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Abstract 

It is still a matter of debate whether visual aids improve learning of music. In a multi-

session study, we investigated the neural signatures of novel music sequence learning with or 

without aids (auditory-only: AO, audio-visual: AV). During three training sessions on three 

separate days, participants (non-musicians) reproduced (note by note on a keyboard) melodic 

sequences generated by an artificial musical grammar. The AV group (N = 20) had each note 

colour-coded on screen, whereas the AO group (N = 20) had no colour indication. We 

evaluated learning of the statistical regularities of the novel music grammar before and after 

training by presenting melodies ending on correct or incorrect notes, and by asking 

participants to judge the correctness and surprisal of the final note, while EEG was recorded. 

We found that participants successfully learned the new grammar. While the AV group, as 

compared to AO group, reproduced longer sequences during training, there was no significant 

difference in learning between groups. At the neural level, after training, the AO group 

showed larger N100 response to low-probability compared to high-probability notes, 

suggesting an increased neural sensitivity to statistical properties of the grammar; this effect 

was not observed in the AV group. Our findings indicate that visual aids might improve 

sequence reproduction whilst not necessarily promoting better learning, indicating a potential 

dissociation between sequence reproduction and learning. We suggest that the difficulty 

induced by auditory-only input during music training might enhance cognitive engagement, 

thereby improving neural sensitivity to the underlying statistical properties of the learned 

material. 
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1. Introduction 

Music forms a vital part of the school curriculum in much of the Western world. 

During the first years of music education, teaching music usually takes the form of a game 

(Aronoff, 1983; Bowles, 1998): different colours represent different pitches, imaginary stairs 

symbolize musical scales, and claps represent rhythms. A widely used method is to put 

colourful stickers on the keys of a piano keyboard (Simpson, 2015) or on the violin 

fingerboard (Abler, 2002) to indicate finger positions. Guitar Hero 

(https://www.guitarhero.com/uk/en/), a music computer game, makes people feel empowered 

by being able to reproduce popular songs on a guitar toy using visual cues; but do they really 

learn music? There is no research (to the best of our knowledge) testing whether such 

methods improve learning. Over a multi-session, conducted on separated days, musical 

training experiment, we examined whether visual aids would lead to better learning of an 

unfamiliar music grammar, and investigated the respective electrophysiological correlates of 

statistical music learning. 

 Musical learning depends not only on developing abilities for singing or playing a 

musical instrument, but also on learning a musical grammar, i.e. the statistical properties of a 

particular musical style. Musical experts have typically internalized the rules or probabilistic 

regularities that govern a specific music style and can form expectations for subsequent 

events while listening (Jonaitis & Saffran, 2009; Meyer, 1956). The fulfilment or violation of 

these expectations plays a crucial role in the emotional experience of music (Huron, 2006; 

Juslin & Västfjäll, 2008). Importantly, the formation of expectations can be used as an index 

of learning: the greater the knowledge of a learned musical style, the larger the degree of 

unexpectedness when a rule is violated (Steinbeis, Koelsch, & Sloboda, 2006). 

Humans can acquire knowledge of the statistical regularities of auditory structures 

even after short exposure (Lieberman, Chang, Chiao, Bookheimer, & Knowlton, 2004; Loui, 

2012; Misyak, Christiansen, & Tomblin, 2010; Pothos, 2007; Reber, 1993; Rohrmeier & 

Cross, 2014; Rohrmeier & Rebuschat, 2012; Saffran, Aslin, & Newport, 1996; Saffran, 

Johnson, Aslin, & Newport, 1999; Saffran, Newport, & Aslin, 1996). Statistical learning and 

recognition of grammatical patterns through passive exposure has been demonstrated in tone 

(Saffran, Reeck, Niebuhr, & Wilson, 2005; Saffran et al., 1999) and timbre (Tillmann & 

McAdams, 2004) sequences, as well as in unfamiliar musical systems (e.g., use of the 

Bohlen-Pierce scale: Loui & Wessel, 2008; Loui, Wessel, & Kam, 2010). Participants can 

also perform accurate predictions on other types of stimuli based on their temporal statistics, 



such as on sequences of visual stimuli (e.g., abstract visual shapes: Fiser, & Aslin, 2002; 

Gabor patches: Luft, Baker, Goldstone, Zhang, & Kourtzi, 2016; Luft, Meeson, Welchman, 

& Kourtzi, 2015; tones in oddball task: Debener, Makeig, Delorme, & Engel, 2005; 

semantics: Proverbio, Leoni, & Zani, 2004). Studies with infants demonstrate statistical 

learning of both auditory and visual information, providing evidence for an underlying 

domain-general mechanism (Kirkham, Slemmer, & Johnson, 2002; Saffran et al., 1996). 

However, Conway and Christiansen (2006) found that adult participants can simultaneously 

learn the statistical regularities of two different artificial grammars, one presented with 

auditory and one with visual stimuli, therefore suggesting modality-specific statistical 

learning. 

 The electrophysiological recording, especially the event related potential (ERP) 

response, has routinely been used to study the neural correlates of learning due to its excellent 

temporal resolution (Rugg & Coles, 1995), and has been associated with sensory and 

perceptual processing modulated by expectation and familiarity (Näätänen, Gaillard, & 

Mäntysalo, 1978; Tremblay & Kraus, 2002). Violation, as compared to fulfilment, of pitch 

expectations is robustly associated with a larger N100 component, a fronto-central negativity 

around 100 ms after the onset of a melodically unexpected note (Koelsch & Jentschke, 2010; 

Pearce, Ruiz, Kapasi, Wiggins, & Bhattacharya, 2010). The N100 has been also used as an 

index of statistical learning of auditory sequences, with studies showing increased N100 in 

response to tones with lower transitional probability compared to tones with higher 

probability (Abla, Katahira, & Okanoya, 2008; Moldwin, Schwartz, & Sussman, 2017; 

Paraskevopoulos, Kuchenbuch, Herholz, & Pantev, 2012). Koelsch and colleagues (2016) 

found that the amplitude of this response was negatively related to the probability of an 

auditory event. It has been suggested that this early component reflects the magnitude of 

prediction errors in statistical learning contexts (Tsogli, Jentschke, Daikoku, & Koelsch, 

2019).  

The P200, a positive ERP component peaking around 200 ms after the onset of an 

event, has been linked to stimulus familiarity. For example, familiar speech variants of 

syllables (Tremblay & Kraus, 2002) and familiar words (Perfetti, & Wang, 2006; Stuellein, 

Radach, Jacobs, & Hofmann, 2016) have been associated with a larger P200 than unfamiliar 

syllables and words. Further, musicians demonstrate larger P200 in auditory tasks compared 

to non-musicians, which is usually attributed to their long-term musical training, inducing 

greater familiarity with the stimuli (Atienza, Cantero, & Dominguez-Marin, 2002; Tremblay, 

Kraus, McGee, Ponton, & Otis, 2001). 



The aforementioned studies on statistical learning mostly focused on learning by 

training a single perceptual modality (e.g., auditory/visual). Previous studies have 

demonstrated the beneficial effects of multi-modality on learning (e.g., Brünken, Plass, & 

Leutner, 2004; Cleary, Pisoni, & Geers, 2001; Tierney, Bergeson-Dana, & Pisoni, 2008). 

There is behavioural and neurophysiological evidence demonstrating that adults are faster at 

detecting a target when correlated information is presented to multiple sensory modalities 

than when information is presented unimodally (e.g., Colonius & Diederich, 2006; Molholm, 

Ritter, Javitt, & Foxe, 2004; Sinnett, Soto-Faraco, & Spence, 2008). The “Simon” task has 

been widely used to study statistical learning: it uses a game device with four coloured 

buttons corresponding to different tones. Every time a tone is played, the respective button 

lights up. Tierney and colleagues (2008) asked participants to reproduce random sequences of 

coloured lights by pressing the keys on the Simon device. Results showed that longer 

sequences were reproduced in the audio-visual condition (colour names spoken and buttons 

lighting up simultaneously) compared to the auditory-only or visual-only condition. 

Beneficial effects of audio-visual presentation on learning have also been found in other 

tasks, such as presentation of biological textbook material with vs. without verbal instruction, 

in addition to pictorial presentation (Brünken et al., 2004). 

Our study is the first (to our knowledge) to investigate the effect of visual aids on 

statistical learning of music with interleaved passive exposure to and active reproduction of 

music. Alternating different methods is efficient for learning and generalization of knowledge 

(Richland, Bjork, Finley, & Linn, 2005), as well as more ecologically valid compared to mere 

passive exposure to the learned material. In contrary to previous studies which assessed 

learning just after exposure, we performed a 1-day follow up test, in order to ensure we 

measure learning rather than immediate effects of exposure. We introduced a novel 

experimental paradigm combining behavioural, electrophysiological, and computational 

methods. Specifically, non-musicians were trained on an unfamiliar artificial music grammar 

(taken from Rohrmeier, Rebuschat, & Cross, 2011) through passive exposure and active 

reproduction of melodic sequences on a sound keyboard with or without visual aids, over 

three separate days. An artificial music grammar was ideal for our investigation because it 

represented a completely novel musical style for all participants. Participants’ knowledge of 

the novel grammar was assessed before and after training by taking judgements of the 

perceived correctness and surprisal of high-probability, low-probability, incorrect, and 

random notes. The ERPs in response to these notes were also analysed. 



We used a computational model of auditory expectation (Information Dynamics of 

Music, IDyOM: Pearce, 2018) to quantify the conditional probability of each note in every 

sequence, reflecting the degree of expectedness of a particular note given the preceding 

musical context. IDyOM uses variable-order Markov models (Begleiter, El-Yaniv, & Yona, 

2004) to generate the conditional probability of a note given its preceding context based on 

the frequency with which each note has followed the context in a given corpus of music. 

IDyOM embodies the hypothesis that listeners base their expectations on learning the 

statistical regularities in the musical environment, with listeners perceiving high-probability 

notes as expected and low-probability notes as unexpected. Previous behavioural, 

physiological, and EEG studies have demonstrated that IDyOM successfully predicts 

listeners’ expectations (Egermann, Pearce, Wiggins, & McAdams, 2013; Hansen & Pearce, 

2014; Omigie et al., 2013; Pearce, Müllensiefen, D., & Wiggins, 2010; Pearce et al., 2010). 

The probability of each event according to the model can be log-transformed to yield its 

information content (IC), which reflects how unpredictable the model finds a note in a 

particular context. We used IDyOM to analyse each melodic sequence generated by the 

artificial music grammar, and manipulated these sequences to construct melodies terminating 

on high- and low-probability, incorrect, and random notes. Participants’ learning was 

evaluated in terms of their accuracy in recognizing notes belonging to the grammar. 

 Previous studies have demonstrated a distinction between performance during training 

and learning (e.g., Kantak & Winstein, 2012; Lee & Genovese, 1988; Schmidt & Bjork, 

1992). In a review, Soderstrom and Bjork (2015) argued in favour of differentiating learning 

from performance during training, as the former refers to a long-term change in behaviour or 

knowledge that supports retention and transfer, and the latter to temporary fluctuations in 

behaviour or knowledge which are observed close to the acquisition period. In our study, 

“performance during training” (according to Soderstrom and Bjork, 2015) corresponds to 

sequence reproduction in the training sessions, whereas “learning” refers to acquisition of the 

statistical regularities of the AMG. Based on the aforementioned studies, our hypothesis is 

twofold. First, we hypothesized that multimodality would aid sequence reproduction since the 

visual cues would signal to the participants which exact keys to press. Second, we expected 

that the presence of visual aids would have a negative impact on learning as the auditory 

input is modality-appropriate for learning music, and visual information in this context might 

work as a distractor for better encoding. At the neural level, we predicted that the N100 

component would be higher in response to low-probability and incorrect notes (compared to 

high probability notes) after training. Since larger N100 in response to low-probability notes 



indicates better learning of the statistical regularities of the grammar, we hypothesised this 

would be higher for the auditory-only group. Further, we expected that the P200 component, 

as an index of familiarity (Tremblay & Kraus, 2002), would be enhanced after training in 

both groups. Finally, we explored how the early right anterior negativity (ERAN), an ERP 

component previously associated with syntactical violations in music (Koelsch, Gunter, 

Friederici, & Schröger, 2000; Pearce & Rohrmeier, 2018), would be modulated in our 

statistical learning paradigm. 

 

2. Methods 
2.1. Participants 

 Forty neurologically healthy human adults (24 female) aged between 20 and 32 years 

old (mean ± s.d. age of 22.42 ± 3.04 years) participated in the experiment. Participants were 

randomly assigned to one of two groups which differed in the training method: audio-visual 

group, AV (N = 20, 12 female, age range 20 – 32 years, mean ± s.d. 22.25 ± 3.37 years), and 

auditory-only group, AO (N = 20, 12 female, age range 20 – 30 years, mean ± s.d. 22.60 ± 

3.52 years). All participants self-reported that they were non-musicians, and this was 

validated by the ‘Goldsmiths Musical Sophistication Index’ (Gold-MSI) questionnaire 

(Müllensiefen, Gingras, Musil, & Stewart, 2014): mean Gold-MSI Musical Training scores ± 

s.d. were 12.08 ± 3.63 for the AV group and 12.10 ± 5.51 for the AO group from a possible 

range of 7-49 points (higher values indicating more musical training). The scores were not 

significantly different between groups (t(38) = .017, p = .987). Two participants were 

excluded because they did not sufficiently engage with the task (gave the same response 

throughout the pre- and post-test), leaving 19 participants per group. All participants reported 

normal hearing and normal or corrected-to-normal vision. Participants gave written informed 

consent and received financial compensation at a rate of £7 per hour for their participation. 

The study was approved by the Ethics Board at Queen Mary University of London. 

 

2.2. Materials 

Gold-MSI Musical training questionnaire: The Musical Training factor (Dimension 3) of the 

Gold-MSI comprises a self-report measure including seven statements regarding formal 

musical training experience and musical skill. Each statement (e.g., ‘I have never been 

complimented for my talents as a musical performer’) requires a response from 1 (Completely 



Disagree) to 7 (Completely Agree). This measure was used to validate that all participants 

were non-musicians.  

 

Artificial music grammar (AMG): Our melodic stimuli were sequences generated by an 

artificial music grammar (AMG) taken from Rohrmeier and colleagues (2011) (Figure 1A). 

This grammar consists of 8 different tone pairs, and the tones belong to the Western diatonic 

major scale (C4, D4, E4, F4, G4, A4, B4). The AMG generated 18 different melodic 

sequences, ranging from 8 to 22 notes long (mean length ± s.d. = 14.56 ± 3.87). Melodic 

sequences with circular paths were excluded, as they were too long to be used in our 

paradigm. Twelve of these sequences were used for the training and test sessions (‘old-

grammatical’), while the remaining six were only presented in the last session to test 

generalization to unheard melodies of the grammar (‘new-grammatical’). Please refer to the 

Supplementary materials for the 18 melodic sequences in musical notation (Figure S1). 



 

Figure 1 - A. Top: Schematic illustration of the artificial music grammar (AMG) by Rohrmeier, 
Rebuschat, and Cross (2011). Musical intervals are numbered from 0 to 8. Symbols starting with ‘S’ 



constitute the grammar nodes. Bottom: Each terminal corresponds to a pair of musical notes. The 
musical notes range from C4 to B4; B. An example of how the stimuli for the test sessions were 
generated. For each melodic sequence generated by the AMG, notes with extremely high (green) and 
extremely low (blue) information content (IC) were identified. Notes only after the 6th note were 
identified, in order for the stimuli to have a considerable length. High-probability (HP) notes 
corresponded to low IC, while low-probability (LP) notes corresponded to high IC. HP stimuli (LP 
stimuli) were constructed by interrupting the melodic sequences of the AMG on the identified notes 
with low IC (high IC). Incorrect stimuli were generated by replacing the last note of HP and LP stimuli 
with an incorrect note (i.e. a note that never existed in the AMG at that particular place). Random stimuli 
were constructed by generating random note sequences. This procedure was done separately for the pre- 
and post-tests using the 12 old-grammatical sequences, as well as for the generalisation session using 
the 6 new-grammatical sequences. 
 

IDyOM analyses of melodic sequences: An information theoretic model of music expectation, 

IDyOM (Pearce, 2018; 2005) was used to analyse the statistical properties of the melodic 

sequences generated by the AMG. We conducted leave-one-out cross-validations, while 

IDyOM generated predictions for each sequence after pretraining on the other 17 sequences. 

IDyOM uses viewpoints to generate predictions. We evaluated different sets of viewpoints 

and selected the viewpoint chromatic pitch and chromatic interval (cross-entropy = 0.986), 

which outperformed the single viewpoint chromatic pitch (cross-entropy = 1.007), and the 

viewpoint set chromatic pitch, chromatic interval, and contour (cross-entropy = 1.043). 

Further, IDyOM was used to make predictions combining a long-term model, which 

was pretrained on the 17 other melodies, and incrementally on the current melody, as well as 

a short-term model, that was only trained incrementally on the current melody. This 

combination of long- and short-term models has been found to reflect listeners’ expectations 

well (Pearce, 2005). IDyOM estimates the probability for each note in each of the 18 AMG 

melodies. We calculated information content (IC) by taking the negative logarithm (base 2) 

of this probability estimate. Low IC corresponds to high-probability (i.e. predictable) notes, 

while high IC corresponds to low-probability (i.e. unpredictable) notes based on a given 

grammar. 

 

Melodic stimuli for the judgement sessions: The melodies were interrupted after a target note, 

and participants were prompted to judge if the last note was correct or incorrect, and 

surprising or not surprising. For the pre-test and post-test, we used 280 melodies, terminating 

with “target” notes of different levels of note probability: 70 high-probability (HP), 70 low-

probability (LP), 70 incorrect (INC), and 70 random (Figure 1B). For the generalisation 

session we used 105 melodies: 35 HP, 35 LP, and 35 INC. The melodies for the test sessions 



were generated from the 12 old-grammatical sequences, whereas for the generalisation 

session they were generated from the 6 new-grammatical sequences. 

To generate the melodies ending on HP and LP notes, we first identified those with 

the lowest 30% information content (IC) (extreme HP) and those with the highest 30% 

(extreme LP) out of all the notes of the 18 AMG sequences. The probability values of the 

identified HP notes ranged from 0.83-0.94 (M = 0.90, SD = 0.03), while the probability of the 

LP notes ranged from 0.01-0.37 (M = 0.21, SD = 0.10). There were 79 notes with extreme 

probabilities: 55 belonged to the old-grammatical sequences, and 24 to the new-grammatical 

sequences. Of the 55 ones, 36 notes were HP and 19 LP. To reach 70 trials per condition, 34 

(randomly picked) of the 36 HP melodies were repeated once, while all 19 LP were repeated 

three times (giving 57 melodies), and 13 (randomly selected from the middle 40% of the 

distribution) were added (total of 70). The same was applied for the new-grammatical 

sequences. The 16 HP melodies were repeated once (32) and 3 more (randomly picked) were 

added (35 in total). The 8 LP melodies were repeated four times (32) and 3 more (randomly 

picked) were added (35). 

 The incorrect melodies (INC) were generated by replacing the last note of the HP and 

LP melodies with a note that never appeared in that context in the AMG. Three different sets 

of INC melodies were created, one for the pre (70), one for the post test (70), and one for the 

generalisation (35). We also generated two different sets of 70 random melodies, presented in 

the pre- and post-test. The random melodies had similar length to the rest of the melodies, by 

producing 5 random melodies for each of the possible lengths (7 to 20 notes). The melodies 

were played through speakers located to the left and right of participants. Notes had a 

duration of 330 ms, with the next note beginning immediately after the end of the previous 

note, and were played with a piano timbre. All notes had a 100-ms fade-out time. 

Psychtoolbox (Brainard & Vision, 1997) was used for stimuli presentation. Examples of the 

stimuli are now included as audio files in Supplementary materials. 

 

2.3. Procedure 

Participants came to the lab on four separate days with a maximum two-day gap 

between any of the days (Figure 2A). Participants received training on the melodies generated 

by the AMG, through active reproduction on a keyboard with (AV group) or without visual 

cues (AO group) across three sessions (days 1-3). Learning of the AMG was assessed before 

and after training (days 1 and 4). Participants were presented with melodies and were 



prompted to judge if the final note was correct or incorrect and surprising or not surprising, 

while their EEG was recorded. In the last generalisation session, participants were asked to 

judge if the final note of previously unheard sequences was surprising or not surprising. As 

the primary aim of our study was to the efficacy of visual aids in music (but not visual) 

learning, participants from both groups were tested only in the auditory domain (auditory 

without visual stimuli) in the pre-test, post-test, and generalization sessions. On days 2 and 3, 

after a brief (5 min) passive exposure to all the old-grammatical sequences three times (36 in 

total), participants were then asked to complete a short surprisal (yes or no) judgement task of 

melodies ending with high-probability or low-probability notes (intermediate surprisal 

sessions). After each training session, participants were asked to compose and perform a 

musical composition based on the learned materials, but this part is outside the scope of this 

paper. 



 
 



Figure 2. A. Schematic representation of the experimental procedure; B. Trial structure of the 
test sessions. Participants were presented with a note sequence and were prompted to judge 
whether the last note was correct or incorrect (pre- and post-test) and surprising or not 
surprising (pre-, post-test, intermediate, and generalisation sessions), by pressing 1 or 2 on a 
computer keyboard; C. Trial structure of the three training sessions. Participants listened to a 
melodic sequence generated by the AMG. Then, they heard the first two notes and needed to 
reproduce them on the keyboard. If they were correct, the next sequence would increase by one 
note. If they made a mistake, they could try again. The audio-visual (AV) group was presented 
with the visual cues of all the notes that they needed to reproduce on screen, whereas the 
auditory-only (AO) group was only given the first visual cue as a reference. 
 

Training sessions 

Participants received training on a computer keyboard which was adjusted to serve as 

a sound keyboard. A red, an orange, a yellow, a green, a blue, a pink, and a brown sticker 

were put on keys A, D, G, J, L, ‘, and ENTER, respectively (see Figure 2C). Before the first 

session only, participants had some familiarisation time with the keyboard. First, they 

listened to the whole scale ascending three times, while the visual cue corresponding to each 

note was simultaneously presented on screen. The cues were spatially positioned on the 

screen in the same configuration as the stickers on the keyboard, i.e. lower notes on the left 

and higher on the right. Participants were then allowed three minutes to familiarise 

themselves with the keyboard. To confirm they had basic understanding of the tones, they 

took a short discrimination test: they listened to pairs of notes for which they were presented 

with only the first visual cue. They were required to identify the second note and reproduce 

the note pair on the keyboard. After three attempts, the solution was presented on screen. 

There were 42 pairs in total, covering all possible note combinations, e.g., C-D, C-E, C-F, 

etc. All participants passed an arbitrary threshold of 70% correct and proceeded with the 

training. 

Participants attended three 25-minute training sessions on three separate days. The 

training proceeded as follows. Participants began by hearing a melodic sequence. Then the 

first 2 notes of the melody were presented. Only after participants reproduced them correctly, 

the next segment was increased by a note and so on. If they made a mistake, the melodic 

segment would repeat for further (max. 7) attempts. The difference between the AV and the 

AO group was that the former was presented on screen with the visual cues of all the notes, 

whereas the latter was only given the first cue as a reference (to indicate the first note of the 

sequence), but relied only on the auditory information to reproduce the rest of the sequence.  



 In the generalisation session, participants were presented with unheard sequences in 

randomized order, and were asked to judge if the last note was surprising or not surprising. 

There were 105 trials in total and the session lasted around 20 mins. 

 

Passive exposure sessions 

 Following the statistical learning literature (e.g., Loui et al., 2010; Rohrmeier et al., 

2011), participants attended two (days 2 and 3) passive exposure sessions to three repetitions 

of the grammatical sequences in randomised order. They were instructed to listen attentively 

to the melodies. There was a total of 36 sequences and the session lasted approximately 5 

minutes. 

 

Intermediate surprisal sessions 

 After each exposure session (days 2 and 3), participants were presented with 

sequences terminating on high-probability and low-probability notes and were asked to judge 

if the last note was surprising or not surprising. There were 36 trials, lasting around 7 minutes 

in total. 

 

Test sessions 

To assess learning, test sessions were conducted before (pre-test: day 1) and after (post-

test: day 4) training. Participants were seated in front of a computer, while their EEG was 

recorded. In the pre-test only, they were informed that they would listen to melodies of an 

unfamiliar music grammar governed by a set of rules. They were instructed to attend as the 

melodies would stop at random points and were asked to make two judgements on the last note: 

1. correct or incorrect, and 2. surprising or not surprising (Figure 2B). The distinction between 

correct and incorrect notes is related to the grammar rules, while the probability refers to the 

information content. Specifically, correctness refers to whether a note is allowed or disallowed 

by the grammar: a correct note is grammatical, whereas an incorrect note is ungrammatical. 

Within the correct notes, some have a low-probability while others have a high-probability. 

The surprisal ratings add to the correctness judgement, as some notes can be surprising but also 

correct. Therefore, the surprisal ratings were used as a measure of perceived expectedness of 

the stimuli, which would reflect successful internalized acquisition of the statistical rules.  



Furthermore, in the two intermediate sessions we used only high-probability and low-

probability stimuli to test participants, as we did not want to expose participants to incorrect 

stimuli during the “training days” (see the Procedure section under “Intermediate surprisal 

sessions”, p.15). We thus needed to use surprisal judgements as a measure of learning during 

training as correctness judgements would not be appropriate on those sessions (both high- 

and low-probability stimuli are correct). Similar studies on implicit sequence learning of 

melodic sequences have used two-alternative forced-choice recognition tasks that use other 

ratings apart from correctness to assess learning of an artificial musical system (e.g., Loui & 

Wessel, 2008; Loui, Wessel, & Kam, 2010). For example, Loui and Wessel (2008) used 

familiarity ratings, i.e. presented participants with two melodies and asked them to indicate 

which one is more familiar.  

Three practice trials familiarised participants with the task. Across participants the 

presentation order of the trials was randomised. There were 280 trials in total, and each 

session lasted around 40 mins. 

 

Working memory task 

Participants also completed a working memory span task (WM) (adjusted from the 

Wechsler Adult Intelligence Scale, WAIS: Wechsler, 1955). In this task, participants were 

presented with sequences of random numbers from 1 to 9 and had to replicate them on a 

number pad. Starting from length three, the number of digits was increased by one every time 

a correct response was made, otherwise the number of digits of the next sequence was 

reduced by one. This lasted 10 minutes, and the working memory span was calculated as the 

mean length of the correctly reproduced sequences. Due to technical problems, data from 

only 31 participants remained for the WM task.   

 

2.4. EEG recording and preprocessing 

EEG was recorded from 64 Ag-AgCl electrodes attached to the EGI geodesic sensor 

net system (HydroCel GSN 64 1.0; EGI System 200; Electrical Geodesic Inc., OR, USA; 

https://www.egi.com/) and amplified by an EGI Amp 300. The sampling frequency was 500 

Hz. The MATLAB Toolbox EEGLAB (Delorme & Makeig, 2004) was used for data 

preprocessing, and FieldTrip (Oostenveld, Fries, Maris, & Schoffelen, 2011) for data 

analysis. Data were recorded with an online reference at the right mastoid and re-referenced 



to the average of the left and right mastoids. Continuous data were high-pass filtered at 0.5 

Hz and then epoched from -0.2 to 0.6 sec after the onset of the last note. Data from electrodes 

with consistently poor signal quality, as observed by visual inspection and by studying the 

topographical maps of their power spectra, were removed and replaced by interpolating 

neighbouring electrodes. Artefact rejection was conducted in a semi-automatic fashion: first, 

artefactual epochs containing movement, muscle artefacts and saccades were removed after 

visual inspection, and, second, independent component analysis was used to correct for eye-

blink related artefacts. Subsequently, data were detrended, i.e. from each data point of the 

averaged ERP of each participant, we subtracted the average ERP value. The epoched data 

was low-pass filtered at 30 Hz and baseline corrected from -0.2 to 0 sec. Five participants 

were removed due to poor EEG data quality (more than 30% of the trials rejected in at least 

one of the test sessions) (NAO = 15; NAV = 18). 

 

2.5. Statistical analysis 

2.5.1 Behavioural analysis 

Behavioural data 

Participants’ learning was assessed throughout, including pre-test and post-test, 

intermediate surprisal sessions, and the generalisation session. For the pre-test and post-test 

sessions, a response was considered correct if a high-probability (HP) or low-probability (LP) 

note was judged as correct, and if an incorrect note (INC) was judged as incorrect. We 

performed a 2 (session: pre, post) x 2 (group: AV, AO) mixed factorial ANOVA on accuracy. 

To assess sensitivity to the statistical probabilities of the artificial music grammar, we 

calculated the percentage of notes judged as surprising within each note probability category 

in the pre- and post-test, as well as in the intermediate sessions. For the pre- and post-test 

sessions, we conducted a 3 (note probability: HP, LP, INC) x 2 (session: pre, post) x 2 

(group: AV, AO) mixed ANOVA with percentage judged as surprising as the dependent 

variable. For the intermediate surprisal sessions, we conducted a 3 (note probability: HP, LP, 

INC) x 2 (intermediate session: 1, 2) x 2 (group: AV, AO) mixed ANOVA with the same 

dependent variable.  

We evaluated sequence reproduction performance at the training sessions by 

calculating the mean length of correctly reproduced sequences (in number of notes). Due to 

technical problems with saving the results, four participants were excluded from this analysis 



(NAO = 15, NAV = 19). A 3 (training session: 1, 2, 3) x 2 (group: AV, AO) mixed ANOVA on 

sequence length.  

Finally, we investigated whether sequence reproduction performance predicts learning 

by performing a multiple linear regression with average length of reproduced sequences in 

the third training session and group as predictors, and accuracy in the post-test as the 

dependent variable. In order to test whether sequence reproduction performance or learning 

depended on working memory skills, as assessed from the digit span task, we conducted two 

linear regressions: group and working memory were the predictors, and (i) sequence 

reproduction performance and (ii) learning was the dependent variable. 

 

ERP data 

Regions of interest (ROI) analysis. The following regions of interest (ROIs) were used for the 

analysis, based on previous literature (Carrus, Pearce, & Bhattacharya, 2013; A. R. Halpern 

et al., 2017) and visual inspection of the ERPs: N100 (80-145 ms) and P200 (150-225 ms) in 

fronto-central regions (E8, E6, E4, E9, E3, E7, E54, E47 in the EGI configuration, 

corresponding to: AFz, Fz, FCz, F1, F2, FC1, FC2, Cz in the standard 10-20 system). For 

each ROI, the mean ERP amplitude, as well as the peak latencies of the N100 and P200 

components, were calculated. Two 3 x 2 x 2 mixed, repeated measures ANOVAs were 

performed (one for N100 and one for P200) with the following factors: note probability (HP, 

LP, INC), session (pre-test, post-test), and group (AV, AO). 

 The ERAN was also analysed from 0.140 to 0.220 sec (based on Koelsch, Kilches, 

Steinbeis, & Schelinski, 2008) at Fpz. The ERAN was identified as the difference in response 

to LP minus HP notes, and to INC minus HP notes. Two 2 (session: pre vs. post) x 2 (group: 

AO vs. AV) mixed ANOVAs with LP-HP and INC-HP as the dependent variables, 

respectively, were performed. 

 

Non-parametric cluster permutation. In order to explore potential differences of auditory-only 

vs. audio-visual training on brain responses, we further conducted a non-parametric cluster 

permutation test (Maris & Oostenveld, 2007). This test first performs independent t tests at 

each data point, and then identifies clusters of electrodes that exceed a defined threshold and 

have the same sign. Subsequently, the cluster-level statistic is calculated as the sum of the t 

values of the cluster. Finally, the maximum value of the cluster-level statistic is evaluated by 



calculating the probability that it would be observed under the assumption that the two 

compared conditions are not significantly different. 

 Specifically, we compared AV vs. AO on their brain responses to low-probability 

minus high-probability notes (LP-HP) within the first 500 ms after note onset. The 

permutation distribution was extracted from the statistic values of independent samples t-tests 

based on 500 random permutations. The probability threshold was set at p = .05. 

Subsequently, we performed independent samples t-tests on the average values of the 

identified clusters. 

 

3. Behavioural results 

3.1. Pre- and post-test sessions 

 A 2 (session: pre-test, post-test) x 2 (group: AO, AV) mixed ANOVA showed that 

participants successfully learned the grammar (main effect of session: F(1,36) = 67.751, p < 

.001, η2 = .653) (Figure 3A). There was no effect of group or interaction between the 

variables (p > .7). 

 As the random notes were neither correct nor incorrect based on the grammar, we did 

not expect to see any difference in the percentage judged as correct in the pre-test vs. the 

post-test. This was confirmed by a 2 (session) x 2 (group) ANOVA which showed no 

significant main effects or interaction between the variables (p > .2). 



 

Figure 3 - A. Mean accuracy for the auditory-only (AO) and the audio-visual (AV) training 
groups, separately in the pre-test and post-test sessions; B. Post- minus pre-test differences 
between mean percentage of notes judged as surprising in the auditory-only (AO) vs. the audio-
visual (AV) training groups, separately for high-probability (HP), low-probability (LP), and 
incorrect (INC) notes; C. Intermediate session 2 minus session 1 differences between 
percentage of notes judged as surprising, separately for each group and note probability type; 
D. Mean length (number of notes) of correctly reproduced sequences across the three training 
sessions, separately for the AO and the AV group. Error bars represent ± 1 standard error mean 
(SEM). * p < .050, ** p < .010, and *** p < .001. 

 

 Furthermore, participants judged low-probability (LP) and incorrect notes (INC) as 

more surprising than notes of high probability (HP) after training, showing that learning made 

them more sensitive to the statistical probabilities of the grammar (Figure 3B). A 3 x 2 x 2 

mixed ANOVA revealed significant main effects of note probability (F(2,72) = 45.566, p < 



.001, η2 = .559), as well as a note probability * session interaction (F(2,72) = 28.081, p < 

.001, η2 = .438). Post hoc contrasts revealed that participants judged HP and LP notes as less 

surprising in the post-test compared to the pre-test session (HP: t(37) = -3.982, p < .001, 

Cohen’s d = -.650; LP: t(37) = -2.841, p = .007, Cohen’s d = -.472), whereas the opposite 

was found for the INC notes, i.e. participants judged them more as surprising in the post-

session (t(37) = 3.331, p = .002, Cohen’s d = .559). In both sessions, INC notes were judged 

as surprising significantly more often than the HP notes (pre: t(37) = 3.913, p < .001, Cohen’s 

d = .635; post: t(37) = 7.108, p < .001, Cohen’s d = 1.159), as well as than the LP notes (pre: 

t(37) = 2.623, p = .013, Cohen’s d = .428; post: t(37) = 6.741, p < .001, Cohen’s d = 1.102). 

The LP notes were more often judged to be surprising than the HP notes (pre: t(37) = 2.362, p 

= .024, Cohen’s d = .387; post: t(37) = 4.926, p < .001, Cohen’s d = .801). There was no 

effect of group or any other effect or interaction between the variables (p > .3). There was no 

difference in the percentage of random notes judged as surprising in the pre-test vs. the post-

test (p > .2). 

 

3.2. Intermediate sessions 

Participants’ surprisal judgements in the two intermediate sessions were also 

evaluated by a 2 (note probability: HP, LP) x 2 (intermediate session: 1, 2) x 2 (group: AO, 

AV) mixed ANOVA (Figure 3C). Results revealed significant main effects of session 

(F(1,36) = 4.860, p = .034, η2 = .119) and note probability (F(1,36) = 5.135, p = .030, η2 = 

.125). There was also a significant note probability * session interaction (F(1,36) = 49.013, p 

< .001, η2 = .577). Post hoc analysis revealed that participants judged HP notes as 

significantly less surprising in the second compared to the first session (HP: t(37) = -6.741, p 

< .001, Cohen’s d = -1.094), whereas the opposite was found for the LP notes, i.e. 

participants judged them as more surprising in the second session (t(37) = 3.411, p = .002, 

Cohen’s d = .554). Further, in the first session, HP notes were judged as surprising 

significantly more often than the LP notes (t(37) = -2.080, p = .045, Cohen’s d = -.340), 

whereas the opposite effect was observed in the second session (t(37) = 6.103, p < .001, 

Cohen’s d = .996). There was no effect of group or interaction between the variables (p > .2). 

Therefore, HP notes were judged as less surprising in the second compared to the first 

session, whereas the opposite was found for the LP notes, and this effect did not differ 

between groups. 

 



3.3. Generalisation test 

A 3 (note probability: HP, LP, INC) x 2 (group: AO, AV) mixed ANOVA 

demonstrated that participants successfully differentiated between the statistical probabilities 

of unheard sequences (main effect of note probability: F(2,72) = 10.166, p < .001, η2 = .220). 

Planned contrasts revealed that participants judged LP notes as more surprising than HP ones 

(t(37) = 2.362, p = .024, Cohen’s d = .383), and INC notes more surprising than both HP 

(t(37) = 3.913, p < .001, Cohen’s d = .635) and LP ones (t(37) = 2.623, p = .013, Cohen’s d = 

.426). There was no effect of group or interaction between the variables (p > .3). 

 

3.4. Training 

Performance during training improved incrementally and the AV group did 

substantially better in all sessions, as confirmed by a 3 (session: 1, 2, 3) x 2 (group: AO, AV) 

mixed ANOVA (Figure 3D). In particular, results revealed a main effect of session: F(2,64) 

= 37.676, p < .001, η2 = .541. Further, the AV group was able to reproduce longer sequences 

overall compared to the AO group (main effect of group: F(1,32) = 111.335, p < .001, η2 = 

.777). Results also revealed a significant session * group interaction (F(2,64) = 3.369, p = 

.041, η2 = .095). Planned contrasts showed that the AV group were significantly better in all 

sessions compared to AO (session 1: t(32) = 8.407, p < .001, Cohen’s d = .691; session 2: 

t(32) = 9.893, p < .001, Cohen’s d = .621; session 3: t(32) = 9.867, p < .001, Cohen’s d = 

.640). Paired t-tests showed that both groups performed better in the third session compared 

to the first (AO: t(14) = 5.140, p < .001, Cohen’s d = 1.327; AV: t(18) = 5.762, p < .001, 

Cohen’s d = 1.322) and second session (AO: t(14) = 4.392, p = .001, Cohen’s d = 1.134; AV: 

t(18) = 4.055, p = .001, Cohen’s d = .930), and better in the second compared to the first 

session (AO: t(14) = 3.277, p = .006, Cohen’s d = .846; AV: t(18) = 4.062, p = .001, Cohen’s 

d = .932). 

To further investigate whether one of the two groups improved more from training 

session 1 to training session 3, we conducted a paired samples t-test on training performance 

(i.e. length of the replicated sequences) between the training session 3 minus training session 

1 differences of the AV vs. the AO group. Results revealed that the AV group improved more 

(M = 1.404, SD = 1.061) compared to the AO group (M = .815, SD = .614), but that was only 

marginally statistically significant (t(32) = -1.906, p = .066). 

 



3.5. Training predicting learning 

 In order to investigate whether better sequence reproduction performance during 

training leads to better learning, a multiple linear regression analysis was performed to 

predict learning (accuracy in the post-test) with the predictors group (AO, AV) and sequence 

reproduction (average length of reproduced sequences in the third training session). Results 

showed that neither group nor sequence reproduction significantly predicted learning (p > .1), 

and the model was not significant overall (F(2,31) = 1.506, p = .238, R2 = .089), suggesting 

that sequence reproduction during training does not necessarily ensure successful learning in 

either of the groups. 

 

3.6. Working memory predicting sequence reproduction and learning 

We tested whether sequence reproduction or learning depended on working memory 

capacity, as assessed by the digit span task. We conducted two linear regression analyses with 

group (AO, AV) and working memory performance as predictors, and (i) sequence 

reproduction and (ii) learning as the dependent variable. In the first regression, group was a 

significant predictor of sequence reproduction (p < .001), but not working memory (p = 

.880); the model was overall significant (F(2,20) = 20.043, p < .001, R2 = .667). In the second 

regression, neither group nor working memory were significant predictors of learning (p > 

.1), and the model was not significant overall (F(2,20) = 1.269, p = .303, R2 = .113). 

 

4. ERP results 

4.1. N100 time window (80 – 145 ms) 

As shown in Figure 4A, C, D, neural sensitivity to the statistical properties of the 

grammar was reflected in the N100 amplitude of the auditory-only group (AO) as the N100 

was higher in response to low-probability (LP) than high-probability (HP) notes in the post-

test; the audio-visual group (AV) did not show a similar differentiation. Confirming this, a 

mixed ANOVA yielded a significant session * note probability * group interaction (F(2,62) 

= 4.290, p = .018, η2 = .122), as well as a significant session * group interaction (F(1,31) = 

4.140, p = .050, η2 = .118). Planned contrasts showed that the N100 was higher in response to 

LP compared to HP notes in the post-test in the AO group (t(14) = -2.319, p = .036, Cohen’s 

d = .599), whereas that was not significant in the pre-test (t(14) = .979, p = .344, Cohen’s d = 



.253). The contrast between LP and HP was not significant in the AV group for neither of the 

sessions (pre: t(17) = -.911, p = .375, Cohen’s d = .215; post: t(17) = 1.617, p = .124, Cohen’s 

d = .381). Further, the N100 amplitude in response to HP notes became less negative from 

pre- to post-test in the AO group (t(14) = 3.193, p = .007, Cohen’s d = .866). No effect was 

found for the AV group (p >. 1) (Figure 4B, D). There was no other significant effect nor 

interaction between the factors (p > .4).  



 



Figure 4 – A. Grand average ERPs in response to high-probability, HP (blue), low-probability, 
LP (green), and incorrect, INC (red) notes in fronto-central brain regions, for pre- (top) and 
post-test (bottom) sessions, separately for the auditory-only, AO and the audio-visual group, 
AV; B. Grand average ERPs in response to high-probability notes for the AO (left) and the AV 
group (right), for pre- (gray) and post-test (black); C. T-value topoplots between LP vs. HP 
notes for the N100 (top), and between HP vs. LP notes for the P200 (bottom), in the AO (left) 
and AV (right) groups; D. Mean amplitudes for the N100 (80-145 ms after the onset of the last 
note) in the post-test separately for the AO and the  AV group, and for HP (blue), LP (green), 
and INC (red) notes. E. Latency of the N100 in the post-test for AO (left) and AV (right), for 
HP, LP, and INC notes. Error bars represent ± 1 standard error mean (SEM). * p < .050, ** p 
< .010, and *** p < .001. 

 

The enhanced neural sensitivity of the AO group to the statistical regularities of the 

grammar was also reflected on the latency of the N100 (Figure 4E). A mixed ANOVA 

revealed a significant session * note probability interaction (F(2,62) = 4.076, p = .022, η2 = 

.116). In the AO group, the latency of the N100 in response to INC notes was longer in the 

post compared to the pre session (t(14) = 2.620, p = .020, Cohen’s d = .676). Further, in the 

pre-test, the AO group showed shorter latencies to INC than LP notes (t(14) = -2.300, p = 

.037, Cohen’s d = .734), while in the post-test they showed longer latencies to INC than HP 

notes (t(14) = 2.567, p = .022, Cohen’s d = .663). There was no difference in the post vs. pre 

latency in the AV group (p > .3). There was no other significant effect nor interaction 

between the variables (p > .1).  

 

4.2. P200 time window (150 – 225 ms) 

 There was a marginal effect of session F(1,31) = 11.936, p = .002, η2 = .278) (Figure 

4A), as the P200 amplitudes increased from the pre-test (M = 1.263, SD = 2.258) to the post-

test session (M = 2.012, SD = 2.214) There was no other effect or interaction between the 

variables (p > .2). 

 There was no significant effect nor interaction between the variables on the P200 

latencies (p > .1). 

 

4.3. ERAN time window (140 – 220 ms) 

Two 2 (session: pre vs. post) x 2 (group: AO vs. AV) mixed ANOVAs with LP-HP 

and INC-HP as the dependent variables, respectively, were performed on the ERAN (see 

Figure S2 in Supplementary materials). The LP-HP ANOVA did not reveal any significant 



main effect or interaction (p > .1). However, the INC-HP difference increased from pre-test 

to post-test (main effect of session: F(1,31) = 5.836, p = .022, η2 = .158), but there was no 

other effect or interaction between the variables (p > .2). The analysis in detail and a figure 

are included in Supplementary materials. 

 

4.4. Non-parametric cluster permutation analysis 

We compared brain responses to low-probability minus high-probability (LP-HP) 

notes between the AV vs. the AO group with a non-parametric cluster permutation test. 

Results revealed two fronto-central clusters, the first from 100-200 ms (p = .023) and the 

second from 250-350 ms (p = .031) (see Figure S3A for the topography in the Supplementary 

materials). In both clusters, the AO group showed an enhanced negativity in response to LP 

compared to HP notes, which was not the case for the AV group (Figure S3C). This is also 

evident from the difference ERP plots in Figure S3B, in which there is a negative-going wave 

in the AO group, but not in the AV group, in both time windows. Both clusters were further 

statistically tested by independent samples t-tests confirming the group difference (0.1-0.2: 

t(28) = 3.484, p = .002, Cohen’s d = 1.272; 0.1-0.2: t(28) = 3.048, p = .005, Cohen’s d = 

1.113). Considering the time windows and the midfrontal topography of both clusters, they 

might represent the N100-P200 effects we observed, and a later negative-going component 

resembling an N200, respectively. These findings can be visualised in Figure S3 

(Supplementary). 

 

 

5. Discussion 

Our main goal was to investigate the effect of multisensory music learning using 

visual aids, and on the respective neural correlates, as well as examine the distinction 

between sequence reproduction and learning of the statistical regularities of an unfamiliar 

music grammar. Our study was the first, to our knowledge, to investigate statistical learning 

over multiple sessions conducted on separate days under different training regimes. In 

contrast to previous studies showing that multimodality is beneficial for learning (e.g., 

Brünken, Plass, & Leutner, 2004; Cleary, Pisoni, & Geers, 2001; Tierney, Bergeson-Dana, & 

Pisoni, 2008), we found that visual aids boosted sequence reproduction but did not improve 



statistical learning, suggesting that performance during training and actual learning are two 

distinct or relatively independent processes. This was also reflected in the neural correlates, 

as training without visual aids was associated with increased sensitivity to the statistical 

properties of the musical style. 

As expected, participants who received musical training with visual aids were able to 

reproduce considerably longer sequences compared to those without visual aids. Previous 

studies have demonstrated that visual cues engage working memory resources in visuo-

spatial (e.g., Gathercole & Alloway, 2008) and arithmetic (e.g., St Clair‐Thompson, Stevens, 

Hunt, & Bolder, 2010) domains. Thus, it might have been easier for the audio-visual group to 

reproduce the sequences by relying on short-term memory of the visual cues. However, this 

mechanism might only be efficient for immediate reproduction, and not necessarily beneficial 

for longer-term acquisition of knowledge nor for developing an enhanced sensitivity to the 

underlying rules. Future studies are needed to investigate the efficacy of visual aids in longer-

term learning over periods of weeks, months and years, of the statistical regularities of a 

certain musical style. 

Interestingly, the superior sequence reproduction using visual aids was not reflected in 

greater knowledge of the grammar, as the audio-visual and the auditory-only groups 

performed equally well in the test after training. This is in line with previous studies 

demonstrating that performance during training and learning are distinct processes (e.g., 

Kantak & Winstein, 2012; Lee & Genovese, 1988; Schmidt & Bjork, 1992). According to the 

Desirable Difficulties theory (Bjork & Bjork, 2011; Bjork, 1994), learning and retention can 

improve with the use of more difficult and challenging material during acquisition. That is, 

learning can be substantially improved by superficial changes in the presentation of the 

material, e.g., using a letter format that is harder to read (Diemand-Yauman, Oppenheimer, & 

Vaughan, 2011), due to an increasing level of cognitive engagement during learning, which 

enhances subsequent recall. For example, when a response word associated with a stimulus 

word is generated rather than read by the subject, later recall is improved, attributed to 

strengthening of memory associating the two items (Hirshman, & Bjork, 1988). Further, 

learning and generalization of knowledge beyond specific recall improves when two sets of 

information are interleaved rather than grouped into separate blocks (Richland, Bjork, Finley, 

& Linn, 2005). Likewise, participants exhibit better understanding of paragraphs with deleted 

letters than paragraphs with intact letters (Maki, Foley, Kajer, Thompson, & Willert, 1990). 

A beneficial effect of using a hard-to-read letter font on memory recall has been also 

demonstrated in classroom settings (Diemand-Yauman et al., 2011). Our findings suggest that 



participants’ reliance on the auditory information constituted an extra difficulty in the 

sequence reproduction task, which may have led to enhanced neural sensitivity to the 

statistical properties of the learned material (Craik, & Tulving, 1975). In contrary, visual cues 

made the task much easier, thus requiring less cognitive engagement, and providing no 

enhancement of subsequent retrieval. 

Another explanation might lie on the modality specificity of statistical learning (see 

Frost, Armstrong, Siegelman, & Christiansen, 2015 for a review). In particular, it is possible 

that training with visual cues could have led to visual learning dominating over auditory 

learning, thus producing a deficit in the test sessions. Transfer of learning across modalities has 

been found to be limited (Redington & Chater, 1996; Tunney & Altmann, 1999), while there 

are qualitative learning biases among the auditory, visual, and tactile modalities (Conway & 

Christiansen, 2005; Emberson, Conway, & Christiansen, 2011). Further, there is evidence 

suggesting that sometimes multimodality results in cross-modal competition (e.g., Robinson & 

Sloutsky, 2013; Sinnett, Spence, & Soto-Faraco, 2007; see Spence, 2009 for a review), where 

the more salient a stimulus representation, the more it dominates the competition (Rapp & 

Hendel, 2003). Furthermore, visual dominance effects have been demonstrated, where 

participants failed to detect a tone when it was simultaneously presented with a light (Colavita 

effect: Spence, 2009). Visual dominance can be modulated but not completely reversed with 

selective attention (Sinnett et al., 2007), however, in our study, there were no instructions on 

direction of attention. Contrary to our findings, previous studies have shown that combining 

auditory with visual information can be beneficial for sequence learning (e.g., Brünken et al., 

2004; Cleary, Pisoni, & Geers, 2001; Coull, Tremblay, & Elliott, 2001; Pisoni & Cleary, 2004; 

Seitz, Kim, & Shams, 2006; Shams & Seitz, 2008; Tierney et al., 2008). For example, 

participants presented with audio-visual stimuli have been found to reproduce longer sequences 

compared to when they were presented with audio or visual only cues (Simon task: Cleary, 

Pisoni, & Geers, 2001; Tierney et al., 2008). Likewise, in our study, the participants trained 

with audio-visual stimuli were able to reproduce longer sequences during training (compared 

to participants trained with auditory stimuli only) but this benefit did not result in better 

learning of the statistical regularities of the artificial music grammar. 

Importantly, however, the aforementioned studies used the same stimulus modalities 

for the learning and testing phases (auditory-only, visual-only, or audio-visual). Here we need 

to note that, because the multi-modality advantage is often used as a justification for visual 

aids in music learning, we tested both groups without the visual cues (even if they were used 

during training). The reason we did not assess learning in the visual or audio-visual modality 



was that our primary focus was on music learning, i.e. we aimed to study whether visual aids 

improve music learning. Nevertheless, it would be interesting to see how the AV group 

would perform if tested with audio-visual stimuli. Future studies are needed to investigate the 

effect of audio-visual training on multi-modal learning vs. modality-specific learning. In our 

study, visual cues improved sequence reproduction but not statistical learning, thus providing 

corroborating evidence for modality-specific learning. 

Furthermore, our study differs from the aforementioned studies in additional aspects. 

While the auditory cues of the Simon task (Cleary, Pisoni, & Geers, 2001; Tierney et al., 

2008) consisted of the names of the colours (i.e. participants heard the names of the colours 

they needed to reproduce), our participants heard tones and were required to find the 

corresponding keys – a much more difficult task, especially for non-musicians. Further, there 

were differences in the method of testing the knowledge after training. For example, Cleary 

and colleagues (2001) assessed performance based on the length of the sequences participants 

accurately reproduced during training, while Tierney and colleagues (2008) used familiarity 

ratings on a scale from 1 (least familiar) to 7 (most familiar). In contrast, we asked for 

grammaticality judgements of specific notes (correct or incorrect). We could speculate here 

that the latter requires better learning of the statistical regularities of the music grammar since 

it cannot rely purely on working memory (reproduction) or just familiarity. This, however, 

did not occur for the audio-visual group since the multimodal nature of the stimuli made the 

immediate reproduction task so much easier to achieve. 

Participants showed generalization of their knowledge to new melodies, and there was 

no difference between the groups. Previous studies have demonstrated generalization effects 

after a brief exposure to novel music (Loui & Wessel, 2008; Loui et al., 2010). This suggests 

that both groups internalized the underlying rules of the new grammar and were able to 

extrapolate their knowledge to unheard melodies. Participants also exhibited sensitivity to 

notes with different levels of predictability, as they scored incorrect, low-probability, and 

high-probability notes as increasingly more surprising.   

On the neural level, after training, the auditory-only group showed enhanced N100 in 

response to low-probability compared to high-probability notes, but this effect was not 

present in the audio-visual group, which exhibited no differences between probability types. 

The N100 has been previously linked to expectation (e.g., Daikoku, Yatomi, & Yumoto, 

2015; Stefan Koelsch & Jentschke, 2010; Omigie et al., 2013). For example, Omigie and 

colleagues (2013) found that a similar enhanced early frontal negativity was elicited in 

response to unpredictable notes only in controls, but not in amusic patients, which showed 



impaired explicit knowledge of the music for the latter group. Abla and colleagues (2008) 

found that, after first exposure to a novel grammar, the N100 was increased in response to 

unexpected words in high-learners only. In our study, the auditory-only group exhibited an 

increased sensitivity to the statistical properties of the artificial music grammar, while the 

audio-visual group had a less robust representation of the material. Thus, the N100 in 

response to unexpected notes could reflect the strength of the prediction error: better learning 

would lead to formation of strong predictions, which, if violated, would elicit an increased 

N100 amplitude. In contrary, there is not much prediction error when the predictions are 

weak. Based on predictive coding, the brain inhibits the neural responses to predictable 

stimuli in order to achieve efficient processing (Friston, 2005). Auditory, task-relevant 

training might have led to the auditory-only group forming more specific expectations of how 

music should unfold due to better knowledge of the statistical properties of the grammar, thus 

creating stronger prediction error signals when those expectations were violated. On the other 

hand, the audio-visual group might have had less sensitivity to the subtle statistical 

regularities of the grammar due to modality-specific learning. 

The P200 component was larger in the post-test compared to the pre-test session and 

this was not different between groups. This early positive deflection is reported to be 

enhanced after a prolonged training (e.g., Bosnyak, Eaton, & Roberts, 2004; Reinke, He, 

Wang, & Alain, 2003). Lexical processing with familiar words induces larger P200 

amplitudes than unfamiliar words (Perfetti, & Wang, 2006; Stuellein et al., 2016). Liu and 

colleagues (2006) observed larger P200 amplitudes in response to familiar compared to 

unfamiliar Chinese characters and English words, proposing a potential link between P200 

and processing speed. In Stuellein and colleagues (2016), recently seen words were 

associated with larger P200 and faster response times compared to unseen words during the 

experiment, suggesting quicker lexical access and semantic integration in memory. In the 

auditory domain, participants’ P200 amplitudes showed a robust increase after training 

associated with learning to distinguish two synthetic speech variants of the syllable /ba/ 

(Tremblay & Kraus, 2002). The authors suggested that this component reflects a pre-attentive 

mechanism linked to enhanced perception as a result of learning.  

The latency of the N100 was delayed for unpredictable notes compared to predictable 

notes in the auditory-only group, but not in the audio-visual group. The latency of this 

component has been previously associated with processing speed (Polich, Ellerson, & Cohen, 

1996), and correlated with task difficulty (Goodin, Squires, & Starr, 1983). Therefore, in our 

study, the N100 latency effect could reflect that the auditory-only group processed faster and 



easier the expected events compared to unexpected, whereas the audio-visual group did not 

differentiate the varying types of expectancy. As manifested by the early neural responses, 

the results provide evidence for successful early discrimination of subtle statistical 

differences and, therefore, increased neural sensitivity in the auditory-only group, which was 

not apparent in the audio-visual group. 

Our results revealed no substantial modulation of the ERAN by training method or 

clear effects of learning. This is an unexpected finding, considering that the ERAN has 

previously been associated with violation of syntax in Western tonal music in both chord and 

melodic sequences (Koelsch et al., 2000, 2008; Loui, Grent, Torpey, & Woldorff, 2005; 

Pearce & Rohrmeier, 2018; Steinbeis & Koelsch, 2008). Specifically, ERAN is increased in 

response to completely ungrammatical or stylistically unpredictable (but not ungrammatical) 

chords (Leino, Brattico, Tervaniemi, & Vuust, 2007; Steinbeis et al., 2006), but diminished in 

response to expected elements, after a certain context has been established (Leino et al., 

2007). One explanation could be that, in our study, participants were not able to infer 

harmony from the presented melodies, which participants in studies using Western music are 

potentially performing. Koelsch et al. (2016) supported that ERAN does not necessarily 

reflect processing of local dependencies, as local irregularities confound with hierarchical 

structure (Kim, Kim, & Chung, 2011; Villarreal, Brattico, Leino, & Østergaard, 2011). In our 

study, we tracked the statistical properties of the melodic sequences with the IDyOM 

computational model. This model’s probability estimates are long-term (based on prior 

learning of the grammar) and contextual (the probabilities are conditional on the entire 

preceding melodic sequence). Therefore, it is unexpected that the ERAN did not capture 

robustly the statistical learning process, and future studies are needed to investigate this 

further. In contrary, the N100 is more sensitive to local expectancy violation in various 

modalities, such as auditory, visual, temporal (Duzcu, Özkurt, Mapelli, & Hohenberger, 

2019; Michalski, 2000). This component has been especially reflective of statistical learning, 

with larger N100 in response to tones with lower transitional probability compared to tones 

with higher probability (Abla et al., 2008; Halpern et al., 2017; Moldwin, Schwartz, & 

Sussman, 2017; Paraskevopoulos et al., 2012; Zioga, Harrison, Pearce, Bhattacharya, & Luft, 

2020). 

In line with the ROI analysis, a whole-head cluster permutation analysis provided 

corroborating evidence for the increased sensitivity of the auditory-only group to the subtle 

statistical properties of the musical grammar. Besides the N100 and P200 time windows, a 

later, negative-going wave was revealed, which was increased in response to low- compared to 



high-probability notes in the auditory-only group, but not in the audio-visual group. The 

topography and time of this resemble the N200 component observed in prediction error studies 

(Ferdinand, Mecklinger, & Kray, 2008; Hajihosseini & Holroyd, 2013; Kopp & Wolff, 2000; 

Oliveira, McDonald, & Goodman, 2007). Both the N100 and N200 are sensitive to prediction 

errors, the former as a more immediate response, whereas the latter represents more top-down, 

later processes. Specifically, the N200 is elicited by deviant stimuli (Hoffman, 1990). This was 

initially identified in oddball paradigms, where a continuously-presented stimulus is 

interrupted by infrequent stimuli (Näätänen & Picton, 1986). The N200 is evoked to prediction 

errors when a mismatch between an expected and the sensory input is detected (Ferdinand et 

al., 2008; Hajihosseini & Holroyd, 2013; Kopp & Wolff, 2000; Oliveira et al., 2007). For 

example, in a music performance study (Maidhof, Vavatzanidis, Prinz, Rieger, & Koelsch, 

2010), pianists showed an N200 component following unexpected notes, which was enhanced 

during performance than during perception of musical sequences. Therefore, our findings 

suggest enhanced sensitivity to statistical regularities as evidenced from both early 

(unconscious) and late (conscious) neural responses after musical training with auditory only 

cues. 

Previous studies have demonstrated multisensory neuroplastic changes in the auditory 

cortex after multisensory music training (Kuchenbuch, Paraskevopoulos, & Herholz, 2014; 

Pantev, Paraskevopoulos, Kuchenbuch, Lu, & Herholz, 2015; Paraskevopoulos, Kraneburg, 

Herholz, Bamidis, & Pantev, 2015; Paraskevopoulos, Kuchenbuch, Herholz, & Pantev, 2014; 

Paraskevopoulos, Kuchenbuch, Herholz, Foroglou, et al., 2014; Paraskevopoulos, 

Kuchenbuch, Herholz, & Pantev, 2012a). Long-term musical training is associated with 

enhanced multisensory, audio-visual integration and neuroplastic changes in the auditory 

cortex, whereas short-term training affects the processing of each modality separately (Pantev 

et al., 2015). In an MEG audio-tactile mismatch paradigm (Kuchenbuch et al., 2014), musicians 

showed enhanced higher-order audio-tactile integration as evidenced by their brain responses 

to multisensory deviant stimuli, whereas non-musicians demonstrated only bottom-up 

processing driven by tactile stimuli. In an audio-visual integration study on musicians, 

Paraskevopoulos and colleagues (2015) musicians showed increased connectivity in areas 

relying on the contribution of the left inferior frontal cortex in response to auditory pattern 

violations, which was interpreted as better audio-visual cortical integration. In contrary, non-

musicians had more sparse integration of visual and auditory information and relied more on 

the visual information. Considering that our participants were non-musicians, it could be that 



training with visual cues might have triggered an over-reliance on these cues, which then 

distracted them from the statistical regularities of the music. 

This analysis did not reveal an effect of training with visual aids in visual processing 

or other posterior regions. This is in contrast with previous neuroscientific work on 

multisensory learning (Pantev et al., 2015; Paraskevopoulos, Chalas, Kartsidis, Wollbrink, & 

Bamidis, 2018; Paraskevopoulos et al., 2015). For example, in a multisensory oddball 

paradigm, Paraskevopoulos et al. (2018) demonstrated that deviant visual stimuli were 

associated with activation of middle temporal and visual association areas, and that was not 

different between musicians and non-musicians. It could be thus expected that, in our study, 

unexpected notes would elicit a response in visual areas in the audio-visual training group. 

However, this could not be directly investigated as our participants were presented with the 

auditory stimuli only during the post-test session, which means there was no incongruency in 

relation to the visual signals used for training as they were not present in the test sessions (pre 

and post). In other words, in our experiment, the prediction error was always auditory, rather 

than an incongruent audio-visual stimulus pair as in the aforementioned studies (Pantev et al., 

2015; Paraskevopoulos et al., 2015). Finally, a study on visual processing found that the 

amplitude of the N170 component varied depending on reference method, while latency was 

independent across methods (Joyce & Rossion, 2005), which might suggest that the mastoid 

references used here could potentially contribute for the lack of effects in visual areas.  

Our experimental design is not without limitations. First, it is possible that the effects 

we observed are specific to the artificial grammar used, which is necessarily limited in scope 

and may not have provided sufficient challenge to distinguish performance between the 

groups. However, the behavioural findings do not suggest a ceiling effect, which speaks 

against this possibility. Second, because the visual modality tends to dominate when 

attentional resources are depleted (Robinson, Chandra, & Sinnett, 2016), it could be that 

visual cues disrupted learning by increasing task demands, requiring participants to make 

associations between the sounds, the keys, and the visual cues, while the auditory-only group 

needed to only map the keys with the sounds. Furthermore, it would be interesting to examine 

potential super-additivity effects of the audio-visual integration, i.e. whether multisensory 

stimulation elicits higher neural activation than the sum of the unisensory stimuli (Stanford & 

Stein, 2007). Super-additivity effects have been previously demonstrated in various domains, 

such as the audio-visual (Nichols & Grahn, 2016; Paraskevopoulos et al., 2018) and the 

audio-tactile (Hoefer et al., 2013). The absence of a visual-only condition comprises a 

limitation of our study, which could be investigated in future studies. Finally, we 



acknowledge that we might have potentially missed effects around the temporal and visual 

areas due to the average mastoid EEG re-referencing. Future studies are necessary to more 

appropriately explore the effect of visual aids on music learning on ERPs at temporal sites. 

 We conclude that musical training with visual aids is not necessarily beneficial for 

learning; rather it might serve as a distraction from encoding the main material. On the other 

hand, training without visual aids can lead to an enhanced understanding of the statistical 

subtleties of an unfamiliar music grammar, as evidenced by an increased sensitivity to 

statistical regularities at the neural level. Therefore, adding visual cues might give the illusion 

of learning as we can reproduce long sequences, however, it impairs actual learning of the 

material, as indexed by neural response properties. 
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