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Abstract 

Iannis Xenakis and Sieve Theory 
An Analysis of the Late Music (1984-1993) 

Dimitrios Exarchos 

2007 

This thesis is divided in three parts, the first two of which are theoretical and the third 

analytical. Part I is an investigation oflannis Xenakis's general theory of composition, 

the theory of outside-time musical structures. This theory appears in many of Xenakis's 

writings, sometimes quite idiosyncratically. The aim of this part is to reveal the function 

of the non-temporal in Xenakis's musical structures, by means of a historical approach 

through his writings. This exploration serves to unveil certain aspects discussed more 

thoroughly through a deconstructive approach. The deconstructive is demonstrated in the 

classification of musical structures and aims partly at showing the nature of Time in 

Xenakis's theory. 

Part II is preoccupied with Xenakis's Sieve Theory. In the earlier writings on 

Sieve Theory he presented a slightly different approach than in the later, where he also 

provided an analytical algorithm that he developed gradually from the mid 1980s until 

1990. The rationale of this algorithm and the pitch-sieves of 1980-1993 guides Part III, 

which is preoccupied with a methodology of sieve analysis, its application, and an 

exploration of the employment of sieves in some of Xenakis's compositions of the 1980s. 

When possible, the analysis takes in consideration the pre-compositional sketches, 

available at the Archives Xenakis, Bibliotheque Nationale de France. The sketches reveal 

aspects of the application of Sieve Theory, not included in Xenakis's theoretical writings. 
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As with the application of other theories, Xenakis progressed to less formalised 

processes. However, this does not mean that Sieve Theory ceased to inform the process 

of scale-construction. As the conclusion of this dissertation indicates, he employed Sieve 

Theory in order to achieve structures that conform to his general aesthetic principles, that 

relate to various degrees of symmetry and periodicity. 
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Introduction 

Xenakis's first reference to his theory of outside-time musical structures is found in 

Musiques formelles of 1963. With this theory he embarked on a project to show that what 

most composers consider to be the most important element of music is actually 

subordinate. Time in music, he said, is not everything (see FM 192). Certainly, Xenakis's 

theory was partly aimed at demonstrating, not only the position of time in music, but that 

the classical view had placed too much reliance on temporality. This is evident precisely 

in the fact that what Xenakis explored most was not the nature of time, but what is 

independent of it. Time-independent structures can be constructed in such a way that 

ordering is not important. When it is not necessary for an element to be preceded or 

followed by any particular other element, the structure is said to be `outside time'. Thus, 

a melody is an inside-time structure, in the sense that it cannot be constructed (or 

conceived) without time-ordering its pitches. Note that melody is shown, at this stage, to 

belong to time without yet referring durations. What does not belong to time is the scale 

or mode a melody is based on. This is because a scale is a collection or a set of elements, 

where order is not significant (cf. the distinction between set and sequence by Squibbs 

1996: 45-56). 

At the beginning of the chapter `Symbolic Music' in Musiques formelles Xenakis 

refers to a `sudden amnesia' (FM 155). This is not unrelated to his outside-time 

structures. He suggests that we look at the basic thought-processes when listening to 

music. From these thought-processes he derives the function of time and indicates that 

durations too have an outside-time aspect. They are independent of a time-ordering in the 
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sense that they form a set of values. His view is that any set with abelian group structure 

is outside-time. In mathematics an abelian group, named after mathematician Niels 

Henrik Abel (1802-1829), is one with a commutative (as well as associative) group 

operation. `Commutative' means that the product of the group elements is independent of 

the order of the elements during the calculation. Xenakis's approach to temporal 

structures is such that durations are thought of as multiples of a unit. This is, among 

others, what `amnesia' refers to: when sonic events occur they divide time into sections 

that are perceived as multiples of a unit. These ̀ quantities' are compared to each other 

and can be thought of in an order different from the one they occurred. In terms of 

mathematical operations, commutativity is one of the basic properties of addition and 

multiplication: when we add or multiply certain values the order we perform the 

operation is not significant. Comparing two time-intervals is no different. We can think 

of them in any order and compare their size; i. e. interval A is twice as large or half the 

size of B etc. 

Xenakis continued to develop his theory of outside-time structures throughout 

most of his writings. But the direction of this development was not entirely clear; 

moreover, it does not seem that he meant to present a complete account of it. It appears in 

relation to his other, more `concrete' compositional theories or along with more general 

comments on his view of the avant-garde and musical tradition. As it is not a case of one 

theory among others, we could also refer to it as a metatheofy. Perhaps the most 

enigmatic characteristic of Xenakis's demonstration of this metatheory is the fact that he 

alternated between a tripartite distinction: a) outside-time, b) temporal, c) inside-time, 

and a dualistic one that omits the middle term. One could say that Xenakis talked 
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essentially about two types of structures (or categories), outside- and inside-time, and that 

he occasionally included a third type to clarify the case of temporal structures; however 

true such an observation might be, it does not adequately explore Xenakis's thought and 

its consequences in relation to his general view of composition. The first chapter of this 

dissertation is preoccupied with tracing the metatheory, but not in a teleological way; i. e. 

it does not aim at reconstructing a theoretical schema that corresponds to the two or three 

types of structure. Rather, it is intended to unveil certain lines of thought and explore the 

nature of time for Xenakis and its relation to his two opposed categories. 

The initial reference to outside-time structures is contextualised by his `symbolic 

music' for solo piano, Hernia (1961), where he employs set-theoretic operations on pitch- 

sets. Later, Xenakis extended his idea of outside-time structure to include his general 

attempt to axiomatise musical structures. This would be the foundation of a General 

Harmony which, like combinatorics eleven years before, was a means of overcoming the 

impasses of serialism (see K 39-43). Among others, this is the axis on which Xenakis 

based his metatheory in 1965, in the manuscript `Harmoniques (Structures hors-temps)' 

(published as ̀ Vers une metamusique' in 1967 and included in FM 180-200). Xenakis 

advanced an outside-time conception of composition and showed that serial techniques 

are solely preoccupied with inside-time manipulations. On the other hand, he also 

indicated that outside-time structures could not possibly be removed from any musical 

language. In other words, harmony could not possibly be removed from any melody. 

Harmony here also includes the scale on which a melody is based. The French 

philosopher Jacques Derrida has demonstrated the relationship between scale (or 

harmony) and melody, as analogous to that of writing and speech (Derrida 1997: 214). In 

12 



both cases there is a dual opposition: harmony/melody and writing/speech. For Xenakis, 

the serialists placed too much emphasis on the latter, i. e. the series, which in terms of 

time-ordering is equivalent to melody. Thus, in both cases one term is privileged over the 

other: inside- over outside-time for the serialists and speech over writing for classical 

metaphysics. What Xenakis did with his sharp comments on the outside-time aspect of 

the total chromatic is to show the possibility of a usurpation similar to the one Derrida 

indicated in relation to writing. The serialists, Xenakis thought, subordinated the scale, 

but did not manage to disengage from it: for Xenakis it would be impossible to get rid of 

outside-time structure. Chapter 2 explores the consequences of Xenakis's outside-time 

structures and comprises a critical, deconstructive approach in relation to his critique of 

serialism and the notions of symmetry and periodicity (as the expressions of outside- and 

inside-time structure respectively). 

These notions of symmetry and periodicity are the fundamental criteria Xenakis 

was concerned with in his development and application of Sieve Theory. The central aim 

of the theory is the construction of outside-time structures. This is Xenakis's answer to 

the amnesiac attitude to outside-time structures. The structures he produced with Sieve 

Theory are mainly and ultimately pitch-scales; in their general and abstract form, sieves 

are thought of as points on a straight line. The first work in which Sieve Theory was 

applied is Akrata (1964-65, for brass ensemble) (see Harley 2004: 40 & Schaub 2005: 

11). This marks the beginning of the early period of sieve-based composition, that 

includes some works of the 1960s; sieves were then used (as pitch scales) more 

frequently from Jonchaies (1977, for orchestra) onwards. As for rhythmic sieves, these 
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were more frequent in the earlier period than later. ' The present study is preoccupied with 

the pitch-sieves of the later period. These structures share the same general characteristics 

to such an extent, that one can refer to a single type of scale that underwent metabolae 

(transformations) until the early 1990s. The last work that makes use of such a type of 

pitch-sieve is Paille in the Wind (1992, for violoncello and piano). Mosazques (1993, for 

orchestra) is based, as the title suggests, on extracts from previous works and is therefore 

the final work of the late period that uses sieves. 2 

The theory has been researched to a significant extent by Flint (1989: 39-49), 
Z=I 

Solomos (1996: 86-96), Squibbs (1996: 57-67), Jones (2001), Gibson (2001; 2003: 39- 

117), and Ariza (2005), among others. Sieve-theoretical expressions offer the possibility 

of examining a scale, comparing it with others, or transforming its structure. The two 

basic `components' of a such a theoretical representation are Modular Arithmetic and Set 

Theory. It is a case of working with set-theoretical operations, but on modular sets. If the 

sieve-theoretical expression is our starting point, we can work on the formal level and 

produce sieves according to a variety of methods. But if the starting point is the sieve, 

producing the sieve-theoretical formula is not very straightforward. The basic problem of 

Sieve Theory is precisely the redundancy of formulae. As Gibson has shown, `since 

multiple representations of a sieve are possible, they cease to be equivalent when they 

1I should note here the reference Xenakis made of the rhythmic sieves in Komboi (1981, for harpsichord 

and percussion) (see Varga 1996: 171). 

2 Xenakis's late-period works have not been analysed as extensively as the early ones. In terms of pitch 

organisation and as a general characteristic, the works after 1993 do not show evidence of sieves; they 

rather tend to chromaticism (see Solomos 1996: 101). However, this research did not take into account all 

the works between 1993 and 1997. 
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undergo transformations' (2003: 72). By this, he means that when one works with sieves 

on the level of their logical representation (formula), one applies certain transformational 

procedures, whose result is dependent precisely on the choice of the formula. It is 

therefore a methodological problem about the relationship between the theoretical means 

and the compositional outcome. From the analytical point of view, this obviously 

prevents comparison of different sieves: when one formula is derived from a sieve, it 

must be comparable to formulae derived from other sieves; and given that there is more 

than one formula for a single sieve, comparison of different sieves presupposes a method 

for the determination of their formulae. 

This restriction was certainly clear to Xenakis. Bearing in mind that a simple 

formula is much more desirable than a complex one, the theoretical representation of 

irregular sieves is more problematic in this respect. But a unique formula for a single, 

irregular arithmetic progression would be too much to expect. Nonetheless, Xenakis 

continued using Sieve Theory relatively constantly. In the early phase (1960s) he relied 

much more on the calculation of a formula that would be the starting point of 

transformational systems. In his later sieves though (1980s), sieve formulae were no 

longer of the same type nor did they serve transformations. This is evident in a comment 

by Hoffmann in relation to the sieve of Horos (1986, for orchestra): `This scale does not 

seem to be readily reducible to a closed sieve formula' (2002: 125). This `analytical 

perplexity' is characteristically caused by Xenakis's computer program for the analysis of 

sieves (see FM 277-88). 

3 ̀ Si plusieurs representations d'un crible sont possibles, elles ne s' equivalent pas lorsqu'elle se soumettent 
ä des transformations'. 
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This is partly the reason why previous research does not comprise a complete 

analysis of the sieves of Xenakis's later music. His writings on the theory, along with its 

implementation in the music of the 1960s, demonstrate the possibilities it offers and 

especially the possibility of generating and transforming scales. Its application to the 

music of the 1980s is different: Xenakis applied much simpler transformations, such as 

cyclic transposition (which is relevant to, but does not necessitate Sieve Theory), or 

simple alterations straight on the actual scale. The question arises at this point, whether 

this means that Sieve Theory is redundant. 

Chapters 3 and 4 deal with these questions of the redundancy of formulae and of 

Xenakis's implementation of the theory in the 1980s. In order to do so, a distinction 

between types of formulae is introduced. This distinction is based on two criteria that 

result in four different types. Firstly, the `period' of the sieve (e. g. the octave in the major 

diatonic scale) can either be taken into account or not; and secondly, the formula can 

either be maximally simple or not. As I will show, Xenakis progressed to a `simplified' 

conception of sieves where the period is not taken into account. These theoretical and 

methodological conclusions are not based only on the writings on the theory. The 

inclusion of the computer programs for the generation of sieves and sieve-formulae sheds 

light on the discussion. Xenakis did use Sieve Theory along with his analytical algorithm 

for his scales. Although it was different from the 1960s, the application of the theory in 

the 1980s offered a method of creating the symmetries and periodicities that Xenakis 

required. 

In many cases during my research on sieve-construction, it was clear that Xenakis 

created scales and derived the formula afterwards. As mentioned above, this formula was 
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not intended to serve as means of sieve transformations; rather, it revealed information 

about the structure of the sieve in terms of `hidden symmetries' (FM 269-70). Of course, 

the information a formula reveals depends on its type. At this level, the aesthetic criteria 

that intervene in scale-construction (for example, the well-known paradigm of the 

Javanese pelog - see Varga, 1996: 144-5), also determine the type of formula. The 

`internal symmetries' that Xenakis mentioned (FM 276), are revealed by the formula his 

analytical algorithm suggests. Chapter 5 comprises an analytical method that implements 

this algorithm and I propose a reading of the resulting formula, however inconvenient and 

imprecise it might seem at a first glance 4 Its aim is to reveal the hidden symmetries of an 

irregular sieve and deduce from this a certain degree of symmetry or asymmetry. In 

Chapter 6I present an analysis of the most frequent sieves of the later period. I have 

found that Xenakis developed his analytical algorithm over a period of at least four years 

(up to its publication in 1990). Throughout this period (in fact throughout the 1980s) the 

aesthetic criteria of sieve construction and analysis remained the same. This facilitates 

comparison, as a difference in degree (of symmetry) can be meaningful only when 

comparing objects (sieves) of the same type. This is the reason that only sieves that retain 

4 Jones (2001) proposed a `concise' formula (one with a small number of modules) which does not account 

for all the points of the sieve (an indication of the percentage of the points accounted for is provided along 

with the formula). Cases where two distinct sieves are expressed by the same formula are overcome by 

attaching the interval vector of the sets, combined with the `product of primes' to ensure unique 

representation. Indeed, the result is a unique representation of the sieve, but it does not reflect the sieve's 

structure. Unfortunately, the font used by Perspectives of New Music for the code is not useful for the 

reader: upper case letter I and number 1 (one) are indistinguishable. I am thankful to Dr Evan Jones for 

providing me the code of his program. 
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certain general characteristics are included in this, study. These characteristics have to do 

with the size of the intervals, the number of pitches, or the range of the sieve. For 

example, Embellie (for solo viola), although it was composed in 1981, uses a sieve based 

on quarter-tone intervals and exhibits a range different from the average range of the 

sieves in this period; in this sense, it belongs to the earlier period of Sieve Theory. For 

this reason, it is not analysed here. In general, occasional quarter-tone passages have not 

been taken into account here, following Xenakis's assertion that intervals are also to be 

taken in their acoustical aspect (see Harley 2002: 15-16). 

The later period of sieve-based composition actually starts later than the first use 

of the characteristic type of sieves. This type of sieves is based on an irregular, non- 

repetitive succession of intervals between a semitone and a major 3rd. Although Xenakis 

used such a sieve in Als of 1980, Solomos (1996: 86-90) designates the period of the 

sieves between 1984 and 1993. The reason for doing so is related to the general style of 

composition that works of this period exhibit: `extremely overloaded and made up of a 

succession of monolithic sections' (Solomos 2002: 14). Xenakis gradually abandoned 

glissandi and quarter-tones. Another characteristic is the idea of layers: `sections of 

uniformly identifiable material tend to be shorter, to contain more interruptions or 

secondary layers of other material' (Harley 2001: 45). Furthermore, he proceeded to 

new, less formalised compositional techniques, which were also used for the inside-time 

employment of sieves. The final chapter of this thesis is devoted to the inside-time 

structures: in other words, to the analysis of some works of this later period in terms of 

how Xenakis used sieves in his music. This analysis is inevitably extended to other 

inside-time structures that have the form of `points on a straight line', such as rhythmic 
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structures that might not have been constructed with the help of Sieve Theory. In his 

inside-time treatment, Xenakis used other techniques that are not analysed here. If Sieve 

Theory produces outside-time structures, the techniques of group transformations (see 

FM 201-41; Vriend, 1981; Gibson, 2002: 48ff.; 2003: 152-4; and Schaub, 2005) or 

cellular automata (see Hoffmann 2002: 124-126; Gibson 2003: 166-8; Harley 2004: 176- 

180; Solomos, 2005b) are aimed at arranging these structures inside time. 

For my research I visited the Archives Xenakis in the Bibliotheque Nationale de 

France, in Paris, on two occasions: April and November 2006. I managed to study 

Xenakis's pre-compositional sketches for the following works: Jonchaies, Palimpsest, 

Als, Shaar, Idmen A and B, Horos, Akea, 5 Keqrops, talons, XAS, Ata, Echange, Epicycle, 

Kyania, and Tetora. Works that are included in this dissertation and of which there are no 

sketches available in the Archives Xenakis, include: Komboi, Thallein, A file de Goree, 

Tracees, and Knephas. I should note that I did not have the chance to look for sketches 

for each work I include in my research. Dr Ronald Squibbs kindly provided me a copy of 

the page of the sketches with the sieve of Mists. It should also be noted that in my 

research on these pre-compositional sketches, I focussed only on the sieves and relevant 

pre-compositional processes. During this research, valuable information has been found, 

that concerns compositional techniques that are not included here. Although this is an 

exhaustive study of the sieves used in works between 1980-1993,6 it does not claim to be 

a complete account of each pre-compositional sketch mentioned. 

5 The sketches of Akea are - probably mistakenly - classified in the dossier with the sketches ofAta. 

6 Unfortunately, I could not locate and get hold of the score of Oophaa (1989, for harpsichord and 

percussion). 
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PART I 

1 Outside-Time Structures 

In this chapter I will attempt a historical approach through Xenakis's writings that refer to 

outside-time structures. This however, is not aimed at suggesting a certain teleological 

evolution in his theoretical thinking; it is rather an exploration of his concept of musical 

structures in relation to time that serves to unveil certain aspects discussed more 

thoroughly in Chapter 2, which forms a deconstructive, critical approach. 

1.1 Literature 

Xenakis started developing his theory of outside-time musical structures in the mid 

1960s. The earliest reference is found in his first monograph, Musiques formelles of 

1963. Its concluding chapter is titled `Musique symbolique' and introduces Xenakis's 

application of Set Theory and an analysis of Herma (1961, for solo piano). A seed for this 

chapter is traced back to 1962 in a text titled `Trois poles de condensation' (which does 

not include the analysis of Herma). `Musique symbolique' is followed by `La voie de la 

recherche et de la question' in 1965 and `Towards a Philosophy of Music' in 1966. An 

extensive demonstration of his theory, with examples of non-Western music cultures, is 

found in `Vers une metamusique' of 1967, whose manuscript dates back in December of 

1965 and is titled `Harmoniques (Structures hors-temps)'; the latter was originally a 

symposium paper (see Solomos 2001: 236 & Turner 2005). 
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Excluding references in minor writings, Xenakis showed a renewed interest to the 

notion of time in music in the early 1980s. In 1981 he published an article called `Le 

temps en musique', which was extensively enlarged and published as ̀ Sur le temps' in 

1988. It then appeared with additional material as chapter X in the revised edition of 

Formalized Music in 1992, titled `Concerning Time, Space and Music'. The evolution of 

Xenakis's thought through these writings can be divided in two periods: the first is the 

formation of his theory during the 1960s and the second reflects a more thorough 

investigation of the nature of time in music as found in his writings and interviews of the 

1980s. 7 The elaboration of the theory appeared sporadically in several writings, such as 

articles, books, interviews. For this reason it was never presented in its entirety and there 

is no single writing that is wholly devoted to it. His theory was occasionally approached 

quite idiosyncratically and frequently under a different light; therefore a straight 

examination of the text wherein it is elaborated is necessary. 

1.2 Overview 

The theory of outside-time musical structures is not a theory among, others. Xenakis's 

approach to composition is characterised by the title of his first major publication, 

Musiques formelles, which reflects the title of the more recent publication, Formalized 

Music. His choice to use terms such as ̀ formalisation' or `axiomatisation' is indicative of 

his approach to composing with tools borrowed from scientific areas and developed 

7 In my tracing of the theory through Xenakis's writings I will follow a chronological order according to 

the first publication of the articles, but when referencing, I will use the latest edition of each one, allowing 

for comparisons with earlier ones as appropriate. 
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according to his philosophy of music and/or practical compositional matters. On another 

level, all his theoretical tools (Stochastics, Sieve Theory, etc) fall into the scope of his 

general view on composition that is partly concerned with unveiling the nature of time in 

music. This is a theory that describes musical structures, including his specialised 

theories, music perception (from a psycho-physiological standpoint) and analysis, and 

shows a general underlying abstract thinking. Therefore, it is a theory in an indirect 

sense, a rnetatheory of composition. 

The metatheory of outside-time structures is a matter of a general response to the 

question of the nature of time in music: `what remains of music once one removes time'? 

(MA 211). 8 However, this question is only a starting point, and what remains seems to be 

one category among others. The theory, in its typical form, outlines three categories of 

musical structures: a) outside-time, b) temporal, and c) inside-time. 9 The first category is 

attempted to reply to the above question; while the inside-time structure is the actual 

composition, the outside-time category refers to structures that remain independent of 

time. As regards to the temporal category, Xenakis frequently made clear that this is a 

much simpler category and that time (in music) is a `blank blackboard' where structures 

or architectures are inscribed into. In this chapter I will trace the evolution of this 

classification of musical structures through Xenakis's writings. 

S ̀Que reste-t-il de la musique une fois qu'on a enleve le temps ?' 

9 Following the practice Squibbs (1996) and Flint (1989), 1 will use the term inside-time, instead of 

Xenakis's in-time, as a more obvious antonym to outside-time. 
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1.3 Symbolic Logic ('Symbolic Music'- 1963) 

In the earliest of his writings on the matter Xenakis related the outside-time structure of 

music with his approach and application of Set Theory in Hernia. The subtitle of the 

work is `Symbolic Music for Piano' and it is founded on `symbolic logic'. For Xenakis a 

sonic event is `a kind of statement, inscription, or sonic symbol' (FM 156). These 

symbols stand for elements that undergo manipulation with the aid of logical functions or 

operations (using Boolean algebra). At this stage outside-time structures are thought of as 

logical structures or as logical operations that are independent of time. The first 

appearance of the schema of this classification is the following: 

[A] musical composition could be possibly viewed under the light of fundamental 

operations and relations, independent of time, which we will call logical structure 
or algebra outside-time. 

Afterwards, a musical composition examined from a temporal viewpoint, 
shows that sonic events create, on the axis of time, durations that form a set 
equipped with an abelian group structure. This set is structured with the aid of a 
temporal algebra independent of the outside-time algebra. 

Finally, a musical composition could be examined from the point of view of 
the correspondence between its outside-time algebra and its temporal algebra. 
Thus we have the third fundamental structure, the inside-time algebraic structure 
(MA 36-7). b0 

The above distinction is found in `Trois poles de condensation' of 1962 - the predecessor 

of `Symbolic Music'. This is the only occasion where Xenakis phrases his theory using 

the term `logical algebra'. What is important in this phrasing is that the logical functions 

10 ̀[U]ne composition musicale peut etre vue d'abord sous I'angle d'operations et relations fondamentales, 

independantes du temps, que nous appellerons structure logique ou algebrique hors-temps : 
Ensuite une composition musicale examinee du point de vue temporel montre que les evenements 

sonores creent, sur 1'axe du temps, des durees qui forment un ensemble muni de structure de groupe 

abelien. Cet ensemble est structure a 1'aide d'une algebre temporelle independante de 1'algebre hors-temps. 
Enfin, une composition musicale peut etre examinee du point de vue de la correspondance entre son 

algebre hors-temps et son algebre temporelle. Nous obtenons la troisieme structure fondamentale, la 

structure algebrique en-temps'. 
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are themselves shown to be outside-time; it is not merely (or not yet) an attempt to 

describe which types of musical entities are independent of time. Logic here is not a 

general `reasoning' but refers to the abstraction Xenakis had always aimed at; abstract 

relations between elements render a structure that is definitely not about becomingness. 

Saying this of course, is itself an abstraction and what remains is to untangle the elements 

of an entity and illustrate which of its aspects might be independent of time. 

`Symbolic Music' (1963) is part of Xenakis's first major publication concerning 

the matter and is more specific than before. However, the sketching out of the theory will 

remain similar as regards to the classification. The temporal algebra remains situated 

between the outside and the inside. Xenakis makes clear that this category (temporal) is 

much simpler than the outside-time one. It serves only as a means of rendering the music 

perceptible. More specifically, the temporal category is occupied by time as such; 

however, time itself is not viewed simplistically. This is the period just after the 

completion of Herma where he first employed logical functions, which later led him to a 

more extensive application of these operations and the development of his Sieve Theory. 

It could be said that, following Stochastics and Probability Theory, Hernia and `Symbolic 

Music' mark the beginning of a new period in the evolution of Xenakis's theoretical 

thinking. At the beginning of that stage Xenakis started to introduce considerations that 

undermine the classical view of the importance of time in music. 

Whereas in his previous text he talked on a more abstract level, i. e. the possible 

ways of looking at a composition according to his classification of musical structures, in 

`Symbolic Music' he is more concerned with the actual perception of time in music. He 

demonstrates his views by introducing Piaget's research on the child's perception of time. 
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Let there be three events a, b, c emitted successively. 
First stage: Three events are distinguished, and that is all. 
Second stage: A "temporal succession" is distinguished, i. e., a correspondence 

between events and moments. There results from this 

a before b#b before a (non-commutativity). 

Third stage: Three sonic events are distinguished which divide time into two 

sections within the events. These two sections may be compared and then 

expressed in multiples of a unit. Time becomes metric and the sections constitute 
generic elements of set T. They thus enjoy commutativity. 

According to Piaget, the concept of time among children passes through these 
three phases. 

Fourth stage: Three events are distinguished; the time intervals are 
distinguished; and independence between the sonic events and the time intervals 
is recognized. An algebra outside-time is thus admitted for sonic events, and a 
secondary temporal algebra exists for temporal intervals; the two algebras are 
otherwise identical. (It is useless to repeat the arguments in order to show that the 
temporal intervals between the events constitute a set T, which is furnished with 
an Abelian additive group structure. ) Finally, one-to-one correspondences are 
admitted between algebraic functions outside-time and temporal algebraic 
functions. They may constitute an algebra in-time (FM 160). 

This structure which time is furnished with is given by durations" or time intervals that 

are marked by the sonic events (sections of time). Since durations may be compared with 

each other and expressed according to a unit, algebraic functions can be applied on these 

durations as well. Therefore, the set of durations is a commutative group, in which the 

order of appearance is not significant. '2 This fact renders temporal intervals themselves 

outside of time. With durations of course, Xenakis does not imply pure time-flow but 

11 It should be noted that the idea of duration is here used in its elementary sense of `time-value'; and not in 

the sense philosopher Herni Bergson used it. 

12 Commutativity and associativity are two properties that belong both to addition and multiplication. In 

terms of temporal intervals, this means that intervals can be expressed as multiples of unit, no matter the 

order of their appearance. 
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metric time. The discreteness of metric time allows for the temporal intervals to be 

handled, analysed, or perceived as outside-time entities. Before relating the idea of 

discreteness and outside-time structures, the first category is shown to include the three 

more obvious properties of sound: pitch, intensity, and duration. 

[M]ost musical analysis and construction may be based on: 1. the study of an 
entity, the sonic event, which, according to our temporary assumption groups 
three characteristics, pitch, intensity, and duration, and which possesses a 
structure outside-time; 2. the study of another simpler entity, time, which 
possesses a temporal structure; and 3. the correspondence between the structure 
outside-time and the temporal structure; the structure in-time (FM 160-1). 

On the one hand, metric time is shown to be subordinate to outside-time 

structures, but on the other hand, temporal intervals are privileged and assigned to the 

first category. What places the set of durations or the temporal structure outside of time is 

essentially the presence of commutativity. In this sense, the outside-time and the temporal 

are both ordered structures. 13 The sonic events on the one hand and durations on the 

other belong to two different categories that share an almost identical algebra; in the first 

case this algebra refers to the structure of the sonic events themselves, and in the second 

to the time-intervals that are designated by these events. Thus temporal intervals as such 

are part of a secondary structure, as they are issued from the sonic entities. In both cases, 

13 Xenakis defined ordered structures as follows: 

[`Totally ordered structure' means that] given three elements of one set, you are able to put one of 
them in between the other two. [... ] Whenever you can do this with all the elements of the set, then this 

set, you can say, is an ordered set. It has a totally ordered structure because you can arrange all the 

elements into a room full of the other elements. You can say that the set is higher in pitch, or later in 

time, or use some comparative adjective: bigger, larger, smaller (Zaplitny 1975: 97). 

See also Perrot 1969: 62 & Xenakis 1996: 144. 
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structure is defined as the relations and operations between the elements (sonic events or 

temporal distances). 

Besides these logical relations and operations outside-time, we have seen that 
we may obtain classes (T classes) issuing from the sonic symbolization that 
defines the distances or intervals on the axis of time. The role of time is again 
defined in a new way. It serves primarily as a crucible, mold, or space in which 
are inscribed the classes whose relations one must decipher. Time is in some ways 
equivalent to the area of a sheet of paper or a blackboard. It is only in a secondary 
sense that it may be considered as carrying generic elements (temporal distances) 

and relations or operations between these elements (temporal algebra) (FM 173). 

There are two remarks here that relate to the nature and position of time in Xenakis's 

theory. On the one hand, there is a temporal structure, which time is furnished with, and it 

is found in the set of temporal intervals as generic elements and the relations between 

these elements. On the other, time itself functions as a space of inscription or as a 

blackboard where sonic events are inscribed into as symbols that form part of the outside- 

time structure; this structure is found in the relations and operations between these sonic 

symbols. This second remark will be discussed in Chapter 2. 

In this way, time is shown to be something more than just a set of elements with a 

commutative group structure. It must be clarified that what Xenakis subordinates at this 

stage is not time as such, but precisely this set of elements, or the temporal structure that 

time possesses (and of course this structure is not everything about time as such). 

Therefore, it is the temporal structure that is in proximity with the outside-time one, in 

the sense that the two share a common algebra. Time as such remains a medium that 

renders structures perceptible. 
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1.4 Two Natures ('La voie de la recherche et de la question' - 1965) 

The positioning of the temporal as a medium between outside and inside time structures 

serves to distinguish the two opposed poles in Xenakis's formation. In the previous two 

stages of his theory he described a) the logical operations and b) the sonic events and 

their characteristics as being outside time. In 1965 he proceeds to a more simplified 

distinction: the mediating temporal category is now absent, and Xenakis attempts a 

clarification that is more than an assumption. The key term in this clarification is 

ordering, or arrangement in time. 

We have to distinguish between two natures: inside-time and outside-time. That 

which can be thought of without changing from the before and the after is outside- 
time. Traditional modes are partially outside-time, the logical relations and 
operations applied on classes of sounds, intervals, characters... are also outside- 
time. Those whose discourse contains the before or the after, are inside-time. The 

serial order is inside-time, a traditional melody too. All music, in its outside-time 
nature, can be rendered instantaneously, flat. Its inside-time nature is the relation 
of its outside-time nature with time. As sonorous reality, there is no pure outside- 
time music: there is pure inside-time music, it is rhythm in its pure form (K 68). 14 

With the `before' and the `after' Xenakis obviously refers to the possibility of 

permutations of the (commutative) elements of an outside-time structure. Although he 

does not mention it clearly, this dual opposition can be exemplified in the relation 

between a scale and a melody based on it. This is because the arrangement of the degrees 

of a scale is not temporal but hierarchical. Hierarchy here must be thought in a different 

sense than the tonal hierarchy of the scale degrees. Hierarchy is rather related to the 

14 ̀I1 faut distinguer deux natures : en-temps et hors-temps. Ce qui se laisse penser sans changer par l'avant 

ou l'apres est hors-temps. Les modes traditionnelles sont partiellement hors-temps, les relations ou les 

operations logiques infligees ä des classes de sons, d'intervalles, de caracteres... sont aussi hors-temps. Des 

que les discours contient 1'avant ou I'apres, on est en-temps. L'ordre seriel est en-temps, une melodie 
traditionnelle aussi. Toute musique, dans sa nature hors-temps, peut etre livree instantanement, plaquee. Sa 

nature en-temps est la relation de sa nature hors-temps avec le temps. En tant que realite sonore, il n'y pas 
de musique hors-temps pure ; il existe de la musique en-temps pure, c'est le rythme ä 1'etat pur'. 
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axiomatics of the set of natural numbers. Therefore, on the outside-time side we have the 

notes of a scale or a mode that appear from the lower to the higher. (Intervals are outside- 

time in the sense that they can be compared in terms of their size. ) On the other side, we 

have melody or the series, as an ordering of these elements. In the same way that a 

melody is based on a scale or mode, the series is based on the total chromatic and is a 

reordering of its elements. This is the first time that Xenakis refers to the inside-time 

nature of the series and it is a new starting point of bringing back his critique of serialism 

- this time under the light of his general compositional theory and not Stochastics. This, 

however, will lead to a much more complicated discussion and it will be developed in his 

following writings. 

Although the emphasis is now given on clarifying the dual opposition of inside 

and outside, time is still included in Xenakis's discourse, but with a somewhat different 

function. Here time is clearly a catalyst, necessary for bringing music into life - in terms 

of perception, that is. The inside-time is the relation of the outside-time with time. This 

reveals another aspect of the position of time in the classification. There is no temporal 

category here and Xenakis does not mention the set of time intervals as furnished with 

commutativity - namely, the temporal structure. (It goes without saying that the 

commutativity of time intervals implies that the before and after do not change this 

structure. ) As he mentioned previously, the temporal and the outside-time algebras are 

identical; therefore, in this dualistic distinction the temporal structure would also be 

outside time. 

We see that although the second category of the theory collapses to the first, the 

notion of time is still included in the classification, and this is in relation to the third 
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category. Recall that in the preceding demonstration the third category derives from the 

correspondence of the outside-time with the temporal structure, whereas now from the 

relation of the outside-time nature with time. This reveals that for Xenakis there seem to 

be two different lines of thought when he places time in relation to the other two 

categories; and this is shown by the fact that the `middle' category is related to the other 

two in two different ways. On the one hand, time is (in a secondary sense) included in the 

outside-time category as their corresponding algebras are identical; on the other, it is 

shown to be `rhythm in its pure form'. 

Pure inside-time music can be conceived only in the total absence of outside-time 

structure. Of course, for Xenakis there is no music that totally lacks outside-time 

structures; in the case of a serial composition for example, the outside-time structure that 

it is based on is the total chromatic, which indeed is outside-time, albeit too neutral. The 

movement of thought in the two articles can be seen in the gestures that Xenakis makes in 

relation to the middle category. From an entity that is simpler than the sonic event itself, 

to pure inside-time music; or from a view that has time as metric to another that has time 

as rhythm in a much more general sense than metre. This movement does not imply that 

he abandoned the older view in favour of the new one. It is a movement between two 

lines of thought that are not mutually exclusive (although at the same time still 

independent of each other). However, his metatheory is not aimed at understanding the 

nature of time as such, nor its function in music; Xenakis had from the outset been 

concerned with what remains after time has been removed. Distinguishing between two 

different aspects of the role of time in his schema, serves at demonstrating the natures of 

the two extreme poles. As a `temporary assumption' then, time participates in both the 
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outside and the inside time categories. By assigning the temporal in the middle category 

Xenakis made clear that, contrary to the classical view, time includes an outside-time 

aspect; and by identifying pure inside-time music with pure rhythm, he indicated time as 

being disentangled from outside-time structures. 

1.5 Tomographies Over Time ('Towards a Metamusic' -1965) 

Immediately following the publication of `La Voie' Xenakis wrote the manuscript for 

`Towards a Metamusic', which was however published two years afterwards (1967). His 

discourse brings back the notions of categories (instead of natures) and the classification 

includes again the temporal category. At this point Xenakis refers to the idea of the scale, 

which is considered central in his theory (as well as in Sieve Theory). 

I propose to make a distinction in musical architectures or categories between 

outside-time, in-time, and temporal. A given pitch scale, for example, is an 
outside-time architecture, for no horizontal or vertical combination of its elements 
can alter it. The event in itself, that is, its actual occurrence, belongs to the 
temporal category. Finally, a melody or a chord on a given scale is produced by 

relating the outside-time category to the temporal category. Both are realizations 
in-time of outside-time constructions (FM 183). 

In this article there is an extended demonstration of ancient Greek and Byzantine scales, 

which serve Xenakis to enforce his arguments and the presentation of his ideas. 

The discussions from both two previous articles are in a way brought in here too, 

although not with a straightforward terminology. As I have already suggested, the two 

approaches regarding the temporal category are not mutually exclusive. We can here 

remark that the temporal category is, unlike before, not shown to be equipped with a 

secondary ordered structure. The temporal is mentioned only in relation to the instant and 
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the realisation of the sonic event. Although `Metamusic' brings back the tripartite 

classification of `Symbolic Music', the temporal category seems to be approached from 

the same viewpoint as in `Lavoie'. In other words, this formulation is not concerned so 

much with what kind of structure time possesses, but with what belongs to the temporal 

category in a less abstract way of thinking. 

This change of viewpoint is also apparent in the way that the sonic event itself is 

treated. Whereas in 1963 the sonic event is shown to possess an outside-time structure, it 

is now shown to belong to the temporal category, as far as its actual occurrence is 

concerned. Therefore, the sonic event is not `a kind of symbol' as previously stated but is 

here related to immediate reality. This is a matter of a less abstract approach to both the 

sonic event and the temporal category. This less abstract approach is formulated more 

successfully later, in 1976, in Arts/Sciences: Alloys and the discussion of the reversibility 

of time (Section 1.8). When a composition is viewed under the angle of outside-time 

relations and operations, then both the sonic event and time are shown to possess an 

outside-time or ordering structure; when it is viewed from the temporal angle, the event 

itself belongs to the temporal category (as an instantaneous reality) and time is shown to 

be pure instead of metric. In the following part of `Metamusic' Xenakis provides the 

point of view that he had been concerned with from the outset: the sonic event (or 

architecture) is outside-time and time as such belongs to the temporal category, where the 

latter is considered to be pure. 

In order to understand the universal past and present, as well as prepare the future, 
it is necessary to distinguish structures, architectures, and sound organisms from 

their temporal manifestations. It is therefore necessary to take "snapshots", to 
make a series of veritable tomographies over time, to compare them and bring to 
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light their relations and architectures, and vice versa. In addition, thanks to the 
metrical nature of time, one can furnish it too with and outside-time structure, 
leaving its true, unadorned nature, that of immediate reality, of instantaneous 
becoming, in the final analysis, to the temporal category alone (FM 192; italics 
added). 

Although Xenakis presents his classification from different viewpoints at different times, 

it remains clear that he insists on the importance of the outside-time structure of music 

(or algebra, architecture, nature). Inside-time structures always remain as the second term 

of the dualistic approach that he occasionally tends to suggest. More importantly, these 

two terms offer Xenakis the possibility to approach the temporal category, or time, from 

two different points of view. The approach he might take each time, affects also the way 

that the sonic event is interpreted. There are therefore two ways of thinking, which are 

based upon two opposed tendencies (outside/inside) that rarely seem to be stabilised in a 

formulation, although always involved in it. This dichotomy is found again in the 

subsequent article, which presents a formulation similar to that of `La voie'. 

1.6 `Towards a Philosophy of Music' (1966) 

In the previous formulation of the dichotomy, time, or the temporal category, had not 

been excluded. It was considered only in relation to its pure nature, that of instantaneous 

becoming; this observation was also maintained in the tripartite classification of 

`Metamusic'. In `Towards a Philosophy of Music' the formulation is of a dualistic nature, 

but more refined as regards to the middle term. Time is referred to as both possessing an 

ordered structure and related to instantaneous creation. Unlike `Metamusic' the reference 

to both natures of time is concisely demonstrated in the classification: 
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It is necessary to divide musical construction into two parts: 1. that which pertains 
to time, a mapping of entities or structures onto the ordered structure of time; and 
2. that which is independent of temporal becomingness. There are, therefore, two 
categories: in-time and outside-time. Included in the category outside-time are the 
durations and constructions (relations and operations) that refer to elements 
(points, distances, functions) that belong to and that can be expressed on the time 
axis. The temporal is then reserved to the instantaneous creation (FM 207). 

It is clear that time possesses an ordered structure, which is outside of time. More 

specifically what belongs to that category is the durations, or time-intervals, as a set of 

generic elements that enjoys commutativity. In other words, metric time. The `temporal' 

has now the place that time had in `Lavoie', that is pure time of immediate reality. 

1.7 Ontological/Dialectical (`Une note' - 1968) 

In 1968 Xenakis demonstrated a slightly differentiated classification in `A note' in La 

Revue Musicale (published in the following year). Unlike all his previous references, 

where he alternated between a dichotomy and a tripartite classification with alternating 

viewpoints, here he talks about two categories but with a `triple correction'. The two 

categories have the form of the dichotomy outside-time/temporal and they represent the 

ontological/dialectical dichotomy that the philosophies of Parmenides and Heraclitus 

represent for Xenakis. These two categories intermingle and their mapping is the 

`realisation' or what he termed formerly the inside-time (although this term in not used 

here): 

There is a mental crystallisation around two categories: ontological, dialectical; 
Parmenides, Heraclitus. From there comes my typification of music, outside-time 
and temporal that lights so intensely. But with a triple correction: 

a) in the outside-time, time is included, 

34 



b) the temporal is reduced to the ordering, 
c) the `realisation', the `execution', that is the actualisation, is a play that makes a) 

and b) pass into the instantaneous, the present which, being evanescent, does not 
exist. 

Being conscious, we have to destroy these liminal structures of time, space, 
logic... So with a new mentality, with a past, future and present interpenetrating, 

temporal but also spatial and logical ubiquity. That's how the immortality is. The 

omnipresent too... without flares, without medicine. With the mutation of the 

categorising structures, thanks to the arts and sciences, in particular to music, 
obliged as she has been recently to dive into these liminal regions (Xenakis 1969: 
51 ). '5 

The outside-time is privileged over the temporal, which is in turn reduced to 

ordering and finally the instantaneous refers to the present which does not exist. This is 

an obvious remark about metric time and what Xenakis considers to be included in the 

outside-time is precisely this metric time as a set of elements that has an ordered 

structure. Pure rhythm or pure time have no place in this formulation and certainly the 

instantaneous or the present is not shown to be related directly to this purity. He makes a 

gesture of overturning an old way of thinking and suggests a new one where tenses 

`interpenetrate'; this can be thought only when time intervals are taken abstractly, as 

multiples of a unit that are commutative. They then form entities outside of time 

(immortal, omnipresent). Time, as it is included in the outside-time, is then shown only in 

15 ̀Il ya cristallisation mentale autour de deux categories : ontologique, dialectique ; Parmenide, Heraclite. 
D'oü ma typification de la musique, hors-temps et temporelle qui s'eclaire ainsi intensement. Mais avec 
une correction triple : 

a) dans le hors-temps est inclus le temps, 
b) la temporelle est reduite ä l'ordonnance, 

c) la « realisation », 1' « execution », c'est-ä-dire l'actualisation, est un jeu qui fait passer a) et b) dans 

l'instantane, le present, qui etant evanescent, n'existe pas. 

II faut, etant conscients, detruire ces structure liminaires du temps, de l'espace, de la logique... Mental 
done neuf, passe futur present s'interpenetrant, ubiquites temporelle mail aussi spatiale et logique. Alors 
l'immortalite est. Le partout present, aussi... sans fusees, sans medecine. Par la mutation des structures 
categorisantes, grace aux sciences et aux arts, en particulier ä la musique, obligee qu'elle a ete de se 

plonger dans ces regions liminaires recemment'. 
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its metric sense and not in its pure, which seems to be for Xenakis something more than 

the evanescent present. No matter how Xenakis's change of viewpoints influences his 

demonstration of the temporal category or of time, it remains as a constant in his theory 

that the outside-time, the ontological in this case, is the privileged term in a discourse of 

polarity. In his subsequent publications he is concerned with classifying less than in his 

former ones; he is interested primarily in the way memory functions in music perception 

and the consequences these observations might have in composition. 

1.8 Arts/Sciences: Alloys (1976) 

In 1976 Xenakis was awarded a `Doctorat d'Etat' and his thesis defence was published in 

1979. All his writings mentioned so far (at least the ones included in his books published 

by then) were submitted for the award and taken into account in the discussion between 

Xenakis and the jury. It is therefore a temporary concluding point, before his final article 

on Time. In his thesis defence his theory is mentioned under a discussion on the 

possibility of the reversibility of time in his music. The reference to outside-time 

structures, then, is made only in order for Xenakis to clarify that his view does not 

necessarily imply a reversible time. This clarification is, importantly enough, a way for 

him to distinguish between the two natures of time, which also reflect the overall polarity 

of outside/inside. Reversibility is for him simply one among the several outside-time 

permutations that temporal intervals can undergo. It is clearly a matter of distinguishing 

between metric time and pure temporal flow. 

[W]hen I talk about time intervals, they are commutative. This is to say that I can 
take time intervals now or later and commutate them with other time intervals. 
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But the individual instants which make up these time intervals are not reversible, 
they are absolute, meaning that they belong to time, which means that there is 
something which escapes us entirely since time runs on (A/S 69). 

The idea of reversibility is for Xenakis related to the non-temporal; what is temporal is by 

definition irreversible. In that case, what escapes us is related to real time as opposed to 

metric. The two lines of thought are clarified further on: 

There are some orders which can be outside of time. Now, if I apply this idea to 
time, I can still obtain these orders, but not in real time, meaning in the temporal 
flow, because this flow is never reversible. I can obtain them in a fictitious time 
which is based on memory (A/S 71). 

Memory serves here as a means of thinking about time abstractly and enables man to 

construct a metric structure in order to perceive time and the composer in order to work 

with durations and time intervals: 16 ̀There is the temporal flow, which is an immediate 

given, and then there is metrics, which is a construction man makes upon time' (A/S 97). 

The time instants and the effect they have on memory is, for Xenakis, an important 

remark, as it is a starting point for his elaboration of the outside-time aspect of time. This 

will substitute the paradigm borrowed from Piaget. I will explore this in the following 

chapter, in relation to the idea of the trace. 

16 Note that time-intervals and durations are not always identical. The former are the temporal distances 

marked by sonic events (i. e. the distance between two time-points) and the latter refer to the duration of 

these sonic events (i. e. the duration of a pitch). 
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2 Outside-Time Structures as Writing 

As early as the first statement of his theory Xenakis referred to the temporal as related to 

the category of outside-time structures. I will use the relationship between time and 

outside-time structures in order to unveil the character of the latter as writing. For 

Xenakis time is, as I have already pointed out, a `space of inscription'. There are several 

references that have time as a white `sheet of paper' or as a `blank blackboard'. This 

metaphor should be studied more thoroughly, as it implies a gesture that overturns the 

classical idea that time in music is everything. What is more interesting is that the 

temporal has been shown from two opposed angles that place it in both poles of the 

dichotomy of outside/inside. It can be shown that these two aspects of time also function 

in a way that disturbs this dichotomy, which is not different from the one of 

writing/speech. For this reason, Jacques Derrida's exploration of writing is useful here; 

primarily because Derrida equates the relationship of the scale (for Xenakis the primary 

outside-time paradigm) and the origins of music with the one of writing and speech: ̀ The 

chromatic, the scale [gamme], is to the origin of art what writing is to speech. (And one 

will reflect on the fact that gamma is also the name of Greek letter introduced to the 

system of literal musical notation)' (Derrida 1997: 214). 

2.1 The Third Term 

It is clear that Xenakis's formulation as a binary opposition `with a triple correction', 

involves a `third' term in the way that Derrida has shown (see Derrida 2001: 5). This 

third term participates in both sides of the polarity. (Xenakis had always made certain to 
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stress that time participates in the outside-time, as something not generally taken for 

granted; but he also did that in order to demonstrate that the first category bears much 

more significance than the second. ) Participating in both categories, the temporal is a 

mediator between the two. This is a consequence of the heterogeneous nature time has for 

Xenakis: metric time and temporal flux, a manmade construction and an immediate 

given. Heterogeneity does not allow time to be a stable part of the schema, and this is 

why it is occasionally excluded from Xenakis's writings, or phrased differently, or 

viewed from different angles. Time is the element that resists systematisation and 

therefore, more than just being a mediator, it escapes integration into the system. 

The temporal belongs neither to the outside- nor to the inside-time; but on one 

hand it possesses a structure that belongs to the former and on the other hand its 

irreversibility places it with the latter. Derrida talks of the `third' in a way that brings 

light to this discussion: `It is at the same time, the place where the system constitutes 

itself, and where this constitution is threatened by the heterogeneous' (2001: 5). The 

temporal, as the middle or the third term, obscures the limits of what is outside and what 

inside. What is obvious from Xenakis's writings, is that ordered structures (including 

temporal ones) are outside time while time as such remains pure; inside time then are the 

outside-time structures when affected by the catalytic action of time. But more than a 

catalyst, time is the function that renders the outside-time perceptible, in other words 

inside-time. I will show how this disruption takes place after I demonstrate the way 

Xenakis developed his critique of serialism. 
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2.2 The Critique of Serialism 

The idea of the scale is central in any discussion on the matter, and it is always the 

primary example of Xenakis's demonstration of the theory. A scale is a well-ordered set, 

an object outside time. Having this observation as a starting point, we can re-formulate 

Xenakis's criterion for his evaluation of serialism's compositional practice. Xenakis 

points out a progressive degradation of outside-time structures: `This degradation of the 

outside-time structures of music since late medieval times is perhaps the most 

characteristic fact about the evolution of Western European music' (FM 193). Xenakis's 

first theoretical endeavour was his famous manifesto against serialism, `La crise de la 

musique serielle' of 1955. There, he identifies a crisis and a degradation of polyphonic 

linear thought as situated at the basis of this compositional technique (see K 39). 

2.2.1 General Harmony 

This critique is also included in his theory of outside-time structures. His critical stance 

remains, ten years after `La crise', in `Lavoie'. The starting point of his argument is 

precisely the placing of the tempered chromatic scale outside of time. The outside-time 

character of the chromatic is a privilege that the serialists (among others) failed to 

observe: 

[The tempered chromatic scale] is for music what the invention of natural 
numbers is for mathematics and it permits the most fertile generalisation and 
abstraction. Without being conscious of its universal theoretical value, Bach with 
his Well-Tempered Clavier was already showing the neutrality of this scale, since 
it served as a support for modulations of tonal and polyphonic constructions. But 

only after two centuries, through a deviating course, music in its totality and its 
flesh breaks decisively from tonal functions. It then confronts the void of the 
neutrality of the tempered chromatic scale and, with Schönberg for example, 
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regresses and falls back to more archaic positions. It does not yet acquire the 
scientific awareness of the totally ordered structure that this privileged scale 
comprises. Today, we can affirm with the twenty-five centuries of musical 
evolution, that we arrive at a universal formulation concerning the perception of 
pitch, which is the following: 

The totality of melodic intervals is equipped with a group structure with 
addition as the law of composition (K 69). 17 

The tempered chromatic is then a landmark in the history of music that went unnoticed. 

Of course this does not mean that outside-time structures did not exist before or that they 

were necessarily poorer. On the contrary, the chromatic is a neutral structure, much 

poorer itself than, say, the diatonic scale or Byzantine and ancient Greek modes, which 

have a differentiated and much more sophisticated structure. By corresponding the 

chromatic with the set of natural numbers Xenakis did not merely show that a new 

structure as such was discovered; what actually happened, for him, is an opening up of 

possibilities for constructing new structures, e. g. scales, with mathematical tools, such as 

Set Theory. Under the scope of such possibilities Xenakis conceived (at around the same 

time) his Sieve Theory, which was eventually developed exclusively towards the 

construction of pitch scales. He acknowledges of course that it was in France that the 

outside-time category was reintroduced, both in the domain of pitch and of rhythm; this 

was done by Debussy with the invention of the whole-tone scale and Messiaen with his 

17 ̀[La gamme chromatique temperee] correspond en musique ä l'invention des nombres naturels des 

mathematiques et c'est eile qui permet la generalisation et 1'abstraction les plus fecondes. Sans etre 

conscient de sa valeur theorique universelle, J. -S. Bach avec son Clavier bien tempere montrait dejä la 

neutralite de cette gamme, puisqu'elle servait de support aux modulations des constructions tonales et 
polyphoniques. Mais ce n'est que deux siecles plus tard, par un cheminement devie, que la musique dans 
l'ensemble et dans sa chair rompt, definitivement, avec les fonctions tonales. Elle se trouve alors devant le 

vide de la neutralite de la gamme chromatique temperee et, en la personne de A. Schönberg par exemple, 
eile recule et se replie sur des positions plus archaYques. Elle ne prends pas encore une conscience 
epistemologique de la structure d'ordre total que cette gamme privilegiee renferme. Aujourd'hui, on peut 
affirmer qu'avec les vingt-cinq siecles d'evolution musicale, on aboutit ä une formulation universelle en ce 
qui concerne la perception des hauteurs, qui est la suivante : 

L'ensemble des intervalles melodiques est muni d'une structure de groupe avec comme loi de 

composition 1'addition'. 
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modes of limited transpositions and non-retrogradable rhythms (which I will discuss 

later). However, Messiaen did not advance this thought into a general necessity and 

abandoned it, `yielding to the pressure of serial music' (FM 208). 

In `Towards a Metamusic' Xenakis reminds us of the suggestion he made in 

1955: the introduction of probabilities and a `massive' conception of sound that would 

include serialism's linear thought merely as a particular case. He then goes on to pose the 

question whether this suggestion itself implied a general harmony, only in order to reply: 

`no, not yet' (FM 182). The introduction of probabilities does include serial manipulation 

as a mere case, but it does not constitute a general approach to composition - it does not 

stand as a general harmony. More specifically, this general harmony is provided by his 

outside-time musical structures. This harmony is seen not in a traditional - limiting for 

Xenakis - sense of the homophonic or contrapuntal language. A truly general harmony 

must be able to include, potentially, all types of musical structures of the past and present, 

all styles and personal languages. Precisely this idea of a personal language is shown by 

Xenakis to rest in the outside-time category (FM 192). 

2.2.2 Magma 

In serial music, he says, there is an exaggerated emphasis on temporal structures, as it is 

based on a temporal succession, or a time-ordering, of all pitches of the chromatic scale 

(succession of elements inside time). In other words, it is impossible to discern between 

structures (architectures, sound-organisms, etc) and their temporal manifestations. Serial 

music remains for Xenakis `a somewhat confused magma of temporal and outside-time 

structures, for no one has yet thought of unravelling them' (FM 193). What needs to be 
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unravelled then is essentially the outside-time structure from its temporal manifestation 

(instantaneous becomingness). In the case of the pitch organisation of a serial 

composition, these two elements are the chromatic scale, which is placed outside time, 

and the series, which is inside time. What Xenakis means when he says ̀ temporal' here is 

not metric time. It should be remembered that metric time refers to the ordered set of 

durations, of temporal intervals (in a temporal structure), which is a commutative group 

and which is outside time. What he talks about here is the element of pitch, without 

taking into account any durations pitches might be associated with. Therefore, `temporal' 

stands here for the inside-time ordering of the twelve pitch-classes; thus the `magma' 

Xenakis refers to consists of the outside- and the inside-time categories. 

As I have mentioned earlier, for Xenakis, apart from `pure rhythm', there is no 

pure inside-time music. Outside-time structures do exist (for example, the total chromatic 

in the case of a serial composition) and are just perceived in time: `Polyphony has driven 

this category [of outside-time structures] back into the subconscious of musicians of the 

European occident, but has not completely removed it; that would have been impossible' 

(FM 208). The magma that serial music is then, should be a natural and an expected one. 

What he actually points at, is the neglecting of the outside-time that is responsible for the 

degradation of music. It is a matter of a confused magma where the two categories are in 

a disproportioned, unbalanced relationship; Xenakis's suggestion then should be seen not 

as disentangling the two categories, but that the outside-time category should be given 

more attention, as it is always already there. It is therefore not a matter of reintroducing 

it, but taking into account its existence, noticing the possibilities it offers in composition 
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and the effects it has in musical perception. Its consequences, it seems for Xenakis, are at 

work no matter whether we acknowledge it or not. 

2.3 The Temporal as Outside-Time 

The temporal element in the series is then the ordering of the pitch-classes, as an inside- 

time structure. This clarification is important to be made in order to understand how the 

polarity of outside/inside functions for Xenakis in serial music. For this purpose, I will 

compare the idea of the scale (outside-time) and that of the rhythmic sequence 

(temporal). In his final article on Time (`Concerning Time, Space and Music' - 1981) 

Xenakis focuses on the temporal, or the middle category, and its relation to the outside- 

time. He demonstrates the outside-time aspect of time, leaving the temporal flux (which 

would place structures inside time) as the other element where music participates. 

1. We perceive temporal events. 
2. Thanks to separability, these events can be assimilated to landmark points in the 

flux of time, points which are instantaneously hauled up outside of time because 
of their trace in our memory. 

3. The comparison of the landmark points allows us to assign to them distances, 
intervals, durations. A distance, translated spatially, can be considered as the 
displacement, the step, the jump from one point to another, a nontemporal jump, a 
spatial distance. 

4. It is possible to repeat, to link together these steps in a chain. 
5. There are two possible orientations in iteration, one by accumulation of steps, the 

other by a de-accumulation (FM 264-5; the author italicises only `landmark 

points'). 

This formulation concerns temporal structures when placed outside of time. His final 

publication then is concerned only with the middle category in its outside-time aspect. 

The other aspect, that of temporal flow is left unmentioned here. 
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Messiaen's non-retrogradable rhythms are shown by Xenakis to belong to the 

outside-time category. More precisely, it is a case of a temporal structure that is placed 

outside time. There are two elements involved in such structures: the time-instants and 

the temporal intervals between them (no matter whether durations are associated with the 

whole or a part of any such temporal interval). If we correspond the time-instants and the 

temporal intervals with the pitches and pitch-intervals of a scale, it can be shown that, as 

Xenakis often said, the temporal structure (the rhythmic sequence) is simpler that the 

outside-time structure (the scale). In the case of the scale there are two possible ways of 

hierarchical arrangement: the very idea of the scale suggests that pitches are placed from 

the lower to the higher; but the intervals themselves (such as the semitone and the tone in 

the diatonic) might also be compared in terms of their relative sizes, perceived and 

expressed as multiples of a unit, and in a way arranged from the smaller to the larger (or 

commutated). Neither of these two ways of arranging include the `before' and the `after'. 

In the case of a rhythmic sequence though, there is only one way of doing so: as I have 

quoted Xenakis saying (see section 1.8), while you can compare the sizes of temporal 

intervals, commutate them, or arrange them from the smaller to the larger, time instants 

are not commutative, not reversible; they belong to time, to pure temporal flow. This is 

due to the heterogeneity of time: a rhythmic sequence has a part that is outside-time 

(temporal intervals) and another that is inside-time (time-instants). Therefore, a 

reordering of the pitches of a scale (and not of the intervals involved in it) is inside time; 

in a rhythmic sequence this would be inconceivable, as time instants are fixed to the flow 

of time. 
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2.4 Outside-Time as Supplement 

The metaphor for writing Xenakis frequently used is not aimed at suggesting that music 

functions as language does. In the Conversations with Varga he clearly says it: `music is 

not a language: it does not have the task of expressing something through sounds and 

symbols. Music stands by itself, there's nothing beyond it' (Varga 1996: 82). 

Nonetheless, the idea of symbols might suggest a similarity with language, that in 

conjunction with the idea of writing can lead to an analogy between the dichotomy 

outside/inside and writing/speech; furthermore, it can be explored in relation to the 

deconstructive as unveiled by Derrida and his reading of the passages relevant to music in 

Rousseau's The Essay on the Origin of Languages. In Of Grammatology, published in the 

same year as `Towards a Metamusic', Derrida argues for an analogy of the histories of 

language and music (that is, the histories of the two as read in Rousseau). There he 

focuses on the degradation of music that Rousseau considered to have taken place. 

According to this idea, there is an originary separation between speech and music. For 

Rousseau it is obvious that song is the origin of music and that itself derives from speech. 

For him, music and song grew apart; it is a case of a degradation caused by the forgetting 

of the origin of music. 

Although I am not attempting an interpretation of Rousseau's views on the matter, 

there is an interesting analogy between his treatment of the opposition melody/harmony 

and Xenakis's view of harmony as being outside of time and melody inside. The two 

obviously privilege the opposite side of a dichotomy which seems to be the same for 

both: melody versus harmony. Harmony, independent of any other qualities such as time 

and rhythm, stands on its own; also, it is for both a `rational science'. But for Rousseau 
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harmony is the cause for music's degradation, which should have always been united 

with speech, with the inflections and accent of the spoken language. The comparison here 

is useful only for two purposes: first, to show the intention on Xenakis's part to demolish 

the classical view that has time as the essence of music, and secondly in order to see how 

the idea of supplementarity, shown in relation to Rousseau's view, affects Xenakis's. 

Derrida has shown that, for Rousseau, music grew as a supplement to the unity of 

speech and song; supplement alludes here to the idea of writing in relation to speech. 

`The growth of music, the desolating separation of song and speech, has the form of 

writing as "dangerous supplement": calculation and grammaticality, loss of energy and 

substitution. The history of music is parallel to the history of the language, its evil is in 

essence graphic' (Derrida 1997: 214). The `graphic' element of music is described as 

grammaticality or as the `rational science of intervals' that is alien to and the supplement 

of the natural song as presence. As with writing, the `science of intervals' is located 

outside the full presence of the song, which is considered by Rousseau united with the 

inflections of the voice in speech. It would be superfluous to indicate here the obvious 

analogy between song being present to itself and inside time, and harmony (calculation of 

intervals) being outside this presence and outside time. 

2.5 Symmetry 

2.5.1 Series 

Xenakis's scientific approach stands at the antipode of what Derrida is preoccupied with 

in reference to Rousseau's degradation of music. It is, for him, precisely too much 

emphasis on melody that has caused the degradation of music. It is interesting here to see 
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how the deconstructive works when privileging harmony over melody; or in the case of 

serialism, the (chromatic) scale over the series. No matter how Xenakis might have 

phrased his critique over the years, it can be shown that the `magma' he pointed at is 

essentially issued by the series itself; and this is due to the structural difference between a 

given melody and the series. Although according to Xenakis's theory both the series and 

melody are inside-time structures, the two are not identical. For Xenakis, the degradation 

he referred to, did not escape the attention of the Viennese school: 

[A]tonalism, prepared by the theory and music of the romantics [sic] at the end of 
the nineteenth and the beginning of the twentieth centuries, practically abandoned 
all outside-time structure. This was endorsed by the dogmatic suppression of the 
Viennese school, who accepted only the ultimate total time ordering of the 
tempered chromatic scale. Of the four forms of the series, only the inversion of 
the intervals is related to an outside-time structure. Naturally the loss was felt, 
consciously or not, and symmetric relations between intervals were grafted onto 
the chromatic total in the choice of the notes of the series, but these always 
remained in the in-time category. Since then the situation has barely changed in 
the music of the post-Webernians. This degradation of the outside-time structures 
of music since late medieval times is perhaps the most characteristic fact about 
the evolution of Western European music, and it has led to an unparalleled 
excrescence of temporal and in-time structures. In this lies its originality and its 
contribution to the universal culture. But herein also lies its impoverishment, its 
loss of vitality, and also an apparent risk of reaching and impasse (FM 193-4; 
italics added). 

This is an obvious reference to Webern, who revealed serialism's potential, 

mainly discovering symmetrical relations between different forms of the tone-row. 

Symmetry is par excellence a geometrical phenomenon and therefore belongs to the 

outside-time category. And for Xenakis, this is the outside-time element that was g -rafted 

onto the process of constructing an inside-time structure, the series, in order for the serial 

technique to recover from its degradation. But this possibility for symmetry was already 
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included in dodecaphonism's potential. The tone-row cannot be reduced to a mere 

succession of elements; its four forms might stand in such a relation to each other that can 

reveal correspondences and symmetries much more profound than vertical or horizontal 

reflections. The impasse was dealt with by revealing certain aspects of the interior of the 

series that can inform the structural principle of the composition, and not by imposing 

symmetrical forms from outside. There are here the two characteristics of the 

supplement: symmetry substitutes the mere inside-time ordering of the pitch-classes and 

at the same time adds itself as a structural principle. Xenakis's theory fails to see 

symmetry, an outside-time characteristic, as deriving from an inside-time structure; it is a 

case of a much more profound magma, where distinguishing the two categories is never 

straightforward. We can now see this way of thinking according to the logic of the 

supplement, which `would have it that the outside be inside, that the other and the lack 

come to add themselves as a plus that replaces a minus, that what adds itself to something 

takes the place of a default in the thing, that the default, as the outside of the inside, 

should be already within the inside' (Derrida 1997: 215). 18 

Xenakis's privileging of outside-time structures is a method intended to establish 

the foundations of a general harmony. On the other hand, Derrida's method (and not 

strategy in a teleological sense) is to distance oneself from the binary opposition and 

allow for any deconstructive functions, without privileging one or the other side. Derrida 

has demonstrated the deconstructive in the function of harmony in relation to melody. 

18 It is not my intention to show Xenakis's approach as similar to Derrida's, as there is no evidence that he 

was aware of the latter's work (Derrida was working on these themes at around the same time). What is 

important here though is the logic of supplementarity and of incompleteness of an account on the matter 

(which is also reflected in that Xenakis had not written any complete treatise on outside-time structures). 
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According to the logic of the supplement ̀ there is already harmony within melody' 

(Derrida 1997: 212). Writing, as the supplement of speech, allows for spacing (the 

becominb space of time and the becoming time of space) (see Derrida 1997: 68) and 

elements are put in distance from each other (intervals). In the same way that punctuation 

is an act of inscribing into space, the function of harmony is parallel to that of writing as 

spacing. Outside-time structures, or the rational science of intervals (such as the intervals 

in a pitch scale) follow the same logic. Interval here is the nonpresent, the unperceived. 

2.5.2 Non-Retrogradable Rhythms 

The idea of symmetry, as the outside-time element in a structure, is also found in the case 

of non-retrogradable rhythms. Their placing outside of time by Xenakis raises the 

question of whether there are rhythmic sequences that, as the scales, are wholly or 

partially outside of time. As I have shown when comparing it with the scale, a rhythmic 

sequence possesses a temporal structure (the set of temporal intervals placed outside of 

time) and an inside-time aspect (the time-instants). Generalising therefore, all rhythmic 

sequences posses an outside-time aspect. In Arts/Sciences, in the discussion on the 

reversibility of time, Xenakis made his view clear: real time is not reversible. There, he 

also uses symmetry as an example for a state of order (as opposed to states of disorder in 

his stochastic music). Furthermore, for Xenakis symmetry does not entail reversibility of 

time, `because there can be order in non-temporal things' (A/S 70). In non-retrogradable 

rhythms you cannot reverse the inside-time order of the successive intervals. But 

reversing is only one among the several reorderings or permutations that can be applied 

inside time; symmetry merely limits the inside-time operations that one could apply to 
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such a structure. In this sense, the set of temporal intervals does not need symmetry in 

order to be thought of as an outside-time structure. It remains then that symmetry must be 

related to the other element of a rhythmic sequence: time instants themselves. Symmetry 

stands as an additional outside-time element, apart from the set of temporal intervals; 

non-retrogradable rhythms are therefore shown to be outside time by relating symmetry, 

which is a geometrical, non-temporal phenomenon, to their inside-time aspect. And as 

this symmetry does not imply reversibility of time (which is in any case impossible) the 

time instants are both outside time (as part of a symmetrical construction) and inside time 

by definition. As with the case of the series, symmetry is found to operate as a 

supplement; the idea of supplementarity is precisely found in this broaching of an inside- 

time structure (or the inside-time aspect of a temporal structure) with a non-temporal 

element. 

2.6 Spacing 

In the opening of `Symbolic Music' Xenakis talked about a certain amnesia (see FM 

155). That is, the forgetting of the origin of musical structures, such as the scales, modes 

and rhythms that personal languages and styles are built on. Although this is not an 

explicit metaphor for writing, it can be seen as an attempt of abstracting the originary 

elements of musical structures. Let us take once more the example of the scale, 

disregarding the cadential and hierarchical relationships between its elements (in other 

words, its origins). The elements of a scale neither refer to something other than 

themselves, nor are they present to themselves; they are defined in relation to each other. 

If the notion of the trace is relevant to temporal structures, it must also be relevant to 

51 



outside-time ones. The interval constitutes both the difference between the elements and 

the deferral of the elements' definition. The difference between the elements is seen as a 

simple consequence of the (abstract) hierarchy that governs a totally ordered structure: 

elements are arranged from the lower to the higher, or from the smaller to the larger; in 

other words, there is a spatial distance between them. At the same time, each one 

element, as a `landmark point' in our memory, is not defined until it is compared with the 

others; in other words, the assigning of spatial distances is deferred until we relate the 

trace of each one element with the others. 

Pitch intervals can be seen as parallel to temporal intervals. Both a scale and a 

rhythmic sequence can be thought of as points on a straight line (the straight line of 

natural numbers in the former case and time in the latter). Thus the comparison between 

the two can be seen even more abstractly: points refer either to pitches or to time-instants 

and the intervals between two successive points refer either to pitch-intervals or to 

temporal intervals. The inside-time placing of the scale is carried out by the time-ordering 

of the points (as in a melody or a series), whereas the inside-time aspect of a rhythmic 

sequence stems from the fact that its points are fixed to the temporal flow. In the case of 

the rhythmic sequence therefore, the points are always inside time and the intervals 

outside of time ('nontemporal jumps'). But what has been said about elements or points 

can also be said about intervals. If intervals are perceived as multiples of unit, the idea of 

the trace defers the assigning of this unit to any interval until it is compared with another. 

The scale, as both a set of discrete elements and a succession of intervals, is itself 

conditioned by the function of writing as spacing: the becominä space of time and the 

becoming-time of space. The non-distinction of the becoming-space and the becoming- 
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time implies the impossibility of this other distinction between the (outside-time) set of 

points and the (inside-time) succession of intervals. It is a case of differance: `of 

discontinuity and of discreteness, of the diversion and the reserve of what does not 

appear' (Derrida 1997: 69). 

The representation as points on a straight line is essential in Xenakis's definition 

of a sieve (see FM 268); this is his own `solution to the problems of outside-time 

structures' (preface to Jonchaies). His development of Sieve Theory is driven by the 

`question of symmetries (spatial identities) and periodicities (identities in time)' (FM 

268). The most elementary sieve is a single periodic interval, called a module (I will 

explain this further in Chapters 3& 4). This is also the case of the chromatic scale: a 

periodic interval of a semitone. As I will show in Chapters 5&6, Xenakis conceived his 

sieves of the later period as multiplicities of such elementary sieves, but with different 

interval each; i. e. modules of different size. He referred to these modules both as 

symmetries and as periodicities. Apart from just a way of referring to the constituent 

elements of the sieve, this reflects Xenakis's approach to sieve-construction of the late 

period. Outside-time structures (sieves) are constructed and conceived as multiplicities of 

inside-time identities (periodicities). In the case of the series, an outside-time 

characteristic (symmetry) is achieved by the inside-time ordering of the twelve pitch- 

classes; similarly, in the case of his sieves an inside-time property (periodicity) is at work 

in an outside-time structure. 
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PART II 

3 Sieve Theory 

3.1 The Sieve of Eratosthenes 

Xenakis developed Sieve Theory during his stay in Berlin, having received a Ford 

Foundation grant to live and work in West Germany, in 1963. The theory mainly 

concerns the creation of scales, arrived at through the combination of residue class sets. 

The primordial sieve in mathematics is known as the Sieve of Eratosthenes. The 

importance of this technique to Xenakis is fundamental; it has provided him with a 

method for `filtering' elements in order to create and manipulate structures. Furthermore, 

Xenakis's and Eratosthenes's methods share a common origin in the foundations of 

arithmetic; I will show that the two are directed to the foundational role of prime 

numbers. The Sieve of Eratosthenes is a method for determining the prime numbers up to 

a given integer n. It is based on the following simple procedure: we write down in a 

matrix, in ascending order, all the integers from 2 to n. We leave the first element (2) and 

erase all its multiples, we leave the next number that has not been erased (3) and erase all 

its multiples, and so on. We proceed until we reach prime number p, where 'P <_ V. The 

remaining integers are the prime numbers between 2 and n. In Figure 3.1 n= 50. The 

table consists of four parts (each for one stage of the process) and shows the cross-outs 

for each element: in the top left part of the table we have erased all the multiples of 2 

(every second number), in the top right part all the multiples of 3 (every third number), 

and so on for 5 and finally 7, which is the greatest prime <_ 50 
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More specifically, the first stage of the procedure (top left) starts at 2 and 

proceeds by steps of 2, the second stage (top right) starts at 3 and proceeds by steps of 3, 

the third (bottom left) at 5 and proceeds by 5, and the fourth (bottom right) at 7 and 

proceeds by 7. Some steps of one stage coincide with steps of another stage; this is shown 

as double or triple cross-outs. Afterwards, only the starting points of these four stages are 

allowed through the sieve (i. e. 2,3,5,7); these elements are then added to the set of 

numbers greater than 7 that have not been erased, and the resulting set is the set of primes 

up to 50. These are the numbers of the bottom right part of the table that have not been 

erased: 

{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47} 

What Xenakis drew from this is not merely the idea of filtering - passing the 

elements of a set through a sieve - but also the process of using starting points and steps 

of a specific distance. However, Xenakis's application of Sieve Theory is not intended to 

determine primes: his sieves allow both the starting points and all the following steps. 

Each of the four stages in the Sieve of Eratosthenes is for Xenakis an infinite set of 

numbers, that might coincide with each other in a more or less complex way. The degree 
zD :n 

of complexity is a matter of compositional decision and aesthetics. This was done in a 

period when he would attempt to take further his investigation towards formalisation; this 

time though not with stochastics and probabilities, but with the aid of the deterministic 
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laws that govern Number and Set Theory. However, both cases were for him a matter of 

generating outside-time structures of music. 19 

A sieve, then, refers to a selection of points on a straight line; this is the abstract 

image of sieves: `Every well-ordered set can be represented as points on a line, if it is 

given a reference point for the origin and a length u for the unit distance, and this is a 

sieve' (FM 268). 20 The theory was used in order to construct symmetries at a desired 

degree of complexity. This was achieved by the combination of two or more modules. A 

module is notated by an ordered pair (m, r) that indicates a modulus (period) and a 

residue (an integer between zero and m-1) within that modulus. 21 For example, for m=3 

and r=I we have the following module: 

(3,1)={1471013 ... 
}. 

Elements that lie in distance equal to the value of the modulus are said to be congruent 

modulo m. In other words, elements that yield the same residue (r) when divided by the 

same number (m) belong to the same congruence class. In the example, elements 4,7, 

and 10 are congruent modulo 3: 

19 The first published material on sieve theory was in Xenakis's article `La voie de la recherche et de la 

question', Preuves 177 (1965), later included in MA. The first extended reference was made in `Vers un 

metamusique', La Nef 29 (1967). This was followed by the ultimate publication of `Sieves', Perspectives of 

New Music 28/1 (1990). The two latter articles appeared later as chapters VII and XI of FM. 

20 Xenakis referred to unit distance (e. g. the semitone in the major diatonic scale) also as Unit of 

Elementary Displacement (ELD). 

21 The terminology I use in this dissertation is based on Xenakis (FM) and Squibbs (1996). 
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4= 7(mod3) 

7= 10(mod3). 

3.2 Logical Operations 

By applying the set-theoretical operations of union (+), intersection ("), and 

complementation (-), or a combination of them, one can construct more complex sieves. 

3.2.1 Union 

The union of two modules is the binary operation that includes all the elements that 

originally belong to both modules` For example, the union of modules (3,0) and (4,0) 

is 

(3,0)+(4,0)={0346891215 16182021 24... }. 

The period of this sieve is equal to the Lowest Common Multiple (LCM) of 3 and 4, that 

is, 12.23 The intervallic structure of a set is a listing of all its successive intervals: 

312213312213 

22 We can only form a union of distinct sets. An example given by Xenakis (FM 270) involves the union of 

residue classes (2,0) and (6,0); but (6,0) is a subset of (2,0) and therefore the union is redundant. 

23 Finding the period of a sieve in this case is quite straight-forward, because 3 and 4 are coprime (their 

Greatest Common Divisor is 1). If this was not the case the procedure would have to involve Euclid's 

algorithm (see FM 270). 
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Since the set repeats itself after element 12, or in other words its intervallic structure 

repeats after 12 units (e. g. semitones), it suffices to represent it by only one occurrence of 

its period: 

(3,0)+(4,0)={034689}. 

The period, 12, would appear after element 9; but after modular reduction, it is equal to 

element 0. Thus 12 = 0(mod12) and the following elements would be 15 = 3(modl2), 16 

4(mod l2), and so on. 

3.2.2 Intersection 

Intersection refers to the coincidences, or to the common elements of two modules. In the 

case of the major diatonic scale we can choose to represent the sieve either using its 

period (12 semitones) or using moduli 3 and 4; the operation of union is used in the 

former case, and a combination of union and intersection in the latter. 

(12,0)+(12,2)+(12,4)+(12,5)+(12,7)+(12,9)+(12,11)= 

(4,0)"(3,0) + (4,2)"(3,2) + (4,0)"(3,1) + (4,1)"(3,2) + (4,3)"(3,1) + (4,1)"(3,0) 

+ (4,3)"(3,2) 
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Each intersection in the latter formula corresponds to a module in the former. Thus, (12, 

0) = (4,0)"(3,0), (12,2) = (4,2)"(3,2), and so on. Within the scope of a single occurrence 

of a period, an intersection corresponds to a unique point. 3 and 4 are coprime and 

therefore their product equals the period of 12 semitones. We can now choose to regroup 

these elements around the modulus of 4. In order to do this we merely use the distributive 

property: 

(4,0) " [(3,0) + (3,1)] + (4,1) " [(3,0) + (3,2)] + (4,3) " [(3,1) + (3,2)] + (4,2)"(3,2). 

This alternative formula for the same sieve is aimed at facilitating comparison with other 

sieves that might share modulus 4, or maybe with other versions of the same sieve. As I 

will demonstrate later on, the use of each logical operation also depends on the type of 

sieve the formula represents. 

3.2.3 Complementation 

Complementation is the only unary of the three operations and refers to all the elements 

that are not members of the original module. Whereas the two binary operations might 

reveal some aspects of the type of sieve they represent, complementation is used only in 

order to simplify the notation. 24 For example, the union of intersections (4,0)"(3,0) and 

(4,0)"(3,1) can be rewritten as follows: 

24 Xenakis used complementation in his former writings only. In (1990) he only used the two binary 

operations of union and intersection. 
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(4,0)"(3,0) + (4,0)"(3,1) = (4,0) " [(3,0) + (3,1)] 

All the possible modules based on modulus 3 are (3,0), (3,1), and (3,2). The only 

module that is missing from within the square brackets is module (3,2). Thus we can 

finally write: 

(4,0)"(3,0) + (4,0)"(3,1) = (4,0)-(3,2). 

3.3 Transcription 

In FM (271-3) Xenakis presents a way of transcribing a formula into the actual sieve. The 

problem of transcribing a sieve is reduced to identifying the residues of the intersections. 

If (ml, f l) (mý, r, ) = (M3, r3) then m3 is LCM of ml and mg; r3 is found through 

algorithmic calculations involving basic theorems of arithmetic. However, there is a 

much more immediate and simpler method proposed by Squibbs and elaborated by 

Gibson. As this method is applicable manually it is restricted to relatively smaller sizes of 

moduli (but is easily applied to moduli up to the audible range counted in semitones). It 

involves the construction of a matrix that represents two moduli that might be 

combined. Xenakis himself had indicated that in a series of multiple intersections we 25 

would have to gradually calculate the intersection in pairs of modules (see FM 271). 

Despite the limitation that this method exhibits, it is a valuable tool in other ways as well: 

25 It is important to mention here that in order to construct such a matrix it is necessary that the moduli are 

coprime. I will discuss this in detail below. 
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it can assist in locating different transpositions of the sieve and provide a synoptic view 

of the type of sieve they express. 

In order to represent a combination of two modules we construct a matrix whose 

dimensions correspond to the two moduli. Then we enter 0 at the top left cell and proceed 

diagonally, entering the consecutive natural numbers wrapping around back to the left or 

to the top of the matrix when the right or bottom edges have been reached. Each column 

corresponds to the residues of the one module and each row to the residues of the other. 

Figure 3.2 shows the matrix for moduli 4 and 3. The residues of modulus 4 are assigned 

to the four columns and the residues of modulus 3 to the three rows. Thus within the 

matrix we have all the residues of modulus 12, from 0 to 11. The columns and rows 

represent the seven possible modules based on moduli 3 and 4: (3,0), (3,1), and (3,2) 

for the rows and (4,0), (4,1), (4,2), and (4,3) for the columns. The residues do not 

appear in order: for example, the elements of module (3,1) appear in the second row as 4, 

1,10,7. In more practical terms they represent the points covered when we start at 1 and 

proceed by steps of 3. 

3.3.1 Transcription of unions 

It should be obvious by now that when we want to transcribe a formula of straightforward 

unions of modules we simply need to locate the columns and rows that correspond to the 

them. The union of modules (3,0) and (4,0) is shown in the matrix of Figure 3.3. The 

first column and first row contain all the elements of the sieve. Accordingly, we can 

transcribe the union of more than two modules based on moduli 3 and 4. For example, 

row 1 and columns 0 and 2 contain all the elements of sieve (3,1) + (4,0) + (4,2). 
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Finally we arrange the elements in the right order and given a point of departure, for 

example 0= middle C, we transcribe the sieve to musical notation. 

3.3.2 Transcription of intersections 

In order to locate the coincidence (intersection) of modules (4, r, ) and (3, rj) we need to 

find the cell where the two corresponding modules meet. Thus, (4,3)"(3,1) = (12,7). 

Element 7 is found in the intersection of the fourth column (column 3) and the second 

row (row 1) of the matrix. In other words, with intersection we need to determine the 

residue of the new module (its modulus is the LCM of the two original moduli). This 

method of transcription is carried out for each of the intersections in a formula, until we 

reach a collection of points selected from the matrix. As an intersection of two modules 

corresponds to a unique point within the scope of one period, it might be helpful to 

transcribe any given formula in the form of a series of pairs of intersections (simply using 

the distributive property). In the case of the major diatonic we can use the following form 

(as shown in Section 3.2.2): 

(4,0)"(3,0) + (4,2)"(3,2) + (4,0)"(3,1) + (4,1)"(3,2) + (4,3)"(3,1) + (4,1)"(3,0) 

+ (4,3)"(3,2). 

The points this formula produces are shown in the matrix of Figure 3.4. We then 

correspond each pair with a point in the matrix and proceed to musical notation. In case 

there are more than two moduli involved we have to construct sub-matrices and calculate 

the intersections in pairs of modules, following the procedure Squibbs has indicated 
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(1996: 306). If, for example, we desire to find the intersection of (3,1), (4,2), and (5,4) 

we use a submatrix for moduli 3 and 4, and a larger matrix for 12 and 5, shown in Figure 

3.5. The intersection of the first two modules is element 10 (see matrix of Figure 3.2). 

Therefore, 

(3,1)"(4,2) = (12,10) 

We then find the intersection of (12,10) and (5,4) in the larger matrix (Figure 3.5): 

(12,10)"(5,4) = (60,34) 

and therefore 

(3,1)"(4,2)"(5,4) = (60,34). 

3.4 Types of Sieves 

One way to categorise sieves is according to their symmetry and periodicity. Xenakis 

refers to the notions of symmetry and periodicity as two distinct levels of identity: in the 

opening of his article on sieves he talks about `spatial identities' and `identities in time', 

correspondingly; he then refers to these levels as being internal and external to the sieve 

(FM 268). A sieve's symmetry is the one evident in its intervallic structure, and its 

periodicity is evident in its periodic nature. The theory offers the possibility of 

decomposing a sieve; as I will show later on, this decomposition aims at a deeper level of 
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symmetry, one that lies between absolute symmetry and absolute asymmetry. The 

categorisation of Sieves presented here, follows a similar approach to the one offered by 

Gibson (2003: 56). However, his starting point is different: his categorisation is carried 

out under the prism of an analytical methodology, more efficient and practical than the 

one proposed by Xenakis, while the one I present here is concerned with exhausting all 

the forms a sieve can have on the theoretical level (I will develop an analytical 

methodology in Chapter 5). My suggestion for a theoretical classification of sieves is 

aimed at (a) in describing the types of sieves Xenakis was concerned with, and (b) 

illustrating the relationship between Sieve and Number Theory. 

There are four types of sieves, two for each of the two criteria of symmetry and 

periodicity: 

(a) Symmetry refers to the intervallic structure of the sieve. Thus, a sieve can have 

either a symmetric (palindromic) or an asymmetric intervallic structure. 

(b) Periodicity refers to the period of the sieve: this can be either a prime or a 

composite number. 

3.4.1 Symmetry 

According to symmetry, we call a sieve either symmetric or asymmetric. Symmetric 

sieves are not generally in line with Xenakis's compositional aesthetics. However, it is 

important to describe them in detail, as this will enable a demonstration of the nature of 

asymmetric sieves discussed below. 
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3.4.1.1 Symmetric Sieves 

We call symmetric any sieve that exhibits symmetry in its intervallic structure. 

Symmetric sieves might be expressed merely as a union of two different modules. This is 

the case with the union of (3,0) and (4,0) already shown. The sieve's intervallic 

structure is palindromic: 3 12 213. This symmetry is found in the notional axis in the 

centre of the intervallic structure. 

We also call symmetric the sieves that have a palindromic intervallic structure 

under cyclic transposition (discussed in the following section). 26 Cyclic transposition can 

be achieved by placing the final interval(s) of the intervallic structure before the initial 

one(s), or vice versa. If the result is a shift of the structure to the right, it is a case of an 

upward or positive transposition. (But in the scope of a period, a negative transposition 

could be also expressed as a positive one: the value of the period can be added to a 

negative index and result to an equivalent positive one. ) The above structure would thus 

be 33 12 2 1, which is shifted three semitones to the right. If we repeat this four more 

times (or if we place the initial interval at the end) we have 12 2133. The structure has 

now shifted nine semitones to the right. The two structures are now not symmetric as 

such. However, this does not imply that a simple cyclic transposition has changed the 

type of the sieve. These two sieves are equivalent as versions of one and the same sieve: 

they are symmetric under cyclic transposition. 

26 See preface to the score of Mists. 
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3.4.1.1.1 Symmetric Sieves with Even Number of Intervals 

A palindromic structure is sufficient to call a sieve symmetric; and any sieve can have 

either an even or an odd number of intervals. Whereas this distinction does not affect the 

analysis of asymmetric sieves (discussed below) it is relevant to symmetric ones in terms 

of their intervallic structure as found in cyclically transposed versions of the original. As 

implied by the observation on the notional axis of symmetry, the above sieve has an even 

number of elements and intervals (6). Consequently, from all its cyclic transpositions two 

of them are symmetric. These two transpositions are situated at half a period's distance 

from each other. In the example these will be the transpositions 3 12 213 and 2 13 31 

2, at 0 and 6 semitones. These two intervallic structures belong to sieves (3,0) + (4,0) 

and (3,0) + (4,2). Although any of the two could be taken as a starting point with regard 

to transpositions, the first of the two is preferred. 

An efficient way of telling whether a sieve is even-symmetric is offered by its 

matrix. In the case of a simple union of modules all the transpositions appear as a simple 

intersection of complete rows and columns. In particular, in simple unions of only two 

modules, the number of intervals is ml + m? - 1.27 I will use the two examples of 

transpositions of three and nine semitones in order to demonstrate their appearance in the 

matrix. The cyclic positive transposition of three semitones of (3,0) + (4,0) yields the 

following sieve: {0 3679 111 and is shown in Figure 3.6. The transposition of nine 

semitones to the right of the same sieve, yields sieve {0 1356 9}, shown in Figure 3.7. 

We see that both sieves, as well as the one they originate from (Figure 3.3) share a 

27 This is true for both sieves with an even and an odd number of intervals (when these are a simple union 

of modules). For example, if m, =3 and m, = 5, the amount of intervals is 7. 
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similar representation in the matrix: their symmetric nature is evident as a simple 

intersection of a row and a column that correspond to the residues of each residual class. 

As I have shown, the rows and columns correspond to the two modules whose union 

yields the sieve. In our examples, these two unions are (3,0) + (4,3) for the former 

transposition and (3,0) + (4,1) for the latter. The two complete modules (i. e. the 

complete column and row) have an element that is common to both. These are elements 3 

and 9, and they correspond to the degrees of the effectuated transpositions [with (3,0) + 

(4,0) as the starting point]. If these two sieves were arranged to start on 3 or 9 

respectively, the resulting intervallic structure would be the original (3 12 21 3). The 

common element of the two modules corresponds to the initial point of the original's 

period. In this way symmetry is established by the sieve's appearance in the matrix 

without having to resort to multiple cyclic transpositions. 

Symmetric intervallic structure is a general property of sieves formed by a union 

of different modules. However, this does not imply that the reverse would also be true: 

sieves that have symmetric intervallic structure might not always be expressed as unions 

of modules. Let us consider sieve {0 134689 111 with period 12 semitones (Figure 

3.8). Its structure is 12 12 2 12 1 semitones, which is palindromic and contains an even 

number of intervals (8). The notation of this sieve, although symmetric, is not possible 

without involving intersection. Its appearance in the matrix is not as simple as the case of 

the previous examples. That is, we do not observe only a straightforward combination of 

modules (complete columns or rows) but also two additional elements: C# and B as 

represented by numbers 1 and 11. These additional elements are not part of a complete 
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column or row and therefore need to be notated as simple, unique points. The only way to 

notate unique points is by involving intersection: 

(3,0) + (4,0) + (3,1)"(4,1) + (3,2)"(4,2). 

Nonetheless, the symmetric structure is still apparent in the matrix. Apart from the 

combination of the two modules (3,0) and (4,0) the two additional points 1 and 11 lie at 

a symmetric position in relation to each other. As a general rule, symmetric are also the 

sieves that additionally to the union of modules there are points in pairs that their sum 

equals the period. Thus, starting from the symmetric intervallic structure of (3,0) + (4,0), 

if any of the pairs of elements { 1,11 }, {2,10}, or {5,7} is added then it will remain 

symmetric (see matrix). This observation is also true for sieves that appear in the matrix 

as a combination incomplete columns and rows, such as sieve {0,4,6,8} with period 12 

and intervallic structure 4224 (Figure 3.9). In this case the two missing elements are 3 

and 9, whose sum also equals the period. Therefore the structure remains symmetric. 28 

3.4.1.1.2 Symmetric Sieves with Odd Number of Intervals 

In the case that an intervallic structure has an odd number of intervals there is no axis of 

symmetry proper. Such a sieve might as well symmetric: there can still be a central 

element that replaces the axis of symmetry. Odd-symmetric sieves do not present as a 

straightforward structure as even-symmetric sieves. 

28 In the case of cyclic transpositions the same relations hold when the transposition index is added to the 

sum of the elements; this should be (modulo the period) equal to the period or one of its multiples. 
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From all the possible cyclic transpositions of an odd-symmetric sieve only one is 

palindromic (instead of two, in the case of even-symmetric sieves). All the intervallic 

structures that are palindromic under cyclic transposition are considered to be equivalent. 

As Xenakis states, `the white keys on a piano constitute a unique sieve' (FM 268). In the 

light of Sieve Theory then, all the modes (such as D, E, or the natural minor) can be 

derived from the cyclic transpositions of the intervallic structure of the major diatonic 

scale. These modes and scales are therefore versions of one and the same sieve. In 

particular, this sieve is the mode of D, with intervallic structure 2 12 2212. If we 

transpose this intervallic structure two semitones we get the major diatonic. Thus, the 

major diatonic is palindromic under cyclic transposition and therefore considered 

symmetric. The general appearance of such a sieve in the matrix does not change with 

cyclic transposition. The synoptic view they offer is evident when one compares the 

matrices of two transpositions. Figure 3.10 compares the matrices for the mode of D and 

the major diatonic. We observe that the two matrices show that two modules are 

incomplete by one and the same element. For the mode on D element 6 is missing from 

modules (3,0) and (4,2). For the major scale, element 8 is missing from modules (3,2) 

and (4,0). The elements' difference shows the transposition index (2 semitones). The two 

matrices are similar to the one of Figure 3.8: if element 8 was included in the matrix for 

the mode of D then these two sieves would be the same under cyclic transposition. We 

see, that although matrices might not always verify positively a sieve's internal structure, 

they can often provide a synoptic view that might compare either two different sieves or 

two versions of the same sieve. 
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3.4.1.2 Asymmetric Sieves 

Sieves with a non-palindromic intervallic structure are called asymmetric. The theoretical 

representation of an asymmetric sieve is possible either according to its period or, if 

decomposed, as a series of (unions of) intersections . 
29 Using only the period in the 

notation of a sieve is not considered a decomposition: it is rather equivalent to merely 

notating all the `pitch-classes' involved. In the case of the decomposition of the harmonic 

minor scale we need to involve the logical operation of intersection (or intersection and 

negation). This is due to its non-palindromic intervallic structure: 2 12 2 13 1. Again, we 

use for this moduli 3 and 4. Figure 3.11 shows the matrix for the minor scale. We observe 

that the scale can be conceived as an alteration of the simple union of (3,2) and (4,3). 

There is an additional element, 0, that destroys its symmetry and produces a new 

structure. The formula for this sieve is (3,2) + (4,3) + (3,0)"(4,0). 

In order to decompose a modulus into simpler ones, one has only to replace this 

modulus with two factors of it. Given the possibility of multiple notations of the same 

sieve, we can decide upon which factors to choose in order to get a desirable result. 

However, not all intersections are possible. Xenakis clearly points out that in order for an 

intersection to exist, the difference between the residues must be divisible by the Greatest 

Common Divisor (GCD) of the moduli (FM 272). The safest way to avoid an empty 

intersection is therefore to always work with moduli that are coprime (i. e. their GCD is 

equal to 1). This explains, at least partly, why Xenakis would decompose a modulus into 

29 Although we can decompose a modulus into more than two different ones, I will here refer to 

decomposition into two moduli, since the same rules hold for decomposition into more than two. 
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coprime factors. Coprimality of the factors is also a necessary condition for the 

construction and function of the matrices. 

3.4.2 Periodicity 

The criterion of Periodicity relates to the decomposability of the sieve's period. Making 

an obvious historical reference to the Sieve of Eratosthenes, I will use the terms prime 

sieve for sieves with a prime period and composite sieve for sieves with a composite 

period. Furthermore, and as will become obvious further on, this decision is also closely 

related to Xenakis's application of the theory. 

3.4.2.1 Prime Sieves 

Although the notation of symmetric sieves allow intersection and the notation of 

asymmetric ones necessitate it, in terms of factorial decomposability all types of sieves I 

have demonstrated so far belong to the same category. However, decomposing the period 

is not possible for all sieves. Factorial decomposability refers to intersections of modules 

and depends on whether the period of the sieve is a prime or a composite number. It 

follows that sieves whose period is prime cannot be decomposed into factors and 

therefore cannot be notated except according to the period only. Of course, a prime 

period can be found in any sieve (either symmetric or asymmetric) 30 A prime 

asymmetric sieve is the one used in Jonchaies (1977, for orchestra); it is shown in Figure 

3.12. Its intervallic structure is asymmetric (it is non-palindromic in any cyclic 

30 Prime symmetric sieves can only have an odd number of elements, since all prime numbers greater than 

2 are odd. 
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transposition) and its period is one octave and a perfect 4th, i. e. 17 semitones, which is a 

prime. This type of sieves can be notated according to their period only, which is 

equivalent to writing down all its `pitch-classes': {0 14 57 11 12 16}. In other words, 

the sieve of Jonchaies can be written only as a union of eight modules (one for each 

element of one period of the scale) that share modulus 17 (where 0= A2): 

(17,0) + (17,1) + (17,4) + (17,5) + (17,7) + (17,11) + (17,12) + (17,16). 

In terms of notation, decomposability of sieves is related to the two options of notation 

according to their internal or their external aspect; the above formula is obviously of the 

second type. 31 This is the only way of notating a prime (non-decomposable) sieve, while 

decomposable sieves can be also notated using two or more modules. In other words, the 

possibility of the two alternative types of notation, stems from the possibility of a period 

to be expressed as a combination of simpler moduli. 

3.4.2.2 Composite Asymmetric Sieves 

Xenakis's intention to arrive at a `more hidden' symmetry refers therefore to composite 

asymmetric sieves (see FM 269-70). 32 An example of such a sieve is the harmonic minor. 

But Xenakis's general aesthetic led him to much more complex asymmetric sieves with 

significantly larger periods, such as 60 or 90 semitones. 33 Having defined internal 

31 These types of notation refer to the decomposed and simplified formulae that I discuss in Section 4.3. 

32 This idea of `hidden symmetry' is not necessarily found only through the decomposition of the period. I 

will discuss this in Part III. 

33 Xenakis has defined the audible range as extending to 11 octaves or 132 semitones (see MA 67). 
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symmetry as a palindromic intervallic structure and non-symmetry as non-palindromic, 

this level of `hidden symmetries', curiously perhaps, seems to refer to intermediate stages 

between the two extreme poles. These two poles are occupied by symmetric sieves on the 

one side (either prime or composite) and prime asymmetric sieves on the other; the 

former are too regular to offer any interesting properties and the latter seem to escape the 

potentiality of the theory. In a note of Xenakis's article we read that `it is sometimes 

necessary and possible to decompose' a modulus (FM 381). This is an obvious reference 

to composite asymmetric sieves: ̀ possibility' here refers to the period's factorial 

decomposition (if it is a composite number) and `necessity' to the unveiling of a hidden 

symmetry whenever it exists. I will clarify this point further in the discussion of the 

Unique Factorisation Theorem and its importance to the theoretical representation and 

analysis of sieves (Sections 4.1 & 4.2). This discussion, like Xenakis's practice, will refer 

to composite asymmetric sieves. 

See Figure 3.13 for a synoptic view of the four types of sieves. Rows refer to the 

criterion of (internal) symmetry and columns to that of periodicity. The table also 

provides a description of each type's internal and external aspect and examples for each 

type. All examples have already been mentioned, apart from that of the prime symmetric 

type: sieve 10 256 9} with period 11, has a palindromic intervallic structure (2 3 13 2) 

and does not allow factorial representation. 
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3.5 Metabolae of Sieves (Transformations) 

The possibility of theoretical representation of sieves is inherently connected with the 

decomposition of a sieve's modulus. One of the aims of decomposition is to enable 

transformations that might not be as obvious in the actual scale. This can be done by 

altering some aspect of the sieve. Generally, as demonstrated by Xenakis, there are 

several possible ways of modifying a sieve. Mainly, transformations might be applied 

either to the modulus m itself or to the residue r, or to both. These ways have been 

adequately demonstrated by Squibbs (1996: 57-67) and Gibson (2001; 2003: 58-72). 

Additionally to Xenakis's demonstration, both scholars have noted the potentialities and 

limits of the transposition of sieves (modifications on r) with the aid of matrices that 

provide an accurate alternative to Xenakis's conception of sieves as points on a straight 

line. After having decomposed the sieve, it is possible to modify only one (or some) of its 

elementary modules in a desired way. In the diatonic scale, we can choose, for example, 

to alter only the modules that share modulo 4- and even alter modules that belong to a 

different group, in a different way. 

3.5.1 Residues 

Affecting the residues of each module does not change the period of the sieve and 

concerns primarily the transposition of the sieve. 

3.5.1.1 Inversion 

Unlike a series, a sieve is an ordered structure outside of time. This means that the notion 

of order is not related to time, but is inherent to the structure. (Recall Xenakis's comment 
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that the outside-time domain does not include the notions of `before' and `after'. ) In other 

words, a sieve is arranged from the lower to the higher pitch. Due to this outside-time 

order (and like all scales in general) a sieve exhibits certain differences in the forms it can 

take. While in twelve-tone technique the retrograde of the inversion is equivalent to the 

inversion of the retrograde (under transposition), in the outside-time domain the inversion 

and the retrograde are equivalent. 

The inversion of a sieve is effected by using the original intervallic succession in z: l 

a downward sieve, thus changing the pitches. But if we arrange the new pitches in 

ascending order the resulting sieve has the retrograde of the intervallic structure of the 

original. Since in the outside-time domain the retrograde is annulled by the inversion, we 

have only two forms: the original sieve and the inversion. Note that these two forms 

apply only to the intervallic succession. The inversion of a sieve can be achieved by 

replacing all the residues in a formula by their negative value and then reduced according 

to the modulus. Module (17,5) would then become (17, -5) and finally (17,12). When 

this is applied to all modules, the resulting formula produces the retrograde. These steps 

are followed for all modules which are at the end placed in ascending order (note that the 

same procedure would be applied in a formula that involves intersection): 

(a) (17,0)+(17,1)+(17,4)+(17,5)+(17,7)+(17,11)+(17,12)+(17,16) 

(b) (17,0) + (17, -1) + (17, -4) + (17, -5) + (17, -7) + (17, -11) + (17, -12) + (17, -16) 

(c) (17,0) + (17,16) + (17,13) + (17,12) + (17,10) + (17,6) + (17,5) + (17,1) 

(d) (17,0) + (17,1) + (17,5) + (17,6) + (17,10) + (17,12) + (17,13) + (17,16). 
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But, as I will show in Chapter 5, this is not possible for all types of formulae. 

Therefore, I will for now limit the discussion of the inversion to the actual sieve (scale). 

To produce the inversion then, we simply have to reverse to order of the intervals and 

construct a new sieve on the pitch level. Let us take for example the sieve of Jonchaies: 

{0145711121617} 

Its intervallic succession is 

13124141 

and if we reverse the order of the intervals it is 

14142131. 

The sieve produced by the new, reversed intervallic succession is 

{01561012131617}. 

The elements of the original sieve, reading from left to right, and the elements of the 

inversion, reading from right to left, sum to the period of the sieve: 0+ 17 =1+ 16 =4+ 

13=... =17. 

3.5.1.2 Cyclic Transposition 

If we add a value to the residues of a sieve with coprime moduli we obtain a cyclic 

transposition of the sieve equal to the added value. 34 Taking into account the period, this 

transposition might not always have a traditional meaning. If after transposition all 

34 If we add a value larger than the period, we have to take this value modulo the period. 
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elements are reduced modulo m, then this is rather a `cyclic' transposition. If we add 10 

semitones to all residues of the major diatonic scale the resulting sieve is: 

(4,10)"(3,10) + (4,12)"(3,12) + (4,10)"(3,11) + (4,11)"(3,12) + (4,13)"(3,11) + (4, 

11)"(3,10) + (4,13)"(3,12) 

We now perform modular reduction: 1O(mod4) =2 and 1 O(mod3) =1 for the first 

intersection of modules, 12(mod4) =0 and 12(mod3) =0 for the second intersection, and 

so on. The resulting scale is (as I have shown in Section 3.4.1.1.2) the mode of D: 

(4,0)"(3,0) + (4,2)"(3,2) + (4,3)"(3,0) + (4,1)"(3,2) + (4,3)"(3,1) + (4,1)"(3,0) 

+ (4,2)"(3,1). 

We notate this cyclic transposition as Tio(modl2). 

In this way cyclic transposition is achieved by altering the residues. In the 

previous section, cyclic transposition was applied to the intervallic structure of the sieve 

(wrapping around the intervals), whereas now it is applied to the formula of the sieve. 

This touches upon the issue of the types of formulae I will discuss later: cyclic 

transposition may be achieved only through the formula when the desired modulo 

operator is equal to the LCM of the moduli. For example, if one wished to apply a cyclic 

transposition of 8 semitones, to the 9-semitone segment of the major diatonic from C to 

A, i. e. a T8(mod9) transposition, then this may not be achieved through the formula that 

involves moduli 3 and 4. One would simply have to take all elements of the C-A segment 
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of the major diatonic and replace them by their Tg(mod9) values. Thus, like the inversion, 

cyclic transposition is included in Sieve Theory as one particular case of transformation, 

but only when a certain type of formula is used. For a correspondence of all intersections 

of modules in the formula with the pitches of the mode of D see Figure 3.14. Cyclic 

transposition is different from the actual transposition that can be applied to the scale 

itself. In the former case, when we take each element modulo m, the scale appears in the 

same register (i. e. within the scope of the period) whereas in the latter the scale is actually 

being transposed to a higher or lower register. Squibbs has demonstrated that we can 

foresee the common points of two transposed versions of a sieve with the aid of 

transposition matrices. These matrices can be of two kinds: one showing the actual, 

conventional transposition and the other the cyclic, modular one (which renders more 

common points between the two transpositions) (see Squibbs 1996: 54-5). 

If we add a different value to residues r, r1, we still have a cyclic transposition. 

For example, starting with the mode of D we add value 2 to residues that share modulo 3 

and value 1 to residues that share modulo 4. We obtain the following sieve: 

(4,0)"(3,0) + (4,2)"(3,2) + (4,3)"(3,0) + (4,1)"(3,2) + (4,3)'(3,1) + (4,0)-(3,2) 

+ (4,2)"(3,1) 

It yields points {0 23578 10} with intervallic structure 2 12 2 12 2. As shown by the 

shift from the original intervallic structure, it is a 5-semitone transposition of the mode of 

D. In general, the transposition index is found in the matrix as the intersection of the 

column and row that correspond to the added values: when k is added to ri and Ito r3, the 
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sieve has been transposed to the number found in the cell corresponding to column k and 

row 1. In our example k=1 and 1= 2. Element 5 is found at the intersection of modules 

(4,1) and (3,2) (see the matrix in Figure 3.2). 3' 

Cyclic transposition does not produce different intervallic structures. The number 

of different structures that can be produced is equal to the GCD of the modules. In the 

case of moduli 3 and 4 the GCD is equal to 1 and therefore no different intervallic 

structures can be produced by adding a single or more values to the residues. 

Although the matrix is very useful in finding the overall transposition index, it 

does not consist the only way of doing so. Squibbs has shown that this possibility is 

offered by transposition matrices. Transposition matrices do not involve any 

decomposition of moduli; in such a matrix it is sufficient to represent the sieve as a 

succession of its elements (see Squibbs 1996: 55); this facilitates their use with prime 

sieves. Cyclic transposition therefore, does not necessitate the use of Sieve Theory: it 

merely refers to the transposition of a modular set. From this we can conclude that the 

use of Sieve Theory - although applicable - might not always be necessary if cyclic 

transposition is the desired transformation. On the other hand, it might be needed in order 

to combine cyclic transposition with other kinds of transformations. 

3.5.1.3 Variables 

In order to produce a different intervallic structure we have to add a value that changes 

according to the context. Of this transformational type is a process that includes 

35 For a critique on Xenakis's assertion that different values added to different residues would produce new 

intervallic structures see Gibson 2003: 62. 
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variables. For example, in an intersection (ml, rj)"(m,, r2) we can apply the process r? = rl 

+ r2 + 1. The values of r2 will also depend on the values of rj in each intersection. If we 

apply this to the major diatonic scale, the result is 

(4,1)"(3,1) + (4,2)"(3 , 2) + (4,3)"(3,0) + (4,0)"(3,1) + (4,1)"(3,2) + (4,0)"(3,2) + (4, 

3)"(3,2) + (4,1)"(3,1) 

and the resulting scale is shown in Figure 3.15. The period is still 12, but its intervallic 

structure is now asymmetric: 111 13 4 1. 

3.5.2 Moduli 

In order to transform a sieve's structure without resorting to variables we have to affect 

the moduli. Whereas changing the residues does not affect the period of the sieve, 

changing the moduli produces a new period. In the formula of the major diatonic, if we 

add 2 semitones to modulus 3, the period changes to 20 semitones and the intervallic 

structure now contains intervals up to a perfect 4th. The new formula is 

(4,0)"(5,0) + (4,2)"(5,2) + (4,1)"(5,0) + (4,3)"(5,2) + (4,3)"(5,1) + (4,0)"(5,1) 

+ (4,1)-(5,2) + (4,0)-(5,0) 

and the result is shown in Figure 3.16. 
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3.5.3 Unit 

This transformation is effectuated by changing the unit distance. This would increase or 

decrease the values. For example, from semitone to quarter-tone, from semiquaver to 

quaver, etc. The technique of altering the unit distance, although might seem too obvious, 

is very important in Sieve Theory. Especially, the idea of different unit distances can be 

traced in Xenakis's attitude towards the tempered chromatic. Further to the discussion of 

the tempered chromatic and its equivalence to natural numbers (presented in Chapters 1 

& 2), the unit distance is for Xenakis a basic concept that can be traced even further. He 

stresses an observation Bertrand Russell made in relation to the axiomatics of numbers 

and considers the tempered chromatic as having `no unitary displacement that is either 

predetermined or related to an absolute size' (FM 195). We can have `chromatic' scales 

of quarter-tones or semitones, but also of tones, prefect 4ths, and so on. The `chromatic' 

scale of the perfect 4th is no other than an elementary module with modulus 5, such as (5, 

0). By extension, Xenakis represents the total chromatic as module (1,0). More than a 

simple tool for metabolae, this idea of the extension of the tempered chromatic scale 

became very important in the mature phase of sieve-construction; as I will discuss later 

on, it is closely related to the existence of symmetries and periodicities in a sieve. 
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4 Sieve Theory and Primes 

The discussion made so far might raise some issues as to the very character of the theory 

- or more accurately, to the purpose of Sieve Theory as a method. I will provide at this 

point a summary of what has been covered so far and which can be considered as central 

to this method. Firstly, it is concerned with sieves that employ composite moduli (from 

those Xenakis favoured asymmetric ones). We can decompose such sieves and notate 

them as a series of unions of intersections. The resulting formula, which shows the 

internal symmetry of the sieve, depends on our decision on which factors to use in the 

decomposition of the modulus (period). This decision is crucial as regards to the 

transformation of the sieve; a combination of different moduli engenders a different 

outcome of the transformation procedure. There are two levels of a redundancy here that 

need to be overcome: (a) a formula for a given sieve must be chosen among its alternative 

ones according to certain criteria, and (b) after having applied the same metabola to 

formulae that incorporate an alternative combination of moduli (e. g. 4 and 6 instead of 3 

and 4)36 different sieves are produced, which cease to be equivalent. 

4.1 Canonical Form 

Xenakis mentions that decomposition of a period offers the possibility of `comparison 

among different sieves'. And this in turn will enable one to (a) `study their degree of 

difference' and (b) `define a notion of distance' (FM 270). The treatment of composite 

36 Recall that the period of the sieves is equal to the LCM of the moduli. This is found by dividing the 

product of the moduli with the GCD. The GCD of 4 and 6 is 2 and their LCM is 4.6/2 = 12. 
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sieves presupposes the decision on which factors are going to be employed in the 

decomposition of the period. We can choose among several alternative decompositions 

into two or more factors. At first it seems that the only restriction is a matter of 

convenience: any combination of moduli whose LCM equals the period is sufficient, as 

long as the difference between the residues in an intersection is divisible by the GCD of 

the moduli. This is helpful in order to secure intersections without having to be careful in 

our selection of the residues. When the moduli are coprime then the difference between 

the residues can be of any value - and this is necessary in order to be able to apply 

transformational processes without any restrictions. 

In fact, decomposing a modulus is for Xenakis not unlike decomposing any 

integer. 37 In that sense we can choose to decompose 12 as either using 4 and 6 or 3 and 4. 

From the two options the second is obviously preferable (the GCD of 4 and 6 is 2 and 

therefore, in order to represent intersections, the difference between the residues of each 

module is restricted to even numbers). However, the reason to prefer factors 3 and 4 is 

not only their co-primality but something more essential. As I have mentioned, for 

Xenakis the decomposition of a modulus responds not only to a possibility but also to a 

necessity. A necessity to decompose a modulus into constituent elements (elementary 

moduli). This is not unlike the elementary role primes have in Number Theory. 

The rationale behind the decomposition of a composite modulus is related to 

Prime Factorisation, as this is aimed at rendering a decomposed form of a composite 

number. In Sieve Theory the same principle is applied in order to render the building 

37 See FM 194-5 for the relationships that Xenakis establishes between the tempered chromatic scale and 

Peano's axiomatics of numbers. 
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blocks of a modulus. In order to unveil this rationale we need to refer to Number 

Theory's Unique Factorisation Theorem; according to this theorem, every natural number 

either is a prime number itself or can be written as a unique product of primes. Moreover, 

when these primes are written in a specific order, all composite numbers can be 

expressed in a unique form, which is called canonical form. Therefore, it is valid to say 

that any integer a larger than 1, can be uniquely written in the following form: 

a= plk P? t -Pk 

where pl, p2, .., , pk are prime numbers and p1 <p2 < ... <pk 

and this is called the canonical form of a. 38 Appendix 1 shows the canonical form of the 

first 200 integers. 

Unique Factorisation, or Prime Factorisation, is the fundamental theorem of 

arithmetics and its aim is to represent a number in its unique form, decomposed to its 

constituent elements. This is evident in the Sieve of Eratosthenes in its sole preoccupation 

with primes - the building blocks of all numbers. The same is also reflected in Xenakis's 

Sieve Theory: any scale can be decomposed to its canonical form. The `hidden' element 

he referred to is located there. 

It is easily implied from the theorem that since two numbers a, b are coprime then 

a', bn are coprime as well (with m, n being any positive integer other than 0). In the 

canonical form, all numbers (p1, p2,... , pk) are primes themselves and therefore any 

38 This theorem is valid when all numbers involved are positive integers. 
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combination of any two or more of them forms a set of coprime numbers. Consequently, 

any combination of any power of these numbers is still a set of coprime numbers. Thus 

we see that through unique factorisation co-primality is secured. Note that coprime 

numbers might not only be the ones derived from such a procedure. There might be 

several combinations of two or more coprime numbers. The introduction of Unique 

Factorisation (or Prime Factorisation) in the process of breaking down a modulus has a 

multiple significance; one aspect of this significance is that it secures co-primality. 

The canonical form of 12 is 22.3. When these two factors correspond to moduli, 

the literal intersection would have to be (2, rj)"(2, r2)"(3, r3). It is obvious that (2, rj)"(2, 

r2) is not a valid option. In the case that rl = r? (either as such or after modular reduction) 

the intersection of this module with itself can represent only the original single module: 

(2, rl) = (2, r2). In the case they are different the intersection is empty. 9 This would of 

course mean that the intersection is simply reduced at (2, rl)"(3, r2) which in turn derives 

from 2.3, the canonical form of number 6. We should therefore resolve any exponentials 

before treating prime factors as the elementary moduli of a period: 12 = 22.3 = 4.3. 

Therefore, (12, r) = (4, r&(3, r2). 4° 

39 After modular reduction of the residues, there can be no intersection of modules that share the same 

modulus. 

40 Here I demonstrate only the decomposition of a modulus in order to give an intersection of elementary 

moduli. Of course, the same holds for the union of elementary moduli that derive from the canonical form 

of the period. 
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4.2 Limitations 

There is one practical limitation regarding the application of the canonical form to the 

construction of a module. The resolution of all powers prior to the decomposition of the 

moduli is not possible for all composite moduli. It is exactly this possibility that Xenakis 

talked about. A modulus that cannot be decomposed is either a prime number, or a prime 

power (the power of a single prime). Such a number, i. e. a prime power, is 16: its 

canonical form is 24. Therefore, although modulus 16 is a composite number, it cannot be 

decomposed. (This is also apparent in Xenakis's program, discussed in Section 4.4. ) 

Although they are not prime numbers, moduli such as 4 (22), 8 (23), 9(3 2), 16(2 4) 
, 

25 

(52), 27(3 3 ), 32 (25), or 81 (34), cannot be decomposed; we therefore need to use the 

original moduli: 4,8,9,16,27,32,81. These numbers are all prime powers. A sieve 

whose period is equal to a prime power is non-decomposable and therefore belongs to the 

same category as prime sieves. Thus, both primes and prime powers represent periods (or 

moduli) that are non-decomposable. Primes and prime powers are shown in Appendix 1 

in bold typeface. 

4.3 Types of Formulae 

4.3.1 Decomposed Formula 

The decomposed formula is the one that employs only moduli that are primes or prime 

powers. These are the elementary moduli that derive from the canonical form of the 

sieve's period. As I have shown, of this type is the formula that uses moduli 4 and 3 to 
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express a sieve whose period is 12. A more complex decomposed formula is that of the 

sieve of Nekuza. The sieve is shown in Figure 4.1 and its formula is4' 

8o"(l lo+ 112+ 114+ 115+ 116) + 81"012 + 113 + 116+ 117+ 119) + 82"(1 lo+ 111+ 112+ 

113+ 115+ 1110) + 83"(111+ 112+ 113+ 114+ 1110)+ 84'(110+ 114+ 118)+ 85"(110+ 112+ 

113+ 117+ 119+ 11 o)+ 86"(111+ 113+ 115 + 117+ 18+ 119) + 87'(113+ 116+ 117+ 118+ 

1110). 

The two elementary moduli here are prime power 8 and prime 11 and the period of the 

sieve is 8.11 = 88 semitones; it produces 41 points which are shown in the matrix of 

Figure 4.2. 

The combination of any two or more moduli does not necessarily suggest a 

decomposed formula, in the way I define it here. The elementary moduli must derive 

from the canonical form of the period (which itself is the unique decomposition of a 

number) 42 The above formula is the decomposed one because modulus 8 is a prime 

power and 11 a prime, and more specifically they are derived from the canonical form of 

41 In the interest of clarity, the residues in this formula appear in subscript; thus, instead of (m, r), a module 

is notated mr. I will notate all long formulae similarly. 

42 Recall that it is not necessary to use prime factorisation in order for the elementary moduli to be coprime. 

One could always construct a formula with elementary moduli that are not prime or prime powers; e. g. 

period 60 can be broken down to 5.12 instead of 4.3.5 (60 =223.5). This decision depends on whether one 

wishes to express the period as the product (or the LCM) of two factors instead of three. This particular 

decomposition (i. e. 60 = 5.12) was used by Xenakis for the rhythmic sieves of Persephassa (1969, for six 

percussionists) (see Gibson 2003: 58ff). 
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88 =2 3.11. ̀ Decomposed' means that the combination of these elementary moduli 

reflects the Unique Factorisation Theorem; therefore, an intersection that involves moduli 

4 and 6 is not a part of a decomposed formula (because 6 is neither a prime nor a prime 

power), whereas one that involves 4 and 3 is. 

4.3.2 Simplified Formula 

A simplified formula consists only of unions of single modules 43 In the example of the 

diatonic scale it is the formula that is based on the periodicity (the octave). But a 

simplified formula does not necessarily represent a sieve according to a single modulus 

that corresponds to the period. This is the case with the Sieve of Eratosthenes. The 

simplified formula for this sieve employs single modules that correspond to each of the 

stages in the sieving procedure for integers 1-50: (2,2) + (3,3) + (5,5) + (7,7). 4 Here 

there is no obvious period; the theoretical period is the LCM of all moduli involved: 2,3, 

5,7, which is equal to 210. It might be the case that a simplified formula is derived from 

a decomposed one, where there are several intersections with different moduli; each one 

of these intersections represents a single point and can be replaced by a single module 

with its own modulus (the product of the elementary moduli in each intersection). The 

43 Ariza refers to `sieve models' instead. What I refer to as ̀ decomposed formula' and `simplified formula', 

he refers to as ̀ complex sieve' and `simple sieve'. He indicates that the latter model `fails to incorporate 

aspects of the original [the former]' (2005: 44). The logical expression is the primary object in his 

discussion; he offers a complete software implementation and does not discuss Xenakis's aesthetic of 

sieve-construction. 

44 This formula is a hypothetical one: it does not yield the points of the Sieve of Eratosthenes (i. e. the set of 

primes). Here it is used merely as an example. 
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result would be a series of unions of single modules that came up by the combination of 

all the moduli in each one of the original intersections. Starting with a formula that 

possibly contains all three logical operations, we can transcribe it into a series of unions 

of intersections. Each intersection might involve two or more moduli. We can arrive at 

the simplified formula by reducing each intersection to a single module. The modulus of 

each single module is equal to the LCM of the moduli in the intersection where it derived 

from. This simplified formula for the sieve of Nekuia is produced by reducing all 

intersections into 41 single modules; and the result is of the same type with the one of the 

sieve of Jonchaies as (shown in Section 3.4.2.1): a series of unions of 41 modules with 

modulus 88: 

880 + 882 + 883 + 884 + 887 + 889 + 8810+ 8813+ 8814+ 8816+ 8817+ 8821 + 8824+ 

8825+ 8829+ 8830+ 8834+ 8835+ 8838+ 8839+ 8843+ 8844+ 8847+ 8848+ 8852+ 8853+ 

8857+ 8858+ 8859+ 8862+ 8863+ 8866+ 8867+ 8869+ 8872+ 8873+ 8877+ 8878+ 8882+ 

8886+ 8887. 

This type of simplified formula is based on the overall periodicity of the sieve. This is 

because all its moduli are equal to 88. If the decomposed matrix of Figure 4.2 appeared 

with some of its rows or columns complete, then the formula would also include moduli 8 

or 11, which are congruent with the period. But nothing prevents one from constructing 

an alternative formula for the same sieve that includes alternative moduli that are not 

congruent modulo 8 or 11. The following simplified formula is equivalent to the 

preceding one, as it produces the same sieve, but with different moduli: 
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(24,0) + (14,2) + (22,3) + (31,4) + (28,7) + (29,9) + (19,10) + (25,13) + (24,14) + 

(26,17) + (23,21) + (24,10) + (30,9) + (35,17) + (29,24) + (32,25) + (30,29) + 

(26,21) + (30,17) + (31,16). 

We see that although equivalent, this formula does not depend on the period of 

the sieve. Moduli 14 (2.7), 22 (2.11), 24 (23.3), 26 (2.13), 28 (22.7), 30 (2.3.5), and 32 

(2') are congruent with the period (modulo a different value each), but moduli 19,23,25 

(5'), 29,31, and 35 (5.7) are not. The theoretical period of this formula is the LCM of all 

its moduli: 943,814,071,200 semitones. This formula is constructed by applying the 

smallest possible modulus for each point of the sieve. Xenakis constructed an algorithm 

(and a computer program based on it) that produces a formula by assigning each point of 

the sieve the smallest possible modulus. I will analyse more options for constructing such 

a simplified formula, as well as explore the problem of the redundancy of simplified 

formulae, in Chapter 5. What is important here is that a simplified formula can have 

different forms, depending on what one wishes to indicate. 

The two simplified formulae of the sieve of Nekuza differ fundamentally in their 

moduli, by including moduli that are congruent with the period or not. Therefore there is 

another distinction between two types of formulae: the one that is based on the external 

period, and the one that ignores it. This distinction is parallel to the 

decomposed/simplified one: we can start with a simplified formula that ignores the 

external period and decompose each modulus, if it is a composite number: 
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(8,0)-(3,0) + (2,0)-(7,2) + (2,1)-(11,3) + (31,4) + (4,3)-(7,0) + (29,9) + (19,10) + 

(25,13) + (8,6)"(3,2) + (2,1)"(13,4) + (23,21) + (8,2)"(3,1) + (2,1)"(3,0)"(5,4) + 

(5,2)"(7,3) + (29,24) + (32,25) + (2,1)"(3,2)"(5,4) + (2,1)"(13,8) + 

(2,1)"(3,2)"(5,2) + (31,16). 

The result is a formula that involves the operation of intersection and that includes only 

moduli that are primes or prime powers. It is a decomposed formula that is not based on 

the external period of the sieve. The information that a formula reveals when it is not 

based on the external period of the sieve is a very important issue which is pertinent both 

to the aesthetics of sieve-construction and to sieve-analysis. 

4.4 Program: Generation of Points 

Xenakis provided two computer programs for the treatment of sieves. They are found 

both in his article of 1990 and as Chapter XII of the 1992 edition of Formalized Music. 

Their titles are indicative of their function: `A. Generation of points on a straight line 

from the logical formula of the sieve', and `B. Generation of the logical formula of the 

sieve from a series of points on a straight line'. I will refer to these programs using the 

labels `A' and `B' 45 Xenakis's demonstration of Program A reveals certain crucial 

aspects of Sieve Theory, that might not be very obvious in his writings. For this we need 

to look at the behaviour of the program. I will be discussing Program B in Chapter 5, as 

part of my methodology of sieve-analysis. 

45 Unfortunately, the code of both programs contains several typographical errors. A corrected version 

appears appended in Squibbs (1996: 291-303). 
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The intention to decompose a modulus into its prime factors is evident in Program 

A, used to generate a sieve from the logical formula. It goes through the following stages: 

(a) The user is asked to enter the formula in the form of unions and intersections (of 

two or more modules). 

(b) It reduces any groups of intersections to a single module, providing in this way 

the simplified notation for each intersection. 

(c) It presents the simplified formula of the sieve as a series of unions of single 

modules. 

(d) The program asks the user whether it should decompose the modulus into prime 

moduli. 

(e) It displays the simplified formula again. 

(f) Finally it generates the points. 

Decomposition into prime moduli (stage [d]) might seem to be superfluous in the 

course of the program. Decomposition is part of a process that simplifies and then 

decomposes the moduli, only in order to display again the simplified formula of the sieve 

as unions of single modules. This does not affect the sieve in any manner and seems to be 

there just to provide the user with two alternative formulae. But greater emphasis seems 

to be given to the decomposed form of the modulus in each single intersection. The 

behaviour of the program is interesting when it is given a formula that includes moduli 

that do not derive from the canonical form: the program reduces the intersections of two 

or more modules into one and then provides a decomposition into prime modules. For 

example, if the input for an intersection involves moduli 4,5 and 6, then the program 
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suggests a reduction of these moduli to a single module with modulus 60 (the LCM). 

Afterwards, it suggests a decomposition into prime moduli 4,3 and 5, and finally 

displays the simplified notation again, reduced to a single module with modulus 60 (the 

product of the coprime 4,3 and 5). This is because 4,5, and 6 cannot be derived from the 

canonical form of any number. Specifically, 6 is neither a prime nor a prime power. 

At a first glance, it might seem strange that decomposition into prime moduli 

includes modulus 4, which is not a prime. Xenakis provides a demonstration of the 

program (as well as of the inverse one, discussed below). Recall that it was first 

published in the 1990 edition of his article and then in 1992 when the article was included 

in the revised edition of Formalized Music. In the former edition the program's prompts 

appear in French and in the latter in English. However, this is not the only difference; in 

the French edition we read: `decomposition into coprime modules? ' (Xenakis 1990: 69; 

italics added), 46 whereas in the English: `decompression into prime modules? ' (FM 278; 

italics added). Although the two expressions appear to be inconsistent, they are both 

correct. If we prompt the program to decompose modulus 12 the result involves moduli 4 

and 3. At first, the French expression about co-primality seems to be true: 4 is not a 

prime, but the two moduli are co-prime. In this sense the English expression is not valid. 

But the two versions seem to refer to different sub-stages of the process. The French 

expression is true only after having resolved the powers of the primes as found in the 

canonical form. In other words, the French expression is true because for Sieve Theory 

primes and prime powers are equivalent. 

46 ̀[decomposition] en modules premiers entre eux T. According the terminology I have chosen for this 

dissertation, the word `modules' (both in the French and the English versions) should read as ̀ moduli'. 
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As I have demonstrated, co-primality is not achieved through a free selection and 

combination of numbers, but is arrived at through the canonical form of the modulus. The 

canonical form of a number, refers to the order prime factors appear. It is not merely an 

unordered collection of its prime factors, but these are put in the order demonstrated in 

Section 4.1. This is the reason why the program's output at this stage is 4.3 and not 3.4 

(12 = 22.3 = 4.3). Therefore, the English expression refers to the stage before the actual 

output, which is no other than the canonical form after the resolution of the exponentials. 

So, in the latter expression we should read 12 = 22.3. This stage (the stage of the 

canonical form) is neither explicit in the prob am, nor in the theory as demonstrated in 

the article. It remains a hidden element, but implied both in the former and the latter. 

Consequently, the (more recent) English expression is also true. 

4.5 Sieve Theory and Sieves 

Although Xenakis's article dates from 1990, the first extended reference to Sieve Theory 

is found as the final section of `Towards a Metamusic'; an article of 1967, whose 

unpublished manuscript dates from 1965 and is titled `Harmoniques (Structures hors- 

temps)' (see Solomos 2001: 236 & Turner 2005). The more recent publication reflects a 

re-orientation of Xenakis's attitude towards sieves; or at least an increased interest that 

led him to publish an article solely devoted on sieves. There are certain differences 

between the two demonstrations of the theory. The section of `Metamusic' is titled `Sieve 

Theory' whereas the 1990 article simply `Sieves'. The latter article includes a thorough 

explanation of the theory, but is also aimed at a practical demonstration of creating, 

analysing and treating sieves; this was realised by the inclusion of the two computer 
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programs. One might argue that computers were not as widely accessible in the 1960s as ZD Z: ) 

in the 1980s and this an obvious reason for the inclusion of the programs in the more 

recent publication. However, the analytical algorithm of `Sieves' (FM 274-5) does not 

necessitate the use of a computer. 

These two writings reflect two periods of sieve-theoretical and compositional 

attitude. During the first, the type of formula he used was based on the external period. 

Xenakis would rely much more on the decomposition of the sieve's period, in order to 

study its structure and generate transformations. The alternative of a simplified formula 

appears only in the 1990 article (both in the algorithm and the two programs). More than 

just a progression from the decomposed to the simplified formula, it is a matter of 

progressing from the a certain kind of sieve-aesthetics to another. 

4.6 Symmetries/Periodicities 

Throughout most of Xenakis's implementation of Sieve Theory, the internal structure of 

a sieve was more important than its external aspect. The intervallic structure is highly 

irregular and asymmetric, while the period of the sieve is rarely intended to be audible. 

Sieve Theory was developed in order to study internal symmetries, and reveal more 

hidden ones. It is important to underline that these symmetries are not found in the 

intervallic succession as such. As I have mentioned, Xenakis demonstrated that an 

elementary modulus is a kind of tempered chromatic scale, with unit an interval other 

than the semitone (FM 195). Furthermore, the elementary moduli are thought both as 

symmetries and as periodicities (FM 270). In a decomposed formula these periodicities 

are shown to coincide (intersection) and join (union) in order to produce the points of the 
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sieve. In a simplified formula the elementary moduli have the form of periodicities that 

are joined by union; in other words, they would all be complete columns and rows in a 

hypothetical, multi-dimensional decomposed matrix, of dimensions equal to the total 

number of moduli. In musical terms, a combination of elementary modules in a 

simplified formula would be a combination of several chromatic scales with different 

units (other than the semitone) and different starting points. This will be much clearer 

after a more elaborate exploration of the transition to a `simplified' conception of sieves. 

The turning point in Xenakis's evolution in sieve-based composition is marked by 

his orchestral work Jonchaies (1977). In the preface to the score he clearly states that the 

work `deals with pitch "sieves" (scales) in a new way'. As I have already shown the sieve 

of this work is prime asymmetric, which means that a decomposed formula is excluded 

(its simplified formula is shown in Section 3.4.2.1). It is the first time that such a type is 

used and this clearly verifies that Xenakis did not rely on the decomposition of the period 

anymore. The sieve in question is a rare case where the period is so small that is easily 

audible. However, the transition to new aesthetics is seen in the way the sieve is used 

inside time. In Jonchaies it is treated with a particular technique which Makis Solomos 

has termed `halo sonority' (see Solomos 1996: 84). Xenakis himself had not commented 

extensively on this technique but described only in the preface to a work from the same 

period, Nekuia (1981), as ̀ multiplicities of shifted melodic patterns, like in a kind of 

artificial reverberation'. The result is a kind of heterophony, where the outcome is not of 

any traditional treatment of pitch such as melody, polyphony, etc; not even of the type of 

set-theoretical treatment that Xenakis had used in Herma and which he termed `symbolic 

music'. Indeed, for Xenakis sieves became timbres rather than pitch sets or scales. 
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The idea of `multiplicities of shifted patterns' can be seen in the structure of the 

sieves following Jonchaies. These sieves share a certain aesthetic: they are characterised 

by an irregular distribution of a set of intervals which are dispersed over the whole range 

of pitches. The size of these intervals is contained between a semitone and a major 3rd; 

furthermore, in most sieves there are no more than three consecutive chromatic elements. 

The selection of these intervals is related to an aesthetic criterion that seems to have 

influenced most of Xenakis's recent output: the construction of sieves is inspired by the 

Javanese pelog with its interlocking fourths; hence the characteristic interval succession 1 

41 semitones that is abundant in his sieves of the 1980s. This type of intervallic structure 

was used for the first time in the sieve of Jonchaies. In an interview of 1989 Xenakis said 

that, further to his inspiration by the pelog, he was interested in choosing intervals that 

produce some tension. Tension for him is conceived as a kind of objective category and it 

can be produced through 

the opposition of large and small intervals - that is, the contrast between 

something very narrow and something much larger. To maintain this tension 
along the sieve - in other words in the scale you have chosen - is a tall order. It is 

also an intriguing problem: none of the parts is to be symmetric - that is, periodic; 
nor are the ranges to be periodic as compared to the higher or lower ranges, 
maintaining tension all the while in a different way (Varga 1996: 146). 

The opposition of large and small intervals is exemplified in the intervallic structure of 

the two interlocking fourths that Xenakis mentions, and it is precisely this idea of the 

interlocking fourths that suggests a simplified formula. The intervallic succession of 14 1 

would be produced by points {O 15 6}, which in turn are produced by modules (5,0) and 

(5,1); i. e. two shifted perfect 4hs. Nothing prevents one to add more `interlocking' 
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modules that extend throughout the whole range of the sieve. Each of these modules 

would thus be equivalent to a different chromatic scale. The result would be a 

multiplicity of shifted chromatic scales (each having a different unit distance). A 

simplified formula would be more indicative of such a multiplicity of elementary 

modules (periodicities). It is exactly the same idea that Xenakis used for the basic 

principle of Jonchaies. In the following quotation he talks about the rhythmic structures, 

but the same was applied to the pitch domain as well: 

We can illustrate regular events by points an equal distance apart. On a second, 
lower parallel line, more points represent other regular patterns with a different 
time unit, so they are shifted with respect to the first line's points even if they start 
together. This procedure can be repeated with regular points on other lines. When 
we hear all these lines together, we obtain a flow of events which consists of a 
regular intervallic series, but which as a whole is impossible to grasp. Our brain is 
totally unable to follow such a complicated flow (Xenakis 1996: 148). 

Unlike the ones that follow, the sieve of Jonchaies is not itself constructed 

according to this principle. However, it marks Xenakis's general approach to sieves as 

timbres. The inspiration for this orchestral work, the composer comments, comes from 

the results of his research in sound synthesis for La legende d'Eer. Especially towards the 

ending of Jonchaies there is a striking aesthetic resemblance with this electroacoustic 

composition, composed in the same year (1977). In the preface to the score of Jonchaies, 

apart from the comment on the novelty in the treatment of sieves, Xenakis briefly 

describes his inspiration by his view on sound synthesis: ̀ one starts from noise and [... ] 

periodicities are injected to it'. Admittedly, this is a possibility offered by stochastics and 

is in particular related to his application of random walks and Brownian movements, 

which exemplified the reversal of traditional sound synthesis. However, the inspiration 
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from electroacoustic to instrumental composition (and vice versa) can be seen, 

metaphorically, in relation to Sieve Theory as well. The idea of individual periodicities is 

not extremely different from the original idea of stochastics: individual elements are 

distributed in such a way that are not intended to be perceived as such, but to create a 

`multitude of sounds, seen as a totality' (FM 9). 

At the end of his article, Xenakis argues that the inverse, that is the application of 

Sieve Theory to sound synthesis, is `quite conceivable' (FM 276). Using the metaphor of 

the injected periodicities we could say that the simple modules in a simplified formula 

represent the individual, internally hidden periodicities (or symmetries, or regularities) of 

a sieve. In the same sense, it is more than conceivable, instead of starting from noise, to 

start from the total chromatic throughout the audible range and `inject periodicities' to it 

in order to construct a sieve that produces a certain timbre. A formula that accounts for 

these periodicities is the one whose starting point is not the overall period of the sieve. It 

might be the case that the inner periodicities also account for the external periodicity: this 

is true for symmetric sieves that can be formed by the union of simple modules. But this 

is an extremely simple case. A formula can be given a form such that it represents the 

multilayered structure of a sieve. When a formula ignores the overall period, the 

elementary moduli are applied straight to the points of the sieve. This type is the one that 

reflects Xenakis's more recent approach to sieve-construction, where elementary modules 

represent `chromatic' scales, periodicities, or symmetries. Symmetry here has a general, 

abstract meaning: it stands for regularity in general. If each module in a formula 

represents a regularity, then every irregular scale (in its abstract form, an irregular 

arrangement of points on a straight line) can be broken down into a multiplicity of 
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regularities. This is also the fundamental idea behind the Sieve of Eratosthenes. The 

sequence of prime numbers has no known pattern; it appears as a purely random, 

irregular sequence, and the Sieve of Eratosthenes provides a simple method of achieving 

this irregularity by an algorithmic process that deduces all regular patterns. 

This part presented Xenakis's method initially from a purely theoretical 

perspective and later from a more practical one that also involved matters of aesthetics. 

The theoretical approach of Chapter 3 concerned mainly the structural characteristics of 

sieves in general and the possible methods of their transformation (metabolae). Chapter 4 

presented the relationship of Sieve Theory and Number Theory. As I have shown, this 

relationship affects the theoretical representation of sieves (formula), which in turn is 

related to the structural characteristics of sieves as well as the aesthetic approach to sieve 

construction. This approach reflects Xenakis's use of the simplified formula in his later 

period. We saw, in particular, that Xenakis progressed towards a more practical way of 

achieving irregularity: the more the number of regular simultaneous events, the more 

irregular the overall effect. The following part of this thesis is preoccupied exactly with 

this idea of multiple regularities, employed firstly in the development of an analytical 

methodology (Chapter 5) and secondly in its application to the analysis of the sieves of 

the later period (Chapter 6). 
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PART III 

5 Methodology 

5.1 Inner Periodicities and Formulae Redundancy 

One of the basic problems in Sieve Theory is the redundancy of formulae for a single 

sieve. As I showed in Chapter 4, there might be different simplified formulae for a given 

sieve. That is, whereas the problem of decomposed formulae redundancy is overcome by 

prime factorisation, the redundancy of simplified formulae is not as straightforward to 

resolve. This depends on the type of information one wishes the formula to provide and 

consequently the properties of a sieve one wishes to consider. The simplified formula can 

either be based on the overall period of the sieve, or not. In the latter case, the formula 

reveals other periodicities, not congruent with the overall one. But first we need to probe 

the information that a simplified formula offers in relation to the decomposed one. In 

fact, the simplified formula derived from the decomposed one provides the same, if not 

less, information than the decomposed one. When the simplified formula is derived from 

the decomposed, we replace all intersections of elementary moduli with the period (the 

LCM of the elementary moduli); the unions of complete modules, if they exist, keep their 

elementary modulus. The result is a series of unions of modules. But if there are no 

complete modules (complete rows or columns in the decomposed matrix), the moduli of 

all (incomplete) modules are equal to the period; thus they produce only a single point (in 

the range of the period). Therefore, such a simplified formula fails to reveal any aspects 

of the sieve's internal structure, as it represents each single point with a single module 
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(see the simplified formula of the sieve of Nekuia in Section 4.3.2, p. 89). The simplified 

formula then, provides different information than the decomposed only when it is not 

based on the overall period of the sieve. We therefore need to determine another level of 

periodicity, different from the overall period of the sieve. 

The period of a sieve is external to it and symmetry is an internal property; but 

when a sieve is asymmetric, `a more hidden symmetry' might exist. This hidden 

symmetry has the form of `moduli (symmetries, periodicities)' (FM 270). The external 

periodicity is none other than the sieve's overall period. A simplified formula based on it 

presupposes the determination of the sieve's period in advance; the result is a notation 

that simply represents the sieve according to its period. In general, a simplified formula 

based on external periodicity is one that indicates the period by including only moduli 

that are congruent (or equal) with the period. In this sense, when a simplified formula is 

based on external periodicity it belongs to the same category as the decomposed one - at 

least as far as the information it provides is concerned. 

The inner periodicities of the sieve are shown by a simplified formula in the form 

of elementary modules. Each one of these elementary modules has a single modulus 

whose multiples produce some of the points of the sieve. These points are conveniently 

shown by a matrix, which I will refer to as simplified matrix. To construct a simplified 

matrix we write all the sieve's elements in the top row and all the modules of the 

simplified formula in the leftmost column (such that this column represents the simplified 

formula). 7 The intervallic structure of the sieve (in semitones) is shown under the actual 

47 The simplified matrix, although not termed as such, has also been used by Gibson in his demonstration of 

Xenakis's computer program B (2003: 55). 
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points of the sieve. We then mark all the cells where the elements of each module (rows) 

meet a point (columns) of the given sieve. 

The simplified matrix of the sieve of Nekuia is shown in Figure 5.1. The label (M, 

I, R) stands for: Modulus, Initial point, Reprises of the Modulus. The matrix shows that 

each of the twenty modules cover several points of the sieve. When a simplified formula 

is based on the inner periodicities there is no information indicating the overall period, 

apart from the possibility of assuming a period as the LCM of all moduli included in the 

formula. This means that the focus is now on the sieve's internal structure. It is an inner- 

periodic simplified formula. Therefore, the simplified formula is valuable only when it 

represents a sieve whose external periodicity is not taken into account. When the period 

is not known (or not taken into account), a simplified formula is naturally inner-periodic. 

Note that this simplified inner-periodic formula can be used to deduce an inner-periodic 

decomposed formula (cf. the simplified and decomposed formulae of the sieve of Nekuäa 

in Section 4.3.2, pp. 90,91). But we could not arrive at an inner-periodic decomposed 

formula without first representing the inner periodicities as simple modules. 

The process of constructing an inner-periodic formula ignores the period and 

takes into account only the intervallic structure of the sieve. The redundancy of inner- 

periodic formulae can be overcome by checking every single point of the sieve and 

assigning to it the smallest possible modulus. More specifically, we can find for each 

point, the module with the smallest modulus, that either starts on this point or produces it 

later. These are in fact two different approaches. In the former, every point is considered 

a point of departure; we then find the smallest modulus that starts on this point. In the 

latter, every point is considered as part of a module; we then find the module with the 
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smallest modulus that includes this point (this point might not necessarily be the starting 

point of the module). These two methods, although different, share the same principle 

that is intended to produce a unique formula: they apply the smallest possible modulus. In 

fact the former method was for Xenakis an earlier stage before arriving at the latter, 

implemented in his final analytical algorithm. 

5.2 Construction of the Inner-Periodic Simplified Formula 

By progressing to a simplified notation, Xenakis showed a new way of revealing the 

hidden symmetry of sieves, which are now viewed as multiplicities of periodicities. In 

order to demonstrate the progression to this inner-periodic conception of sieves, let us 

take for example the sieve of Akea (1986, for piano and string quartet) as found in 

Xenakis's pre-compositional sketches. 48 As I have mentioned, this sieve derives from that 

of Nekula, but for the moment I will analyse it as such, using it as an example that shows 

Xenakis's own treatment of it. The sieve is shown in Figure 5.2. It consists of 37 points 

and its range is 80 semitones (6 octaves and a minor 6th). The intervallic structure of the 

sieve is asymmetric and consists of intervals between a semitone and a major 3rd (with 

one exception, the perfect 4th); as with most sieves of this period, there are no strings 

longer than three semitones in its intervallic succession. Therefore, the greatest interval in 

the complement of the sieve would also be a major 3rd. In Akea the sieve is not used in 

any way that might reveal the existence of a periodicity; this is confirmed by the fact that, 

48 This sieve was also used in Ata (1987, for orchestra). For an analysis of the inside-time treatment of the 

sieve of Akea see Section 7.2. 
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although for the original sieve of Nekuia Xenakis used a decomposed formula (as I will 

show later), for Akea he used only an inner-periodic simplified formula. 

The most common use of the external periodicity in the sieves of the later music 

is related to cyclic transpositions. In order to perform a cyclic transposition, the range of 

the sieve can be considered as a period; thus, when the sieve is transposed the elements 

that exceed its range would be re-located inside its original range. In the case of the sieve 

of Akea we would have to consider 80 as the period and decompose it according to its 

canonical form: 80 = 24.5 = 16.5. Thus a 16 by 5 matrix will indicate the sieve's 

structure. The decomposed matrix for the sieve ofAkea is shown in Figure 5.3. Number 0 

is here set to correspond the lowest element of the sieve, Cl. But inAkea there are no 

cyclic transpositions of the sieve, and therefore there is no evidence of such a period. 

Furthermore, the decomposed matrix shows the hidden symmetry only by two moduli; 

and the fact that there is no complete column or row in the matrix accounts for the 

incompleteness of the two inner periodicities of 5 and 16 semitones (perfect 4th, and 

8ve+M3rd). The most populated row (5,0) shows that the periodicity of a perfect 4th 

exists between points 0 and 10, and then between points 40 to 80. The most populated 

column (16,7) shows the periodicity of 8ve+M3rd missing element 39. The decomposed 

matrix shows these two periodicities starting at all possible points, but never manifesting 

themselves completely. This accounts for the asymmetric structure of the sieve (in terms 

of moduli 5 and 16). Had some columns or rows in the matrix been complete, this would 

suggest a certain higher degree of hidden symmetry. However, all analytical conclusions 

on its symmetry would still depend on the two periodicities (moduli) that the external 

periodicity indicates. But the external periodicity of a sieve does not prevent non- 
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congruent periodicities of taking place internally. For example the periodicity of 15 

semitones starting at point 10. That is, the internal structure is not seen as a multiplicity 

of elementary, individual periodicities. This is shown by the inner-periodic simplified 

formula. 

The sketches of Akea provide the simplified formula of the sieve, which is shown 

in Figure 5.4. There are 17 modules in the sieve and they share 10 moduli. The modules 

are classified according to the size of their modulus and are shown under the label (M, I, 

R). We see that this formula includes modulus 5, which was shown to be a constituent 

part of the hidden symmetry in the decomposed matrix too. But now, only its continuous 

segment is shown - the one between points 40 and 80. The initial segment of this 

periodicity, between points 0 and 10 is not shown, as it is interrupted at point 15. One 

significant aspect of this specific formula is that the residues are not reduced according to 

the modulus. They are now simply considered as starting points (1). As the starting point 

of a module (i. e. of an inner periodicity) can be located anywhere in the sieve, the starting 

point is kept as such even if it is greater than the modulus. Thus, instead of substituting 

(5,40) with (5,0) [since 40(mod5) = 0], Xenakis indicates that a periodicity of 5 

semitones, or of a perfect 4th, is initiated at point 40, which is E4, and extends to the 

upper edge of the sieve. This is one of the aspects of Xenakis's more practical approach 

to sieve-construction, that characterises his more recent output. The third entry in the 

brackets (R) shows the number of repetitions of each module. 9 The leftmost column 

49 The number of points covered by a module is then R+1. This is slightly different from Program B, 

which uses R to denote the number ofpoints each module covers (in our case R+ 1). Following Xenakis's 

own practice in his pre-compositional sketches, I will use R to denote the occurrences of a modulus, instead 
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shows the canonical form of each modulus, and the rightmost column the interval each 

modulus represents in musical terms. The numbers in grey denote the number of 

modules. The table offers synoptic information on the periodic intervals that make up the 

sieve. 

5.3 Analytical Algorithm: Early Stage 

The way Xenakis arrived at the simplified formula of the sieve of Akea is not identical to 

the algorithm he presented in Xenakis (1990). It is, in a way, a precursor of this 

algorithm, and shows a slightly different aspect of the sieve. This earlier algorithm goes 

through the following steps: 

(a) Each point is considered as a point of departure (1) of a modulus (M). We start 

testing the first point (Ia) with M= 2 and check if: 

(i) its multiples produce only points (greater than the starting point) that belong 

to the given sieve, and 

(ii) it produces at least one of the not-yet-covered points of the given sieve. 

(b) If (i) is not satisfied we pass on to M+ 1. If it is satisfied we keep the module and 

check if (ii) is satisfied: if yes, we keep the module and pass onto the next point 

(I�+1); if not, we ignore the module and pass onto In+1. 

(c) We stop when each point of the sieve has been covered by a module. 

of the number of points covered. This indicates more effectively the contribution of each modulus to the 

inner-periodic structure of a sieve. 
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This algorithmic process, as it was applied in the calculation of the formula of the sieve 

of Akea, is provided in a separate page in the sketches and is here reproduced in Figure 

5.5. The first stage consists of considering each point of the sieve as a point of departure 

of a modulus. For this, we write down all the points of the sieve and, one by one, we find 

the smallest modulus that departs from it. For point 0, the smallest modulus that meets 

points of the sieve is 25. The points that it covers are shown in the table at the right of the 

module: 0,25,50,75. The not-previously-covered points that a module covers are shown 

in bold typeface. For the first three modules, all the points covered are in bold, because 

none of it has been covered in a preceding step. The fourth module, (14,9) covers six 

points of which only four have not already been covered: 9,37,51,65. On the contrary, 

points 23 and 79 have already been covered by modules (18,5) and (24,7) respectively. 

Modules that are subsets of already-found modules are shown in grey typeface, with the 

indication of the module of which they are a subset. For example, the smallest modulus 

that starts at point 23 is 14; but (14,23) is a subset of (14,9), shown at its left; i. e. all the 

points that (14,23) covers have already been covered by its superset, (14,9). Therefore, 

(14,23) is rejected and we pass on to test the following point of the sieve, 25. Similarly, 

the smallest modulus that starts at 25 is 15, but (15,25) is a subset of (15,10). 

Although the process can stop when all the points of the sieve have been covered 

by a modulus, Xenakis did in fact test every single point of the sieve of Akea. This is an 

indication that he calculated the formula entirely manually, finding the smallest modulus 

for every single point of the sieve and afterwards checking how many not-yet-covered 

points each module covers. The numbers in bold typeface in the column under the label 

`Final Choice' denote the choice of modules Xenakis made for this specific sieve. Note 
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that the last module he chose (14,52) is the one that covers the only not-yet-covered 

point remaining, 52. 

The modules that did not make it to the final choice are of two kinds: the ones that 

are included in already-found modules (grey typeface) and modules that simply do not 

cover any of the not-yet-covered points (normal typeface). A subset of an already-found 

module has the same modulus, which means that its starting point is a multiple of the 

modulus of the already-found module - such as (14,23) and (14,9). A module whose 

every point has already been covered by previous ones can have a modulus of any size. 

As with subsets of already-found modules, these modules can be located anywhere in the 

process. That is, they can be found either before all points have been covered or after. In 

Figure 5.5 there is one such module before the last remaining point of the sieve is 

covered by (14,52); this is module (15,41). As concerns the subsets of already found 

modules, we see that, peculiarly, Xenakis kept (19,46) in the final version, although this 

module is included in (19,27). There is no apparent reason for such a decision, apart 

from a mistake while transferring the modules to the final formula. Of course, the 

inclusion of (19,46) in the formula does not alter the resulting sieve: the periodicity of 19 

semitones starting at point 46 is present in the sieve; it covers pitches A#4 and F6. We 

should therefore exclude module (19,46) from the final version of the formula and allow 

for a minimal representation of the sieve, by sixteen modules. 

The simplified matrix based on the above formula is shown in Figure 5.6. The 

modules are shown in the order they were found during the calculation of the formula. In 

fact this is the order based on the size of I, since the formula was constructed by 

assigning a modulus to the lowest point of the sieve and proceeding to the next one. So 
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each row of the table shows the assigning of a modulus to a starting point. To find the 

next point assigned a modulus move one row down and look for the next column that is 

marked. For example, after having assigned modulus 19 to point 22, the next point 

assigned a modulus was point 27 (again modulus 19). The intervening points, 23 and 25, 

have not been assigned a module because the smallest modulus that starts at each one of 

these points is equal to the modulus assigned to each one of them in a preceding step 

(moduli 14 and 15 respectively). These points would have been only assigned a new 

modulus if this was smaller than the already-assigned ones. In the formula for the sieve of 

Akea, the greatest number of points covered by a single module belong to module (5,40), 

which covers 9 points; this means that a periodicity of a perfect 4th (5 semitones) is 

repeated 8 times; therefore we note (5,40,8). 

5.4 The Condition of Inner Periodicity 

The modules in a simplified formula of a sieve can be only considered as inner 

periodicities when they repeat at least twice. In other words, a module must cover at least 

three points in order for the modulus to repeat twice. That is, three equally distant 

elements produce two equal intervals (modulus) that make it possible to compare them 

and identify them as (two occurrences of) a periodicity. This is precisely Xenakis's view 

of sieves as outside-time structures. Recall the stages of temporal perception he referred 

to in `Symbolic Music': three successive events a, b, c, `divide time into two sections 

[that] may be compared and then expressed in multiples of a unit' (FM 160). Although he 

talks about time here, the temporal algebra time-intervals require is identical to that of the 

outside-time algebra (Section 1.3). Consequently, in order for R>2 the modulus must be 
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of a size less than half the distance between the module's starting point and the highest 

point of the sieve. If n is the highest point of the sieve, this condition of inner periodicity 

is formulated as follows: for each module in a simplified formula it must be true that 

n-I 

in order for R>2. If this is true for all modules in a sieve, then this sieve is inner- 

periodic. In the sieve of Akea the highest point is n= 80. If the starting point of a module 

is 0, then according to the condition of inner periodicity, it must be true that 

80-0 
M<_ =M<_40. 2 

Similarly, a module starting at point 52 can have a modulus up to (80-52)/2 = 14 

semitones. This is found in the last entry in the matrix as module (14,52). In these two 

cases, a modulus greater than 40 or 14 semitones respectively, cannot be considered as an 

inner periodicity of the sieve. The sieve of Akea is shown to be carefully constructed to 

include only moduli that repeat for at least twice. This corresponds to a an `inner- 

periodic' conception of sieves that Xenakis maintained throughout his application of 

Sieve Theory in his later music. 
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5.5 Inner-Periodic Analysis 

Xenakis's calculation of the formula enables a certain type of analysis, facilitated by the 

existence of smaller sizes of moduli. As mentioned above, the greatest number of 

repetitions of a single module in the formula of the sieve of Akea belong to the interval of 

the perfect 4th. The sketches suggest that Xenakis was pleased by the perfect 4th having a 

decisive contribution to the sieve's inner-periodic structure. Another characteristic of the 

sieve he noted was that there are no moduli of octaves, except perhaps of the three double 

octaves shown in Figure 5.7.50 If we add all the repetitions of a modulus found in more 

than one module, we see that the interval of 8ve+5th is found 10 times in the sieve [if we 

exclude module (19,46) in the formula of Figure 5.4]. However, this does not suggest a 

more decisive contribution of the interval of 8ve+5th to the sieve's structure other than 

the perfect 4th, since it is not a case of successive repetitions of an interval. Such 

information is valuable only in order to give a more general character of the sieve's 

periodic intervals. Moreover, the repetition of a perfect 4th eight times is a much more 

perceptible characteristic because of its relatively small size. The largest interval in the 

(successive) intervallic structure of the sieve is the major 3rd (with one exception) and 

therefore the perfect 4th is the smallest interval one can expect to find as a modulus (in 

the sense that a module of a major 3rd would confine the sieve's intervallic structure to 

intervals of minor 3rd or smaller). 

50'peu d'octaves (3 doubles) etc. Mais (8) pas mal de 4tes et des 5tes'. In my translation: `Few octaves (3 

doubles) etc. But (8) not bad in 4ths and 5ths'. Xenakis, lannis, Pre-compositional sketches of Akea 

(Bibliotheque Nationale de France). 
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Xenakis put forward the idea of the decomposition of a modulus as a method to 

compare different sieves: in particular, we can study their degree of difference and define 

a notion of distance between them. Distance can be expressed as multiples of a unit, 

which is not pre-defined. A modulus -a `chromatic' scale with unit distance other than 

the semitone - might be a composite number, which can be decomposed in order to allow 

comparison between all inner periodicities in the intervallic structure of a sieve. If there 

are moduli with small sizes, we can express greater moduli as multiples of the former. 

Distance between two moduli can be defined through their decomposition. By this 

means we can study the structure of a single sieve before moving on to the comparison of 

different ones. In the sieve of Akea the interval of the perfect 4th has been shown to be 

the most characteristic. The main reason for this is that it is the smallest modulus in the 

simplified formula. In general, the unit distance between congruent moduli can be 

defined by their GCD. An easy way to find the GCD is through the canonical form: the 

GCD of numbers written in their canonical form is equal to the product of their common 

factors and with each factor taken in the lowest power that appears. For example, the 

canonical form of 12 is 22.3 and of 18,2.32. Their common factors are 2 and 3. The 

lowest power these appear in either forms is 21 for factor 2, and 31 for factor 3. 

Consequently the GCD of 12 and 18 is equal to 21.31 = 6. For numbers 12 and 18,6 can 

be defined as the unit distance: the two numbers are 1 unit apart. This can be also useful 

in grouping more than two moduli in a formula. 

The interval of a perfect 4th is a prime number (5) and can be found as a 

constituent element of other moduli in the sieve of Akea. These moduli are the ones 

whose canonical form includes factor 5 (i. e. they are multiples of 5). These are moduli 
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15,20, and 25. Therefore, four moduli out of ten (there are ten moduli and sixteen 

modules) are congruent modulo 5. These are the intervals of 4th, 8ve+m3rd, 8ve+m6th, 

and 2.8ve+semitone. If the unit distance of these moduli is the perfect 4th, then their size 

can be thought of in terms of how many 4ths they contain. Therefore, the above intervals 

can be written as follows: 4th, 3-4th, 4-4th, and 5-4th; these would be the multiples of a 

unit Xenakis referred to. Figures 5.8 and 5.9 indicate all the four moduli that are 

congruent modulo 5- the perfect 4th as found in module (5,40). In Figure 5.9 the perfect 

4th is shown on a first level above the pitches; below the pitches the 8ve+m3rd; on a 

second level above the perfect 4th, the 8ve+m6th; and on the top level the 

2.8ve+semitone. The four moduli are found in 6 modules in total: (5,40), (15,10), (15, 

36), (20,31), (25,0), and (25,16). These 6 modules produce 18 points of the sieve. In 

particular, the modules congruent modulo 5 are more than the one third of the modules in 

total (16 modules), and produce almost half of the sieve's points (18 out of 37). Another 

interesting observation is that from these eighteen points, eight are produced by the 

perfect 4th itself. The importance of the this interval is found elsewhere in Xenakis's 

music and comments. As the analysis shows, this interval is also found in the inside-time 

treatment of sieves (see especially Section 7.4). 

The grouping of moduli could potentially be carried out for other intervals taken 

as the unit distance. For example, there is another combination of four moduli that are 

congruent with the interval of a tone. These are moduli 14,18,20, and 24, which 

correspond to the following intervals: 8ve+tone, 8ve+tritone, 8ve+m6th, and 2.8ve. In 

terms of the tone as a unit distance, these intervals can be written as 7-tone, 9-tone, 

10"tone, and 12-tone. However, the tone does not appear in the sieve as such. If it 
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appeared as part of a module it would have reduced the intervals of the sieve's intervallic 

structure (or of a part of it) to a succession of semitones and tones. Unlike the tone, the 

perfect 4th is present as an inner periodicity that extends for half of the sieve's range, and 

secondly, in the sieves of Xenakis's more recent output, the intervallic structure contains 

intervals up to a major 3rd. 

Apart from modulus 5, prime numbers in the sieve of Akea are moduli 17 

(8ve+4th), 19 (8ve+5th), and 23 (8ve+M7th). As a general characteristic, when several 

elementary moduli produce a sieve these are expected to be coprime; the unit distance 

between coprime moduli is the semitone (their GCD is 1). The attempt to define a unit 

distance is aimed at grouping moduli according to a unit greater than 1. But such a 

procedure is not irrelevant from decomposing a modulus into its constituent elements. 

Therefore, a unit must not be decomposable itself. As in the Sieve of Eratosthenes, the 

possible intervals for the unit distance must be sought among the primes. If for example, 

there was a module covering a great range of the sieve with modulus 6 semitones (a 

tritone), then this would have to be decomposed to 2.3, and then decide which of the two 

intervals (the tone or the minor 3rd) would be the unit distance. This of course, would 

raise questions of the validity of a unit distance that is not present on the sieve's structure. 

Therefore, a unit distance that is not present could be thought of as a deeper level of 

symmetry/periodicity. On the other hand, Xenakis analysed his sieves according to the 

appearance of the modules as they were given by his algorithmic analysis. This 

description of a sieve depends upon general characteristics such as the number of 

modules, the number of points in the sieve, the number of repetitions of a modulus, or the 

average size of the moduli. 
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Inner-periodic analysis offers one way of grouping moduli as multiples of a unit. 

However, this unit might not always be present. And if it is present, it must be 

sufficiently small (as modulus 5 in the sieve of Akea), so that it can be thought as the unit 

of greater moduli. If such a unit is not present, inner-periodic analysis cannot offer more 

information than the formula itself or a matrix-representation of the sieve. This is 

presented here as one way of employing the early version of Xenakis's analytical 

algorithm, as it favours smaller sizes of moduli when examining higher points of the 

sieve (I will come back to this property later). Xenakis's comment on the 8 repetitions of 

modulus 5 is related to the structure of the sieve as an intervallic succession whose 

greatest interval is a major 3rd; but it is important to note that since analysis is based on 

the formula it depends on the algorithm used. Xenakis's algorithm does favour smaller 

sizes of moduli and might facilitate comparison of other moduli as multiples of the 

smallest. But his final version does not allow for such small moduli; therefore, what I 

have termed here as inner-periodic analysis is dependant on an analytical process that 

Xenakis himself (gradually) abandoned up to 1990. 

5.6 Interlocking Periodicities 

The method Xenakis used to produce the formula of the sieve of Akea differs from the 

final algorithm of 1990 in one significant respect, already mentioned: the starting point of t) ZD 

a module is not necessarily smaller than the size of the modulus. This contradicts the 

basic property of modular arithmetics, but reflects a more practical way of analysing 

sieves. As I will demonstrate, the final algorithm detects only modules with M> I. In any 

case, we see that Xenakis's suggestion to study the hidden symmetry of a scale is 
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fundamental both when the external period is taken into account and when the analysis is 

based on the inner periodicities (inner-periodic analysis). In the former case the period is 

decomposed into two or three factors, thus limiting the study of symmetries to two or 

three elementary moduli. For example, the decomposition of the octave in the major 

diatonic scale (Section 3.2.2) reveals that there is an elementary periodicity of 3 

semitones between pitch-classes B, D and F; E and G; and A and C; and an elementary 

periodicity of 4 semitones between C and E; F and A; G and B. These two elementary 

moduli (periodicities) intersect and can be heard in any direction, either upwards or 

downwards . 
51 This is because the decomposition of a period into elementary ones does 

not depend on any notion of direction. With inner-periodic analysis this is not the case. 

We start at the lowest point of the sieve and look for the smallest modulus that departs 

from this point. If a modulus produces a point (beyond the departure point) that is not 

included in the sieve, it is discarded. In order for a modulus to be valid, all of its 

multiples need to meet a point of the sieve: in other words, it needs to extend to the upper 

edge of the sieve. 

Let us take the example of the cyclic transpositions of the major diatonic (i. e. the 

different modes on the white keys of the piano); although it is a symmetric scale (its 

intervallic structure is palindromic under cyclic transposition) we can still use it as an 

example and look at the interval of the minor 3rd. The modulus of 3 semitones, between 

pitch-classes B, D, and F, is not in all cases validated as an inner periodicity. It is 

51 Recall that a sieve-theoretical examination of the major diatonic ignores the cadential, inside-time 

relations between the degrees. 
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validated only when its last point, F, is placed at a distance from the upper edge of the 

sieve smaller than 3 semitones: 

A, B, C, D, E, F, G. 

On the contrary, when F lies at a greater distance from the highest point of the sieve, it is 

not validated as an inner periodicity: 

B, C, D, E, F, G, A. 

This is because the modulus of 3 semitones produces G#, which is missing from the latter 

sequence (while the former stops before G#). The reason for this is related to Xenakis's 

inspiration of the interlocking 4hs with an leading-note sense. In his later sieves this idea 

is essentially extended to use all intervals and not only the perfect 4th. It is a case of 

interlocking periodicities. Sieves therefore are conceived as a multiplicity of interlocking 

periodicities; and a periodicity must be continuous in order to be considered as such. 

By validating only moduli that extend to the upper edge of the sieve, we account 

for the moduli that end at a distance from the upper limit of the sieve smaller than their 

own size. That is, we account only for modules whose final point is greater than n-M. 

For example, if the highest point of the sieve is n= 80 semitones, modulus 5, irrelevant 

of its starting point, will be validated only if it reaches a point after 75 (= 80 - 5). One 

consequence of this limitation is that if 75 (or a smaller multiple of 5) does not belong to 

the given sieve, modulus 5 could be detected only by inner-periodic analysis in a cyclic 
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transposition. Let 70 be a point in the sieve. A cyclic transposition of 6 semitones would 

place 70 at a distance of 4 semitones from the highest point of the sieve (80 - 76 = 4); 

thus modulus 5 would be validated as an inner-periodicity only for this specific cyclic 

transposition. 

5.7 Analytical Algorithm: Final Stage 

The above limitation of inner-periodic analysis is probably an expected one, in the sense 

that a periodicity must be as continuously present as possible; the greater the number of 

occurrences of a periodicity the more decisive its contribution to the inner-periodic 

structure of the sieve. If this is our starting point, we can examine another limitation of 

the process Xenakis applied to calculate the formula of the sieve of Akea. If it is enough 

for a modulus to end at a distance from n smaller than its own size, it is not necessary to 

depart as close to the lowest point. Such is the case of module (5,40) in the simplified 

formula of the sieve of Akea. Modulus 5 is present only for the second half of the sieve. 

This is a consequence of not limiting the size of Ito be smaller than M (as the residue 

naturally is smaller than the modulus in Modular Arithmetic). As the algorithmic process 

goes through all the points of the sieve and assigns the smallest periodicity that departs 
Z= ZD 

from each point, the possibility of finding smaller periodicities increases. This is obvious 

in Figure 5.5: beyond point 56 all moduli are smaller than 10. But even before the end of 

the process at point 52 the size of the moduli range from 25 at the first point to 5 at point 

40. The fact that I> Mfor half of the moduli in the modules of Figure 5.5, means that, 

although all moduli are present until the top of the sieve, only half of the moduli are 

present close to the bottom. 
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This one-sidedness of the process raises a fundamental issue in inner-periodic 

analysis: if an inner periodicity is validated as such according to a minimum number of 

occurrences, then it also has to extend to a minimum range in the sieve. For example, 

although modulus 5 repeats eight times in the sieve ofAkea, it is present only beyond the 

middle of the sieve's range. This means simply that this particular modulus is 

characteristic for only a part of the sieve - unlike module (25,0) whose range is 75 

semitones, from the bottom almost to the top. The difference between (5,40) and (25,0) 

is not only their difference in size, but the fact that M<I in the former and M> I in the 

latter. In fact, the term `module' is used only by extension for (5,40). More specifically, 

both the initial and the final points of (25,0) lie at a distance from the edges of the sieve 

smaller than the size of the modulus. This is another criterion of validating moduli, that 

is, relevant to the presence of a modulus in the sieve and to the idea of sieves as being 

outside time. Bearing in mind that the notions of symmetry and periodicity have been 

used by Xenakis as equivalent when talking about moduli, a sieve is conceived as a 

multiplicity of periodicities and their analysis should not depend on an unbalanced 

favouring of smaller moduli when progressing towards the higher points. This is the 

reason why Xenakis added one more step in the final version of his analytical algorithm. 

The additional condition in the final algorithm re-introduces the idea of the residue: in all 

modules it must be true that M> I. This is shown in the final step of the algorithm as 

published in the 1990 article: 

we ignore all the [modules] (Q, I) which, while producing some of the not-yet- 
encountered points of the given series, also produce, upstream of the index I, 

some parasitical points other than those of the given series (FM 275; italics 
added). 
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Therefore, the algorithm does not merely look for the smallest modulus that departs from 

the point under consideration, but for the smallest modulus that starts at a point smaller 

than its own size and that produces the point under consideration (unless this point is 

located early enough in the sieve that is itself the starting point). 

This is the algorithm that computer program B is based on. The sieve is entered as 

a sequence of numbers; the program checks each point and computes the smallest 

periodicity that either starts at or covers this point. In other words, the program checks for 

the residue class (which means that M> 1) with the smallest modulus, whose members 

belong to the sieve and include the point under consideration. For example, if the point 

under consideration is 22, the program starts checking, from the bottom, the residue 

classes whose members include 22: (1,0), (2,0), (3,1), (4,2), (5,2) and so on, passing 

on to M+ 1, until it finds a residue class whose members: a) all belong to the given sieve 

and b) produce point 22. If no such module is found with M< 22 (while M> 1), then it 

looks for M> 22 with I= 22. Afterwards, it checks the redundancy of the module; when 

all points have been covered, it computes the period of the sieve (as the LCM of all 

moduli) and finally displays the formula. The formula that program B suggests for the 

sieve of Akea is shown in Figure 5.10. We see that the moduli are now in average greater 

than the ones in the formula Xenakis used. Before exploring the properties of this 

formula, I will focus on the central difference between the two alternative simplified 

formulae: the former indicates the smallest possible periodicities beyond the point under 

consideration and the latter the smallest possible periodicities both after and before the 

point under consideration. 
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The simplified matrix for the formula that program B suggests is shown in Figure 

11. In the matrix, we see a less ̀ diagonal' arrangement than in the one of Figure 5.6. 

This is because each modulus departs from and arrives at a distance from the edges of the 

sieve smaller than its own size. Due to the increased value of Al, this formula shows one 

module to occur only once: (28,27). Therefore, (28,27) cannot be considered as an inner 

periodicity. The reason for this is that I= 27 pushes the smallest possible modulus 

beyond the limit of satisfying the condition of inner periodicity for n= 80.1 will explore 

this limit later on. Figure 5.12 shows the two alternative ways of producing a formula for 

the sieve of Akea: the one that Xenakis actually applied in the pre-compositional sketches 

(1986) and the one that the final algorithm suggests (1990). The modules in bold are the 

ones that where actually introduced to cover the point they are next to. Thus, point 40 

was assigned module (5,40) by the 1986 algorithm; module (15,10) does cover point 40, 

but was assigned to cover point 10 (where it appears in bold). In the table, each module 

appears in bold typeface only once, which means that for each point under consideration 

only one module is assigned, although several modules might intersect at a point. The 

two versions of the algorithm suggest identical formulae up to point 18. After this point, 

the condition of M> I in the 1990 version produces greater moduli than the earlier one, 

which produces gradually smaller moduli. There is therefore an opposing tendency in the 

two methods. The earlier version finds smaller moduli as I increases, since the smaller the 

range the more likely for a small modulus to cover it (given that the density of the sieve 

remains roughly the same in all its range); and the final version finds gradually greater 

moduli simply because the value of the starting points increases. This is shown in the two 

graphs of Figure 5.13. These graphs are intended to show a synoptic and approximate 
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picture of the size of the modulus as I increases in the two methods. The earlier method, 

considers a point as a point of departure and finds the smallest modulus that departs from 

it. In the final method, the points are considered either as starting or as subsequent points 

of a module; this explains why in the graph of the 1990 version some starting points 

appear more than once (belonging to different modules). 

5.8 Inversion 

Given that in the more recent formula the modulus of each module is the smallest one 

that covers the whole range of the sieve (including each point that is considered), all 

modules extend as far as possible to both directions. This can be additionally confirmed 

with the aid of the inversion of the sieve. Recall that, in general, the inversion of a sieve 

can be achieved by replacing the starting points in a formula with their negative value 

and consequently reducing them according to the modulus (see Section 3.5.1.1). 

However, this can be done only in the extent of the whole period of the sieve (the LCM 

of all M. Practically speaking, this method can rarely be applied to the inner-periodic 

formula (as the LCM is frequently extremely high). 

From a musical point of view, the low-to-high arrangement is a conventional one. 

We could equally decide that the standard arrangement of the elements is from high-to- 

low (this would still be an ordering independent of time). Xenakis's decision of low-to- 

high arrangement is not crucial on the theoretical level and is an obvious choice in scale- 

construction in general. This upward conception of sieves also reveals an aesthetic 

criterion. When Xenakis described his influence from the pelog he stressed the `leading- 

note' sense of two interlocking 4hs a semitone apart. He gave the example of `G and C 
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going up, and F# and B going up. The B is a leading note to C and F# is a kind of leading 

note to G' (Varga 1996: 145). Inversion is not included in the transformations Xenakis 

applied to his sieves of the later music. But it is important to study it in order to reveal 

certain characteristics of his sieves. 

We can construct the inversion and, reading from right to left, correspond each 

one of its elements to an element of the original sieve, reading from left to right. 

Subsequently, we replace all the final points of a module in the simplified formula of the 

original sieve with their corresponding points in the inversion. The result is a formula that 

produces the inversion. 52 Note that such a formula is identical to the one of the original 

sieve, but with different starting points. The final point of a module can be easily 

calculated when the R-value is known: it is equal to R"M+ I. Therefore, to construct the 

inversion of an inner-periodic simplified formula, we replace each I by the difference 

between the highest point of the sieve and the final point of the module: n- (R-M+ 1). 

For example, module (24,22) in the simplified formula of the sieve of Akea, would be 

replaced in the inversion by (24,10). The I-value is calculated as such: I= 80 - (2.24 + 

22) = 80 - 70 = 10. Module (24,10) covers all the points in the inversion that correspond 

to the points of (24,22) in the original sieve: 10,34 and 58. On the contrary, a module 

where M<I would not produce the corresponding points in the inversion; it would 

52 By this I do not mean that such a formula would be identical to the one Xenakis's algorithm would 

suggest for the inversion of a sieve. In fact, the formula that the algorithm suggests is not always identical 

to the one derived straight from the original. However, in most cases it includes the same moduli (but not 

necessarily the same modules) with the original. This depends on the structure of the sieve in question. But 

as I will show later, the formula derived from the inversion of the sieve would still satisfy the condition of 

inner symmetry. 
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produce at least one point that does not belong to the sieve. In other words, when the 

simplified formula of a sieve contains a module where M<I, it means that in the 

inversion its modulus would not extend to the upper limit of the sieve, and thus could not 

be validated as an inner periodicity. If it is true that M> I for all modules in the 

simplified formula of the original sieve, we can apply the same procedure and get the 

simplified formula of the inversion, as shown in Figure 5.14. The simplified matrix for 

this formula is shown in Figure 5.15. The arrangement of the modules and the points that 

they cover are symmetrically related to the matrix of the original (Figure 5.11). 

5.9 The Condition of Inner Symmetry 

When all the inner periodicities extend as far as possible to both directions in a sieve, and 

therefore could also produce its inversion, then the sieve bears a certain kind of 

symmetry, on a higher level than that of the inner periodicities. But this symmetry is still 

a hidden one: the intervallic structure of such a sieve might very well be asymmetric, i. e. 

non-palindromic in any of its cyclic transpositions (unless of course we consider the 

theoretical period as the range of the sieve, which can be extremely large when several 

moduli are involved). This observation reveals another level of symmetry, not obvious on 

the surface: it is a kind of symmetry revealed through the distribution and setting off of 

the inner periodicities. In analogy with the inner-periodic nature of Xenakis's later sieves, 

I will refer to this kind of symmetry as inner symmetry53 and to sieves that exhibit inner 

symmetry as inner-symmetric. 

53 In (1996: 149) Xenakis refers to `inner symmetries'; this is what I here refer to as ̀ inner periodicities'. 
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The fact that the algorithm suggests a formula where in all modules M> I is a 

necessary condition to indicate inner symmetry whenever it exists, but not an adequate 

condition for its existence. This is because the algorithm always finds a modulus that 

meets at least two points when the starting point (1) is sufficiently small and the highest 

point (n) of the sieve is sufficiently large (in absolute values). But with the condition of 

inner periodicity a modulus must repeat at least twice, i. e. R>2, which affects the 

maximum size of M. I will refer to modules with R>2 as periodic modules. According to 

the basic property of the formula suggested by both the earlier and the final version of 

Xenakis's analytical algorithm, M should be thought of as the smallest possible modulus 

that covers each point under consideration. This smallest possible modulus is in turn 

limited by the condition of inner periodicity to a maximum value, depending on the size 

of n and I. M< (n -1)/2. With the additional limiting of the size of the modulus to values 

greater than the starting point, M depends on the varying values of I for both its minimum 

and maximum values. This minimum is the size of the starting point: I< M, and since we 

operated in discreet space, this is equivalently expressed as I+1M. Therefore, the 

condition of inner symmetry, which incorporates that of inner periodicity, is formulated as 

follows: 

I+1<Mý n-I 
2 
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This implies that both the minimum and the maximum values of M depend on the value 

of I. 54 For example, if n= 80 and I= 22 the minimum permissible value of M is 23 and its 

maximum permissible value is 29. That is, 

22+1<M- 
80-22 

2 

X23<_M<_29 

Therefore, modules (23,22), (24,22), (25,22), (26,22), (27,22), (28,22), or (29,22), if 

valid, would be part of the inner-symmetric structure of the sieve. But a module like (19, 

22), although it is periodic (since R=3> 2) it does not satisfy the condition of inner 

symmetry (since M= 19 < I= 22). Therefore, an inner-periodic sieve is not necessarily 

inner-symmetric. Inner periodicity was defined only as a condition for inner symmetry. It 

is important to stress here that both of them are integrated into one. I used the former to 

demonstrate the earlier stage of Xenakis's method, which was extended by his final 

algorithm. Had the final algorithm been the starting point of this analysis, the conditions 

of inner periodicity and symmetry would still hold. Xenakis's prompt to study the hidden 

symmetry of a sieve referred to both symmetries and periodicities, in the form of moduli. 

These two notions are then themselves integrated; inner symmetry is achieved by the 

analysis/synthesis of inner periodicities. Thus, an outside-time characteristic (symmetry) 

is achieved through the treatment of an inside-time one (periodicity). In this sense, it is 

presupposed that a sieve must be inner-periodic in order to be inner-symmetric. 

54 The maximum value of M also depends on the size of n. 

127 



5.10 Inner-Symmetric Analysis 

In fact, most of Xenakis's sieves are inner-symmetric in almost all of their moduli; in 

most cases they include one or two moduli that are not periodic. In the sieve of Akea this 

is the case with module (28,27). The maximum permissible value for M, when n= 80 

and I= 27, is (80-27)/2 = 53/2 = 26.5; i. e. M< 26. The points that module (28,27) 

covers are 27 and 55 (D#3 and G5); from these points, 27 is covered only by this module, 

but 55 is also covered by two additional moduli, which are periodic (see Figure 5.12 - 

1990 version). Therefore, D# is the only element of the sieve of Akea that does not 

belong to an inner periodicity. I will refer to elements that are produced only by non- 

periodic modules as non periodic elements (or points); and to elements that belong to an 

inner-periodicity, as inner-symmetric elements. 36 out of 37 elements though, do account 

for the high degree of inner symmetry in the sieve. This slight deviation from complete 

inner symmetry is perhaps one of Xenakis's typical aesthetic criteria; I will examine this 

further after I formulate in more detail the consequences of the condition of inner 

symmetry. 

5.10.1 Extreme Modular and Residual Values 

The condition of inner symmetry also implies that the minimal and maximal permissible 

values of Mfor a given I, increase and decrease respectively as I increases. This allows 

for the determination of the absolute maximum permissible value for I, given a constant 

n. The smallest permissible I is naturally 0. The maximum permissible value of I in inner- 

symmetric sieves is found at the point of convergence of the two tendencies of the value 
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of Mas I increases. At this point of convergence the maximum and minimum of M for a 

given n are equal. Then from (1) follows that 

I+l=M=n-I 

Consequently, 

I+1=n-I 2I+2=n-I=3I=n-2=I=n- 
23 

Therefore, the maximum value of I for any inner-symmetric sieve, where n is its highest 

point, is 

n-2 
3 

For the sieve of Akea, or for any sieve where n= 80, the greatest point of departure is 

(80-2)/3 = 26; therefore, it is true for sieve with n= 80 that I< 26. 

The maximum value of I is found at the point of convergence of the maximum 

and minimum M for a given I. Let us indicate the value of Mat this point as M. Since the 

value of I at this point is the maximum and since it depends only on n, we can locate the 

value of Mat this point (Me), according to (1), as follows: 

I+1=M= n-I 
2 

Consequently, 
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I+1=M, =ý>I=M, -1 

and 

Mc = 
n-I Mc = 

n-(M, -1) 2M, = n-M, +1 3M, = n+1 M,, = 
n+1 

223 

That is, in inner-symmetric sieves, the M of the greatest I is equal to the one third of (n + 

1). 55 For any sieve whose highest point is 80, the inner-periodicity starting at the 

maximum I is (80+1)/3 = 27. In the sieve of Akea, module (28,27) has the smallest M 

that could be assigned to I= 27 but the value of I exceeds by one semitone the maximum 

limit for n= 80. This maximum value of I, as well as the maximum and minimum 

permissible values for Mat every possible value of I in the sieve of Akea, are shown in 

the graph of Figure 5.16. The x-axis is equipped with the points of the sieve of Akea that 

can function as starting points (i. e. the points smaller than or equal to 26); the y-axis 

shows the values of Mfor every I. The two lines indicate the limitation posed by the 

condition of inner symmetry: the lower line shows the minimum permissible M for every 

I [left part of (1)] and the upper line shows the maximum permissible Mfor every I [right 

part of (1)]. The basic consequence of the condition of inner symmetry is easily seen in 

the graph: the fact that I is present in both the leftmost and rightmost members of the 

inequality in (1) means that, as I increases, the minimal and maximal permissible values 

of Mconverge to 

55 Since Mhere represents the smallest possible modulus that can be assigned to a point, when the result is 

not a whole number, M,: is equal to the lower whole number; i. e. it is equal to the whole number without the 

decimals. When n= 88, (88+1)/3 = 29.66, therefore M,, = 29. 
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M, =nil=27. 

The point of this convergence, M, is the one that defines the maximal permissible value 

of I, which is 

I-n-_-26. 
3 

The maximal value of I= 26 is shown on the x-axis in the graph of Figure 5.16, but 26 

does not belong to the sieve of Akea; it is shown there as the maximum limit I can have in 

an inner-symmetric sieve with n= 80; beyond this point, the maximum (upper line) and 

the minimum (lower line) permissible values of Mwould swap, having the former below 

the latter. 

The values M can take range between 1 and n/2.56 The critical point MM is the 

value that determines, not merely the highest permissible I, but the behaviour of the 

values of I as M increases. In fact, MM is the value of Mthat determines which part of the 

inequality in the condition of inner symmetry defines the maximum values for L When 

M<_M, 

then 

I+1: 5 MAI: 5 M-1. 

56 Although Xenakis defines the first step of his algorithm to start at M= 2, the program starts testing M 

1. The elementary module (1,0) is then by extension the total chromatic. 
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And when 

M, <_M 

then 

M< n-I 
=> 2M: 5 n-ICI :5 n-2M. 

As the value of M increases towards M, the maximum value of I also increases; 

as the value of M increases beyond M, the maximum value of I decreases. The graph of 

Figure 5.17 shows the maximal values of I for every possible Min any sieve of n= 80. 

This graph is an extension of the graph in Figure 5.16, but the two axes are now inverted. 

The x-axis represents all the consecutive values of M between 1 and 40 - the highest 

permissible value of Min inner-symmetric sieves of n= 80; the y-axis represents the 

values of I. The red curve shows the maximal values of I for every M. We see that the 

values of I increase linearly up MM = 26, where I= M- 1. As the value of M increases 

beyond MM = 26, the values of I decrease linearly, but faster than they increased: I= n- 

2M. I will explore this in more detail in relation to the values of R. The graph 

demonstrates a general property of inner-symmetric sieves; for a given n, the extreme 

values of M and I are related as follows: 

(a) When M is minimal (M = 1), I is minimal (I= 0). 

(b) When M is maximal (M= n ), I is minimal (I= 0). 

(c) When I is minimal (I= 0), M can take any permissible value (1 < M< n 
2 
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(d) When I is maximal (I =n32), M is equal to MM (M= n3l). 

The graph of Figure 5.17 is a chart for the values of M and I, that accounts for the 

inner symmetry of a sieve. Since these values depend only on the size of n, the above 

relations of the values and their limits, enable one to construct sieves that satisfy the 

condition of inner symmetry. If a module appears below the red line of this chart it 

repeats at least twice. Therefore, when all modules appear under this limit, the sieve is 

inner-symmetric. The formula of the sieve ofAkea is shown in this chart in Figure 5.18. 

The chart offers a synoptic view of the inner symmetry of the sieve: as I have shown, 

module (28,27) repeats only once and therefore lies outside the range of the values of M 

and I for any inner-symmetric sieve of n= 80. 

5.10.2 Reprises of the Modulus 

In inner-symmetric sieves each inner periodicity can repeat for the maximum of possible 

times in the scope of the sieve's range (or period). The absolute maximum number of 

reprises of a modulus is equal to the quotient of n divided by M, e. g. if n= 80, M= 25 

can repeat at most 3 times (i. e. the amount of times 25 `fits' into 80). This absolute 

maximum of R is achieved when I is sufficiently small. In particular, it is achieved when 

I< n(modIv); i. e. if the starting point (I) of a modulus (M) is equal to or smaller than the 

residue of n divided by M. If the starting point is greater than this residue (and smaller 

than the size of the modulus), the modulus repeats for one time less than the maximum of 

the possible reprises. For example, M= 25 repeats for the maximum possible times (R = 

3), if its starting point is I< 80(mod25) => I<5. In the case I is greater than 5 and 
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smaller than 25 it repeats only twice. Note that this upper limit of 25 is already imposed 

by the condition of inner symmetry. 57 Therefore, while the condition of inner symmetry 

determines the minimal R, the size of I determines the maximal. R is consequently limited 

between two consecutive values, its maximal and its sub-maximal one: 

if 

1: 5 n(modM) 

then 

R-n- n(mod M) 

M 

if 

n(modM) <I<M 

then 

R_n- n(mod M) 
M 

The value of R for a given module can be seen easily with the help of the g graph 

that I used to demonstrate the relationship of the values of I and M. To the two variables 

of the graph of Figure 5.17 we can add the values of n(modM) for each M. This is shown 

in Figure 5.19. The values of n(modM for every Mare shown by the dotted zigzag curve. 

In order for R to be maximal, the point that corresponds to the values of M and I of a 

module, must lie on or below the n(modM) curve [which implies that I< n(modM)]. For 

57 Unconditionally, this upper limit is equal to M+ n(modM). 
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example, for module (14,9) R is maximal since the point that corresponds to M= 14 in 

the x-axis and I= 9 in the y-axis, is located below the dotted curve. The value of R is 

R_n- n(mod M) 80 - 80(mod 14) 80-10 
-5 M 14 14 

On the contrary, for module (15,10) R is sub-maximal, because (15,10) lies above the 

dotted curve: 

R= n-n(modM) 
-1 = 

80-80(mod15) 
-1 = 

80-5 
1=4. 

M 15 15 

When a module is located towards the right part of the chart, its M is higher and it 

naturally appears less times than the ones located towards the left. The additional 

n(modM curve helps one to locate in a glance the most periodic modules in the sieve: 

these would be located towards the left and under the dotted curve. When the modules of 

a simplified formula tend to concentrate to this area they are more periodic (their R-value 

is higher). In fact, each peak of the dotted curve stands for the transition to a group of 

consecutive values of Mthat repeat for one more time moving to the left and one less 

time moving to the right. We see in the graph, that beyond MM (= 27) the n(modM) curve 

coincides with the curve of the maximum values of I (i. e. the dotted curve coincides with 

the red). The rightmost area of the chart is for modules with the minimum R (= 2). 

Starting on the right, the highest M is 40 and appears naturally twice. The same holds for 

39: it repeats twice with a residue of 2. Note that the sequence of the n(modM)-values, 
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while M-values decrease, increases by 2. Moving to the left towards the previous peak, 

the n(modM)-values increase by 3 (that is between M-values 26 and 21). This area of the 

chart between the red and the dotted curves would accommodate modules with sub- 

maximal R=2. The area bellow the dotted curve for the same M-values (26 to 21) is for 

the maximal R=3. In the chart we see that R-values increase as we move to the previous 

peaks of the n(modM) curve. Only values between 2 and 5 are shown in the chart of 

Figure 5.19, but the reader can easily see that R would reach up to R= 40 at M= 2 and R 

= 80 at M= 1 (the total chromatic). I will refer to this type of chart as inner symmetry 

chart. Figure 5.20 shows the inner symmetry chart for the sieve ofAkea in relation to this 

additional aspect. Seven modules lie beneath (or on) the n(modA4) curve and therefore 

their R is maximal. Module (28,27) is the only non-periodic one; since Xenakis's 

algorithm always finds a module that covers two points (when I is sufficiently small), its 

R-value is equal to 1.58 

5.10.3 Density and Modules 

In inner-symmetric sieves, the greater the size of the modulus, the smaller the number of 

its repetitions. The value of R depends firstly on the value of M and only secondly on the 

58 This is true when I is smaller than half the size of n. The reason for this is that modules are in fact residue 

classes and therefore the absolute value of I affects the size of M. For example, if we analyse a sieve with a 

range of 40 semitones and start the sieve at point 40 (so that the sieve's points range between 40 and 80), 

the modules would appear to cover only the starting point [the module at the lowest starting point would be 

(41,40), which covers only point 40 and therefore R= 0]. In order to avoid this we should transpose the 

sieve 40 semitones downwards. In general, we can avoid this by calculating the formula with the sieve's 

lowest point set to 0. 
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value of I. Specifically, the value of I determines whether R will have either its maximal 

or its sub-maximal value for a given M. In general then, a smaller modulus naturally 

appears more times than a larger. 59 If sieves are viewed as a multiplicity of periodicities, 

then all periodicities in a sieve are equally characteristic, even if the R-value of a module 

is much greater than the average value of R's in the formula. But the value of R also 

depends on the total number of modules in a formula. In the sketches of Akea, although 

he used an early version of the algorithm, Xenakis noted that there are many modules in 

the formula, and this means that only few of them repeat continuously. 60 If there was a 

large number of inner periodicities that would repeat for a large number of times each, 

the sieve would tend to chromatic saturation. For example, we can construct a sieve with 

modules (3,1), (4,2), (7,2) and (10,0), where n= 80. With the help of the inner 

symmetry chart of Figure 5.19, the values of n, M and I are sufficient to calculate the R- 

values of these modules: 26,19,11 and 8, respectively. These four modules, because of 

their high values of R, are sufficient to produce a sieve of 51 elements up to n= 80. 

Therefore, should we need to construct a less dense sieve, we would have to either use 

less modules or increase the size of the moduli. This is because the R-value depends 

59 This observation is loosely related to a property of the Sieve of Eratosthenes: each prime number 

eliminates a proportion of the remaining integers equal to its reciprocal. That is, 2 eliminates half of the 

remaining numbers, 3 one third, 5 one fifth, and so on (see Hawkins 1958: 108). 

60 ̀Beaucoup de (M, I, R) car #S = 17 vue[? ] 37 points du crible. Donc peu de periodes d'une seule traite'. 

In my translation: `Many (M, I, R), since #S = 17, given the 37 points of the sieve. Therefore, few periods 

without stopping once' (Xenakis, lannis, Pre-compositional sketches of Akea, Bibliotheque Nationale de 

France). Here Xenakis uses ̀ S' to denote the number of modules. The question mark denotes illegible 

handwriting. 
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(mainly) upon the M-value: for a given n, when M increases, R decreases (to either its 

maximal or sub-maximal value). 

The largest interval of most of the sieves analysed here is a major 3rd. 

Additionally, and again with certain exceptions, there is no succession longer than three 

elements a semitone apart. These two observations practically mean that neither more 

than three chromatically consecutive elements appear, nor more than three chromatically 

consecutive elements are missing from the sieve. These two characteristics are general 

and affect the density of the sieves of Xenakis's later music. The density can be given by 

the ratio of the number of elements of the sieve, to its range. The sieve of Akea, with its 

37 elements and n= 80,61 has density D= 37/80 = 0.46.62 Note that the number of 

modules in the simplified formula do not reflect this density, since a point might be 

covered by more than one module But when the density among different sieves is 

constant, the average value of M is directly proportional to the number of the modules. 

According to the aforementioned observations on the size of R, the larger the number of 

the modules in a formula, the lower the average value of R (with constant density); and 

the lower the average value of R, the larger the average size of M. Consequently, the size 

of the moduli depends on the number of modules: for a given density, the large number 

of modules is compensated by large moduli. Sieves with similar density to the one of 

Akea are expected to appear either similarly in the chart of Figure 5.20, or with less 

modules but concentrated to the left. 

61 The range of the sieve is the difference between its highest and its lowest point. Note that when the 

lowest point of the sieve is set to zero, the highest point, n, is also equal to the range. 

62 By approximation to the second decimal. 
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The large number of modules in a formula accounts for the `hidden' symmetry 

(whenever it exists). If we start with an approximate desired density, e. g. Dz0.5, we can 

construct a sieve with either a small number of (inner) periodicities or with a larger one. 

We can start with the most symmetric (regular) sieve. The most elementary sieve with D 

= 0.5 is the whole-tone scale: module (2,0), which in the inner symmetry chart is located 

to the left extreme (see Figure 5.21). If we wish to construct a more complex sieve, we 

can use two periodicities; but to achieve the desired density these two modules need to 

have greater M-values. We can use modules (3,1) and (4,0). For n= 80 they produce 41 

points. The regularity of this sieve is less obvious, but still perceptible (12 semitones). 

The two modules would be still located at the very left of the inner symmetry chart, but to 

the right of (2,0) (see Figure 5.22). An even more complex sieve would have to use 

more modules with greater moduli: e. g. (5,0) + (6,1) + (7,2). They produce a sieve with 

37 points, but its regularity is now much less obvious: the period of the sieve is 320 

semitones. In the inner symmetry chart they would be located further to the right than the 

previous sieves (see Figure 5.23). We see that this process would gradually lead to a 

sieve with several modules of greater size, located towards the right of the chart. When 

we are still in the limits imposed by the condition of inner symmetry (the red curve in the 

chart), symmetry still exists, but it is not as obvious. The leftmost part of the chart 

indicates a more superficial symmetry and the rightmost part a deeper one, so to speak 

(when comparing sieve with the same density). 63 Note that the limits of inner symmetry 

63 Note that a different density would not necessarily have implications relating to the inner-symmetric 

structure of the sieve. That is, a more symmetric sieve might have either higher or lower density than a less 

symmetric one. 
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are of two kinds. The ascending side of the red curve represents a condition of analytical 

method: we allow only for moduli greater than the size of the starting point (M> 1). The 

descending side of the red curve represents the condition that validates a module as 

periodic or not. Therefore, if there is a module that lies outside the limits of the red curve, 

this can be only beyond the right side of the curve. Although validating a module as 

periodic is a clear decision, a sieve (as a multiplicity of inner periodicities) might not be 

inner-symmetric in its entirety. The sieve ofAkea is one among several sieves that 

include one or two non-periodic modules. However, Sieve Theory offers the way of 

indicating both the periodic and the non-periodic elements in a sieve. 

When the inner-periodic simplified formula of two sieves with the same density 

include only periodic modules (R > 2), then the notion of distance between the two can be 

defined by the number of modules in each formula. A formula with a large number of 

modules shows a sieve which is less symmetric than one with fewer modules. For 

example, let two sieves with the same density and range (n), with 18 and 20 periodic 

modules each. The first sieve is then more symmetric than the second, by 2 modules (in 

the sense the absolutely symmetric sieve is the one with 1 module). This notion of 

distance can be applied only to sieves whose all modules are periodic. But the sieves of 

Xenakis's later music are shown to include one or two non-periodic modules; and in 

general, whenever there is inner symmetry, this is marginal: the modules appear mostly 

on the rightmost side of the inner symmetry chart. Analysing the inner symmetry of a 

sieve is not aimed merely at classifying sieves in one of the two categories: inner- 

symmetric / inner-asymmetric. Both notions of symmetry and asymmetry are crucial, in 

the aesthetics of Xenakis's music. As he himself put it, they are `the two poles between 
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which music goes back and forth, and the first suggestion of a solution comes from 

distributing points on a line' (Xenakis 1996: 147). In fact, the principal aesthetics of 

Xenakis's sieves are very clear and underlie (with very few exceptions) all the sieves in 

his oeuvre: they are absolutely non-repetitive. But they are not constructed by hand; 

rather, their non-repetitiveness, their irregularity is secured by sieve-theoretical means. In 

this respect, a general characteristic of an irregular sieve is the relatively large number of 

modules. The number of modules is relative both to the number of points in the sieve and 

to its range (i. e. to the sieve's density). But since there might be several intersections of 

modules (i. e. points that are produced by more than one module) the relationship between 

this density and the number of modules cannot be rigorously formulated. However, if the 

sieve is our starting point, i. e. when the sieve's density is given, we can express a high or 

low degree of symmetry as a small or large number of modules (regularities). Therefore, 

when there exist non-periodic modules in the formula, the irregularity of the intervallic 

structure has outreached the limit of inner-symmetry. With the help of the inner 

symmetry chart, we can see not only whether a module is periodic or not (for this the R- 

value would suffice), but also how distant a module is from the limits of inner symmetry. 

The notion of distance from inner symmetry is then related to the individual modules. 

Finally, with the inclusion of n(modM) curve, the inner symmetry chart retains the 

discreteness required for defining a notion of distance. 64 In this way the inner symmetry 

chart shows both a general and a more detailed picture of the play between symmetry and 

asymmetry. 

64 For the higher R-values this discreteness between regions of the map is not as distinct. However, in 

irregular sieves R is not expected to reach extremely high values. 
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6 Sieve Analysis 

6.1 Sieves and Versions 

Many works of the period following Jonchaies make use of scales that are common to 

several of them. The sieve of Jonchaies was used in Pleiades (1978), Palimpsest (1979), 

Anemoessa (1979) and other works, in combination with other sieves. The most 

prominent throughout the greatest part of the period is the sieve ofNekuza (1981), which 

is used in more than fifteen subsequent works: up to 1987, in XAS, and transformed to a 

greater degree up to 1991, in Krinoidi. Other frequent sieves are the ones that derive from 

Keqrops (1986) and Epicycle (1989), while less frequent are the ones issuing from 

Komboi (1981), Tetras (1983), Thallein (1984), Kyania (1990), Dox-Orkh (1991) and 

Paille in the Wind (1992). The frequency of the use of a sieve is an obvious indication of 

its importance for the composer. Therefore, a detailed analysis of more frequently 

employed sieves is necessary. 

Sieves that appear in different compositions are in most occasions versions of the 

original. An interesting aspect of sieve analysis is encountered when analysing different 

versions of the same sieve, as this might reveal compositional decisions relating to certain 

aspects of the sieves. The transformations that Xenakis applied to his sieves range from 

cyclic transposition, which maintains the intervallic structure, to manual alterations such 

as omitting, adding, or changing one or more elements or segments (thus changing the 

intervallic structure). In the latter case, analysis can reveal properties common to 

different versions and thus enable results concerning the construction of sieves. For 

example in 1981, in the case of the sieve of Nekuia, Xenakis had not yet started using his 
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algorithm with its simplified formula; he provided the sieve with a theoretical period that 

was useful in relation to the several cyclic transpositions he used in this work. The 

decomposition of its period appears on the score as a label that denotes the elementary 

moduli the period is decomposed into (detailed analysis will follow). When a version of 

the same sieve was later taken in Akea of 1986, he was already working with the 

simplified formula of an early version of his algorithm (as the pre-compositional sketches 

suggest). Therefore, the progression towards a simplified conception of sieves must have 

influenced the creation and selection of the new versions. In this chapter I analyse 15 

sieves that are more prominent in the period starting with Jonchaies. These sieves are 

either used in more than one work, or their treatment in the pre-compositional sketches 

provides insight to our understanding of Xenakis's approach to sieve-construction. 

6.2 Jonchaies (1977, for orchestra) 

Two years after Jonchaies Xenakis used its sieve in Palimpsest (1979, for ensemble). 

This work it does not properly belong to the later period of systematic sieve construction. 

However, it is considered by Solomos as a `precursor of the writing that would dominate 

the ulterior period' (1996: 85). 5 Indeed, it is a composition that makes relatively little use 

of glissandi and with no microtones - both elements that the composer would gradually 

abandon. 

In the sketches to Palimpsest the sieve appears in three versions: the first one is a 

transposition T_1 that extends for seven octaves, shown in Figure 6.1. The second is a T_7 

65 Cette piece de 1979 [Palimpsest] est tres annonciatrice de 1'ecriture qui dominera dans la periode 

ulterieure. 
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transposition along with a variation of the intervallic structure - the minor 3rd is replaced 

by the 4th, which results in the following succession: 15 12 4 14 1 (Figure 6.2). Finally, 

the third version, also a transposition (T+1) and a variation of the intervallic structure, 

omits a semitone: the last element of the original sieve is omitted and there are now eight 

pitches instead of nine; and the intervallic structure is 13 12 414, which turn results 

into a period of 8ve+tritone, instead of the original 8ve+4th - see Figure 6.3. 

From these three versions Xenakis used only the first one, i. e. the sieve of 

Jonchaies transposed downwards a semitone. Interestingly, Xenakis used the same 

transposition of the sieve eleven years later, in Kyania (1990, for orchestra) and in Roai 

(1991, for orchestra). 66 In a sense, although the sieve is not conceived as a non-repetitive 

structure, it marks the whole late period of sieve-based composition, from the very 

beginning and almost until the last works that are based on sieves. 

6.3 Mists (1980, for piano) 

Squibbs (1996: 64) has demonstrated that Xenakis developed the sieve for Mists and then 

produced its formula. Still working by hand and with decomposed formulae, Xenakis 

considered three different decompositions before arriving at the final decision: 3,4, and 

7; 3,5, and 7; 3,5, and 8.67 The periods that these decompositions presuppose are 84, 

105, and 120 semitones respectively. He finally settled on another decomposition, 2,5, 

and 9, which gives a period of 90 semitones (7.8ve + tritone). Since the work is scored 

66 The sketches of Idmen A, show that he also considered the same transposition for this work, but he did 

not finally use it. 

67 Dr Ronald Squibbs kindly provided me a copy of the page of the sketches with the sieve of Mists. 
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for piano, the period of 90 semitones, like the provisional ones of 105 and 120 semitones, 

exceeds the range of the instrument. It is clear that for Xenakis the period of this sieve 

was primarily a matter of theoretical nature; different periods would result in different 

decompositions and these in turn would produce different (decomposed) formulae. 

Therefore, although the sieve itself would not change depending on his decision on the 

decomposition, the resulting formula would, and his choice was made according to 

certain criteria concerning the theoretical representation of the sieve and therefore its 

subsequent transformations. 

The final version is slightly different from the original sieve (Figures 6.5 & 6.4 

respectively). There are two alterations in the final sieve: GI is replaced by F#1 and C8 is 

replaced by C#8 (which exceeds the range of the piano by one semitone). The reason for 

the first alteration might be that Xenakis wanted to exclude the perfect 5th from the 

intervallic structure of the sieve; in the original this appears as a unique entry of 7 at the 

second position in the intervallic succession, replaced by 6 in the final version. 

In the final version, the sieve contains six intervals, from the semitone to the 

tritone, and its top pitch is one semitone over the range of the piano. The size of the 

intervals determines, to an extent, the density of the sieve. Therefore, the sieve of Mists is 

somewhat less dense than most of the sieves of subsequent compositions, whose largest 

interval is the M3rd (which also appears less frequently in the sieve than the smaller 

intervals). The sieve has 30 elements; over the range of 90 semitones its density is one 

third of the total chromatic (D = 0.33). Although the sketches of Mists do provide the 

formula of the sieve, the alterations made on the original require a new formula, 
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constructed with the aid of a decomposed matrix (see Figure 6.6). 68 The resulting formula 

is 

91.101+93.103+90.109+92.101+95.104+ 98.107+94.102+96.104+91.108+94.101+ 

91-107+ 93'109+ 96'102+ 98'104+ 9o10+ 95'100+ 97102+ 98' 103 + 94'108+ 95409+ 

90.103 + 94.107 + 96.109 + 90'10, + 91.103 + 95107 + 98.100 + 91.102 + 95106 + 97.108. 

With the help of sub-matrix (Figure 6.7) we can construct the formula that includes all 

three factors: 

21.5 "91 + 21'53.93 + 21.54'90 + 21.51.92+ 2c"54.95 + 21-52'98+ 2o-52'94+ 20.54.96 + 20'53'91 + 

21.51'94+ 21.52.9 + 21'54'93+ 2o-5, -96 + 20.54.98+ 21'5p"9p+ 2o"5p"95+ 2o-5')'97 + 21'53'98+ 

20.53'94+ 21.54.95+ 21.53'90+ 215294+ 21.54.96+ 20'52.90+ 21.53'91 + 2.52.95+ 20.50.98+ 

20.52.91 + 20.51.95 + 2o-53.97. 

68 In order to do this we first construct a matrix with dimensions 9 and 10 (2.5 = 10). A sub-matrix is 

constructed for the two smaller factors, 2 and 5. Note that it is not necessary that the larger matrix 

corresponds to the largest factor. We can choose among any of the three original factors for the one 

dimension and the product of the remaining two for the other dimension. The choice depends on the 

periodicity the analyst desires to show. In the matrix of Figure 6.6 moduli 9 and 10 have been chosen, but 

one could have chosen to construct a matrix with dimensions e. g. 5 and 18 (2-9 = 18). The final formula is 

not affected by such decisions. I have chosen the dimensions of 10 and 9 following Xenakis's own 

treatment in the sketches. 
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The alternative decompositions that Xenakis rejected could similarly produce a formula 

for the sieve by following the same process; that is, by constructing decomposed matrices 

and sub-matrices for each decomposition. However, the sketches do not provide any 

points past the period of 90 semitones. Therefore the formulae for the rejected 

decompositions that have larger periods would be incomplete. Were these formulae to be 

constructed, even though they would be incomplete, they would result to different cyclic 

transpositions. 

Figure 6.8 shows the simplified formula of the final sieve. It consists of sixteen 

modules, with relatively low R-values. This is also shown in the inner symmetry chart of 

Figure 6.9: the modules are located towards the right of the chart, with four of them 

outside the red curve. 16 modules produce 30 points of an asymmetric sieve. The number 

of modules in the sieve of Mists is then relatively large for the number of its points. The 

work that followed Mists was Als, and from this work onwards the sieves are more dense 

and with smaller intervals. 

Figures 6.10 to 6.19 show the inner symmetry charts of all the transpositions used 

in Mists. 69 We see that all of the transpositions have less non-periodic modules than the 

original sieve; also, they have either the same or smaller number of modules than the 

original. The fewer modules belong to T7(mod9O) and T8(mod90), both with 12 modules 

in their simplified formula. Although all cyclic transpositions have less non-periodic 

modules than the original, none of them reveal an inner-symmetric sieve. There are two 

transpositions with only one non-periodic module: T7(mod9O) and T36(mod9O). The 

69 All cyclic transposition indices are provided in the score by the composer. For a detailed listing see 

Squibbs (1996: Vol. 2,113-14 & 2002). 
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former has two modules located far from the majority: (14,7) is the most periodic (R = 5) 

and (41,35) is the only non-periodic (R = 1). T36(mod9O) is different. It has a larger 

number of modules, 15 instead of 12, and therefore the points of the sieve are produced 

by modules with no higher-than-average R-values (all R-values are smaller than 3). These 

two transpositions are the less asymmetric ones, but their inner symmetry chart reveals 

that the latter is more heterogeneous than the former: in T36(mod90) there are more 

modules and with (sub-)minimal contribution each, whereas in T7(mod90) there is one 

module with R=5 and the rest contribute with the minimal or sub-minimal R-value (2 or 

3). In this sense, and excluding the non-periodic modules of both transpositions, 

T7(mod9O) is more inner-symmetric than T36(mod9O) (or than the any of the rest 

transpositions). 

6.4 Als (1980, for baritone, percussion and orchestra) 

The sketches of this work provide three sieves, one of which was selected for the final 

composition. The first one, shown in Figure 6.20, does not exhibit the characteristic 

intervallic structure of the inner-periodic sieves one would expect to find. It is not related 

to the other two. Xenakis considered it but did not use it in the composition. The second 

sieve is shown in Figure 6.21. It is a typical sieve that extends throughout the whole 

range, with no more than three chromatically consecutive pitches present or absent. The 

sieve that actually made it into the composition is a T+7 (perfect 5th) transposition of this 

one (see Figure 6.22). However, there are certain differences between the two sieves that 

would prevent one from speaking about a strict transposition. Three pitches in the high 
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range of the transposed sieve are missing, D6, F#6 and F#7, while there is an additional 

F7. 

Xenakis mentioned that this sieve is a slightly modified version of the one of 

Jonchaies, `in order to make it less recognizable, to be different and yet retain a kind of 

specific tension' (Varga 1996: 164-5). Indeed, there is a segment in the middle range of 

the sieve that exhibits the intervallic structure of the 1977 sieve. 0 This is the eight-note 

segment starting on F#4 and ending on G5. The intervallic succession of the sieve of 

Jonchaies is 13124 14 1. This segment of the sieve of Als is a cyclic transposition that 

omits the last element: 1 13 12 4 1. 

The three additional intervals of 3 semitones at the lowest range of the transposed 

sieve suggest a cyclic transposition. These are precisely the three final intervals in the 

intervallic succession of the original sieve (compare Figures 6.21 and 6.22). Therefore, 

there is an implicit period of 86 semitones. 71 It is obvious that this period, although not 

audible, serves as a tool for cyclic transpositions. The existence of a period suggests that 

a decomposed formula might have been used by the composer. The two prime factors of 

86 are 2 and 43; thus a2 by 43 decomposed matrix, inconveniently perhaps, would be 

required for this sieve. 72 The decomposed formula of the sieve ofAzs is: 

70 In the sketches of Epicycle Xenakis designates the ranges of a sieve as low, middle, and high, where the 

middle register extends for two octaves starting on E4. 

71 The sketches provide only an 83-semitone segment the original sieve (Figure 6.21). The period of 86 

semitones is implied only by the cyclic transposition. 

72 The only divisors of 86 are 1,2,43, and 86. Therefore, there is no option of using alternative, non-prime 

factors that would possibly be more convenient for this period. 
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20"(430 + 433 + 436 + 437 + 4312 + 4315 + 4316 + 4319 + 4320 + 4321 + 4329 + 4330 + 4334 + 

4335 + 4336 + 4337 + 4339 + 4340 + 4342) + 

21"(432+433+434+438+439+4310+4314+4318+4319+4323+4324+4325+4328+ 

4329 + 4332 + 4337 + 4339). 

The decomposed matrix and its corresponding formula offer a synoptic view of 

the sieve's internal structure and serve as a means to applying transformations (by 

changing the moduli and/or the residues). But since the transformation in question is 

cyclic transposition, a decomposed formula is useful but not necessary for this particular 

treatment. Cyclic transposition refers to properties of modular sets. From the two basic 

components of Sieve Theory, Modular Arithmetic and Set Theory, only the former is 

required to performed cyclic transpositions. It suffices to replace any number outside the 

range of the modulus with its equivalent modulo the period. In the present case, the 

highest pitch of the original, F#6, is point 85. When 7 is added it becomes 92 in the 

transposed sieve, exceeding the range of the period. Therefore it is replaced by 

92(mod86) = 6, which D#1 in the transposed sieve. 

Due to the slight differences between the original and the final, transposed sieve 

we should examine both. In the final sieve, the 37 elements that occupy a range of 86 

semitones produce a density D=0.43. The simplified formula of the final sieve is shown 

in Figure 6.23. It consists of 19 modules with moduli that range between 21 and 37 

semitones. This is itself a first indication of its non-symmetric structure and it is 

confirmed by the inner symmetry chart of Figure 6.24. There are two non-periodic 
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elements (pitches): F#5 (point 54) and E6 (point 67) that belong to modules (32,25) and 

(37,30) respectively. 

Figure 6.25 shows the simplified formula of the original sieve ofAzs. 73 Although 

the original sieve has one more point (D = 0.45), its formula contains fewer modules and 

the average size of moduli is smaller: as in the final sieve, the smallest modulus is 21 

semitones, but the greatest is 33 semitones (instead of 37). However, the inner symmetry 

chart of the original sieve (Figure 6.26) suggests that this difference in not enough to 

characterise the sieve as symmetric. Although the two non-periodic modules are closer to 

the red curve, their R-value is still 1. These are modules (31,25) and (30,28). The former 

module covers G5 which in the transposition would be D6; but D6 is missing from the 

final sieve. The latter covers A5, which in the final transposition is E6, the one of the two 

non-periodic elements. In fact, the two non-periodic elements in the final sieve are not 

affected if we construct a faithful transposition from the original. Figure 6.27 shows this 

transposition: we see that the non-periodic modules are the same as in the final sieve. 

Otherwise, the faithful transposition has one less module (18) than the final sieve; there 

are 6 modules with R=3, whereas in the final sieve only four modules have R=3. 

6.5 Nekuia (1981, for choir and orchestra): Original Sieve and Versions 

The sieve of Nekuia (shown in Figure 4.1) is the one that Xenakis explored most in his 

later music. It was used in numerous subsequent works and new sieves were constructed 

73 Recall that in order to secure the smallest possible size of moduli that covers each point of the sieve, we 

always have to set the lowest point of the sieve to zero. Therefore, in the final sieve ofAäs 0= AO and in 

the original 0= BO. 
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with this one as their starting point. I will analyse individually its versions as found in 

other works, after I analyse the original and its transformations used in Nekuia. Itself 

bears a straightforward relationship with the sieve of Jonchaies which was naturally 

passed on to the derived sieves as well. 

The sieve was used partially in Serment (for mixed choir), completed shortly 

afterwards in the same year, 74 in 1986 in Keqrops (for piano and orchestra) and in 

Tracees (1987, for orchestra). Harley has indicated the symmetric (palindromic) 

intervallic structure for the part of the sieve in Serment, the fragment from F#2 to G#4 

(2004: 135). With the C4-E4 major 3rd as the axis of symmetry, the intervallic structure 

is a palindrome extending from the A2-A#2 semitone to the F#4-G4 one. Also, this part 

of the sieve is restricted to three of the four expected intervals, omitting the tone. This is 

the reason why Gibson considers this part of the sieve as a perfect example of 

interlocking 4ths. He also indicates the fragment between A4 and C5, which has eight out 

of the nine pitches of the sieve of Jonchaies (2003: 73). 

Xenakis notes the label of this sieve on the score of Serment. This note, more than 

a simple label, reveals the function that he had used in order to produce the sieve. We 

read an intersection of two moduli: 8; fl 11.75 In this transitive period, Xenakis was still 

working with decomposed formulae. The sieve of Nekuýa, in aesthetic terms belongs to 

the mature phase of sieve-construction; but on the sieve-theoretical level, Xenakis treated 

it according to its period of 88 semitones. The sieves of this phase therefore, require an 

analysis that illustrates both their external periodic nature and their inner-periodic one. 

74 Xenakis frequently provided the completion date at the end of the score. 

75 The symbol (1 stands here for intersection, for which the symbol " is used in this dissertation. 
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In the decomposed matrix of the sieve of Nekula (shown in Figure 4.2) we can 

observe an irregular arrangement of the elements. Of course, this is not to suggest that 

other types of sieves (e. g. the early ones) would follow a regular pattern; but it might be 

the case that a decomposed matrix contains complete columns or rows, which would 

indicate continuous inner-periodicities. The decomposed matrix of the sieve of Nekuia 

reveals two aspects relating to the distribution of the sieve's elements. Firstly, the 

limiting of the size of intervals to the major 3rd and, secondly, the exclusion of strings of 

chromatic pitches longer than three, affect the way elements are distributed in the 

decomposed matrix. This means that there is neither a diagonal succession of elements 

nor a diagonal gap longer than three. Secondly (and as the simplified matrix will show), 

the periodicities of 8 and 11 semitones (minor 6th and major 7th respectively) are not part 

of the sieve's inner-periodic structure: no row or column of the table is complete. The 

ones that might seem more prominent are scattered in a way that does not suggest a 

continuous periodicity. 76 We see that in the decomposed matrix of the sieve of Nekuia the 

most populated column is (11,3). But the periodicity of 11 semitones here appears 

scattered: it is interrupted at point 36 and stops before reaching its final point, 80. 

On the contrary, the simplified formula of the sieve of Nekuia, shown in Figure 

6.28, does not include moduli 8 or 11 (this is also the formula shown in the matrix of 

Figure 5.1). There are 20 modules that produce its 42 points, which gives a density D= 

0.48. Figure 6.28 shows that the smallest and most frequent modulus is 14 (8ve+tone), 

76 Recall the decomposed matrix of the sieve of Akea with its prominent periodicity of a perfect 4th 

[module (5,0) in the decomposed matrix of Figure 5.3]. 
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repeating 6 times. 77 The inner symmetry chart for the sieve of Nekuia is shown in Figure 

6.29. The chart accounts for the large number of moduli and the small value of R in each 

of the modules: since the modules are located towards the upper right part of the chart, 

the number of reprises of each modulus is small. If it was more (inner-)symmetric it 

would have less modules with smaller M-values and greater R-values. The two non- 

periodic modules are (32,25) and (30,29): they are located outside the limit of inner 

symmetry and occur only once. They cover pitches A#2, D2, F#4 and G#4. These pitches 

belong to the two sides of the palindromic structure at the middle of the sieve. The two 

latter ones are covered only by the two non-periodic modules (points 57 and 59). 

The indices of the cyclic transpositions used in the work are shown in Figure 6.30. 

As I have mentioned in the case of the sieve ofAzs, when analysing a sieve, we always 

have to set its lowest point to be equal to zero. This is because the size of M (i. e. the 

smallest possible modulus) depends on the absolute value of I. Therefore, when we 

analyse a cyclic transposition whose lowest point is greater than zero we have to actually 

transpose the sieve down so that its lowest point is equal to zero. This means that, in 

terms of inner-symmetric analysis, any sieve has as many distinct cyclic transpositions as 

the number of its elements. For example, in the sieve of Nekula the lowest pitch of the 

T56(mod88) transposition corresponds to number 2 [34 + 56 = 90 and 90(mod88) = 2]; 

therefore, in its numeric version, we have to transpose it two semitones down, in order for 

its lowest point to be equal to zero, and the resulting cyclic transposition is equivalent to 

T54(mod88). Consequently, the cyclic transpositions of T54(mod88), T55(mod88), and 

77 This is the formula shown in 4.3.2 and in the simplified matrix of Figure 5.1. 
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T56(mod88), are equivalent in terms of inner-symmetric analysis. 78 The transposition that 

appears most frequently in the work is 8; +1 1j+8, with effective index 8(mod88) 

semitones. In this transposition the intervallic succession is displaced three places to the 

right. While a decomposed matrix reveals only the two elementary moduli that the period 

is decomposed into, a simplified matrix renders the different moduli in each cyclic 

transposition. Figure 6.31 shows the simplified formulae of the cyclic transpositions of 

the sieve of Nekuza. 79 We see that the ones with the smallest number of modules are 

T33(mod88) and T40(mod88). These two transpositions are more distant than the rest. 

Note that this notion of distance refers to how far the intervallic succession is displaced in 

relation to the original. In this sense, T40(mod88), where the intervallic structure is 

displaced eighteen places to the right, is more distant from the original than T77(mod88), 

where it is displaced seven places to the left. We see that a cyclic transposition might 

render different inner periodicities. For example, modulus 10 (minor 7th) is shown to 

participate only in one of the seven versions of the sieve, T40(mod88). This means that 

the interval of the m7th might be present in other transpositions, but not continuously. 

For example, in the original sieve it exists fragmentarily, between points 4,14,24,34 and 

44 (C# 1, Bl, A2, G3 and F4) and between 52,62,72 and 82 (C#5, B5, A6 and G7). In 

T40(mod88) point 52 (C#5) becomes point 4 (C#1), which is the starting point of the 

continuous periodicity of the minor 7th: this is module (10,4) which covers C#1, B1, A2, 

G3, F4, D#5, C#6, B6 and AT 

78 An equivalent cyclic transposition of T56(mod88), T55(mod88) was used in Tracees. T6(mod88) 

[equivalent of Ts(mod88)] was used in Keqrops. 

79 The fact that the cyclic transpositions of a sieve have different formulae with different amount of 

modules, confirms that the relationship between density and the number of modules is not constant. 

155 



Figures 6.32 to 6.37 show the inner symmetry charts for all the cyclic 

transpositions used in Nekuia. Of the six transpositions, four exhibit an inner-symmetric 

structure (i. e. R> 2): T33(mod88), T56(mod88), T77(mod88), T$o(mod88). From the four 

inner-symmetric cyclic transpositions, T33(mod88) has the smallest number of modules 

(seventeen). Consequently, this particular cyclic transposition has the highest R-values in 

average and therefore it is the most inner-symmetric of the transpositions used in the 

work. This also is evident in the chart of Figure 6.33: its modules are located towards the 

left, in relation to the rest of the inner-symmetric transpositions. T40(mod88) is shown in 

its inner symmetry chart (Figure 6.34) to also have its modules towards the left but, 

additionally, there is one non-periodic module: (32,25). Whereas in the inner symmetry 

chart of T33(mod88) the modules tend to concentrate (except perhaps one or two modules 

that lie towards the right), in the chart of T40(mod88) the modules are shown to spread 

both to the left and the to the right. The degree of symmetry (or asymmetry) of the sieve, 

is maintained in the latter transposition by the inclusion of both highly periodic (left) and 

less, or non-periodic modules (right). It is interesting here that these two transpositions 

are only a perfect 5th apart. The less inner-symmetric transpositions are T8(mod88) and 

the original (To) with two non-periodic modules. 

6.5.1 Sieve of Nekuia: First Version 

The first version of the sieve of Nekuza is the one used in Naama (1984, for harpsichord), 

Alax (1985, for 3 ensembles), and ä r. (1987, for piano). It differs from the original only 

in two pitches: A2 is replaced by G#2 and there is an additional F3 - see Figure 6.38. In 

Naama the sieve is used between G1 and E6; in Alax, a shorter segment, between F#2 
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and D5, and in a r. it is used in all its range. We see that segments of different length 

were occasionally used. According to Xenakis's suggestion, the application of his 

algorithm should take into account as many points as possible (in order to secure a 

precise logical formula). The simplified formula of Figure 6.39 is the logical expression 

of the complete version of the sieve of Nekuia as used in the aforementioned works. It 

has 19 modules, instead of 20 in the original. The inclusion of F3 (point 32) brings about 

modules (15,2) with R=5 and (25,7) with R=3. The latter also produces F#4 and 

therefore the non-periodic module (32,25) of the original sieve is redundant. But at the 

same time, the absence of A2 (point 24) brings about a non-periodic module in the new 

version: point 53 is now covered by the non-periodic (36,17) instead of (29,24) in the 

original. This results in a formula with two non-periodic modules, as shown in the inner 

symmetry chart of Figure 6.40, that is not much different from that of the original. The 

only difference is that in the new version there are two modules that stand out as more 

periodic than the average (instead of one in the original), whereas the total number of 

modules is not significantly smaller. 

We can compare the above analysis with the analysis of one segment of the sieve, 

as it is used in a work. If we examine only the segment of the sieve that is used in Naama 

the simplified formula suggested by the algorithm is the one shown in the inner symmetry 

chart of Figure 6.41. We see that this segment has only periodic modules. In the complete 

version of the sieve pitches D5 and G#5 where covered only by non-periodic modules 

(36,17) and (30,29) respectively; in the segment they are covered by periodic modules 

(15,13) and (15,4). This is an expected characteristic of sieve analysis: when only a 

segment of a sieve is examined, it is natural that different elements are periodically 
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associated with each other differently than when analysing the complete sieve. What is 

important here is that the segment used in Naama retains the same general characteristics 

of the complete sieve. Firstly, their density is the same: D= 43/88 = 0.49 for the 

complete sieve and D= 28/57 = 0.49 for the segment. Secondly, they share a similar 

intervallic structure. However, the two inner symmetry charts of Figures 6.40 and 6.41 

have a different arrangement of modules: the latter has only periodic modules with R=2 

and R=3, whereas the former has two non-periodic modules and two modules located 

further to the left (which means that they are more periodic than the average). 

6.5.2 Sieve of Nekuia: Second Version 

In Alax Xenakis also used another, slightly different version of the sieve of Nekuia. G#2 

and A#2 of the previous version are now replaced by G2 and A2, whereas there is an 

additional C#3. This version and its inner symmetry chart are shown in Figure 6.42. 

There are here 18 modules (while the previous version had 19) and there is only one non- 

periodic module. We also see that the addition of a single element (along with the 

alteration of two other elements) in the sieve caused the modules to concentrate more to 

the left in relation to the original sieve and the first version. Although there is still one 

module outside the red curve, this version has two modules with R=4 and two with R= 

5. Since this inclusion of more periodic modules is not combined with a corresponding 

inclusion of less periodic ones, we can see a progression to a sieve with more inner- 

symmetric elements than its previous versions. 
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6.5.3 Sieve of Nekuia: Third Version 

In the version used inA l'äle de Goree (1986, for harpsichord and ensemble) A2 is 

replaced by G#2, like the first version, but the additional pitch is now F#3 (instead of F3); 

also, there is an additional G6. It is shown, along with its inner symmetry chart, in Figure 

6.43. We see that only two different pitches change the way the formula is shown in the 

chart. There is now one more module: 20 modules instead of 19 cover the 44 points of the 

sieve. Having in mind that both in the first and the third version there are two non- 

periodic modules, the fact that more modules are required for the latter one, means that 

its inner symmetry is now even less obvious. The segment actually used in the work 

extends from E1 to G6 (see Figure 6.44). The density of this segment is the same as the 

one of the complete sieve, D= 32/63 z 0.5, but the chart of the segment shows an inner- 

symmetric structure with no modules outside the red curve. As with the segment used in 

Naama, this one too, has the same general character of the complete sieve (in terms of 

density and intervallic structure); but here the segment is shown to be inner-symmetric 

whereas the complete sieve is not. In general, the inner-symmetric character of a sieve 

does not necessarily imply that any of its segment will be similar in terms of inner 

symmetry. Therefore, analysing the original, complete sieve (when it is known), is 

preferable to analysing only a segment of it. This is the reason why Xenakis suggested 

that we should take into account as many points as possible. Once the complete sieve has 

been analysed, segment analysis might also be desirable in order to examine the 

properties of the sieve. 
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6.5.4 Sieve of Nekuia: Fourth Version 

6.5.4.1 Sieve 

The fourth version of the sieve of Nekuia is a T84(mod88) cyclic transposition of the first 

(or equivalently, a T_4(mod88) cyclic transposition). It is used in Horos (1986, for 

orchestra) and Jalons (1986, for ensemble). The sieve of Akea (analysed in Chapter 5) is 

also based on this version, but is identical to it only between pitches G1 and D#6. This 

version of the sieve is shown in Figure 6.45. There are 18 modules in the simplified 

formula - two modules less than that of the original sieve. Since the number of modules 

is smaller, their average R-value is greater and consequently they appear in the chart 

further to the left than the modules in the formula of the original. More importantly, this 

version exhibits an inner-symmetric structure: all modules satisfy the condition of inner 

symmetry and are located inside the limits of the red curve. 9 modules are in the `R = 2' 

region of the chart, 6 in the region where R=3, for (19,6) R=4 and two modules, (15, 

13) and (14,12), repeat for 5 times. Recall that the arrangement of the modules in the 

inner symmetry chart for the original sieve (Figure 6.29) has most of them concentrated 

to the region of the chart where R=2. 

The actual segment of this version that was used in Horos is shown in the 

sketches. It is the segment between F#1 and D#7 (69 semitones). The inner symmetry 

chart of the segment used in Horos is shown in Figure 6.46. It has one non-periodic 

module, with most of its periodic modules having the minimal R-values. As in the 

complete version of the sieve, there are 18 modules but they produce 33 points. In this 

sense, the number of modules is relatively larger than the number of modules in the 

complete sieve (18 modules that produce 42 points). Therefore, the periodic modules in 
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the inner symmetry chart of Figure 6.46 appear to the extreme right, which denotes a 

smaller degree of symmetry. Again here we see that although a sieve might be a segment 

of an inner-symmetric one, it does not necessarily retain the same degree of inner 

symmetry. 

6.5.4.2 Complement 

In Akea the complement of the sieve appears as frequently as the original, and is also 

used in Horos, and partially in Jalons. It is shown in Figure 6.47, along with its inner 

symmetry chart. The formula contains 19 modules, and produces 45 points in a range of 

80 semitones (D = 0.56). In comparison to the 17 modules of the original sieve (Figures 

5.2 & 5.20) that has 37 points (D = 0.46), the complement has only periodic modules. 

Furthermore, the modules in the complement appear more concentrated; this means that 

they all contribute almost equally to the structure of the sieve (their R-value is 2 or 3 with 

one R= 4). The fact that the number of modules in the complement is larger does not 

contradict the fact that it is inner-symmetric; since the number of points is larger for the 

complement, more modules are required (given that the intervallic structure is as irregular 

as that of the original). 

6.5.5 Sieve of Nekuia: Fifth Version 

The same cyclic transposition is where another version of the sieve is based; it is used in 

XAS (1987, for saxophone quartet) , and in relation to the previous version C#3 is omitted 

and there is an additional B3 (see Figure 6.48). There are 20 modules, just like the 

original sieve, but all modules are periodic. Unlike the fourth version, the modules are 
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mainly concentrated in the region of the chart where R=2, which is a consequence of the 

larger number of modules in relation to the fourth version. In fact, the literal cyclic 

transposition T84(mod88) of the original is itself inner-symmetric, as its inner symmetry 

chart of Figure 6.49 suggests. There are 21 modules and they are all periodic. But since 

their number is larger than the fifth version, they are concentrated more to the right. 

Therefore, the literal T84(mod88) (not actually used in any composition) is less inner- 

symmetric than the fifth version (20 modules), which itself is less inner-symmetric than 

the fourth (18 modules). 

6.6 Komboi (1981, for harpsichord and percussion) 

The opening sieve of Komboi was also used partly in another work of the same year, 

Pour la Paix. Is deviates from Xenakis's usual practice of constructing sieves with the 

greatest interval the major 3rd. As shown in Figure 6.50, there is only one major 3rd, the 

lowest interval of the sieve. It is therefore a sieve with greater density than one would 

expect: D=0.52 (44 elements occupy a range of 84 semitones). The simplified formula 

includes 19 modules. Recall that the same number of modules produced the sieve of 

Nekuäa which is slightly less dense, with D=0.48. In this respect then, the opening sieve 

of KomboI is more inner-symmetric than that of Nekuia. Indeed, whereas in the latter 

there are two non-periodic modules (Figure 6.29) in the chart of Figure 6.50 only one 

module is outside the inner-symmetry curve, and more periodic modules are concentrated 

in the region of the chart where R=3 than that where R=2. But if we compare it with 

the T80(mod88) transposition of the sieve of Nekula, which has 20 modules all of which 
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are periodic, we see that in the sieve of Kombol most of the modules are more periodic, 

with a non-periodic breaking the inner-symmetry. 

There are several sieves in the duo, but most of them appear only partly, and this 

prevents a complete analysis. However, later in the work one sieve appears in a great 

range; it is shown in Figure 6.51. This sieve is less dense (it includes intervals of major 

3rd); there are 37 points in a 82-semitone (D = 0.47) range with 14 modules, one of 

which is non-periodic. The small number of modules does not imply that these are, in 

average, more periodic than those of the opening sieve, due to the fact that the density 

and range of the sieve (as it appears in the work) are smaller than that of the opening one. 

6.7 Shaar (1982, for string orchestra) 

In the sketches of Shaar Xenakis experimented with four different sieves, labelled a, ß, y, 

and 6 (shown in Figure 6.52), from which he used sieves y and 6. Sieve a bears an 

irregular, non-repetitive structure, but the three that follow are periodic with periods 5 for 

P and 7 for 7 and 6. The inner symmetry chart of a is shown in Figure 6.53. It has 

relatively low density D= 29/73 = 0.40, and the 12 modules that produce the sieve are 

enough to reach and exceed the limit of inner symmetry. 

Xenakis commented on the page of the sketches: ̀ Sieves based on a period, 

difficult for 12 (5, or 7)'. Sieve ß, is a perfect example of interlocking 4ths. When two 

4ths interlock the periodicity is the 4th itself (with intervallic structure: 14 and so on). 

But after 12 reprises of modulus 5 the sieve starts repeating in terms of octave-equivalent 

pitches. This would give a greater period of 5.12 = 60 semitones. The case of sieves y and 

6 is not as straightforward. Sieve 6' is a reconstruction of 6, according to the intervallic 
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pattern evident up to D#5 (the identical part of the two sieves). Both y and 6' are based 

on the period of the perfect 5th. In both these two sieves, the octave-equivalent pitches 

would appear at point 7.12 = 84 semitones. But the period of the 5th is not apparent, 

because the intervals it is broken down to do not always appear in the same order. In 

sieve y each cycle of 5th consists of a different permutation of three intervals that the 5th 

is broken down to: 1,2, and 4; and in sieve 6' of permutations of the four intervals 1,1, 

2, and 3. The sketches provide the simple way of determining the order the permutations 

appear in sieve 6 up to D#5 (see Figure 6.54); sieve 6' is precisely the reconstruction of 6 

according to this system of intervallic permutations. The number of all the possible 

permutations of 1,1,2, and 3 is 12. Xenakis wrote down in a column the six 

permutations that correspond to all the possible positions of the interval of the semitone, 

and with 3 always preceding 2; in a second column to the right, he wrote the remaining 

six permutations where 2 precedes 3. There is therefore a symmetric relation between the 

two columns. He started on the top left entry: 3211. These are the first four intervals in 

sieve 8' (see Figure 6.52). He then used the permutation on the bottom right: 21 13. The 

numbers next to each permutation in the table of Figure 6.54 show the order of 

appearance of these permutations. The process continues similarly: the second 

permutation of the left column is followed by the second to the last permutation in the 

right column, and so on. The last permutation marks the end of the period of the sieve; 

the first permutation would appear again at point 84, and the sieve would be reproduced 

at the octave equivalent after 7 octaves. We see that the intervallic structure of sieve 6 is 

identical to that of 6' but the former has an interval of 3 instead of 2 semitones (D#5-F#5 

in 6 instead of D#5-F5 in 8') and an additional minor 3rd (F#6-A6). Xenakis used, 
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peculiarly, a sieve that is based on the system of intervallic permutations noted in the 

sketches, but with these two deviations. 

The sketches do not provide the system for the permutations of sieve y, but we 

can reconstruct it. The possible permutations of three distinct elements are 6. In Figure 

6.55 the left column shows five of these permutations, whereas at its bottom the initial 

permutation (4 1 2) re-appears. In the second column each permutation is the `retrograde' 

of the corresponding one in the left column. Again, in the right column there are only five 

distinct permutations, with the top and bottom entries being the same. The order of 

appearance of each permutation in the sieve is the same as that of sieve 6'. The reason for 

having only five distinct permutation in each column is related to this order. If the bottom 

left entry was the 6th remaining permutation (that would be 21 4), its retrograde at the z: n 

bottom of the right column would be the same at the initial one (4 1 2); thus the two first 

permutations in the intervallic structure of the sieve would be identical. In order to avoid 

this, we enter the retrograde of the remaining permutation instead (which is equivalent to 

swapping the two permutations at the bottom of the two columns). The consequence of 

this is that the initial permutation (4 1 2) appears again as the 1 lth permutation, before the 

sieve reaches its period (i. e. it appears at point 70 instead of 84). Thus, the three final 

intervals in sieve y (4 1 2) do not denote the recurrence of the period; this would actually 

happen at point 84, after all the 12 permutations of the table in Figure 6.55 have 

appeared. 
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6.8 Tetras (1983, for string quartet) 

Similarly to the sieve of Komboi, the sieve of Tetras is mainly based on the three 

intervals equal to or smaller than the minor 3rd. As shown in Figure 6.56, there is only 

one major 3rd; its density is D=0.57 (38 points with n= 67). 80 However, this sieve is 

even more dense than that of Komboi (D = 0.52). The fact that the density (as well as the 

range) of the two sieves is different does not facilitate comparison. Had the sieve of 

Tetras been checked for the length of the opening sieve of Kombol, it would appear with 

all its modules inside the limits of inner symmetry [module (25,20) would have R= 2]. 

But, although we could allow its 16 modules to cover a range up to the range of the sieve 

of Kombol, the resulting sieve would not be identical (this would have shown in its 

formula). However, the inner symmetry chart shows the position of each module in 

relation to the extreme values in any inner-symmetric sieve of the same length. If we 

compare the charts of the two sieves (Figures 6.50 and 6.56) we see that they have a 

similar degree of symmetry. Although the two sieves have different length and density, 

their inner symmetry charts show, in approximation, the relationship between the two: 

most of the modules are in the R=2 and R=3 region, one stands out as more periodic, 

and one is non-periodic. 

A slightly different version of the sieve of Tetras is used in the opening of Khal 

Perr (1983, for brass quintet and two percussionists); it is shown in Figure 6.57. Its range 

and density are even smaller: 31 points over 60 semitones, give D=0.52. The number of 

modules is 13, and the arrangement in the chart is not very different. The one non- 

30 This is based on the sieve as it appears on the score. Naturally its range is limited to the string quartet's 

range; however, it is still a relatively extensive scale, that allows analysis and comparison with other ones. 
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periodic module, (22,17) is by one semitone so: in inner-symmetric sieves the maximum 

M-value for I= 17 is M= 21; and the maximum I-value for M= 22 is I= 16. In general, 

this sieve shows slightly more leftward arrangement, but not enough to suggest a z: I 

different, more symmetric structure. 

6.9 Lichens (1983, for orchestra) 

The sieve of Lichens presents the least inner-symmetric structure from the sieves 

examined so far (apart from the sieve of Mists). Compared with the sieve of Akea, which 

has similar density and range, with 16 modules, the sieve of Lichens would not, at a first 

glance, be expected to be more asymmetric; it has 35 points in a range of 78, with 14 

modules (for the sieve of Akea these values are 37,80, and 16 respectively). But the 

appearance of the modules in the chart of Figure 6.58 shows that even at the lower part of 

the sieve there is a non-periodic element. There are four non-periodic points (while in the 

sieve of Akea only one). Module (39,2) covers two points that are not covered by any 

other module: F#1 and A4 (points 2 and 41). Modules (28,27) and (31,27) produce 

pitches B5 and D6 respectively (points 55 and 58). This observation verifies that the 

number of modules is a secure index of the degree of inner-symmetry of a sieve, only for 

periodic modules. This is because the algorithm always finds two points for a given 

module, when the value of I is less than half of the value of n (whereas the validating of 

periodic modules depends on the intervallic structure itself). For I= 2, in the sieve of 

Lichens, any M-value between 3 and 38 would validate a module as periodic. Therefore, 

although the sieves of Akea and Lichens have similar size, density, and number of 
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modules, they are not similar in terms of inner symmetry; the intervallic structure of the 

latter is what differentiates it from the former. 

6.10 Thallein (1984, for ensemble) 

The sieve used in Thallezn is among the very few sieves of the later period that includes 

five intervals - from the semitone to the perfect 4th (see Figure 6.59). Along with the 

sieve of Nekula it was also used later in Keqrops. Its inner symmetry chart shows that its 

modules are arranged to the right region, with the smallest R-value (2). From the 18 

modules that produce its 32 points (when n= 78 and D=0.41) three are produced only 

by the three non-periodic modules that lie outside the red curve; these are pitches F3, 

D#5, and E5 (points 30,52, and 53). If compared with the sieve of Lichens (which has 

the same n-value and the same number of non-periodic modules), although it is less 

dense, the sieve of Thallein has more modules. This is reflected in the inner-symmetry 

chart, as the periodic modules are located more to the right; this means that the periodic 

modules of Thallein produce a less inner-symmetric structure than the periodic modules 

of Lichens. 

A four-octave segment of the sieve of Thallein, was used, with slight differences, 

in Alax; the segment from C#2 to C6 appears with an additional D2; G2 instead of A2; 

and D5 instead of D#5. Figure 6.60 shows the complete sieve of the former work with 

the alterations that appear in the latter. The inner symmetry chart shows that this version 

of the sieve still has three non-periodic modules. Especially, the substitution of the D#5 

with D5 has replaced non-periodic module (27,25) by (28,23). The total number of 

modules is now 17, with D=0.42. These two slight differences could suggest a more 
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symmetric version of the original; however the general character of the sieve remains 

predominantly inner-asymmetric. 

6.11 Keqrops (1986, for piano and orchestra) 

Keqrops is perhaps the work with the most extensive employment of sieves up to the 

time. It is based on three sieves: the sieve of Nekuia, the sieve of Thallein, and a sieve 

that is used for the first time in Keqrops. From the two former sieves, that of Nekuia is 

used either as such or in two of its cyclic transpositions: T6(mod88) and T64(mod88). 

T6(mod88) is, in terms of inner-symmetric analysis, equivalent to T8(mod88), whose 

inner symmetry chart is shown in Figure 6.32. T64(mod88) is one of the inner-symmetric 

cyclic transpositions of the sieve of Nekuia, as shown in the chart of Figure 6.61. 

The main (more frequent) sieve of Keqrops is shown in Figure 6.62. The sieve has 

the same range as that ofAis, but is slightly more dense, with D= 39/86 = 0.45 (whereas 

for Als, D= 37/86 = 0.43). If we compare the charts of the two sieves we see that 

whereas in both of them most of the modules are in the R=2 region, the sieve of 

Keqrops has less modules by 1, and some of its modules have R=4,5, and 6. The one 

non-periodic module is (31,25) and the point that causes this asymmetry is A#2 (point 

25). The sieve of Keqrops was used in three subsequent works, A file de Goree, 

Tuorakemsu (1990, for orchestra), and Kyania. The sieves and their charts are shown in 

Figures 6.63 to 6.65. They all appear in a relatively long range, so they are analysed as 

such (instead of analysing the reconstruction of the original sieve). All three versions 

cover slightly different range and have almost the same density (D = 32/65 = 0.49, D= 

34/70 = 0.49, and D= 38/79 = 0.48 respectively), but the version in A file de Goree is 
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the most inner-symmetric one (even more symmetric than the original sieve); it is the 

only version with all its modules being periodic and it has a smaller number of modules 

than the rest (12). 

6.12 SWF 

In the sketches of XAS Xenakis noted a sieve, labeled SWF, which he did not finally used 

in the quartet, but in a work of the same year, Ata (1987, for orchestra). 81 SWF, loosely 

related to the T84(mod88) transposition of the first version of the sieve of Nekuia, is 

shown in Figure 6.66. Its range is 72 semitones and the number of points is 35 (which 

gives a density D=0.49). In the chart we see an arrangement with 3 of the 15 modules in 

the more symmetric region (where R= 4), 4 in the region where R=3 and the rest with 

R-value 2. One element with R=1 does not satisfy the condition of inner symmetry. 

Although the SWF derives from the T84(mod88) transposition of the sieve ofNekuia, 

there are several differences among the two. The segment of the T84(mod88) 

transposition that corresponds to the range of SWF has 32 points, and 7 points of SWF do 

not belong to the transposition. Therefore, the distance between the original and the SWF 

is much greater that of earlier versions and an analysis of the T84(mod88) transposition 

would not be appropriate for SWF. 

The complement of this sieve, labelled CSWF, was used in Ata and with slight 

alterations in Kyania. It is shown in Figure 6.67. It is more dense (D = 39/73 = 0.53) and 

all of its modules are periodic. The number of its modules is 14 and since they are all 

Si Ata was a commission by Südwestfunk ('Southwest Broadcasting', abbreviated SWF), in Baden-Baden, 

Germany. 
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periodic, this number accounts for the deb ee of its inner symmetry. Especially, module 

(10,0) repeats for 7 times and there are only 5 modules with R=2. In fact, this is not the 

literal complement of SWF; the expected C#7 is missing and F7 should be F#7. The 

formula of the complete CSWF would have module (22,16), with R=2, in the place of 

(19,16), and two extra modules: (24,2), with R=3, and (24,21) with R=2. We see that 

this slight alteration does not change the inner-symmetric nature of the sieve. On the 

contrary, since the less the number of modules the more symmetric the sieve, this 

alteration increases the degree of symmetry. 

6.13 SWF' 

In the sketches of Waarg (1988, for ensemble) Xenakis notes another version of the 

previous sieve, labeled SWF'. For this sieve, as well as for its complement, Xenakis used 

an intermediate stage of his algorithm. Whereas in the algorithm of 1986 he validated any 

size of M, and in the final one he validated only M> I, for the SWF' the sketches provide 

a formula where M> I: 

(19,0) + (18,2) + (24,5) + (29,6) + (27,10) + (16,11) + (22,13) + (21,14) + (26,16) + 

(21,21) + (24,24) + (33,30) + (34,34) + (35,35) + (45,45) + (49,49) + (51,51) + 

(66,66). 

Like with the sieve of Mists and Squibbs's observation, SWF' is likely to have been 

constructed before calculating its formula. In the sketches Xenakis wrote down the sieve 

up to n= 72, calculated the formula, and then applied the formula for 150 points. In other 
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words, he extended the initial 37-element to a 150 one, through the formula of the former. 

Afterwards, he checked the sieve past point 72, to see whether it retains a similar 

intervallic structure as the initial segment. In particular, he made a note of all the 

successions of semitones. In a separate page in the sketches, the same procedure is found 

for the complement of the (37-element segment of) the sieve. He also made a note of the 

points that are common to both the sieve and its complement, past point 73. In both cases, 

it seems that the longer segments did not qualify the aesthetic criteria: their intervallic 

succession frequently includes strings of semitones longer than 2. In the inner symmetry 

chart, this formula would appear with 9 out of its 18 modules outside the red curve. In 

fact the modules that would appear inside the limits of inner symmetry would be the ones 

that are the same with the formula that the final algorithm suggests. Furthermore, the 

final algorithm suggests 16 modules, which imply a greater symmetry. 

The range and density of the sieve are similar to those of SWF: D= 37/72 = 0.51, 

when SWF' has one more module in its formula (16). If we compare its inner symmetry 

chart (Figure 6.68) with that of SWF (Figure 6.66) we see that the more recent sieve is 

slightly more asymmetric. They both have a non-periodic module, but SWF' has 9 of its 

modules in the R=2 region of the chart and only one module with R=4, whereas in 

SWF there are 7 and 3 modules in these two regions, correspondingly. 

The complement, labeled CSWF', is shown in Figure 6.69. Like CSWF it is 

inner-symmetric and is more dense than its original, but it has more modules (17). 

Compared with CSWF (with 14 modules) it is less symmetric by three modules. This is 

also shown in the inner symmetry chart. There are as many modules with R=2 as there 

are with R=3 and only two modules with R=4. The connection between SWF and 
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SWF' is shown in terms of inner symmetry: in both cases, the original sieve has one non- 

periodic module and the complement is produced only by periodic modules. 

Another version of SWF' was used in Krinozdi (1991, for orchestra). Figures 6.70 

and 6.71 show the sieve and its complement. We see that only two pitches at the bottom 

of the original sieve are different from SWF, and the three lowest pitches of the 

complement are different from CSWF'. As with the previous sieves, the sieve of this 

work has one non-periodic module and its complement has only periodic modules. The 

density of the two is the almost same (D = 33/64 = 0.52 and D= 35/68 = 0.51 

respectively) and in both cases there are 15 modules. In terms of inner symmetry, the 

sieve of Krinoidi (Figure 6.70) is very similar to SWF' (although with an extra module): 

it has most of its periodic modules in the two regions at the right, where R=2 or 3, and 

only one with R=4. The complement of the sieve of Krinoidi (Figure 6.71) is slightly 

more symmetric than CSWF'. Since these two are essentially the same sieve, the 

inclusion of an extra module with R=5 in the former, accounts for this increased 

symmetry. 

In Kyania Xenakis also used a sieve that is similar to the ones analysed in this 

section, but also to some versions of the sieve of Nekuia. It is shown in Figure 6.72. Only 

its upper half derives from CSWF, whereas the lower range differs significantly. In its 

inner symmetry chart, one module is non-periodic and only one module is more 

symmetric than the majority of R=2. 
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6.14 ASK 

For Echange (1989, for bass clarinet and ensemble) Xenakis used a sieve, which is 

unique to this work. Its range is 82 semitones, and differs from most of the sieves of the 

late period in that it includes stings of semitones longer than three. In the sketches he 

labelled it ASK, an obvious reference to the ASKO Ensemble for which the work was 

composed. Xenakis used the same version of his algorithm as he did for SWF'. Also, like 

SWF' he derived the formula of the initial 43-point segment and produced a longer sieve 

in order to check its properties. This time it was a segment of 200 points and he noted not 

only the long strings of semitones, but also intervals that exceed the major 3rd. Unlike the 

formula of the previous sieve, the formula in the sketches of Echange includes only one 

module where M> I. The inner symmetry chart for the formula found in the sketches is 

shown in Figure 6.73. The final algorithm suggests a formula that that differs precisely in 

the three non-periodic modules of the formula of the sketches. This formula, along with 

the sieve, is shown in Figure 6.74. It has 15 modules, all of which are periodic, with R- 

values reaching 6. Like with the previous sieves, the complement (shown in Figure 6.75) 

is less symmetric. 82 It has 19 modules, of which one is non-periodic, that produce 39 

points. The non-periodic element is F#6, produced only by module (32,30). 

6.15 Epicycle (1989, for violoncello and ensemble) 

The sieve of Epicycle was used by subsequent works, such as Knephas (1990, for choir), 

Tuorakemsu (1990, for orchestra), with alterations in Tetora (1990, for string quartet), 

and Roai (1991, for orchestra). It is shown in Figure 6.76. Its range is 81 semitones, 

which is an expected one, but the number of points is somewhat larger than most of the 

82 The formula for the complement of ASK in the sketches produces the sieve up to B7. 
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sieve of the later period: 45 points produce a density D=0.55. The inner symmetry chart 

shows that there is a large number of modules (22) with two of them being non-periodic 

[(29,28) and (30,28)]. The maximum starting points for M= 29 and M= 30 are I= 23 

and I= 21 respectively; and the highest I for a sieve of n= 81 is I= 26. That is, there is 

no M-value for an inner-symmetric sieve with n= 81 that starts on point 28. The points 

that are not part of a periodic module are 28 itself and 58, which correspond to pitches E4 

and A#5. We have to note that even thought E4 is covered by two modules, this does not 

mean that it belongs to an inner periodicity; this is because it is produced only by non- 

periodic modules (albeit more than one). 

In Tetora Xenakis used a sieve that derives from that of Epicycle and its 

complement. Figure 6.77 shows the one that derives from the original sieve of Epicycle. 

From its 33 points only 24 are common with the original sieve. The inner symmetry chart 

shows a great degree of symmetry: 12 modules, all periodic with R-values greater than 2, 

except for one module. The range of the sieve is much smaller than that of the original, 

but its density is D=0.57, which is slightly higher. On the contrary, the complement 

does not share the same degree of symmetry. Figure 6.78 shows the complement as it 

appears in the sketches; in fact it is only an exact complement after A2. The large number 

of non-periodic modules in this sieve show its highly asymmetric structure. Its range is 

59 semitones, but its density is much lower, D=0.46. 

6.16 Paille in the Wind (1992, for violoncello and piano) 

A segment of the sieve of Paille in the Wind was in fact used in a work of the previous 

year, Dox-Orkh (for violin and orchestra). It is shown Figure 6.79. Its 20 periodic 
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modules produce 43 points in a range of 80 semitones. The symmetric structure is shown 

in its inner symmetry chart: it is a typical inner-symmetric structure, with the most of the 

modules in the R=3 region of the chart and three with R=4. As with several sieves of 

the same time, it has very few major 3rds; especially in the middle range, it has more 

frequently the interval of a tone. Its density (D = 0.54) is slightly lower than that of the 

sieve of Epicycle. When compared to the latter, the sieve of Paille in the Wind is more 

symmetric: these two sieves occupy the same range with roughly the same density, and 

the more recent sieve has 20 modules that are all periodic. Unlike the sieve of Epicycle, 

these modules are all concentrated, with no module appearing isolated in the left of the 

chart. This is natural for an inner-symmetric sieve with a large number of modules. 
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7 Inside-Time Analysis 

7.1 Inside-Time Employment of Sieves 

The term `inside-time' employment of sieves, does not necessarily mean rhythmic sieves. 

The inside-time refers to the placing and treatment of sieves in the composition. In this 

chapter I will explore the most frequent ways that sieves are treated in the late music; I 

will provide examples of such treatment and I will analyse in more detail three works of 

the period: Akea, A I'äle de Goree, and Tetora. Appendix 3 provides the full scores of 

these works, as well as score excerpts of other works I will refer to. Xenakis used his 

sieves in various ways, but always their outside-time aspect remained more important for 

him. In almost all cases, sieves are used so that their intervallic structure is revealed in the 

most immediate manner. Inside time, sieves are treated in ways that can be either linear 

or vertical. The following quotation shows that sieves are not related to melodies and 

chords; rather they function by generating different timbres in the different ranges of the 

sieve: 

The structure of the melodic scale is very important, not only in melodic patterns 
- melodies - but also in producing chords of a different timbre. If you take a 
given range, and if the structure of the scale is rich enough, you can stay there 
without having to resort to melodic patterns - the interchange of the sounds 
themselves in a rather free rhythmic movement produces a melodic flow which is 
neither chords nor melodic patterns. [... ] They give a kind of overall timbre in a 
particular domain (Varga 1996: 145). 

That is, it is not necessary to construct melodic or harmonic patterns. The issue is the free 

interchange (movement not to any specific direction) of sounds themselves - pitches or 

chords follow one another on the continuum of the sieve. In any case, whatever kind of 
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movement (or stasis) we have, we do not expect the music to jump to and from distant 

pitches and chords: 

Tension is important for the melodic patterns, the chords, and for the flow of the 
music itself. In chromatic and well-tempered scales you can generate tension only 
through jumps, as in serial music. When the notes are closer to each other, as in 
the chromatic scale, you lose tension, unless you apply a kind of sieve locally - 
that is, you choose intervals that produce some tension (Varga 1996: 145). 

The idea of tension (among others) motivated Xenakis to build sieves by juxtaposing 

smaller and larger intervals. On another level, the same aesthetic criterion can be found in 

the tension between symmetry and asymmetry, as a general principle in Xenakis's 

thought (cf. Xenakis 1996: 147). Having constructed a scale, a sieve in our case, in such a 

way that a certain succession of intervals is achieved, then its structure must be made 

perceptible merely allowing this intervallic succession to reveal its character. In other 

words, scale-construction is an essential part of the compositional process, located 

outside-time. 

In general there are three means of producing timbres with sieves. The most 

obvious is allowing the sieve's intervallic structure to be perceived as a continuum (linear 

treatment). The notion of sieve-as-timbres is also strongly related to the construction of 

the chords, i. e. a type of cluster applied to the continuum of the sieve. I will refer to such 

chords as sieve-clusters. Finally, an extension of the idea of the sieve-cluster leads to the 

construction of chords. Chords in Xenakis's later music might not always derive directly 

from the sieve; but their intervallic structure is similarly irregular and consists of a 

combination of smaller and larger intervals. 
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The style of Xenakis's music in the later period is characterised by the 

abandonment of the earlier glissandi and microtonal structures. Gradually, he arrived at a 

sieves and chords that have the semitone as their unit distance; his compositions became 

increasingly based on sieves and the general aesthetics of sieve construction and 

employment. Once sieves were constructed they were used in less formalistic ways than 

earlier works, e. g. Nomos Alpha (1965-66). The transition took place in the mid 1980s, 

although it had started with the first employment of sieves in the late 1970s. In particular, 

although Xenakis used certain types of sieves as early as 1980, he abandoned his older 

style of writing some years later. As a further progress of Xenakis's compositional 

technique, Solomos (1996: 96) refers to the declamatory rhythms and standard 

instrument-group dialogues in the works after 1984. These elements replaced the style of 

previous periods. For example, in 1986 he composed six works that make minimal use of 

glissandi. However, with sieves of the later period linearity is in some way retained: it is 

precisely the free interchange of the notes, without being necessary to resort to melodic 

shapes or patterns. Similarly, the idea of mass sounds (which he had introduced from the 

initial stages of his compositional output) is also retained with sieves. In many cases his 

orchestral works exhibit large blocks of sounds that are based on simultaneous 

expressions of the same or different sieves. Before I go on to analyse some works of later 

period more deeply, I will explore some of the characteristic ways Xenakis used sieves. 

Probably the most characteristic sieve-employment technique is the one I have 

already mentioned: `halo sonority' (see Solomos 1996: 84-6). This is the characteristic 

opening of Jonchaies, but also of later works, such as Echange (1989) and Tetora (1990), 

179 



or the final section of Shaar (1982). 83 In the latter cases, the technique originally applied 

to orchestral scores was used in smaller ensembles. In order to do this, Xenakis altered 

slightly the method of application. In Echange and in Tetora, the opening is similar: there 

is one line that stands out from the other instruments and expresses pitches from the 

work's sieve (see Appendix 3). In Echange this is the bass clarinet, and in Tetora the 

second violin. Five instruments from the ensemble in the former, and the three remaining 

strings in the latter, play the same notes with the main melodic line, but with softer 

dynamics. This results to the following effect: each new pitch is doubled by an additional 

instrument, which holds it until it has to double another pitch of the main line again, and 

so on. Thus, the first few pitches bring about a thick sonority that is complete when all 

the instruments in the passage have entered. It is important to note here that this is not 

intended to be perceived as an accompanied melody. The elements of the sieve are not 

used in a pattern; rather, they are neighbouring pitches (on the continuum of the sieve) 

that produce a certain timbre, enhanced by the `artificial reverberation' produced by the 

other instruments. 

Other inside-time techniques Xenakis used for the employment of sieves include 

the graphic approach of arborescence and the algorithmic process of cellular automata. 

The former is a technique first used in Evryali (1973, for solo piano) and it is a case of 

several simultaneous melodic lines that start from a common source and result in an 

expansion by branching out (see Matossian 1986: 228-38; Solomos 1996: 69-72; 

Vargal996: 88-91; Squibbs 1996: 116-22 & 2002: 100-3; Gibson 2003: 162-6; Harley 

S3 Harley argues that `[t]he heterophonic bundling of the melody [... ] is a technique Xenakis adopted as far 

back as Terretekhtorh [1965-66]' (2001: 40). 
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2004: 79-88). 84 Although this technique is characteristic of an earlier period (and was not 

used only in the piano), it is still found less frequently in later works that involve the 

piano. Cellular automata is perhaps Xenakis's only formalised technique not developed in 

his theoretical writings, except in the preface to the revised edition of FM (xii). Cellular 

Automata are discrete dynamic systems, based on simple rules but exhibit complex self- 

organising behaviour. The earliest work where there is evidence of this technique is 

Horos (see Hoffmann 2002: 124-126; Gibson 2003: 166-8; Harley 2004: 176-180; 

Solomos 2005b). 

In many works Xenakis used one sieve only, in combination with its complement 

and/or its (cyclic) transpositions. But there are also many compositions where he used 

several sieves, which as I have shown, might belong to previous works. In Keqrops 

Xenakis also used two transpositions of the sieve of Nekuia. Additionally to these two 

transpositions, the piano part in the final section of Keqrops plays eight sieves that are 

based on segments of different transpositions of the sieve of Nekuia. They are shown in 

Figure 7.1 in the order they appear in the composition. In bars 160-162 (see Appendix 3), 

the piano plays rapidly up and down on the sieves' continuum, expressing different 

versions of the same sieve in succession; but also, in some cases the two hand parts play 

different versions simultaneously. In Figure 7.1 (bar numbers as shown at the left) the 

segments of the intervallic succession that are underlined, do not derive from any other 

sieve, but are used under transposition among three different versions in the final section 

of Keqrops. 

84 in Synaphaz (1969, for piano and orchestra) Xenakis employed superimposed melodic lines, that can be 

thought of as pre-arborescences (see Solomos 2002: 13). 
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The case of a free interchange of sounds is also very frequent. Although Xenakis 

described this idea in the discussion of the ascending/descending movement on the sieve 

of Nekuia in Serment (see Varga 1996: 144-5), a free interchange of sounds might also 

relate to a free, repetitive circulation of pitches that belong to a relatively short segment 

of the sieve. Figure 7.2 shows the sieve segments used in the strings in bars 47-50 of 

Horos (see Appendix 3). The sieve they are based on is actually the complement of one 

of the versions of the sieve of Nekuia; it is the complement of the sieve of Akea, shown in 

Figure 6.47. Each string instrument plays in synchrony with the rest, on 8 pitches of the 

sieve that interchange freely. The pitches of each set are paired in tetrachords according 

to their position in the set. In another case of similar inside-time treatment, Xenakis 

paired the elements in a different way. In bars 68-70 of Ata (see Appendix 3) the strings 

play a set of 6 pitches each (Figure 7.3). The pitch content of these sets does not derive 

from a sieve, but their structure is still an irregular alternating of small and large 

intervals. Each pitch of each set is associated with a pitch of another set, so that the result 

is a succession pentachords. But the association is not according to their respective 

position in the set; it is rather arbitrary and the result is the pentachords of Figure 7.4. 

This way, Xenakis produced a differentiated structure from a set of pitches that in their 

outside-time arrangement would tend to chromatic saturation. In Ata Xenakis also used a 

technique that he employed in many subsequent works: that of chromatic clusters whose 

top pitch belongs to the sieve. This is the case with the opening of Ata (see Appendix 3). 

In the score the composer provides the limits of the cluster and with a vertical line he 

denotes that all the chromatic intervening pitches should be played as well. Ata in 

particular opens with a succession of such chromatic clusters in the strings, based on the 
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sieve and its complement. Thus, sieves are used to produce local mass sounds that retain 

the original intervallic structure. 

The sketches of Keqrops provide the way Xenakis produced a set of tetrachords 

used in the composition. In fact, these tetrachords are sieve-clusters, but from a sieve that 

is neither used in its entirety nor elsewhere in the work. Figure 7.5 shows these 

tetrachords along with Xenakis's labelling and the intervallic succession for each one; 

note that the lowest two tetrachords do not follow the descending order of the others. Six 

out of the eight tetrachords are used in bars 126-137 of Keqrops (see Appendix 3). They 

appear in the woodwinds and the strings, as a polyrhythmic, multilayered alternation of 

the pitches of each tetrachord. The arrangement of the tetrachords is shown in Figure 7.6 

(note that the appearance of the tetrachord labels in this table does not account for the 

length tetrachords appear). In bars 133-137 each group is divided in two parts that play 

different rhythms. Each instrument group plays one tetrachord at a time (even when it is 

divided into to parts), apart from the two clarinet parts which play two tetrachords. 

The elements of each tetrachord appear in random succession; this free 

interchange might occasionally move up and down the tetrachords or alternate, but does 

not repeat pitches. However, there is one layer more uniformly organised than the others. 

The flutes in bars 126-131 play permutations of the pitches of tetrachord y (pitches F5, 

G5, B5, and C6). A 4-element set has 24 distinct permutations (4! = 24); in this passage 

Xenakis used 11 of them, in a total of 15 occurrences of the tetrachord. These 

permutations are shown, in the order they appear, in Figure 7.7. Each repetition of the 

tetrachord also comprises a permutation of 4 time-values. These are the values of 1,2,3, 

and 4 demisemiquaver (demisemiquaver, semiquaver, dotted semiquaver, and quaver); 
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they are shown under the pitch names in Figure 7.7. From the 24 permutations of these 

values too Xenakis used only 11.85 

7.2 Akea 

From the opening, Akea is characterised by a sense of contrast between and the piano and 

the strings. Mostly, the two parts express the sieve and its complement simultaneously 

(Figures 5.2 and 6.47 respectively). The original sieve is heard at the opening bars of the 

work, as the piano's wide broken chords, while the strings play pitches derived from the 

complement. 86 

The first section of Akea (bars 0-20) is a typical contrast between the parts; Figure 

7.8 shows the sieve and the complement, as played by the five instruments in the section 

(where S= Sieve and C= Complement). Until bar 18 there is a gradual exchange 

between the two parts (piano and strings) from the sieve to the complement and vice 

versa. The strings gradually pass on to the original sieve, in bars 14-18, where the piano 

pauses in order to play again the complement, this time not with chords, but with an 

unfolding of a two-branch arborescence. This contrast between the parts is typical for all 

the sections of the work. 

85 It does not seem that Xenakis used here one of the kinetic diagrams of the symmetric group S4. Both on 

the pitch level and that of the time-values, the transformations that might correspond to a kinetic diagram 

stop at the 5th occurrence of the tetrachord (end of bar 127). Note that this is also where the time-values 

appear partially (1 14 4). Cf. Gibson's analysis of a similar case in Epicycle (2002: 48f£; 2003: 152-4). For 

the application of Group Theory by Xenakis see also Vriend, 1981; FM 201-41; and Schaub, 2005. 

86 In many cases in the work, the sieve is not entirely identical to the one in the sketches. This happens at 

the extreme low and high ranges. 
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Bars 21-36 comprise a very characteristic section of Akea, that of a regular 

semiquaver rhythm carried out by the piano. In bars 21-29 it plays dyads (in the two 

hands) that are taken from the complement of the sieve. But the accents on this regular 

rhythm are irreular and different for the two hands. Also, there is an occasional two- Z: ) 

demisemiquaver reiteration of a chord, that amplifies the effect of the accent. Figure 7.9 

shows the accented dyads for both hands separately. Bold numbers stand for the time- 

points of an accent that follows a two-demisemiquaver reiteration; brackets stand for 

unaccented dyads that follow such a reiteration. We see that the arrangement of the 

intervals between the accents and the reiterations is an irregular one, consisting of 2- and 

3-semiquaver intervals, with occasional single semiquavers. The same holds for the 

dyads, as they are picked up from the complement, and not used in any regular pattern. 

The strings intervene with dense chords (employing double-stops) taken from the 

original sieve; again, a fairly typical case of contrast. The previous rhythm dissolves, and 

in bar 36 both parts conclude the section with a reiteration of a chord in homorhythm 

(shown in Figure 7.10). Here the contrast is not as clear: only three of the piano 

tetrachord's pitches are members of the sieve. The first violin and the viola play the 

sieve, the second violin the complement, and the cello plays a dyad made up of both. The 

effect of this situation is not unique in the work. In several cases the music departs from 

the original sieve (or the complement), which initially is established as the fixed tonal 

space of the work, to play either a transposition, or unrelated material. A similar process 

takes place at the coda. 

Following bar 39, there is an absolute departure from the sieve. For two bars (40- 

42) all instruments (except the second violin) play a `semi-connected' melodic line, as 
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indicated in the score. In the context ofAkea, melodic line in the piano actually means a 

two-branch arborescence, and in the case of the strings, simultaneous melodic lines in 

polyrhythm. The character of these melodic lines is distinctly different from the sieve: 

they tend toward chromaticism. This melodic flight is included between two instances of 

reiteration of the chord of Figure 7.10, which takes place again in bar 45 in the strings 

only, and which signifies the end of the section. From an analytical point of view, 

chromaticism is evidence for classifying bars 40-42 as not related to the sieve (at least not 

in a specific way). From the aesthetic point of view, this reflects Xenakis's tendency to 

chromaticism in his later compositions, especially the ones dating from the early 90's 

onwards. 

In the middle section of Akea there is more than mere contrast between the 

instruments. We also observe an alternation between the sieve, its complement and their 

transposition; also, a partial departure from the sieve that takes place in each instrument 

at a time. The section starts at the end of bar 45, where (while the piano pauses) the 

second violin plays a melodic line based on the original sieve, followed by the viola and 

cello in bar 46 and the first violin in bar 47 (also with the original sieve). 

In bar 48 the piano plays chords derived from a T_12 transposition of the sieve. 

This is the first instance of transposition in the work. The fixed tonal space is therefore 

differentiated from low to high, rendering a different timbral quality to any given region 

of the sieve. By transposing part of the sieve, Xenakis transfers a particular timbral 

quality to another, higher or lower register. The piano chords of bars 48-50 are typical 

examples of sieve-clusters (for each hand part). Sieve-clusters function as timbres that 

emerge from the intervallic structure of the sieve. Now, by transposing the sieve-clusters, 
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Xenakis aims at transferring the various timbres of a certain range of the sieve (with 

apparently more interesting timbral quality) to another. Figure 7.11 shows the T_12 

segment used by the piano sieve-clusters in bars 48-50. The actual range of the music is 

E2 to C5. The intervallic structure of this range in the original sieve (To) is 

24122131413141 

and the intervallic structure of the T_12 segment is 

314131414113131. 

The latter is favoured by Xenakis apparently for its intervallic structure: it is closer to the 

original idea of the interlocking 4ths. In other words, it is a clearer juxtaposition of small 

and large intervals. As I will show later, this is not the only case in the work where this 

specific range of the original sieve is being favoured. It is also the segment of the 

intervallic structure that derives from the original sieve of Nekuia (and which remains in 

many of its versions). 

The piano sieve-clusters are the only case of transposition in the piano for this 

middle section. The strings on the other hand, play downward octave transpositions of 

both of the sieve and of its complement. The versions of the sieve in the middle section of 

Akea is shown in Figure 7.12. Apart from the initial sieve-clusters in the piano and dyads 

in the strings, the middle section is mainly based on linear motion that changes between 

the different versions of the sieve at no specifically defined point. The table in Figure 

187 



7.12 is in fact an approximation; it shows only the bar numbers when the version of the 

sieve was introduced. 87 The new versions do not always start exactly at the same time, 

and occasionally the linear motion departs momentarily from the sieve. Question marks 

stand for longer such deviations from the sieve. In any case, Akea is characterised by the 

distinction in two parts (piano and strings) that are based on complementary sieves; but 

also it largely relies on octave equivalence. 

In the fourth section (bars 71-78) the piano ends up in a complex polyrhythmic 

passage of alternating sieve-clusters. These sieve-clusters are indirectly related to the 

sieve's complement. From a certain range of the sieve's complement, the tetrachords of 

Figure 7.13 can be produced. In the same way that the elements of a sieve (unlike the 

major diatonic scale) do not have any specific function in relation to other elements in the 

sieve, nor do the sieve-clusters. They are rather perceived as timbres - elements of the 

sonority that is the sieve (cf. Solomos 1996: 90-3). 

Figure 7.14 shows all the sieve-clusters of bars 71-78 and Figure 7.15 shows the 

pitch content of these clusters. Considering all the aesthetic characteristics of the sieves in 

Xenakis's later music, the analyst is confronted with an unexpected outcome: not only is 

there no apparent relation to the sieve of Akea, but there is a repetitive structure. The 

pattern 1113 is repeated four times before the sieve dissolves into chromatic saturation. 

In fact, further attention shows that several chords in the passage appear to undergo 

transposition up or down one or two octaves. This transposition index is reflected in the 

sieve of Figure 7.15 as the distance between the repetitions of the aforementioned pattern: 

87 At the end of bar 53 in the second violin there is an indication to play at the higher octave. This causes a 

T+12 transposition of the sieve, which contradicts the general rationale of the passage. 
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it is repeated (transposed) four times at 6 semitones each time, which adds up to 24, i. e. 

two octaves. 

The chords can be taken into account without considering their octave equivalent, 

wherever that might appear in the music (numbers in Figure 7.14 are labels that stand for 

octave-equivalent sieve-clusters). Of course, this might suggest a deviation from, if not a 

contradiction to the aesthetic rule that sieves are intended to obey (the rule of non- 

repetitiveness). However, we should not forget that some extent of repetition seems, in 

several occasions, to serve another criterion favourable by Xenakis; the music establishes 

a regularity in order afterwards to break it (regularity serves as a reference point for 

irregularity). This is also found in the complement of the sieve of Akea. From the middle 

register upwards, there is one short pattern that is repeated three times in the intervallic 

structure: 13113. Now, if we disregard all octave repetitions of the sieve-clusters, in 

other words if we fit them in the shortest possible range, the results is the sieve-cluster 

collection of Figure 7.16, which in turn is based on the sieve of Figure 7.17: apart from 

B3, this is the T_6 transposition of the complement of the sieve of Akea. It is probably one 

of the rare cases when Xenakis used octave equivalence to such an extent. 

7.3 A file de Goree 

Ä Vile de Goree was composed in 1986, for amplified harpsichord and ensemble of 12 

instruments. It is characterised by audibly clear transitions from one sieve to another. 

There are five sieves in the work, labelled here with the roman numerals from I to V and 

are shown in Figure 7.18. Sieves II and V appear more frequently (either as 

upward/downward movement on the sieve's continuum, or as a free interchange of the 
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pitches); III and IV appear only once (bars 15-27 and 45-46 respectively), and sieve I 

appears partially. 

In bar 25, the harpsichord plays sieve II; in the left hand part there is an 

interchange between two elements: F4 is replaced by F#4 and G#4 by G4. The same 

happens at the bassoon in bars 28-30 as well as in the harpsichord in bar 30. In this bar 

we hear for the first time a set of chords that will dominate the following section, until 

bar 59. This short statement of chords serves as a preparation for the following two 

simultaneous chord sequences that do not actually start before another statement of the 

sieve II in bars 31-32. In one of the two sequences, the central role belongs to the 

harpsichord, and the other chord sequence is played by the winds. 

Figure 7.19 shows the chords for the intermitted chord sequence of the 

harpsichord in bars 30-59.88 This sequence takes place at the same time as the one in the 

winds, but the two alternatively pause or join, so that occasionally one of the two takes 

over for a moment. The harpsichord sequence is based on two elements: an irregular, fast 

alternation between two tetrachords (either c/d or e/f), and a regular, semiquaver iteration 

of tetrachords a and b. The former element takes place in a rhythmically irregular way 

and at different length each time, while the latter occurs as an occasional (but random) 

punctuation, that takes place in a constant way. This pattern, i. e. the irregular alternation 

of two chords followed by a regular statement of another two, is where the (more 

concrete) final brass chord sequence is based on. Occasionally, the harpsichord is joined 

by the ensemble with the chords in Figure 7.19. Until bar 49 the irregularly alternating 

chords are always c and d, and after that, always e and f. 

ss Note that the labelling of the chords is only valid in the context of each sequence. 
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From bar 34 onwards there is a chord sequence in the brass (plus the bassoon) that 

exhibits three layers of activity. These layers are distinguished by three characteristics: 

the type of the chords, the instrumentation, and the dynamics. The chords for each layer 

are shown in Figure 7.20. The first layer relates to the trichords that are played by the 

bassoon, the horn and the trombone. They are played mf against the mp and p of the other 

instruments (these dynamics do not remain constant throughout the segment, but the z: I 

respective relation of loud and soft chords does so). This alternates with the second layer, 

which is a dyad (either a semitone or a tone) and is played by any two brass instruments 

(horn, trumpet, or trombone). These chords alternate with another dyad, which forms the 

third layer; these are two semitone dyads, but unlike the second layer they are repetitive. 

In particular, they function in filling in the time-points that are not occupied by any other 

chord. 

In terms of rhythm the chords are put in an irregular manner. There are four 

segments of this type of chord sequence: bars 34-39,40-41,47-49, and 51-53. These 

segments are distinguished from each other, either by a short statement of different 

character or by an interruption by other processes (which I will discuss later on). The 

first-layer trichords are scattered through the segments and are scarcer than the dyads of 

the other two layers. Second-layer dyads are played alternatively with the other layers. 

The first and second layers are shown in the table of Figure 7.20. The leftmost column of 

the table shows the bar numbers of the respective segment of the chord sequence. Bold 

characters refer to the first-layer trichords and normal typeface to second-layer dyads. 

The unit distance is the semiquaver and the (time-)intervallic structure is shown in grey 

numbers. The third-layer dyads would occupy the time-points that are not occupied by 
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the other two layers; 89 for this reason it is not necessary to include them here. The table 

shows that the chords are arranged in an irregular way and with great asymmetry between 

the length of the segments. This is a general case in the A file de Gor je. There are only 

some chord sequences that are arranged in a less irregular way, and this is (as I will 

show) only when they are simultaneous. 

In bar 57 we have the first appearance of a sieve that is very frequent and 

characteristic of A file de Goree. This is sieve V shown in Figure 7.18.90 It is played by 

the ensemble while the harpsichord pauses. The exploration of this sieve is achieved 

through an intricate way that takes place in three layers: the woodwind, the brass and the 

strings - each group having its individual rhythmic character. The two groups of winds 

move freely up and down the sieve's continuum, but each instrument starts on a different 

element. These elements are very close to each other and in most cases neighbouring 

pitches appear simultaneously. In other words, we hear (for the most part) successive 

sieve-clusters. This creates a thick texture that allows the sieve's local properties become 

manifest both vertically and horizontally. In the treatment of the strings we have the 

unique occasion in the work where Xenakis uses transposition. The first violin plays the 

sieve, while the second violin, the viola, and the violoncello play T_1, T_2, and T_4 

transpositions of the sieve, respectively. This means that, in terms of intervallic 

succession, all the vertical clusters in the strings are of the type 211. 

s9 Apart from three exceptions, that in the table of Figure 7.20 appear with intervals other than 2 or 3. 

90 The lowest pitches in this appearance of sieve V are G3, A3, B3, and C4. From D4 upwards the sieve is 

identical to the one in Figure 7.18. 
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Just after the fluctuation on the continuum, all the parts of the ensemble arrive at a 

large chord in the middle of bar 59. The structure of this chord consists of two parts 

attributed to the winds and the strings. The winds' part belongs to sieve V and the strings' 

part to its complement. Sieve V reappears immediately afterwards, in bars 59-62 (in bar 

60 some exceptions cause a slight departure from the original sieve). 

Bars 63-80 comprise a chord sequence (in two segments) similarly characteristic 

as the processes in bars 34-53. There is a chord sequence in the winds, that takes place 

again in three layers: two types of chords, and a superimposed repetitive gesture in the 

high register. The two types of chords are distinguished by the dynamics and the 

instrumentation. There are two instrumental groups: the brass (plus the bassoon) and the 

woodwinds (plus the trumpet). The former group (first layer) play f tetrachords in 

alternation with p tetrachords (second layer) played initially by the latter group and 

afterwards by the former (more detailed analysis will follow). Figure 7.21 shows the 

tetrachords of both layers. The first-layer chords do not exhibit any systematic mode of 

construction. The first one is the only trichord, and the following 7 are tetrachords. The 

first eight chords comprise the first layer in the first segment of the sequence (bars 63- 

74); the final large chord replaces all the eight first-layer chords in the second segment of 

the sequence (bars 76-80). 

The second-layer tetrachords have an intervallic structure of 292 semitones (see 

Figure 7.21). 91 The six second-layer tetrachords appear in the first segment of bars 63-71 

(played by the woodwinds) and in the second segment (bars 72-74) their one-octave 

downward transposition is played by the brass. Figure 7.21 also shows the intervals 

91 With three slight deviations in bars 77,78, and 79. 

193 



between the six tetrachords (in semitones). We see that the intervallic structure is 

borrowed from the middle range of sieve II (in retrograde). The third-layer gesture is 

either an alternation or a combination of the high A5 and E6 by the woodwinds; this dyad 

also appears later held in the strings. In bar 75 the high tremolo A5 and E6 are, for a 

moment, taken by the harpsichord while the ensemble reiterates the final, large first-layer 

chord of Figure 7.21. This chord appears throughout the second segment of the sequence 

(in the place of the preceding eight), while the second-layer tetrachords remain the same. 

The third-layer tremolo high A and E are now played by the strings one octave higher. 

In bar 99 all the parts of the ensemble stop on a trill, apart from the flute that is 

based on a sieve, that consists of the two main sieves of A file de Goree: sieve V up to 

E3 and sieve 11 from G3 upwards - see Figure 7.22. A new section starts in bar 102. The 

harpsichord's sieve comprises another kind of composition of two different elements 

(Figure 7.23). As with many other cases in the work - already mentioned above - there 

are three layers of activity in the harpsichord. The section starts with a chord in the first 

layer, a nonachord, which is reiterated alternatively with random iterations of the chord's 

pitches (second layer). On the third layer, the harpsichord plays occasionally, short 

segments of the sieve, which consists of the conjunction of sieve V up to D#4 and of the 

ennead from F4 upwards. 

The final section (before the coda) consists of four simultaneous chord sequences. 

They are played by the four parts: the harpsichord, the woodwinds, the brass, and the 

strings. 92 The chords of each part are shown in Figure 7.24. The harpsichord, the brass, 

92 Gibson has shown that these chord sequences are largely based on rhythmic motives appropriated from 

Idmen B (1985, for six percussionists), bars 29-30 (2003: 220-2 & 2005: 8-9). 
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and the strings play trichords (apart from a double trichord in the harpsichord). The 

woodwinds play the type of tetrachords that appeared in the second layer of the sequence 

in bars 63-80 (Figure 7.21). That is, their intervallic structure is 292 semitones. But in 

relation to the previous sequence, they also have an additional tetrachord that stands out 

as different; this is tetrachord g in the woodwinds' chords in Figure 7.24. Furthermore, 

there is a dyad, f, whose two missing elements are included in g; in turn, the high D# in g 

differentiates it from the others (in terms of intervallic structure). 

Unlike the sequences analysed so far, the woodwinds' sequence is periodic. There 

is a periodicity of 14 semiquavers which is marked by a two-demisemiquaver reiteration 

of tetrachord g. This is also the chord that the woodwinds arrived at in the beginning of 

bar 126. The end of the previous process is based on sieve I. In bar 125 the music departs 

from the sieve with the addition of G#4 - the lowest pitch of tetrachord g. Examining the 

intervallic structure of the woodwinds' tetrachords, we could say that it can be 

constructed by transposing two elements of a four-note (chromatic) cluster, one octave 

upwards. For example, the chord G#4-Bb4-G5-A5 could be said to derive from cluster 

G4-G#4-A4-Bb4 whose first and third elements (G4 and A4) have been transposed one 

octave higher. The cluster tetrachord g would derive from, consists of the elements of 

sieve I with an additional G#4. Therefore, the addition of G#4 is intended to prepare the 

construction of tetrachord g in bar 126. 

Each occurrence of a period of the woodwinds' sequence has a specific structure, 

both rhythmically and in terms of content. The iterations of tetrachord g alternate with 

accented iterations of any of the remaining 6 (a to f). Since there is an iteration on every 

semiquaver, in each period there are 13 iterations (the first is a two-demisemiquaver 
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reiteration of g); 7 of them are unaccented iterations of g and 6 are accented iterations of 

some of the remaining 6. Figure 7.25 shows the accented chords in all the 12 periods of 

the woodwind chord sequence in bars 127-137; numbers stand for the distance, in 

semiquavers, between accented tetrachords. (Recall that in the beginning of each period 

there is a two-demisemiquaver iteration of g, which is also played on all unaccented 

semiquavers. ) Since there is space for 6 (accented) chords in each period, one would 

expect that Xenakis would have applied here several of the permutations of the 6 

tetrachords. However, the first accented tetrachord in each period is always the same (a); 

the rest are taken randomly and in every period there appear either 4 or 5 tetrachords. 

In terms of rhythmic organisation the sequence can be examined in relation to the 

iterations of accented tetrachords only, in the sense that the unaccented iterations 

comprise the rhythmic complement. These accented iterations take place every 2 or 3 

semiquavers. In every period there are three 2-semiquaver and two 3-semiquaver 

intervals (apart from one exception that I will mention later). These two intervals are 

arranged in two ways in the sequence: alternating (2 323 2) and consecutive (3 322 2). 

Xenakis generates the rhythmic structure of each period by selecting some of the cyclic 

permutations of these two ways of arrangement. Since each arrangement has 5 elements, 

there are 5 cyclic permutations of each, making a total of 10 permutations; from these 

Xenakis used only 7. In the sequence there are 4 permutations taken from the first 

arrangement (found at periods 4,6,7,8,9,10, and 12) and 3 from the second (periods 1, 

2,5, and 11 - see Figure 7.25). The only exception is found in the 3rd period where there 

are four 2-semiquaver intervals and one 3-semiquaver, with an additional single 

semiquaver to complete the period. 
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The case with the rest of the sequences of the section is more straightforward. The 

strings share a similar rhythmic structure with the woodwinds. There is a periodicity here 

as well, but of 15 semiquavers. The sequence is shown in Figure 7.26; 93 unlike the 

previous example (which included only the accented tetrachords), this one includes all 

the trichords of the strings in Figure 7.24. There are 11 complete occurrences of a period, 

which are again marked by the two-demisemiquaver reiteration of a chord (the first chord 

in each row of the table in Figure 7.26 represents this double reiteration). However, this 

reiteration corresponds to any of the 6 in the sequence and not just to one, as was the case 

of the woodwinds. The accented chords occur at different points in each period and are 

shown by the underlined trichords. We see that there is a pattern for only part of the 

sequence: the 1st, 2nd and 6t' periods do not follow this pattern. As in the brass sequence, 

apart from the initial trichord there are 6 occurrences of a trichord in each period; and 

although there are 6 trichords in total, there is not a pattern in their selection (in each 

period there are between 3 and 5 of them). Similarly, the time-intervals range between 1 

and 3 semiquavers, and Xenakis used 7 distinct intervallic successions. 

The brass keep repeating 5: 4 rhythmic cells where all the 4 trichords of Figure 

7.24 appear each time. These cells are based on the irregular rhythm of the chord 

sequence of the harpsichord in bars 30-59. There are six different rhythmic cells, but all 

consist of two parts (see Figure 7.27). In the first part of the rhythmic cell there is an 

alternation between trichords c and d and in the second part there are two semiquavers 

with trichords a and b. The total sequence has 42 random occurrences of the 6 rhythmic 

cells, as shown in Figure 7.27. The harpsichord's sequence is the most randomly arranged 

93 Question marks in the table of Figure 7.26 denote trichords that are only used once. 
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among all the instruments. It is marked by irregular triplet and duplet reiterations in the 

right hand, which alternate with single chords in every semiquaver, whereas the left hand 

plays, at random and scarce time-points, the chords that appear in the lower staff of 

Figure 7.24. 

7.4 Tetora 

The opening of Xenakis's third string quartet (1990) is a clear articulation of its sieve 

(shown in Figure 6.77), played by the first violin and with an artificial reverberation (halo 

sonority) by the other three strings. The sieve is constantly heard up to bar 21, where a 

heptachord intervenes, but it is less obvious later, in bars 27-30. After this point, the sieve 

alternates with its complement, in short sections that occasionally overlap (e. g. in bars 

34-36 the end of a section with the complement overlaps with the beginning of a section 

with the original sieve). In bars 68-69 there is a halo of the T+1 transposition of the 

complement; the original sieve is heard for the last time in bars 76-82; from this point 

onwards there are either linear passages not based on the sieve or chord sequences that 

dominate the end of the quartet. 94 

In bars 27-30, the sieve is treated in a less straightforward way. The actual pitch 

content of the passage tends to chromatic saturation in the middle range (see Figure 

7.28[a]). Only the part of the collection above C#5 belongs to the sieve. This pitch is 

found half way through the passage in the first violin at the end of bar 28. The literal 

manifestation of the sieve takes place at the first violin's ascending passage up to the end 

of bar 30. The `top voice' (i. e. the highest pitches) is shared between the two violins; this 

94 The sieve-segments that are not related to the main sieve of the work are shown in Appendix 2. 
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top voice plays the sieve and this is an evidence that this sieve still plays a structurally 

important role here, although it is not straightforwardly present. The violins and the viola 

play either single notes or dyads, while the cello plays dyads only; all dyads are a perfect 

4th. There are however two exceptions: a) the first violin's C natural in the middle of bar 

28 is the lower note of dyad C-F#, which is an augmented 4th instead of a perfect one. b) 

The F#3-B3 dyad in the viola at the beginning of bar 27 seems to be there in the place of 

dyad F3-Bb3, which is heard throughout the passage. If we take these two exceptions into 

account, we can reconstruct the rationale of the whole passage, which seems to have been 

constructed to create perfect-4th dyads by attaching a pitch below the actual pitch of the 

sieve. This is clear if one excludes all the lower notes in the unfolding of the pitch content 

of the passage. The pitch collection of Figure 7.28(b) belongs to the original sieve (apart 

from G2, G#2 and F3). The F#3 that appears in Figure 7.28(b) is the one found in the 

viola at the middle of bar 29 (and not in the dyad of bar 27). As concerns the second 

exception I mentioned, we can confirm now that pitches F#3 and B3 do not belong to the 

sieve, whereas F3 and Bb3 do so. All the lower pitches of the dyad in the passage, consist 

a subset of the T_5 transposition of the original: it is a matter of two transpositions of the 

same sieve that sound at the time. 

Throughout the quartet there is a type of chord sequence that undergoes a series 

of transformations. Its rhythmic structure is part of a more general system that is applied 

from the first appearance of a chord sequence until the end of the work (cf. Harley 2004: 

202-5). The first appearance of this rhythmic structure is found in bars 21-24; its 

intervallic succession is 

199 



311311231211322211112322221112 

where the unit distance is the semiquaver. 

In this first appearance, the rhythmic structure belongs to a sieve-cluster 

sequence. In all the appearances of the chord sequence (apart from this first one) there is 

a straightforward layering of the quartet in the upper and lower strings. It is the initiation 

of a system of transformations that, as it appears in Xenakis's sketches, consists of eight 

chord sequences with their corresponding time-point sequences (rhythmic structures). 

For reasons that I will come back to later, I will compare the first three sequences. In 

Figure 7.29(a), the upper-case Latin characters stand for the four-note sieve-clusters, 

taken from the original sieve of the work (from C#5 to G6). `X' stands for the low 

heptachord of bars 21-24, shown in Figure 7.30; underlined characters refer to the lower 

strings. Lower case Greek characters stand for chords that belong to the chord set of 

Figure 7.3 1.95 The intervallic structure is stated in grey numbers and under the bar 

numbers is stated the transposition index (this does not apply to sieve-clusters, but to the 

chords that appear later). 

There is a process of gradual specification that takes place on two levels: a) the 

chords, first in the lower strings of the second sequence and then in all strings of the third 

95 The upper staff chords are actually sieve-clusters. (ß is taken from the complement and y-S from the 

original sieve; a is of a similar structure but belongs neither to the sieve nor to the complement. ) However, 

they are here termed as chords, because they belong to a set whose chords are used and transformed 

throughout the composition. The lower staff chords derive (mostly) from the complement, but are not 

sieve-clusters. Also, after bar 115 there is a new six-chord set whose members do not derive from the sieve 

or its complement, but they belong to the same system of metabolae as the chords of the former set. 
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sequence, belong in the chord set of Figure 7.31; b) the process of chord substitution 

from the second to the third sequence is consistent. 96 From now on, all the chords in the 

sequences will either belong to the set of Figure 7.31, or to that of Figure 7.33. During 

this process we have the first realisation in the work of the rhythmic structure of all the 

sequences in the work. 

Metabolae (transformations) in Tetora are of three types: a) substitution of time- 

intervals, b) chord substitution, and c) chord transposition. (From these, only the second 

took place in the first phase of the process of metabolae - Figure 7.29). The second phase 

of metabolae appears in bars 59-85, as shown in Figure 7.32, which exhibits certain 

anomalies in its structure. 97 Part (a) consists of two sections: in the first (bars 59-68) 

there are three sequences in succession. In the second section (bars 69-76) there are 

certain anomalies in the transition from one sequence to the next. It is an incomplete 

realisation (through a process of metabolae) of a compositional system that I will here 

demonstrate. This imperfect realisation can be seen as follows: from the four sequences, 

the one of bars 73-74 appears partially. In the table, its role is shown by relocating it in 

relation to the other sequences (that is, it is shown at the rightmost, although it 

immediately follows the previous one). At this point I have to note that this examination 

ignores the lower strings, as there can be found no systematic application of any kind in 

the process of chord substitution (as I will show, this does exist though in the treatment 

96 In the chord sequence of bars 48-50 there is a reversal, where the lower strings take the role of the upper, 

and vice versa. See Figure 7.29. 

97 An additional chord, in the tenth column of the table, appears in brackets - (a). The space between the 

third and fourth rows of the table suggests that other material intervenes between the corresponding chords 

sequences. 
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of the time-values). The criterion, therefore, is the systematic application of a design of 

chord substitution in the upper strings; this association is also aided by the actual 

structure of the sequence, in the way the upper strings are `interrupted' by the lower. 

Seven bars after the completion of the sequence in bars 74-76, there is another 

one which appears temporally isolated from the rest (bars 83-85), and whose relation to 

the process of metabolae is not straightforward (in the table it is found at the bottom of 

part [a]). This is due to two reasons: firstly, its isolation (actually, its displacement) and 

secondly, its very structure, which is the retrograde of the structure of the other 

sequences. It remains to discover its role in relation to the metabolae, first to the process 

of chord substitution and later to the one of substitutions of time-intervals - which I will 

discuss later on. Close inspection reveals that the incomplete sequence of bars 73-74 is 

actually found, in retrograde form, at the beginning of the one in bars 83-85. Therefore, if 

the retrograde form of the sequence in bars 83-85 is the reason to present it in its original 

form (with b ey typeface in the table), its identification with the incomplete sequence of 

bars 73-74 is the reason to (re)locate it in the latter's position (in the table, the arrow that 

connects the sequences of bars 71-73 and 83-85). This will enable us to indicate the 

discrepancy that has been caused (with the displacement and inversion) in the process of 

transformations that does not appear on the surface. As a result, we can see that there is a 

chain of chord substitution that comprises 6 sequences, and a 7th sequence where all 

chords are replaced by chord y. 

Part (b) of the table shows the dual process of substitution - of chords and time- 

intervals. While part (a) could be characterised ̀ paradigmatic', part (b) is more 

`syntagmatic' : the columns of the former now appear as the rows of the latter. Its 
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horizontal dimension now symbolizes time and can be read from left to right throughout, 

as a continuous process of substitutions. Examining, for now, the chord substitutions we 

can interpret the corresponding part of the table as a synoptic chart of this second phase 

of metabolae. 

In Figure 7.32 the chains of substitution have 5 chords, apart from 4t' row of part 

[b] which has 4. In bars 74-76 the whole procedure ends with the simple repetition of a 

single chord. Thus, the overall homogeneous nature of the process yields to a sequence's 

maximally non-differentiated structure, a sequence which also exhibits a non- 

differentiated rhythmic structure (the steady pulse of a semiquaver). It is a matter of 

convergence of two dimensions - of the horizontal, that is the internal structure of the 

chord sequence, and of the vertical, the process of chord substitutions itself. In the table 

this can be seen as the convergence of the `paradigmatic' and `syntagmatic' dimensions 

(the row of [a] and the column of [b] that correspond to bars 74-76). It is exactly this 

collapse of homogenous variety to the non-differentiated that has been prevented by the 

temporal displacement (and distortion) of a part of the process (bars 83-85). It is a matter 

of the very same aesthetic criterion of tension at a more distant level of focusing in time: 

a breakdown of regularity. It is not by mere chance that in the sequence of bars 83-85 the 

chords that belong to the set of Figure 7.31 sound for the last time, reminiscent of what 

has already concluded. From now on, we are transferred to the tonal universe of Figure 

7.33, in bars 115-137, which I will examine straight away. 

Figure 7.34 is constructed exactly as its preceding one and shows the chord 

substitutions and transpositions of bars 115-128. Now all the sequences follow one 

another in direct succession and the metabolae are straightforward. Comparing the chord 

203 



substitutions in part (b) of the two tables, we notice the transition to an absolutely regular 

and homogeneous process. In bars 59-85 there was a more elaborate application of a 

compositional system, whose characteristics had already started to appear in bar 40. This 

system is eventually crystallised in bars 115-128.98 Five sequences, each containing four 

chords, finally allow regularity be established. This a process concludes in absolute 

homogeneity, as if permitting the appearance of different sides of a symmetric object: 

there are 5 chord sequences and in each chain of substitutions there are 5 chords (in 

Figure 7.34[b] 5 rows have 5 chords each). However, the end of this process does not 

signify the end of the work; it ends with three more sequences (bars 128-138) where the 

lower and upper strings, in two-part counterpoint, present in irregular order the chords of 

Figure 7.33 (in To), based on the initial form of the rhythmic sequence. Figure 7.35 

shows these three sequences; the final sequence (bars 134-137) is also shown in its 

normal form, in grey typeface. 

The aforementioned time-point sequence undergoes transformations that are not 

parallel to the chord substitutions, but in certain places the two coincide. There is a clear 

sense of correspondence, for the greater part of the work, between the interval of the 

semitone and the time-interval of the semiquaver, as the common unit distance of both 

pitch- and rhythmic structures. The notion of tension, although far from being objective, 

is actually present in Tetora, as the juxtaposition of small and large intervals. In sieves 

tension is produced by the intervallic structure itself (without having to resort to melodic 

patterns). In other words, the succession of neighbouring elements is necessary in order 

98 This second instantiation of the system is not found as such in the sketches to Tetora. However, it clearly 

follows the same rationale. 
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for the structure of sieves to be revealed. Tension in the rhythmic structures of Tetora is 

found in the successive alternation of smaller and larger time-intervals. 

Xenakis transforms the time-point sequence of Tetora selectively applying a 

permutation of (time-)values in order to either maintain tension, or allow a transition 

from tension to relaxation and vice versa. A 3-element set has 6 possible permutations 

(3! = 6). Whenever there is a permutation in Tetora, it corresponds to one of the three 

positions of the rotation of the triangle on a single axis. Note that permutation is a 

specific case of combination (combination does not always use all the elements in a set); 

and that rotation on a single axis is in turn a special case of permutation. This process is 

applied in certain parts of the system and each new position gives a new time-point 

sequence, which exhibits the same degree of differentiation in its structure. The process 

of metabolae in the time-point sequences throughout the quartet is shown in Figure 7.36. 

The structure of this table is based on that of the second part of tables 7.29,7.32,7.34, 

and 7.35; the indication `position' stands for the position of the triangle as it corresponds 

to the three time values of the first sequence (bars 21-24); bar numbers refer to the bar 

that the sequence is initiated. Practically, permutation means to correspond each element 

of a set to another of its elements. Rotation, as a special case of permutation, is the 

symmetric procedure which is employed in order to help maintain tension in each new 

form (rotation) of the sequence. This tension is neutralised only when rotation ceases to 

happen. Two observations concerning the convergence of this process with that of chord 

substitution: the first, as I have already mentioned, refers to the convergence on the 

maximally non-differentiated structure of the chord sequence in bars 74-76 and its 

rhythmic structure - the persistent repetition (in the upper strings) of a single chord. The 
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second concerns the sequence of bars 83-85 that appears (partially and transformed) 

before and after the one in bars 74-76. Its unique role (i. e. breakdown of regularity) is 

also apparent in the rhythmic structure itself: it is the only time in the work when the 

appearance of all three time-values has not resulted from rotation (neither from any other 

kind of permutation). With its maximally differentiated structure it arbitrarily intervenes 

between two totally regular sequences (one-semiquaver pulses). 

From bar 128 to the end, all the chords in the set of Figure 7.33 appear in 

irregular order in both the upper and lower strings. The final sequence (from bar 134 to 

the end) negates apparent repetition, by presenting the time-point sequence in its 

retrograde form. This is the only time in the work, when this transformation of the 

sequence (1St position) appears in retrograde. (Recall that in the retrograde form of bars 

83-85, the time-point sequence was not preceded by the original. ) Xenakis transforms the 

time-point sequence for a last time, in a way that has not been encountered in the work so 

far. Xenakis employed the symmetric process of the rotation of the triangle, in order 

afterwards to negate it (Figure 7.36, bars 65-119). The retrograde form, as another 

symmetry, yields another form of the time-point sequence which (as in its initial 

appearance) manifests and maintains tension for the last time. 

The last part of this thesis concerned the two approaches, inside- and outside- 

time, in the analysis of sieves and their employment in the compositions of the later 

period. The inside-time analysis was further extended to the compositional approach of 

distributing points on a straight line (either as pitch scales or as time-point sequences). 

The analytical methodology of Chapter 5, although preoccupied largely with pitch scales, 

implies a relation between outside- and inside-time structures (in the form of symmetries 
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and periodicities). The relation between the two is shown in both Chapters 6 and 7; for 

example, in the construction of the sieves of Shaar and the treatment of the rhythmic 

structures in Tetora. These two examples are useful in the exploration of the notion of the 

Xenakian metabola, one of the main concerns of the following concluding remarks. 

207 



Concluding Remarks: 

Symmetry and asymmetry, periodicity, and metatheory 

The chord sequences of Tetora comprise an example of systematisation that does not 

derive specifically from any formalised `Xenakian' theory. The connection between 

formalisation and composition has been researched and commented upon by several 

scholars (Vriend 1981; Squibbs 1996: 281-90; Gibson 2003: 279-81 and Solomos 2005b, 

have written extensively on the matter). Xenakis gave an insightful and striking 

description of his working methods in relation to formalisation. He stated that, all of his 

works (apart from the ST family) `are mostly handiwork, in the biological sense: 

adjustments that cannot be controlled in their totality. If God existed He would be a 

handyman' (1987: 23). An engineer by training, Xenakis defined himself as a bricoleur. 99 

The latter is differentiated from the former in their method of work. The engineer uses 

purpose-built, formalistic tools for the ideal realisation of a perfect design. On the other 

hand, bricolage refers to the putting-together of parts, materials, or tools, not as an ideal 

combination but simply as a possibility. 

The level of formalisation in relation to Sieve Theory can be seen in the use 

Xenakis made of sieve formulae. In the 1980s Xenakis did not use the formula as the 

primary interface any longer (cf. Ariza 2005: 45). Rather, the formula is an important 

99 Here he makes an obvious comment against the classical teleological arguments for the existence of God, 

which led to the recent, well-known `Intelligent Design' Movement. It is this idea of the perfect design that 

bricolage is opposed to. For the notion of bricolage in the relation of music and biology see Bogue 2003: 

62-72. Solomos in (2005b) uses the term bricolage in the sense that Claude-Levi Strauss did. 
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tool, but primarily for the estimation of the sieve's inner-symmetry. As the sketches 

included in this thesis show, Xenakis constructed a sieve and derived a formula 

afterwards. It is an application of Sieve Theory both as an analytical and as a 

compositional tool (that led to the construction of his two computer programs). This is 

different from the early application, which was much more formalised, e. g. the case of 

the sieves of Nomos Alpha (see Vriend 1981; FM 201-41; Gibson 2003: 78-117). In this 

latter case (among others), Xenakis applied metabolae by altering the moduli, the 

residues, the unit distance, and the points of origin (the pitch that zero corresponds to). 

But in the more recent sieves, the theory is limited to analysing a sieve's inner 

periodicities. Cyclic transposition and other metabolae are applied informally, i. e. to the 

actual scale. This is what Xenakis did with his sieves of the later period (for example 

with the piano sieves at the final section of Keqrops), but also with the rhythmic 

sequences of Tetora. 

In Tetora the rhythmic sequences were not calculated as sieves. However, a chord 

sequence is a case of distributing points on a line; therefore, it is indirectly related to 

Sieve Theory even though Xenakis did not apply sieve-theoretical processes. Also, it is a 

case of a transformational system, a system of metabolae. 10° The idea of metabola was 

developed in accordance with sieves and, in particular, it offers ways of transforming 

sieves on the level of their theoretical expression (the formula). However, 

transformations can be also applied in a non-formalistic way. In fact, metabolae refer not 

only to sieves, but to outside-time structures in general. The rhythmic sequence of Tetora 

1 00 The inspiration for idea of the metabola, Xenakis commented, came from the Greek poetess Sappho (see 

Emmerson 1976: 25). 
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is for Xenakis an outside-time structure in the sense that he showed in FM (264-5). Thus, 

metabolae do not relate only to sieves; nor do they refer generally to transformations (for 

example, Xenakis did not use the term `metabola' for serial transformations). Metabolae 

are transformations that are applied to outside-time structures. 

In `Towards a Metamusic', Xenakis offered a summary of Byzantine scales, as 

well as his view of Byzantine music scholarship; this was part of his argument that Sieve 

Theory offers ways of incorporating all scales (see FM 186-192; cf. Turner, 2005). 

Xenakis refers to metabolae in relation to the outside-time structure of Byzantine music, 

and in particular to the Byzantine system-scales: 

[The] outside-time structure [of Byzantine music] could not be satisfied with a 
compartmentalized hierarchy. It was necessary to have free articulation between 
the notes and their subdivisions, between the kinds of tetrachords, between the 
genera, between the systems, and between the echoi - hence the need for a sketch 
of the in-time structure [... ]. There exist operative signs which allow alterations, 
transpositions, modulations, and other transformations (metabolae) (FM 190; 
italics added). 

Metabolae then are related to outside-time structures by offering possibilities of arranging 

them inside time. In other words, metabolae offer ways of producing versions of the 

original outside-time structures and allow for further determination of the inside-time 

unfolding of these structures. The system of metabolae in Tetora is applied to the 

(outside-time) rhythmic structure and produces 19 rhythmic-sequences. The first three 

and the last three chord sequences of the system are based on the original rhythmic 

structure. Thus, the system of metabolae itself bears a certain symmetry. But this 

symmetry is not complete. Towards the centre of Figure 7.36 the symmetry disappears, as 

the sequence in bars 71-73 distorts it: were it not for this sequence, the sequences in bars 
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65-116 would comprise a palindromic structure with its centre being the sequence that 

starts in bar 74. We see that a certain `near symmetry' characterises a large-scale process. 

The notions of symmetry and periodicity are found very frequently in Xenakis's 

writings. This is a general aesthetic principle. He expressed this idea in an interview of 

1976, in the discussion of periodicity in the rhythmic structures of his percussion work 

Psappha: `You always have some form of periodicity if you do not have a stochastic 

distribution of points on a line, attacks in time. The contradiction of periodic and 

aperiodic is one of the fundamental games of systems' (Emmerson 1976: 24). In another 

text twenty years later, also in the context of temporal structures, he equated periodicity 

with symmetry: `What repetition is in time, symmetry would be outside of time' (Xenakis 

1996: 144). This general principle is what seems to have inspired Xenakis in the 

construction of his outside-time structures, but also in the inside-time sketches of his 

compositions. The former is clearly evident by the analysis of his sieves (Chapter 6). 

Paraphrasing Xenakis, the contradiction between the symmetric and the asymmetric is 

extended to the idea of degrees of symmetry. Thus, although two sieves might be 

similarly non-repetitive, inner-symmetric analysis can reveal that the one might be more 

symmetric than the other. In his sieves, Xenakis achieved this contradiction not by 

progressing merely from symmetric to asymmetric sieves and vice versa. As a general 

characteristic, the sieves of the later period are constructed to include periodicities at the 

liminal levels of symmetry (frequently also including non-periodic elements). Each sieve 

bears itself the contradiction between symmetry and asymmetry, by being near- 

symmetric or near-asymmetric; given the irregular, non-repetitive intervallic structure of z: I 

his sieves, `near symmetry' is in fact a hidden symmetry (in terms of perception). So, 
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another level of contradiction between symmetry and asymmetry is that between surface 

asymmetry and inner symmetry. Symmetry here is a point of reference for asymmetry. 

With the system of metabolae in Tetora Xenakis applied the same aesthetic principle, on 

another level. Whereas with the sieves the contradiction between symmetry and 

asymmetry refers to outside-time, in Tetora it is also found in the inside-time sketch of 

the chord-sequence metabolae. 

The triangle rotations in the rhythmic sequences of Tetora are related to the group 

transformations Xenakis first applied in the mid 1960s. As Vriend pointed out (1981: 25- 

6), the notion of symmetry is strongly related to that of mathematical groups. But group 

transformations where offered by Xenakis as an inside-time organising principle (since 

they refer to permutations, to the order of elements). As with metabolae, group 

transformations could also be thought as a sketch of the inside-time structure, but 

Xenakis did not use the term `metabolae' for group transformations. This is because 
z: l 

group transformations are special cases of permutations, which are in turn special cases 

of metabolae. More importantly, permutation does not necessarily produce new (versions 

of the original) outside-time structures. For example, the pitch permutations of tetrachord 

7 in Keqrops (see Section 7.1 and Figure 7.7) did not produce a new sieve (nor a new 

sieve segment). The situation in Tetora is different. The chords are arranged in 

sequences, but each new sequence is not a new permutation of the same set of chords; it 

is instead a case of substitution, so that different chords (drawn from the same set) are 

included in each successive chord sequence. Thus Xenakis produced new chord 

sequences by using only some of the total number of chords and by applying chord- 

substitution instead of chord-permutation. 
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On the other hand, permutations of time-intervals do produce different structures. 

This is because there is a fundamental difference when applying permutations to the 

pitch-level and to the interval-level. Rearrangements of intervals produce new pitch 

structures, whereas rearrangements of pitches do not. Either in the case of a pitch scale or 

in that of a rhythmic sequence, permutations of (pitch- or time-)intervals produce new 

scales or rhythmic structures, new outside-time structures. Thus, the Xenakian metabola 

refers to transformations that are applied to outside-time structures in order to produce 

new ones. In practical terms, these metabolae produce new versions of the outside-time 

structures they are applied to, and offer the possibility of constructing the sketch of the 

whole or part of a composition. Metabolae are in this way situated between the outside- 

and the inside-time. 

It follows from this that transformations that might produce new structures, are 

referred to as metabolae only if they are applied to an existing outside-time structure. 

Although permutations of intervals can serve for metabolae, this is not the only way of 

performing, nor does it imply, metabolae. An interesting case is that of sieves 7 and 6 of 

Shaar (Figure 6.52). There, as shown in Section 6.7, several permutations of three or four 

intervals, respectively, are placed in a certain succession; the result is a chain of 

permutations that renders the intervallic structure of the sieve. Unlike Tetora, the term 

`metabola' would not be used for these sieves of Shaar, precisely because it is not a case 

of transforming an existing outside-time structure to produce a new one. It is rather a 

matter of transformations of the basic set of intervals that make up the intervallic 

structure of the sieve. This is a clear case where Xenakis uses an inside-time organising 

principle (succession of permutations) to construct an outside-time structure. 
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We see how permutations of intervals can produce new sieves, whereas 

permutations of pitches cannot. In other words, when intervals are permutated, they are 

treated as a succession of values that can be used to produce an ordered set of values 

(pitches). Xenakis used the idea of the trace to show that time-intervals are perceived 

outside of time (FM 264-5). Nothing prevents us from extending this idea to pitch- 

intervals. In that case, the trace would refer to pitches. In a sieve of the type of that of 

Shaar, once the intervals of the set are heard in its first occurrence, they are held in our 

memory and thus placed outside of time: each new permutation of the same intervals is 

another inside-time manifestation of the same outside-time structure (it becomes an 

ordered set thanks to the pitches' trace in our memory). Of course, the case of Shaar is 

unique among the later sieves. But the later sieves are also based on a finite number of 

intervals (usually 1,2,3, and 4 semitones). The only difference is that these intervals do 

not appear in chains of permutations, but rather in a succession of free combinations of 

all the intervals throughout the whole range of the sieve. Note that permutation is a 

special case of combination. Similarly then, these four intervals are first placed in 

succession and are then perceived in their outside-time aspect. (Obviously, the smaller 

the number of intervals the easier for our memory to compare and place in an ordered 

set. ) It is important to note that this (inside-time) combination of intervals forms the 

sieve-construction principle. The opposite would not be true. That is, a succession of 

pitch permutations does not produce outside-time structures - it rather places the sieve 

inside time. Thus, sieve construction is preceded by permutations of intervals and is 

followed by its placing in the composition. In other words, the construction of an outside- 

time structure is both preceded and followed by inside-time processes. 
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Xenakis's metatheory suggests that removing the category of outside-time 

structures is impossible. But on many occasions we see that the two types of structures, 

inside- and outside-time, are so inter-dependent that it is impossible to distinguish the one 

from the other. In this sense, it is equally impossible to remove the cateory of inside- C71 

time structures. This can also be seen in the aforementioned comment by Xenakis, where 

you always have some form of periodicity' (unless there is a stochastic distribution). A 

similar case is that of the sieves of Shaar and by extension, sieve construction in general 

and, indeed, all outside-time construction. In the later period of sieves, which is more 

representative of sieve-based composition than the earlier (and for Solomos the period of 

sieves; see 1996: 86-102), Xenakis conceived sieves as multiplicities of inner 

periodicities. As I have shown, sieves cannot be conceived without including the notion 

of periodicity. Saying this does not imply that Xenakis's insightful views on the re- 

introduction of the scale do not hold. As he always insisted, outside-time structures do 

exist. An ordered structure is located at the foundations of any compositional style or 

language; this is the case of the (outside-time) chromatic scale and (inside-time) 

serialism. Furthermore, outside-time characteristics can be produced by inside-time 

structures (e. g. symmetric relations between different forms of the series). As outside- 

time structures can, and have been, produced in the scope of serial compositional 

principles, the (inside-time) inner-periodicities or intervallic permutations, render the 

structure of (outside-time) sieves. The distinction between what is inside and what is 

outside time is not impermeable. 
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