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Abstract 

Attended images prime both themselves and their left-right reflections, whereas ignored 

images prime themselves but not their reflections (Stankiewicz, Hummel, & Cooper, 1998). 

These and other effects are predicted by the hybrid theory of object recognition (Hummel & 

Stankiewicz, 1996a) that the human visual system represents ignored images holistically 

(i.e., view-based), and attended images both holistically and analytically (i.e., part-based). In 

nine experiments using a naming task the predictions of the model were tested with split, 

plane-rotated and depth-rotated views of common objects. 

Consistent with the prediction of the hybrid theory, Experiments 1 and 3 demonstrated that 

split images primed their intact and split counterparts when they were attended but not when 

they were ignored, whereas intact images primed themselves whether they were attended or 

not. Experiment 2 demonstrated that a substantial component of the observed priming for 

attended split images was specifically visual. In Experiment 5, attended images primed 

themselves fnd their plane-rotated versions (90°) whereas ignored images only primed 

themselves but not their rotated versions. Experiment 6 tested whether rotated objects with a 

definite upright orientation prime themselves in the same view. Substantial priming was 

observed for attended and ignored objects when shown in their upright view. However, 

rotated objects with a definite upright orientation primed themselves only when attended but 

not when ignored. This result indicates that ignored images make contact with stored 

representations. 

Experiment 7 replicated the findings of Stankiewicz et al. for mirror images but with grey­

level rendered 3D images. Experiment 8 tested priming for these objects using orientations 

in which parts change from study to test view. As before, there was substantial priming in all 

but the ignored-rotated condition. However, there was a greater reduction in priming for 

attended rotated objects than for ignored rotated objects. This result indicates that the 

representations mediating recognition of attended images are specifically sensitive to part 

changes. In Experiment 9, objects were rotated in depth such that equivalent parts were 

visible in both views. As in Experiment 7, the priming effects of view and attention were 

additive. 
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These data provide strong evidence that one function of visual attention is to permit the 

generation of analytic (i.e., part-based) representations of object shape. At the same time 

these results show that object recognition is also mediated by additional holistic 

representations. 
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1. Chapter 1: Introduction 

1.1 The Basic Problem and Scope of the Thesis 

When we see an object such as a car the basic information we receive is the light reflected 

from it, which is absorbed by cells at the back of the eyes, the retina. But of course seeing 

does not automatically mean recognising or knowing what an object is, because recognition 

sometimes fails or requires more effort (see Figure 1). 

b)'--_______ ~?I.~,...·;:..:....,.,.,~ 

Figure 1: Even familiar objects are not always immediately recognised (a, construction ofthe 

Eiffel tower), or they are not what they appear to be (b, Gary Larson cartoon). 

Figure 1 a demonstrates that a very familiar object can be recognised even if it is seen only 

partly, but this partial representation is at first surprising (because most of us have never seen 

it that way). In Figure 1 b a completely new object is classified as predator, but again only 

after an unusual effortful (although stil l swift) recognition process. Part of the fun in the 

cartoon lies in the fact that most observers are probably fooled (like the bird) by first seeing a 

water fountain instead of a monster because of its overall shape. Yet soon after noticing 

some unexpected differences concerning smaller parts of the "water fountain" the re-

recognition process reveals the animal. Very simplified, the investigation presented in this 

thesis is about how we recognise objects both in an automatic effortless process as familiar 

whole shapes but also need attention to analyse their part structure. 
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In general, objects can be recognised not only by their shape, but also based on other visual 

cues, such as colour, texture, characteristic motion, context information, and also 

expectation. This research focuses on the recognition of isolated objects, using shape 

information alone and it will consider primarily object identification rather than 

classification. Questions concerning low-level vision processes will be neglected for the 

most part. The focus of this study is the single object and how its shape is recognised 

depending on attention and changes in orientation and configuration. 

Visual object recognition is the matching of retinal images to representations of objects 

stored in memory. These representations are thought of as reconstructions of the information 

in the input array. However, at least two basic properties of object recognition make it 

difficult to understand the nature of the representations and the matching process. The first 

property is object constancy across variations in viewpoint. Although the retinal image of a 

particular object surely varies with changes in orientation, scale, illumination, pose or 

location in the visual field, observers readily recognise that object in most circumstances. 

Therefore, the visual system must have ways of generalising across variations of the 2D 

input from the retina. The second property is object constancy across variations in shape; not 

only do we generalise across different images of the same object, but also across different 

instances of a class of objects (Rosch, Mervis, Gray, & Boyes-Braem, 1976). For example, 

even though there is not much visual similarity between a nineteenth century Bell-telephone 

and a modem cordless handset, both are readily identified as "phone". 

There is an ongoing debate in the literature of how the visual system achieves both viewpoint 

and shape invariance in object recognition. Most theories of shape recognition propose a set 

of representations of objects stored in long-term memory. These object models are canonical 

representations of the object's shape, describing some invariant features of the object. When 

we see a shape, it is converted into the same format in which the long-term memory 

representations are stored. Subsequent recognition is the successful match between input and 

stored representation. Theories differ according to the nature of the representation's format, 

the number of representations for a single object, and which class of objects will be mapped 

onto a single representation. This often means that a theory can be powerful to explain one 

form of object constancy but not the other. 
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In the first part of Chapter 1, the neural basis of object recognition will be described briefly, 

as it is the basis for many object recognition theories and models. A brief review of the 

properties of object recognition is followed by a description of major object recognition 

theories and how they can account for the two forms of object constancies. Chapter 2 focuses 

on the hybrid model of object recognition (Hummel, 2001) and its predictions. In the main 

part of the thesis these predictions are put to test in a series of experiments. The results and 

their implications for object recognition will be evaluated and discussed in the final part of 

the dissertation. 
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1.2 Object Recognition in the Brain 

1.2.1 Visual Pathways 

Light that is reflected from objects enters the eye via the cornea and the lens, which help to 

focus the image on the retina, a layer of cells at the back of the eye. Via their axons, visual 

information leaves the eye by way of the optic nerve. There is a partial crossing ofaxons at 

the optic chiasm. Here, half of the fibers from each eye cross such that each visual half-field 

is represented in the opposite hemisphere of the brain. After the chiasm, the axons wrap 

around the midbrain to reach the lateral geniculate nucleus (LGN), where almost all the 

axons must synapse. An important aspect of organisation in the LGN concerns the 

segregation of information received from the ganglion cells of the retina: The outer four 

layers of the LGN are composed of small cells, and correspondingly, receive inputs from the 

small ganglion cells of the retina. These so-called parvocellular layers code information 

about colour and form. The magnocellular layers 5 and 6 of the LGN, on the other hand, are 

composed of large cells and receive their input from large ganglion cells, coding information 

about luminance contrast, orientation, and coarse form. This segregation is believed to be the 

basis of independent visual pathways (e.g., Schiller, Logothetis, & Charles, 1990) from the 

retina to the cortex that are specified for detailed shape and colour (parvocellular), and 

motion and depth (magnocellular). 

The division of visual information (motion, colour and form) is maintained (at least to some 

degree) in separate layers in the LGN, VI (the first cortical area to receive visual information 

concerning shape information), and after passing through V2, in separate areas of associative 

cortex. The parietal visual cortical areas are concerned with motion of objects, navigation 

through the world, and spatial reasoning. Temporal visual areas such as V 4 and infero­

temporal cortex (IT) are involved with the complex perception of patterns and forms as 

recognisable objects (Logothetis & Sheinberg, 1996). This organisation is important for 

theories of object recognition as it implies that shape representation may be dealt with 

separately from other aspects of the object (such as location in space). 

The division of labour in the higher areas of the visual system has been studied by 

Ungerleider and Mishkin (1982). These researchers trained monkeys with lesions in the 
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parietal or in the temporal cortex to associate food with the shape of an object or the object's 

location. Monkeys with parietal lesions were able to recognise objects' shapes but they 

performed badly on a spatial location task. The group of monkeys with temporal lesions 

showed the reversed pattern of performance. According to Ungerleider and Mishkin, higher 

levels of visual computation seem to divide the labour of object recognition, into two tasks 

associated with different pathways in the brain (see Figure 2). The so-called what system, 

associated with the infero-temporallobe, is concerned with identification and categorisation 

of objects. The where system, associated with the parietal lobe, is concerned with the 

location of objects and surfaces in the visual field. Single cell recordings support this 

interpretation. Temporal cells with receptive fields that include the fovea and its 

surroundings are sensitive to specific shapes like faces or hands (Desimone, 1991). Parietal 

cells were found to respond to spatial properties of visual stimuli (Andersen, Essick, & 

Siegel, 1985). Goodale and Milner (1992) reinterpreted the role of these two streams. Rather 

than receiving different visual information, the ventral stream (associated with IT) is 

responsible for object identification processes, whereas the dorsal stream (projecting to the 

posterior parietal cortex) mediates the sensorimotor transformations to guide actions. 

Figure 2. Ungerleider and Mishkin's (1982) conception of the "what" (projecting to the infero­

temporal cortex) and the "where" path (projecting to the posterior parietal cortex) in the 

primate cortex (adapted from Goodale, 1995) 

1.2.2 Representation of Shape in VI and Beyond 

Whereas the cells in the retina and LGN have a centre-surround organisation (responding 

maximally to spots oflight or darkness) the so-called simple cells in VI respond to variation 
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in luminance at a particular orientation (e.g., to a horizontal but not a vertical bar). Another 

type of cell, so-called end-stopped cells, respond maximally to an oriented stimulus if it 

terminates within the receptive field of that cell (Hubel & Wiesel, 1959, 1965); this property 

makes them candidates for detecting contours that end at comers (vertices). According to 

Biederman (1995), activation of simple and end-stopped cells in V 1 are the. initial cortical 

representation of shape. Indeed, the differential activity of these cells would allow the 

discrimination of shapes. However, the same shape at a different location will activate 

different V 1 cells, as would changes in orientation or size. Because of these properties a 

representation of shape is needed that is beyond that of V 1. 

Neurophysiological studies with monkeys as well as neuropsychological work shows that IT 

plays a major role in object recognition (Biederman, Gerhardstein, Cooper, & Nelson, 1997; 

Logothetis & Sheinberg, 1996). The so-called ventral pathway Vl~V2~V4~IT is 

generally assumed to subserve object recognition. In physiological studies, the properties of 

visual neurons along this pathway show a hierarchy of complexity in response to visual 

stimuli. Their properties change in the course of processing from the retina, passing through 

the LGN and V 1 and on to the ventral pathway structures in the inferior temporal lobe 

(Felleman & Van Essen, 1991). Neurons in the early stages of this hierarchy have small 

receptive fields and they are tuned to simple visual properties such as colour, orientation, and 

motion. Although the information about a single object is distributed across different 

neurons, these are all relatively close together, allowing the features of the object to be 

loosely "bundled" (Wolfe & Cave, 1999). Neurons at subsequent stages in the hierarchy 

have large receptive fields, responding to more complex, multipart stimuli (Tanaka, 1993). A 

consequence of this hierarchical organisation is that single neurons at upper stages respond 

to the combination of components that form a complex object or they respond to the 

combinations of features and properties that belong to a single object. 

Lesion studies on animals also strongly indicated that IT serves an important role in the 

recognition of object shape. Holmes and Gross (1984a; 1984b) showed that bilateral removal 

of IT in monkeys results in deficits in learning object discriminations when the stimuli differ 

in shape. In addition, relearning of object discriminations that were trained before the lesions 

was severely impaired. At the same time, IT lesioned animals were not worse than controls 
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in discriminating stimuli that were of the same shape but differed in size or in their 2D 

orientation. Thus, IT seems specifically sensitive to shape discrimination. 

Although single cell recordings and lesioning studies clearly indicate a specific role of IT in 

object recognition, data from imaging studies are not always quite so clear. In a meta-

analysis, Farah and Aguirre (1999) compiled data from 17 positron emission tomography 

(PET) and functional magnetic resonance imaging (fMRI) studies intended to establish the 

brain areas associated with object recognition. Only those studies were considered in which 

a recognition condition was contrasted with a non-recognition baseline condition. Farah and 

Aguirre summarised the local maxima of activation reported in these studies by using a 

standardised coordinate system of the brain. A total of 84 coordinates were derived from 20 

tasks from 17 different studies (see Figure 3). 

.. L R 
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Figure 3: Local maxima placed in standard space derived from studies of visual recognition and 

projected on sagittal, coronal, and axial views (adapted from Farah & Aguirre, 1999). 

The distribution of local activation maxima for the subsets of the three classes of visual 

stimuli - objects, faces, and words - showed no focal clusterings but subtended almost 

equally across the area covered by all the visual stimuli together. There were also no clear 

hemispheric differences for any of the stimulus subsets. Similarly, including distinctions 

such as active versus passive recognition tasks or line drawings versus grey-scale images 

reduced the scatter only marginally. 
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The lack of clear loci of visual processing led Farrah and Aguirre (1999) to the rather general 

conclusion that visual recognition activates posterior brain areas. However, the studies 

reviewed by Farah and Aguirre (1999) had the important limitation that a recognition 

condition was contrasted with a nonrecognition baseline condition. A different and more 

successful approach to studying visual recognition with neuroimaging is the subtraction of 

one recognition condition from another. For example Kanwisher and her colleagues 

(Kanwisher, Chun, McDermott, & Ledden, 1996) used fMRI to compare regional brain 

activity when participants viewed photographs of faces and of objects. An objects-minus­

faces subtraction revealed areas more responsive to objects than faces whereas the reverse 

subtraction revealed a region that responded more to faces than other objects. Both types of 

stimuli activated inferior temporo-occipital regions, but face-specific activation was confined 

to part of the right fusiform gyrus. In a subsequent PET study, Kanwisher and her associates 

(Kanwisher, Woods, Iacoboni, & Mazziotta, 1997) located an area in human extrastriate 

cortex that seemed involved in shape recognition. Observers viewed line drawings of 3-

dimensional objects either in an intact configuration or as scrambled drawings with no clear 

shape interpretation. Only when the shapes were intact, regional blood flow increased in a 

bilateral extra striate area near the border between the occipital and temporal lobes and a 

smaller area in the right fusiform gyrus. Interestingly, responses were seen for both novel 

and familiar objects indicating that this area is involved in the bottom-up (i.e., memory­

independent) processing of visual shape. 

In a recent review of PET and fMRI s~dies, Cabeza and Nyberg (2000) found a more 

distinct pattern of activation maxima concerning object recognition than Farah and Aguirre 

(1999). Cabeza and Nyberg's meta-analysis supports the notion that the ventral occipito­

temporal pathway is associated with object-information whereas the dorsal occipito-parietal 

pathway is responsible for spatial inform~tion (Ungerleider & Mishkin, 1982). The important 

role of IT for recognition of object shape has also been corroborated by studies on patients 

with anterior inferior temporal lobectomies (Biederman et aI., 1997) who were severely 

impaired in object recognition. PET studies have, similarly, found that the posterior infero­

temporal lobe is implicated in object naming (Moore & Price, 1999; Price, Moore, 

Humphreys, Frackowiak, & Friston, 1996). 
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Thus, there is strong converging evidence that IT seems to be specifically important for 

object recognition. However, it is not yet clear in how far neurons in IT respond to view 

changes and other transformations for a given stimulus. Although IT seems in general rather 

insensitive to variations in position and size, there is evidence for both view-dependent and 

view-invariant neurons from single-cell studies in monkeys (Logothetis, Pauls, & Poggio, 

1995; Lueschow, Miller, & Desimone, 1994). 

1.2.3 Image Transformations in the Ventral Pathway 

A large region of the ventral occipito-temporal cortex appears to be involved in the analysis 

of object structure independent of the image cues (e.g., line drawings vs. grey-level images, 

shading, texture) defining the object's shape (Kourtzi & Kanwisher, 2000). Kourtzi and 

Kanwisher (2001) studied the human lateral occipital complex (LOC) which is thought to be 

involved in object recognition (e.g., Grill-Spector et aI., 1998). Their interest was in whether 

the LOC represents low-level image features or perceived object shape. They used an fMRI 

adaptation paradigm in which the response to pairs of successively presented stimuli is 

usually lower when they are identical than when they are different. Adaptation in the LOC 

was found when the perceived shape was identical and its contours differed but not when the 

contours were identical and its perceived shape was changed. According to Kourtzi and 

Kanwisher, these results indicate that the LOC represents not just simple image features, but 

higher level shape information. 

Earlier, Grill-Spector and colleagues (Grill-Spector et aI., 1999) studied the invariant 

properties of human cortical neurons in the LOC by presenting the same object in different 

viewing conditions. The LOC exhibited stronger fMR adaptation to changes in size and 

position (more invariance) compared to changes in illumination and viewpoint. The authors 

propose that there are two subdivisions wiihin LOC into posterior and anterior regions, with 

the posterior being more sensitive to object transformations. This is also consistent with 

lesion studies showing that damage to areas V4 and posterior IT (Schiller, 1995; Weiskrantz, 

1990) affects the ability to compensate for object transformations such as size (Ungerleider, 

Ganz, & Pribram, 1977), orientation and illumination (Weiskrantz & Saunders, 1984) rather 

than the ability to recognise nontransformed shapes. In contrast, lesions to anterior IT caused 
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a general deterioration in recognition capacity (Weiskrantz, 1990) independent of object 

transformations. 

Gerlach and colleagues (Gerlach et aI., 2002) conducted PET activation studies to investigate 

the brain areas involved in integrating contours into "wholistic" shape representations. 

Observers had to make global shape judgements during PET scans on three'stimuli types: 

outline drawings, their contour-deleted (fragmented) versions and unrecognizable 

fragmented versions (non-collinear forms). The results showed that holistic integration of 

contours was associated with bilateral activation of the ventral parts of the occipital lobes as 

well as posterior parts of the temporal lobes. Activation in the fusiform and inferior temporal 

gyri was higher for recognisable stimuli (outline drawings and fragmented drawings) than 

for unrecognisable stimuli (non-collinear drawings). Gerlach et aI. (2002) concluded that 

contours are integrated in the ventral part of the occipital lobe in a bottom-up fashion, 

whereas activation in the posterior parts of the fusiform and inferior temporal gyri indicate 

the involvement of stored structural representations. 

In summary, animal research, neuropsychological investigations and brain imaging studies 

point to a crucial role of the infero-temporal cortex for visual object recognition in vision 

(for a review, see Logothetis & Sheinberg, 1996). Whereas neurons in VI have small 

receptive fields and respond to simple bar-like stimuli neurons along the ventral stream show 

increasing receptive field sizes, as well as an increasing preference to complex stimuli 

(Kobatake & Tanaka, 1994). Furthermore, there is evidence for neuronal differences in the 

ventral pathway (in particular within the LOC) associated with the transformation of an 

object such as changes in scale and position, orientation, and fragmentation. 

1.3 Properties o/Dbject Recognition 

1.3.1 View Invariance and View Dependency 

A single 3D object can be encountered from a number of viewpoints each producing a 

potentially unique 2D projection. Naturally, the questions arise how dependent is visual 

object recognition on changes in viewpoint, and are there types of viewpoint change that 

affect recognition more than others? In a classic study by Shepard and Metzler (1971), 

observers had to simultaneously match novel, three-dimensional objects made up of blocks 
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that were arranged at right angles. For match trials there was a linear relation between the 

speed of response and the angle of rotation separating the two views of an identical object, 

which was found for both plane and depth-rotations. It was argued that this monotonic 

relationship was best explained by an analogue transformation similar to mental rotation of 

the representation of an object. 

Studies using more familiar and naturalistic objects have obtained results that confirmed the 

findings on view-dependence. For example, Bartram (1976) sequentially presented line 

drawings and photographs of familiar objects to his observers who were required to match 

them. In mismatch trials, objects from two different object categories were presented. 

Bartram's results show that identical view matches were more rapidly performed than 

matching different views of the same objects which was more rapid than matching different 

exemplars of the same name. Ellis and his colleagues (Ellis & Allport, 1986; Ellis, Allport, 

Humphreys, & Collis, 1989) supported these findings. 

Strong evidence for view-dependent recognition effects across several tasks were 

subsequently obtained in studies using line drawings of familiar objects rotated in picture 

plane (e.g., McMullen & Jolicoeur, 1990, 1992; Murray, 1995a; Murray, 1995b, 1998, 1999; 

Murray, Jolicoeur, McMullen, & Ingleton, 1993) and in depth (e.g., Hayward, 1998; Lawson 

& Humphreys, 1996, 1998, 1999; Lawson, Humphreys, & Jolicoeur, 2000; Lawson, 

Humphreys, & Watson, 1994). View-point dependent effects have also been obtained in 

other laboratories with novel objects rotated in the picture plane (e.g., Tarr & Pinker, 1989, 

1990) and in depth (e.g., Bulthoff & Edelman, 1992; Hayward & Tarr, 1997; Hayward & 

Williams, 2000; Tarr, 1995; Willems & Wagemans, 2001). 

In addition to performance costs for view changes found in object recognition, there is 

another line of evidence for view-specificity in object recognition. Neuropsychological 

research by Warrington and her colleagues (Warrington & James, 1988; Warrington & 

Taylor, 1973, 1978) showed that patients with damage to their right parietal brain areas have 

particular problems in recognising objects from unusual (accidental or unconventional) 

views. The implications were examined in detail by Palmer, Rosch, and Chase (1981) who 

showed that some views of an object might be processed more efficiently than other views. 

For instance, "good" or "typical" views might optimally reveal important diagnostic features 
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of the object that can activate a stored, abstract representation faster. In contrast, "bad" or 

"accidental" views may be ambiguous in terms of the interpretation of their three­

dimensional structure. Palmer et al. (1981) defined the former type of view as "canonical" 

which was measured with a) ratings of the goodness of a view; b) judging of perspective 

when objects have to be imagined; c) and the best view from which a previously imagined 

object should be photographed. Palmer and his colleagues showed that objects presented in 

these canonical views were named faster than when shown in other views. Their conclusion 

was that in canonical views the critical information about an object is presented to an 

optimum within an image, and that matching a view with an object-centred representation is 

influenced by how efficiently this information can be extracted from a view. More recently, 

Blanz, Tarr, and Bulthoff (1999) also found a high degree of consistency of preferred views 

for a given object across participants. Blanz et al. used tasks similar to those of Palmer et al. 

(1981) in combination with modem computer graphics manipulation methods. The evidence 

for preferred or canonical views was also indirectly supported by other researchers 

(Humphrey & Jolicoeur, 1993; Lawson & Humphreys, 1998, 1999) who showed that 

foreshortened views - views in which the axis of elongation was almost parallel to the line of 

sight and some parts of an object were occluded - were generally harder to recognise than 

more typical non-foreshortened views (at least on initial presentations). 

Despite the strong evidence for view-specificity in human object recognition, Biederman and 

his colleagues have obtained view-invariant effects after image transformations (e.g., 

Biederman & Cooper, 1992; Biederman & Gerhardstein, 1993). Biederman and his 

associates typically employed long-term priming tasks to investigate object constancy. 

Participants named a set of prime pictures of objects in one block of trials and then named 

the same set of objects as targets in a test block, in which some target pictures were 

manipulated from their initial presentation. Naming latencies in the test block were in 

general faster compared to those in the study block but the magnitude of these priming 

effects was often equally large for images that were transformed from the initial presentation 

as for identical images. According to these studies, object recognition is invariant with the 

location of the image in the visual field (Biederman & Cooper, 1991a), the size of the image 
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(Biederman & Cooper, 1992), left-right (i.e., mirror) reflection (Biederman & Cooper, 

1991a), and some rotations in depth (Biederman & Gerhardstein, 1993, 1995). 

There are controversial interpretations concerning the nature of view-dependent and view­

independent performance in object recognition. For example, view-dependent effects found 

with depth-rotated objects may arise because different parts were visible across different 

views of an object. In cases where the part structure does not change recognition 

performance may be the same across different orientations. Biederman and Gerhardstein 

(1993) showed that in priming tasks view-dependent effects are pronounced if different parts 

are visible between study and test view. Similarly, the effects of view-dependency depend on 

the nature of the task employed to measure recognition performance (Biederman & Cooper, 

1992). These issues will be addressed in later sections. 

In summary, most recognition tasks produce decrements in performance after a change in 

viewing conditions. Concerning naming tasks, object recognition seems invariant to mirror­

reflections (Biederman & Cooper, 1991a; Fiser & Biederman, 2001; Stankiewicz et aI., 

1998), changes in size (Biederman & Cooper, 1992; Fiser & Biederman, 1995, 2001; 

Stankiewicz & Hummel, 2002), translation across the visual field (Biederman & Cooper, 

1991a; Fiser & Biederman, 2001; Stankiewicz & Hummel, 2002) and some rotations in 

depth (Biederman & Gerhardstein, 1993; Tarr, 1995; Tarr & Bulthoff, 1995). At the same 

time, object recognition is sensitive to rotations about the line of sight (Jolicoeur, 1985; 

Jolicoeur & Milliken, 1989; Tarr & Pinker, 1989, 1990, 1991) and most rotations in depth 

(for reviews, see Lawson, 1999; Logothetis & Sheinberg, 1996). 

1.3.2 Object Invariance Across Variations in Shape 

Studies on object recognition often show that effects of view dependence quickly diminish 

over time. For example, Posner and his coileagues (Posner, 1969; Posner & Keele, 1967) 

used letters that were either matched simultaneously or sequentially. The results showed an 

advantage for the matching of identical letters in comparison with the matching of letters 

with the same name but differing case. However, the advantage for sequential matching of 

identical relative to nonidentical stimuli was found only with short interstimulus intervals 

(lSI). Posner concluded that these results indicate that two representations may work when 
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matching of stimuli was required: a visual representation mediating the rapid matching of 

identical images, and another name representation that allows generalisation across the same· 

letters differing in case. These results were confirmed by other researchers (Ellis & Allport, 

1986; Lawson & Humphreys, 1996) and taken as evidence for a more abstract representation 

that generalises over variations in shape. 

According to Hummel (1997), there are at least two evident manifestations of the capacity of 

the visual system to generalise over variation in an object's 3D shape. First, humans can 

recognise a never seen before object as a member of a class, such as an exotic fish. Second, 

observers generalise immediately across particular instances of an object for example, when 

people spontaneously name a picture of an object such as a collie as simply a "dog"; this 

level of categorisation is termed "basic level" categorisation (Rosch et aI., 1976) or "entry­

level" (Jolicouer, Gluck, & Kosslyn, 1981). In contrast, naming a picture of a chair as 

"rocking chair" is defined as subordinate level categorisation. Subordinate classification has 

been found to take longer than basic level naming (Rosch et aI., 1976), and superordinate 

classification takes even longer (Jolicouer et aI., 1981). 

Rosch et al. (1976) argued that visual classifications are initially made at a "basic" level 

because basic level names are more available than subordinate-level names. Rosch et al. 

showed that basic level terms are the first to be acquired in a child's vocabulary, have fewer 

syllables, and are used much more frequently to refer to objects than the subordinate-level 

terms. Moreover, basic-level concepts seem to enjoy a visual advantage over superordinate 

level concepts. Rosch et al. demonstrated that members of a basic-level class, such as "car", 

tended to have more similar shapes than members of a superordinate-level class, such as 

vehicles. By superimposing silhouettes of exemplars from different levels they found that 

basic-level composite image remained more identifiable than a composite of superordinate­

level exemplars. There was also an advantage of basic-level over subordinate-level naming, 

although the difference in shape variability was not as large as between basic and 

superordinate level. According to Rosch et al. (1976), perceptual information required for 

basic-level classifications may simply be more discriminable or salient than the information 

required for subordinate-level classifications. Basic level categorisation may be the default 

recognition level because it represents an optimal trade-off between a sufficient amount of 
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information and ease of distinction (Biederman, Subramaniam, Bar, Kalocsai, & Fiser, 1999; 

Biederman, Subramaniam, Kalocsai, & Bar, 1999; Humphreys, Price, & Riddoch, 1999). 

The ability to generalise over variations in exact 3D shape seems to be resilient even for 

patients with problems in object recognition. For example, Davidoff and Warrington's (1999) 

patient RK suffered from a form of object agnosia that rendered him incapable of identifying 

objects with disconnected parts or objects shown in unusual views. However, despite being 

unable to detect part changes in intact images he was still normal at naming those same 

objects in familiar views. 

In summary, the visual system generalises readily over variations in shape. Objects are 

usually recognised at a basic level rather than as a specific instance or exemplar. Thus, 

theories of human object recognition not only have to account for changes in viewpoint for a 

particular object, but also for how perceptual representations mediate entry-level 

classification. 
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1.4 Object Recognition Theories 

1.4.1 The Debate on Formats of Object Representations 

As the review above shows, the human capacity for visual object recognition is characterised 

by a number of properties that are jointly very challenging to explain. Visual representation 

of shape is invariant with (i.e., insensitive to) some, but not all, variations in viewpoint. At 

the same time, object recognition is remarkably robust to variations in shape. Object 

recognition theories place different stress on these properties. In particular, there is an 

ongoing debate between the two main groups of theorists about how the visual system 

achieves view and object constancy. Several issues of object recognition are controversially 

discussed by vision theorists such as the nature of the perceptual description, the nature of 

the stored description, and the nature of the matching process (Tarr, 1995; Willems & 

Wagemans, 2001). The alternative views for these three issues are presented in Table 1, and 

will be considered in depth in the subsequent sections. 

These important issues are often summarised in the psychological literature into two groups 

of theories, sometimes categorised as viewpoint-dependent (or viewer-centred) and 

viewpoint-invariant (or object-centred) theories of object recognition (Tarr, 1995). This 

terminology is somewhat misleading, as Biederman (Biederman, 2000; Biederman, 

Subramaniam, Bar et aI., 1999) pointed out, because all theories of object recognition 

include a stage in which the representation resembles the 2D input (e.g., in VI, see section 

1.2.2), so any theory must entail some view-dependent recognition. However, the first group 

of theories (which will be referred to as image-based or view-based) claims that 

representations mediating object recognition are based on views or metric templates. These 

theories posit for example, primitive-to-reference point, coordinate relations (e.g., Bulthoff 

& Edelman, 1992; Lowe, 1987; Olshause~, Anderson, & Van Essen, 1993; Poggio & 

Edelman, 1990; Tarr, 1995; Tarr & Pinker, 1989; Ullman, 1989; 1998; Ullman & Basri, 

1991) in which the exact distance of each primitive from a fixed reference point (or set of 

fixed reference points) is represented. The second group (which will be referred to as part­

based) assumes that the visual system extracts a more abstract representation from the 2D 

image, such as parts and their relations, a type of representation often termed a structural 
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description (e.g., Biedennan, 1987; Dickinson, Pentland, & Rosenfeld, 1993; Hummel & 

Biedennan, 1992; Marr, 1982; Marr & Nishihara, 1978) in which each primitive is related to·· 

other primitives in the representation using directional categorical descriptors (e.g., "above", 

"below", "side-of'). In the next section, both major clusters of theories will be discussed. 

Theory 
Perceptual 

Stored description Matching process 
description 

"Part-based" Theories 

Marr & Nishihara (1978) 
3D object model 3D object model Direct mapping 

Marr (1982) 

Biedennan (1987) 
Geon structural Geon structural 

Hummel & Biedennan description description 
Direct mapping 

(1992) 

"View-based" Theories 

Tarr & Pinker (1989) 
2D 2D Mental transfonnation 

Tarr (1995) 

Ullman (1989) 2D 3D Alignment 

Poggio & Edelman (1990) 2D Multiple 2D View interpolation 

Ullman & Basri (1991) 
2D Multiple 2D Linear combination 

Ullman (1998) 

Table 1: Overview of current theories of object recognition (adapted from Willems & 

Wagemans, 2001). 
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1.4.2 View-based Models 

1.4.2.1 Introduction 

Theories of human object recognition that stress the importance of the familiarity with 

certain views of an object are often subsumed as template matching theories. A template is a 

representation that resembles a specific view of an object (although it is often assumed that 

some pre-processing compensates for variations in location, illumination, etc.). The central 

idea is that a long-term memory representation is analogous to the pattern of retinal 

stimulation projected by that shape (Selfridge & Neisser, 1960). In principle, the input array 

can be superimposed on all the templates stored in memory. Recognition is achieved when 

the closest match between input array and memory-template is found. These models are 

often termed view-based or image-based theories because they propose that object 

representations are based on familiar 2D views (Gauthier & Tarr, 1997; Tarr, 1995). 

To achieve viewpoint invariant recognition, a system based on template models must either 

store a very large number of views for each known object or store a small number of views 

(or 3D models) for each object and match them against incoming images by means of some 

transformation or normalisation process. Successful recognition occurs when a template is 

found that fits the image within a tolerable range of error. Template models have three main 

properties (Hummel & Biederman, 1992): (1) The match between the input image and a 

template depends on the extent to which points in the image spatially correspond to points in 

the template; (2) a template represents an entire view of an object, which means that spatial 

relations among points (or features) in the object are coded implicitly as spatial relations 

among points in the template; and (c) viewpoint invariance is achieved by either matching 

the input to a single template or to different templates corresponding to the same object 

label. 

Before turning to specific theories it has to be pointed out why the most straightforward 

template approach to object recognition - storing a sufficient number of different views 

associated with each object - is not viable. In such a simple version of a template model, the 

currently viewed object would have to be matched with all the views stored in memory 

(Abu-Mostafa & Psaltis, 1987). Models of so-called associative memories have been 
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proposed for implementing this 'direct' approach to recognition (Hopfield, 1982; Kohonen, 

1978; Willshaw, Buneman, & Longuet-Higgins, 1969). Such direct comparisons to stored 

views may be useful to some extent, especially for the recognition of highly overlearned 

objects. However, this direct approach by itself is insufficient to explain object recognition in 

general. One reason is that the space of all possible views of all the objects to be recognised 

is likely to be prohibitively large (Ullman, 1998). A more fundamental reason is the problem 

of generalisation over changing viewing conditions. Consider a study seeking to 

quantitatively measure the variation between images due to changes in orientation and 

illumination (Adini, Moses, & Ullman, 1997). The goal was to compare images of different 

individuals with images of the same individual but under different viewing conditions. The 

results indicate that the differences induced by changes in the viewing conditions are large 

compared with the differences between different individuals. Therefore, direct image 

comparisons are not sufficient for recognition (Ullman, 1998). For reliable recognition, 

processes that can compensate for the effects of viewing conditions are required, some of 

which are described in the following sections. These include the multiple views account, 

Ullman's alignment of views, the metric template model of Lades et al. (1993), and the 

Poggio and Edelman (1990) view interpolation approach. 

1.4.2.2 MUltiple Views Account (Tarr, 1995; Tarr & Pinker, 1989) 

One widely discussed variant on view-based theories uses multiple views to represent the 

three-dimensional structure of objects. While the direct approach to template matching 

would predict that a view-based system stores an object representation in many different 

viewpoints, a more comprehensive representation may be formed by linking a limited set of 

characteristic views of that object. For instance, in Figure 4 there are five characteristic 

views of an aeroplane that cover many of the observable part and surface configurations. 

According to the multiple views idea, recognition of an object in a particular view is 

achieved when the input image activates the view (or set of views) that corresponds to a 

familiar object. A certain input view may not match exactly with a particular stored view; 

therefore, a normalisation process may be employed to align the input view with the nearest 

stored view. This class of theories is therefore called multiple-views-plus-transformation 

theory of recognition (Tarr & Pinker, 1989). 
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Figure 4: Visualisation of the multiple views concept (adapted from Tarr, 1995). The object jet 

fighter may be stored as a collection of typical or familiar views. 

According to multiple views theory, objects are stored in a set of characteristic views. Many 

studies have shown orientation dependent recognition performance for objects rotated in the 

picture plane and for some rotations in depth (see section l.3.1). Tarr and Pinker (1989) 

demonstrated that orientation dependent performance largely depends on the familiarity of 

views, a factor that may vary considerably in common objects. In a series of experiments, 

they employed line drawings of novel stimuli that were highly similar to one another. Each 

of these character-like objects had a clearly marked bottom and a vertical axis. First, 

participants practised to name the objects shown in a single viewpoint; later, the objects were 

presented in unfamiliar viewpoints. Multiple views theory predicts initial recognition costs 

after changes in orientation that are monotonically related to the degree of rotation from the 

training viewpoint. Furthennore, these mental rotation costs should diminish with some 

practice. Finally, the presentation of the objects at yet again different unfamiliar viewpoints 

should yield higher reaction times the more the stimuli are rotated away from the familiar 

(trained) viewpoints; this is exactly what was found by Tarr and Pinker (1989). 

Tarr (1995) used connected-cube objects similar to stimuli employed by Shepard and 

Metzler (1971). These objects were novel to the participants and allowed the control of 

familiarity of some views by frequency of presentation. The objects were rotated in depth 

around all three axes. After extensive practice in naming the objects in familiar views, the 

same objects were presented to the participants in novel viewpoints as well as in trained 

viewpoints. The major findings were: 1) Recognition times and error rates generally 

increased with the angular distance from the nearest trained viewpoint; (2) With extensive 
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training, perfonnance became nearly equivalent at all familiar views. Practice effects, 

however, did not transfer to unfamiliar views; (3) The patterns of response times also 

implied that participants mentally rotated the stimuli along the shortest 3D path to a familiar 

viewpoint. Tarr (1995) claims that these results are consistent with earlier studies using 2D 

stimuli (Tarr & Pinker, 1989) and support a multiple views theory of object recognition. 

Multiple views theory predicts the observed response time patterns of an initial effect of 

viewpoint that diminishes with practice and returns for unfamiliar views. According to the 

authors, view-based theories of object recognition cannot explain this effect. Tarr and Pinker 

(1989) also tested the "rotation-for-handedness" hypothesis. This hypothesis has been put 

forward (Corballis, 1988; Hinton & Parsons, 1981) as a "special case" in which mental 

rotation was only required when handedness decision is involved in the recognition task. 

Tarr and Pinker (1989) found viewpoint-dependency for recognition as well as for 

handedness decision tasks. Viewpoint-dependency did not diminish when handedness was 

made explicitly irrelevant for the recognition task. Tarr also tested whether nonnalisation 

procedures are used only when participants have to perfonn a top-bottom discrimination. He 

found that response time patterns were equivalent irrespective of whether objects preserved 

their top - bottom position with respect to gravity or not. 

In summary, the multiple-views-plus-transfonnation account is able to account for many 

viewpoint-dependent effects found in object recognition studies. A problem for the multiple­

views-plus-transfonnation account is that the idea of an analogue process of mental rotation 

has been recently challenged. For example, Jolicoeur and his colleagues (Jolicoeur, 

Corballis, & Lawson, 1998) let participants name rotated objects or decide whether the 

objects would face left or right if they were upright. Latencies in the left-right task were 

influenced by a rotation after-effect or by the physical rotation of the object. However, 

perceived rotary motion did not influence naming time, which suggests that the identification 

of rotated objects does not involve mental rotation. Neuropsychological evidence also casts 

some doubt over the importance of mental rotation for achieving object constancy. Farah and 

Hammond (1988) report that their patient RT revealed poor perfonnance on mental rotation 

tasks despite being able to identify a set of upside-down objects. The next sections describe 
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models of object recognition based on views that circumvent the problems associated with 

mental rotation by using different matching mechanisms (see Table 1). 

1.4.2.3 Alignment and Linear Combination of Views (Ullman, 1989, 1998) 

Instead of assuming an analogue process such as mental transformation to normalise a view 

with stored object representations, some theorists have proposed that normaiisation can be 

achieved by computing a view transformation. In a model by Ullman (1989) recognition is 

divided into two stages. First, a transformation in space is computed to bring the viewed 

object into alignment with candidate 30 object models. This can be achieved by minimal 

information such as the objects general orientation or a small number of corresponding 

feature points (termed alignment keys) in the view and the model. In the second stage the 

model selects the best match for the current view. 

Ullman (1998) later proposed another variant of this model in which a 30 object is 

represented by the linear combination of 20 views of the object. The views comprising the 

representation of a single object are not merely a collection of independent 20 object views. 

In contrast, Ullman's approach uses a number of object views collectively in the recognition 

process by the mathematical concept of linear combinations. It allows all possible views of a 

rigid object that can undergo rotation in space, translation, and scaling, to be spanned by the 

linear combinations of three views of the object (Ullman & Basri, 1991). 

However, there are at least four limitations concerning the use of linear combinations of 

views (Ullman, 1998). First, objects with smooth bounding contours, such as an egg or a 

ball, require more views because the object's shape is not generated by fixed contours on the 

object. Second, more corresponding features between views are needed if the projections are 

non-orthographic, that is in perspective. Third, three views are insufficient for representing 

an object from all orientations due to self-occlusion. For example, a different set of views 

will be required to represent the 'front' and the 'back' of a grand piano. Finally, the 

transformations that the object is allowed to undergo are restricted to rigid transformations. 

1.4.2.4 Metric Templates (Lades et al., 1993) 

Von der Malsburg and his colleagues (Lades et aI., 1993) developed a biologically inspired 

image recognition model based on metric templates. The input layer of the model consists of 
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an array of columns of units with properties that are modeled after those from VI cells. A 

particular cell is tuned to variation in luminance at a particular orientation, scale (i.e. spatial 

frequency) and orientation. This tuning of a cell is modeled mathematically by a sinusoidal 

filter called a Gabor filter. A column of multi scale, multiorientation spatial (Gabor) kernels 

with local receptive fields centred on a particular point in the image input is termed a Gabor 

jet, roughly corresponding to a simple cell of a VI hypercolumn. The pattern of activation of 

the 80 kernels (5 scales, 8 orientations, 2 phases - sine and cosine) in each of the jets is 

mapped onto the second layer. This second layer simply stores the pattern of activation over 

the kernels from a given image. By this method a large number of images can be stored to 

form a long term memory. A new image is matched against stored images by allowing the 

jets to independently change their positions to determine their own best fit. The similarity of 

a pair of images is a function of the similarity of the activation values of the Gabor filters for 

corresponding jets combined with the degree to which a given jet has to be displaced to find 

its best match in a new image. Therefore, the deformation of the lattice of original positions 

typically provides a visual measure of the similarity of two images: The greater the 

deformation of the lattice, the lower the similarity. This allows a matching of two input 

images with moderately different orientations or - in the case of faces - expressions. 

The model is completely view-based; when different views of an object are encountered, the 

pattern of activation in the filters vary, and so may the layout of the Gabor jets. The model 

was able to generalise across view changes of about 30° in depth for face stimuli. Rotations 

beyond that extent, however, caused a serious decline in recognition memory. However, the 

model is insensitive to changes of position in the visual field and size, as the whole lattice 

can be repositioned or scaled. Although based on template representations, the Lades et al. 

model is considered to be a successful attempt to characterise the processes in early stages of 

visual processing, e.g., from V I to V 4, even by proponents of structural description models 

(Biederman, 2000). 

1.4.2.5 Non-Linear View Interpolation (Poggio & Edelman, 1990) 

A variant of the multiple views approach concerns the matching or transformation process. 

Instead of linear combination of views or an analogue process such as mental rotation, this 

approach claims that two or more views of an object may be matched by nonlinear view 
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interpolation (Poggio & Edelman, 1990). In this model, generalisation from stored to novel 

views is achieved by a multivariate function interpolation in the space of all possible views. 

Poggio and Edelman postulate that for each object a smooth function exists that maps any 

perspective view into a standard view of the object. Furthermore, this multivariate function 

may be approximated from only a small number of views. A new view of a target object may 

be recognised by interpolation among its selected stored views that represent the object. The 

function used for interpolation is object specific - each object has a different function. 

The problem of synthesising an approximation to a function from a limited number of views 

can be solved by learning input-output patterns from a set of examples. One solution to 

approximate smooth functions are radial basis functions (RBF) which consist of a basis 

function (e.g., a Gaussian) as well as coefficients and parameters whose values are found 

during a learning stage. The learning of weights is achieved by minimising a measure of the 

error between the network's prediction and the desired output for each of the examples. The 

function is based on a prototypical view which may be updated during learning. 

Poggio and Edelman (1990) designed a neural network model similar to that of Lades et al. 

(1993) in that it basically matches the output of units modeling simple cells of a VI 

hypercolumn with patterns of activation in an object memory. In addition to the two layers in 

the Lades et al. model, the Poggio and Edelman network includes a single hidden layer 

between input and output stage. The units in this hidden layer correspond to RBFs and allow 

the optimal generalisation across a large number of images. In simulations with novel objects 

Poggio and Edelman (1990) found that after training with 10 to 40 views the centres of the 

radial basis functions corresponded to views that were different from any of the trained 

views. They showed that with as few as two RBF units, these views of a single object may 

be recognised for rotations across the viewing sphere. Whereas the object layer in the Lades 

et al. model represent a particular view, the RBFs learn a series of views rather than just one 

particular view. The RBF can be conceptualised as a prototype for a range of views of an 

object. A number ofRBFs relating to a single object are linked together to form an object 

prototype. A shortcoming of the model is that it has to be instructed which object is 

projecting a new image so that an existing RBF can be modified, linked with other RBFs, or 

a new RBF established. 
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In the Poggio and Edelman model generalisation from familiar to unfamiliar views is 

regarded as a problem of approximating a prototype in the space of all possible views 

(Bulthoff & Edelman, 1992). A recognition system based on this method should perform 

well for unfamiliar views that are close to stored familiar views, but should become 

increasingly worse with views that are far from familiar views. A recognition system based 

on linear combination of views (e.g., Ullman, 1989) should achieve equivalent high 

recognition performance on those views that fall within the space spanned by the stored 

collection of model views. In contrast, such a system should perform poorly on views that 

belong to an orthogonal space. 

To test these predictions, Bulthoffand Edelman (1992) trained observers with views of novel 

objects (reminiscent of bent paperclips and amoebae) by showing them rotated in a motion 

sequence. In the test phase the objects were presented in new static views and participants 

had to indicate if the object was a target or not. The test views were either falling within the 

previous study views (intra), outside the studied views but on the same equator on the 

hypothetical viewing sphere (extra), or completely different view, however, on a meridian 

that passes through a trained view. As predicted by the view approximation scheme the 

performance in these three conditions declined progressively. The results confirmed the 

predictions by Bulthoffand Edelman (1992) and were taken as behavioural evidence of the 

non-linear view interpolation model and the view-based approach in general (Edelman, 

1997; Tarr, 1999). 

1.4.2.6 Evidence in Support of View-based Models 

The most striking evidence in favour of view-based models comes from the ample 

demonstrations of view-dependent performance in object recognition with human observers. 

In most of these studies, response time and accuracy costs were found when common objects 

were rotated from familiar views or novel objects from trained views (Hayward & Tarr, 

1997; Hayward & Williams, 2000; Jolicoeur, 1985, 1988; Lawson, 1999; Lawson & 

Humphreys, 1999; Tarr & Pinker, 1989). These effects of view-dependency have been 

observed employing various recognition and matching tasks and were taken as evidence that 

the representations mediating object recognition conformed to the view-based models 

described in the previous sections (Tarr & Bulthoff, 1995, 1998). Moreover, recognition 
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performance was found to improve after training with additional object views (Bulthoff & 

Edelman, 1992; Tarr & Pinker, 1989). A similar finding was also observed in monkeys 

trained for object recognition (Logothetis, Pauls, Bulthoff, & Poggio, 1994). This is expected 

on the view-based approach, because it predicts that generalisation depends primarily on the 

availability of a sufficient number of representative views. 

In addition to behavioural evidence, there is also neuroscientific evidence in support for 

view-dependent representations. IT cells studied by Tanaka (1996) appear to be governed by 

2D similarity of the test view to the view preferred by these cells. Tanaka first showed a 

large collection of different 3D objects. When a cell responded maximally to a particular 

object the determining features of the stimuli could be studied. Units seem to be more 

responsive to particular 2D patterns rather than preferred 3D shapes, regardless of their 

orientation in space. Similarly, single cell recordings in the macaque superior temporal 

sulcus revealed that cells were only stimulated by certain perspectives of familiar faces 

(Perrett et aI., 1991) which was taken as clear evidence for viewer centred representations. 

Another kind of cell responded almost uniformly over all views of a person's face but these 

object specific outputs were explained as the result of simple superposition of several viewer 

centred cells. A similar interpretation was applied to the increased tolerance to viewing 

direction found for broadly-tuned cells that receive converging input from a number of view­

specific cells (Logothetis et aI., 1995). 

More physiological evidence consistent with the notion that the visual system relies on 

stored views and that there are mechanisms for generalisation to novel views comes from 

animal lesion studies. Damage to area V4 and posterior IT (Weiskrantz, 1990; Schiller, 

1995) appears to particularly impair the ability to generalise over changes in size, 

orientation, or illumination, although the animal's ability to identify the original views 

usually is intact. In experiments by Weiskrantz (1990), monkeys were trained to recognise a 

set of test objects under a variety of particular viewing conditions. Whereas lesions to the 

anterior part of IT (AIT) caused a general deterioration in recognition capacity, lesioning the 

more posterior part of IT and some pre striate areas had a more specific effect on the ability 

to recognise the objects but only when the viewing conditions were changed. In general, 
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these results conform with other physiological work showing that IT is at least to some 

degree sensitive to stored views (for a review, see Logothetis & Sheinberg, 1996). 

1.4.3 Part-Based Theories 

1.4.3.1 Introduction 

View-based models account for object constancy by assuming that objects are represented in 

their metric properties, notably as a 2D view or collection of views. In contrast so-called 

'object centered' or 'structural description' models propose that objects are represented as 

descriptions of the relational spatial arrangements of their parts in a three-dimensional 

coordinate system. Two of the most prominent and widely discussed object recognition 

theories that include shape representations in the form of a structural description are 

described in the following sections: Marr's computational theory, Biederman's (1987) 

recognition by components theory and its computational instantiation by Hummel and 

Biederman (1992). 

1.4.3.2 Computational Theory of Object Recognition (Marr, 1982) 

Marr (1982) developed a computational theory of vision in which information from image 

data is extracted almost completely through bottom-up processing. In his influential theory 

of object recognition he proposed that a series of representations provide increasingly 

detailed information about the visual environment. It can be summarised in three stages: the 

primal sketch, the 21/2-D sketch, and the 3D model representation. 

In its most basic form, the retinal raw-image contains information about light-intensity 

changes in the visual scene. If represented as a grey-level representation of the retinal image 

these intensity changes reflect the perceived scene in a pixel-like image consisting of 

intensity values, which Marr termed the raw primal sketch. Computational filtering 

procedures yield the boundaries between two regions of different intensity as well as changes 

in the gradient of intensity. These intensity boundaries vary with the size of the filter and can 

be mapped as blobs, bars, edges and terminations. In a further step, the structure or 

organisation inherent in the still ambiguous raw primal sketch is extracted to form the full 

primal sketch, by grouping visual elements using constraints such as proximity, figural 

continuity and closure. In the next stage, an intermediate representation of the scene is 
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constructed from the primal sketch. Discontinuities in surface orientation and depth are 

detected, and higher-level descriptions (e.g., of concave and convex junctions) are generated.·· 

The orientation of surfaces can be extracted but surfaces have not yet been grouped into 

objects. The resulting representation is called a 21/2-D sketch because it is not completely 

three-dimensional, but rather reconstructs the third dimension using information like 

shading, texture, and motion. The final stage allows the extraction of 3D descriptions from 

the 21/2-D sketch. This is achieved by dividing the image into parts according to extrema of 

curvature and then computing the parts' axes and filling in lines joining the endpoints of 

neighbouring axes. The angles between lines and axes are measured and the resulting 

description is compared with models stored in memory to choose the best match. 

Marr and Nishihara (1978) proposed that objects derived from these parts are described with 

respect to a co-ordinate system that is centred on the object. The origin of this co-ordinate 

system lies on the object itself. One or more axes are aligned with standard parts of the 

object rather than with respect to the viewer-centred co-ordinate system of the 21 /2-D sketch. 

The 3D representation of objects is viewpoint-invariant, because when the object as a whole 

is moved, the locations of the objects' parts change relative to the viewer, but they do not 

change with respect to the object itself. 

The objects' parts in Marr's model are described in terms of generalised cones (Binford, 

1971). A generalised cone is a 3D volume defined by its two-dimensional cross-section 

which can be moved along the volume's .axis. In this way, various volumes may be 

categorised according to the shape of the axis, the two-dimensional shape of the cross­

section and its change in size. Marr and Nishihara (1978) proposed that the shape of an 

object is stored in a hierarchy of descriptions each representing parts of different sizes and 

each with its own co-ordinate system. A local co-ordinate system is centred on a part of the 

shape represented in the model, aligned with its axis of elongation, symmetry or rotation (if 

the parts are movable). Thus, for example, there would be a top-level model for a human 

shape with the co-ordinate system's centre on the torso. This centre would be the starting 

point for specifying the main parts of the model, their locations, angles and lengths. In the 

same way subordinate models for each part can be described e.g., for the legs, hands and so 

forth. This hierarchical structure solves the problem of stability that would arise with only a 
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single object-centred description within a global co-ordinate system. The latter could not be 

matched successfully with an input in certain cases for example, when the object bends at its 

joints or when there are a number of similar objects. The description of the right arm of a 

human shape remains the same in a general co-ordinate system only if its position relative to 

the torso would not change. Scratching the left shoulder, however, would result in a different 

description within a general co-ordinate system. 

To summarise, Marr proposed an object-centred co-ordinate system in which the object's 

parts are specified relative to the main axis of the object itself (Marr, 1982; Marr & 

Nishihara, 1978). Descriptions of the object's shape will be stable across different 

orientations because rotation of the object will be accompanied by rotation of the co-ordinate 

system. Thus, a single (canonical) hierarchical representation (3D model) of an object stored 

in memory is sufficient for identification of familiar objects seen from different viewpoints. 

According to Marr's approach, object recognition performance should in principle be 

equivalent across different perspectives. 

1.4.3.3 Geon Structural Description Theory (Biederman, 1987) 

Biederman (1987) proposed that representations of object shape are based on the recognition 

of components (RBC). Similar to Marr's model, RBC assumes an early stage in which edges 

are extracted from the image of an isolated object. Edges will exhibit non-accidental 

properties (NAPs; Lowe, 1985) which are qualitative 2D properties that remain stable across 

a range of rotations of the obj ect in depth (except when the curvature coincides with the line 

of sight which would be an uncommon or "accidental" viewpoint). For example, a curved 

contour in an image of an object almost always indicates a curved three-dimensional 

curvature. Concave regions of contour and non-accidental properties allow the extraction of 

generic parts or "geons" (derived from "geometric ions"). Geons are simple volumetric 

primitives that can be distinguished from each other from almost any viewpoint, and they 

can be recognised even when the input image is affected by visual noise. NAPs can be 

expressed contrastively, such as whether an edge is straight or curved, approximately parallel 

or nonparallel, or which type of vertex is formed from the cotermination of edges. In this 

way, regularities in a lower or intermediate level of representation reflect four shape 

parameters for generalised cylinders that describe the edges, symmetry and size change of a 
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shape's cross sections and its curvature of axis. NAPs are distinguished from metric 

properties, such as aspect ratio, degree of curvature or degree of angles between two parts. 

3 4 

(00 
5 

~ 
Figure 5. A set of geons and geon-structured objects (adapted from Biederman, 1995). The 

geons labelled 1 to 5 on the left can be found in the corresponding parts in the objects on the 

right. 

Every object can be thought of as a combination of geons (see Figure 5). An object is thus 

determined by its structural description, that is the type, number and attributes of geons and 

their spatial relations to each other. Biederman (1995) claims that with only 36 types of 

geons there are potentially several million possible descriptions for object consisting of two 

or more geons. These objects can be rapidly discriminated for entry-level classes. Additional 

information such as colour will be processed in later stages of recognition. 

Since geons can be recognised from a general viewpoint, the same holds for objects built of 

geons as long as certain criteria are met. Importantly, in contrast to multiple views models, 

Biederman proposed that viewpoint invariance can be achieved without familiarity or former 

practice. Biederman and Gerhardstein (1993) suggest three conditions necessary for 

viewpoint invariance. The first condition is that an object must have a geon description 

which can be readily extracted by their contours. Thus, wire frame and clay mass objects do 

not fulfil this condition, because these objects are not decomposable into parts or the parts 
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are highly irregular. The second condition is that each stimulus in a given set must have a 

distinctive geon structural description (GSD). Thus, the stimuli used by Shepard and Metzler ~ 

(1971) and Tarr (1995) cannot fulfil this condition, since they are built of only one type of 

component (or geon) - a cube. The third condition is that rotation must not reveal novel or 

occlude visible geons of an object (see Figure 6). For example, an extensive rotation of an 

object consisting of three geons may only leave two or even one geon visible, with the other 

parts occluded. This would result in an activation of different GSDs and viewpoint-

invariance can not be expected. 

a b 

Figure 6: Examples of a change in viewpoint that produces a change of geon-structural 

description of an object. In the right panel (b) the elevators of the plane are completely occluded 

and the engines are foreshortened compared to panel (a) so that their cylindrical shape is 

difficult to infer (adapted from Biederman and Gerhardstein, 1993). 

Biederman's RBC model promoted a computational instantiation by Hummel and 

Biederman (1992). They presented a neural network model JIM (John and Irv's model) 

which is able to activate a viewpoint invariant representation of a shape in form of a 

structural description specifying both the visual attributes of an object (e.g., edges, vertices, 

or parts) and the relations between them. It is described here in some detail as it is the basis 

of the hybrid model of object recognition that is the focus of this thesis. 

Consider a familiar object such as a teacup. Its structural description would consist of two 

parts, the body (a straight cylinder) and the handle (a smaller curved cylinder), and one 

relation ("side-attached"). The structural description remains the same across many changes 

in viewpoint, such as when we see the mug at a different place in the visual field 

(translation), further away or closer (scale), or if we see its mirror image. Even for many 
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rotations in depth the structural description is stable, as long as the two parts are visible. 

Such a representation must bind the shape attributes straight cylinder and curved cylinder 

with the relational attribute "side-attached", otherwise the structural description would be 

indistinguishable from a bucket, an object with very similar parts, but different relations 

("on-top" or "below" of) between them. The challenge for structural description models is to 

find a solution to the binding problem, that is to establish how attribute conjunctions are 

represented. 

One solution to bind attributes (parts and spatial relations) in a structural description is to use 

separate units for each conjunction. Hypothetical units proposed in connectionist networks to 

represent the body of a cup as straight cylinder would differ if on one occasion the curved 

cylinder appeared "on-top" of the cone (such as when the cup is rotated 90°), seen alone, or 

in some other relation. Such a solution to binding parts and their spatial relation is called 

static binding (Hummel, 2001), that is separate units are pre-dedicated for each conjunction. 

Static binding assigns a unit to respond to cylinders "side-attached" to other parts, but 

another unit might respond to cylinders "on-top" of other parts, and so forth. Although static 

binding offers a solution to the binding problem, it has some serious shortcomings. The 

number of units required to pre-code all possible part-relation conjunctions would be 

prohibitively large, because it would grow exponentially with the number of relations. More 

importantly, static binding cannot convey the similarity structure between objects, because it 

does not allow the independent binding of attributes. Thus, for example, in static binding a 

cylinder "side-attached" to a cone is not more similar to a cylinder "on-top" of a cone than to 

a cube "on-top" of a cone because in these representations each part-relation binding is 

coded by a separate unit. The problem of keeping the similarity structure is a fundamental 

property of static binding (Hummel, 2001; Hummel & Biederman, 1992). 

Hummel and Biederman (1992) pointed out that the shortcomings of static binding make it a 

less desirable solution for the problem of binding object attributes. Rather, representing 

structural descriptions in a connectionist architecture requires a mechanism for binding 

attributes dynamically - the binding of attributes must be temporary and explicit so that the 

same units can be used in multiple conjunctions. For example, one unit represents cylinders 

and another might represent the "side-attached" relation; a cylinder "side-attached" to 
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another part would be represented by explicitly tagging these units as bound together (rather 

than implicit conjunctions as in static binding). The same units can be used in different 

conjunctions at other times because these tags are assigned in a dynamic fashion. As a result, 

the similarity between different objects with the same parts (represented by the same units) is 

preserved. 

Hummel and Biederman (1992) presented a neural network model of object recognition 

(JIM; John and Irv's model) in which attributes of an object such as parts and part relations 

are dynamically and explicitly bound together. Dynamic binding is implemented by using 

the concept of temporal synchrony, in which conjunctions of attributes can be established by 

synchronising the outputs ofthe units (or cells) representing those attributes (Milner, 1974). 

Given the image of an object, the units representing one part (or geon) and its relation fire in 

synchrony with each other, but out of synchrony with units representing other parts and their 

relations. JIM consists of a seven-layer connectionist network that takes as input the image 

of a line drawing of an object and, as output, activates a unit representing the identity of the 

object. The same identity output unit will respond no matter where the object's image 

appears in the visual field, the size of the image, and the orientation in depth from which the 

object is depicted (provided no part is completely occluded). 

The first layer (L 1) in the model is an array of orientation-tuned cells with overlapping 

receptive fields. Its cells respond to image edges in terms of their location, orientation, 

curvature (straight vs. curved), and whether the edges terminate within the cell's receptive 

field (termination cells) or pass through (segment cells). The second layer (L2) contains cells 

that respond to vertices (such as Ls, arrows, forks, and tangent Ys), 2D axes of symmetry, 

and oriented blobs which give information about a geon's, size, centre of mass, and 

elongation. Together, cells in L 1 and L2 describe geons by synchronising oscillations in their 

outputs. Units activated by contours and vertices of one geon are induced to fire in 

synchrony with each other, and units relating to a different geon fire also together in 

synchrony but out of phase with the former geon. How does the model achieve this temporal 

synchrony/asynchrony? 

Hummel and Biederman (1992) propose a mechanism by which certain constraints force 

units belonging to the same geon to fire together. Two cells can synchronise their outputs by 
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sending activation signals over a fast enabling link (FEL). A unit that receives input from an 

FEL will reset its refractory state below its threshold and will fire if it is in an active state. 

Because in the model signals are sent along FELs with almost infinite speed, the refractory 

states of the two units will covary and they will fire in synchrony. Two units should only be 

connected by an FEL if the features they represent are likely to belong to the same geon. 

This is established if certain conditions are fulfilled for example, if two units represent image 

edges of the same curvature, (approximately) the same orientation, and have overlapping 

receptive fields. Thus, FELs are designed to link units together representing features which 

are likely to cooccur in the real world, for instance image contours that coterminate in a L- or 

V-vertex are likely to belong to the same geon. 

The model's first two layers represent the local features of an image, which are parsed and 

grouped into temporal sets corresponding to geons. Layer 3 (L3) responds to the attributes of 

complete geons (such as shape of its major axis, shape of the cross section, parallel or 

nonparallel sides, etc) to describe geons such as cones, cylinders, and so forth. Thus, the 

model's first three layers segment an image into its constituent geons by parsing the local 

features of geons into separate groups. Layer 4 and Layer 5 derive relative size, relative 

location, and relative orientation from the attributes size, location, and fine orientation of 

layer 3. Layers 4 and 5 are used to describe the categorical relations among geons explicitly 

and bind them to the geon they describe. The relations must be invariant with geon identity 

and viewpoint meaning that a "below" unit will always fire when one geon is below another. 

Layers 3 and 5 combined produce a pattern of activation that describe a geon in terms of its 

shape, general orientation, location, size, and relative orientation. Several of these geon 

feature assemblies (GFAs) collected over different time slices for a given object result in a 

structural description in Layers 6 and 7. 

Layer 6 receives the output of Layers 3 and 5 to form the structural description of an object. 

Each cell in L6 responds to a particular geon-relation conjunction. If an object is in JIM's 

memory, then each of its GF As will activate a different cell in L6. The activation of L6 is 

summed up over time in L 7, combining two or more assemblies into a representation of a 

complete object, which is invariant with translation, scale, and orientation in depth. 
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Hummel and Biederman tested their model in computer simulations demonstrating that, after 

training with one view of an object, the recognition performance was invariant with changes 

in depth-rotation, size, and location as well as after mirror reflections. Moreover, as in 

human observers, recognition performance dropped with rotations in the picture plane. Thus, 

the model's recognition performance reflects properties of human object recognition 

concerning these manipulations of changes in viewpoint. 

1.4.3.4 Evidence for Part-Based Models 

There are intuitive reasons to believe that human observers store object descriptions in terms 

of parts and categorical relations as Hummel and Biederman (1992) claim. People often list 

the parts of the object when they are asked to describe the characteristics of basic-level 

obj ects, and obj ect's parts often provide much of the functionality of an obj ect class (Rosch 

et aI., 1976; Tversky & Hemenway, 1984). Tversky and Hemenway (1991) noted that 

familiar subordinate exemplar objects are also distinguished by their parts. These 

observations are backed up by more direct evidence in support of JIM. In particular, data 

have been provided that demonstrate the role of geons in defining parts. 

Biederman (1987) showed that human recognition performance varied greatly depending on 

which - rather than how much - of the contours in a line-drawing were deleted. Contours of 

line drawings of common objects were deleted that either corresponded to geon vertices 

(unrecoverable contour deletion) or the same amount that was uncritical for geon extraction 

(recoverable contour deletion). As predicted, recognition performance was only mildly 

affected by the latter manipulation, whereas performance dropped significantly for 

unrecoverable contour deletion. 

In a similar vein Biederman and Cooper (1991 b) showed observers pairs of complementary 

contour-deleted line-drawings of common objects that would produce an intact original line 

drawing if superimposed. In these line-drawings every other vertex and line was deleted 

from each part, so that the geon structure could be recognised from either member of a pair. 

In the study phase participants named either the identical image or its complement version. 

There was no difference in priming between identical and complementary conditions, 

indicating that the activated representation was not based on lower level features (lines and 

vertices), but corresponds to a more abstract part-based representation of the object 
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(Biedennan & Cooper, 1991 b). In contrast, images fonned by deleting half of the parts did 

not visually prime their complements. These results indicate that priming was mediated by 

representations based on parts rather than particular vertices and contours present in the 

original image. 

Further evidence that parts may be coded as suggested by RBC theory has been presented by 

Stankiewicz (2002) who showed that observers process an geon's aspect ratio and primary­

axis curvature independently. Boutsen and Marendaz (2001) also demonstrated the 

importance of axis infonnation in detennining part structure. They investigated the often 

reported effect of orientation search asymmetry in a visual search task (i.e., a faster detection 

of a tilted target among vertical distracters than the reverse) for the global orientation of 2D 

polygons with a salient, "principal" axis of symmetry. Their results show that search 

asymmetry depends on the orientation of the principal axis, rather than on the orientation of 

local contours, which means that the perception of the global orientation of simple shapes is 

mediated by descriptions in tenns of axes of symmetry and elongation. 

An important prediction ofRBC is the role of non-accidental properties (NAPs) of2D image 

contours for the extraction of a geon structural description. This was tested by showing 

observers different versions ofa standard object: one version with a NAP change (e.g., 

wineglass vs. champagne glass), and another version in which the aspect ratio was changed 

(e.g., elongation of the wineglass), which was a slightly bigger metric change than the 

fonner manipulation (Cooper & Biedennan, 1993). Consequently, the difference between the 

aspect ratio change and standard images was more readily detected than the difference 

between the NAP change and the standard image when participants perfonned a 

simultaneous physical identity matching task. However, in a sequential object matching task 

the NAP change resulted in far greater disruption than a change in a metric property. Thus, 

object memory is more sensitive to qualitative changes in the part structure than to 

perceptual changes. 

Since the basic assumption ofRBC is that the detection of individual geons is viewpoint­

invariant due to non-accidental properties, Biedennan and Gerhardstein (1993) tested their 

predictions about conditions of viewpoint-dependency with geons and geon structured 

objects. In one experiment, participants had to identify single target-geons among a set of 
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distracter geons. No effect of changes in orientation was observed for the geons, confirming 

the prediction of view-invariance. In another experiment, line drawings of common geon­

built objects were used that met the conditions described above (see section 1.4.3.3). 

Participants named a set of objects in a study phase. In the test phase, participants were 

shown same exemplars or different exemplars of the study-objects in either the same 

viewpoint or at novel orientations. Biederman and Gerhardstein (1993) observed that 

recognition performance was affected by different exemplars but not by changes in 

viewpoint. In a further experiment, condition 3 (identical GSDs) was tested by rotating the 

objects around 45°. In one condition, this rotation changed the configuration of visible parts 

compared to the trained viewpoint. In the second condition, the same amount of rotation left 

the parts of an object visible that could be seen in the training viewpoint. As predicted, 

slower response times were observed in the parts-change condition, whereas no effect of 

rotation was found when there was no change of visible parts. The same result was obtained 

for unfamiliar geon-structured objects. In another experiment, Biederman and Gerhardstein 

(1993) substituted a different geon for each centre segment ofa set of 10 line drawings of 

bent paper clips, a stimulus set that usually produces large view-dependent effects. The 

addition of the distinctive geon dramatically reduced rotation costs. 

Biederman and Gerhardstein (1993) concluded that whether a change of orientation of an 

object yields slower recognition performance depends on whether the rotation produces a 

change in the geon structural description of that object. The often observed monotonic effect 

of orientation disparity in reaction times may therefore not necessarily be attributable to 

viewpoint-specific templates (e.g., Edelman & Bulthoff, 1992; Tarr & Pinker, 1989). Rather, 

violations of one of the criteria of object-invariance are likely to elicit "unsystematic 

selection of stimuli" (Biederman & Gerhardstein, 1993, p. 1180). In particular, when parts of 

objects are occluded or novel parts are revealed because of rotation, response times are likely 

to increase. 

Apart from the evidence for geons in object recognition, there is further support for critical 

assumptions of RBC from the coding of categorical relations, the dynamic binding of 

attributes in object recognition, and the role of attention in selecting parts of objects. 

Concerning categorical spatial relations, there is recent evidence that the orientation between 
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an object's parts is coded categorically as parallel, perpendicular or oblique similar to JIM. 

Rosielle and Cooper (2001) showed observers line drawings of novel objects in which the 

relative orientation of object parts varied by steps of 30°. Participants found it easier to judge 

that two objects were physically different when their parts had a different categorical 

orientation relationship (e.g., parallel 0° vs. oblique 30° or oblique 60° vs. perpendicular 90°) 

than when the parts of the two objects had the same relative orientation relationship (30° vs. 

60°). In an object recognition task participants found it easier to classify objects that belong 

to the same category (i.e. decide if two objects shared the same set of parts) when the relative 

orientation of the parts did not cross a categorical boundary (objects with 30° vs. 60° relative 

orientations between their parts were more readily classified as belonging to the same class). 

Rosielle and Cooper (2001) conclude that relative orientation is coded categorically for both 

object recognition and physical discrimination. 

A further crucial element of the model of Hummel and Biederman (1992) is that its structural 

description relies on binding mechanisms based on temporal synchrony. Conjoining features 

via temporal synchrony is time consuming and capacity limited and requires visual attention 

(Logan, 1994; Luck & Vogel, 1997; Treisman & Gelade, 1980). For example, Luck and 

Vogel (1997) demonstrated that observers typically retain information about only four 

features (e.g., colour or orientation) in visual working memory at one time. However, it is 

possible to retain both the colour and the orientation of four objects, suggesting that visual 

working memory stores integrated objects rather than a collection of isolated features. 

Furthermore, objects defined by a conjunction of 4 features were found to be retained in 

working memory just as well as objects defined by single features. Thus, 16 individual 

features could be retained when conjoined to four objects. Visual working memory seems to 

have a limited capacity for integrated objects that consist of dynamically conjoint features. 

Concerning attentional processes, there is recent evidence for the role of part selection in 

visual attention (Vecera, Behrmann, & Fliapek, 2001; Vecera, Behrmann, & McGoldrick, 

2000). In experiments by Vecera et al. (2001), participants were more accurate in reporting 

the attributes on the same part than attributes on different parts of a single object. This part­

based effect was not influenced by the spatial distance between the parts. Their results 

suggest that visual attention may selectively process the parts of an object. 
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There is also neurophysiological evidence for part-based representations. Macaque inferior 

temporal (IT) neurons are highly shape selective and different neurons show different shape 

preferences. Tanaka (1993) demonstrated that these preferences can be elicited quite strongly 

to features of 'moderate complexity', similar to geons (Biederman, 2000). Vogels and 

colleagues (Vogels, Biederman, Bar, & Leuven, 1999; Vogels, Biederman, Bar, & Lorincz, 

2001) tested macaque IT (area TE) to determine if cell activity was modulated differently by 

a geon change rather than a metric change. Although metric changes produced slightly 

greater image changes, a greater modulation in IT cell activity was found after geon (NAP) 

changes. 

1.4.4 Evaluation of View-Based and Part-Based Models 

Not surprisingly, the highly specified model of geon-based object recognition has some 

limitations. These mainly concern the extraction of contours from images, the extraction of 

geons from contours of a 2D image, the recognition of natural objects, effects of depth­

rotations, and the need for attention and speed of processing. Although only the problems 

associated with the GSD approach will be considered in this section, many points implicitly 

address Marr's model as well. 

One main assumption of RBC and JIM is that the visual system extracts edges from an 

image in such a way that it corresponds to a line-drawing of an object (see 1.4.3.3). A single 

view of that line drawing and the use of volumetric primitives allows view-invariant 

recognition. However, there are difficulties in extracting edges from real-world images in 

uncontrolled imaging situations (Dickinson et aI., 1997; Edelman, 1997). Line drawings are 

idealised versions of the original edge information, and irrelevant edges (e.g., resulting from 

shading) are often omitted (Sanocki, Bowyer, Heath, & Sarkar, 1998). So far, no reliable 

algorithm has been found in computer vision that would allow the extraction of edges that 

only correspond to contours relevant for the representations of geons. Furthermore, Sanocki 

et aI. (l998) found that object recognition was worse with line drawings than with colour 

photographs, and performance was even worse when other objects were present. A similar 

difficulty concerning the extraction of geon arises for computing the axes of symmetry. In 

JIM, this problem is circumvented by providing the model with a representation of the axes 

as part of the input (Hummel and Biederman, 1992). Finally, some geon attribute contrasts 
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included in Biederman's (1987) RBC theory are not discriminated by JIM (e.g., whether a 

geon with nonparallel sides contracts to a point or is truncated). 

A further problem is that the recovery of geon-based descriptions of natural objects is very 

difficult with the RBC approach. Many natural objects (such as trees, clouds) are not readily 

decomposable into constituent parts because they are highly complex or irregular (Edelman, 

1997). Nevertheless, Biederman (Dickinson et aI., 1997) pointed out that it is not necessary 

to extract parts from the image of a natural image such as an oak tree, because observers do 

not readily distinguish it from other oak trees. Thus, observers may not require the exact 

shape to make classification judgements for a natural object, and they do not necessarily 

generalise over variations in viewpoint for these types of objects. The shape variations that 

are not captured by geon theory may therefore correspond to distinctions that are hard to 

make for observers. Moreover, JIM may be able to represent an object such as a bush in 

terms of a texture description, based on low-level (layer 2) blob and contour units. 

A more serious limitation of Biederman's structural description approach concerns the 

solution to the binding problem. The binding mechanism of JIM - correlated firing of units 

associated with geon properties, geons, and relations - may be too slow to produce the 100 

ms real-time object and scene recognition that is so evident in human performance (Intraub, 

1981). The model of Hummel and colleagues (Hummel, 2001; Hummel & Stankiewicz, 

1996) described in a later section addresses this problem. Moreover, FELs in JIM operate 

with infinite speed, allowing two cells to synchronise instantly. In reality, there will be some 

time cost due to the propagation of an enabling signal across a FEL. 

Apart from the admitted limitations of the RBC approach, there have been some 

experimental observations that challenge its predictions. RBC predicts view-invariant 

recognition of geons and geon-structured objects, as long as relations and parts are not 

changed and the conditions for view-point invariance are met (Biederman & Gerhardstein, 

1993). However, some studies report recognition costs for objects rotated in depth and even 

for single geons (Hayward & Tarr, 1997; Tarr, Williams, Hayward, & Gauthier, 1998). 

There is an ongoing debate on the significance and the predictions of view-dependency 

across depth-rotations (Biederman & Bar, 2000; Biederman & Gerhardstein, 1993, 1995; 

Hayward & Tarr, 1997; Tarr, 1995; Tarr & Bulthoff, 1995). 
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As an argument against studies that report viewpoint-dependent performance, Biederman 

and Gerhardstein (1993) claimed that the activation of a representation of an object may be 

invariant even when performance sometimes does not exhibit this invariance. Biederman and 

colleagues (Biederman & Cooper, 1992; Biederman & Gerhardstein, 1993, 1995) argued that 

object recognition tasks such as matching may tap episodic recognition memory that 

involves a separate object processing system in addition to the system mediating object 

identification. For example, Biederman and Cooper (Biederman & Cooper, 1992) showed 

that object recognition was size invariant with a naming task, but not with an old-new 

recognition task, presumably because the episodic event of seeing an object includes its 

particular size, position, and viewpoint. According to this argument, object naming is 

mediated solely by an object identification system that is associated with the occipito­

temporal pathways in the brain, whereas object matching (or old-new recognition tasks) may 

require access to exact spatial co-ordinates represented in occipito-parietal (dorsal) pathways 

(Ungerleider & Mishkin, 1982). Thus, reaction times may differ across view changes of the 

same object because latencies not only reflect the activation of object representations in the 

ventral pathway but are "contaminated" by episodic non-recognition processes. Evidence for 

such effects comes from priming studies using explicit and implicit tasks (Cooper, Schacter, 

Ballesteros, & Moore, 1992). One explanation favoured by Biederman and Gerhardstein was 

that the latter tasks depends on "feelings of familiarity that were influenced by both dorsal 

and ventral systems" (Biederman & Gerhardstein, 1993, p. 1163), whereas naming only 

includes ventral system representations. Similarly, mental rotation tasks in which handedness 

of rotated objects has to be determined (Shepard & Cooper, 1982) are deemed to be 

controlled by dorsal system processing. Thus, Biederman and Gerhardstein concluded it is 

necessary to assess the nature of object identification tasks and use experimental paradigms 

that do not rely on feelings of familiarity. 

As another explanation for cases in which viewpoint-dependent effects are found, Biederman 

and Gerhardstein (1995) claimed that individuals may use viewpoint-dependent processes, 

such as searching for a distinctive GSD at a small scale. For example, one may look for a 

logo or brand name to distinguish different makes of similar watches or cars. Although the 

process of finding a GSD in such cases would be viewpoint-dependent and time-consuming, 
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the shape representation could still be viewpoint-invariant. And finally, Biederman and 

Gerhardstein argued that effects of rotation or viewpoint may occur if objects are shown in 

accidental views (that yield ambiguous identification) or if objects are partially foreshortened 

or occluded (see Biederman and Gerhardstein, 1995). 

Not surprisingly, there are also problems for view-based models but for different reasons to 

the part-based models. These severe limitations common to the view-based approaches 

include the role of contours and parts, translation and scale invariance, and generalisation 

across shapes. 

In template matching, successful recognition depends on the number of points that match or 

mismatch between an image and a stored view, but there is no prediction concerning the 

locus of mismatch (an exception can be found in Ullman, 1989). However, Biederman 

(1987) showed that human recognition performance varied greatly depending where in the 

image contours have been deleted (vertices or line segments). Biederman and Cooper 

(1991 b) demonstrated that an image in which half the vertices and edges from each of an 

object's parts were removed visually primed its complement (the image formed from the 

deleted contours) as much as it primed itself. In contrast, an image constructed by deleting 

half of the parts did not visually prime its complement. These results imply that there is a 

qualitative difference between contours - visual priming was predicted by the contours 

critical for the recognition of an object's parts, not just by the amount of contour. 

As outlined earlier, human object recognition seems fairly invariant with retinal changes 

such as translation and size (Biederman & Cooper, 1991a, 1992). Most view-based models 

predict progressively poorer generalization - in the form of either weaker neural responses 

or diminished recognition performance - with increasing distance between a test view and 

any known view of an object. In addition, to computationally establish this kind of object 

invariance is no trivial problem for view-based models of object recognition (Riesenhuber & 

Poggio, 2000; Tarr, 1999). In contrast, concerning Ullman's model of view alignment, it is 

not clear whether it can account for the pattern of view-dependent recognition performance, 

because the alignment technique seems too powerful. As soon as a rotation angle has been 

computed, alignment can be performed in a single step (Edelman & Weinshall, 1998). 
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A further problem for object recognition theories based on whole views is that of image 

transformations concerning only a part of the object, as when a part is missing or an 

irrelevant part is added. These global transformations should in many cases lead to a total 

failure in recognition or classification, but this has not been observed in tests of recognition 

performance with such images (Biederman, 1987). Similarly, humans recognise a running 

dog as well as a sleeping dog, or a phone with the handle on or off the hook. Although the 

shapes projected in these different situations are radically different, they are mapped onto a 

common representation in memory - dog or phone. By assuming holistic template 

representations view-based models cannot easily explain a mechanism to compensate for 

these transformations in shape. 

One common criticism of models that rely on view-based representations (Bulthoff & 

Edelman, 1992; Bulthoff, Edelman, & Tarr, 1995; Poggio & Edelman, 1990; Tarr, 1995) is 

that although image-based approaches allow specific recognition discriminations on a 

subordinate level (e.g., between a collie and a terrier), visual recognition predominantly taps 

the basic level (Biederman, Subramaniam, Bar et aI., 1999). However, unlike RBC theory 

and its variants, most view-based models of human visual recognition cannot provide well­

specified mechanisms for class-level recognition or further categorisation (Edelman, 1997; 

Hummel, 2001). Finally, a fundamental difficulty with view-based models is that they 

require stored representations before they can match two views of an object. View-based 

theories have, therefore, difficulties to account for viewpoint invariance with unfamiliar 

(novel) objects (Hummel & Biederman, 1992). Although the view-combination model 

requires only a small number of stored views to generalise over a large range of novel views, 

it still requires a sufficient number of representative views for each individual object. In 

contrast, the human visual system is able to obtain substantial generalisation on the basis of a 

single view of a novel object (Tarr & Gauthier, 1998). To address this problem, Ullman 

(1998) describes how such generalisations can be classed-based, that is, how generalisation 

to a new viewing direction can be obtained from a single image of a novel object on the basis 

of three other objects in the same class (e.g., faces). Still, it is unclear how the visual system 

would use the same process (linear combination of views) to both distinguish and generalise 

objects from the same class for example, a VW beetle from a (similar in outline shape) Saab. 
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The common problem for view-based approaches is that they represent object structure only 

implicitly (Edelman, 1997; Hummel, 2001). They have therefore difficulties to generalise to 

new views of novel objects, new views of familiar objects outside their training space 

(Hummel, 2000), and categorise objects in terms oftheir shape similarities. 

Recently, view-based theorists have extended their models to incorporate properties 

reminiscent of feature matching (Edelman, 1998; Riesenhuber & Poggio, 1999). Feature 

matching models extract diagnostic features from an image for recognition (Selfridge & 

Neisser, 1960). These models use higher order image attributes such as parts, surfaces, 

contours, or vertices. The identity of an object is established in terms of multiple 

independent attributes and objects are seen as similar and subsumed under the same category 

if they share enough common visual features. 

Feature matching has some theoretical advantages over template matching. In contrast to 

template models, feature models can compensate for transformations of object shape because 

they may code parts of an image. Furthermore, they can achieve view invariance by 

comparing features in different views of an object. However, the features used in such 

models are not encoded relative to one another in terms of their positions in space - they 

can be combined, but without reference to their location in the image; this property has 

attracted criticism (e.g., Hummel & Biederman, 1992). The problem is that location 

independence makes the representation insensitive to the spatial configuration of the 

features; thus, any configuration of the appropriate features could produce recognition of the 

object. As a consequence, even a scrambled version of an intact image that retains all 

features depicted in the original should produce equivalent recognition, which it does not. 

This point will be revisited in the General Discussion. 

In summary, both view-based and part-based accounts have limitations. But it is also clear 

that both have important contributions towards our understanding of object recognition. 

Template matching models recently enjoyed considerable popularity in computer vision 

(e.g., Edelman & Poggio, 1990; Lowe, 1987; Ullman, 1989) as well as in behavioural studies 

on vision (Tarr, 1995). Nevertheless, many researchers in the computer vision community 

(Bergevin & Levine, 1993; Dickinson, Pentland, & Rosenfeld, 1992) and in psychology 

(Humphreys, Riddoch, & Quinlan, 1988; Sartori, Miozzo, & Job, 1993) assume a structural 
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description stage in models of object knowledge. Indeed, RBC (JIM) remains one of the 

most detailed versions of this class of object recognition models (Dickinson et aI., 1997; 

Tarr, 1995). Naturally, there are attempts to combine part-based and view-based models into 

hybrid accounts which will be described in the next section. 
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2. Chapter 2: Hybrid Accounts of Object Recognition 

2.1 Introduction 

As the above review on the two main classes of object recognition theories shows, both 

approaches offer theoretical advantages as well as disadvantages. Similarly, the data so far 

do not appear to clearly favour one family of object recognition theories. A number of 

researchers therefore attempted to formulate theories that incorporate properties of the view­

based as well as part-based approaches to object recognition. 

The following sections will give a short overview of hybrid approaches before turning to the 

hybrid model of obj ect recognition by Hummel (Hummel, 2001; Hummel & Stankiewicz, 

1996a) which is the basis for the present investigation. These approaches are broken down 

into those that stress the role of process or representation, although in many cases this 

distinction is not absolute. 

2.2 Accounts Stressing the Role of Process 

2.2.1 Mental Rotation 

2.2.1.1 Dual Route Account (Jolicoeur, 1990) 

Jolicoeur (1990) proposed that two functionally separate systems are working in parallel to 

identify disoriented patterns. These two systems are a mental rotation and a feature-based 

system. The former uses mental rotation to transform disoriented patterns by aligning them 

to the retinal upright and then matches the pattern with stored orientation-specific 

representations. The shortest path for aligning the input image is determined by a scheme 

similar to that proposed by Huttenlocher and Ullman (1987). According to Jolicoeur, the 

representations activated by the mental-rotation system are functionally spatially isomorphic 

to the stimuli. The feature-based system extracts shape attributes and surface attributes of 

objects which can be either orientation invariant or orientation sensitive. In both cases, 

Jolicoeur argues that effects of view changes on performance should be much smaller than 

those elicited by the mental-rotation system. An example of an orientation sensitive attribute 

would be symmetry, which is detected faster when the axis of symmetry is vertical than in 

other orientations (Jolicoeur, 1992). Thus, even if mental rotation is not used, recognition 
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performance still may show some effects of orientation. Very small or no orientation 

sensitivity is found when the feature-based system is able to identify an object by extracting 

isolated features. Such orientation invariant attributes include texture, colour, size, particular 

types of line intersections, and global properties such as complexity, smoothness, etc. Since 

the mental-rotation system and the feature-based system work in parallel, both can yield a 

match to stored representations. Jolicoeur argues that his dual-systems model is able to 

account for studies that found mental rotation effects as well as for experiments in which no 

or rather small orientation sensitivity was observed (Lawson & Jolicoeur, 1998). An obvious 

weakness of this account is its low predictive power because the nature of the proposed 

representations appears highly underspecified. Furthermore, as discussed in a previous 

section (1.4.2.2), there is evidence that identification of disoriented images does not involve 

mental rotation (Jolicoeur et aI., 1998; Lawson & Jolicoeur, 1998). 

2.2.1.2 Double Checking (Corballis, 1988) 

Corballis and his colleagues (Corballis, Zbrodoff, Shetzer, & Butler, 1978) found orientation 

dependency in a naming task with alphanumeric characters only in the condition where 

mirror-reversed stimuli were presented. Hence, Corballis (1988) concluded that mental 

rotation is usually not required to recognise misoriented objects, and that observers recognise 

familiar objects by extracting a description of a shape that is independent of any co-ordinate 

system. However, such a description would not allow the discrimination of mirror images, in 

which case observers have to mentally rotate a stimulus. In addition, such a description could 

not explain the view-dependent recognition performance for plane-rotated objects (Jolicoeur, 

1985). Corballis (1988) proposed a "post access" process of mental rotation. According to 

this line of thought, initial access to stored representations is orientation-independent, since 

"mental rotation" of a misoriented object along the shortest path requires previous 

recognition. Once an object is identified, its internal axes are retrieved from long term 

memory and its orientation can be determined. After the initial access a normalisation 

process aligns the viewed object with the representation to verify the initial recognition or to 

distinguish it from its mirror image. According to Corballis, shapes may be encoded in a 

frame-free description consisting mainly of orientation invariant shape attributes. 

Information about the orientation of the pattern would be established after its identification 
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and might be used occasionally merely to verify the identity of an already identified pattern. 

However, there is recent evidence that object identification does not employ mental rotation 

(Jolicoeur et aI., 1998; Lawson, 1999). A more direct test of Cor ball is' "double checking" 

account involved unspeeded verification of briefly presented pictures (Lawson & Jolicoeur, 

1998). Effects for plane rotations were found even in unspeeded conditions and did not 

attenuate with practice as often observed with effects on naming latencies. According to 

Lawson and Jolicoeur, these stable effects of rotation should not occur if objects are 

recognised irrespective of orientation. If mental rotation effects in latencies are due to 

"double checking" verification accuracy should not be affected in an unspeeded task. 

Therefore, a complete view-dependent recognition process in combination with orientation 

effects due to double-checking seems neither parsimonious nor supported by the data 

(Lawson & Jolicoeur, 1998, 1999). 

2.2.2 Holistic and Analytic Processing 

Farah (1990; 1991) has developed an account of object recognition that makes a distinction 

between two types of processing: holistic vs. analytic. In fact, her account is not exclusively 

one derived from process differences as these have a direct relationship to the representations 

used in object recognition. Moreover, Farah proposes a modular organisation of mental 

representations with separate systems for faces, objects and words. 

Farah (1990) reviewed case studies of neuropsychological patients that showed specific 

impairment for word (alexia), object (visual agnosia), or face recognition (prosopagnosia). 

She found that there was strong evidence for a double dissociation between prosopagnosia 

and alexia and proposed that two major recognition capabilities are susceptible to neuronal 

damage. The first one is based on holistic analysis of stimuli that is mainly responsible for 

processing the overall configural structure of an object. The second system analyses visual 

stimuli in a part-based fashion. According to Farah (1990), patients with deficits in word 

recognition suffer from an impairment to the part-based or analytic system because letters 

and some objects need to be decomposed into parts to recognise them. In contrast, face 

recognition relies mainly on holistic processing. Therefore, damage to the holistic processing 

component should impair performance for processing faces. The recognition of objects 

would entail both holistic as well as analytic processes. Farah et. al. (Farah, Wilson, Drain, & 
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Tanaka, 1998) found psychophysical evidence for holistic processing of faces. They showed 

that a face matching task was more strongly impaired by an intervening mask consi~ting of a 

whole face relative to a mask consisting of scrambled parts of a face. A similar manipulation 

in an experiment where houses and words had to be matched produced a lesser or no 

disruption indicating that holistic processing seems particularly important for faces (for a 

critical review, see Humphreys & Rumiati, 1998). Although Farah 'proposed different types 

of representations, the notion of analytic versus holistic processes is more critical for the 

present investigation and will be addressed in subsequent sections. 

2.2.3 Process Determined by Task-Demands 

Tarr and Bulthoff(1995) proposed combining view-based and part-based approaches to 

object recognition in an approach that stressed the role of task demands. They suggest that 

human object recognition can be thought of as a continuum between pure exemplar-specific 

discriminations and categorical discriminations. According to this line of thinking, extreme 

cases of within-class discriminations allow for recognition exclusively achieved by 

viewpoint-dependent mechanisms. When objects are to be distinguished in broad categorical 

classes, recognition of objects may be exclusively achieved by viewpoint-invariant 

mechanisms. Hence the continuum reflects a "trade-off between efficiency of a 

representation and efficiency of recognition" (Tarr & Bulthoff, 1995, p. 1503). Shape 

discriminations usually fall within the extremes of the continuum and recognition is 

mediated by the viewpoint-dependent and the viewpoint-independent mechanisms according 

to the nature of the task, the similarity and familiarity of the stimuli, and other context 

conditions. 

Although this account is plausible, its predictions are rather general and the experimental 

evidence is somewhat unclear. Supporting the task-demands argument, Hamm and 

McMullen (1998) found that picture-name matching of plane-rotated objects is view­

dependent only on a subordinate rather than basic level. However, in a similar experiment 

with more distinctive entry-level categories than in the Hamrp. and McMullen study, Murray 

(1998) found that entry-level name-picture matching was highly view-dependent (sub­

ordinate level naming was not tested). Dickerson and Humphreys (1999) also found view­

dependent effects for naming plane-rotated objects on a basic level, which were accentuated 
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when participants had to use subordinate-level names. Also, there were no recognition costs 

in superordinate level naming tasks, thus the pattern of performance was in agreement with 

Tarr and Bulthoffs (1995) prediction. However, in another test of the hypothesis that view 

dependency depends on task demands, Hayward and Williams (2000) showed that view­

dependence and object discriminability of depth-rotated novel objects did not interact. The 

authors concluded that the degree of viewpoint-dependence is not a function of the ease of 

object discrimination. 

Tarr and Bulthoffs (1995) proposal that subordinate-level recognition tasks are due to 

different processing demands compared to basic-level recognition tasks also does not 

necessarily contradict part-based accounts. Biederman et al. (1999) pointed out that 

exemplars of an object class may vary due to large geon or relation differences (e.g., a round 

table vs. a table with a square top), GSD differences on a small scale (e.g., distinguishing 

between different cars using their logos), and metric differences (e.g., discriminating 

between different drill bits). According to this logic, geon theory could also account for the 

findings of accentuated effects of plane-rotation changes for subordinate level tasks. 

Hummel and Biederman's (1992) GSD model JIM predicts a deterioration in recognition 

performance for plane-rotated objects. It is conceivable that looking for small geon 

differences affords a more detailed GSD processing. Analogue to Marr's (1982) idea of 

hierarchical part structures it is possible that structurally similar objects are parsed on a finer 

scale. This process may take longer for rotated objects as more geons and relations are 

perturbed compared to a geon description on a coarser scale. Therefore, accentuated view­

point dependent performance as a function of task demands would be also predicted by a 

structural description system (Biederman et aI, 1999). 

2.3 Accounts Stressing Multiple Representations 

There are a number of accounts that stress the importance of both global (presumably view­

dependent) and more abstract (presumably view-invariant) representations in object 

recognition. Two of the earliest accounts (see section 1.3.1) by Posner (posner, 1969; Posner 

& Keele, 1967) and Bartram (Bartram, 1976) concluded that matching of identical or rotated 

images involves different types of representations in object recognition: a view-specific 

representation that allows fast matching of identical views and more abstract representations 
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that are employed when matching different views or different shape exemplars of an object. 

Ellis and his colleagues (Ellis & Allport, 1986; Ellis et aI., 1989) extended Bartram's 

previous results by observing that the advantage for identical view matches over different 

view matches was only present at short ISIs (100 ms and 500 ms) but not at a long lSI (2,000 

ms) or with an intervening mask. At the same time, the advantage for different view matches 

over different exemplar matches was maintained at long ISIs and in conditions with an 

intervening visual mask. These results were in support of Bartram's (1976) distinction 

between three types of representation in object recognition processes. First, a view-specific 

code mediates direct and fast identical view matches but dissipates quickly and is disrupted 

by masking. The second type is more abstract and mediates different view matches. This 

representation is derived more slowly but is less affected by visual masking. Finally, a 

semantic or name representation is involved when matching different exemplars of an 

objects. 

There is also neuropsychological evidence in support of at least two different representations 

for objects: one that is view-specific and another one that is more abstract. Warrington and 

her associates (Warrington & James, 1988; Warrington & Taylor, 1973, 1978) tested 

neuropsychological patients at matching objects shown in a canonical view to a view in 

which important features were hard to extract or in which the object appeared foreshortened. 

Observers with damage to the right posterior areas of the brain were particularly poor at this 

test; therefore, Warrington and Taylor (1973; 1978) proposed that visual object recognition 

works in two main stages. In a first stage, perceptual object constancy is achieved, which 

relies heavily on right hemisphere processing. The second stage involves semantic 

categorisation, which taps primarily left hemisphere processing. Damage to the right 

hemisphere would therefore impair object constancy, so that only objects in highly familiar 

(canonical) views are recognisable which could then still get access to semantic 

categorisation. Indeed, patients with lesions to the right hemisphere are often reported having 

difficulty in recognising stimuli in unusual views, whereas objects in canonical views may 

still be recognised (Davidoff & Warrington, 1999; Warrington & James, 1988). 

Somewhat different representations working in two parallel pathways were proposed by 

Humphreys and Riddoch (1984). They report five brain-damaged patients with deficits in 
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achieving object constancy. The patients were asked to discriminate two different views of a 

target object from a photograph of a visually similar distracter object. Four of their patients 

with right-hemisphere damage were only impaired in this task when the principal axis of the 

target object was foreshortened in one of the photographs. These patients were unimpaired in 

matching views with a non-foreshortened principal axis. In contrast, the fifth patient (with 

damage to the left hemisphere) showed impaired matching only when the saliency of the 

target object's main distinctive feature was reduced, but foreshortening of the principal axis 

did not affect his performance. According to Riddoch and Humphreys (1984), this double 

dissociation indicates that two functionally independent routes are responsible for achieving 

object constancy, each of which may be damaged selectively. One route processes an object's 

local distinctive features whereas the second route encodes the object's structure relative to 

the frame of its principal axis. 

Another more recent account based on hemispheric differences comes from Marsolek 

(1999). He proposed that the human visual system draws on two different subsystems in 

order to resolve contradictory demands of subordinate and superordinate classification of 

objects. An abstract-category recognition system, which is assumed to be dominant in the 

left brain hemisphere, serves the ability to map different input shapes to the same output 

representation for recognition in order to generalise across different exemplars of an object 

category. A second subsystem, the specific-exemplar subsystem, is thought to be working 

more effectively in the right hemisphere, and it is very sensitive to object shape and maps 

even slightly different shape exemplars to different output representations. Similar 

hemispheric subsystems specialised for metric and co-ordinate relations have been proposed 

by Kosslyn and his colleagues (Kosslyn, Chabris, Marsolek, & Koenig, 1992; Kosslyn et aI., 

1989). In Marsolek's theory, the abstract-category subsystem in the left hemisphere is 

assumed to represent features of objects independently, such as non-accidental properties 

(Lowe, 1985). This type of processing allows the visual system to generalise across different 

members of a category as they usually share a common subset of features. In contrast, the 

specific-exemplar subsystem in the right hemisphere processes object shape as a whole, that 

is features are not represented independently of each other. Evidence for the existence of 

different subsystems comes from studies that demonstrate abstract and form-specific 
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recognition of word forms (Marsolek, Kosslyn, & Squire, 1992; Marsolek, Schacter, & 

Nicholas, 1996) and letterlike forms (Marsolek, 1995). 

In further studies, Marsolek (1999) used shapes of common objects in repetition priming 

experiments. After encoding images of familiar objects that were shown centrally in a study 

phase the same images or different objects of the same name were presented briefly to one 

hemifield. Repetition priming was exemplar-abstract when presented directly to the LH but 

exemplar-specific when presented directly to the right hemisphere, confirming the notion 

about possible different subsystems underlying object recognition. An additional result was 

that priming for different exemplars was specifically visual in that different exemplars still 

elicited more priming than the written name ofthe object. The findings also suggest that both 

systems are working in parallel rather than in serial stages. A subsequent study (Burgund & 

Marsolek, 2000) also found that presenting the same object to the RH affected priming more 

than direct presentation to the LH, which is in line with Marsolek's argument that a more 

abstract visual subsystems is predominant in the LH that processes features of objects rather 

than whole shapes. In addition, Burgund and Marsolek found that priming was view­

invariant in the left hemisphere, but view-dependent in the right hemisphere, indicating that 

two qualitatively different representations (or "subsystems") were activated. 

One particular shortcoming of Marsolek's and other accounts discussed above is their lack of 

specification. In particular, it is not clear under what conditions the different representations 

are tapped separately or in combination. Also, the important role of attention for object 

recognition is mostly neglected. Therefore, the next section describes a hybrid account of 

object recognition that specifies the processes and representations that depend on visual 

attention. 
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2.4 The Hybrid Model of Object Recognition (Hummel, 2001) 

2.4.1 Rationale for the Model 

The review above showed that human object recognition reveals both view-based and part­

based properties. According to Hummel (2001), this combination of properties together with 

the need of establishing object constancy over variations in shape is problematic for theories 

of object recognition that rely exclusively on the geometric properties of object shape - for 

example, by matching two-dimensional (2D) images to 3D models in memory (Lowe, 1987; 

Ullman, 1989) or by using mathematical interpolation to determine whether a given image is 

a "legal" projection ofa familiar shape (Poggio & Edelman, 1990). A visual system that 

relied exclusively on the laws of projective geometry would be equally able to accommodate 

all variations in viewpoint (which the human visual system does not) but would not tolerate 

variations in object shape (which the human visual system does). 

According to Hummel (2001), structural descriptions theories can better account for the 

properties of object recognition because in these models objects are visually represented by 

specifying their component parts in terms of their categorical relations (Biederman, 1987; 

Hummel & Biederman, 1992; Marr, 1982; Palmer, 1978). Using the previous example, a 

coffee mug might be represented as a curved cylinder (the handle) "side-attached" to a 

straight vertical cylinder (the body; see Biederman, 1987). Like human shape perception, this 

description is unaffected by translation across the visual field, changes in size, left-right 

reflection and some rotations in depth. However, it is sensitive to rotations about the line of 

sight (e.g., a 90° rotation changes the "side-attached" relation between the cup handle and 

body to an "on-top" of relation). The description also applies to many different mugs, 

permitting generalisation over metric variations in the shapes of different mugs. 

One of the most important properties of a structural description is that it is an analytic 

representation, meaning that it specifies the relations among an object's parts both explicitly 

and independently. By contrast, representations based on metrically precise 2D or 3D models 

are holistic, in that they do not specify object features or parts independently of their location 

in the object as a whole (Hummel, 2000, 2001; Tanaka & Farah, 1993). Rather, a holistic 

representation of an object is "view-like" - the object structure is not represented explicitly 
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but is based on a 2D coordinate system in which features are assigned to fixed locations (or 

coordinates) in a spatial reference frame. Therefore, elements in holistic view-like 

representations are not coded independently of their locations; they cannot uniquely specify 

object identity nor can they indicate similarity with another holistic representation containing 

the same element. The basic tenet of holistic representations in object recognition is that 

whole images are matched directly to image-like views stored in memory. 

Consistent with the structural description account of shape perception, there is evidence that 

the visual system represents the relations among an object's parts both explicitly (Hummel & 

Stankiewicz, 1996b; Palmer, 1978; Tversky & Hemenway, 1984) and independently of the 

parts themselves (Saiki & Hummel, 1998). An important problem for structural descriptions 

concerns the way parts and their relations are bound into meaningful sets for example, 

straight cylinder with curved-cylinder for the description of a cup. One solution is dynamic 

binding, in which a single representational unit is used in different combinations. For 

example, one unit represents cylinders and another might represent the "side-attached" 

relation; a cylinder "side-attached" to another part would be represented by explicitly 

tagging these units as bound together (see section 1.4.3.3). As these tags are assigned in a 

dynamic fashion, the same units can be used in different conjunctions at other times. The 

second solution to the binding problem, however, called static binding, proposes that 

separate units are pre-dedicated for each conjunction. Thus, a unit might respond to cylinders 

"side-attached" to other parts, another might respond to cylinders "on-top" of other parts, 

and so forth. 

To solve the dynamic binding problem some authors (Hummel & Biederman, 1992) propose 

synchrony of firing, that is to establish that two parts belong to one object (and are not 

combined with another part to form a different object) from the simultaneous firing of units 

that relate to parts which are grouped together. However, according to Hummel (2001), a 

theory of object recognition that relies solely on analytic descriptions based on dynamic 

binding faces a serious problem: dynamic binding is probably time-consuming and not free 

from errors, as units need time to synchronise (or desynchronise) their outputs. Also, units 

may fire in synchrony "accidentally" or bind parts together erroneously because of time 

constraints. Furthermore, some properties of shape perception are inconsistent with the 
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properties of analytic representations. Binding independent visual dimensions (such as parts 

and relations) into a coherent analytic representation requires visual attention (Logan, 1994; 

Luck & Vogel, 1997; Treisman & Gelade, 1980). However, evidence of both negative 

priming of ignored images for overlapping stimuli (Murray, 1995b; Tipper, 1985; Tipper & 

Driver, 1988) and positive priming for spatially separated stimuli (Stankiewicz & Hummel, 

2002; Stankiewicz et aI., 1998) demonstrates that object recognition does not necessarily 

require visual attention. In addition, generating structural descriptions imposes a bottleneck 

on processing object information (Hummel, 2001). For example, in the Hummel and 

Biederman (1992) model geon attributes, geons and spatial relations are bound together by 

synchrony of firing. But both behavioural evidence (Intraub, 1981) and evidence from 

single-unit recording (Oram & Perrett, 1992) suggest that object recognition is too fast to 

depend on time-consuming analytic representations alone. Thus, it seems that dynamic 

binding is not sufficient to explain the observed efficiency and speed of human object 

recognition (Hummel, 2001; Hummel & Stankiewicz, 1996b). Object representations relying 

solely on structural descriptions that are based on dynamic binding seem unable to account 

for all the properties of human shape recognition performance. Thus, although 

representations in form of structural descriptions are needed, they must be complemented by 

representations that work fast and without attention. 

2.4.2 The Hybrid Model 

Hummel proposed a neural network model of object recognition: JIM.2 (Hummel & 

Stankiewicz, 1996a) and its successor JIM.3 (Hummel, 2001), both of which are based on 

the computational structural description model JIM by Hummel and Biederman (1992). In 

JIM.2 and JIM.3 object recognition is based on a hybrid analytic/holistic representation of 

object shape, with the analytic representation in form of a structural description, and the 

holistic representation resembling a more viewer-centred representation. In JIM.3 dynamic 

binding generates structural descriptions of object shape when an object is attended, but uses 

static binding to maintain the separation of an object's parts when an object is ignored. The 

model predicts that when the visual system segments an object successfully into its parts, 

shape perception exhibits the properties of a structural description. Recognition will be 

largely invariant with changes in viewpoint (Biederman, 1987), and part attributes will be 
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represented independently of one another, and independently ofthe parts' interrelations. 

However, in case the visual system fails to segment an image into its parts (e.g., because of 

lack of attention or insufficient processing time), shape perception will exhibit the 

characteristics of a representation that uses static binding. Recognition will be more sensitive 

to variations in viewpoint, and part attributes will not be represented independently of their 

spatial relations, but rather in a crude viewer-centred reference frame. 

The model will be discussed in some detail because it is the basis of the studies described in 

the following sections. JIM.3 consists of an eight-layer artificial neural network that can be 

trained to recognise line drawings of objects. Given the contours of an object's image JIM. 3 

activates a representation of the object's identity as output (Figure 7). In the first three layers, 

units represent local image features such as contours (layer 1), vertices and axes of symmetry 

(layer 2), and the shape properties of surfaces (e.g., layer 3). The properties of each surface 

shape are categorically represented in terms of five categorical properties: (1) elliptical or not 

(i.e. bounded by a single smooth contour or bounded by more than one contour that converge 

at vertices); (2) possessing parallel, expanding, convex, or concave axes of symmetry; (3) 

possessing a curved or straight major axis; (4) truncated or pointed; (5) planar or curved in 

3D. These categorical properties are derived from the vertices and axes of symmetry of a 

surface. In subsequent layers of the model these surface properties are used to extract the 

shape attributes of the corresponding geons. 

Similar to JIM (Hummel & Biederman, 1992), the units in layers 1-3 fire in synchrony when 

they are activated by features of the same geon, and fire out of synchrony when the features 

correspond to different geons. Units in layer 4 gate the output oflayer 3 to the two 

components in layer 5: the independent geon shape units (layer 5i) and the holistic surface 

map (layer 5s). In the model, the units oflayer 4 are distributed spatially to cover the visual 

field. When synchrony can be established, the interactions between layers 3, 4, and 5 permit 

the model to dynamically bind features into parts-based sets. However, establishing 

synchrony (and asynchrony) of firing between units representing image features takes time. 

In the first moments after presentation (i.e., tens ofms for observers or during the first 

several iterations for the model) all the units activated by an image may fire at once even if 

they do not belong to the same geon. The model also assumes that inhibitory lateral 
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interactions responsible for the asynchronous firing of features of separate geons require 

visual attention. Therefore, features of unattended objects will never group themselves into 

parts-based sets (Hummel & Stankiewicz, 1996a, 1998) and cannot be represented 

analytically. When attended, the synchrony relations established in layers 1-3 are preserved 

in layers 4- 6, where they are used to bind together the various shape attributes to form a 

geon and also to bind geons with their spatial relations. 

The output oflayer 4 is fed to layer 5 which is divided into two components (see Figure 7). 

The first component is termed the independent geon array (IGA) and is dedicated to 

represent geon attributes. The second component - the holistic surface map (HSM) -

represents the shape attributes of an obj ect' s surfaces (corresponding to the shape attributes 

coded in layer 3). The IGA consists of a collection of units that represent the shape of a geon 

in terms of categorical attributes (Biederman, 1987): shape of its cross-section, shape of its 

major axis, whether its sides are parallel, expanding, convex or concave, and whether the 

geon is pointed or truncated (layer 5i). These shape attributes are coded independently of one 

another and independently of the geons' interrelations. Together, these units allow the 

coding of 31 different kinds of geons. For example, a cylinder has a round cross-section, a 

straight major axis, parallel sides, and is truncated. There are additional units that code a 

geon's aspect ratio (e.g., flat, intermediate, or elongated). Importantly, spatial relations units 

code whether a given geon is above, below, beside, larger-than, and/or smaller-than other 

geons in an object. Thus, the spatial arrangement of parts can be explicitly represented in the 

IGA. 

The second component oflayer 5 represents the shape attributes of an object's surfaces. The 

units of the HSM are arranged in a circular reference frame over 17 locations (layer 5s in the 

right-hand side of Figure 7). These units respond to the outputs oflayer 3 (surface shape 

properties) routed via layer 4. The map is called holistic because each unit codes surface 

properties to certain locations in the map using static binding (see Hummel, 2000; Hummel 

& Stankiewicz, 1996a). Unlike in the IGA, the surface properties preserve their topological 

relations in the HSM. This means that surfaces that are in adjacent locations in layer 3 are 

mapped to corresponding adjacent locations in the HSM. 
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Figure 7: The architecture of JIM.3 (adapted from Hummel, 2001). Units in layer 1 are 

activated by the contours from an object's line drawing. Units in layer 2 represent vertices for 

coterminating contours and axes of symmetry between contours of the same surface. Units in 

layer 3 represent categorical shape properties of the object's surfaces. Routing gates in layer 4 

propagate the output of layer 3 to units in layer 5 which has two components: The independent 

units represent the shape attributes of an object's geons, and the units in the surface map 

represent shape attributes of surfaces at each of 17 location in a circular reference frame. In 

layer 6, the activation patterns of both components are learned by individual units, which are 

then summed up in Layer 7 over time. Units in layer 8 code object identity. 
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The fact that the IGA and the HSM use different mechanisms to bind image features 

(dynamic binding versus static binding, see section 1.4.3.3) has important implications for 

the properties of the resultant representations. Hummel pointed out that units in the IGA 

represent geon attributes and relations independently of each other. A unit that responds to a 

certain property will respond to it irrespective of the geon's other properties. Because of this 

independence the representation constructed from the IGA is completely invariant with 

translation, scale, and left-right reflection. For example, a mirror-image is coded the same 

way as its original version, because the relations "left-of' and "right-of' between parts are 

both coded simply as "beside" (Hummel & Biederman, 1992). For the same reasons the geon 

based representation is also relatively insensitive to rotation in depth. In contrast, a 

representation derived from static binding as in the HSM is highly sensitive to mirror­

transformations (and presumably, other changes in orientation) because the topological 

relations of surfaces change when an image is left-right reflected. 

The coding of geon attributes and relations independently of one another comes with a cost. 

It is that the representation of the IGA depends on synchrony of firing to bind geon attributes 

and relations. For the cup example, if the local features of the handle geon fire in synchrony 

with one another and out of synchrony with the local features of the geon representing the 

body, then the units for the handle-geon will fire out of synchrony with the units representing 

the properties of the body-geon; the resulting activation pattern will clearly specify that the 

geons are "side-attached". However, ifthe local features of the two geons fire in synchrony, 

then these properties will be superimposed on the units of the IGA. The elicited activation 

pattern cannot distinguish the geons representing the cup from other geons or geon 

combinations with similar properties. Without dynamic binding, no effective representation 

will be established (Hummel, 2001; Hummel & Biederman, 1992) 

In contrast to the independent geon attribute representation, the holistic surface map (HSM) 

is much less sensitive to errors resulting from dynamic binding. The units representing 

surface attributes in layer 5s are spatially separated. Therefore, when multiple geons fire 

simultaneously, the separation of the geon attributes is preserved because, like surfaces, 

different geons will be mapped to different locations in the HSM if they occupy different 

locations in the image. As a consequence, the representation formed on the surface map is 
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sensitive to left-right reflections as well as to rotations in the picture plane and in depth. 

However, the HSM representation is invariant with translation and scale. Although the 

surfaces' topological relations are maintained in the mapping from layer 3 to the HSM, their 

absolute locations in the visual field and their size in the image are not. The units of the 

HSM are not confined to a particular location which allows them to "shrink-wrap" on a given 

object, no matter where it is in the visual field. 

The properties of the surface map allow the model to recognise objects in familiar views 

even without dynamic binding. This is the case in the early moments after initial presentation 

of an input image. At first, the local features in the image (contours, vertices, axes, and 

surfaces) will tend to fire simultaneously because it takes time to establish synchrony of 

firing via lateral excitation and inhibition. The pattern of activation in the IGA will not be 

able to distinguish which properties belong to which geon in the image. However, the HSM 

keeps the geons spatially separate. Thus, even when the jumbled representation of the IGA 

does not allow recognition, the holistic representation generates an activation pattern that can 

be matched with a familiar (previously encountered and stored) view. 

With time, the initial activation in layers 1-3 is followed by inhibitory signals when the 

image is attended. The excitatory signals force features belonging to the same geon to 

continue to fire in synchrony with one another, whereas the inhibitory signals force the 

features of different geons to fire out of synchrony with one another (see Hummel, 2001; 

Hummel & Stankiewicz, 1996a). When an object's geons come to fire out of synchrony the 

resulting series of activation patterns in layer 5 form a structural description. This 

representation specifies the object's geons, their spatial relations, and the topological 

relations of their constituent surfaces. This structural description allows the model to 

recognise an object's identity even ifit is shown in a novel view, or even if the object is a 

novel member of a familiar object category (i.e., a never seen before type of cup). 

In layers 6 to 8 the representation generated by the activation patterns of the units in layer 5 

are encoded into the long-term memory of JIM.3. Both the patterns of activation generated in 

the IGA as well as the HSM are propagated to corresponding collections of units in layer 6. 

In the set of units that receives input from the IGA, each unit learns to respond to the shape 

attributes of one geon (or collection of geons) and its relations to other geons in the object 
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(layer 6i). A collection of geons will only be activated when multiple geons fire in synchrony 

with one another - i.e., when there is a binding error. However, when the model is working 

correctly, only one geon and relation vector will be passed into Layer 6i. Likewise, the 

collection of units receiving input from the HSM dedicates one unit each to the arrangement 

of surfaces in a geon, that is only one geon's surface features to Layer 6s at a time. That is, 

the units in Layer 6 respond to the "instantaneous" outputs of Layer 5. 

In layer 7 the input from both sets of units (6i and 6s) are summed up over time such that 

they respond to multiple, mutually de synchronised geons. Thus, the resultant pattern of 

activation represents separate geons as a single object. A representation of an object is 

formed as a whole in terms of a structural description, that is, its constituent geons and 

relations. This activation pattern in layer 7 is fed to units in layer 8 that code object identity 

(and other semantic aspects). In test simulations (Hummel, 2001), the activation output in the 

object identity layer is the measure for successful object recognition. An important detail of 

the model is that there is a direct connection from layer 6s (representing learned holistic 

surface maps) to layer 8 (object identity) which allows the model to identify an object (in a 

familiar view) via a fast holistic route that by-passes any analytic representation. 

Both the analytic and holistic components of the model support the recognition of attended 

images, but only the holistic representation is involved in the recognition of ignored images. 

The analytic representation is a structural description and therefore has orientation­

independent properties as described by Hummel and Biederman (1992). The holistic 

component is orientation-sensitive because it represents the shape attributes of an object's 

surfaces in relation to a view-centred reference frame. The model predicts that attended 

images should prime themselves, translated, scaled and left-right reflected versions of 

themselves; ignored images should prime themselves, translated and scaled versions of 

themselves, but not their left-right reflections because the holistic representation is 

orientation-sensitive. This view-sensitivity is only short-lived, however, and object 

recognition will become more robust to orientation changes as long-term priming is only 

mediated by the structural description component. These predictions have been corroborated 

with test simulations on the model (Hummel, 2001). 
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There is empirical support for the predicted relationship between attention and patterns of 

visual priming across variations in viewpoint. Stankiewicz, Hummel, and Cooper (1998) 

observed that attended objects were visually primed in both the same view and in the left­

right reflected view; ignored objects were primed only in the same view. The effects of 

attention (attended vs. ignored) and view (same vs. reflected) were strictly additive, that is 

the priming component from the analytic representation was independent of the priming 

component from the holistic component. Priming became view insensitive after several 

minutes. Further support for the model comes from Stankiewicz and Hummel (2002) who 

found that ignored images primed not only themselves, but also their scaled and translated 

versions in a short-term priming paradigm. Finally, the notion that recognition will be more 

view-dependent early in processing (due to a fast holistic route) rather than in later stages 

(after several hundred milliseconds in the analytic route) fits with earlier observations. 

Performance in picture matching tasks is usually view-sensitive at short interstimulus 

intervals (lSI), but becomes view-invariant after longer ISIs (Ellis & Allport, 1986). 

In summary, JIM.3 is a model ofthe visual system in which two solutions to the binding 

problem for the representation of object shape are employed. These solutions have 

complementary properties. First, dynamic binding is used to generate analytic 

representations, which is a process that requires both visual attention and time to establish. 

The advantage ofthe resulting structural descriptions is that they specify object properties 

independently, which makes them highly flexible representations (e.g., that are robust to 

variations in viewpoint and the metric properties of an object's shape). Second, static binding 

does not require attention nor time to establish. However, static binding results in a 

representation that lacks the flexibility of a structural description, and is therefore susceptible 

to some (mirror-reflections, plane-rotations) but not all (translation, scale) changes. 

JIM.3 is a promising model to investigate properties of object recognition. It is highly 

specified and allows relative clear predictions in particular about the effect of attention on 

obj ect recognition and the form of representation (analytic vs. holistic) that results from 

attending or ignoring an image. In this thesis, only the part of the model will be considered 

that is concerned with the distinction between holistic vs. analytic processing, that is layers 5 

and 6 in particular (as they consist of two qualitatively different components). These 
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components of the model allow behavioural predictions concerning view and shape 

invariance in dependence of attention, which is the focus of this and earlier research 

(Stankiewicz et aI. 1998; Stankiewicz & Hummel, 2002). The fmdings concerning the 

analytic and holistic representation obtained so far are summarised in Table 2. The next 

sections will give supplementary evidence for the hybrid representations and the role of 

attention in visual object recognition. 

Analytic Representation Holistic Representation 

Requires Attention Activated without attention 

Invariant with left-right reflection Sensitive to left-right reflection 
(Biederman & Cooper, 1991a; (Stankiewicz, et aI., 1998) 
Stankiewicz, et aI., 1998) 

Long-lived priming Short-lived priming 
(> -5 minutes (> 3 seconds <-5 minutes; 
Stankiewicz et aI. 1998) Stankiewicz et aI. 1998) 

Invariant with location Invariant with translation 
(Biederman & Cooper, 1991a) (Stankiewicz & Hummel, 2002) 

Invariant with scale Invariant with scale 
(Biederman & Cooper, 1992) (Stankiewicz & Hummel, 2002) 

Invariant with some rotations in depth Unknown 
(Biederman & Gerhardstein, 1993; but 
see Tarr, 1995) 

Part-based (Biederman & Cooper, 1991b) Unknown 

Table 2. Properties of the analytic and holistic representations of object shape (adapted from 

Stankiewicz & Hummel, 2002). 

2.4.3 Evidence for Hybrid Representations in the Brain 

As discussed in an earlier section (2.3), evidence from neuropsychological studies led to 

theories that proposed multiple representations of object shape (Humphreys & Riddoch, 

1984; Warrington & James, 1988; Warrington & Taylor, 1978). Recent neuropsychological 

evidence (Davidoff & Warrington, 1999,2001; Warrington & Davidoff, 2000) gives further 

support for the notion of a hybrid representation of shape in human object recognition. 

Davidoff and Warrington (1999,2001) tested patients with severe difficulties in recognising 

objects. They were extremely impaired at recognising object parts or "exploded" objects 
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(when parts were disconnected) but they could nevertheless name intact objects. Object 

recognition was also limited to familiar views. In terms of the hybrid model, their data could 

be interpreted to mean that the holistic route of these patient is intact, allowing them to 

recognise objects presented in intact familiar views, whereas their analytic route seemed to 

be impaired, preventing recognition of object parts or from unfamiliar views. 

Other neuropsychological studies also indicate that object information may be stored in a 

view-dependent as well as a view-invariant manner. Turnbull (1997) described two patients 

that showed a clear double dissociation with respect to object recognition and object 

orientation performances. One patient with a visuo-spatial disorder was unable to identify the 

upright canonical orientation of objects shown as line drawings, although she could correctly 

name the objects. A second patient with visual object agnosia was unable to name many 

objects but could establish the upright orientation even for objects that he could not name. 

Together with other reports of orientation agnosia (Turnbull, Beschin, & Della Sala, 1997; 

Turnbull, Laws, & McCarthy, 1995) these case studies seem to support the claim for the 

independence of determining object orientation and object identity. Turnbull (1997) 

concludes that object information may be processed in two routes: A view-invariant route 

permits recognition but not necessarily determining the orientation of an object, and a view­

dependent route that can by-pass the former description. 

Neurophysiological evidence also suggests that two types of representation are involved in 

object recognition. Recently, more and more studies report evidence for both view­

dependent and view-independent neurons. Booth and Rolls (Booth & Rolls, 1998) measured 

neuronal responses of IT cells in monkey brains to different views of familiar object. The 

majority of the visual neurons recorded were responsive to some views of some objects, as 

was observed in previous studies. A small subset of these neurons, however, were responsive 

to all views of particular objects. Booth and Rolls conclude that this finding provides 

evidence that these neurons were coding for objects rather than simply for individual views 

or visual features within the image. 

A number of studies seem to indicate that anterior areas along the ventral pathway are less 

sensitive to image transformations such as translation in the visual field and scaling as 

compared to changes in orientation or configuration (Grill-Spector et aI., 1999; Logothetis et 
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aI., 1995; Lueschow et aI., 1994). This finding indirectly supports the hybrid model's 

prediction that scaling and translation are compensated by both the time-consuming analytic 

and the fast holistic component. More direct support for a neuronal basis of a view­

dependent but size-independent representation comes from a recent fMRI study. 

Vuilleumier, Henson, Driver, and Dolan (Vuilleumier, Henson, Driver, & Dolan, 2002) used 

a repetition priming method presenting visual stimuli either with the same appearance or 

with changes in size, viewpoint or exemplar. Repetition of different exemplars with the same 

name affected only the left inferior frontal cortex whereas priming-induced decreases in 

activity of the right fusiform cortex depended on whether the objects were repeated with the 

same viewpoint, regardless of retinal image size. The decreases of activation found in the left 

fusiform were independent of both viewpoint and size. These findings strongly suggest that 

dissociable subsystems in ventral visual cortex maintain distinct view-dependent and view­

invariant object representations. 

Thus, in summary, although the hybrid model was driven by behavioural and computational 

motivations (Hummel, 1997) the neuropsychological and neurophysiological evidence seems 

to support the idea that representations mediating shape recognition in the brain rely on 

different processing systems. 

2.4.4 Visual Attention 

In this thesis, the formats used in object recognition and their dependence on attention will 

be studied following the hybrid model of shape recognition (Hummel, 2001; Hummel & 

Stankiewicz, 1996a). A brief review of the attention literature is therefore given here as far 

as it concerns the attentional paradigm and theoretical aspects relevant for the model. 

Attention has become a major area of research in cognitive psychology. Associated with 

attention are mainly the ideas of selection and capacity limits (Pashler, 1995). The former 

refers to selecting a particular stimulus from a variety of other stimuli (as a familiar voice at 

a party) for further processing, since our sensory systems are always confronted with more 

stimuli than is consciously noticed. The latter refers to the constraints of human information 

processing systems (such as sensory or motor systems) that allow only a limited amount of 

information or tasks to be processed simultaneously. In the capacity approach (Kahneman, 
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1973), attention is described as a limited mental resource that is essential for information 

processing and can be allocated flexibly to various sources of information. As such, this 

approach was primarily addressed in divided attention studies. In contrast, selection has been 

discussed typically within a theoretical framework about the selective aspects of attention. A 

general agreement among researchers appears to be that irrelevant (unattended) information 

is processed differently from relevant information. 

How are visual stimuli selected? According to location-based (sometimes termed space­

based) accounts, objects are selected for processing by directing attention towards locations 

in the visual field (Cave & Bichot, 1999). In contrast, object-based accounts proposed that 

attention may select from mental representations of objects rather than from their location in 

the environment (Baylis & Driver, 1992; Driver & Baylis, 1989; Duncan, 1984; Lavie & 

Driver, 1996; Vecera et aI., 2000). There is an ongoing debate about the role of space-based 

vs. object-based visual attention, which will not be repeated here (see Driver & Baylis, 

1998). Important for the experimental paradigm reported in this thesis is the former group 

because of the use of a spatial cue for attentional selection. 

It has been proposed that focused visual attention resembles a spotlight (Eriksen & Eriksen, 

1974). This metaphor implies that attention may work like a spotlight ofa torch in the dark 

across a region in the visual field. Attention can be moved within the visual field like a 

spotlight, and perceptual information is only processed if it falls within the "beam" of that 

spotlight. There have been variants of this idea, notably the zoom-lens model (Eriksen & St. 

James, 1986). This metaphor relates to the idea that the area (diameter) of focal attention can 

be increased or decreased dynamically. 

The important role of location in selective visual processing has been demonstrated by 

numerous studies with a variety of experimental paradigms (Eriksen & Hoffman, 1974; 

Posner, Snyder, & Davidson, 1980). These studies have shown that advance knowledge of 

stimulus location facilitates stimulus processing even in the absence of nontarget items. 

Nissen (1985) has found that when participants were required to report the location and 

shape of items defined by colour, correct shape responses depended on correct localisations. 

Nissen concluded that the localisation of items is required for the correct integration of their 

individual features (e. g., colour and shape). The participants in the study by Tsal and Lavie 
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(1988) were presented with circular arrays ofletters from which they had to report first a 

target specified by colour or by shape and then any other letters they could identify. The 

reported letters tended to be those adjacent to the previously seen target rather than those 

similar to the target in the cued property (e. g., other red letters). These and similar (Tsal & 

Lavie, 1993) findings suggest that the selective processing of targets is accomplished by 

attending to their locations. 

In general, current thinking about attention in vision presumes that in attention tasks some 

information is excluded on the basis oflocation (Pashler, 1995). The locus of this filtering is 

probably "early", prior to object recognition, but probably after some initial feature analysis. 

Treisman and Gelade (1980) addressed this issue by using a visual search task in which 

observers had to look for a target among distracters, which varied in the number of feature 

dimensions (e.g., only colour or orientation). Also, the absolute number of distracters was 

varied. Treisman and Gelade reported that targets defined by a unique salient colour (e.g., 

red among green) or orientation (e.g., vertical among horizontal) were apparently processed 

in parallel, as the set size of distracters did not affect performance. By contrast, search for 

specific conjunctions of the same orientations and colours (e.g., red vertical among green 

vertical and red horizontal, where the target is unique only in its combination of these 

features) depended on the set size. Thus, processing of stimuli defined by multiple feature 

dimensions appeared serial. According to Treisman and Gelade (1980), individual features 

(colour, orientation) can be extracted 'preattentively' and in parallel, whereas feature 

integration requires observers to serially attend to the location of each item in turn. Treisman 

and colleagues (Treisman, 1986; Treisman & Schmidt, 1982) subsequently produced further 

evidence for the feature integration theory. According to this theory, features can only be 

integrated by use of focused visual attention mediated by the parietal lobes (Treisman, 1998). 

There is a growing body of evidence in support ofTreisman's theory that a primary function 

of visual attention is to permit the dynamic binding of independent object attributes (Logan, 

1994; Luck & Beach, 1998; Luck & Vogel, 1997). In addition to behavioral evidence, there 

are supporting data from several studies concerned with the activation of parietal lobes 

which are known to playa role in attention (Ashbridge, Walsh, & Cowey, 1997; Corbetta, 

Shulman, Miezin, & Petersen, 1995; Driver & Mattingley, 1998). The Corbetta et al. (1995) 
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study showed distinctive activation of the parietal lobes during conjunction search in 

multiple element displays. A further striking demonstration of the role of attention for 

binding features used transcranial magnetic stimulation (Ashbridge et aI., 1997). 

Transcranial magnetic stimulation (TMS) is a non-invasive temporary 'lesion' technique, 

which is associated with detrimentally affecting attention when applied over the parietal 

visual cortex. Participants were performing single feature ("pop out") or conjunction visual 

search tasks. Although magnetic stimulation had no negative effect on the performance of 

pop-out search it did significantly increase reaction times during conjunction search. This 

finding indicates that attention is important for binding of visual attributes. 

The studies on the role of attention for binding naturally concern the analytic representation 

of the hybrid model. If attention is necessary to bind features into objects, the question arises 

whether ignored objects can be recognised? A mechanism would be needed to group the 

elements of an image into objects that can be recognised without attention as proposed in the 

holistic route of the hybrid model. One possibility is that visual information is parsed 

according to the Gestalt principles of organization before attention is allocated within a 

scene. For example, Moore and Egeth (1997) found that Gestalt grouping does occur without 

attention but that these grouped patterns may not be encoded in memory without attention. 

However, there is a debate about the nature of the stimuli processed without attention and 

how much visual information can be processed at different stages. 

There is little agreement on whether withholding attention results in the exclusion of 

irrelevant information from perception ("early selection" approach, see Treisman, 1969) or 

whether selective attention can affect only later processes, such as memory or responses 

("late selection" view, e.g., Duncan, 1980; see Lavie & Tsal, 1994, for a review on the late 

and early selection debate). Concerning the latter, an active inhibition view of selective 

attention has been proposed (e.g., Tipper, 1985; for a review, see Fox, 1995). According to 

this approach, perceptual processing is not limited to attended information. Both relevant and 

irrelevant information are processed but attention can suppress or inhibit responses to 

ignored stimuli. Evidence for this view comes from studies showing negative priming, which 

is the slowing down of responses to overlapping line drawings of objects that were 

previously ignored (e.g., Tipper, 1985). Further evidence for processing of ignored images 
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was demonstrated by Stankiewicz and colleagues (Stankiewicz & Hummel, 2002; 

Stankiewicz et aI., 1998) who showed positive priming for ignored objects that were 

spatially separated from the attended item in the prime display. 

The issue of the role of early vs. late selection will be revisited in the General Discussion. 

This review must be limited to those aspects of visual attention relevant for this investigation 

which are the formats of object recognition with and without attention, but not attentional 

mechanisms per se. In summary, important for the present study are the findings that 

location is a major determinant for attentional selection, that attention is crucial for binding 

features into objects, and that ignored objects can be processed to the level of identification 

in the visual system. 

These considerations show that object recognition studies need to investigate what types of 

representations are involved in object recognition in dependence of visual attention. 

Stankiewicz and his colleagues have used an attentional priming paradigm to test object 

invariance for mirror-reflected, scaled and translated images. However, as can be seen from 

Table 2, the model's predictions concerning the holistic representations for plane-rotated and 

depth-rotated images have not been tested. Moreover, it is not known whether the holistic 

representation is affected by changes in the global structure rather than parts. These topics 

are the motivation and main focus of this thesis and will be investigated with a short-term 

priming paradigm. Naming responses to previously attended and ignored objects will 

indicate whether the predictions hold for changes in viewpoint and overall configuration. 
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3. Chapter 3: Experiments on Priming for Attended and Ignored 

Images 

3.1 Rationale for the Use of the Priming Paradigm 

Common objects are usually identified at their basic level (see section 1.3.2). In the context 

of experimental studies the term recognition may not always capture the basic level category. 

Observers sometimes have to make old-new recognition judgements, same-different or 

match-to-sample judgements. These explicit recognition tasks require the participant to refer 

back to specific, previously studied objects. In contrast, implicit recognition tasks such as 

naming and object-possibility judgements do not require any such reference to a previously 

studied object (at least not to a specific exemplar of that class). In general naming tasks are 

considered as an adequate measure for basic-level recognition (Biederman & Gerhardstein, 

1993). To investigate the format of representations involved in basic-level object recognition 

Biederman and Gerhardstein (1993; 1995) used repetition priming for object naming. 

Repetition priming of recognition is the facilitation of recognising an item due to earlier 

exposure. 

Repetition priming has two main advantages. First, repetition priming is one of a number of 

examples of "implicit" memory, which may be robust in circumstances (e.g., short 

presentation times) in which explicit memory is absent or poor. Second, priming may 

transfer between different item formats or domains and can therefore be utilised to 

investigate the perceptual processes of object, face, and word recognition. Inferences about 

the nature of the representations involved can be made on the assumption that a visual 

stimulus changes the state of the recognition system. Subsequent presentation of the same or 

similar item benefits recognition performance to the extent that the same representational 

units or pathways become activated. If priming is reduced by a change in item format it may 

indicate that the changed feature is a component of the representational description (e.g., see 

Biederman & Cooper, 1992). Naming has been favoured in priming tasks over other tasks 

such as matching by some researchers because the demands on naming seem additive with 

the effects of perceptual change (Biederman & Cooper, 1992). Recently, Bruce and her 

colleagues (Bruce, Carson, Burton, & Ellis, 2000) have found that repetition priming with 
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naming tasks seems more sensitive to changes in perceptual properties of an item from study 

to test than other (semantic) tasks (such as deciding whether an object usually is found 

within of outside a house). 

Researchers including Biederman (e.g., Biederman & Gerhardstein, 1993) and Stankiewicz 

et al. (1998) have used the repetition priming paradigm with a naming task to tap the 

representations that exclusively mediate object identification. All but one of the experiments 

described below will use the short-term priming paradigm of Stankiewicz and his colleagues. 

3.2 Experiments 1-3: Priming of Intact and Split Objects 

3.2.1 Introduction 

In order to give a coherent account of analytic and holistic properties of object recognition, 

Hummel & Stankiewicz (1996a; Hummel, 2001) proposed a hybrid model of shape 

processing. The model generates both a holistic and an analytic representation of an attended 

image but only a holistic representation of an ignored image (see section 2.4.2). These two 

types of representation make independent contributions towards object recognition by 

providing alternative access to stored representations in long-term memory (L TM). To test 

their model, Stankiewicz et al. (1998) chose to investigate priming for mirror image 

reflections. The model predicts visual priming from the analytic representation, meaning that 

attended images will visually prime both themselves and their left-right reflections. The 

model also predicts a priming component from the holistic representation, which means that 

ignored images will prime themselves but not their reflections. The automatic holistic 

representation, acting independently of attention, allows the prediction of equal differences 

in priming across view changes for both attended and ignored conditions. Consequently, 

priming resulting from the analytic and holistic representations is additive. The predictions 

were tested and confirmed by Stankiewicz et al. (1998). However, these predictions are 

indirect in the sense that they are predictions about the effect of attention on priming across 

variations in viewpoint. Although view-based models of human object recognition may not 

have predicted the observed priming pattern, it is still possible that view-matching processes 

are involved. For example, the observed priming advantage for objects in the same view may 

be due to the fact that a different view has to be rotated to (or interpolated with) the 
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previously encountered view, and that attention is simply more effective for this process. The 

hybrid model's prediction is that the visual system will generate a holistic representation of 

shape in response to an ignored image, and an analytic representation in response to an 

attended image. Thus, instead of indirect predictions involving view changes, a more suitable 

investigation would involve the manipulation ofthe holistic properties of an image. 

Figure 8: Examples of intact and split images used in Experiments 1 - 3 (images were shown 

without frames). 

The first three experiments directly tested the model's predictions concerning analytic and 

holistic representations using the priming paradign1 of Stankiewicz et al. (1998). The critical 

experimental manipulation was based on the logic that analytic representations should be 

more robust to configural distortions (as when parts are misplaced relative to one another) 

than are holistic representations. For example, the split and intact images of a guitar and a 

horse in Figure 8 depict all of the same parts and many of the same spatial relations. As a 

result, an analytic representation of the split image will specify many ofthe same parts and 

relations as an analytic representation of the intact image. By contrast, the locations of all the 

specific image features (e.g., lines, vertices, etc.) differ between the intact and split versions 
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of the image. Consequently, a holistic representation of the split image is expected to have 

little or nothing in common with a holistic representation of its intact counterpart. These 

considerations suggest that a split image should visually prime its intact counterpart in an 

analytic (attended) representation of shape, but not in a holistic (ignored) representation. 

Experiment 1 investigated the role of attention in priming for split and intact object images. 

Participants named objects in pairs of prime-probe trials. The first trial in a pair served as a 

prime, and presented two object images of which only one was spatially pre-cued. The probe 

object was always presented as an intact image, and an intact or split version served either as 

the attended (cued) prime image, as the ignored prime, or was preceded by an image of a 

completely different object which the subject had not previously seen in the experiment 

(which served as a baseline). The hybrid holistic/analytic model predicts that intact images 

will prime themselves whether they are attended or not although priming should be 

substantially greater for attended images than ignored images (Stankiewicz et aI., 1998). 

Split images will prime their intact counterparts only when they are attended. Geon theory 

would predict equivalent priming for attended-split and for attended-intact images, but no 

priming for ignored images because binding processes necessary for structural descriptions 

are thought to depend on attention (Hummel & Biederman, 1992). View-based theories 

predict no or considerably reduced priming for attended-split images because the 

representational template has to be matched with a considerably changed image. View-based 

representations would also not necessarily predict priming in the ignored route (Olshausen, 

Anderson, & Van Essen, 1993), except with the assumption of a low-level matching process 

for identical images. 

Experiment 2 served to estimate what fraction of the priming observed in Experiment I was 

specifically visual (as opposed to name or concept priming). Experiment 3 tested whether 

priming for ignored images in Experiment 1 could be attributed to low-level visual 

representations (e.g., of the local features in an object's image) rather than holistic memory 

representations. On the former account, ignored split images should prime themselves as 

much as ignored intact images primed themselves. On the latter (hybrid model) account, only 

ignored intact images should prime themselves. 
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3.2.2 Experiment 1: Priming for Split and Intact Images 

3.2.2.1 Method 

Participants 

Forty-two native English speakers with normal or corrected-to-normal vision participated for 

credit in introductory psychology courses at the University of California, Los Angeles. 

Materials 

The experimental program was generated in E-Prime 1.0 (PSN). Black-and-white line 

drawings of 84 asymmetrical objects from the Snodgrass and Vanderwart (1980) set were 

displayed on a PC monitor. Response times were collected with a dynamic trigger 

microphone attached to an Interface Box. Participants sat approximately 90 cm from the 

display. The images were standardised in size to subtend 4.00 of visual angle. For each 

object a "split" version was created by using a 50% "offset" filter in Adobe Photoshop 5.5, 

reSUlting in images that appeared to be cut in two halves that were relocated to the opposite 

side ofthe original area (vertically or horizontally, depending on the main axis of the object). 

The manipulation did not alter the number or local configuration of any image features, 

except that some lines were necessarily broken at the location of the cut nor did it alter the 

total number of pixels in an image (see Figure 8). 

Procedure 

The experimental conditions in which objects appeared were counterbalanced across 

participants by placing each image into one of 14 clusters, each containing six images. Each 

cluster (and thus each image) was placed into one of seven conditions (attended-intact, 

attended-split, attended-not probed, ignored-intact, ignored-split, ignored-not probed, and 

unprimed) for any given participant, and all images appeared in all seven conditions equally 

often across participants. An image appeared in only one trial pair for any given participant. 

The ordering of the trials and the pairing of attended and ignored obj ects on prime trials were 

randomised for each participant. The participants read instructions, which they then 

paraphrased back to the experimenter. The experimental session began with 18 practice trials 

using a set of images different from the experimental set. After the practice trials, the 

participants were asked whether they had any questions. 
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The sequence of events in a trial is depicted in Figure 9. An unfilled circle remained in the 

centre of the screen until the participant pressed the space bar. The circle was then replaced 

with a fixation cross, which remained on the screen for 495 ms, followed by a blank white 

screen (for 30 ms). An attentional cueing square (4.5° of visual angle on a side) was then 

presented either to the left or right of the fixation cross, centred 4.0° from fixation. After 75 

ms, two object images were displayed simultaneously for 120 ms, with the attended image 

inside the square, and the unattended image centred 4.0° from fixation on the other side of 

the screen. Each prime image was either intact or split. After the images disappeared, a blank 

screen was shown for 30 ms, followed by a random-line pattern mask that covered the entire 

screen (15.6° of visual angle) for 495 ms. The entire prime display lasted less than 200 ms; a 

duration that is too short to permit a saccade to the cueing square or either object. The 

participant's task was to say the name of the cued (attended) object as quickly and as 

accurately as possible. Response times were recorded by the computer through a voice key 

attached to a microphone on the table. 

After the prime display, a blank screen was displayed for 1,995 ms, followed by a fixation 

cross (495 ms). Following a 30 ms blank screen, the probe image was displayed in the centre 

of the screen for 150 ms. The probe depicted either the attended object (attended conditions) 

or the ignored object (ignored conditions) or an object the participant had not seen 

previously in the experiment (unprimed baseline condition). The probe image was always the 

intact version. In total, 3,015 ms elapsed between the end of the prime display and the 

beginning of the probe display. The probe display was followed by a single pattern mask 

(4.6°) shown for 495 ms. The participant's task was to name the probe object as quickly and 

as accurately as possible. The computer then displayed the names of the attended prime and 

the probe object, as well as the probe response time. At the end of each trial-pair, the 

experimenter used the keyboard to record the participant's accuracy as well as voice key 

errors (i.e., when the voice key triggered erroneously). The participant could then initiate the 

next trial with a key press. 
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Figure 9: Sequence of displays in Experiment 1. 

3.2.2.2 Results 

-3s 

In all conditions, priming was calculated as the participant's mean response time (RT) in the 

unprimed (baseline) condition minus their mean RT in the corresponding experimental 

condition. Trials on which either the prime or probe responses were incorrect (12.63 %) were 

excluded from the statistical analysis, as were voice key errors (4.03 %). Voice key errors 

were defined as recorded response times under 300 ms or recordings in which a noise 

different from the participants voice triggered the microphone. A 2 (Attention: attended vs. 

ignored) x 2 (Configuration: intact vs. split) within-subjects analysis of variance (ANOVA) 
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revealed a reliable main effect of Attention, F (1, 41) = 167.35, P < .001, and Configuration, 

F (1, 41) = 18.61, P < .001, but the interaction between Attention and Configuration did not 

approach reliability, F (1, 41) < 1 (see Figure 10). No separate item analysis was necessary 

as objects were counterbalanced over subjects (for a discussion, see Raajimakers, 

Schrijnemakers, & Gremmen, 1999). Matched pairs t tests were conducted on each priming 

condition to determine which type of prime display caused savings in response time for the 

probe display (i.e., faster naming responses relative to unprimed probes). Priming was 

reliably greater than zero in the attended-intact, t (41) = 13.85, P < .001; attended-split, 

t (41) = 9.44, P < .001; and ignored-intact conditions, t (41) = 3.36, P < .01, but not in the 

ignored-split condition, t (41) < 1. A Friedman ANOV A over errors for probe trials showed 

no significant difference in the four priming conditions, Chi Sqr. (3) = 1.27, P > .73. There 

were no indications of a speed-accuracy trade-off in any condition. 

Experiment 1: 
Priming of Intact versus Split Images 
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Figure 10: Priming (baseline RT minus RT in each experimental condition) means and standard 

errors for Experiment 1 as a function of whether the prime image was (a) attended or ignored 

and (b) intact or split (n = 42). 

Attended Attended Ignored Ignored Unprimed 
Intact Split Intact Split 

% Errors (SE) 7.14 (1.80) 15.48 (2.69) 11.11 (2.10) 13.49 (2.62) 14.29 (1.97) 

Table 3: Mean error rates for Experiment 1 (standard error in parantheses). 
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3.2.2.3 Discussion 

The results of Experiment 1 are in line with previous studies that object recognition can be 

observed in the absence of attention (Tipper & Driver, 1988; Treisman & DeSchepper, 1996; 

Stankiewicz et aI., 1998). In particular, as predicted by the hybrid model, both attended and 

ignored intact images primed their intact counterparts, but split images primed their intact 

counterparts only when they (the split images) were attended. Ignored objects were primed 

only in the identical view, suggesting that the representation mediating recognition without 

attention is sensitive to manipulations that affect the holistic shape of the object. There was a 

reliable priming advantage for intact primes over split primes which was almost identical in 

both attended and ignored conditions (~50 ms). Thus, the effects of attention (attended vs. 

ignored) and configuration (intact vs. split) were strictly additive. These results strongly 

support the hypothesis that two qualitatively different representations of shape mediate 

priming in object recognition: an analytic representation that is relatively robust to configural 

distortions but requires attention, and a holistic representation that is sensitive to configural 

distortion but does not require attention. 

As Stankiewicz et aI. (1998) pointed out, ignored intact images primed themselves although 

the prime and probe images appeared in different locations of the visual field (left or right of 

fixation in the prime display and at fixation in the probe displays). Even for ignored images, 

priming was obtained despite translation across the visual field. Stankiewicz et aI. concluded 

that the intact-identical priming for ignored images does not simply reflect priming in an 

early representation oflocal (i.e., retinotopic) image features. That priming occurs despite 

location shifts from prime to probe display also suggests that the visual system may achieve 

invariance with translation even without attention. Stankiewicz and Hummel (2002) 

confirmed this invariance for ignored images with more systematic and larger translations 

across the visual field. 

An important limitation of Experiment 1 is that attention was confounded with naming 

because participants named the cued images and did not name the uncued images. It is 

possible, therefore, that all the observed priming for split images in the attended condition 

was simply name or concept priming. Thus, it could be that visual representations that 

mediate object recognition are completely image-specific, and only the name and concept are 
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invariant with configural changes. Experiment 2 was designed to test this possibility by 

investigating how much of the priming for attended split objects is name or concept priming, 

and how much is specifically visual priming. 

3.2.3 Experiment 2: Visual Priming for Split Images 

3.2.3.1 Introduction 

Experiment 1 necessarily confounded attention with naming; if and only if the participants 

attended to an image did they name it. Therefore, it could be argued, that all the priming in 

the attended conditions derived from associative or name priming. Previous research 

(Stankiewicz et aI., 1998) has shown that the priming from attended mirror images contained 

a large visual component but this is not necessarily due to the activation of an analytic 

representation. It is possible that the visual priming across view changes in their experiment 

was achieved by the mental rotation of a holistic representation (see Tarr & Pinker, 1990). 

However, the distorted configuration of split images should not provide sufficient visual 

similarity to promote priming from any holistic processing. Thus, demonstrating visual 

priming for split images would provide more direct evidence for a strictly analytic visual 

component in the hybrid model. 

Experiment 2 was designed to estimate what fraction of the priming observed in Experiment 

1 was due to visual as opposed to associative and/or name processing in the attended 

condition. To this end, the identical-image condition of Experiment 1 was replaced with 

objects having the same basic-level name as the corresponding probe object, but with a 

different shape (same-name-different-exemplar - SNDE). For example, if a jumbo jet (basic 

level name "aeroplane") served as a probe object, then Experiment 2 presented an intact 

image of a small private plane ("aeroplane") in the SNDE prime condition (instead of an 

identical intact jumbo jet), and a split version of the image of a jumbo jet in the split 

conditions. If any of the priming observed for attended objects in the split condition in 

Experiment 2 is specifically visual, then more priming with split image (jumbo jet) primes 

than with SNDE (private plane) primes is expected. By contrast, if all the priming observed 

with split images in Experiment 1 was simply name or concept priming, then the SNDE 

images should prime as much as (or more than) the split images (Biederman & Cooper, 

1991a) 
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3.2.3.2 Method 

Participants 

Forty-two native English speakers with normal or corrected-to-normal vision participated for 

credit in introductory psychology courses at the University of California, Los Angeles, and at 

Goldsmiths' College University of London. 

Materials 

The Experiment used a set of 84 objects in 42 SNDE pairs. Half were taken from the 

Snodgrass and Vanderwart (1980) set used in Experiment 1, and the corresponding SNDE 

exemplars were line drawings of similar style. 

Procedure 

The conditions in Experiment 2 were identical to those of Experiment 1 except that the 

identical image condition was replaced by the SNDE condition. In the SNDE condition, each 

prime image was paired with an intact image of a different object with the same name (rather 

than being paired with itself, as in Experiment 1). Each SNDE object appeared equally often 

in each of the seven probe conditions. 

3.2.3.3 Results 

Trials in which either the prime or probe were named incorrectly were excluded (19.9 %), as 

were voice key errors (3.9 %). Figure 11 shows the priming results in each condition. A 2 

(Attention: attended vs. ignored) x 2 (Prime Type: SNDE vs. split image) within-subjects 

analysis of variance (ANOV A) revealed a reliable main effect of Attention, F (1, 41) 

= 13.63, p < .001, but only a marginally significant effect of Prime Type, F (1, 41) = 3.45, 

p = .071. The interaction between Attention and Prime Type was reliable, F (1, 41) = 4.73, 

P < .05. Matched pairs t tests showed that the difference between the attended-SNDE and 

attended-split conditions was statistically reliable, t (41) = 3.13, P < .01, but the difference 

between the ignored-SNDE and ignored-split conditions was not, t (41) < 1. A Friedman 

ANOV A on errors for probe trials showed no significant difference in the four priming 

conditions, Chi Sqr. (3) = 6.11, P > .10. 

Matched pairs t tests were conducted on each priming condition to determine which type of 

prime display caused savings in RT for the probe display. Priming was reliably greater than 
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zero in the attended-SNDE, t (41) = 2.31, p < .05; attended-split, t (41) = 5.53, p < .01, but 

neither in the ignored-SNDE condition, t (41) < 1, nor in the ignored-split condition, t (41) < 

1. Thus, SNDE and split images primed the corresponding probe image when attended, but 

not when ignored. 

Experiment 2: 
Same Name Different Shape Control 
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Figure 11: Priming means in ms and standard errors for Experiment 2 as a function of whether 

the prime object was attended or ignored and whether it was a same-name-different exemplar 

(SNDE) image or as a split image (n = 42). 

Attended Attend. Split 
SNDE 

% Errors (SE) 18.25 (3.45) 23.02 (3.85) 

Ignored 
SNDE 

20.63 (3.93) 

Ignored Unprimed 
Split 

14.29 (3.62) 23.41 (2.96) 

Table 4: Mean error rates for Experiment 2 (standard error in parantheses). 

3.2.3.4 Discussion 

An intact probe was primed more by an attended split image than by an attended intact 

different exemplar with the same name. Therefore, the results of Experiment 2 demonstrated 

that a substantial fraction of the priming for attended split images was specifically visual and 

not attributable solely to the same name or concept. Moreover, the visual priming obtained 

for split images constitutes substantial evidence that the recognition of attended images is at 

least partly mediated by an analytic representation because a strictly view based (holistic) 

representation should only be activated by an intact view (Hummel, 2000). 
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Experiment 2 found no priming in either of the ignored conditions. It therefore not only 

replicated the lack of priming for ignored split images in Experiment 1 but also produced no 

priming that was reliably greater than zero for SNDE prime images (replicating Stankiewicz 

et aI., 1998; Experiment 2). These last results are in contrast to the findings of Tipper (1985) 

from a negative priming paradigm in that they provide no evidence for processing of 

unattended images to a semantic level of representation. This point will be discussed in a 

later section (4.4.1). 

3.2.4 Experiment 3: Priming for Identical Split and Intact Images 

3.2.4.1 Introduction 

Experiments 1 and 2 together demonstrated visual priming for intact and split images in the 

attended conditions, but only intact images were primed in the ignored conditions. This 

pattern of priming is expected on the account that the visual system generates holistic 

representations of ignored images and analytic representations of attended images (Hummel, 

2001; Hummel & Stankiewicz, 1996a). However, an alternative interpretation of the results 

of Experiments 1 and 2 is possible. It could simply be that non-identical images prime less 

than identical images and that ignored images prime less than attended images. Together, 

these effects could conspire to yield an absence of priming from ignored split images to their 

intact counterparts. Such an alternative interpretation would imply that the priming 

advantage for identical images compared to split images was due to simple low-level 

priming rather than the result ofa shape representation matches (see Bartram, 1976; Ellis & 

Allport, 1986; Ellis et aI., 1989). Although such a low-level priming account is challenged 

by the results of Stankiewicz and Hummel (2002), who showed that priming for ignored 

images is invariant with translation and scale (i.e., ignored images can prime non-identical 

versions of themselves), it cannot be ruled out based only on the results of Experiments 1 

and 2. 

Experiment 3 was designed to establish whether the results of Experiments 1 and 2 simply 

reflect a general decrease of priming for ignored non-identical images, or whether they 

reflect a reliance on holistic processing for ignored images as predicted by the hybrid model 

(Hummel, 2001). The logic of Experiment 3 is based on an assumption about the locus of the 
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visual priming observed in these and other experiments. Priming is a form of learning, so one 

likely locus of visual priming is the point where visual representations of object shape are 

matched to representations stored in LTM (Biederman & Cooper, 1991a; Cooper, Biederman 

& Hummel, 1992; Hummel, 2001). In the hybrid model, priming is predicted between layers 

5 and 6 (Hummel, 2001). Consequently, all priming, including that for an ignored object 

image, must reflect activation of pre-existing (stored) representations in LTM. If an image 

does not have a matching representation in L TM, then ignoring that image on one occasion 

should not even prime recognition of the very same image on a subsequent occasion. 

Consistent with this reasoning, Stankiewicz (1997) showed that ignoring an upside-down 

image on one trial does not prime recognition of the very same (i.e., still upside-down) 

image on the next trial. 

Applied to the current paradigm, the logic is as follows: If the patterns of results of 

Experiments 1 and 2 for ignored images reflect the role of holistic processing, and if objects 

are encoded in LTM in an intact (rather than split) format, then ignoring a split image on one 

occasion should not prime even the very same image on a subsequent occasion. At the same 

time, as predicted by the hybrid model, attending to a split image on one trial should permit 

the encoding-and therefore priming---of that image. However, if the results of Experiments 

1 and 2 are due to the alternative "identical primes more and attended primes more" account, 

then ignoring a split image trial should prime recognition of that image on a subsequent trial. 

The design of Experiment 3 was identical to that of Experiment 1 with the exception that the 

probe image following an intact or split image was correspondingly either intact or split as 

well. Priming for both intact and split images was measured with regard to their respective 

baselines. The alternative hypothesis based on low-level visual similarity predicts visual 

priming across configurations; thus, ignored split images should prime themselves as much 

as ignored intact images prime themselves. By contrast, the hybrid model predicts that intact 

ignored images should prime themselves whereas ignored split images should not. 
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3.2.4.2 Method 

Participants 

Thirty-six English speakers with normal or corrected-to-normal vision participated for 

money or for credit in introductory psychology courses at Goldsmiths' College University of 

London. 

Materials 

The experiment used a set of 84 objects; 36 were used in prime-probe target pairs, the rest 

were fillers for attended and ignored primes. The items were taken from the Snodgrass and 

Yanderwart (1980) set and were similar to those used in Experiment 1. 

Procedure 

The procedure was equivalent to that of Experiment 1 except that in half the conditions the 

probe was a split image. The configuration (split vs. intact) of the probe image was always 

the same as the configuration of the prime image of interest (attended vs. ignored). 

3.2.4.3 Results 

Trials in which either the prime or probe were named incorrectly were excluded (15.7%), 

together with voice key errors (4.9 %). Priming was calculated in the same way as in 

Experiment 1 except that two different baseline conditions (unprimed-split and unprimed­

intact) were used to calculate the corresponding priming for split and for intact conditions. 

The mean response time for the baseline intact configuration was 830 ms (SE 25) and 887 

ms (SE 24) for the split configuration, a significant difference t (35) = 2.28, p <.05. The 

mean error rate for the unprimed intact images was 12.04 % (SE 2.36) and 19.91 % (SE 

2.56) for the baseline split images, a significant difference, t (35) = 2.22, p <.05. 

Figure 12 depicts the amount of priming observed in each condition. A 2 (Attention: 

attended vs. ignored) x 2 (Configuration: intact vs. split) within-subjects analysis of variance 

(ANOYA) revealed a reliable main effect of Attention, F (1, 35) = 119.42, p <.001, but not 

Configuration, F (1,35) < 1. The interaction between Attention and Configuration was 

reliable, F (1,35) = 12.54, P < 0.01. The difference between the ignored-intact and ignored-
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split conditions was statistically reliable, t (3S) = 2.10, P < .OS, but not the difference 

between attended-intact and attended-split and conditions, t (3S) < 1. 

Further matched pairs t tests were also conducted on each priming condition to determine 

which type of prime display caused savings in response time for the probe display (i.e., faster 

naming responses relative to unprimed probes). Priming was reliably greater than zero in the 

attended-intact, t (3S) = 7.67, p < .001; attended-split, t (3S) = 11.93, P < .001; and ignored-

intact conditions, t (3S) = 2.81, P < .01, but was not reliably greater than zero in the ignored-

split condition, t (3S) < 1. 

A Friedman ANOV A for errors in probe trials was performed. There was a significant 

difference between the four priming conditions, Chi Sqr. (3) = 11.41, P < .01. A Wilcoxon 

Rank test revealed that the attended-intact conditions elicited significantly fewer errors than 

the attended split-condition, z = 2.48, P < .OS, the ignored-intact condition, z = 3.01, P < .01, 

and the ignored-split condition, z = 2.32, P < .OS. 

Experiment 3: 
Priming for Split and Intact Prime and Probe Images 
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Figure 12: Priming means in ms and standard errors for Experiment 3 as a function of whether 

the prime object was attended or ignored and whether both prime and probe were split or intact 

(n =36). 
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% Errors (SE) 

Attended 
Intact 

7.87 (1.81) 

Attend. Ignored 
Split Intact 

19.90 (3.17) 17.13 (2.70) 

Ignored 
Split 

17.13 (3.01) 

Unprimed 
Intact 

12.04 (2.36) 

Table 5: Mean error rates for Experiment 3 (standard error in parantheses). 

Unprimed 
Split 

19.91 (2.56) 

Additional ANOV As on errors and latencies including unprimed conditions were performed 

to check for any speed accuracy trade-off. A 3 (Primetype: attended, ignored, unprimed) by 2 

(Configuration: intact vs. split) ANOVA on error rates (excluding voice key errors) revealed 

only a reliable main effect of Configuration, F (1, 35) = 12.87, p < .01 with error rates for 

split images higher than for intact images. There was a trend towards an interaction between 

Attention and Configuration with a greater difference in error rates for the attended 

conditions F (2, 70) = 3.09, p = .052. A 3 (Primetype: attended, ignored, unprimed) by 2 

(Configuration: intact vs. split) ANOV A on probe latencies revealed a main effect of 

Primetype, F (2, 70) = 94.71, p < .001, a main effect of Configuration, F (1, 35) = 29.83, 

p < .001, and a significant interaction, F (2, 70) = 5.54, p < .01. Latencies for split images 

compared to intact images were longer for both attended, t (35) = 2.33, p < .05, and 

unprimed conditions, t (35) = 2.28, p < .05, and somewhat longer still in the ignored 

conditions, t (35) = 5.63, p < .001. There was no evidence for a speed accuracy trade-off in 

the latency data indicating that observers responded to split images faster while making more 

errors. In general, higher error rates were accompanied by higher response times. 

3.2.4.4 Discussion 

Experiment 3 showed that a split image primed itself when attended but not when ignored, 

whereas an intact image primed itself in both conditions. Critically in the ignored conditions 

priming was found only for intact images but not for split images. Experiment 3 thus 

demonstrated that the lack of priming for ignored split images in Experiment 1 cannot be 

attributed to a general decrease of priming in response to split images. The priming pattern is 

predictable from the hybrid model and in contrast to the alternative hypothesis that would 

have predicted equal priming in both ignored conditions. 

The pattern of priming for attended conditions differs somewhat from that of Experiment 1. 

When attended, a split image primed itself just as much as an intact image primed itself. This 

result could seem surprising, especially given the failure of ignored split images to prime 
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themselves at all. A possible interpretation could have been that the equivalent priming for 

attended split and intact conditions is due to a speed-accuracy trade-off because participants 

risk more errors while responding as fast to split images as to intact images. However, the 

analysis of error rates and latencies suggests that this is not the case. Alternatively, it is also 

possible that because split images are harder to recognise, they profit more from priming 

than do intact images. This interpretation is supported by the analyses of error rates and 

probe latencies; overall, there were both more errors and longer latencies for split images. 

Moreover, Srinivas (1993) found similar effects with more priming for unusual 

(foreshortened) than usual (canonical) views. 

Whatever the reason for equivalent priming in the attended conditions, the main result of this 

experiment comes from the difference in priming for the ignored conditions. Ignored split 

images do not prime themselves while ignored intact images do prime their identical 

counterpart. Thus, it is not simply the case that identical ignored images necessarily enjoy 

greater priming than non-identical ones, and attended images enjoy more priming than 

ignored ones. Rather, the pattern of priming characterising ignored images differs 

qualitatively from that characterising attended images. Namely, attended images prime 

themselves, translated, scaled, reflected and split versions of themselves, whereas ignored 

images prime themselves, translated and scaled versions of themselves, but not reflections or 

split versions of themselves. Experiment 3 clearly suggests that the priming pattern observed 

in Experiment 1 cannot be explained by a simple "more priming for identical images" (low­

level processing) account. 

3.2.5 General Discussion of Experiments 1-3 

Experiment 1 showed that attending to either an intact or split image primed its intact 

version. However, whereas ignoring a split image did not prime its intact version, an ignored 

intact image did prime itself. Experiment 2 demonstrated that a substantial fraction (at least 

80 ms) of the observed priming for attended objects was specifically visual (rather than 

simply name or concept priming). Experiment 3 showed that ignored split images did not 

prime themselves while ignored intact images did. These findings strongly suggest that, as 

predicted by the hybrid analytic/holistic model of Hummel and Stankiewicz (1996a; 
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Hummel, 2001), the visual system represents attended images both analytically and 

holistically, and represents ignored images only holistically. 

The interpretation of Experiments 1 to 3 rests on the assumption that splitting an image will 

seriously disrupt holistic processing, but not substantially affect the structural description 

representation. Cave and Kosslyn (1993) tested observers on their performance with intact 

versus non-intact images from the Snodgrass and Vanderwart set. Non-intact images were 

created by either removing "natural" parts as assessed prior to the studies (e.g., the handle of 

a desktop phone, or the arm of a pair of glasses), by disconnecting the image along natural 

part boundaries, or disconnecting the image "unnaturally" (i.e. not parsing at part 

boundaries). Furthermore, both fragment types of disconnected images could be scrambled 

randomly on the page so that their spatial relations were perturbed relative to the original 

image and their merely disconnected versions. Cave and Kosslyn found that non-intact 

images were generally named more slowly than intact images. The performance for non­

intact images did not depend on how the images were split when participants had 1 s to 

recognise an object. However, with presentation times of only 200 ms, images with 

scrambled relations of parts were harder to identify than images that were merely 

disconnected or those that lacked a certain part. Also, unnaturally parsed images with 

scrambled relations were harder to identify than naturally parsed and scrambled images in 

the 200 ms condition. Thus, the pattern of these results confirms the assumption that it does 

not matter so much how the holistic properties of an image are eliminated (part-removal or 

disconnection, and presumably, splitting) as long as the spatial relations between the parts 

are still intact. Furthermore, spatial relations among parts do matter when processing 

capacity is limited (shorter presentation time), as does the nature of parsing (natural vs. 

unnatural). Cave and Kosslyn interpreted their results as evidence that the participants only 

processed parts and spatial relations when processing resources are limited. Because 

performance was equally bad for all non-intact images in the Is condition, the authors 

conjectured that their participants used parts-based processing as a "fallback strategy". In 

terms of the hybrid model, the conclusion would be that parts and relations are always 

processed but that the disruption of parts-based processing is only evident when capacity is 

limited (i.e. only 200 ms for recognition) and attentional binding fails. When observers had 
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1 s to identify an object, there was enough time to establish temporal binding even among 

parts of disconnected and scrambled images. The holistic representation, however, was 

always disrupted when parts of an object were disconnected, which caused longer 

recognition times. In fact, Cave and Kosslyn's data seem to fit perfectly well with the 

predictions of the hybrid model. 

The experiments presented here have important implications for object recognition theories 

in general and for the hybrid model in particular. The findings strongly suggest that both 

analytic and holistic representations work in parallel rather than in a serial manner. It is not 

simply a matter of "early" priming for ignored images and "early and late" priming for 

attended images. Such a serial model can in principle account for the short-term priming 

effects observed by Stankiewicz et. al. (1998), where the finding ofless priming after a 

change in viewpoint (left-right reflection) was associated with presenting non-identical 

rather than identical images in prime and probe trials. However, such a serial account can not 

explain the priming effects observed in Experiment 3. Identical images do not necessarily 

prime themselves when ignored; they need to be holistic representations. At the same time, if 

they are attended, split images prime themselves and their intact versions. Thus, both holistic 

and analytic representations can make contact with object memory independently of each 

other. 

Split images allowed a more direct test of whether processing involves analytic 

representations because in contrast to left-right reflections they do not permit the holistic 

processing of an image. Nevertheless, one of the most striking aspects of the findings 

presented here is that the results of Experiment 1 (Figure 10) are nearly an exact numerical 

replication of the findings of Stankiewicz et al. (1998, Experiment 1), who used left-right 

reflections rather than split images (see Figure 13). In both experiments, identical images 

enjoyed a priming advantage of approximately 50 ms over non-identical (i.e., split or 

reflected) images in both the attended and ignored conditions. The fact that configural 

distortions (splitting an image) and left-right reflection have such similar effects on attended 

and unattended images suggests that similar mechanisms are at work in both cases. Namely, 

attention permits the visual system to generate an analytic representation robust to both 

configural distortions and left-right reflection, whereas in the absence of attention, object 
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recognition must rely on holistic representations that are robust to neither of these 

manipulations. 

The use of split images had a further advantage in allowing us to establish the locus at which 

priming of ignored images manifests itself. A split image, when it appears on a prime trial, 

necessarily depicts all the same features as on the probe trial (albeit at different locations in 

the visual field), and represents the same object shape. But in spite of this equivalence, split 

images did not prime themselves when they were ignored in Experiment 3. The data 

presented here suggest that the locus for the observed priming of ignored intact images does 

not reside in the representation of image features, or even in the representation of object 

shape. Split images do not have pre-existing holistic representations in LTM - a reasonable 

assumption given that participants have probably not spent time viewing split images of 

objects. Therefore, when a split image is ignored, the resulting holistic representation of its 

shape simply has nothing to prime in LTM (see also Stankiewicz, 1997). By contrast, an 

intact image presumably does have a pre-existing holistic representation in LTM provided it 

depicts the object in a familiar view (Hummel & Stankiewicz, 1996a). As a result, the 

holistic representation generated by an ignored intact image did have something to prime, 

hence the approximately 50 ms of priming for intact ignored images. In addition, the results 

of Experiment 2, which showed that an ignored image did not prime a different member of 

the same basic-level category, suggest that priming for ignored images does not reside at the 

level of concepts or object names. Together, these results suggest that the priming resides at 

the interface between shape perception and object memory as proposed by Cooper, 

Biederman and Hummel (1992). 
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Experiment 1 : 
Spatially Separate Prime Displays 

300.--------------------------------, 

250 

(;)200 

S150 
tn 
c: .- 100 
E 
.~ 

a.. 50 

o 

• Identical 

D LR Reflection 

-50~------------------------------~ 
ATTENDED IGNORED 

Figure 13: Priming means in ms and standard errors for Stankiewicz et al.'s (1998) Experiment 

1 as a function of whether the object was attended or ignored and whether the object was 

identical to the prime image or a left- right (LR) reflection of the prime (adapted from 

Stankiewicz et al. 1998). 

Experiments 1 to 3 showed that images with a configural distortion still yield priming effects 

when attended, but not when ignored, indicating that two qualitatively different 

representations are involved in object recognition. However, much of the debate in recent 

years has centred around the question of how the visual system achieves object constancy 

across changes in viewpoint (Biederman & Gerhardstein, 1993; Tarr & Bulthoff, 1995). As 

outlined in the introduction, competing object recognition theories proposed different 

mechanisms to achieve object constancy across view changes. Therefore, the following 

experiments will test whether the hybrid model can account for the properties of human 

recognition concerning orientation changes. Experiment 4 to 6 will be concerned with plane 

rotations, and Experiments 7 to 9 will investigate priming after depth-rotations. 
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3.3 Experiments 4-6: Priming of Upright and Rotated Objects 

3.3.1 Introduction 

Experiments 1 to 3 tested the predictions of the hybrid model with intact and split images to 

distinguish between holistic versus analytic processing. The results showed that images with 

a configural distortion still visually primed an intact image when attended, but not when 

ignored, indicating that two qualitatively different representations are involved in object 

recognition. The question now arises whether the effects of priming predicted by the hybrid 

model can account for view changes in the picture plane. Viewpoint-dependent theories of 

object recognition hold that representations of familiar objects are stored in memory in a 

single canonical view (Palmer, Rosch, & Chase, 1981; Ullman, 1989) or in multiple views 

(Bulthoff & Edelman, 1992; Tarr, 1995; Tarr & Pinker, 1989). Objects in unfamiliar or novel 

views are recognised by normalising them to an upright or familiar view (Tarr & Pinker, 

1989) or by using mathematical interpolation to determine whether a given image is a 

"legal" projection of a familiar shape (e.g., Poggio & Edelman, 1990). 

Both view-based and structural description accounts of object recognition predict 

considerable performance costs for recognition of plane-rotated images (Hummel & 

Biederman, 1992). For example, Tarr and Pinker (1989) assume an analogue mental rotation 

process to normalise a misoriented object to its upright position. The time to normalise an 

object is assumed to be a function of the degree of its misorientation in the picture plane 

which explains the linear increases in response times. Hummel and Biederman (1992), 

however, claim that this pattern of view-dependent performance could be a result of a 

mismatch between perceived and stored part structure. For example, when a coffee mug is 

rotated 90° in the picture plane, the handle appears below-of instead of "side-attached" to the 

body. The visual system still recognises the object because the units coding the critical parts 

of the mug description are activated, but recognition is more time consuming because of the 

compensation necessary for the non-matching of units coding the relative spatial 

arrangements. Thus, the mismatch between perceived and stored spatial relations affects 

identification because the visual system needs time to correct this structural perturbation. 

According to Hummel and Biederman (1992), the greater the angular disorientation in the 
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picture plane the more part relations are disturbed; this causes the linear increases in 

response performance. We will return to this point in a later section. 

In their critical study with primed mirror images, Stankiewicz et al. (1998) showed 

viewpoint constancy in the attended component versus viewpoint sensitivity in the ignored 

component. However, the particular viewpoint manipulation of left-right reflection is special 

(Murray, 1997; Rollenhagen & Olson, 2000; Warrington & Davidoff, 2000) and maybe 

interpreted as 2D (flip) or 3D (rotation) manipulations of its original. Mirror-image 

equivalence may not be the same as viewpoint invariance because for example, neurons 

responding best to views that are mirror images of objects may respond differently to other 

views (Logothetis et aI., 1995). The principal aim of the Experiments 4 to 6 is to generalise 

the model's predictions to objects that are rotated in the picture plane. An immediate concern 

is that, unlike for mirror images, rotated versions of the objects normally employed in object 

recognition suffer substantial recognition costs when rotated. Differences in baseline 

responding could promote difficulties in assessing priming (see Experiment 3). Fortunately, 

recognition costs may not be associated with all types of objects (Vannucci & Viggiano, 

2000). 

When observers rated the goodness of views for common objects, one cluster - termed 

"poly-oriented" objects - did not yield a preferred "upright" orientation (Verfaillie & 

Boutsen, 1995). The consequent distinction between base (objects with a preferred upright) 

and no-base objects has been found to have importance for both behavioural (Vanucci & 

Viggiano, 2000) and neuropsychological (Davidoff & Warrington, 1999) investigations of 

object orientation. In particular, no-base objects can be completely insensitive to orientation 

and no baseline naming differences would be predicted. Experiment 4 is therefore conducted 

to test whether images of no-base objects elicit equivalent naming latencies in different 

orientations in the picture plane, whereas objects with a definite base should incur 

recognition costs after these manipulations. In Experiments 5 and 6, the predictions of the 

hybrid model for plane-rotated objects are tested by using the short-term prime probe 

paradigm of Stankiewicz et al. (1998). 
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3.3.2 Experiment 4: Naming of Objects Rotated in the Picture Plane 

3.3.2.1 Introduction 

Experiment 4 aims to extend the findings ofVanucci and Viggiano (2000) that object 

decision depended on the degree of plane rotation but only for animals and inanimate objects 

with a definite base (e.g., a house). Objects without a definite base (e.g., hammer) were 

decided upon equally well at all orientations. The aim of Experiment 4 is to verify that the 

same pattern of results will hold for the speeded naming tasks to be used in the next studies. 

Moreover, in Vannucci and Viggiano (2000), insufficient account was given to the matching 

of base and no-base object sets on familiarity and visual complexity; both might be argued to 

have affected the pattern of performance. Nevertheless, even after more comprehensive 

matching, it is predicted that recognition latencies for animals and objects with a definite 

base will increase with rotation away from the canonical (upright) view and no-base objects 

will be identified equally well from all orientations. This pattern is predicted by most 

theories of object recognition that rely on stored views but also by structural description 

theories (see Hummel & Biederman, 1992). Given this prediction turns out to be correct, the 

distinction of no-base and base objects will be employed in the short-term priming paradigm. 

3.3.2.2 Method 

Participants 

Twenty-nine native English speakers with normal or corrected-to-normal vision participated 

for credit in introductory psychology courses at Goldsmiths' College University of London. 

Materials 

Three subsets of24 objects each (animals, base objects, and no-base objects) were taken 

from the Snodgrass and Vanderwart (1980) set. The base and no-base object subsets were 

matched for familiarity and visual complexity (means: 3.75 and 2.64 vs. 3.69 and 2.77). The 

means for familiarity and visual complexity of the animal subset were 2.69 and 3.70, highly 

significantly different from the former two subsets (p < .001). For each object, the standard 

view (as obtained from the original set) was assigned as the 0° view. Counter-clockwise 

rotations in the picture plane resulted in 60° and 120° orientations for each object (see Figure 

14). 
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/ 
Figure 14: Examples of object images used in Experiment 4. 

Procedure 

The allocation of objects to the experimental conditions was randomised for each participant. 

Thus, there were 8 different objects in each of the three object sets for each of the three 

orientation conditions (0°,60°, and 120°) constituting a total of 72 trials per participant. 

The participants read instructions after which they paraphrased them back to the 

experimenter. After four practice trials with objects different from the experimental set 

participants were asked if they had any questions. Each subsequent test trial was initiated by 

the participant. A trial began with an unfilled circle (subtending 0.032° of visual angle) in the 

centre of the screen that was replaced by the participant's key-press with a fixation cross for 

495 ms. An object (subtending 4.57° of visual angle) was then shown in the centre of the 

screen for 195 ms followed by a single pattern mask for 495 ms. The participant's task was 

to name the probe as quickly and as accurately as possible. After the response, a feedback 

display with the name of the object and the response time was shown. At the end of each 

trial, the experimenter used the keyboard to record the participant's accuracy and any voice 

key errors. 
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3.3.2.3 Results 

The overall error rate was 6.32 % (including voice key errors). Response times for correct 

trials and error rates were submitted to a 3 (Object type: animals vs. base vs. no-base) by 3 

(Rotation: 0° vs. 60° vs. 120°) ANOV A. For latencies, there were significant effects of 

Object type, F (2,56) = 33.41, p < 0.001, Rotation, F (2,56) = 21.84, P < 0.001, as well as 

for the interaction, F (4, 112) = 4.15, P < .01 (see Figure 15). A similar pattern was found for 

an ANOV A over errors. Significant effects were again found for object type, F (2, 

56) = 15.75, P < 0.001; rotation, F (2,56) = 12.06, P < 0.001, and the interaction, F (4, 

112) = 9.07, P < .001. 

Experiment 4: 
Naming of Plane Rotated Objects 
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Figure 15: Response time means and standard errors for Experiment 4 as a function of the 

degree of rotation in the picture plane and the type of objects (n=29). 

% Errors (SE) Animals Base Objects No Base Objects 

0° 3.88 (1.26) 2.59 (1.14) 2.59 (1.14) 

60° 6.03 (1.71) 4.74 (1.44) 2.59 (0.96) 

120° 17.24 (2.51) 8.19 (1.99) 0.43 (0.04) 

Table 6: Mean error rates for Experiment 4 (standard error in parantheses). 

Concerning latencies, post-hoc comparisons using Tukey's HSD test revealed that, for 

animals, the increase in response times from 0° compared to 120° rotation was significant (p 

< . 01). Similar analyses revealed that, for base objects, the differences between 0° and 60° 
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(p <.05) and between 0° and 120° (p < .001) were significant. For no-base objects, however, 

there were no conditions in which the differences even approached significance (p > .05). 

Error rates were small and post-hoc comparisons revealed significant effects only for 

animals. There were significant differences between 600 and 120° (p < .001) and between 0° 

and 1200 conditions (p < .001). For the other two object types, no significant differences 

were found for any other comparison (p > .05). 

3.3.2.4 Discussion 

Experiment 4 clearly demonstrated that orientation change in the picture plane had 

differential effects on base and no-base objects. It was only objects with a definite base that 

incurred increasing recognition performance costs when rotated. Even though animals could 

not be matched for familiarity and visual complexity and were, in general, harder to identify, 

they showed the same pattern of increasing response times and error rates as the other base 

objects. However, no-base objects were equally recognisable in all picture plane orientations. 

Thus, the present results extend the findings of Vannucci and Viggiano (2000) with object 

decision to the current object naming task. The results for base objects are also very similar 

to those for naming artefacts and natural objects with a distinctive top and bottom in 

Experiment 1 of Dickerson and Humphreys (1999). 

The results of Experiment 4 do not distinguish between structural description and multiple 

views accounts of object recognition. They would be predicted from the multiple views 

account because objects that are seen often from different viewpoints would be stored in a 

like manner (Tarr & Pinker, 1989). Hence, recognition latencies would be equivalent over 

the range of stored views for no-base objects, because they are arguably encountered in a 

variety of orientations. In contrast, structural description accounts would explain the results 

in terms of different spatial relations used for base and no-base objects (Hummel & 

Biederman, 1992). In contrast to base objects or animals the parts of objects without a 

definite base are not coded in terms of spatial relations such as "on-top-of' or "below-of'. 

Rather, parts of objects like a hammer or scissors may be described as being "side-attached", 

which is less disturbed when an object is rotated in the picture plane. Both multiple views 

and structural description accounts predict response time costs for rotated base objects and 

animals. 
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The goal of Experiment 4 was not to distinguish between view-based accounts and structural 

description theories for object constancy over plane rotations. Rather, the aim was to verify 

that no-base objects would provide images to test the predictions from the hybrid theory of 

Stankiewicz et al. (1998). These priming studies require measurements against a baseline. 

No-base objects will provide a means of accurately matching baseline latencies for different 

rotations of an object because it has now been shown that these are identical for this class of 

object. 

3.3.3 Experiment 5: Effects of Viewpoint and Attention on Priming 

3.3.3.1 Introduction 

The aim of Experiment 5 is to extend the priming results of Stankiewicz et al. (1998) to the 

more common picture plane rotations compared to the relatively special case of mirror image 

reflections. The hybrid model would be more compelling if it were shown to have properties 

that would predict the effects of more common rotational transformations. While picture 

plane rotations are common experimental manipulations, unfortunately for priming studies, 

such transformations can produce large variations in naming latencies (Lawson, 1999). The 

data from Experiment 4 allow us to use no-base objects for which naming latencies do not 

vary with rotation. As in Stankiewicz et al. (1998), we expect visual priming for attended 

objects in both the same and a rotated view but priming for ignored objects should only be 

observed for objects shown in the same view. There should be no priming from ignored 

objects in a different view. In addition, in the attended condition, the prediction would be 

that same views should prime more than rotated views. On the Stankiewicz et al. model, the 

reason for the additional priming is that same views would activate both the analytic and 

holistic components whereas a rotated view only activates the analytic component. 

Concerning attended images, the structural description account of Biederman (1987) would 

predict equal priming for identical and rotated views of no-base objects because access 

would be to the same geon structure. In contrast, the mUltiple views account would favour 

the same predictions as the Stankiewicz et al. (1998) account that priming should decrease 

for non-identical (rotated) views but for a different reason. On the multiple views account, 

more priming would occur if the identical view-based representation is activated by prime 

and probe displays. In the ignored condition, structural description accounts would predict 
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no priming for ignored objects whatever their orientation because attentional processes are 

necessary to code parts and their relations into structural descriptions (Hummel, 2001; 

Hummel & Biederman, 1992). Multiple views accounts do not allow strong predictions for 

the ignored conditions as they do not explicitly incorporate attention. However, mUltiple 

view accounts are unlikely to predict access to stored object representations for ignored 

stimuli. For example, Olshausen and his colleagues proposed a model of object recognition 

that predicts that attention is necessary to map retinotopically organised visual information 

from VI to a scale-and translation-invariant representation in IT (Olshausen et aI., 1993). 

3.3.3.2 Method 

Participants 

Thirty native English speakers with normal or corrected-to-normal vision participated for 

credit in introductory psychology courses at Goldsmiths' College University of London. 

Materials 

A set of 56 no-base objects similar to the ones in Experiment 1 was used in Experiment 2. Of 

these, 24 were target items and 32 filler items that were never used as probes. 

Procedure 

The basic procedure was as in Stankiewicz et aI. (1998). The target items were 

counterbalanced across participants by placing each object in one of six clusters, with each 

cluster containing four objects. The clusters (and thus, each object) were placed into one of 

six conditions (attended-same, attended-rotated, ignored-same, ignored-rotated, unprimed­

same-view and unprimed-rotated-view). Thus, an object appeared in only one trial during a 

session. The target objects appeared in all six conditions equally often across participants. 

The filler objects appeared in the unprobed conditions. Prime and probe objects were shown 

in the standard view (as in the original Snodgrass and Vanderwart set) or rotated 90° in the 

picture plane. The two views appeared in all conditions equally often. 

The procedure was similar to Experiment 1 except that participants read the names of the 

objects before starting the practice trials, and the number of practice trials was reduced to 10. 

Another change in design relative to Experiment 1 was that each view of the no-base objects 
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(standard and rotated) was used in the standard condition half the time and in the rotated 

condition in the other half of the trials to counterbalance possible idiosyncratic effects. 

3.3.3.3 Results 

Trials on which either the prime or probe responses were incorrect were excluded from the 

analysis (13.1 %) as were voice key errors (5.0 %). The mean response time for the 

(unprimed) unrotated condition was 814 ms (SE 36.7) and 824 ms (SE 34.2) for the 

(unprimed) rotated condition, a non-significant difference, t (29) < 1. The mean error rates 

for the unrotated condition was 15.0 % (SE 3.5) and 14.2 % (SE 3.1) for the rotated 

condition. 

For all conditions, priming was calculated as the difference between each participant's mean 

latency in the unprimed (baseline) condition and the participant's mean latency in each of the 

other probe conditions. A 2 (Attention: attended vs. ignored) x 2 (Rotation: same view vs. 

rotated view) within-subjects ANOV A was performed on priming latencies. The analysis 

revealed a reliable main effect of attention, F (1,29) = 10.87, P < .01 and a main effect of 

rotation, F (1, 29) = 14.79, P < .001. The interaction between attention and rotation was not 

reliable, F (1, 29) < 1 (see Figure 16). A Friedman ANOVA on probe errors revealed no 

significant differences in the four conditions, Chi Sqr. (3) = .29, P > .96. 

Matched pairs t tests revealed priming reliably greater than zero in the attended-same, 

t (29) = 4.27, P < .001; attended-rotated condition, t (29) = 2.85, P < .01; and ignored-same 

conditions, t (29) = 2.12, P < .05, but not in the ignored-rotated condition, t (29) < 1, p > .05. 

Thus, attended images in the prime display primed the probe image in both the same and the 

rotated view but ignored images primed the probe object only when it was presented in the 

same view. 
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Experiment 5: 
Priming for No-Base Objects 
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Figure 16: Priming means in ms and standard errors for no-base objects in Experiment 5 as a 

function of whether the object was attended or ignored in the prime display prior to the probe 

and whether the probe objects were presented in the same orientation as the prime image or 

rotated in the picture plane (n = 30). 

Attended 
Same 

Attend. 
Rotated 

Ignored 
Same 

Ignored 
Rotated 

Unprimed 
Same 

Unprimed 
Rotated 

% Errors (SE) 11.67 (2.87) 8.33 (2.77) 15.00 (4.42) 14.17 (3.32) 15.00 (3.52) 14.17 (3.1 0) 

Table 7: Mean error rates for Experiment 5 (standard error in parantheses). 

3.3.3.4 Discussion 

The pattern of priming effects observed in Experiment 5 clearly replicated the findings of 

Stankiewicz et al. (1998). On the additive account of Stankiewicz et al. (1998), the pattern of 

performance in the same attended condition is due to the combined effects of analytical and 

holistic processing. Attended images primed both themselves and their plane-rotated 

versions whereas ignored images only primed themselves and are not primed by a plane­

rotated view. Importantly for the hybrid model, there was an equivalent priming advantage 

for same views relative to rotated views in both attended and ignored conditions. The results 

are not due to recognition differences between unrotated and rotated views because 

Experiment 4 showed that no-base objects did not show an effect of viewpoint, confirming 

that they are equally identifiable across plane-rotations. 
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The priming effects obtained in Experiment 5 do not fit with aspects of geon theory 

(Biedennan, 1987). On that account, no-base objects should be primed equally by 

themselves and by their plane-rotated versions. The visible part-structure is the same in all 

orientations and their structural description would not contain explicit "above" or "below" 

relations. In addition, geon theory would not predict view-dependent priming in the ignored 

conditions, as binding of parts should require attention (Hummel, 2001). 

View-based models would have no problem in accounting for the data from the attended 

conditions. Objects may be stored in a variety of orientations in which they are encountered, 

and therefore there are no recognition costs for rotation in the baseline conditions. The 

priming advantage for identical relative to rotated conditions can be attributed to higher 

activation of the previously encountered view. The probe image would be matched more 

efficiently with the same view-specific representation than with any other stored view of that 

image. However, many multiple views accounts (e.g., Tarr & Pinker, 1989) do not explicitly 

mention the role of attention and would therefore not necessarily predict priming in the 

ignored conditions. One model related to the view-based approach that might explain the 

effects in the ignored conditions is the model ofOlshausen, Anderson and Van Essen (1993) 

in which attention serves a gating function in early visual processing. 

According to Olshausen et al. (1993), the outputs ofretinotopic visual neurons (as found in 

VI and V2) are mapped to neurons whose receptive fields are invariant with translation and 

scale (and possibly other variations in viewpoint) in higher visual areas such as infero­

temporal cortex (IT). Ignored infonnation is either not mapped from VI to IT or, if it is 

mapped, then it is sensitive to metric variations such as translation, scaling and rotation (see 

Olshausen et. aI, 1993). In the current paradigm the position of the prime (left or right of 

fixation) and probe (at fixation) image changes between prime and probe trial. The 

Olshausen et al. model would therefore not account for the obtained priming of ignored 

identical images described here because translation invariance did not depend on attention. 

Nevertheless, one might still argue that the hybrid account is not needed to explain the 

priming of ignored identical images. An identical image could prime itself when ignored not 

because it accesses a stored object shape description (presumably in IT) but simply because 

the same low-level features (edges and contours) are activated when responding to a 
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previously seen image (see Experiment 3, section 3.2.4). According to this account, every 

image should prime its identical version from prime to probe trial, which could explain the 
/ 

priming in the ignored conditions in Experiment 5. In contrast, the hybrid model predicts that 

ignored images access stored representations. Experiment 6 seeks to rule out such low-level 

activation as the cause of view-dependent priming in the ignored conditions by testing 

whether images in unfamiliar (rotated) views prime themselves when ignored. 

3.3.4 Experiment 6: Priming for Upright or Rotated Images of Base Objects 

3.3.4.1 Introduction 

The goal of this Experiment was to establish whether the pattern of priming observed in the 

identical ignored condition of Experiment 5 was due to activation of view-dependent object 

representations or to simple facilitation based on identical low-level features from study to 

test. In Experiment 5, either explanation could hold because rotated images were primed by a 

different image. However, on the low-level matching account, it should follow that priming 

would be solely dependent on view. A different prediction would follow from the hybrid 

model of object recognition. On that model, it is only identical familiar views of objects that 

cause priming in the ignored condition. Priming in the ignored conditions occurs from the 

activation of holistic representations but these exist only for familiar views. Therefore, 

identical unfamiliar views would not show priming from ignored images. 

Experiment 6 considers only priming from objects with a definite base because they have 

only one familiar view - the upright orientation; no-base objects are equally well recognised 

after plane rotation (see Experiment 4). In the priming conditions of Experiment 6, both 

the prime and the probe objects are either shown in their identical familiar (upright) view or 

both are shown in their identical unfamiliar (900 plane-rotated view, as in Experiment 5). The 

particular interest is in the ignored trials. If ignored images make contact with stored 

representations in object memory, then objects that have a definite base and are seen almost 

exclusively in an upright position (e.g., a house or a car) should exhibit no priming when 

both the prime and the probe object are shown in an identical rotated (unfamiliar) view. At 

the same time, they should exhibit priming when the prime and probe objects are presented 

in the identical upright (familiar) view. If, however, the priming observed for ignored objects 

is due to simple low-level priming, then even unfamiliar (rotated) views of base objects 
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should prime themselves. Thus, the critical difference of Experiment 6 compared to the 

previous Experiment 5 is that for attended and ignored conditions, both the prime and the 

probe appear always upright or both appear in a rotated view (similar to Experiment 3 in 

which both the prime and the probe appeared in an intact configuration or they both appeared 

in their split configuration). 

3.3.4.2 Method 

Participants 

Thirty native English speakers with normal or corrected-to-normal vision participated for 

credits in introductory psychology courses at Goldsmiths' College University of London. 

Materials 

A set of 84 objects was taken from the Snodgrass and Vanderwart (1980) set. There were 36 

target objects with a definite base and 48 filler objects that were never used as probes. 

Procedure 

The basic procedure was similar to that of Experiment 5 with the following two differences. 

First, only base objects were used as targets; second, prime and probe images were always 

shown in the same orientation in a single trial - either rotated (90°) or upright. 

3.3.4.3 Results 

Trials on which either the prime or probe responses were incorrect (8.7 %) were excluded 

from the analysis oflatencies, as were voice key errors (3.3 %). The mean response time for 

the baseline standard view was 787.3 ms (SE 31.2) and 805.6 ms (SE 19.8) for the rotated 

view, a non-significant difference t (29) < 1. However, the mean error rate for the upright 

view was 4.4 % (SE 1.5) and 13.8 % (SE 2.5) for the rotated view, a significant difference, 

t (29) = 3.32, p < .01. 

The analysis of the data was similar to Experiment 5, with the exception that different 

baselines (upright vs. rotated) were used to calculate priming for the corresponding 

conditions. A 2 (Attention: attended vs. ignored) x 2 (View: upright view vs. rotated view) 

within-subjects analysis of variance (ANOVA) for priming revealed a reliable main effect of 

Attention, F (1, 29) = 123.40, p < .001, but no reliable main effect of View, F (1, 29) = 1.70, 
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p> .05. The interaction between Attention and View was reliable, F (1, 29) = 7.64, P < 0.01 

(see Figure 17). The difference between the ignored-upright and ignored-rotated conditions 

was statistically reliable, t (29) = 2.27, P < .05, but not the difference between attended­

upright and attended-rotated and conditions, t (29) < 1. A Friedman ANOV A on probe errors 

revealed no significant differences between the four conditions, Chi Sqr.(3) = 1.81, P > .61. 

Experiment 6: 
Priming for Pairs of Upright vs Plane Rotated Base-Objects 
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Figure 17: Priming means in ms and standard errors for base objects in Experiment 6 as a 

function of whether the object was attended or ignored in the prime display prior to the probe 

and whether the prime and the probe objects were presented in the upright orientation or 

rotated in the picture plane (n = 30). 

Attended 
Same 

Attend. 
Rotated 

Ignored 
Same 

Ignored 
Rotated 

Unprimed Unprimed 
Same Rotated 

% Errors (SE) 5.56(1.66) 17.22(2.93) 6.11(2.33) 5.00(1.41) 4.44(1.58) 13.89(2.53) 

Table 8: Mean error rates for Experiment 6 (standard error in parantheses). 

Matched pairs t tests were conducted on each priming condition to determine savings in 

response time when naming the probe object (i.e., faster naming responses relative to 

unprimed probes). Priming was reliably greater than zero in the attended-upright, t (29) = 

6.92, P < .001; attended-rotated, t (29) = 9.04, P < .001; and ignored-upright conditions, 

t (29) = 2.26, p < .05, but not in the ignored-rotated condition, t (29) < 1. Thus, attended 

images in the prime display primed themselves in both the upright and the rotated view but 

the ignored images primed themselves only when presented as an upright view. 
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A deviation from the analysis in Experiment 5 was that different baselines were required 

(unprimed-upright vs. unprimed-rotated) to calculate priming because better performance 

was expected for upright images than for rotated objects. In the previous experiment, only a 

single baseline was required because of equal performance across views of no-base objects. 

In order to compare the priming pattern with Experiment 5 an additional ANOV A was run 

over priming data obtained by pooling baselines (i.e. priming was established from the mean 

of unprimed-upright and unprimed-rotated condition). There were reliable main effects of 

Attention, F (1, 29) = 123.39, p < .001, and View, F (1, 29) = 28.45, p < .001, and the 

interaction between Attention and View was reliable, F (1, 29) = 7.64, p < 0.01. Thus, the 

interaction effect found in this Experiment was not due to the way the baseline was 

established. However, pooling the baseline to calculate priming accentuated absolute 

priming differences between upright and rotated conditions, hence the now significant main 

effect of rotation. Nevertheless, the basic priming pattern remained the same for all 

conditions. 

3.3.4.4 Discussion 

The critical result of Experiment 6 is the replication of the pattern of performance found with 

ignored images in Experiment 5. Once more, we find a significant amount of priming in one 

condition and no priming in the other. The lack of priming in Experiment 5 was for ignored 

rotated images that were familiar. Importantly, the lack of priming here in Experiment 6 was 

for ignored identical views that were unfamiliar. Thus, the priming results in the ignored 

conditions of Experiment 5 cannot be attributed to simple low-level priming of images 

resulting from changes in early visual stimulation and cannot be trivially attributed to the 

amount of featural overlap between prime and target views. The priming pattern found here 

(and in Experiment 3) is perhaps the most direct evidence that images of ignored obj ects 

achieve priming from access to stored familiar views. Very similar results were obtained by 

Stankiewicz (1997). He showed in one experiment that attended upside-down images (i.e. 

flipped over the horizontal axis) primed themselves as much as upright images primed 

themselves, whereas ignored images primed themselves only in the upright condition. 

Unattended upside-down images of base objects did not prime themselves. 

117 



In general, the data of Experiment 6 are similar to the pattern of priming effects in 

Stankiewicz et al. (1998) for same view versus left-right reflection. However, they reported 

an additive effect of attention and viewpoint in the attended condition. Here, in Experiment 

6, there was equivalent priming (no additivity) for attended objects i.e., there was a larger 

amount of priming for attended rotated (unfamiliar) objects than in Experiment 5. There are 

at least two alternative explanations for these data. First, it could simply be that a larger 

absolute value for the baseline would act to increase the magnitude of priming. The parts of 

the rotated prime would activate the same analytic components of the object representation 

as an upright base object. If the rotated images start out further from ceiling, this could allow 

extra analytic priming. Indeed, the analyses of latencies and errors show main effects of 

orientation for base objects (see Appendix), confirming the findings of Experiment 4. 

Second, an alternative explanation for the equivalent priming in the attended conditions 

could be that by attending to and recognising the rotated image, a holistic representation is 

thereby encoded. Hence, on subsequent presentation of the target, both upright and rotated 

images benefit equally from analytic and holistic representations. This interpretation fits with 

experimental data reported elsewhere showing that previously attended rotated objects are 

normalised more quickly during subsequent presentation, whereas formerly ignored objects 

do not show such an advantage of prior exposure (Murray, 1995c). It also fits with earlier 

studies that report reduced effects of orientation on performance after repeated presentation 

of stimuli (Jolicoeur, 1985; Jolicoeur & Milliken, 1989; Jolicoeur, Snow, & Murray, 1987). 

The present data cannot differentiate between these alternative explanations. 

Whatever the best explanation of the equal priming in the attended conditions, it in no way 

detracts from the findings for the ignored conditions. Even if priming for rotated images had 

an advantage over upright images because of baseline differences we would expect such an 

advantage for ignored-rotated conditions. In the ignored conditions, we found no priming for 

unfamiliar views of objects. Any effects of increased baseline for rotated over upright 

images ought to increase the amount of priming, giving the ignored-rotated images an even 

greater chance of priming. This was not the case here. Ignored images prime themselves only 

when they can be matched with a familiar view in memory. This finding is indirectly 

supported by a recent event-related fMRI study. Henson, Shallice and Dolan (2000) found 
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that repetition priming resulted in different patterns of attenuation in the right fusiform area 

depending on whether the repeated stimuli were familiar or unfamiliar. This effect persisted 

over multiple repetitions. Henson et al. concluded that priming-related responses depend on 

the presence or absence of pre-existing stimulus representations. 

3.3.5 General Discussion of Experiments 4-6 

The data from Experiments 5 and 6 support the role of attention in object constancy and are 

consistent with the hybrid model of Hummel and colleagues (Hummel, 2001; Stankiewicz et 

aI., 1998). Objects primed themselves and their rotated versions when attended but they 

primed themselves only in the identical orientation when ignored. Critically, in Experiment 

6, ignored objects in unfamiliar views did not prime themselves. This indicates that the 

priming observed for ignored images must be due to access to a stored (holistic) 

representation. Priming advantages for conditions of Experiment 5 appeared additive and 

thus lend support for analytic part-based representations. 

One possible limitation of Experiments 5 and 6 is that recognition and naming were 

confounded in the "attended" conditions. The priming observed is therefore likely to contain 

a semantic or name prime component, as well as a component for visual priming. Priming 

measured with naming tasks has reliably been shown to be sensitive to image changes from 

study to test (Bruce et aI., 2000). Furthermore, as described earlier, Stankiewicz et aI. (1998; 

Experiment 2) estimated visual priming by substituting the image in the identical conditions 

with a different object that had the same basic-level name (e.g., a grand piano instead of an 

upright piano). These "same-name-different-exemplars" produced no priming in the ignored 

condition, and significantly less priming than reflected images in the attended conditions. 

Subtraction produced a conservative estimate of about 80 ms for purely visual priming that is 

not due to the holistic component. This is almost exactly the difference between attended­

intact and attended-SNDE images obtained in Experiment 2 of the present thesis. There was 

significantly more facilitation for the split version of the prime image than for an intact 

SNDE version indicating that there was a large visual priming component for the former. 

Taken together, the evidence suggests that the priming found in the attended conditions 

contained a significant and large visual component. 
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Theoretical accounts that propose only a single format of representations for objects - either 

view-dependent or view-independent - are currently not powerful enough to explain these 

findings. Structural description accounts (Hummel & Biederman, 1992) would not predict 

priming (let alone view-dependent priming) in the ignored route, because attention is needed 

to bind parts and their relations together to form a representation that can be matched with a 

stored object model. Multiple views accounts would not have predicted the combination of 

priming patterns found in Experiments 5 and 6, as priming seems view-dependent not 

because of normalisation or low-level processes but because of a holistic representation that 

makes contact with object memory independently of attention. View-based theories that 

propose only a single representation of object shape would have to assume that priming is 

simply greater for identical images than for non-identical images, and greater for attended 

images than ignored images. Such a theory would predict uniform effects of attention on 

patterns of view-in variance in visual priming. For example, in the model ofOlshausen et al. 

(1993) attention is used to map retinotopically organised visual information from V 1 to a 

scale-and translation-invariant representation in IT. However, Experiment 6 (equivalent to 

Experiment 3) showed that identical images prime themselves only in familiar views when 

ignored. Thus, the present data indicate that attention is not always needed to map 

information from VI to a shape representation in IT. These results together with the findings 

of Stankiewicz and Hummel (2002) are inconsistent with the hypothesis that the function of 

visual attention is to generalise over variations in the size or location of an object's image. 

If non-identical images do not always incur reduction in priming relative to identical images, 

then the results of Experiment 5 are not easily explained by multiple views accounts. Recall 

that there were equivalent reductions in priming for both attended and unattended no-base 

images when they were rotated from prime to probe trial. Experiments 4 and 5 (equivalent 

performance across views in baseline conditions) have established that mental rotation or 

any other transformation account is not necessary to recognise these objects from rotated 

orientations. Therefore, multiple views theories have to make additional assumptions to 

account for the lack of priming in the ignored rotated conditons in Experiment 5. 
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The experiments so far tested the hybrid model by manipulating the holistic properties 

between the prime and probe image. In the next set of experiments depth-rotation is used to 
/ 

manipulate the analytic properties between prime and probe image. 

3.4 Experiments 7-9: Priming for Depth-Rotated Objects 

3.4.1 Introduction 

The experiments so far have shown that two different representations may work in parallel in 

object recognition - one that is analytical (e.g., a structural description) and view-invariant, 

and one that is holistic (e.g., a view template) and highly sensitive to changes in viewpoint 

such as mirror-reflection (Stankiewicz et aI., 1998), and plane-rotation (Experiments 5 and 

6). As outlined in previous sections, a vigorous debate has surrounded the question of view­

dependency in object recognition and its theoretical implications. Many researchers have 

shown that recognition performance reliably drops with rotations from a familiar or trained 

view-point. Since both view-based accounts as well as structural description accounts predict 

performance costs for plane-rotations (Hummel & Biederman, 1992) the focus of research on 

view-dependency has recently shifted to rotations in depth. 

Bulthoff and Edelman (1992) demonstrated recognition costs for rotations of novel objects in 

depth. Similarly, Tarr (1995) showed observers objects consisting of connected cubes, which 

differed in their spatial arrangement. He, too, found view-dependent performance that was 

consistent with a view-interpolation account. Participants were trained on certain views, and 

recognition performance for objects in new views dropped increasingly with the degree of 

rotation. However, it is not certain that depth-rotations necessarily produce decrements in 

performance. Biederman and Gerhardstein (1993) criticised studies using novel objects and 

proposed three 'conditions for invariance' claimed to be 'typical' of human object 

recognition: (a) objects must be decomposable into parts; (b) each object in the recognition 

set must be composed of a distinct configuration of parts; (c) different viewpoints of the 

same object must show the same configuration of parts (see section 1.4.3.3). Researchers 

responded to Biederman and Gerhardstein's (1993) proposal and tested recognition 

performance using experimental designs that satisfied their conditions for view-invariance. 

The bulk of the results from these studies strongly indicate recognition costs for depth-
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rotated objects (Hayward, 1998; Hayward & Tarr, 1997; Tarr, 1995; Tarr, Bulthoff, 
/ 

Zabinski, & Blanz, 1997) even when these conditions are satisfied; but see also Biederman 

(2000) for a critical review of view-dependent effects on recognition of depth-rotated 

objects. 

The debate between proponents of structural description accounts and view-based accounts 

shows that the underlying nature of the view-dependency found for depth-rotations is still 

unclear. However, the hybrid theory of object recognition may offer a comprehensive 

solution for the effects of depth-rotation without making any further assumptions. Most 

depth-rotations should substantially change activation in the holistic component and lead to 

temporary reduction in priming or recognition performance. Therefore, unlike geon theory, 

the hybrid model would predict that any substantial change in depth orientation from prime 

to probe trial in a short-term priming (or sequential matching) paradigm should result in 

recognition costs; this is because the holistic representation will always be affected 

regardless of whether or not part changes occur. Thus, the model can potentially account for 

the results of studies that found recognition costs for matching depth-rotated objects 

(Hayward & Tarr, 1997; Lawson & Humphreys, 1996; Tarr et aI., 1998). It would potentially 

also be able to account for findings that with longer ISIs between sequential presentations in 

picture matching the effects of rotation are attenuated (Lawson & Humphreys, 1996), since 

the activation of the holistic representation is assumed to be rather short-lived (Stankiewicz 

et aI., 1998). 

Similar to Biederman and Gerhardstein (1993), the hybrid model would also predict 

additional reductions in priming for attended objects after some depth-rotations. If parts are 

revealed or occluded between depth-rotated views the activation in the analytic 

representation should also be affected. According to the model, units in Layer 6i 

(independent geon array) fire maximally on repeated presentation of an object when 

activated by the same visible parts but less so if parts are missing or a new parts are visible. 

In these cases, the hybrid model predicts an interaction between attention and view change. 

If the number or type of visible parts of an object is changed after depth-rotations, then we 

would expect a larger reduction in priming between the attended conditions (reduction in 

analytic and holistic activation after depth-rotation) relative to the ignored conditions 
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(reduction only in holistic activation after depth-rotation). The next series of experiments 

aims to explore whether the predictions derived from the hybrid model can account for 

priming patterns of attended and ignored objects that are presented in the identical view or 

rotated in depth between prime and probe view. 

3.4.2 Experiment 7: Priming for Mirror Images 

3.4.2.1 Introduction 

The primary goal of this Experiment was to replicate the [mdings of Stankiewicz et al. 

(1998) in which mirror images were found to prime their original version in the attended 

conditions, but not in ignored conditions. Mirror images can be considered as depth-rotations 

if the object has an axis of symmetry that can be aligned with the line of sight, which was the 

case for most of the objects in this experiment. A new set of objects was used consisting of 

grey-level photorealistic objects instead of black-and-white line drawings (see Figure 18). 

Experiments with the latter type of stimuli have the advantage of being able to control for 

low-level differences between objects and views such as shading and texture. However, 

careful rendering and counterbalancing of realistically depicted objects and their views 

should indicate if the findings obtained with line drawings generalise to ecologically more 

plausible images. 

Figure 18: Examples of objects shown in Experiment 7. 

There was an additional interest in this experiment. In former experiments, it was assumed 

that participants did not pay any attention to the ignored objects. In order to test this 

assumption, directly after the last trial participants were asked if they had been able to see 

the to-be-ignored object and ifso whether they could identify it. If the manipulation was 

successful and participants only paid attention to the precued image, then ignored images 

should not be reportable. 
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The hybrid model predicts that attended images prime themselves and mirror-reflections, but 

ignored images only prime themselves, not their reflected versions. The effects of view ~nd 

attention should be additive. The priming component resulting from the view change should 

be seen as an equivalent reduction in priming for both attended and ignored images. Again, 

theories of object recognition that rely on a single format of representation (Biederman, 

1987; Tarr, 1995; Tarr & Pinker, 1989) would not predict priming in the ignored route. 

3.4.2.2 Method 

Participants 

Twenty-eight native English speakers with normal or corrected-to-normal vision participated 

for payor for credit in introductory psychology courses at Goldsmiths College University of 

London. 

Material 

Fifty-six common everyday objects were used. The objects were obtained from various open 

sources on the internet as 3D-meshes in the 3D Max (Autodesk) format. Each object was 

oriented in a standard 0° orientation, in which the main axis of elongation and/or the 

symmetry axis coincided with the line of sight. Each object was then rotated slightly between 

5° and 10° in azimuth (y-axis) to give it a more canonical view (Blanz et aI., 1999) as if the 

observer's vantage point was slightly elevated. Each object was then rotated in standard 

orientations in depth (z-axis), ranging from 30°, 60°, and 90° rotation of depth. All objects 

were rendered in 3D Max Studio (R3) using a 25 degree field of view, which gave a slight 

impression of perspective without drastically changing the perceived relative size of objects' 

parts. The objects were surface rendered with realistic overhead lighting but no cast 

shadows. The size of the images w~s then standardised. In this experiment, objects were only 

shown in the 60° viewpoint and their mirror reflection (see Figure 18). 

Procedure 

The basic procedure was identical to former experiments using the paradigm by Stankiewicz 

et aI. (1998). Prime and probe objects were either shown in the identical view or a mirror­

reflected view. Each object was placed into one of seven conditions (attended-identical, 

attended-reflected, attended-not probed, ignored-identical, ignored-reflected, 
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ignored-not probed, and unprimed). All objects appeared in all seven conditions equally 

often. The ordering of the trials was randomised for each participant, as was the pairing ~f 

attended and ignored objects on prime trials. 

After reading and paraphrasing the instructions, the participant read the names of the objects 

on the screen and then received 12 practice trials. A departure from former experiments was 

that directly after the last trial participants were asked if they had been able to see the to-be­

ignored object and if so whether they could identify it to establish whether the participants 

were paying attention to the ignored objects. 

3.4.2.3 Results 

Trials on which either the prime or probe responses were incorrect were excluded from the 

analysis (18.6 %) as were voice key errors (6.1 %). For all conditions, priming was 

calculated as the difference between each participant's mean latency in the unprimed 

(baseline) condition and the participant's mean latency in each of the other probe conditions. 

Experiment 7: 
Priming of Same vs Reflected View 
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Figure 19: Priming means in ms and standard errors for Experiment 7 as a function of whether 

the object was attended or ignored in the prime display and whether the probe objects were 

presented in the same orientation or mirror-reflected (n = 28). 
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Attended Attended Ignored Ignored Unprimed Unprimed 
Same Reflected Same Reflected Same Reflected 

% Errors (SE) 16.07 (2.94) 17.86 (3.37) 25.00 (3.86) 20.54 (3.42) 16.96 (3.87) 15.18 (3.48) 

Table 9: Mean error rates for Experiment 7 (standard error in parantheses). 

A 2 (Attention: attended vs. ignored) x 2 (View: same view vs. reflected view) within­

subjects ANOV A was performed on priming latencies. The analysis revealed a reliable main 

effect of attention, F (1, 27) = 42.92, P < .001 and a main effect of rotation, F (1,27) = 4.77, 

P < .05. The interaction between attention and rotation was not reliable, F (1, 27) < 1 (see 

Figure 19). A Friedman ANOV A on probe errors revealed no significant effects, Chi Sqr. 

(3) = 2.56, P > .46. 

Matched pairs t tests showed priming reliably greater than zero in the attended-same, t (27) = 

7.93, P < .001; attended-reflected condition, t (27) = 5.37, p < .001; and ignored-same 

condition, t (27) = 2.41, p < .05, but not in the ignored-reflected condition, t (27) < 1, 

p> .05. Thus, attended images in the prime display primed the probe image in both the same 

and the reflected view but ignored images primed the probe object only when it was 

presented in the same view. 

The last trial was followed by the question of whether the participant had recognised the 

ignored object. Twenty-six observers responded with "No"; two responded with yes, but 

guessed the object's identity incorrectly. 

3.4.2.4 Discussion 

Experiment 7 replicates the results of Stankiewicz et al. (1998) that were obtained with line­

drawings of objects: Attended objects prime both themselves and their reflected versions, 

whereas ignored objects only prime themselves but not their mirror-versions. The effects of 

attention and viewpoint were additive, meaning that the advantage for same versus reflected 

images was equivalent in both the attended and ignored conditions. The findings of an 

advantage for same views over mirror images replicate observations from matching tasks 

(Lawson & Humphreys, 1996). An additional result of Experiment 7 was the fact that 

observers seemed to comply with the instructions and did not pay attention to the non-cued 

(ignored) object: No participant could identify the ignored object in the last trial. 
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The results obtained with this stimulus set are important because they replicate the findings 

of Stankiewizc et aI. (1998) with line drawings. Thus, grey-shaded images and line dra~ngs 

of objects seem to produce the same priming effects, implying the possible involvement of 

edge-based representations (encoding parts derived from vertices and contours, e.g., geons) 

in object recognition. Edge-based approaches (Hummel & Biederman, 1992; Lowe, 1987), 

have been criticised (Sanocki et aI., 1998) because in many studies or simulations their 

proponents mainly use line-drawings that contain no ambiguous contours or edges (e.g., 

resulting from shading and highlights) as compared to real objects (or photographs). The 

critical argument is that line drawings are created by artists who have used global 

interpretations that result from high-level vision in terms of meaningful visual structures 

(e.g., figure and ground, shadows, regions and volumes). These interpretations have probably 

eliminated many local ambiguities that are associated with edge extraction. Although 

Experiment 7 is not a direct test of whether realistically rendered grey-level images and line­

drawings are treated equivalently by the visual system, the priming pattern previous results 

obtained with line drawings. Thus, the differences between priming conditions or lack 

thereof found in earlier studies with line-drawings using the attentional priming paradigm 

cannot be explained away by possible differences in extracting low-level features such as 

edges and contours. 

The result of Experiment 7 encourages the use of grey-level images of photorealistic models 

of objects for studies in depth-rotation. Mirror-reflections may be considered as a special 

case of depth-rotation for objects that have an axis of symmetry which is perpendicular to the 

axis of rotation; this was the case for many stimuli in Experiment 7. In the following 

experiments, the effects of rotations in depth on priming of attended and ignored images will 

be examined more directly. 

3.4.3 Experiment 8: Priming for Depth-Rotated Objects with Part Changes 

3.4.3.1 Introduction 

In previous experiments, the hybrid model was tested by manipulating only the holistic 

properties of an image. For example, changing the orientation (plane-rotation, reflection) or 

splitting of an image is predicted to affect mainly the holistic component, whereas the 
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analytic component should not (or less so) be affected because the same parts were visible 

between prime and probe displays. Experiment 7 showed that the effects of viewpoint and 

attention are additive when the part-structure is kept constant between viewpoints by using 

mirror-reflections. The differences in priming between same and rotated conditions are due 

to the missing priming component from the holistic representation. 

In contrast to mirror reflections, rotations in depth between study and test may affect the 

analytic representation because visible parts may be occluded or new parts may be revealed 

(Biederman & Gerhardstein, 1993). Depth-rotations should therefore provide an opportunity 

to further test the theory that two representations work in parallel because it affects both 

representational components (analytic and holistic) instead of just one (holistic). Note that 

according to the hybrid model manipulating the holistic properties should always affect 

priming for both attended and ignored conditions, whereas the manipulation of the structural 

properties should affect priming only in the attended conditions. For example, depth­

rotations that produce changes in the structural description of the object (such when parts of 

an object are occluded between views) should affect the holistic representation as much as 

depth-rotations that do not change the structural representation. In contrast, part changes 

from study to test should only affect the representation that relies on dynamic binding, but 

not the holistic representation. In principle, this means the prediction of an interaction effect 

between attention and view for depth-rotations that cause a change in visible part structure. 

The aim of this experiment is to test whether depth-rotation affects priming for attended 

objects (analytic route) more than for ignored objects (holistic route). The logic of the 

experiment is in three parts: First, according to the hybrid model, all viewpoint changes 

(except translation and scaling) should affect the holistic component. Second, because the 

holistic representation works with and without attention, changes in viewpoint by depth­

rotations should equally decrease the amount of priming in both attended and ignored 

conditions compared to priming in the identical viewpoint. Third, depth-rotations that affect 

the perceived part structure of an object should additionally reduce the amount of priming 

for attended images, but not for ignored images. In summary, if a part-based representation is 

involved for attended images but not for ignored ones, then the manipulation of the part 
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changes should affect priming for attended images (holistic and analytic change) more than 

for ignored images (holistic change only). 

In Experiment 8 objects are rotated in depth to produce an altered part-structure between 

views. One problem is to assess the degree of part change for natural objects rotated in depth 

because it is not yet Irnown at what scale part decomposition is achieved. For example, 

rotating a four-legged animal such as a horse may occlude or reveal a leg (large scale) or an 

ear (small scale). Moreover, the degree of part changes is not always systematically related 

to the degree of angular rotation for both natural (Lawson, 1999) and novel objects (Willems 

& Wagemans, 2001). For example, Figure 20 shows an object (a dog) in three different 

views rotated in depth. Although view b is rotated further away from view a than from view 

c, it shares more visible parts with view a, because two of the legs are hidden in view c. 

View c is called an accidental view (Biederman, 1987; Blanz et a!., 1999) because the axis of 

symmetry and elongation are orthogonal to the line of sight. Such a complete side view of an 

object often occludes parts of an object or makes the extraction of parts (e.g., geons) more 

difficult. The criterion for an accidental view is that small changes in orientation produce 

considerable changes in the part structure (Biederman & Gerhardstein, 1993). This applies to 

complete side views because slight rotations would reveal new parts or new contours and 

surfaces of parts. Srinivas (1995) used a similar logic to create "part-occluded" objects. 

a b c 

Figure 20: Three views of an example object as used in the pilot study for Experiment 8. View b 

is rotated further away (90°) from view a than from view c (60°), but the object shares more 

visible parts with view a, because two of the legs (and one ear) are hidden in view c. 

To achieve a qualitative change in view orientation objects in Experiment 8 were depicted in 

two views. A complete side view (or "planar" view, Blanz et a!., 1999) was chosen as a 

depth-rotated view that would be primed by a more conventional view or vice versa. Figure 
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21 depicts two objects and their corresponding views employed in Experiment 8. The effect 

of part-change was investigated in a pilot study. 

Figure 21: Examples of objects in the two views in which objects were shown in Experiment 8. 

Some parts (legs) are occluded with rotation. 

The goal of Experiment 8 was to establish whether depth-rotations that cause changes in part 

structure affect the amount of priming more in the attended condition than in the ignored 

condition as predicted by the hybrid theory. In contrast, theories that rely on a single 

representation for object recognition based on views (e.g. , Tarr & Pinker, 1989) or on 

structural descriptions (Biederman, 1987) would not predict that attended images will show a 

different decrease in priming than ignored images after depth rotations. 

3.4.3.2 Method 

Participants 

Twenty-eight native English speakers with normal or corrected-to-normal vision participated 

for credit in introductory psychology courses at Goldsmiths ' College University of London. 

Materials 

A pilot study was conducted to test whether the pairs of +30° and +90 views (Figure 21) 

produced perceived part changes. To assess if these two views of objects differ qualitatively 

from each other in their part structure compared to other pairs of depth-rotated views a rating 

study was conducted. Seven independent observers from the Goldsmiths ' College student 

community were shown 87 objects in two pairs of views each on a computer screen. Three 

views were constructed by rotating an object _60°, +30° and +90° (views a, b, c in Figure 20) 

from a standard frontal view where the axis of elongation or the symmetry axis of the object 
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coincides with the viewing direction ofthe observer (line of sight). The participants had to 

compare the views of each object. They saw an object in the -60° versus the +30° view in one 

trial as well as in the +30° versus the +90° view in another trial. The task of the observers 

was to indicate whether crucial parts of an object were visible only in one of the two views. 

To provide the participants with a scale of what is meant by a part they were introduced to 

the concept of geons and geon-built objects (Biederman, 1987) by using Figure 5 (see also 

Appendix 2). The order of trial (view-pair) presentation was completely randomised. 

Participants had as long as they wished to press the "P" key if they thought there was a part 

change or the "S" key if basically the same parts were visible in both views. 

For the subset of the objects used in Experiment 7, two one-way ANOVAs on the factor 

View-pair were performed, first with objects and then participants as random factor. The 

factor levels were the two types of view-pairs separated by depth-rotation (-60° and +30° vs. 

+30° and +90°) with the number of"P" (i.e. part change) responses as dependent variable. 

An ANOV A with participants as random factor revealed a main effect of type of rotation, F 

(1,6) = 26.35, p < .01, as did the ANOVA over items, F (1,86) = 49.07, p < .001. Thus, 

objects shown in the +30° and +90° view pair were perveived to exhibit more part changes 

(mean 4.11, SE .29) across the two views than when shown in the -60° and +30° view pair 

(mean 1.91, SE .26). 

In the priming experiment the same 56 objects as in Experiment 7 were used. Prime objects 

were depicted in two different views counterbalanced across two groups: objects were shown 

in an orientation rotated 90° off the line of sight in group 1, and rotated 30° off the line of 

sight in group 2 (Figure 21). The probes were displayed in either one of the two views 

depending on the experimental condition. The objects were counterbalanced across 

participants so that each object w0uld serve in each condition equally often. The general set­

up of the experiment was the same as in Experiment 7. 

Procedure 

The procedure was the same as in Experiment 7, except that participants were not asked 

whether they recognised the ignored image in the last trial. There were six priming 

conditions (attended-same, attended-rotated, ignored-same, ignored-rotated, unprimed-same­

view and unprimed-rotated-view) in which each of the objects appeared equally often. 
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3.4.3.3 Results 

In Figure 22 the priming results of Experiment 8 are given as savings in response times" 

relative to the baseline (unprimed) condition. Trials on which either the prime or probe 

responses were incorrect were excluded from statistical analysis (20.2%), as were voice key 

errors (4.1 %). The baseline latencies for each of the two probe views was 866 ms (SE 38.5) 

for the 30° probe view and 857 ms (SE 27.7) for the 90° probe view (collapsed over groups). 

For all conditions, priming was calculated as the difference between each participant's mean 

response time in the relevant baseline (unprimed) condition and the participant's mean 

response times in each ofthe corresponding priming conditions (Figure 22). A 2 (Group: 

prime view 30° vs. 90°) x 2 (Attention: attended vs. ignored) x 2 (View: same vs. rotated) 

mixed analysis of variance (ANOVA) revealed no reliable effect of group (i.e. the two 

orientations primed their corresponding probe equivalently), F (1,26) < 1, a reliable main 

effect of attention, F (1, 26) = 47.15, p < .001, and View, F (1, 26) = 8.37, p < .001. The only 

significant interaction was between Attention and View, F (1, 26) = 5.04, p < .05. The 

difference between the attended-same and attended-rotated conditions (collapsed over 

groups) was statistically reliable, t (27) = 3.73, p < .001, but not the difference between the 

ignored-same and ignored-rotated conditions, t (27) = 1.27, p > .05. A Friedman ANOVA on 

probe errors for each priming condition revealed no significant effects, Chi Sqr. (3) = 1.48, 

p> .68. 
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Experiment 8: 
Priming of Depth Rotated Objects (Part Change) 
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Figure 22: Priming means in ms and standard errors Experiment 8 as a function of whether the 

object was attended or ignored in the prime display and whether the probe objects were 

presented in the same orientation or rotated in depth (n = 28). 

Attended 
Same 

Attend. 
Rotated 

Ignored 
Same 

Ignored 
Rotated 

Unprimed Unprimed 
Same Rotated 

% Errors (SE) 16.07 (3.46) 20.54 (3.87) 21.42 (3.57) 25.89 (3.74) 16.07 (3.90) 21.43 (4.40) 

Table 10: Mean error rates for Experiment 8 (standard error in parantheses). 

An ANOVA over all errors revealed only a main effect of Group, F (1, 26) = 6.90, p < .05. 

None of the interactions approached significance, all F < 1. Independent t-tests for errors 

collapsed over priming conditions revealed a significant group difference for prime errors, 

t (26) = 2.75, P < .05, but not for probe errors, t (26) = 1.31, P > .05. Thus, the participants in 

the group with the prime views in the 30° orientation made more errors across conditions. 

Matched pairs t tests were conducted on each priming condition to determine which type of 

prime display caused savings in response time for the probe display. Priming was reliably 

greater than zero in the attended-same condition, t (27) = 7.78, P < .001; attended-rotated 

condition, t (27) = 4.00, P < .001; and ignored-same condition, t (27) = 2.95, P < .01, but not 

in the ignored-rotated condition, t (27) = 1.37, P > .05. Attended images in the prime display 

primed the probe image in both the same and rotated view, but ignored images primed the 

probe object only when presented in the same view. 
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3.4.3.4 Discussion 

The results of Experiment 8 replicate the previous findings of priming for attended images in 

the same view and in a changed (here: depth-rotated) orientation, and that ignored objects 

were only primed if they are depicted in the same view. However, the data show a difference 

in priming effects between ignored and attended images; the difference between identical 

and rotated views was significantly greater for attended than for ignored images. This 

priming pattern is in line with the prediction of the hybrid model that depth-rotations may 

cause qualitative changes in representation which are more detrimental for priming when 

attending to an image than when ignoring it. 

The finding that some depth-rotations may reveal priming differences in attended compared 

to ignored conditions confirms the prediction of the hybrid model that two qualitatively 

different representations are employed. In contrast, if the visual system always relied on a 

single type of representations based on metric properties to align new views with stored 

views we would expect additive effects of attention and viewpoint. Most current view-based 

accounts do not specify the role of attention and therefore could not have predicted the 

results described here. However, if attention plays a role in matching representations based 

on metric properties, one would expect less effects on rotation in attended conditions relative 

to ignored conditions, because attention would serve to aid the matching process (Olshausen 

etal.,1993). 

The results also do not fit entirely with geon theory. Part-based accounts would not have 

predicted priming in the ignored predictions because structural descriptions rely on attention 

to actively bind local features into parts and then parts and relations to objects. However, this 

account would have predicted the larger rotation costs obtained for rotations that include 

accidental views (Biederman, 2000) compared to mirror reflected views. Accidental views 

that cause part occlusions may change the activation pattern of a GSD representation 

between prime and probe view, causing a reduction in priming compared to exactly the same 

parts being visible in both events (e.g., in mirror images). Thus, the results for the attended 

conditions are in line with structural description accounts. 

The results found here cannot be attributed to difficulties with the specific orientation in 

depth of objects because the priming pattern was the same independent of the prime and 
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probe views employed. The present experiment as well as other studies (e.g., Hayward, 

1998) have found that planar views (as the +90° view) do incur more recognition costs after a 

change in orientation in prime/probe paradigms than do other non-planar and non­

foreshortened (canonical) views. Thus, it seems that planar views are not generally harder to 

recognise or less familiar than non-accidental views. Rather, the finding that the priming 

differences between attended rotated images are larger than between ignored rotated images 

suggest that qualitative changes affect the attended recognition route more than the ignored 

route. That part changes such as occlusion account for the striking priming differences in the 

attended conditions seems supported by the findings of Srinivas (1995; Experiment 2). She 

manipulated part changes over depth-rotations in a similar way as in the present experiment 

(selecting views in which parts of photographed objects were occluded by other parts). 

Srinivas' participants were shown photographs of object rotated in depth (67°, 130°, and a 

part-occlusion rotation) for 300 ms in the prime display. Matching object identity did not 

affect latencies in the view conditions with all parts visible, but increased response times in 

the part-occluded condition. 

There was no reliable difference in priming between the ignored-rotated conditions in 

Experiment 8. Priming for the ignored condition in the hybrid model is due to the holistic 

surface map which responds to the visible surfaces in an image. Priming should therefore be 

maximal for identical images (although regardless of image size and position in the visual 

field), and decrease with changes in orientation because units in the holistic surface map 

respond less strongly when surfaces are changed or removed from their receptive fields. 

However, the activation pattern may not change completely between two views (from prime 

to probe) inasmuch there is an overlap of the same surfaces. This may explain the lack of 

statistical difference between the identical and rotated conditions. An estimate of metric 

similarity could be provided with the Lades et al. (1993) model. Indeed, the two viewpoints 

used in this experiment were rotated from each other within one side off the line of sight, 

which means that some parts and surfaces correspond to the same relative location on a 

hypothetical grid of units. For example, the trunk and head of an animal in both views would 

correspond to similar units when superimposed on a (flexible) holistic surface map (see 
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Figure 7). Thus, the hybrid model generally predicts that the larger the metric changes (given 

no additional analytic changes), the larger the differences in priming for ignored conditions. 

Experiment 9 was designed to test the possibility that the lack of priming difference in the 

ignored conditions is due to an overlap of holistic properties. If the overlap in priming (i.e. 

non-significant difference between identical and rotated conditions) for the ignored trials in 

Experiment 8 was due to an overlap of surfaces or other metric features in a holistic 

representation, then a larger rotation between identical and rotated view should accentuate 

this difference in priming. Larger view-differences than those used in Experiment 8 with 

rotations across the line of sight should produce larger metric changes between views which 

in turn should accentuate priming differences between identical and rotated views. At the 

same time such a rotation should not affect the structural representation if the part structure 

does not change substantially across these views (Biederman & Gerhardstein, 1993). In this 

case, the hybrid model would predict additive effects of priming for attention and view as 

found in previous Experiments and in Stankiewicz et al. (1998). Only the holistic component 

- which works with and without attention - is affected by view changes. Therefore the short­

term priming paradigm in Experiment 9 employed familiar views that differed considerably 

in depth orientation but not in part structure. 
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3.4.4 Experiment 9: Priming for Depth-Rotated Objects without Part Changes 

3.4.4.1 Introduction 

This experiment was designed to test whether the priming pattern observed for mirror images 

(Experiment 7; Stankiewicz et aI., 1998) can be replicated with depth-rotated objects. The 

critical assumption is that depth-rotated objects -like mirror images - can be shown in 

orientations that reveal equivalent part structures but differ significantly in their metric 

similarity. To this end, pairs of depth-rotated views from the rating study were used that 

elicited fewer "part-change" responses than the pairs of orientations used in Experiment 8. In 

addition, there was a greater degree of angular separation (90°) between these views than in 

Experiment 8 (60°). The two views in Experiment 9 were "off-axis" views that showed the 

front and the side of an object, that is they are shown in orientations that do not fall in the 

line of sight or perpendicular to it. Objects in these orientations are usually easier to 

recognise when they are shown in "off-axis" (or "canonical") views. In these views a large 

number of surfaces are usually maximally visible and they are often rated as the most typical 

views in which objects appear (Blanz et aI., 1999; Palmer et aI., 1981; Verfaillie & Boutsen, 

1995). These views have been found to be the easiest to recognise (Boutsen, Lamberts, & 

Verfaillie, 1998; Palmer et aI., 1981). In addition, only those objects were used that were 

bilaterally symmetric such that a rotation across the line of sight produces a view in which 

roughly the same parts are visible (see Figure 23). 

The hybrid model of Hummel (2001) would predict additive effects of viewpoint and 

attention for these views rotated 90° from each other. The analytic representation should not 

or only be slightly affected by the~e view changes, which means that its contribution towards 

overall priming remains equivalent between the identical and the depth-rotated view. In 

contrast, the holistic representation should change considerably due to the depth-rotation, 

because different surfaces of the same object map to the units in layer 5s. Its contribution to 

priming should go towards zero compared to the presentation of an identical view in the 

probe display. 
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Figure 23: Examples of bilateral symmetric objects in the two orientations used in Experiment 

9; objects are rotated from each other 900 (-600 and 300 off the line of sight). 

View-based models and structural description models do not necessarily predict priming in 

the ignored conditions (see discussion of Experiments 3 and 6). Geon theory would predict 

no or only slight differences in priming between the same and rotated attended views. The 

predictions of multiple-views-plus-transformation accounts are not clear. The likely 

alternatives are a) no effect of rotation because both views of the objects are canonical and 

probably highly familiar (Blanz et al. , 1999; Palmer et al. , 1981) or b) a reduction of priming 

is predicted for the rotated attended condition, either because mental transformation is 

required to match prime and probe view or because of an identity advantage of the same 

versus the rotated stored view, that is the non-identical views are less activated. 

3.4.4.2 Method 

Participants 

Forty native English speakers with normal or corrected-to-normal vision participated for 

credit in introductory psychology courses at Goldsmiths College University of London. 

Materials 

A set of 84 objects was used containing most of the objects as in Experiment 7 and 8. All 

objects were shown in two standard views (see Figure 23). These were separated by 900 from 

each other, with an orientation which was created by rotating +300 (one of the views in 
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Experiment 8) and the second -60° (the standard view of Experiment 7) from the line of sight 

(which coincides with the line of symmetry). Of the 84 objects, 30 objects were used as / 

target objects, and the rest were used as filler items (i.e. in unprobed conditions). The target 

objects were placed into 5 subsets which appeared equally often across participants in all 

conditions (attended-identical, attended-rotated, ignored-identical, ignored-rotated, and 

unprimed). The filler items were randomly assigned for each subject. There were two 

standard views counterbalanced across 2 groups: objects were shown in an orientation 

rotated -60° off the line of sight in group 1, or rotated 30° off the line of sight in group 2 

(corresponding to one of the views used in Experiment 8). The prime and probe objects were 

displayed in either one of the two views depending on the experimental condition. The two 

views were counterbalanced across participants so that each view would serve in each 

condition equally often. 

Procedure 

The procedure was the same as in Experiment 8, except that the probe view in each group of 

participants was always depicted in the same general orientation and the prime view was 

either identical to the probe view or rotated. 

3.4.4.3 Results 

Trials on which either the prime or probe responses were incorrect were excluded from 

statistical analysis (7.92 %), as were voice key errors (3.83 %). The group means for the 

baseline probe views were 770 ms (SE 31.8; for the -60° orientation) and 803 ms (SE 29.7, 

for 30° orientation), a non-significant difference, t (38) < 1. Both views elicited similar 

latencies in the baseline conditions. Figure 24 shows the priming results of Experiment 9 as 

savings in response times relative to the baseline (unprimed) condition. 

A 2 (Group: probe view 30° vs. _60°) x 2 (Attention: attended vs. ignored) x 2 (View: same 

vs. rotated) mixed analysis of variance (ANOVA) revealed no reliable effect of Group (i.e. 

priming patterns in the two probe orientation groups did not differ), F (1,38) < 1, a reliable 

main effect of attention, F (1,38) = 105.13, P < .001, and View, F (1, 38) = 10.79, p < .01. 

There was no statistically reliable interaction. A Friedman ANOV A on probe errors revealed 

no significant effects, Chi Sqr. (3) = 1.50, P > .68. 
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Experiment 9: 
Priming for Same vs Depth Rotated Objects (no Part Change) 
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Figure 24: Priming means in ms and standard errors Experiment 9 as a function of whether the 

object was attended or ignored in the prime display and whether the probe objects were 

presented in the same orientation or rotated in depth (n = 40). 

Attended 
Same 

Attend. 
Rotated 

Ignored 
Same 

Ignored 
Rotated 

Unprimed 
Same 

% Errors (SE) 8.74 (2.15) 8.33 (1.89) 9.17 (1.46) 6.25 (1.54) 7.08 (1.45) 

Table 11: Mean error rates for Experiment 9 (standard error in parantheses). 

Matched pairs t tests were conducted on each priming condition (collapsed over groups) to 

determine reliable savings in response time compared to the baseline. Priming was reliably 

greater than zero in the attended-same condition, t (39) = 8.61, p < .001; attended-rotated 

condition, t (39) = 7.93, p < .001; and ignored-same condition, t (39) = 3.47, p < .01, but not 

in the ignored-rotated condition, t (39) < 1. Probe images were successfully primed by 

attended images in the prime display shown in both the same and rotated view, but ignored 

images primed the probe image only when presented in the same view. 

Of critical interest in this experiment was whether there was a difference in view conditions 

after increasing rotation in depth compared to Experiment 8. The difference between the 

attended-same and attended-rotated conditions was statistically reliable, t (39) = 2.41, p < 

.05, as was the difference between the ignored-same and ignored-rotated conditions, t (39) = 

2.30, p < .05. 
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3.4.4.4 Discussion 

The results of Experiment 9 replicate earlier findings obtained with mirror-images and plane­

rotations for no-base objects: Probe objects were primed by previously attended images 

presented in the same view as well as in a changed (here: depth-rotated) view, whereas a 

probe image was only primed by an ignored prime if it was presented in the same view. The 

effects of attention and view were additive. Images primed themselves more in the same 

orientation than in a rotated view; this was found for both attended and ignored objects. 

The priming pattern shown in Figure 24 is clearly predicted by the hybrid model of object 

recognition because the views were chosen in such a way that they reveal generally the same 

part-structure and should therefore produce additive priming effects for attention and 

viewpoint. The holistic surface map is activated in parallel with the independent geon array 

when presented with the prime object. On subsequent presentation of the same object in the 

same view, both the IGA units and the HSM units benefit from the previous presentation 

resulting in faster recognition. Presented with the identical but depth-rotated object, the same 

parts (and relations) are presented to the IGA, which produces faster recognition in this 

route, resulting in an activation (i.e. analytic priming component) that is equivalent to that of 

the identical view. In contrast, the locations of surfaces (if projected on a 20 grid) have 

changed considerably after depth-rotations. Therefore, the activation pattern of the HSM 

units is very different between prime and probe trial and no priming from the holistic 

component is predicted. 

The pattern of results found here would have clearly not been predicted by geon theory for 

the same reasons as in Experiment 7. First, priming for ignored identical images would have 

not been predicted by structural description accounts that stress the role of attention for 

dynamic binding. Second, geon theory would have arguably not predicted a reduction in 

priming for depth-rotated objects in the attended conditions. Both views showed roughly the 

same part structure and were far from accidental views. Of course it could be argued that 

every depth-rotation changes the visibility of some parts, and may produce spurious effects 

of view-dependence. However, the fact that this experiment obtained the equivalent priming 

pattern as Experiment 7 with mirror-images (which by definition show exactly the same 

parts) make this counterargument less convincing. 
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View-based theories could explain the viewpoint effects in the attended conditions with 

performance costs due to mental rotation or other time-consuming matching procedures such 

view interpolation. However, the task employed was a not a matching task but a naming 

task. There were no performance costs for one view relative to the other as measured by the 

response to unprimed conditions. If both views seem to be equally similar to a stored 

template, there is no need to assume normalisation processes with a higher cost for a rotated 

view. Again, the argument that identical images prime themselves more than non-identical 

seems an unlikely explanation in terms of view-based accounts given the results of 

Experiments 3 and 6. 

The results are also in line with other studies employing depth-rotations that are similar to 

the ones presented here. For example, Lawson and Humphreys (1998) studied effects of 

long-term (in the order of several minutes) priming for line-drawings of common objects 

rotated in depth. Although the interest of these studies was in priming for foreshortened 

views, inspection of their results for views almost identical to those employed in Experiment 

9 (termed 60° and 150° or 30° and 120° in Lawson & Humphreys, 1998) show that responses 

in the probe block were roughly equivalent for these (but not foreshortened) views. 

Biederman and Gerhardstein (1993) used somewhat different orientations in depth in their 

Experiments 1 and 2. They found no differences in long-term priming effects over rotations 

ranging from 33.75° to 135° for common objects if there were no part changes, but view­

dependent effects if different parts were visible between the study and test view. 

3.4.5 General Discussion of Experiments 7-9 

Experiments 7 to 9 used the short term priming paradigm for attended and ignored objects 

shown in identical views or rotated in depth. The results agreed with the predictions of the 

hybrid model. Large view changes caused an equivalent reduction in priming for both 

attended and ignored images, provided these view-changes exhibit roughly the same visible 

parts. However, if considerable part changes occur between prime and probe view, then a 

significant reduction in priming is observed only for the attended view. These results 

indicate that attended objects are treated qualitatively different from ignored objects which is 

in line with the notion of an analytic representation for attended and a holistic representation 

for ignored images. 
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A possible limitation of both Experiments 7 and 8 was that objects were depicted in pairs of 

orientations whose co-occurrence may be considered unusual; mirror-reflections of canonica1 

views and accidental (planar) views. The responses to these view-pairs may be considered as 

a rather rare and special cases of depth-rotations. The results of Experiment 9, however, 

show that the priming pattern observed with mirror images in Experiment 8 were not 

accidental and can be extended to other situations in which depth-rotated objects have to be 

recognised. A further limitation may be seen in the indirect manipulation of same vs. 

different visible part structure over depth-rotations for images of common objects. Here, the 

extent of part-changes were predicted from scrutinising the stimulus set, reviewing results 

from previous studies employing depth-rotated views, and observer ratings. There is a strong 

consensus from these sources that for many objects shown in view pairs including the 90° 

depth orientation some parts are occluded. 

Many studies using common objects rotated in depth ignore possible part occlusions or 

assume that all views show all the critical parts. For example, Hayward (1998) used almost 

identical viewpoints as Experiment 8 (30° and 90° orientations) in a sequential matching task 

(view difference 0° and 60°, see Figure 25). He found that objects in planar views (60° view 

difference to the study view) were matched more slowly than a non-planar view rotated 180° 

from the standard view. On the assumption that all three viewpoints show the same parts 

(which on inspection of his stimuli they certainly did not; see Figure 25b), Hayward's 

conclusion was that common outline shape was the crucial factor for object constancy across 

view changes in 3D, not part structure. The present results in the attended conditions of 

Experiments 8 and 9 mirror those of Hayward's Experiment 3 (for +30° and +90° views), 

namely greater reduction in priming for rotations to an accidental (planar) than to other 

views, despite the fact that the angular difference between prime and probe view was smaller 

for accidental views. Hayward proposed that view-dependent priming effects were not due to 

part-changes but to the extent of similarity of global outline shape between views. However, 

our conclusions are different from those of Hayward's (1998). The lack of a significant 

difference in the ignored conditions between the two views in Experiment 8 clearly argues 

against a global, holistic difference due to outline shape. They fit with the assumption that 
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the difference between those views observed in Hayward's experiments and in the attended 

conditions here (Experiment 8) are due to changes in visible parts (see Figure 25). 

Moreover, similar to Hayward 's (1998) study, the priming difference between attended 

objects in the same and depth-rotated view in Experiments 8 and 9 were not predicted by the 

angular degree of rotation. Thus, even if we ignore the part changes between the different 

viewpoints in the present (Experiments 8 and 9) and in Hayward 's (1998) study, the results 

would not be in line with view-based accounts which assume a linear increase (e.g. , Tarr & 

Pinker, 1989) or even an accelerated increase (e.g., Poggio & Edelman, 1990) in latencies 

after orientation changes. 
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Figure 25: Example of an object shown in three viewpoints used in Hayward's (1998) 

Experiment 3 (b) and matching performance in ms (a). The 0° and 60° viewpoints in which the 

common objects are shown (b) correspond almost exactly to viewpoints defined as 30° and 90° 

views in Experiment 8 of this investigation. 

Although the data reported here clearly demonstrate a qualitative difference between 

attended and ignored objects' after depth-rotations, it is not necessarily the case that this 

difference is due to parts defined as geons. Alternatively, observers may have noted the 

appearance and disappearance of surfaces or certain vertices after depth-rotations. Future 

research needs to employ a stricter criterion for part changes in natural objects to establish 

whether the effects here are due to representations resembling structural descriptions. 

Nevertheless, the current results are clearly in line with the predictions derived from the 

hybrid model of object recognition, and gives further evidence for its generality. 
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4. Chapter 4: General Discussion 

4.1 Summary of Results 

The priming studies described above have shown considerable evidence for the role of 

attention in object constancy. The data are also consistent with the hybrid model of object 

recognition (Hummel, 2001; Stankiewicz et aI., 1998) which postulates two qualitatively 

different representations in object recognition. While some data taken by itself could be 

explained by other theories, the fact that all were derived from and tested the hybrid model 

of object recognition tells a compelling story. There are several main findings: 

1. The format of representation mediating object recognition depends on attention. 

Attended and ignored images prime their identical versions, but only attended images 

also prime their split, plane-rotated, and depth-rotated versions. 

2. The priming obtained for attended objects has analytic properties. Split images show 

visual priming only when attended, and part changes affect attended images more than 

ignored images. 

3. Priming for ignored images is shape-specific, because ignored objects do not prime an 

image of another object with the same name but different shape. 

4. Ignored images make automatic contact with stored holistic memory representations. 

Ignored images do not prime themselves in unfamiliar views nor do ignored split images 

prime themselves. 

5. The two representations - analytic and holistic - seem to be independent of each other 

and can work in parallel. The priming effects of attention and change of holistic 

properties (configuration, viewpoint) are additive. Priming effects are non-additive if 

qualitative properties (i.e. parts) of an object's structural description change across views. 

Together, these findings suggest that priming differences between attended and ignored 

objects are a result of two qualitatively different representations. The importance of these 

data for the hybrid model of object recognition will be discussed in the next section. The 

following sections consider the wider implications of the results for other models of object 

recognition, for theories of attention, and for research on brain functions. The chapter will 

close with an evaluation of the hybrid model. 
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4.2 Implications of the Results 

The priming results for plane and depth-rotated objects confirm the findings of Stankiewicz 

et aI. (1998) that attended objects prime themselves in the same and a different view, but 

ignored images prime themselves only in the same view. Therefore, the predictions for view­

dependence in the ignored route are not limited to mirror-reflections (Stankiewicz et aI., 

1998) but also hold for plane- and depth-rotations. The model can therefore potentially 

account for a variety of performance patterns after changes in orientation. The fact that these 

priming effects were the same across plane and depth-rotation as well as configural changes 

suggests that the same mechanisms for achieving view-invariance may be used. Object 

constancy across view changes and configural changes can only be achieved by attending to 

an object. However, the visual system can still recognise objects without attention if no 

compensation for orientation or configural change is needed. Therefore, the results clearly 

indicate that there are at least two routes to object recognition depending on attention. 

The results from Experiments 1 to 3 confirm the prediction of the hybrid model that these 

two routes have separate analytic and holistic properties. The fact that split objects visually 

prime their identical versions only when they are attended but not when ignored shows that 

the representation generated in response to attended images can compensate for configural 

changes (such as splitting an image), whereas the representation for ignored objects cannot. 

Moreover, part-changes after depth-rotation affect priming for attended images more than for 

ignored images (Experiment 8). Thus, representations mediating object recognition for 

attended images have analYtic (i.e. non-holistic) properties (e.g., as in a structural 

description), whereas the representation mediating recognition of ignored images are strictly 

holistic (e.g., as in a view-based representation). 

The priming found for ignored identical images cannot be explained by a simple "identity 

benefit" due to low-level processing, that is, they cannot be attributed to the hypothesis that 

identical images always prime themselves more than non-identical ones. Split images prime 

themselves when attended, but not when ignored, just as images of objects that are rotated 

from their upright (canonical) orientation prime themselves only when attended. These 

findings suggest that only previously stored representations prime themselves in the ignored 

route. This is corroborated by Stankiewicz and Hummel (2002) who showed that non-
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identical images of an object (translated and scaled version) can prime themselves as much 

as identical images prime themselves. Thus, priming for identical images does notrely solely 

on low-level processes, but rather on whether this view has been stored in memory. 

The priming patterns obtained with plane-rotated images in Experiments 5 and 6 also 

indicate that the reduction of priming for split images found in Experiment 1, 2 and 3 are 

unlikely to be due to differences in difficulty levels. The results cannot be explained by the 

fact that split images are simply harder to identify than intact images because for example, 

they may be initially perceived as two items rather than one. No-base objects have no 

preferred familiar view and are recognised equivalently well from virtually any orientation in 

the picture plane. In Experiment 5 rotated no-base objects showed exactly the same 

reduction in priming as did split images. Together with the results on priming for identical 

versus mirror-reflected images (Stankiewicz et aI., 1998) these data provide converging 

evidence that the visual system employs two qualitatively different representations to deal 

with the described changes in retinal input. 

The fact that priming is not due to low-level-processes also indicates that the holistic route 

requires access to LTM. In addition, ignored images do not prime an image of an object with 

the same name but a different shape. Therefore, the priming observed in the ignored route 

does not extend to semantic representations (Experiment 2). The lack of semantic priming 

between different exemplars of an object and the fact that images in unfamiliar views or 

configurations do not prime themselves indicate that priming manifests itself between 

perception and memory, that is priming for ignored images is mediated by a holistic visual 

representation of object shape (Experiments 3 and 6). This is consistent with simulation 

studies (Hummel, 2001) in which priming was implemented between layers 5 and 6 in the 

hybrid model. 

The priming effects of attention and viewpoint were additive if only holistic properties were 

changed from prime to probe display. The priming effects were additive for attention and 

configural (split images) change as well as for changes in.orientation. This, again, is in 

accordance with the prediction of the hybrid model that two qualitatively different 

representations are generated in parallel. Attended images generate both an analytic as well 
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as a holistic representation, whereas ignored images only generate a holistic and view­

dependent representation. 

The priming effects of attention and rotation in depth were non-additive if analytic properties 

of the object changed from prime to probe display. The reduction in priming for depth­

rotated compared to identical views was significantly higher for attended than ignored 

images, but only if the rotated views differed in terms of their visible parts. Depth-rotated 

views that did not differ significantly in their part structure showed similar reductions in 

priming across view-changes compared to mirror reflections. This result supports the 

conclusion derived from priming with split images that attended images are mediated by 

part-based representations. 

Together, the results of Experiments 1 to 9 suggest that visual attention affects the qualitative 

nature of the visual representation generated from an object's image. A possible alternative 

account for the original findings of Stankiewicz et al. (1998) and of some studies described 

here (Experiments 1,4,5, 7, and 9) is that the visual system represents shape in only one 

format, but that attention modulates the efficiency ofthe processes that generate an object 

representation from its image or match it to memory. According to this account, priming is 

simply greater for identical images than for non-identical images, and greater for attended 

images than for ignored images. In short, differences in priming between conditions would 

not be due to qualitatively different representations but would reflect a quantitative drop in 

priming when objects are unattended and presented as a different image. This explanation of 

the priming data would in principle fit in the framework of models of object recognition 

which assume only a single representation of object shape, such as structural descriptions 

(e.g., Biederman, 1987; Hummel & Biederman, 1992; Marr, 1982) or view-based templates 

(e.g., Edelman, 1998; Olshausen et aI., 1993; Poggio & Edelman, 1990; Tarr & Pinker, 1989; 

Ullman, 1989, 1998). Such an alternative account of the priming data would predict uniform 

effects of attention and view change on patterns in visual priming. However, Experiments 3, 

6, and 8 showed differential effects of attention on patterns of view invariance in visual 

priming as predicted by the hybrid model and its postulated multiple representations. 

Although attended images in general prime more than ignored images, identical images do 

not necessarily prime more than non-identical (i.e., rotated and split) images. In addition, 
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some changes from identical to nonidentical images (such as depth-rotation with part 

changes) elicit different changes in priming for attended and ignored objects. Thus, the 

results challenge any model of object recognition that relies on a single type of shape 

representation. 

There are further reasons to question the alternative interpretation of the obtained priming 

effects as no model based on a single format of representation seems able to account for the 

range of different priming patterns observed in this investigation. Object shape 

representations that are solely based on parts and relations require attention for dynamic 

binding and therefore would not predict priming in the ignored conditions. These accounts 

would also not predict the differences in priming found for attended mirror-images and 

rotated images of no-base objects because the structural descriptions would be the same for 

all views. Similarly, theories that propose that shape representation is completely image­

based would have difficulties in explaining the priming patterns obtained in the present 

investigation. View-based theories would not predict the visual priming effects observed for 

split images (Experiments 1 to 3) because a view-based representation is by definition a 

holistic (i.e. indivisible) image. View-based theories would also have problems to account 

for the differences found for priming of attended and ignored depth-rotated images when 

parts change across views. 

In Table 12, the results of the experiments in the present investigations are summarised 

qualitatively by assessing whether or not they can in principle be accounted for by 

predictions from geon theory (Biederman, 1987; Hummel & Biederman, 1992), multiple 

views theory (Tarr & Bulthoff, 1995; Tarr & Pinker, 1989), and the hybrid model (Hummel, 

2001; Hummel & Stankiewicz, 1996a). The results summary table was made under the 

assumption that priming for ignored images is not due to a simple identity advantage on the 

basis oflow-Ievel matching, as ruled out by the findings in Experiments 3 and 6 and by 

Stankiewicz and Hummel (2002). 
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Theory 
Recognition by Multiple Views Hybrid Model 
Components (RBC) Theory 

Experiment Attended Ignored Attended Ignored Attended Ignored 

1 Split vs. Intact ? - ./ - ./ ./ . 
Intact probe 

2 Split vs. SNDE ./ ./ - ./ ./ ./ 

Intact probe 

3 Split primes Split ./ - - - ? ./ 

Intact primes Intact 

4 Naming rotated ./ N/A ./ N/A ./ N/A 

objects 

5 Same vs. rotated - - ./ - ./ ./ 

No-base Objects 

6 Upright vs. Rotated ./ - ? - ? ./ 

Base objects 

7 Identical vs. mirror ./ - ./ - ./ ./ 

reflection 

8 Identical vs. depth ./ - ? ? ./ ? 

rotated (part change) 

9 Identical vs. depth ./ - ./ - ./ ./ 

rotated (same parts) 

Table 12: Summary of experiments and how they comply with predictions of geon theory 

(Hummel & Biederman, 1992), multiple views theory (Tarr & Pinker, 1989), and the hybrid 

theory (Hummel, 2001). Key: ",(" = compatible with predictions; "-" = incompatible with 

predictions; "?" = predictio.ns or results not clear. Note: Compatibility was assessed under the 

assumption that priming for ignored images cannot be entirely attributed to low-level 

perceptual processes. 

In general, the results fit well with the predictions of the hybrid model of Hummel (2001; 

Hummel & Stankiewicz, 1996a) that object recognition is mediated by two relatively 

independent representations of object shape. One is a structural description specifying an 

object's parts and their spatial relations (Hummel & Biederman, 1992). This representation 

requires attention to bind local features in the image (contours, vertices, etc.) into an object's 

parts and code these parts independently of one another and of their relations. Accordingly, it 

is invariant with translation, scale, left- right reflection, and other changes in viewpoint that 

do not alter the structural description. The second component of the hybrid model is an 
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holistic representation that codes an object's parts in respect to their co-ordinates in a coarse 

reference frame that is orientation-sensitive. This representation does not depend on visual 

attention because it separates an object's parts according to their locations in the reference 

frame. Thus, visual attention for dynamic binding is not necessary to maintain the 

independence of an object's parts. However, coding an object's features or parts separately at 

each location in the reference frame makes this holistic representation more sensitive to 

variations in viewpoint than the propositional representation (Hummel, 2001; Stankiewicz & 

Hummel, 2002). 

The experiments presented here have extended previous tests of the hybrid model in a 

number of ways. First, the experiments further support the hybrid model's prediction that two 

qualitatively different representations work in parallel rather than in serial. Second, they 

show that the predictions for view-dependence in the ignored route are not limited to mirror­

reflections but also hold for plane- and depth-rotations. The model can therefore potentially 

account for a variety of performance patterns after changes in orientation. Third, the priming 

pattern for split images indicates very strongly that a non-holistic representation (presumably 

a structural description) is involved in object recognition. Visual priming for attended but not 

for ignored split versions of an image is a clear indication for a qualitatively different 

representation of object shape that depends on visual attention. The implications of these 

findings for key issues in object recognition theories will be discussed in the next section. 

4.3 Implications for Issues in Object Recognition 

4.3.1 Parallel vs. Serial Processing 

Hummel (2001; Hummel and Stankiewicz, 1996a) claimed that, in the hybrid model, 

analytic and holistic representations work in parallel. However, Stankiewicz et al. (1998) 

admitted that their results cannot completely exclude the possibility of a serial model. 

According to a serial model, the representation that gets primed without attention (the 

holistic representation) resides in an early part of the proc~ssing stream, whereas the 

representation that gets primed only with attention (the analytic representation) resides at a 

later part of the stream. Serial processing is inherent in Marr's (1982) computational model, 

in which an early view-based description is extracted from the image and serves as the basis 
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for generating a view-invariant structural description model. Two aspects of the current 

investigation argue against the hypothesis that holistic and analytic representations work in a 

serial rather than in a parallel manner. 

First, the observed priming for identical ignored images is not due to simple low-level 

priming which would be predicted by a serial account. Such an account could not explain the 

failure of rotated objects with a definite base and split objects to prime themselves when 

ignored. Rather, these results suggest that the observed priming for ignored identical images 

must be due to a representation that makes contact with a stored holistic representation in 

LTM. This representation is accessed in parallel and somewhat independent of an attention­

consuming analytic representation. 

Second, the fact that mirror images, rotated no-base objects, and split images prime their 

corresponding standard image (unrotated or intact view) equivalently also argues against a 

stage model. All these manipulations produced an equivalent reduction in priming (about 50 

ms). In a serial model, a split image would have to be transformed or matched to an intact 

(stored) holistic representation, which in tum serves as a basis for extracting a more abstract 

representation. This extra processing should produce an additional reduction in priming 

compared to mirror images. In contrast, a parallel model predicts that these manipulations 

disrupt priming from the holistic component equally. Therefore, only the analytic component 

visually primes the standard version of an image, and the reduction in priming for mirror­

reflected, plane-rotated and split images should be the same. 

The evidence for parallel rather than serial processing of a view-dependent and a more 

abstract representation supports data by Marsolek (1999). He found that exemplars with the 

same and different shape as the probe objects primed equally well when presented to the left 

hemisphere. Thus, processing. of a particular shape was not a necessary first step, as would 

have been predicted by a serial model. Consequently, Marsolek assumes two systems 

working in parallel on qualitatively different representations. Further experiments will have 

to establish the time course of generating these representation and their exact nature. 
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4.3.2 View-Dependency and Plane-Rotation 

Studies on object recognition often focus on the performance with plane-rotated objects to 

investigate the question of view invariance. The main difference between the hybrid model 

and Tarr's (1995) multiple views model is not the existence of view-based representations 

(which both theories assume) but rather the role of these representations and mental rotation 

to achieve object invariance. The hybrid model predicts no role of mental rotation, but rather 

assumes that object invariance is achieved via its analytic route involving structural 

descriptions. In contrast, the multiple views model proposes that analogue transformation 

processes are crucial in matching the input image with a limited number of stored views 

(Tarr & Pinker, 1989, 1990, 1991). 

As described in earlier sections (1.4.3.3), structural description theories attribute the 

performance costs after plane rotation of base objects to be a result of a mismatch between 

perceived and stored part structure (Hummel & Biederman, 1992). According to this 

prediction, spatial relations in a structural description should be maximally perturbed for 

plane rotations of about 135°. Indeed, response times increase linearly to about 120° whereas 

rotations of 180°, however, result in faster naming times than would be expected by a linear 

normalisation process (Jolicoeur, 1985, 1988, 1990; McMullen & Jolicoeur, 1992). Also, 

top-bottom discrimination tasks (McMullen & Jolicoeur, 1992) but not handedness 

discrimination (Shepard & Cooper, 1982) revealed similar patterns of performance costs 

after plane rotation than naming tasks. This finding seems to further support accounts (e.g., 

Biederman, 1987) which stress that explicit spatial relations for "top-bottom" but not "left­

right" relations are encoded in object representations (McMullen & Jolicoeur, 1992). 

Experiments 4 through 6 tested and confirmed the hybrid model's prediction that plane­

rotated images prime themselyes when attended but not when ignored, and that ignored 

identical images prime themselves only when presented in a familiar view. This corroborates 

the hybrid model's prediction that attention plays an important role in object invariance. 

Plane rotations are compensated for by establishing the part structure of the image and 

matching it to a similar part structure in memory. View-invariance is achieved via a part­

based analytic representation that depends on attention. Thus, our results are in line with 

studies by Murray (1995c) who found that orientation effects for plane-rotated objects 
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decreased when they had been attended rather than ignored in an earlier block, suggesting 

that attentional resources are necessary to achieve object invariance. 

The hybrid model also fits with the finding that effects of viewpoint differences attenuate in 

subsequent presentations. For example, plane rotation effects have been found to reduce with 

practice in naming tasks (Jolicoeur, 1985, 1988; Lawson & Jolicoeur, 1999; McMullen & 

Jolicoeur, 1992) but not in mirror discrimination tasks (Jolicoeur, 1988). Plane-rotated 

objects may be recognised more efficiently after repeated naming because oflong-term 

priming of the structural description component or because of facilitated feature extraction. 

However, since a structural description does not code left/right orientation explicitly 

(Biederman, 1987; Hummel & Biederman, 1992) mirror discrimination tasks may require 

that observers refer to a viewer-centred frame of reference (McMullen & Jolicoeur, 1990). 

Therefore, accounts incorporating structural descriptions would predict the dependence of 

attenuation effects on the nature of the task, whereas view-based models would not. 

There is a further attenuation effect that argues against mental rotation as a mechanism to 

achieve viewpoint-invariance. Plane rotation effects were reduced after practice, but these 

practice effects did not transfer to other objects - they are object specific (Jolicoeur, 1985). 

Furthermore, the size of this attenuation effect is independent of whether the object has been 

seen in the same or different viewpoint (Murray et aI., 1993). For example, if an object is 

shown in 60° and 120° in practice trials and then tested at 240° and 300° a reduced effect of 

orientation on performance is observed. The reduction is the same for the test and practice 

orientations suggesting that observers do not form view-specific representations with 

repeated exposure, but rather form some orientation-invariant representations. 

As discussed in earlier section (1.4.2.2) there is evidence that mental rotation is an unlikely 

candidate mechanism for recognising plane-rotated views (Jolicoeur et aI., 1998). That 

mental rotation plays a role in object recognition seems also unlikely for a further reason. It 

has been claimed that plane rotation effects in naming tasks are linear for views rotated 

between 0° and 120° (Murray, 1997). However, Lawson aud Jolicoeur (1999) tested effects 

of plane rotation with more views than the usually employed 0°,60°, and 120°. They found 

that certain views (e.g., 30°, 90°, 150° and 180°) were identified more efficiently than 

predicted by a linear mental rotation function. The findings suggest that the visual system 
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does not employ an analog mental rotation process to compensate for plane rotation effects 

(Lawson, 1999). Together, these studies make other view-based mechanisms to achieve 

object recognition (Ullman, 1998; Poggio & Edelman, 1992) also less plausible. 

4.3.3 View-Dependency and Depth-Rotation 

As outlined in earlier sections (1.4.2.6) the focus of the debate on the role of view invariance 

in shape recognition theories has recently shifted to depth-rotations. Experiments 8 and 9 

tested the hybrid model concerning its predictions on performance for depth-rotated objects. 

The priming difference between attended objects in the same and depth-rotated view in 

Experiments 8 and 9 was not predicted by the angular degree of rotation. Thus, 

normalisation procedures such as mental transformation seem unable to account for the 

obtained priming differences (see also Willems & Wagemans, 2001). 

The results of Experiment 8 show that qualitative differences such as changes of part 

structure from study to test have a stronger effect on attended than on ignored images. In this 

case, the difference in priming between depth-rotated images and identical image pairs is 

greater for attended than for unattended images. These data corroborate results concerning 

the effect of part-changes (Hayward, 1998; Experiment 1 and 2). Views in which parts 

(similar to geons) of novel stimuli changed caused longer response times in sequential object 

matching tasks compared to equivalent rotations in which the parts remained the same 

(Figure 26). Interestingly, the difference in matching time between identical viewpoint 

condition and the depth-rotated condition (with the same parts visible in both views) is about 

40 ms, a delay that is expected from the hybrid theory and the present studies 

(Experiment 8). 

The hybrid model can account for the pattern of short-term-priming effects found for depth­

rotated familiar objects obtained here (Experiments 8 and 9) and in sequential matching tasks 

elsewhere (Hayward, 1998; Srinivas, 1995; see section 3.4.5). Potentially, the model can also 

account for long-term priming effects over view changes found in other studies. In general, 

over long-term (several minutes) delays the short-lived (several seconds) view-dependent 

effects of the holistic component are predicted to disappear, and therefore, there should be no 

priming differences for part-equivalent views. Previous studies with familiar objects had 
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shown that the short-term priming differences found between identical versus mirror-

reflected image pairs disappeared when the images were probed after a delay of Several 

minutes (Stankiewicz et al., 1998). Instead, long-term priming for mirror-reflected and 

identical image pairs was the same (Biederman & Cooper, 1991a). This was predicted by the 

hybrid model because only the view-independent analytic (structural description) 

representation should be tapped after such delays, whereas the activation of the holistic 

surface map declines quickly after a few seconds . 
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Figure 26: Example of a novel object shown in three viewpoints used in Hayward's (1998) 

Experiment 1 (top) and performance in a sequential matching task (bottom). 

In contrast to the findings on view-invariance with long-term name priming for mirror 

images, other researchers have found persistent view-dependent effects after depth-rotations 

of primarily novel objects (Hayward & Tarr, 1997; Tarr, 1995; Tarr & Bulthoff, 1995). 

These studies were discussed in an earlier section (1.4.2.6) as were the responses from 

proponents of structural description accounts (Biederman, 2000; Biederman & Bar, 1999, 

2000; Biederman & Gerhardstein, 1995). For example, in a critical review of studies 

reporting high rotation costs, Biederman and Bar (1999) found that distinctive geons in 

depth-rotated views of objects were often depicted in a low resolution. Biederman and Bar 

156 



(1998) showed that increasing the discriminability of distinguishing geons in rendered 

images for example, by avoiding near accidents or using increased exposure durations, 

effectively reduced rotation costs. Thus, the long-term priming differences obtained with 

depth-rotated objects could be an artefact of stimulus (viewpoint) generation. Other artefacts 

that are potentially responsible for viewpoint dependent effects,are the involvement of task­

specific non-recognition (episodic) memory systems, non-distinctive structural descriptions 

among stimuli, uncontrolled occlusion of parts, and time-consuming search for geons on a 

small scale (e.g., Biederman, 2000). However, there is evidence for view-dependent effects 

after depth-rotations even for qualitatively similar views (Lawson & Humphreys, 1998). 

Lawson and Humphreys (1998) found that the view ofa prime object strongly influenced the 

amount oflong-term (several minutes) priming for a target view. Naming of a target view 

was sensitive to which prime view of that object was presented. Priming effects in these 

experiments were view-specific. For example, the initial disadvantage naming a 

foreshortened view in Lawson and Humphrey's (1998) study disappeared with a subsequent 

presentation of that foreshortened view. As such, this finding clearly contradicts the 

predictions derived from the hybrid model for long-term priming as well as those of geon 

theory. These accounts generally predict that after delays of several minutes view-dependent 

priming effects should disappear. However, in line with properties of structural descriptions 

observers benefited greatly when naming objects that were previously seen in a different 

view. There was a clear effect of view generalisation to unseen views. Several points should 

be noted when considering'these results. First, there was no controlled manipulation of part 

change for specific objects across views. Second, the effects of view on priming were mainly 

due to foreshortened views. Foreshortened views are specifically disadvantaged in initial 

recognition tasks (Lawson & Humphreys, 1998, 1999). This is predicted by most object 

recognition theories because diagnostic features or parts are likely to be occluded in 

foreshortened views. Similarly, foreshortened views are less likely to be stored in a view­

based model because they are unstable and less familiar (Lawson & Humphreys, 1998). 

Furthermore, unfamiliar material (e.g., unusual views) show greater priming effects (e.g., 

Srinivas, 1993) which may explain why foreshortened views primed themselves even more 
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than usual views primed themselves. Nevertheless, their results clearly indicate a role for 

view-specific priming. 

Lawson and Humphreys (1998) attributed their results to view-based representations, but it is 

not quite clear how image-based theories would explain attenuation of view effects from 

conventional to (presumably unfamiliar) foreshortened views. In principle, the findings can 

be accommodated within the framework of the hybrid model. For example, the initial 

presentation of a foreshortened view should be more problematic for both the analytic (part 

occlusion) and the holistic representation (uncommon view) than a canonical view. 

However, attending to a foreshortened view allows the encoding of this view into long-term 

memory. Thus, both the analytic and the holistic component would prime the foreshortened 

view on subsequent presentation. Other views (foreshortened or not) should mainly be 

primed by the analytic component. This could explain some of the observed attenuation 

effects with familiar and foreshortened views in subsequent presentation. It could be tested 

whether attending to a foreshortened view will encode it as a holistic representation. 

Previously attended or ignored foreshortened views could be used in the short-term priming 

paradigm. Previously unattended foreshortened views should not prime themselves when 

ignored, whereas foreshortened views that were previously attended should prime 

themselves. 

Considering the difficult issue of interpreting depth-rotation effects, it is also noteworthy that 

not all models of object recognition which incorporate structural descriptions necessarily 

predict view-invariance after depth-rotation even for long-term priming. In an extension of 

the structural description representation based on geons, Hummel and Stankiewicz presented 

a model that codes metric properties in a categorical fashion (Hummel & Stankiewicz, 1998) 

for example, by coding whether a geon's "side-attached" relation appears closer or further 

away from the centre (e.g., depending on the orientation of the object in depth). 

Alternatively, the hybrid model may also account for the viewpoint dependent long-term 

priming patterns found for depth-rotated objects. Recall that the predictions for priming of 

ignored and attended images derived from the hybrid model were attributed to independent 

priming components from layers 5i (IGA) and 5s (HSM) to their correspondent 

representations in layer 6. This is also the locus of priming in the simulations of the hybrid 
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model (Hummel, 2001; Hummel & Stankiewicz, 1996). However, it is conceivable that 

priming also manifests itself between layer 6 and 7, that is, between holistic surface map and 

stored object model. Therefore, an object seen previously in the identical view may receive 

long-term priming from a stored and previously activated holistic representation, whereas an 

object seen in a novel (or less familiar) view may only receive priming from the analytic 

component. This would not affect the general tenet of the hybrid model that object constancy 

across variations in view and shape is achieved via the analytic part-based representation, but 

would accommodate observed view-specific long-term priming effects. 

In summary, the discussion in this section shows that the hybrid model (its structural 

description component in particular) does not necessarily predict complete (long-term) view­

invariance over depth-rotations. However, this does not render the model unfalsifiable, as it 

would predict that qualitative changes (such as part changes between depth-rotated views) 

affect short-term priming more for rotated views of objects that were attended relative to 

ignored views. These predictions were tested and confirmed in Experiments 7 to 9. 

4.3.4 Part-Based Representation 

Experiments I to 3 established that only attended split images showed visual priming. This is 

predicted by the hybrid model because split images can only be recognised via a part-based 

representation that depends on attention. Split images of course do not resemble a part-based 

or even a geon based representation. Rather, splitting an image was intended to prevent 

access to a holistic (view-based) representation. The reason is that a view is a vector of 

spatial coordinates, and it is holistic in the sense that the various features in a view are not 

represented independently of t4eir locations in the vector (Hummel, 2000). Therefore, split 

images should only activate an analytic (i.e. part-based) representation. A further piece of 

evidence for part-based representations comes from Experiments 8 and 9. If views were to be 

represented in their coordinate spatial relations then the amount of angular separation rather 

than part changes between depth-rotated views should have affected response performance. 

However, part changes affected priming more in the attended than in the ignored conditions; 

this clearly indicates the involvement of part-based representation. 
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The assumption that the visual system employs a part-based representation sti111eaves the 

question whether the representations are based on contours and vertices as propc>sed in the 

hybrid model and other structural description models. As described in earlier sections, 

Biederman and his colleagues provided evidence for his account of geon based 

representations derived from edge-extractions (Biederman, 1987; Biederman & Cooper, 

1991b; Biederman & Ju, 1988). More recently, there is new evidence supporting the special 

role of convex contours in object recognition. In single-cell recordings with monkeys, Baylis 

and Driver (2001) used two-dimensional polygons that varied in their curved contour. They 

found that the shape preferences of IT cells generalised across contrast reversals of these 

contours and across mirror images of the stimuli, but not across figure - ground reversals. 

This finding is striking because the three transformations are very different manipulations of 

the critical curved contour. Contrast reversal changes the polarity of this critical contour, 

mirror reversal reflects this contour about a vertical axis, and only figure-ground reversal 

leaves the critical curved contour itself unchanged. The results demonstrate that the 

selectivity of IT responses is not solely determined by the distinctive contours in a display, 

contrary to simple edge-based models of shape recognition (e.g., Riesenhuber & Poggio, 

2000). Thus, although the ground shares the same contour as the original figure, IT cells 

seem to generalise more strongly across mirror images than across figure-ground reversal. 

According to Baylis and Driver, the finding that IT neurons were sensitive to figural shapes 

defined by one-sided edge assignment, and not by the contours per se, is consistent with 

shape representation models that stress the role of such component parts (e.g., Biederman, 

1987) within IT. 

An alternative explanation for the evidence of part-based description obtained in the present 

experiments is theoretically possible. It is conceivable that the visual recognition system may 

rely on some sort of a part- o~ feature-based representation that does not code the spatial 

relations between them categorically and explicitly (as in a structural description). Recently, 

Poggio and Riesenhuber proposed a view-based model that claims to be able to generalise 

over translation, scaling, mirror-reversal, plane and depth-rotations, and even incomplete 

views of an object (Riesenhuber & Poggio, 1999, 2000). Partial views were instantiated as 

view-tuned cells. Thus, this model seems in principle capable of recognising split images 
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without assuming a part-based representation that explicitly codes the relative categorical 

location of parts. Two arguments can be made against such an account. First, the're is 

accumulating evidence for categorical spatial relations in object recognition (Hummel & 

Stankiewicz, 1996b; Kosslyn et aI., 1989; Rosielle & Cooper, 2001; Rosielle, Crabb, & 

Cooper, 2002). Second, even if part-based recognition can be achieved within a view-based 

model, as claimed by Riesenhuber and Poggio, it is hard to see how such a system could 

effectively represent the similarity structure between the two simple shapes in Figure 27. 

According to Hummel (2000), a visual system relying on structured symbolic representations 

(such as GSDs) makes it possible to appreciate their obvious similarity while being able to 

specify how they differ. In contrast, a visual system relying on holistic representations 

(Poggio & Edelman, 1990) would classify them as completely different shapes. The Poggio 

and Riesenhuber model could implicitly detect the similarity. For example, view-tuned cells 

could respond to the "partial" views (which would have to be scale-invariant) corresponding 

to the square and the circle of the two shapes. However, the representations generated from 

these two units would be indistinguishable from each other. In contrast, a symbolic 

representation like the analytic route in the hybrid model that explicitly codes spatial 

relations between parts can represent the similarity between the two shapes while still 

keeping them separate. This property of analytic representations enables a visual system to 

generalise from one object shape to another and form object categories. 

Figure 27: Two simple shapes with a similar structural description (adapted from Hummel, 

2000). 
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4.3.5 Can the Priming Results be Explained by Other Hybrid Models? 

In an earlier section, several accounts of object recognition were described that incorporated 

multiple representations of object shape. Similar to the hybrid model, Farah (1990) proposed 

that the visual system may employ both holistic and analytic shape representations 

depending on the nature of the object. The experiments reported here used images of 

common objects and therefore cannot answer the question whether faces are processed only 

holistically whereas letters are processed only analytically. The results do show, however, 

that common objects may be generally processed both holistically and analytically, as 

suggested by Farah. 

Another early hybrid account of object recognition was based on Riddoch and Humphreys' 

(1984) finding of a double dissociation of processes for achieving object constancy. One 

group of their patients seemed to rely on global properties in object recognition tasks as they 

were selectively impaired in matching a foreshortened view to a more canonical view of a 

target object. At the same time they could match photographs of objects missing an 

important feature. In contrast, patient HJA had problems with local feature information (the 

patient showed impaired matching only when the saliency of the target object's primary 

distinctive feature was reduced) but was unimpaired in matching foreshortened views of a 

target object. This dissociation suggests a distinction in an independent global and local 

processing system which is in generally in line with the hybrid model. One problem in fully 

interpreting these results within the hybrid model framework is that it is not clear in how far 

foreshortened views can tap the analytic and the holistic representation. However, there are 

some indications that HJA's presumed impairment in feature processing is more detrimental 

for object recognition. Although HJA was considerably better in matching foreshortened 

views than right-hemispheric patients, he was equally impaired in naming those views. 

HJA's naming performance was in general worse than that of the other patients with more 

global deficits. This is in line with the assumption that a feature-based representation (which 

is presumably impaired in HJA) is essential for achievin~ object constancy. 

Jolicoeur's (1990) dual route model proposed a mental rotation system as well as a feature­

based representation that work in parallel. However, we found reductions in priming for 

mirror-images (Experiment 7) as well as for rotated no-base objects (Experiment 5) that 
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usually do not exhibit any mental rotation costs in recognition tasks (Experiment 4). 

Moreover, the priming pattern for identical versus rotated no-base objects was similar to that 

of intact versus split images. Since split objects were shown in the same orientation as their 

intact counterparts, there was no need for a mental rotations system. Without a reason to 

mentally rotate an object it is not clear why on Jolicoeur's account there is a reduction in 

priming for split and rotated objects. The same features were visible in the identical relative 

to the split, mirror-reflected, or plane-rotated (no-base) images. Finally, Experiments 8 and 9 

indicated that the amount of angular separation for depth-rotated views does not predict the 

reduction in priming for attended images. A view difference of 60° (rotation around the z­

axis) reduced priming more (over 100 ms, Experiment 8) than a 90° rotation (ca. 40 ms, 

Experiment 9) in the attended conditions. Therefore, a linear analogue transformation like 

mental rotation - and in consequence the dual route account - seems unlikely to playa role in 

the observed priming pattern. 

Similar reasons argue against Corballis' "double checking" account. It proposes that 

recognition costs in studies with rotated objects are due to a mental rotation process after the 

object has been recognised by a view-invariant representation system. It is conceivable that 

participants mentally rotated even no-base images in the probe trial to match it with a rotated 

prime image to verify the identity. However, a different verification process would have to 

be assumed for split images. Finally, both Corballis' and Jolicoeur's accounts do not predict 

the observed differences in priming for attended and ignored images. 

The current experiments used only one task - basic level naming. It is therefore difficult to 

assess for the priming studies described here whether task demands played a role in the 

employment of view-dependent versus view-invariant representations as proposed by Tarr 

and Bulthoff (1995). However, since the task demands did not change across experiments, 

their account seems unable to explain the differences in view-dependent priming between 

Experiment 8 and 9. Nevertheless, it is quite likely that changes in task demands such as 

subordinate rather than basic-level recognition may prodl,lce different priming patterns that 

indicate a higher degree of view-dependence. But this does not necessarily mean that 

structural descriptions are not employed. According to the structural description account, it is 

possible that subordinate-level recognition requires the parsing of geons on a finer scale 
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(Biederman, Subramaniam, Bar et aI., 1999). Therefore, geon theory would also predict that 

subordinate-level recognition should affect priming differences after view-point/changes 

more than basic-level identification for attended objects, simply because more geons 

(extracted on a finer scale) and relations mismatch between perceived and stored shape 

description. 

The experiments described here are generally in line with Marsolek's (1999) theory of 

different visual subsystems in the brain. The abstract-category recognition system, which is 

associated with the left brain hemisphere has the ability to map different input shapes to the 

same output representation. The processing of shape information is assumed to be "feature­

based" and thought to include non-accidental properties (Lowe, 1985). It is therefore similar 

to the structural description component of the hybrid model. The second subsystem, 

associated with "whole-based" shape processing predominantly in the right hemisphere 

(Marsolek, 1999), is very sensitive to changes in object shape. Marsolek's notion of two 

hemispherically dissociated subsystems is supported by recent event-related imaging studies 

(Vuilleumier et aI., 2002). The current priming-paradigm was not designed to distinguish 

between hemispheric processes, and the hybrid model does not assume (nor exclude) 

preferred hemispheric localisation of the proposed types of representation. Marsolek's 

subsystem theory does not predict the rapid dissipation of view-specific effects as predicted 

by Hummel's (2001) model. A further difference between the theories is that the dissociable 

neural subsystems model does not make any predictions concerning the role of attention in 

object recognition. The combination of these two lines of research seems a promising 

direction for further investigations concerning the neural bases of object recognition. 

4.4 Implications for Issues in Visual Attention 

The hybrid model is not a general theory of attention. For example, it does not address the 

question oflocation-based versus feature based visual search, visual neglect, inhibition of 

return, among others. Rather, the model focuses on the role of attention for representation 

and basic-level classification of object shape. However, the findings reported here and 

elsewhere (Stankiewicz & Hummel, 2002; Stankiewicz et aI., 1998) have important 

implications for the question of early versus late selection of visually attended stimuli, as 

well as for the question of the connection between attention and awareness. Furthermore, the 
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results of the priming paradigm concern the nature of automatic vs. non-automatic processes. 

These issues will be discussed in the next sections. 

4.4.1 Early vs. late Selection 

As described in a previous section (see 2.4.4), 'early selection' approaches argued that the 

treatment received by attended vs. unattended information differs early in perceptual 

processing. Unattended information was thought to be blocked completely once a fixed 

bottleneck was reached, with only simple 'physical' properties being extracted prior to that. 

'Late selectionists' proposed that the limited awareness of unattended stimuli might not be 

attributed to less than full perceptual processing, but rather with prohibiting entry of 

unattended information into memory or into the response control (Duncan, 1980). An initial 

parallel, unlimited stage of perceptual processing is followed by a second serial, limited­

capacity stage concerning selection for awareness, response and memory. 

The current investigations was concerned with the formats of shape representation rather 

than selection processes, but the results for priming of attended and ignored stimuli indicate 

possible differences in the visual processing stages. On the one hand, the positive priming 

observed with ignored images suggests that humans can recognise objects without attending 

to them. This is consistent with the late selection view. On the other hand, the fact that 

attention plays an important role in object representation is in line with the early selection 

view. Although attention per se does not determine whether an object will be recognised, it 

seems that it determines how it will be represented for recognition. 

Consistent with a late selection interpretation of the priming effects for ignored images, other 

researchers such as Tipper (1985) and Treisman and DeSchepper (1996) demonstrated 

negative priming for ignored stimuli. However, there are three main differences between 

those studies obtaining recognition for ignored stimuli and the ones reported here. First, the 

paradigm used here produced positive priming rather than negative priming. Second, 

negative priming has been observed previously for semantically related objects (Tipper & 

Driver, 1988), whereas in Experiment 2 (similar to Stankiewicz et aI., 1998) there was no 

priming for ignored objects with the same name but different shape. Finally, some 

researchers have found priming from unattended novel shapes (DeSchepper & Treisman, 
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1996), whereas Experiments 3 and 6 demonstrated that priming for ignored images depends 

on previously stored representations. 

Concerning the finding of positive instead of negative priming, the main difference between 

the two priming paradigms is that, in the former, attention was directed to the target object in 

the prime display by a spatial cue (a square box) whereas, in the latter, participants had to 

select one object of two overlapping stimuli defined by a particular colour in both the prime 

and probe trial. According to Stankiewicz and Hummel (2002), the participants in a negative 

priming paradigm had to "actively ignore" (or select against) the unattended stimulus. 

Therefore, processing of the ignored image may proceed up to a semantic and even response 

level in these experiments which could explain the negative (instead of positive) priming for 

both identical and semantically related objects. The activated response (naming of the 

ignored image) had to be suppressed. In contrast, in the positive priming paradigm spatially 

separated uncued images do not have to be inhibited when observers select the cued stimulus 

and therefore may not be processed at a semantic level. Indeed, ignored images can facilitate 

naming if their holistic shape corresponds with the probe. Support for this interpretation of 

priming based on segmentation processes comes from studies showing that distracter 

interference could be reduced if the distracters were made more physically distinct from 

targets (Francolini & Egeth, 1980), or placed further away (Eriksen & Eriksen, 1974). In 

fact, Tipper and Cranston (1985) found no negative priming when the probe was displayed 

alone (not overlapping with another stimuli; see also Stankiewicz et al.'s, 1998, Experiment 

3) and concluded that inhibition may have rapidly decayed. 

Concerning the question of semantic priming from pictures, in contrast to the current 

paradigm Tipper and Driver (1988) used a picture categorisation task presumably to 

maximise semantic processing of the stimuli. They found negative priming from ignored 

pictures onto semantically related words, indicating a central semantic locus of the negative 

priming effect. However, their research was criticised because their task afforded an 

identical response in the semantically related condition, ~hich had to be suppressed in the 

prime trial (Fox, 1995). Thus, "response repetition" rather than attentional inhibition of 

semantic representations could account for slower response times in the semantically related 

condition. Similar conclusions were drawn by Damian (2000) who sought to establish 
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whether semantic representations were involved in negative priming by eliminating potential 

confounds. He concluded that the semantic negative priming found earlier (Tiptyer & Driver, 

1988) was due to an artefact of the categorisation task and that the crucial test of the locus of 

this effect was the failure to obtain semantic negative priming in a naming task. In general, 

the finding that negative priming with a naming task does not necessarily extend to 

categorically related stimuli is in line with the results obtained with positive priming in 

Experiments 1 and 2. Experiment 2 showed no positive priming for ignored shapes that 

shared the same name with the test exemplar in the probe trial. An interesting question for 

further research is whether structurally similar exemplars prime each other more than 

structurally dissimilar exemplars, and if so whether such differences are the same in attended 

and ignored conditions. 

Experiments 3 and 6 established that unattended images in unfamiliar configurations or 

orientation do not prime themselves. The latter findings support the hybrid model's 

prediction that only already encoded representations can be primed in the ignored route. In 

apparent contradiction to this conclusion, DeSchepper and Treisman found negative priming 

for novel shapes (DeSchepper & Treisman, 1996). However, their paradigm and task varied 

considerably from the short term paradigm in this investigation. Most notably, prime and 

probe displays remained visible until observers responded, potentially giving them the 

opportunity to allocate attention to the to-be-ignored shape. In addition, the novel 

(overlapping) shapes were used in more than one trial-pair. Thus, the results of this study do 

not seem to be directly comparable to the findings reported here. 

The current debate about the nature of negative priming (see Tipper, 2001; and Fox, 1995, 

for reviews) is beyond the scope of this thesis; rather, the aim was to investigate the format 

of representations used in object recognition with and without attention rather than the 

selection process. However, the discussion above shows that negative and positive priming 

effects are non-exclusive and strongly depend on the paradigm. It has also been shown that 

there is growing evidence for visual processing of ignore~ objects at least to the level of 

shape representation, which must be taken into account by theories of visual selection. 

In general, our results are in line with theories that predict a role of attention for feature 

binding because only attended split and plane-rotated objects were primed. For example, the 
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Feature Integration Theory of Treisman and Gelade (1980) and the Guided Search model of 

Wolfe, Cave and Franzel (1989) have two processing stages, the first parallel (preattentive) 

and the second serial (requiring focused attention). In the first stage simple features are 

computed in parallel across the visual scene. In the second stage, attention is focused on the 

location in the visual field containing the target defined by a conjunction of attributes and a 

(temporary object) representation is made. However, although both models account for a 

wide variety of results from the literature on visual search they provide no straightforward 

explanation for the findings ofShiffrin and Schneider (1977). They showed that complex 

stimulus characteristics such as shapes of whole letters seemed to be matched against long­

term memory representations before attentional selection occurs. Similar to these results that 

imply late selection, the priming experiments presented here show that even complex stimuli 

such as whole shapes of common objects can be processed without attention. 

How can the present findings be integrated in late vs. early selection theories? The 

predictions of the hybrid model and the results of the experiments targeted to test them are 

broadly reminiscent of Treisman's (1960) attenuation theory. It states that ignored stimuli 

can sometimes be processed passed basic physical stages and "breakthrough" to awareness 

(e.g., words presented consistent with expectations). Applied to the present findings, 

attenuation or the flexibility of this "filter" for ignored information seems to depend on the 

familiarity with the ignored stimulus, as only holistic representations in familiar views seem 

to prime in the ignored conditions. Further factors may influence selection which resemble 

explanations in terms of "c"apacity limits". Lavie (1995; Lavie & Fox, 2000) recently 

proposed an account targeted to explain findings for both late and early selection views. In 

an extensive review, Lavie and Tsal (Lavie & Tsal, 1994) observed that results supporting 

the late selection view had often been obtained in situations oflow 'perceptual load ' (e.g., 

with just a single target and single distracter, or an undemanding task for the target). But 

there was also evidence for early selection when perceptual load was higher (e.g., more 

stimuli presented, and/or a more demanding task for target detection). Adapting the 

perceptual load account to the short-term priming paradigm, the prediction of the hybrid 

model would be that increasing the number of different ignored images should reduce the 

amount of visual priming for each of them. 
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In summary, the priming results of the experiments reported here are generally in line with 

other studies demonstrating priming for unattended information. Our data also seem to 

confirm and extend previous views that interpret early vs. late selection phenomena as the 

result of a complex interaction between capacity limits and stimulus properties. 

4.4.2 Attention, Binding and Awareness 

The results of the experiments reported here showed that manipulations of the image 

structure affected attended and ignored objects differently. Priming for attended images is 

more sensitive to part changes than priming for ignored images (Experiment 8), whereas 

manipulations that affect the holistic but not the local (part) structure of an image disrupt 

priming for unattended objects (Experiments 1 to 3 and 5 to 6). These results support the 

notion that attention is needed to bind object attributes (Treisman, 1998). 

Evidence for the role of attention in binding of object properties was discussed in an earlier 

section (2.4.4). A further line of evidence that the binding of visual aspects of an object 

requires attention comes from phenomena known as the 'attentional blink'. In this paradigm, 

participants must attend to and report two targets in a rapidly presented stream of items. 

Identification of Target 2 is severely impaired ifit is presented 100-300 ms (or more) after 

Target 1 (Chun & Potter, 1995; Shapiro, 1994). Attentional blink is reduced by increasing 

target-distractor discriminability and is thought to reflect a general limit of the speed with 

which succesive stimuli can be processed. According to Treisman and Kanwisher (1998), the 

results of this paradigm can be interpreted as a failure to establish a separate object 

representation as a consequence of attentional capacity limitations. Interestingly, Shapiro, 

Driver, Ward, and Sorenson (1997) found priming produced by "blinked" stimuli, which is 

also consistent with the present findings that ignored stimuli were processed (primed in same 

view) but were not available for report (Experiment 7). These results conform with the 

hybrid model's assumption that conscious recognition of objects requires attention, which is 

necessary to bind object attributes together. 

Another demonstration of the special role of attention for binding and awareness in obj ect 

recognition comes from the work of Rensink (2000; 2002) on change blindness. In a number 

of paradigms, he observed the striking inability to identify a change for example, in rapidly 
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presented scenes. At least two findings suggest that change blindness depends on attention. 

First, it seems that a change will be noticed if it produces a visual transient that attracts 

attention (Jonides & Yantis, 1988; Yantis, 1993; Yantis & Johnson, 1990). Second, a change 

will be noticed if it occurs at the current locus of attention (Rensink, 2002; Rensink, Oregan, 

& Clark, 1997). It appears that the change is found when attention rests on the correct object 

while that object changes. Recently, Rosielle, Crabb, and Cooper (2002) found that 

participants were faster at detecting positional changes in alternating versions of a scene if 

categorical relations rather than only metric relationship between objects in a scene changed. 

This finding is supported by the results of this thesis indicating that a representation based on 

the categorical coding of parts (Experiment 8) rather than on metric properties has preferred 

access to awareness. 

The crucial assumption of the hybrid model is that attention binds object attributes 

dynamically. Whether dynamic binding for object attributes is established by temporal 

synchrony (Hummel, 2001; Hummel & Biederman, 1992) or some other means is obviously 

beyond the scope of this thesis (von der Malsburg, 1995). There is evidence that synchrony 

of firing may be the (or one) basis for dynamic binding (Castelo-Branco, Goebel, 

Neuenschwander, & Singer, 2000; Gray, Engel, Konig, & Singer, 1992; Gray, Konig, Engel, 

& Singer, 1989; Gray & Singer, 1989). However, Hummel (1997) pointed out that - from a 

computational standpoint - the question of how dynamic binding is represented is not 

necessarily important for structural description models. Therefore, in summary, the results 

presented here simply support the notion that attention is needed for the dynamic binding of 

object attributes and for the conscious (reportable) recognition of an object. 

A further issue on the matter of awareness and attention arising from the experiments using 

the priming paradigm concerns the issue of whether unattended images are completely 

ignored. If attention is necessary for binding of shape attributes, but at the same time 

unattended objects show priming, it could be argued that the reduced priming in the ignored 

conditions was due to residual attentional processing. It i~ conceivable that the ignored 

objects in the short-term priming paradigm were not completely ignored and therefore some 

attention was allocated to the uncued objects. If this was the case the model's prediction and 

its special emphasis on the role of attention would be less convincing. This criticism of the 
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paradigm seems very implausible. First, observers in Experiment 7 were unable to report the 

correct identity of the ignored image in the last trial, similar to Rock and Guttman's (1981) 

observers who were unable to report the formerly unattended object in a superimposed object 

pair. However, it may be argued that observers simply forgot the ignored object quickly, or 

that some attentional resources were directed towards the ignored stimulus but not enough to 

establish a conscious representation. But even if participants allocated some attention to the 

ignored stimulus, one would expect at least some priming for example, for ignored mirror 

images or rotated no-base objects. Here, no evidence for priming for was found for ignored 

objects (unless there was a metric overlap as in Experiment 8). Moreover, previous research 

has shown how important location is for allocation of attention (see section 2.4.4). For 

example, in paradigms using inattentional blindness, observers who perform a single task 

(e.g., a line length judgement) cannot report a stimulus flashed near to the task-relevant 

target when queried after the trial (Mack, Tang, Tuma, & Kahn, 1992; Moore & Egeth, 

1997). Finally, as the observers in the present experiments certainly did not perform at 

ceiling, correct prime-probe trials with the short duration of image presentation hardly 

allowed enough time to pay attention to both cued and uncued locations. 

There are further reasons to assume that unattended objects are really ignored while at the 

same time some shape properties can be processed. This evidence comes from patients with 

visual neglect. Visual neglect affects visual attention and awareness. Although their visual 

cortex and its initial afferent inputs are intact, patients with neglect after right-parietal injury 

have deficient awareness for visual stimuli at the contralesional side of space. However, if 

their attention is drawn to that side, the visual stimuli are brought into awareness (Driver & 

Mattingley, 1998). At the same time, recent evidence suggests that attributes of neglected 

stimuli such as colour and shape still get encoded by the neglect patient's visual system, 

despite the loss of awareness (Cohen, Ivry, Rafal, & Kohn, 1995; Mattingley, Bradshaw, & 

Bradshaw, 1995). Thus, we conclude that the evidence is against the hypothesis that the 

priming for ignored uncued images in this paradigm was due to (residual) attentional 

processing. 
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4.4.3 Automatic Processing vs. Controlled Processing 

The fact that ignored images can prime a representation of an objects' shape (and identity) is 

in line with the hybrid model's prediction that object shape can be processed automatically, 

that is without attention (Hummel & Stankiewicz, 1996b; Stankiewicz & Hummel, 2002; 

Stankiewicz et aI., 1998). The results of the current experiments (in particular Experiments 3 

and 6) suggest that automatic processing of ignored images is view-sensitive and only occurs 

with familiar views. In contrast, attention is necessary to process the analytic properties of an 

object (such as its parts and their spatial relations to compensate for view changes). The 

additive effects of view (or configuration) and attention found in Experiments 1,5, 7, and 9 

were attributed to the automatic holistic representation contributing to the priming from the 

analytic component. 

According to JIM.3 and its predecessors (Hummel & Biederman, 1992), processing of a 

geon structural description proceeds in a bottom-up fashion and is therefore expected to be 

initiated automatically as soon as attention is allocated to an object. This issue is connected 

with the concept of attentional control. Posner (1980) distinguished between exogenous and 

endogenous attention control, whereas Jonides (1981) proposed a dichotomy between 

automatic and nonautomatic attention control. Both the concepts of exogenous and automatic 

attention stress factors outside the organism in attentional processing. The response to a 

stimulus is determined by stimulus characteristics. In consequence, exogenous control has 

often been associated with stimulus-driven or bottom-up control. In contrast, the 

endogenous/nonautomatic mode of attention control is associated with the initiation of overt 

voluntary action for example, to direct one's attention to a specific location or attribute. 

Although the question of automatic vs. non-automatic attentional control (not to be confused 

with Hummel's terminology ~f automatic processing of holistic representations) was not 

directly addressed in this investigation, it is noteworthy that paying attention to a cued 

location may automatically activate both the holistic and the analytic representation (as 

predicted by the hybrid theory). There is evidence that automatic processing may be 

involved for attended objects up to a semantic level. Boucart and Humphreys (1992) showed 

that observers cannot selectively process global shape information without accessing 

semantic or name information. Humphreys and Boucart (1997) have shown that when 
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processing of local form is required for response, surrounding global information is 

automatically processed to a semantic level. Whether the priming obtained with,these tasks 

is due to the activation of both an analytic and holistic representation or only due to the latter 

cannot be decided on the basis of their results. Further experiments will have to establish 

whether attending to an object without naming it automatically triggers a part-based 

representation. This should shed more light on the extent of bottom-up processing in object 

recognition. 

4.5 Multiple Representations in the Brain? 

This research presented behavioral evidence in support of two qualitatively different 

representations of shape. However, as many models of object recognition are increasingly 

driven by neuropsychological and neurophysiological observations, the hybrid model would 

be more convincing if it could account for these findings as well. The introductory chapters 

described evidence for multiple (presumably view-based and part-based) representations in 

the brain (2.4.3). This section discusses this evidence in relation to the findings presented 

here. 

On a general level, the findings that object recognition is mediated by two qualitatively 

different systems supports neurophysiological and imaging studies showing that neuronal 

areas in the ventral pathway differ in their response to changes in view conditions (see 

section 2.4.3). ill line with the hybrid model, Experiments 5 to 9 indicate that an analytical 

representation generalises across differences in orientation of objects, whereas a holistic 

representation is highly sensitive to changes in picture plane and depth-orientation. This fits 

with recent evidence that some neurons in IT code for complete objects whereas others are 

selective for individual views (Booth & Rolls, 1998). Janssen, Vogels and Orban (2000) 

showed that different areas in: the macaque IT respond selectively for 3D and 2D shape. 

Neurons in the superior temporal sulcus were selective for three-dimensional shape whereas 

neurons in lateral TE were generally unselective for 3D shape, though equally selective for 

2D shape. These findings strongly suggest that IT (or macaque TE) consists of at least two 

distinct areas with different sensitivity to shape properties. 
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The results from the fMRI study ofVuilleumier et al. (2002) are even more directly relevant 

for the studies presented here. They showed in a priming paradigm that repetition of images 

of common objects decreased activity (i.e. primed) in the left fusiform area independent of 

viewpoint (and size), whereas a viewpoint-dependent decrease in activation was found in the 

right fusiform cortex. Interestingly, the latter area was sensitive to changes in orientation but 

not in size, properties directly predicted from the holistic representation (Hummel, 2001). 

Moreover, Henson, Shallice and Dolan (2000) found that repetition priming resulted in 

different patterns of attenuation in the right fusiform area depending on whether the repeated 

stimuli were familiar or unfamiliar, supporting the current results of Experiments 3 and 6 

that only stored holistic views prime themselves. 

The priming results obtained with split images (Experiments 1 to 3) also fit with 

observations on patient RK (Davidoff & Warrington, 1999) who could not recognise parts of 

objects although he could recognise complete objects in a whole conventional view. In 

particular, RK was markedly impaired in recognising "exploded" versions of a Snodgrass 

and Vanderwart (1980) image. He was also impaired in detecting part changes when 

presented with different alternatives of objects (e.g., a donkey with original ears or ears from 

another animal). These data can be interpreted within the hybrid model to indicate that RK's 

analytic route is impaired, as he was poor with unconventional views, exploded views, and 

detecting part changes. At the same time, his holistic representation may be intact allowing 

automatic recognition of conventional views. Furthermore, although he was unable to 

discriminate between mirror images and rotated versions of no-base objects, RK was good at 

discriminating between upright base objects and their plane-rotated versions. This, again, is 

in line with the data presented here (Experiments 4 to 7), indicating that there is a qualitative 

difference in holistic properties for these manipulations in viewpoint. The question arises 

why RK could recognise but ~ot discriminate between familiar views of no-base objects. 

According to the hybrid model, the automatic holistic route does not allow conscious access 

to shape representation, but provides a fast direct route to object identity units. It is possible 

that RK was incapable to discriminate between mirror-images and rotational changes with 

no-base objects because familiar orientations access the same semantic unit for a given 

object. Interestingly, RK was able to distinguish between "right shoe" and "left shoe", 
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indicating that different shape representations access different semantic units in cases where 

orientation matters for identification. This interpretation is supported by another/patient who 

was impaired at recognising objects from unconventional views (Warrington & Davidoff, 

2000). JBA was unable to perform mirror discriminations with line drawings of common 

objects, but was able to discriminate mirror reflections of novel meaningless objects. Thus, it 

is possible that - because there was no automatic recognition of novel meaningless objects -

stages of visual processing were engaged that allowed the discrimination of mirror-reflected 

shapes. 

In conclusion, the results obtained in Experiments 1 to 9 seem to complement 

neuropsychological and neurophysiological findings that indicate formats of representation 

similar to the hybrid model. Further research may seek to explore the neural basis of these 

representations in dependence of attention. 

4.6 Evaluating the Hybrid Model 

In general, the results of the experiments presented support the hybrid model and its 

prediction of qualitatively different representations for ignored and attended images. 

Furthermore, the discussion above shows that the hybrid model seems to be generally in line 

with findings from other behavioral and even neurophysiological studies. At a theoretical 

level, the question arises about the need for the visual system to employ a view-dependent 

holistic representation in addition to a structural description component. The answer could 

come from the multiple roles served by object representations. Indeed, the hybrid model of 

Hummel (2001) was motivated by the observation that object recognition can be fast 

(Intraub, 1981) and operate without attention (Tipper, 1985). On the hybrid model, rapid 

object recognition would be achieved by holistic representations of stored views but these 

representations would be insufficient for all tasks requiring object recognition. In particular, 

they would be inadequate to decide that objects belong to a category when they do not look 

closely similar to each other. For example, a Land Rover is readily classified as a car, as is a 

Formula One Ferrari, although the 2D projections of the two object images are very 

different. A holistic representation strictly based on the laws of projective geometry 

(converting retinal images into stored object-centred representations) would not tolerate such 

variations in an object's shape (for discussions, see Edelman & Intrator, 2000; Hummel, 
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2000,2001). In contrast, a structural description system that describes objects in terms of 

abstract generic parts and their interrelations would solve the problem rather easily. The 

prediction for the hybrid model would be that only attended images generalise (show 

priming) over changes in an object's shape. In Experiment 2, there was priming for objects 

with the same name but were a different exemplar only in the attended condition. However, 

since the obtained priming for a different exemplar could be entirely due to repeated naming, 

it is not certain that priming in this condition was due to the activation of a different instance 

of that object class. Evidence that attending to an object may indeed activate the 

representation of other exemplars comes from Marsolek (1999) who found that an image of 

an object receives more priming from a different exemplar of that object (with the same 

name) than from the visually presented name of that object. 

The present experiments with rotated objects confirmed the model's general predictions for 

priming of attended and ignored views. This is important because the hybrid model is able to 

account for an interesting finding in the object recognition literature. In simulations with 

plane-rotated objects, JIM.3 -like human observers and like JIM (see Hummel & 

Biederman, 1992) - is faster and more accurate in recognising images that are completely 

upside-down (i.e., 1800 off upright) than images that are slightly less than perfectly upside­

down (e.g., 135 0 off upright). Thus, the model appears to be able to account for a large 

number of findings describing the relationship between recognition performance and angular 

degree of plane rotation. As discussed above, the model seems also to be able to account for 

findings with depth-rotated objects, at least in short-term priming paradigms or matching 

tasks. Future research can further test the models prediction with more finely tuned view 

differences. 

Not surprisingly, JIM.3 still has some shortcomings and problems such as the coding of axes 

(which cannot be extracted from line drawings). Other issues that have to be addressed in 

future research have been discussed in earlier sections. They include the role of hemispheric 

differences, the time course of holistic and analytic priming, the degree of view-sensitivity of 

the holistic representation, and the role of attention in encoding new views. A particularly 

important limitation of JIM.3 - and other computational models of object recognition - is its 

inability to solve the figure-ground segmentation problem. This means that JIM.3 can "view" 

176 



only one object at a time. But what happens if more than one (ignored) object is in a scene -

will they all be recognised in their familiar views? According to Hummel (2001 Yo the 

assumption is that features of ignored objects may fire occasionally, but only in synchrony 

with one another. Computationally speaking, all ignored objects are forced to share a single 

"time slice" in the oscillatory firing. The more ignored objects ~re present in the visual field, 

the smaller the probability that any given one of them fires by itself within any fixed amount 

of time. Moreover, with multiple ignored objects in the visual field, the probability that 

binding errors occur increases, not only for dynamic binding in the IGA, but also in the 

surface map, if two or more objects happen to fire at the same time. Thus, JIM.3 would 

predict that the relationship between attention and patterns of priming should vary as a 

function of how many ignored objects there are in the visual field. This can be tested by 

increasing the number of ignored images in the priming paradigm. In fact, there is evidence 

that negative priming is attenuated when the number of distracters in a prime display 

increases (Neumann & Deschepper, 1992). 

A natural limitation in interpreting the present (and many other) experiments of object 

recognition is that observers were limited in their viewing conditions: they had to gaze at a 

particular point of space and saw only isolated objects. It may be tempting to question the 

ecological validity of such experiments when trying to extend their findings to real world 

conditions. Natural vision differs from most controlled viewing studies. Stimuli in the real 

world tend to be complex and stimulus-directed eye movements occur often during natural 

viewing. In single-cell studIes with monkeys DiCarlo and Maunsell (2000) examined the 

effect of natural viewing conditions while controlling scene complexity. For nearly 90% of 

IT neurons, the reponses were equivalent to those under restricted viewing conditions. These 

results seem to indicate that activity in IT in response to object identity can be independent 

of how that image was brought to the retina. 

A further general criticism of the hybrid model could address the notion of multiple views in 

the holistic route (Experiment 5). This component of the model might appear to have become 

too powerful and implicitly resemble a multiple views approach. However, the model clearly 

predicts that view-constancy is achieved via the attention consuming analytic representation, 

a prediction that seems increasingly corroborated (e.g., Murray, 1995c). The hybrid model 
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does not have to assume an alignment or transformation process in order to generalise across 

viewpoint changes in the holistic route. Rather, the hybrid model assumes that although 

holistic 2D representations of views can be stored in memory, these representations are not 

used to achieve object constancy. 

A general advantage of the hybrid model over many other models of object recognition is 

that it makes relative clear predictions about priming patterns for attended and ignored 

images. Thus, priming in the ignored and analytic route can help to tap different processes 

and representation formats, and therefore make more powerful predictions than models that 

propose general view-specificity in dependence of view familiarity (e.g., Tarr & Pinker, 

1989) as well as models that solely rely on structural descriptions (Biederman, 1987). 

4.7 Conclusion 

In conclusion, the experiments reported here demonstrate that the visual representation 

generated in response to an attended image is qualitatively different from that generated in 

response to an ignored image. Although recognition takes place in both cases, it is mediated 

by one kind of representation when the image is attended and a different kind when the 

image is ignored. The findings presented here suggest a very specific answer to the question 

"How can the visual representation of shape have some properties that demand explanation 

in terms of analytic representations, and simultaneously have other properties that are strictly 

inconsistent with analytic representations?" It appears that the visual system represents shape 

analytically when it can, but represents it holistically when it must. 
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Appendix 

Appendix 1: Descriptive Data and Additional Test Statistics 

Experiment 1 

Prime and Probe Trial 

Descriptive Statistics Latencies in ms 

Standard 

Valid N Mean Variance Std.Dev. Error 

ATTSPLIT 42 648.9764 10065.69 100.3279 15.48094 

ATTSAME 42 595.2300 6717.65 81.9612 12.64689 

IGNSPLI 42 816.7461 14750.38 121.4511 18.74032 

IGNSAME 42 762.4381 9450.64 97.2144 15.00050 

UNPRIMED 42 812,6607 11524,21 107,3509 16,56460 

Descriptive Statistics Errors in Percent 

Standard 

Valid N Mean Variance Std.Dev. Error 

ATTSPLIT 42 .154762 .030343 .174191 .026878 

ATTSAME 42 .071429 .013744 .117234 .018090 

IGNSPLI 42 .134921 .028778 .169641 .026176 

IGNSAME 42 .111111 .018519 .136083 .020998 

UNPRIMEP 42 .142857 .016357 .127894 .019735 

Summary of all Effects Errors in Percent; Design: I-Attention, 2-Configuration 

df MS df MS 

Effect Effect Error Error F p-Ievel 

.004134 41 .011925 .346635 .559254 

2 .120536 41 .015861 7.599542 .008676 

12 .037202 41 .021958 1.694215 .200313 
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Probe Trial 

Descriptive Statistics Probe Errors in Percent 

Standard 

Valid N Mean Variance Std.Dev. Error 

ATTSPLIT 42 .031746 .005743 .075780 .011693 

ATTINTAC 42 .031746 .008453 .091939 .014186 

IGNSPLIT 42 .023810 .004839 .069565 .010734 

IGNINTAC 42 .035714 .006146 .078396 .012097 

UNPRIMED 42 .057540 .005924 .076969 .011876 

Friedman ANOV A and Kendall Coeff. of Concordance 

AN OVA Chi Sqr. (N = 42, df= 4) = 12.80000 P < .01231 

Coeff. of Concordance = .07619 Aver. rank r = .05366 

Average Sum of 

Rank Ranks Mean Std.Dev. 

ATTSPLIT 2.952381 124.0000 .190476 .454683 

ATTINTAC 2.809524 118.0000 .190476 .551632 

IGNSPLIT 2.761905 116.0000 .142857 .417392 

IGNINTAC 3.000000 126.0000 .214286 .470377 

UNPRIMED 3.476191 146.0000 .345238 .461811 

Friedman ANOV A and Kendall Coeff. of Concordance 

ANOVA Chi Sqr. (N = 42, df= 3) = 1.265625 P < .73731 

Coeff. of Concordance = .01004 Aver. rank r = -.0141 

Average Sum of 

Rank Ranks Mean Std.Dev. 

ATTSPLIT 2.535714 106.5000 .190476 .454683 

ATTINTAC 2.440476 102.5000 .190476 .551632 

IGNSPLIT 2.440476 102.5000 .142857 .417392 

IGNINTAC 2.583333 108.5000 .214286 .470377 
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Experiment 2 

Prime and Probe Trial 

Descriptive Statistics Latencies in ms 

Standard 

ValidN Mean Variance Std.Dev. Error 

ATTPART 42 614.8090 14919.69 122.1462 18.84756 

ATTSNDE 42 688.9402 20562.79 143.3973 22.12669 

IGNPART 42 748.0671 25974.32 161.1655 24.86838 

IGNSNDE 42 735.1071 23518.91 153.3588 23.66377 

UNPRIMED 42 749.3288 10712.69 103.5021 15.97073 

Descriptive Statistics Errors in Percent 

Standard 

Valid N Mean Variance Std.Dev. Error 

ATTPART 42 .230159 .062266 .249532 .038504 

ATTSNDE 42 .182540 .049877 .223332 .034461 

IGNPART 42 .142857 .054975 .234467 .036179 

IGNSNDE 42 .206349 .064783 .254524 .039274 

UNPRIMED 42 .234127 .036666 .191484 .029547 

Summary of all Effects; Design: I-Attention. 2-Primetype 

df MS df MS 

Effect Effect Error Error F p-Ievel 

.042328 41 .043683 .968981 .330708 

2 .002646 41 .077171 .034281 .854023 

12 .129630 41 .057814 2.242188 .141951 

Probe Trial Errors 

Descriptive Statistics Probe Errors in Percent 

Standard 

Valid N Mean Variance Std.Dev. Error 

ATTPART 42 .071429 .024584 .156792 .024194 

ATTSNDE 42 .087302 .027423 .165599 .025552 

IGNPART 42 .039683 .017357 :131746 .020329 

IGNSNDE 42 .031746 .015228 .123401 .019041 

UNPRIMED 42 .075397 .013824 .117577 .018143 
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Friedman ANOV A and Kendall Coeff. of Concordance 

ANOVA Chi Sqr. (N =42. df= 3) = 6.106383 P < .10657 

Coeff. of Concordance = .04846 Aver. rank r = .02526 

Average Sum of 

Rank Ranks Mean Std.Dev. 

ATTPART 2.583333 108.5000 .071429 .156792 

AITSNDE 2.690476 113.0000 .087302 .. 165599 

IGNPART 2.380952 100.0000 .039683 

IGNSNDE 2.345238 98.5000 .031746 

Friedman ANOVA and Kendall Coeff. of Concordance 

ANOVA Chi Sqr. (N = 42. df= 4) = 9.712610 P < .04558 

Coeff. of Concordance = .05781 Aver. rank r = .03483 

Average Sum of 

Rank Ranks Mean Std.Dev. 

ATTPART 3.035714 127.5000 .071429 .156792 

ATTSNDE 3.154762 132.5000 .087302 .165599 

IGNPART 2.785714 117.0000 .039683 .131746 

IGNSNDE 2.726191 114.5000 .031746.123401 

UNPRIMED 3.297619 138.5000 .075397 .117577 

Experiment 3 

Prime and Probe Trial 

Descriptive Statistics Latencies in ms 

Standard 

ValidN Mean Variance Std.Dev. 

ATTINTAC 36 629.9697 9178.04 95.8021 

ATTSPLIT 36 661.6194 11473.56 107.1147 

IGNINTAC 36 767.6025 13111.70 114.5063 

IGNSPLIT 36 889.9533 26388.09 162.4441 

UNPRIINT 36 829.8281 22500.84 150.0028 

UNPRISPL 36 887.0442 20501.65 143.1840 
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.131746 

.123401 

Error 

15.96702 

17.85245 

19.08439 

27.07402 

25.00047 

23.86400 



Descriptive Statistics all Erros in Percent 

Standard 

Valid N Mean Variance Std.Dev. Error 

ATTINTAC 36 .078704 .011883 .109008 .018168 

ATTPART 36 .199074 .036221 .190319 .031720 

IGNINTAC 36 .171296 .026168 .161767 .026961 

IGNPART 36 .171296 .032518 .180326 .030054 

UNPRIMED 36 .120370 .020018 .141484 .023581 

UNPSPLIT 36 .199074 .023523 .153372 .025562 

Summary of all Effects all Erros in Percent; Design: I-Condition. 2-Configuration 

df MS df MS 

Effect Effect Error Error F p-level 

2 .019419 70 .021800 .89078 .414935 

2 .237783 35 .018471 12.87348 .001009 

12 2 .067258 70 .021756 3.09154 .051687 

Summary of all Effects all Erros in Percent; Design: I-Attention, 2-Configuration 

df MS df MS 

Effect Effect Error Error F p-level 

.037809 35 .016380 2.308210 .137675 

2 .130401 35 .020084 6.492865 .015377 

12 .130401 35 .019290 6.760000 .013562 

Probe Trial Errors 

Descriptive Statistics Probe Errors in Percent 

Standard 

ValidN Mean Variance Std.Dev. Error 

ATTINTAC 36 .023148 .005004 .070742 .011790 

ATTSPLIT 36 .083333 .015079 .122798 .020466 

IGNINTAC 36 .092593 .011817 .108704 .018117 

IGNSPLIT 36 .092593 .016578 .128757 .021460 

UNPRIMED 36 .050926 .007650 .087464 .014577 

UNPRISPL 36 .106481 .020877 .144490 .024082 
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Friedman ANOY A and Kendall Coeff. of Concordance 

ANOYA Chi Sqr. (N = 36, df= 5) = 14.24185 P < .01416 

Coeff. of Concordance = .07912 Aver. rank r = .05281 

Average Sum of 

Rank Ranks Mean 

ATTSAME 2.791667 100.5000 .138889 

ATTPART 3.638889 131.0000 .500000 

IGNSAME 3.833333 138.0000 .555556 

IGNPART 3.722222 134.0000 .555556 

UNPRIMED 3.194444 115.0000 .305556 

UNPRPART 3.819444 137.5000 .638889 

Friedman ANOY A and Kendall Coeff. of Concordance 

ANOYA Chi Sqr. (N = 36, df= 3) = 11.40278 P < .00974 

Coeff. of Concordance = .10558 Aver. rank r = .08003 

Average Sum of 

Rank Ranks Mean 

ATTSAME 2.013889 72.50000 .138889 

ATTPART 2.638889 95.00000 .500000 

IGNSAME 2.694444 97.00000 .555556 

IGNPART 2.652778 95.50000 .555556 

Wilcoxon Matched Pairs Test 

N T 

ATTINTAC & ATTSPLIT 36 24,0000 

ATTINTAC & IGNINTAC 36 7,0000 

ATTINT AC & IGNSPLIT 36 27,5000 

ATTSPLIT & ATTINTAC 36 24,0000 

ATTSPLIT & IGNINTAC 36 115,5000 

ATTSPLIT & IGNSPLIT 36 66,0000 

IGNINT AC & IGNSPLIT 36 134,0000 
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Z 

Std.Dev. 

.424451 

.736788 

.652225 

.772545 

.524783 

.866941 

Std.Dev. 

.424451 

.736788 

.652225 

.772545 

2,485251 

3,010198 

2,319567 

2,485251 

,357122 

,497050 

,121660 

p-Ievel 

,012951 

,002613 

,020371 

,012951 

,721003 

,619157 

,903169 



Experiment 4 

Descriptive Statistics Latencies in IDS 

Standard 

Valid N Mean Variance Std.Dev. Error 

ANIMALO 29 827.4738 18194.04 134.8853 25.04757 

ANIMAL60 29 863.6086 22979.59 151.5902 28.14959 

ANIMAL120 29 913.3959 17725.65 133.1377 24.72305 

BASEO 29 760.8355 13462.40 116.0276 21.54578 

BASE60 29 829.9748 10488.55 102.4136 19.01773 

BASE120 29 885.8993 18523.32 136.1004 25.27321 

NOBASEO 29 772.4410 8136.94 90.2050 16.75064 

NOBASE60 29 766.1438 9627.83 98.1215 18.22071 

NOBASE120 29 778.0083 8519.13 92.2991 17.13951 

Descriptive Statistics Errors in Percent 

Standard 

Valid N Mean Variance Std.Dev. Error 

ANIMALO 29 .038793 .004580 .067674 .012567 

ANIMAL60 29 .060345 .008505 .092224 .017126 

ANIMAL12 29 .172414 .018319 .135348 .025133 

BASEO 29 .025862 .003772 .061413 .011404 

BASE60 29 .047414 .006042 .077731 .014434 

BASE120 29 .081897 .011469 .107092 .019886 

NOBASEO 29 .025862 .003772 .061413 .011404 

NOBASE60 29 .025862 .002655 .051531 .009569 

NOBASE12 29 .004310 .000539 .023212 .004310 

Experiment 5 

Prime and Probe Trial 

Descriptive Statistics Latencies in IDS 

Standard 

Valid N Mean Variance Std.Dev. Error 

ATTROT 30 708.4973 24945.47 157.9413 28.83601 

ATTSAME 30 655.0750 23325.92 152.7283 27.88424 

IGROT 30 828.4723 19436.83 139.4160 25.45377 

IGSAME 30 758.7500 13392.17 115.7245 21.12831 

UNPRROT 30 823.9667 35031.63 187.1674 34.17193 

UPRIMEDS 30 814.4890 40505.98 201.2610 36.74506 
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Descriptive Statistics Errors in Percent 

Standard 

ValidN Mean Variance Std.Dev. Error 

ATTROT 30 .083333 .022989 .151620 .027682 

ATTSAME 30 .116667 .024713 .157203 .028701 

IGROT 30 .141667 .033118 .181983 .033225 

IGSAME 30 .150000 .058621 .242117 .044204 

ROTUNPRI 30 .141667 .028807 .169728 .030988 

SAMUNPRI 30 .150000 .037069 .192533 .035152 

Summary of all Effects Errors in Percent; Design: I-Attention. 2-Rotation 

df MS df MS 

Effect Effect Error Error F p-level 

.063021 29 .024228 2.601186 .117615 

2 .013021 29 .041038 .317287 .577573 

12 .004688 29 .032705 .143328 .707752 

Summary of all Effects Errors in Percent; Design: I-Condition. 2-View 

df MS df MS 

Effect Effect Error Error F p-level 

2 .042014 58 .025491 1.648192 .201280 

2 .012500 29 .038362 .325843 .572515 

12 2 .003125 58 .037608 .083095 .920373 

Probe Trial Errors 

Descriptive Statistics Probe Errors in Percent 

Standard 

Valid N Mean Variance Std.Dev. Error 

ATTROT 30 .025000 .005819 .076282 .013927 

ATTSAME 30 .050000 .018966 .137715 .025143 

IGROT 30 .033333 .011782 .108543 .019817 

IGSAME 30 .041667 .013290 .115283 .021048 

UPRIMEDR 30 .025000 .005819 .076282 .013927 

UPRIMEDS 30 .050000 .010345 .101710 .018570 
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Friedman ANOVA and Kendall Coeff. of Concordance 

ANOV A Chi Sqr. (N = 30, df = 5) = 1.952381 P < .85569 

Coeff. of Concordance = .01302 Aver. rank r = -.0210 

Average Sum of 

Rank Ranks Mean 

ATTROT 3.416667 102.5000 .100000 

ATTSAME 3.516667 105.5000 .200000 

IGROT 3.416667 102.5000 .133333 

IGSAME 3.516667 105.5000 .166667 

UNPRIMROT 3.416667 102.5000 .100000 

UNPRIMED 3.716667 111.5000 .200000 

Friedman ANOV A and Kendall Coeff. of Concordance 

ANOVA Chi Sqr. (N = 30, df= 3) = .2857143 P < .96269 

Coeff. of Concordance = .00317 Aver. rank r = -.0312 

Average Sum of 

Rank Ranks Mean 

ATTROT 2.466667 74.00000 .100000 

ATTSAME 2.533333 76.00000 .200000 

IGROT 2.466667 74.00000 .133333 

IGSAME 2.533333 76.00000 .166667 

Experiment 6 

Prime and Probe Trial 

Descriptive Statistics Latencies in rns 

Standard 

Valid N Mean Variance 

ATTROT 30 603.7693 8482.92 

ATTSAME 30 584.8553 4730.53 

IGNROT 30 809.6437 13366.51 

IGNSAME 30 722.0067 10304.76 

UNPRIMED 30 787.3.253 29132.50 

UNPRIROT 30 805.6413 11788.18 

Std.Dev. 

.305129 

. .550861 

Std.Dev. 

92.1027 

68.7789 

.434172 

.461133 

.305129 

.406838 

Std.Dev. 

.305129 

.550861 

.434172 

.461133 

115.6136 

101.5124 

170.6824 

108.5734 

Error 

16.81558 

12.55725 

21.10806 

18.53354 

31.16221 

19.82269 

Summary of all Effects for Latencies in rns; Design: I-CONDITIO, 2-VIEW 

df MS df MS 

Effect Effect Error Error F p-Ievel 

2 712296.9 58 11426.61 62.33666 .000000 

2 77958.8 29 4311.50 18.08158 .000201 

12 2 23821.5 58 5919.80 4.02404 .023092 
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Error Analysis for All Errors 

Descriptive Statistics Errors in Percent 

Standard 

ValidN Mean Variance Std.Dev. Error 

ATTROT 30 .172222 .025830 .160718 .029343 

ATTSAME 30 .055556 .008301 .091112 .016635 

IGNROT 30 .050000 .006034 .077682 .014183 

IGNSAME 30 .061111 .016252 .127482 .023275 

UNPRROT 30 .138889 .019317 .138985 .025375 

UNPRIMED 30 .044444 .007535 .086805 .015848 

Summary of all Effects for Errors in Percent; Design: I-Attention. 2-View 

df MS df MS 

Effect Effect Error Error F p-Ievel 

.102083 29 .015398 6.62986 .015397 

2 .083565 29 .013163 6.34870 .017510 

12 .122454 29 .010864 11.27186 .002213 

Summary of all Effects Errors in Percent; Design: I-Condition. 2-View 

df MS df MS 

Effect Effect Error Error F p-Ievel 

2 .052006 58 .012574 4.13584 .020936 

2 .200000 29 .012261 16.31250 .000360 

12 2 .069907 58 .011957 5.84646 .004863 

Probe Trial Errors 

Descriptive Statistics Probe Errors in Percent 

Standard 

Valid N Mean Variance Std.Dev. Error 

ATTROT 31 .043011 .033274 .182411 .032762 

ATTSAME 31 .037634 .032796 .181096 .032526 

IGNROT 31 .086022 .062724 .250448 .044982 

IGNSAME 31 .080645 .131243 .362274 .065066 

UNPRROT 31 .080645 .062724 .250448 .044982 

UNPRIMED 31 .306452 .246476 .496463 .089167 
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Friedman ANOVA and Kendall Coeff. of Concordance 

ANOVA Chi Sqr. (N = 30, df= 5) = 9.005236 p < .10889 

Coeff. of Concordance = .06003 Aver. rank r = .02762 

Average Sum of 

Rank Ranks Mean 

ATTROT 3.600000 108.0000 .200000 

ATTSAME 3.266667 98.0000 .100000 

IGNROT 3.500000 105.0000 .166667 

IGNSAME 3.333333 100.0000 .166667 

UNPRROT 3.300000 99.0000 .100000 

UNPRIMED 4.000000 120.0000 .400000 

Friedman ANOV A and Kendall Coeff. of Concordance 

ANOVA Chi Sqr. (N = 30, df= 3) = 1.813187 P < .61207 

Coeff. of Concordance = .02015 Aver. rank r = -.0136 

Average Sum of 

Rank Ranks Mean 

ATTROT 2.616667 78.50000 .200000 

ATTSAME 2.400000 72.00000 .100000 

IGNROT 2.550000 76.50000 .166667 

IGNSAME 2.433333 73.00000 .166667 

Experiment 7 

Prime and Probe Trial 

Std.Dev. 

.406838 

.305129 

.379049 

.530669 

.305129 

.621455 

Std.Dev. 

.406838 

.305129 

.379049 

.530669 

Summary of all Effects priming rt; Design: I-Attention. 2-View 

df MS df MS 

Effect Effect Error Error F p-Ievel 

616054.6 27 14355.12 42.91532 .000001 

2 47994.6 27 10057.66 4.77194 .037785 

12 1439.2 27 6537.07 .22017 .642681 

Descriptive Statistics Latencies in ms 

Standard 

Valid N Mean Variance Std.Dev. Error 

ATTREFL 28 671.8868 15023.93 122.5721 23.16396 

ATTSAME 28 629.3036 11134.83 i05.5217 19.94173 

IGNREFL 28 813.5118 14052.14 118.5417 22.40228 

IGNSAME 28 768.8989 14968.42 122.3455 23.12112 

UNPRIREF 28 799.4729 25178.68 158.6779 29.98731 

UNPRIMED 28 834.7386 30273.62 173.9931 32.88161 

214 



Descriptive Statistics Errors in Percent 

Standard 

Valid N Mean Variance Std.Dev. Error 

ATTREFL 28 .178571 .031746 .178174 .033672 

ATTSAME 28 .160714 .024140 .155371 .029362 

IGNREFL 28 .205357 .032655 .180708 .034151 

IGNSAME 28 .250000 .041667 .204124 .038576 

UNPRIMED 28 .169643 .041915 .204731 .038690 

UNPRREFL 28 .151786 .033978 184332 .034835 

Summary of all Effects Errors in Percent; Design: I-Condition. 2-View 

df MS df MS 

Effect Effect Error Error F p-Ievel 

2 .077381 54 .036100 2.143512 .127113 

2 .003348 27 .021095 .158720 .693471 

12 2 .013393 54 .027668 .484064 .618922 

Probe Trial Errors 

Descriptive Statistics Probe Errors in Percent 

Standard 

Valid N Mean Variance Std.Dev. Error 

ATTREFL 28 .089286 .019511 .139680 .026397 

ATTSAME 28 .053571 .010913 .104464 .019742 

IGNREFL 28 .116071 .025380 .159312 .030107 

IGNSAME 28 .107143 .025132 .158532 .029960 

UNPRIREF 28 .044643 .009507 .097505 .018427 

UNPRIMED 28 .044643 .009507 .097505 .018427 

Friedman ANOV A and Kendall Coeff. of Concordance 

ANOVA Chi Sqr. (N = 28, df= 5) = 6.819086 P < .23448 

Coeff. of Concordance = .04871 Aver. rank r = .01347 

Average Sum of 

Rank Ranks Mean Std.Dev. 

ATTREFL 3.660714 102.5000 .357143 .558721 

ATTSAME 3.303571 92.5000 .214286 .417855 

IGNREFL 3.857143 108.0000 .464286 .637248 

IGNSAME 3.767857 105.5000 .428571 .634126 

UNPRIREF 3.214286 90.0000 .178571 .390021 

UNPRIMED 3.196429 89.5000 .178571 .390021 
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Friedman ANOV A and Kendall Coeff. of Concordance 

ANOYA Chi Sqr. (N = 28, df= 3) = 2.562914 P < .46404 

Coeff. of Concordance = .03051 Aver. rank r = -.0054 

Average Sum of 

Rank Ranks Mean 

ATTREFL 2.500000 70.00000 .357143 

ATISAME 2.267857 63.50000 .214286 

IGNREFL 2.642857 74.00000 .464286 

IGNSAME 2.589286 72.50000 .428571 

Experiment 8 

Prime and Probe Trial 

Descriptive Statistics Latencies in IDS 

Standard 

Valid N Mean Variance Std.Dev. Error 

ATIROT 28 708.8661 19112.64 

ATISAME 28 643.6846 13836.85 

IGNROT 28 783.4825 20935.73 

IGNSAME 28 810.7914 21979.04 

UNPRROT 28 824.2143 20376.08 

UNPRIMED 28 899.9143 39403.22 

VIEW30 28 866.1314 41464.12 

VIEW90 28 857.1311 21445.71 

Descriptive Statistics Errors in Percent 

Standard 

Valid N Mean Variance 

ATTROT 28 .205357 .041915 

ATTSAME 28 .160714 .033399 

IGNROT 28 .258929 .039269 

IGNSAME 28 .214286 .035714 

UNPRROT 28 .214286 .054233 

UNPRIMED 28 .160714 .042659 

Std.Dev. 

.558721 

.417855 

.637248 

.634126 

138.2485 

117.6302 

144.6918 

148.2533 

142.7448 

198.5025 

203.6274 

146.4435 

Std.Dev. 

.204731 

.182755 

.198165 

.188982 

.232879 

.206540 

26.12650 

22.23001 

27.34419 

28.01724 

26.97623 

37.51344 

38.48196 

27.67523 

Error 

.038690 

.034537 

.037450 

.035714 

.044010 

.039032 

Summary of all Effects Errors in Percent; Design: I-Condition. 2-View 

df MS df MS 

Effect Effect Error Error F p-level 

2 .049479 54 .035204 1.405479 .254076 

2 .095238 27 .029652 3.211896 .084319 

12 2 .000372 54 .042424 .008769 .991271 
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Probe Trial Errors 

Descriptive Statistics Probe Errors in Percent 

Standard 

Valid N Mean Variance 

ATTROT 28 .053571 .010913 

ATTSAME 28 .071429 .013228 

IGNROT 28 .098214 .024719 

IGNSAME 28 .080357 .014137 

UNPRROT 28 .053571 .015542 

UNPRSAME 28 .053571 .020172 

Friedman ANOV A and Kendall Coeff. of Concordance 

ANOVA Chi Sqr. (N = 28, df= 5) = 3.795455 P < .57923 

Coeff. of Concordance = .02711 Aver. rank r = -.0089 

Average Sum of 

Rank Ranks Mean 

ATTROT 3.392857 95.0000 . 214286 

ATTSAME 3.553571 99.5000 .285714 

IGNROT 3.767857 105.5000 .392857 

IGNSAME 3.696429 103.5000 .321429 

UNPRROT 3.339286 93.5000 .214286 

UNPRSAME 3.250000 91.0000 .214286 

Friedman ANOV A and Kendall Coeff. of Concordance 

ANOVA Chi Sqr. (N = 28, df= 3) = 1,476563 P < ,68769 

Coeff. of Concordance = ,01758 Aver. rank r = -,0188 

Average Sum of 

Rank Ranks Mean 

ATTROT 2,357143 66,00000 ,214286 

ATTSAME 2,464286 69,00000 ,285714 

IGNROT 2,625000 73,50000 ,392857 

IGNSAME 2,553571 71,50000 ,321429 
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Std.Dev. 

.104464 

.115011 

.157223 

.118899 

.124669 

.142028 

Std.Dev . 

.417855 

.460044 

.628890 

.475595 

.498675 

.568112 

Std.Dev. 

,417855 

,460044 

,628890 

,475595 

Error 

.019742 

.021735 

.029712 

.022470 

.023560 

.026841 



Experiment 9 

Prime and Probe Trial 

Descriptive Statistics: Latencies in ms 

Standard 

Valid N Mean Variance Std.Dev. Error 

ATTROT 40 625.6420 7479.14 86.4820 13.67401 

ATTSAME 40 599.4135 6195.15 78.7092 12.44502 

IGNROT 40 768.3987 10415.72 102.0574 16.13670 

IGNSAME 40 722.3522 9974.58 99.8728 15.79128 

UNPRIMED 40 787.1753 18679.37 136.6725 21.60982 

Descriptive Statistics Errors in Percent 

Standard 

Valid N Mean Variance Std.Dev. Error 

ATTROT 40 .083333 .014245 .119352 .018871 

ATTSAME 40 .087500 .018501 .136017 .021506 

IGNROT 40 .062500 .009526 .097603 .015432 

IGNSAME 40 .091667 .008476 .092064 .014557 

UNPRIMED 40 .070833 .008387 .091579 .014480 

Summary of all Effects Errors in Percent; Design: I-Group. 2-Attention. 3-View 

df MS df MS 

Effect Effect Error Error F p-Ievel 

1 .017361 38 .018896 .918762 .343859 

2 .002778 38 .010965 .253333 .617643 

3 .011111 38 .010234 1.085714 .304007 

12 .011111 38 .010965 1.013333 .320473 

13 .002778 38 .010234 .271429 .605398 

23 .006250 38 .011001 .568106 .455658 

123 .006250 38 .011001 .568106 .455658 
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Probe Trial Errors 

Descriptive Statistics Probe Errors in Percent 

Standard 

Valid N Mean Variance 

ATTROT 40 .087500 .071207 

ATTSAME 40 .062500 .049412 

IGNROT 40 .062500 .049412 

IGNSAME 40 .091667 .123860 

UNPRIMED 40 .087500 .123914 

Friedman ANOVA and Kendall Coeff. of Concordance 

ANOVA Chi Sqr. (N = 40, df= 3) = 1.500000 P < .68227 

Coeff. of Concordance = .01250 Aver. rank r = -.0128 

ATTROT 

ATTSAME 

IGNROT 

IGNSAME 

Average 

Rank 

2.450000 

2.500000 

2.450000 

2.600000 

Sum of 

Ranks 

98.0000 

100.0000 

98.0000 

104.0000 

Mean 

.150000 

.125000 

.100000 

.200000 

Friedman ANOV A and Kendall Coeff. of Concordance 

ANOVA Chi Sqr. (N = 40, df= 4) = 1.407407 P < .84290 

Coeff. of Concordance = .00880 Aver. rank r = -.0166 

Average Sum of 

Rank Ranks Mean 

ATTROT 2.937500 117.5000 .150000 

ATTSAME 2.987500 119.5000 .125000 

IGNROT 2.925000 117.0000 .100000 

IGNSAME 3.112500 124.5000 .200000 

UNPRIMED 3.037500 121.5000 .175000 
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Std.Dev. 

.266847 

.222289 

.222289 

.351938 

.352014 

Std.Dev. 

.533494 

.334932 

.303822 

.464096 

Std.Dev. 

.533494 

.334932 

.303822 

.464096 

.446496 

Error 

.042192 

.035147 

.035147 

.055646 

.055658 



Appendix 2: Rating Study - Introduction and Instructions 

Instructions: 

In this Questionnaire you are asked to rate how objects change when they are rotated in 
depthl 

Before we start please look at the figure below. I t shows that you can think of objects as 
consisting of certain basic shapes or parts. 

J 

(I] 
If we rotate an object ist possible that some parts disappear or new parts appear that 
were not visible before. 

P art Change: handle 

, _ 
...... 

' •.. ;, .. : .,1 , 

, ,i..;~~ 

no part change 

In each display you will be shown 2 views of one object, which differ in their orientation in depth. 

Please compare the two views and look for major changes in visible parts (like legs, handles, ears, 

a.s .o.) between them. 

If you think one view contains parts that are not visible in the other view (e.g. , because they are 

occluded) please press P! 

If you think both views contain the same visible parts of the object please press "S"! 

Press SPACE to start with a few practice trials! 
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Appendix 3: List of Stimuli 

Experiment 1 

rabbit peacock pocketbook tennisracket 
horse swan broom table. 
skunk hammer spoon pot 
brush telephone mouse shirt 
bird windmill hanger pen 
sailboat trumpet helicopter chicken 
key gun violin duck 
train gorilla dog spider 
ladder elephant frying pan kangaroo 
pig frog cat snake 
truck bed desk bear 
rocking chair plane dresser shoe 
giraffe saw sheep 
wrench car iron 
fish lion house 
guitar cow axe 
snail pipe fork 
motorcycle screwdriver chair 
kite umbrella gator 
plug ant wagon 
racoon bike scissor 
camel squirrel cup 
basket kettle piano 
tiger toothbrush french hom 

Experiment 2 

cow broom key wagon 
cow2 broorn2 key2 wagon2 
plug cup sailboat pig 
plug2 cup2 sailboat2 pig2 
windmill frog swan fork 
windmi1l2 frog2 swan2 fork2 
table bed kettle umbrella 
table2 bed2 kettle2 umbrella2 
basket brush car saw 
basket2 brush2 car2 saw2 
pot cat chicken rabbit 
pot2 cat2 chicken2 rabbit2 
house telephone elephant kangaroo 
house2 telephone2 elephant2 kangaroo2 
duck piano mouse pen 
duck2 piano2 mouse2 pen2 
trumpet shoe truck snake 
trurnpet2 shoe2 truck2 snake2 
iron bear pan kite 
iron2 bear2 pan2 kite2 
fish horse 
fish2 horse2 
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Experiment 3 

Target Filler 

frog hammer bike accordeon 
giraffe cup bird ashtray 
tennisracket swan camel nut 
motorcycle axe car brush 
harp lion glove owl 
guitar butterfly duck com 
fish rocking chair fence plug 
house dog alligator onion 
trumpet sheep grapes thorn 
elephant mouse gorilla mitten 
windmill umbrella hanger lobster 
cat snake cow goat 
watch snail kangaroo screwdriver 
horse aeroplane ostrich kite 
spider eagle carrot football 
wrench fork peacock pen 
piano ladder shirt flower 
rooster gun pipe artichoke 

tiger saw 
pig apple 
rabbit toothbrush 
scissor banana 
spoon violin 
squirrel leaf 

Experiment 4 

No-Base Base Animals 

banana baby carriage ant 
brush bed bird 
carrot bike elephant 
comb boot camel 
football cake cat 
fork candle chicken 
glove chair cow 
guitar couch dog 
gun cup donkey 
hammer desk duck 
key harp frog 
knife helicopter gorilla 
leaf house grasshopper 
lock iron horse 
pen ironing board monkey 
ring kettle mouse 
saw lamp owl 
scissors pitcher peacock 
screwdriver sailboat pig 
spoon table rabbit 
tennisracket telephone snail 
trumpet ashtray squirrel 
watch truck tiger 
whistle watering can turtle 
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Experiment 5 

Target Filler 

saw carrot banana rolling pin 
leaf lock screwdriver nailfile 
guitar broom envelope cigarette 
umbrella trumpet anchor mitten' 
book plug comb chisel 
glove fork knife pliers 
scissors french hom toothbrush watermellon 
pineapple hammer spoon ball 
key violin whistle belt 
butterfly brush baseball bat potato 
lightbulb watch barrel ruler 
lobster com tennisracket spool 

wrench star 
football sun 
pen tomato 
pepper nut 

Experiment 6 

Target Filler 

alligator bird apple accordeon 
couch giraffe axe anchor 
desk house banana ant 
kettle plane barrel ashtray 
piano snail basket bear 
squirrel truck baseball bat beetle 

broom belt 
boot bike brush cake 
chicken chair bottle cherry 
helicopter frog cup doll 
candle pants fish fence 
jacket duck flag flower 
wineglass telephone glasses frying pan 

guitar grapes 
bed baby carriage gun hanger 
cat car hammer iron 
elephant dog key kite 
mouse motorcycle knife pineapple 
sailboat rabbit pipe pliers 
table suitcase scissors sheep 

screwdriver sled 
shoe swing 
snake toaster 
trumpet vase 
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Experiment 7 

axe glasses pistol 
banana guitar plane 
bike hammer shark 
boot harp ship 
bus helicopter shoe 
camel hippo shovel 
cannon horse snail 
car iron sofa 
carriage ironing board spoon 
chair kettle stapler 
coffee machine key suitcase 
cow knife toilet 
crocodile lamp toothbrush 
desk microscope torch 
dog motorbike turtle 
dolphin phone vacuum cleaner 
drill piano watch 
eagle pig wrench 
fork pipe 

Experiment 8 

See Experiment 7 

Experiment 9 

Target Filler 

ship pipe fIre extinguisher corkscrew 
motorbike stapler harp hammer 
watch bird ironing board shovel 
dolphin iron camera lock 
cow glasses phone tank 
chair spanner baseball bat pincers 
truck helicopter cup pen 
gun camel banana chicken 
hoover duck piano canopener 
axe plane guitar binoculars 
lamp bus boot plunger 
turtle toilet horse carriage 
car scissors skateboard dog 
bike crocodile suitcase pig 
bed snail desk toothbrush 

shoe cannon 
fork microscope 
sofa spoon 
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