into the 

£25 lottery. Hence, according to these results, one out of eight participants could 

reach the bonus criterion and, subsequently, it was decided decrease the number 

of points necessary to win the lottery ticket. This was done in order to prevent 

participants from experiencing frustration as the task progressed. Indeed, 

participants may have felt like their performance was poor and would not allow 

them to earn the ticket and, subsequently, would have given up half-way 

through the task. 

The average score of the other five participants who performed above chance 

was approximately 37000 points, which corresponds to an optimal level equal to 

67% accuracy level (cf. 80%). It was decided to use this accuracy level and 

hence to reduce the performance criterion from the initial 40807 to 37100. In 

this way, it was ensured that participants would maintain a promotion focus 

rather than experiencing frustration as they monitored their point-earning over 

trials. 
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Appendix 4 

Inter-block instructions presented in the 4-category task 

At the end of the first block, the task stopped and participants received the same 

inter-block message received in the study in chapter 8. The message represented 

a lottery ticket that was struck through by a red cross and had a message saying: 

'If that had been the end of this section of the experiment, you would have 
not earned an entry into the lottery' . 

Participants also had the chance to take a short break if they needed a rest. At 

the end of the learning phase, the task paused and presented the same ticket as 

the one in the inter-block message. The ticket was either crossed out or not 

depending on whether participants had reached the performance criterion or not. 

The window dialog also reported a message saying: 

'That is the end of this section of the experiment and you earned enough 
points to get an entry into the £25 lottery' 

if participants had reached the performance criterion. Otherwise, the message 

would read: 

'That is the end of this section of the experiment and you did not 
earn enough points to get an entry into the £25 lottery'. 

The subsequent window offered participants a summary on their performance. 

In fact the message said: 

'That is the end of this section of the experiment. 
[Sorry, but] you earned (number of) points, which means 

that you did [did not] earn an entry into the lottery for £25.' 

At the end of the first task participants also received a message that informed 

them: 

'You can take a short break now if you would like. Press any key when 
you are ready to continue on to the next section. You need to earn xxxxx 

points in order to win an entry.' 
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The breaks were not compulsory and participants could chose to carry on with 

the task but if they decided to take a short break its length was up to them. Once 

participants pressed any key to proceed, the second task started. It consisted of 

only 60 trials with no breaks in between. At the end of the second task, 

participants received the same message they had received at the end of the first 

one to notify them on whether they had won the lottery ticket or not. 

At the end of the two tasks (i.e. learning phase), participants were debriefed by a 

message which said: 

'This is the end of this experiment. Thanks for your participation! 
You earned x entries into the £25 lottery,' 

Please tell the experimenter you have finished, and 
that you earned x entries.' 

Depending on their performance over the two tasks, x could be 0, 1 or 2. 
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Appendix 5 

Preliminary simulations for the 4-category task 

A parameter set that was able to simulate the behavioural data was identified by 

adopting values from the previous simulations and making adjustment by trial

and-error to fit those parameters to the requirements of the present task. In order 

to successfully simulate the behavioural data the scaler parameter was set equal 

to 2 and the noise value to 50 (as for previous studies); whereas rulebias was set 

equal to 0.4, the reward prediction signal (rptonic) was set equal to 0.5. 

Following the logic implemented in the previous studies' simulations, it was 

decided to code the points earned into a linear variable (rf). Since the maximum 

winning was equal to 400 points, a winning of 400 points was coded as 1 and, 

therefore, 200 points as 0.5. It follows that 333 and 267 points were re-coded as 

0.83 and 0.67, respectively, while the 100 points earned for incorrect responding 

was equal to 0.25. 

Owing to the categories' mean locations, the optimal accuracy criteria were 

equal to 200, 300 and 400. Initial simulations were run using these values as the 

initial boundaries, which represent the criteria applied by the perceptual rule 

module. However, the simulations indicated that the use of these values offered 

a bad fit to the human data (i.e. criteria were close to the optimal accuracy 

criteria and the noise levels were low; table A5.1). 

Table AS. 1. Human and simulated criteria (s.d.) with initial boundaries set at 200, 300 & 
400 across the two payoff conditions (sim = simulated; hum = human; POI = PO matrix 1 
and P02 = PO matrix 2) 

Criterion 1 Criterion 2 Criterion 3 Noise 
Sim POI 211.54 293.80 400.73 63.56 
.(N~OO) (7.6) (7.7) (8.2) (7.0) 
Sim P02 197.40 303.47 387.73 62.69 
(N=300) (8.9) (7.4) (8.3) (7.0) 

Hum POI 182.97 300.13 420.84 80.27 
(N = 18) (26.4) (14.0) (23.8) (31.7) 

Hum P02 191.77 303.21 413.31 79.62 
(N = 20) (27.3) (21.0) (20.7) (32.3) 
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There is no reason why a participant would set the boundaries at the maximum 

accuracy criteria, as these can be determined only once the properties of the 

distribution of the category stimuli are reasonably well-established. It is much 

more plausible that the initial boundaries are set using simple perceptual 

principles. 

Since stimuli were displayed along a 600-pixel long horizontal line, it is 

possible that on starting the task, participants placed their criteria at symmetric 

distances across the line (i.e. 150, 300 & 450 pixel) in order to split the box into 

four equal (vs. unequal: large-small-small-Iarge) spatial zones (i.e. perceptual 

criteria; figure AS.1). Thus, it is possible that participants might have initially 

placed their decision criteria close to the perceptual, rather than the optimal 

accuracy, criteria as the two types of bounds did not coincide. 
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Figure AS. 1. Stimulus distribution and symmetrical perceptual decision criteria 

Therefore, the simulations were run again with these perceptual criteria values 

being used as starting points to identify the actual perceptual boundaries 

participants implemented over trials to categorise the stimuli. Simulations with 

these values better captured the human data than the optimal accuracy bounds 
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(i.e. 200, 300 and 400 pixels; table A5.2). However, the simulated criteria were 

still quite far from the criteria set by human participants (especially criterion 3 

for PO matrix 1 and criterion 1 for PO matrix 2). 

Table AS. 2. Human and simulated criteria (s.d.) using initial boundaries set at 150,300 & 
450 across the two payoff conditions (sim = simulated; hum = human; POI = POmatrix 1 
and P02 = POmatrix 2) 

Criterion 1 Criterion 2 Criterion 3 Noise 
Sim POI 180.25 296.54 442.83 88.22 
(N :::-300) (11.3) (8.1) (12.3) (9.8) 
Sim P02 158.42 303.79 422.92 87.80 
(N = 300) (11.4) (7.7) (12.6) (10.2) 

Hum POI 182.97 300.13 420.84 80.27 
(N = IS) (26.4) (14.0) (23.8) (31.7) 

Hum P02 191.77 303.21 413.31 79.62 
(N = 20) (27.3) (21.0) (20.7) (32.3) 

Moreover, the simulations did not reproduce the accuracy levels obtained in the 

empirical data. Indeed, the simulated 'participants' showed greater accuracy 

level for the categories associated to greater payoffs whereas human participants 

showed greater accuracy for the categories near the edges of the display box (i.e. 

categories A and D; table A5.3). Participants verbally reported having found it 

easier to learn to identify category membership for those stimuli. 

Table As.3. Simulated and human accuracy level under the two asymmetric matrices (sim 
= simulated; hum = human; POI = PO matrix 1 and P02 = PO matrix 2) 

Cat A CatB CatC CatD 
Sim POI 0.69 0.55 0.63 0.54 
Sim P02 0.56 0.69 0.52 0.64 

Hum POI 0.68 0.53 0.54 0.66 
Hum P02 0.73 0.48 0.50 0.68 

Owing to these preliminary simulations that indicate that the perceptual 

boundaries better simulate the human data than the actual optimal accuracy 

boundaries, all simulations reported below were run using the perceptual bounds 

(150,300 and 450 pixels) as the initial boundaries. 

Moreover, it was decided to adopt two values of perceptual noise (cf. original 

noise level equal to 50) in order to capture this accuracy differences in the 

simulations. Thus, the new perceptual noise values were equal to 40 and 60 for 

the stimuli of the edge and middle of the display, respectively. Simulations were 
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run with the new noise levels under the two payoff matrices (table AS.4). The 

simulated criteria were still not close enough to the human criteria (especially 

criterion 1 for PO matrix 2 and criterion 3 for PO matrix 1). 

Table A5.4. Human criteria and simulated criteria obtained using two perceptual noise 
.values (sim = simulated; hum = human; POI = PO matrix I and P02 = PO matrix 2) 

Criterion 1 Criterion 2 Criterion 3 Noise 
Sim POl 18S.92 29S.93 437.21 86.12 

_(N :::-300) (11.0) (8.6) (11.8) (9.3) 
Sim P02 164.36 304.S0 417.S4 85.S6 
(N:::-300) (11.1) (8.1) (12.2) (10.0) 

Hum POl 182.97 300.13 420.84 80.27 
(N = 18) (26.4) (14.0) (23.8) (31.7) 

Hum P02 191.77 303.21 413.31 79.62 
(N = 20) (27.3) (21.0) (20.7) (32.3) 

These results suggest that there may be two simultaneously active forces that 

affect the criterion location during performance on the task. Specifically, one 

force may be pushing the criteria close to the optimal accuracy criteria (i.e. 

driven by learning) and the other force push the criteria close to the optimal 

winning criteria (i.e. driven by the asymmetric payoffs). In order to disentangle 

the effect of the two forces, further simulations were conducted with a 

symmetrical payoff matrix, where correct responses earned 300 point and 

incorrect responses 100 points. Following the previous studies, 300 and 100 

points were re-coded as rf values equal to 0.7S and O.2S, respectively, for 

simulation purposes. These values were also chosen since they ensure a point

symmetry across the asymmetric and symmetric matrix. Table AS.S reports the 

simulated criteria and noise levels under a symmetric payoff matrix. The 

simulated criteria and noise levels resemble those observed in the human data. 

Table A5.5. Simulated criteria (s.d.) under a symmetric layoff matrix 

Criterion 1 Criterion Criterion Noise 
2 3 

Symmetric 179.42 30S.21 429.42 83.11 
matrix (10.S) (8.1) (12.1) (9.6) 

Thus, these results suggest that, in the present task, learning was characterised 

by the fact that over trials participants placed their criteria away from the 

perceptual bounds (i.e. ISO, 300 and 4S0 pixels) and closer to the criterion 

optimal accuracy bounds i.e. 200 300 and 400 (figure AS.2). Thus, learning was 
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mainly driven by the force which pushed the bounds closer to optimal accuracy 

bounds. These observations suggest that different payoffs might have been 

perceived as equivalent which, subsequently, suggests that in the human data the 

asymmetric payoffs were perceived as symmetric and guided learning. 

Optimal accuracy bound 
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Figure AS. 2. Criterion shift from the perceptual bounds (black lines) towards the optimal 
accuracy bounds (cyan lines) 

Participants verbally reported having noticed the 400 points more frequently 

than the other payoffs so it was assumed that the 400 points may have affected 

learning and criterion placement. Therefore, simulations were re-run using the 

symmetric matrix implemented earlier but an rf value of 1 was substituted for 

the category that offered 400 points for correct responses [i.e. partially 

asymmetric payoff matrices; PO matrix 1: 0.75 - 0.75 1 - 0.75; PO matrix 2: 

0.75 - 0.75 - 0.75 - 1]25. 

25 These rf values code winnings received following correct responses for categories A to D, 
whereas an rf value equal to 0.25 was used to code winnings for incorrect responses. 
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Results show that these 'asymmetric' payoff matrices offered a better fit than 

the symmetric matrix for the criteria and noise level (table A5.6). 

Table A5.6. Human and simulated criteria (s.d.) under the revised asymmetric matrices 
across the two payoff matrices (sim = simulated; hum = human; POI = PO matrix I and 
P02 = POmatrix 2) 

Criterion 1 Criterion 2 Criterion 3 Noise 
Sim_P01 178.98 300.02 432.71 82.79 
(N =300) (10.7) (8.2) (11.7) (9.5) 
Sim_P02 180.33 303.35 418.02 79.38 
(N=300) (10.3) (7.7) (12.0) (8.9) 

Hum POI 182.97 300.13 420.84 80.27 
(N = IS) (26.4) (14.0) (23.8) (31.7) 

Hum P02 191.77 303.21 413.31 79.62 
(N =20) (27.3) (21.0) (20.7) (32.3) 
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