
https://research.gold.ac.uk/id/eprint/29736/

The version presented here may differ from the published, performed or presented work. Please go to the persistent GRO record above for more information.

If you believe that any material held in the repository infringes copyright law, please contact the Repository Team at Goldsmiths, University of London via the following email address: gro@gold.ac.uk.

The item will be removed from the repository while any claim is being investigated. For more information, please contact the GRO team: gro@gold.ac.uk
Discrete solitons dynamics in \mathcal{PT}-symmetric oligomers with complex-valued couplings

O. B. Kirikchi · N. Karjanto

Updated January 30, 2021.

Abstract We consider an array of double oligomers in an optical waveguide device. A mathematical model for the system is the coupled discrete nonlinear Schrödinger (NLS) equations, where the gain-and-loss parameter contributes to the complex-valued linear coupling. The array caters to an optical simulation of the parity-time (\mathcal{PT})-symmetry property between the coupled arms. The system admits fundamental bright discrete soliton solutions. We investigate their existence and spectral stability using perturbation theory analysis. These analytical findings are verified further numerically using the Newton-Raphson method and a standard eigenvalue-problem solver. Our study focuses on two natural discrete modes of the solitons: single- and double-excited-sites, also known as onsite and intersite modes, respectively. Each of these modes acquires three distinct configurations between the dimer arms, i.e., symmetric, asymmetric, and antisymmetric. Although both intersite and onsite discrete solitons are generally unstable, the latter can be stable, depending on the combined values of the propagation constant, horizontal linear coupling coefficient, and gain-loss parameter.

Keywords Dimer and oligomer · \mathcal{PT}-symmetry · Discrete NLS equation · Bright soliton · Onsite and intersite modes · Dimer arm configuration

PACS 42.65.Hw · 42.65.-k · 42.65.Jx · 05.45.Yv · 45.11.30.Er · 45.10.Hj

1 Introduction

Dissipative media featuring the parity-time (\mathcal{PT})-symmetry has drawn a great deal of attention ever since Carl Bender and his collaborators proposed the system during the late 1990s [1–4]. The condition for a system of nonlinear evolution equations to be \mathcal{PT}-symmetry is that it is invariant with respect to both parity \mathcal{P} and time-reversal \mathcal{T} transformations. This type of symmetry is fascinating since it forms a specific family of non-Hermitian Hamiltonians in quantum physics that will possess a real-valued spectrum until a fixed parameter value of its corresponding complex potential. Above this critical value, the system then belongs to the broken \mathcal{PT}-symmetry phase [4–7].

We assume that observable quantities in quantum mechanics are the eigenvalues of operators representing the dynamics of those quantities. Consequently, the eigenvalues, which epitomize the energy spectra, should be real-valued and acquire a lower bound to guarantee that the system features a stable lowest-energy state. To appease this requirement, we contemplate that the operators must be Hermitian. Non-Hermitian Hamiltonians are generally associated with complex-valued eigenvalues and thus degenerate the quantities. Interestingly, it turns out that the Hermiticity is not necessarily required by a Hamiltonian system to satisfy the Postulates of Quantum Mechanics [5]. A necessary condition for a Hamiltonian to be \mathcal{PT}-symmetric is that its potential $V(x)$ should satisfy the condition $\mathcal{V}(x) = V^\ast(-x)$ [8].

Although \mathcal{PT}-symmetry associates nicely with the standard (local) continuous and discrete nonlinear Schrödinger (NLS) equations as the governing models, it also enjoys
an appropriate amalgamation with other nonlinear evolution equations. This includes models with saturable and higher-order nonlinearity [9–16], as well as fractional-order diffraction effect [17–23]. There are also works on nonlocal models that involve PT-symmetry, such as the nonlocal NLS equation [24–28] and nonlocal Davey-Stewartson equations [29–31]. Other models outside the NLS realm where PT-symmetry plays a role include a nonlocal nonlinear Hirota equation [32], a nonlocal long-wave–short wave interaction equation [33], double-ring optical power resonator [34], quantum master Lindblad equation [35], and damped harmonic Liénard oscillator equations [36].

The term “oligomer” is more well-known in the field of chemistry and comes from the Greek prefix oligo-, “a few” and suffix -mer, “parts”. In this paper, it refers to a repeating structure composed of electronic oscillators or optical waveguides. A dimer is an oligomer system of two coupled oscillators, and it forms the most basic configuration of a system with a PT-symmetry property. Jørgensen and colleagues are the first authors who studied dimer and discussed the conditions for its integrability acquiring a Hamiltonian structure [37, 38]. The dynamics of eigenmodes in other oligomers exhibit large stability areas in both trimers and pentamer systems but a tiny region for tetramers [39].

A distinctive feature of the PT-symmetry system is one part of the dimer loses energy due to a damping effect while another oscillator gains energy from an external source. Indeed, the idea of PT-symmetry was accomplished experimentally for the first time on dimers consisting of two coupled optical waveguides [40, 41]. Optical analogs using two coupled waveguides with gain and loss were investigated in [42–44], where such couplers have been considered previously in the 1990s [37, 38, 45].

PT-symmetric analogs in coupled oscillators have also been proposed theoretically and experimentally [46–49]. A PT-symmetric system of coupled oscillators with gain and loss can form a Hamiltonian system and exhibits a twofold transition which depends on the size of the coupling parameter [50–52]. A comparison between analytical study and numerical approach in a PT-system with periodically varying-in-time gain and loss modeled by two coupled Schrödinger equations shows a remarkable agreement [53]. Besides showing that the problem can be reduced to a perturbed pendulum-like equation, they also investigated an approximate threshold for the broken PT-symmetry phase, cf. [54].

In the case of the anticontinuum limit, breathers are common occurrences in the PT-symmetric chain of dimers. Particularly, a system of amplitude equations governing the breather envelope remains conservative and the small-amplitude PT-breathers are stable for a finite time scale [55]. There exists a fascinating class of optical systems where a coupling or interaction causes the systems to be PT-symmetric. Additionally, symmetry-breaking bifurcations in specific reciprocal and nonreciprocal PT-symmetric systems have a promising application in optical isolators and diodes [56], cf. [14, 15, 21, 40, 57].

In addition to the PT-symmetry phase transition, the reciprocal transmission and unidirectional reflectionless features are appealing to many. The axial and reflection PT-symmetry lead to symmetric reflection and symmetric transmission, respectively [58]. Two interesting nonreciprocal phenomena are unidirectional lightwave propagation and unidirectional lasing, where both are independent of the input direction. When they are combined in a PT-symmetric setting, the unidirectional destructive interference plays an important role in wave dynamics due to the vanishing of spectral singularity [59].

In particular, we are interested in the nonlinear dynamics of PT-symmetric chain of dimers that can be modeled by the discrete nonlinear Schrödinger (DNLS) type of equations due to its abundance applications in nonlinear optics and Bose-Einstein condensates (BEC) [60–62]. Transport on dimers with PT-symmetric potentials are modeled by the coupled DNLS equations with gain and loss, which was relevant among others to experiments in optical couplers and proposals on BEC in PT-symmetric double-well potentials [63]. This proposed model is integrable and its integrability is further utilized to build up the phase portrait of the system. The existence and stability of localized mode solutions to nonlinear dynamical lattices of the DNLS type of equations with two-component settings have been considered and a general framework has been provided in [64]. A dual-core nonlinear waveguide with the PT-symmetry has been expanded by including a periodic sinusoidal variation of the loss-gain coefficients and synchronous variation of the inter-core coupling constant [65]. The system leads to multiple-collision interactions among stable solitons. A study of the nonlinear nonreciprocal dimer in an anti-Hermitian lattice with cubic nonlinearity has been explored recently [66].

In our previous work, we have considered the existence and linear stability of fundamental bright discrete solitons in PT-symmetric dimers with gain-loss terms [67], in a chain of charge-parity (CP)-symmetric dimers [68], and in a chain of PT-symmetric dimers with cubic-quintic nonlinearity [69]. The latter covers the snaking behavior in the bifurcation diagrams for the existence of standing localized solutions. In this paper, we consider the coupled discrete linear and nonlinear Schrödinger equations on oligomers with complex couplings as systems of PT-symmetric potentials. This proposed model arises as nonlinear optical waveguide couplers or a BEC emulation in double-well potentials with PT-symmetry and we hope to stimulate a series of experiments along this direction.

This article is organized as follows. We introduce the corresponding equations modeling the dynamics of the PT-symmetric chain of dimers in Section 2. We investigate the
existence of fundamental discrete solitons for a small value of
the linear horizontal coupling between two adjacent sites using
the theory of perturbation. We analyze the stability of the fundamental
discrete solitons by solving the corresponding
eigenvalue problems in Section 3. Since the expression of the
corresponding eigenvectors from the linearized eigenvalue
problem is arduous, we also employ perturbation expansion with
respect to the gain-loss parameter, which also assumed
to be small. Section 4 compares analytical findings with nu-
merical calculations. We display the plots of the spectra and
typical dynamics of discrete solitons for different parameter
values. Section 5 concludes our study.

2 Mathematical model

The coupled discrete NLS equations that govern the dynamics
of \mathcal{PT}-symmetric chains of dimers are given as follows:

\begin{align}
\dot{u}_n &= i|u_n|^2u_n + i\varepsilon \Delta_2 u_n + \gamma v_n + iv_n, \\
\dot{v}_n &= i|v_n|^2v_n + i\varepsilon \Delta_2 v_n - \gamma u_n + iv_n,
\end{align}

where the dots represent the derivative with respect to the
evolution variable, which is the physical time t for BEC and
the propagation direction z in the case of nonlinear optics.
Both $u_n = u_n(t)$ and $v_n = v_n(t)$ are complex-valued wave
functions at the site $n \in \mathbb{Z}$. The coefficient $0 < \varepsilon \ll 1$ acts
as the linear horizontal coupling constant between two adja-
cent sites. The quantities following ε are the discrete Lapla-
cian factors in one spatial dimension, explicitly given as
$\Delta_2 u_n = (u_{n+1} - 2u_n + u_{n-1})$ and $\Delta_2 v_n = (v_{n+1} - 2v_n + v_{n-1})$.
The coefficient γ represents the gain and loss factor and
contributes to the complex-valued coupling of the system. With-
out loss of generality, we will take $\gamma > 0$. We only consider
the solitons solutions that satisfy the localization conditions,
i.e., $u_n, v_n \to 0$ as $n \to \pm\infty$.

The current model employs complex-valued coefficients in
the vertical coupling between the parallel arrays, while
the previous work [67] and [68] adopted purely imaginary
and real-valued vertical coupling between the parallel arrays,
respectively, which acts as the gain or loss in the system.
Additionally, they also included the real-valued and purely
imaginary phase-velocity mismatch between the horizontal
cores in [67] and [68], respectively, which is absent in our
current model.

For the uncoupled case, also known as the anticontinuum
limit, i.e., when $\varepsilon = 0$, the governing equations (1) reduce to
another \mathcal{PT}-symmetric system in the presence of complex-
valued coupling but in the absence of discrete Laplacian
terms, which has been investigated in [56]. A similar setup
to our model was studied in [70] where the authors approached
from a dynamical system point of view by incorporating the
so-called Stokes variables into the system.

We substitute the following expressions for the complex-
valued wave functions u_n and v_n to obtain static solutions of
the governing equations (1):

\begin{align}
u_n &= A_ne^{i\omega t}, \quad v_n = B_ne^{i\omega t},
\end{align}

where the coefficients $A_n, B_n \in \mathbb{C}$, and $\omega \in \mathbb{R}$ is the propa-
gation constant. We obtain the following static equations for
the \mathcal{PT}-symmetry dimer:

\begin{align}
\omega A_n &= |A_n|^2A_n + \varepsilon (A_{n+1} - 2A_n + A_{n-1}) - i\gamma B_n + B_n, \\
\omega B_n &= |B_n|^2B_n + \varepsilon (B_{n+1} - 2B_n + B_{n-1}) + i\gamma A_n + A_n.
\end{align}

The static equations (3) for $\varepsilon = 0$ has been analyzed in
details in [37, 38, 56]. For sufficiently small but nonzero linear
horizontal coupling ϵ, one can verify the existence of soliton
solutions emerging from the anticontinuum limit by employ-
ing a generalization of the Implicit Function Theorem to a
Banach space [71, 72]. We can adopt the existence analysis of
[63] to our system rather straightforwardly. In this paper,
we only derive the asymptotic series of the soliton solutions
and do not proceed to the theorem in more detail.

We express the complex-valued quantities A_n and B_n
with perturbation expansions in terms of the small linear hori-
zontal coupling ϵ:

\begin{align}
A_n &= A_n^{(0)} + \varepsilon A_n^{(1)} + \varepsilon^2 A_n^{(2)} + \ldots, \quad B_n = B_n^{(0)} + \varepsilon B_n^{(1)} + \varepsilon^2 B_n^{(2)} + \ldots.
\end{align}

We substitute these expansions (4) to the static equations (3)
and collect the terms in successive powers of ε. We then ob-
tain the following equations at $O(1)$ and $O(\varepsilon)$, respectively:

\begin{align}
A_n^{(0)} (1 + i\gamma) &= B_n^{(0)} (\omega - B_n^{(0)} A_n^{(0)}), \\
B_n^{(0)} (1 - i\gamma) &= A_n^{(0)} (\omega - A_n^{(0)} A_n^{(0)}).
\end{align}

and

\begin{align}
A_n^{(1)} (1 + i\gamma) &= B_n^{(1)} (\omega - 2B_n^{(0)} B_n^{(0)} - B_n^{(0)} A_n^{(1)} - \Delta_2 B_n^{(0)}), \\
B_n^{(1)} (1 - i\gamma) &= A_n^{(1)} (\omega - 2A_n^{(0)} A_n^{(0)} - A_n^{(0)} A_n^{(1)} - \Delta_2 A_n^{(0)}).
\end{align}

The corresponding bright discrete soliton solutions admit
two natural, fundamental modes for any $\varepsilon > 0$, which range
from the anticontinuum to anticontinuum limits. They are
the one-excited- and two-excited-sites, also known as the
onsite and intersite bright discrete modes, respectively. The
remainder of our discussion will focus on these two natural
fundamental modes.
2.1 Dimers

In the anticontinuum limit \(\varepsilon \to 0 \), the time-independent solution of (3), i.e., (5), can be written as \(A_n^{(0)} = \tilde{a}_0 e^{i \phi_0} \) and \(B_n^{(0)} = \tilde{b}_0 e^{i \phi_0} \), where both amplitudes are positive real valued, i.e., \(\tilde{a}_0 > 0 \) and \(\tilde{b}_0 > 0 \). Solving the resulting polynomial equations for \(\tilde{a}_0 \) and \(\tilde{b}_0 \) will yield [56]

\[
\begin{align*}
\tilde{a}_0 &= \tilde{b}_0 = 0, & n = 0, 1, & \text{otherwise}, \\
\tilde{a}_0 &= \tilde{b}_0 = \sqrt{\omega - \sqrt{1 + \gamma^2}}, & n = 0, 1, & \text{otherwise}, \\
\tilde{a}_0 &= -\tilde{b}_0 = \sqrt{\omega + \sqrt{1 + \gamma^2}}, \\
\tilde{a}_0 &= \frac{1}{\sqrt{2}} \sqrt{\omega + \sqrt{\omega^2 - 4(1 + \gamma^2)}}, \\
\tilde{b}_0 &= \frac{1}{\sqrt{2}} \sqrt{\omega + \sqrt{\omega^2 - 4(1 + \gamma^2)}} \sqrt{2/(1 + \gamma^2)},
\end{align*}
\]

(7) – (10)

and the phase \(\phi_0 - \phi_n = \arctan \gamma \). Due to the gauge invariance in the phase of the \(\mathcal{PT} \)-symmetry system (1), we can set \(\phi_0 = 0 \) without loss of generality. Thus, \(\phi_n = \arctan(\gamma) \). Solutions (8), (9), and (10) are referred to as the symmetric, antisymmetric, and asymmetric solutions, respectively. The asymmetric solution (10) emanates from a pitchfork bifurcation from the symmetric solution (8) at \(\omega = 2 \sqrt{1 + \gamma^2} \).

Another variant of interesting dimers where the coupling between the oscillators provide gain to the system was considered in [68,73,74]. Such a system may model the propagation of electromagnetic waves in coupled waveguides embedded in an active medium. The dimer considered herein when \(\varepsilon \to 0 \) is different as in our case the coupling between the cores does not only provide gain but also loss.

2.2 Intersite discrete solitons

The mode structure of the intersite discrete solitons in the anticontinuum limit is given by

\[
\begin{align*}
A_n^{(0)} &= \begin{cases}
\tilde{a}_0 & n = 0, 1, \\
0 & \text{otherwise},
\end{cases} \\
B_n^{(0)} &= \begin{cases}
\tilde{b}_0 e^{i \phi_0} & n = 0, 1, \\
0 & \text{otherwise}.
\end{cases}
\end{align*}
\]

(11)

For \(\varepsilon \neq 0 \), we can write the first-order correction coefficients as \(A_n^{(1)} = \tilde{a}_1 \) and \(B_n^{(1)} = \tilde{b}_1 e^{i \phi_0} \). Substituting these to the \(O(\varepsilon) \) equations (6) gives the following expressions for \(\tilde{a}_1 \) and \(\tilde{b}_1 \):

\[
\begin{align*}
\tilde{a}_1 &= \frac{\tilde{b}_1(\omega - 3\tilde{b}_0^2) + \tilde{b}_0}{\sqrt{1 + \gamma^2}}, \\
\tilde{b}_1 &= \frac{\tilde{a}_1(\omega - 3\tilde{a}_0^2) + \tilde{a}_0}{\sqrt{1 + \gamma^2}}.
\end{align*}
\]

(12)

Equations (11) and (12) give the asymptotic expansions for \(A_n \) and \(B_n \) up to the first-order correction for the intersite discrete solitons. Higher-order corrections can be calculated by continuing a similar procedure. Since the first two terms are sufficient for our analysis, we exclude those higher-order terms.

2.3 Onsite discrete solitons

The onsite discrete soliton in the anticontinuum limit admits the following mode structure:

\[
\begin{align*}
A_n^{(0)} &= \begin{cases}
\tilde{a}_0 & n = 0, \\
0 & \text{otherwise},
\end{cases} \\
B_n^{(0)} &= \begin{cases}
\tilde{b}_0 e^{i \phi_0} & n = 0, \\
0 & \text{otherwise}.
\end{cases}
\end{align*}
\]

(13)

Employing a similar calculation as in the intersite case, we acquire the following expressions for \(\tilde{a}_1 \) and \(\tilde{b}_1 \) corresponding to \(O(\varepsilon) \) corrections derived from equations (6):

\[
\begin{align*}
\tilde{a}_1 &= \frac{\tilde{b}_1(\omega - 3\tilde{b}_0^2) + 2\tilde{b}_0}{\sqrt{1 + \gamma^2}}, \\
\tilde{b}_1 &= \frac{\tilde{a}_1(\omega - 3\tilde{a}_0^2) + 2\tilde{a}_0}{\sqrt{1 + \gamma^2}}.
\end{align*}
\]

(14)

The asymptotic expansions for \(A_n \) and \(B_n \) up to the first-order correction for the onsite discrete solitons are thus given by expressions (13) and (14). Likewise, higher-order corrections can be obtained using a similar calculation. We also exclude higher-order terms for this case.

3 Stability analysis

In the following, we consider six configurations, which are combinations of the intersite and onsite discrete solitons with the three solutions of the dimers (8)–(10). We will denote them by subscripts (i) and (o) for intersite and onsite discrete solitons, and (s), (at), and (as) for the symmetric, antisymmetric, and asymmetric types of solution, respectively.

We analyze the linear stability of the discrete soliton solutions by solving the corresponding eigenvalue problem. We propose a linearization ansatz for the complex-valued functions \(u_n \) and \(v_n \) with \(|\tilde{E}| \ll 1 \), written as follows:

\[
\begin{align*}
u_n &= (A_n + \tilde{e}(K_n + iL_n) e^{\lambda t}) e^{\omega t}, \\
v_n &= (B_n + \tilde{e}(P_n + iQ_n) e^{\lambda t}) e^{\omega t}.
\end{align*}
\]
Substituting these expressions to the governing equations (1), we obtain the linearized equation at \(O(\hat{\epsilon}) \):

\[
\begin{align*}
\lambda K_n &= -(\lambda_n^2 - \omega) L_n - \epsilon (L_{n+1} - 2L_n + L_{n-1}) + \gamma P_n - Q_n, \\
\lambda L_n &= (3\lambda_n^2 - \omega) K_n + \epsilon (K_{n+1} - 2K_n + K_{n-1}) + \gamma Q_n + P_n, \\
\lambda P_n &= -[\Re^2(B_n) + 3\Im^2(B_n) - \omega] Q_n - \gamma K_n - L_n \\
&\quad - \epsilon (Q_{n+1} - 2Q_n + Q_{n-1}) - 2\Re(B_n)\Im(B_n)P_n, \\
\lambda Q_n &= \left[3\Re^2(B_n) + \Im^2(B_n) - \omega \right] P_n - \gamma L_n + K_n \\
&\quad + \epsilon (P_{n+1} - 2P_n + P_{n-1}) + 2\Re(B_n)\Im(B_n)Q_n,
\end{align*}
\]

(15)

which need to be solved for the eigenvalue (or, spectrum) \(\lambda \) and the corresponding eigenvector

\[
[K_n, L_n, P_n, Q_n]^T.
\]

The solution \(u_n \) is said to be (linearly) stable when \(\text{Re}(\lambda) \leq 0 \) for all the spectra \(\lambda \in \mathbb{C} \) and unstable otherwise. However, as the spectra will come in pairs, a solution is therefore neutrally stable when \(\text{Re}(\lambda) = 0 \) for all \(\lambda \in \mathbb{C} \).

3.1 Continuous spectrum

The eigenvalues of (15) consist of both continuous and discrete spectra. In this subsection, we investigate the former by considering the limit \(n \to \pm \infty \). We introduce the following plane-wave ansatz to the eigenvector components: \(K_n = \hat{k} e^{ikn}, \)

\(L_n = \hat{l} e^{ikn}, \)

\(P_n = \hat{\rho} e^{ikn}, \) and \(Q_n = \hat{q} e^{ikn}, \) where \(k \in \mathbb{R} \). Substituting these ansatzes to (15), we obtain the following system of linear equations written in matrix form:

\[
\lambda \begin{bmatrix} \hat{k} \\ \hat{l} \\ \hat{\rho} \\ \hat{q} \end{bmatrix} = \begin{bmatrix} 0 & \xi & \gamma - 1 & -\xi \\ -\xi & 0 & 1 & \gamma \\ -\gamma - 1 & 0 & \xi & -\xi \\ 1 - \gamma - \xi & 0 & 1 - \gamma - \xi & 0 \end{bmatrix} \begin{bmatrix} \hat{k} \\ \hat{l} \\ \hat{\rho} \\ \hat{q} \end{bmatrix}
\]

(16)

where \(\xi = \omega - 2\epsilon(\cos k - 1). \) This matrix equation (16) can be solved analytically to yield the following linear dispersion relationship:

\[
\lambda^2 = -(1 + \gamma^2) - \xi^2 + 2(\xi \sqrt{1 + \gamma^2}) \quad \xi = 0, \pm 2\epsilon(\cos k - 1).
\]

(17)

Thus, the ranges for the continuous spectrum are given by

\[
\lambda_{1\pm} = \pm i \sqrt{1 + \gamma^2 + \omega^2 \pm 2(\omega \sqrt{1 + \gamma^2})}, \quad \lambda_{2\pm} = \pm i \sqrt{1 + \gamma^2 + (\omega + 4\epsilon)^2 \pm 2(\omega + 4\epsilon \sqrt{1 + \gamma^2})}.
\]

(18) (19)

We can attain these expressions (18) and (19) by substituting \(k = 0 \) and \(k = \pi \) to the linear dispersion relationship (17), respectively.

3.2 Discrete spectrum

In this subsection, we seek discrete spectra of the linear eigenvalue problem (15) using a similar asymptotic expansion implemented in Section 2, albeit with weak linear horizontal coupling \(\epsilon \). Let the expansion read

\[
X = X^{(0)} + \sqrt{\epsilon} X^{(1)} + \epsilon X^{(2)} + \ldots,
\]

(20)

where \(X = \{ \lambda, K_n, L_n, P_n, Q_n \}. \) Then, substituting the expansion (20) to the linear eigenvalue problem (15), we obtain other sets of linear equations according to the successive order of \(\epsilon: O(1), O(\sqrt{\epsilon}), O(\epsilon), \) etc.

At the lowest order, we attain the corresponding stability equation for the \(\mathcal{PT} \)-symmetric chain of dimers, in which for general values of \(\gamma \) it has been elaborated in [56]. Although the resulting eigenvalues have relatively simple expressions, the corresponding eigenvectors are cumbersome, which are rather worthless for further scrutiny in correcting higher-order eigenvalues. We then restrain our analysis for the case of small gain-loss parameter \(\gamma \) and expand the variables (20) in \(\gamma \) for each expression at \(O(\epsilon^{n/2}) \), \(n \in \mathbb{N}_0 \), obtained from (15). We write the following:

\[
X^{(j)} = X^{(j,0)} + \gamma X^{(j,1)} + \gamma^2 X^{(j,2)} + \ldots,
\]

where \(j = 0, 1, 2, \ldots \). These two small parameters \(\epsilon \) and \(\gamma \) are independent of each other. The steps for calculating eigenvalues \(\lambda^{(j,k)} \), \(j, k \in \mathbb{N}_0 \) have been outlined in detail in the Appendix of [67]. Here, we will present the results instantaneously.

3.2.1 Intersite discrete soliton

Instead of two types of intersite discrete solitons that emerged from the analysis in [67], i.e., symmetric and antisymmetric, we obtain an additional type, i.e., asymmetric one. All of them have in general one pair of eigenvalues that bifurcate from the origin for small \(\epsilon \) and two pairs of nonzero eigenvalues. They are asymptotically given by

\[
\lambda_{(i,\pm)} = \sqrt{\epsilon} \left(2\sqrt{\omega + 1} + \gamma^2/(2\sqrt{\omega + 1}) \right) + O(\epsilon),
\]

(21)

\[
\lambda_{(i,\pm)} = \sqrt{\epsilon} \left(2\sqrt{\omega + 1} + \gamma^2/(2\sqrt{\omega + 1}) \right) + O(\epsilon),
\]

(22)

\[
\lambda_{(i,\pm)} = \sqrt{\epsilon} \left(2\sqrt{\omega + 1} \right) + O(\epsilon),
\]

(23)
for the eigenvalues bifurcating from the origin and

\[
\lambda_{(s,a)} = \begin{cases}
 \left(2\sqrt{\omega - 2} + \gamma^2 \frac{\omega - 4}{2\sqrt{\omega - 2}} + \ldots \right) + O(\epsilon^{3/2}), \\
 + \epsilon \left(\sqrt{\omega - 2} - \gamma^2 \frac{\omega - 4}{4\sqrt{\omega - 2}} + \ldots \right) + O(\epsilon^{3/2}), \\
 \left(2\sqrt{\omega - 2} + \gamma^2 \frac{\omega - 4}{2\sqrt{\omega - 2}} + \ldots \right) + O(\epsilon^{3/2}), \\
 + \epsilon \left(\frac{1}{\sqrt{\omega - 2}} + \gamma^2 \frac{\omega - 4}{4(\omega - 2)^{3/2}} + \ldots \right) + O(\epsilon^{3/2}), \\
\end{cases}
\]

(24)

for the nonzero eigenvalues.

\[
\lambda_{(s,as)} = \begin{cases}
 \left(\sqrt{4 - \omega^2} - \gamma^2 \frac{2i}{\sqrt{\omega^2 - 4}} + \ldots \right) + O(\epsilon^{3/2}), \\
 + \epsilon \left(\frac{3\omega}{\sqrt{\omega^2 - 4}} + \gamma^2 \frac{6i\omega}{(\omega^2 - 4)^{3/2}} + \ldots \right) + O(\epsilon^{3/2}), \\
 \left(\sqrt{4 - \omega^2} - \gamma^2 \frac{2i}{\sqrt{\omega^2 - 4}} + \ldots \right) + O(\epsilon^{3/2}), \\
 + \epsilon \left(\frac{i\omega}{\sqrt{\omega^2 - 4}} + \gamma^2 \frac{2i\omega}{(\omega^2 - 4)^{3/2}} + \ldots \right) + O(\epsilon^{3/2}), \\
\end{cases}
\]

(26)
3.2.2 Onsite discrete soliton

Similarly, we also have three types of onsite discrete solitons with each one generally has only one pair of nonzero eigenvalues. For a small value of ϵ, the symmetric, antisymmetric, and asymmetric onsite discrete solitons are given asymptotically as follows, respectively:

$$
\lambda_{(o,s)} = \left(2\sqrt{\omega^2 - 2} + \gamma^2 \left(\frac{\omega - 4}{2\sqrt{\omega^2 - 2}} + \ldots\right)
+ \epsilon \left(\frac{2}{\sqrt{\omega^2 - 2}} + \gamma^2 \frac{\omega}{2(\omega - 2)^{3/2}} + \ldots\right) + O\left(\epsilon^{3/2}\right)\right),
$$

$$
\lambda_{(o,at)} = \left(2i\sqrt{\omega^2 - 2} + \gamma^2 \frac{i(\omega + 4)}{2\sqrt{\omega^2 + 2}} + \ldots\right)
+ \epsilon \left(\frac{2i}{\sqrt{\omega^2 + 2}} + \gamma^2 \frac{i\omega}{2(\omega + 2)^{3/2}} + \ldots\right) + O\left(\epsilon^{3/2}\right),
$$

$$
\lambda_{(o,as)} = \left(i\sqrt{\omega^2 - 4} - \gamma^2 \frac{2i}{\sqrt{\omega^2 - 4}} + \ldots\right)
+ \epsilon \left(\frac{2i\omega}{\sqrt{\omega^2 - 4}} + \gamma^2 \frac{4i\omega}{(\omega^2 - 4)^{3/2}} + \ldots\right) + O\left(\epsilon^{3/2}\right).
$$

4 Numerical results

To solve the static equations numerically, i.e., Eq. (3), we implemented the Newton-Raphson method. After we obtain the numerical soliton solutions, we investigate their stability by solving the corresponding linear eigenvalue problem (15) using a standard eigenvalue problem solver. In this section, we will compare the analytical calculations obtained in the previous sections with the numerical results.

First, we examine the family of symmetric intersite discrete solitons. The left panels of Figure 1 display both continuous and discrete spectra in the complex plane for $\epsilon = 1$ and the right panels of Figure 1 reveal the dynamics of the real-valued spectrum as a function of the linear horizontal coupling ϵ. The parameter values for the top panels of Figure 1 are $\omega = 2$ and $\gamma = 0.5$. For these parameter values, there exists only one pair of discrete spectrum in the beginning (anticontinuum limit). As the coupling ϵ value increases, one of the nonzero spectra that was initially on the imaginary axis becomes real-valued, too.

The bottom panels of Figure 1 demonstrate the spectra for a sufficiently large value of the propagation constant ($\omega = 5$ and $\gamma = 0.9$). We observe that in the anticontinuum limit, one pair of the discrete spectrum is located at the origin while two pairs lie on the real axis. As the linear horizontal coupling ϵ increases, the pair that was initially at the origin moves closer to the other two pairs. In the right panels, we also illustrate the approximate plot for the discrete spectrum in solid blue curves, where a satisfying agreement is attained for small values of the coupling ϵ. In all cases, the family of symmetric intersite discrete solitons is unstable in the continuum limit $\epsilon \to \infty$.

Second, we consider the family of antisymmetric intersite discrete solitons. Figure 2(a) displays a typical distribution of both continuous and discrete spectra in the complex plane for $\epsilon = 1$, $\omega = 2$ and $\gamma = 0.5$. Figures 2(b) and 2(c) feature the real-part and imaginary-part of the discrete spectrum as a function of the linear horizontal coupling parameter ϵ, respectively. We notice that there exists a pair of the discrete spectrum that bifurcates from the origin. For this particular value of the propagation constant, the spectra satisfy the condition $\lambda^2 < \lambda_{ac}^2$ in the anticontinuum limit $\epsilon \to 0$. As the linear horizontal coupling ϵ increases, the continuous and discrete spectra collide, and consequently, the eigenvalues become complex-valued. Similar to the previous case, the family of antisymmetric intersite discrete solitons is unstable in the continuum limit $\epsilon \to \infty$ for all the chosen parameter values.

Third, the final case for intersite discrete solitons is the family of asymmetric ones. Figure 3 displays a common spectrum distribution in the complex plane for a particular choice of parameters ω and γ. Although the complex eigenvalues are not visible, the asymmetric intersite discrete solitons yield unstable solutions for the set of calculated parameters in the continuum limit. In the anticontinuum limit, the position of the discrete spectrum for the previous case of the antisymmetric intersite is above all the continuous spectrum, viz. Figure 2. The main interesting part is that the unstable eigenvalues bifurcate into the complex plane, i.e., the emergence of eigenvalues with the nonzero imaginary part. For the asymmetric intersite case, the position of the discrete spectrum is in between the continuous one and the imaginary part remains zero.

Figure 4–6 present the spectrum characteristics for the families of onsite discrete solitons. Different from the families of intersite discrete solitons that are consistently unstable, the families of onsite discrete solitons can be stable depending on the parameter values. Figure 4(a) displays the imaginary-part of the discrete spectrum as a function of the linear horizontal coupling coefficient ϵ for the family of symmetric onsite discrete solitons. The choice of ω, in this case, corresponds to stable discrete solitons. However, there are regions of instability for different parameter values of ω that may depend on γ and ϵ. Figure 4(b) displays the regions of (in)stability for the symmetric onsite discrete solitons in the (ϵ, ω)-plane for three distinct values of γ. We observe that the real-part of the contribution of the gain-loss parameter γ toward the \mathcal{PT}-symmetric system for this particular case...
Fig. 3. The spectra of unstable asymmetric intersite discrete solitons with $\omega = 5$ and $\gamma = 0.5$. Panel (a) displays the spectra in the complex plane for $\varepsilon = 1$. Panels (b) and (c) present the eigenvalues λ as a function of the coupling constant ε. The solid blue and dotted curves are attained from the asymptotic approximation and numerical calculation, respectively.

seems to be beneficial since it expands the region of stability for the family of symmetric onsite discrete solitons.

Figure 5 shows a typical feature of the spectrum for the family of antisymmetric onsite discrete solitons. As depicted in Figure 5(a) for $\varepsilon = 1$, due to the presence of quartet complex-valued eigenvalues, this family of solitons is generally unstable. Since the instability occurs due to the collision of the discrete spectrum with the continuous one, stability regions may present before the encounter. Figure 5(c) shows the sectors where the family of antisymmetric onsite discrete solitons is unstable between the curves. These solitons are unstable in the continuum limit $\varepsilon \to \infty$. Figure 6 shows the family of asymmetric onsite discrete solitons that is stable in the region of their existence. Note that this family of solitons bifurcates from the symmetric ones.

Finally, we present in Figures 7–10 the time dynamics of the unstable solutions shown in Figures 1–5. We obtain one feature of typical dynamics in the form of discrete soliton destructions. One may attain oscillating solitons or asymmetric solutions between the arms.

Similar to the families of discrete soliton in a \mathcal{PT}-symmetric chain of dimers with purely imaginary vertical coupling and real-valued velocity mismatch considered in [67], most of the discrete solitons emanating from our model is also unstable, while the soliton families in a chain of dimers with \mathcal{CP}-symmetry considered in [68] are stable. Stable discrete solitons in [67] occur when both the propagation constant and gain-loss parameter are small. On the other hand, the gain-loss coefficient does not influence the width of the snakes for the case \mathcal{PT}-symmetry chain of dimers with cubic-quintic nonlinearity [69].

Fig. 4. (a) The imaginary-part of the spectrum as a function of the linear horizontal coupling parameter ε and its approximation of symmetric onsite discrete solitons with $\omega = 1.5, \gamma = 0.5$. (b) The stability region of the family of symmetric onsite discrete solitons in the ε-ω-plane for three distinct values of γ. The family of symmetric onsite discrete solitons are unstable above the curves.

5 Conclusion

We have presented a model of double oligomers optical waveguide array using the discrete NLS equations with complex-valued coupling. The structure can be implemented in a discrete system with the \mathcal{PT}-symmetry characteristic. Both analytical and numerical results suggest the existence of fundamental bright discrete soliton solutions. We restricted our study to the two discrete modes of the solitons, the
Discrete soliton dynamics in \mathcal{PT}-symmetric oligomers

![Graphs showing eigenvalues and imaginary part of the spectrum](image)

Fig. 5 Panel (a) displays eigenvalues of antisymmetric onsite discrete soliton for $\omega = 2$, $\gamma = 0.5$, and $\varepsilon = 1$. (b) The imaginary-part of the spectrum as a function of the linear horizontal coupling parameter ε. (c) The stability diagram of the discrete solitons for several values of γ. The family of antisymmetric onsite discrete solitons is unstable between the curves.

![Graphs showing eigenvalues and imaginary part of the spectrum](image)

Fig. 6 The left panel displays the eigenvalues of asymmetric onsite discrete solitons for $\omega = 5$, $\gamma = 0.1$, and $\varepsilon = 1$. The right panel shows the imaginary-part of the spectrum as a function of the linear horizontal coupling parameter ε.

![Graphs showing dynamics](image)

Fig. 7 The typical dynamics of unstable symmetric intersite discrete solitons with $\omega = 2$, $\gamma = 0.5$, $\varepsilon = 1$ (compare with Figure 1). The left and right panels depict the plots for $|u_n|^2$ and $|v_n|^2$, respectively.

Intersite and onsite modes. Furthermore, each mode possesses three distinct configurations between the arms of the dimers, depending on the real-valued amplitudes of the time-independent solution of the model in the anticontinuum limit. These are symmetric, asymmetric, and antisymmetric structures.

We have also investigated the linear stability of the discrete soliton solutions by solving the corresponding linear eigenvalue problem. The continuous spectra lie on the imaginary axis and the parameter values determine the spectral boundaries. The corresponding discrete spectrum for the three structures of intersite discrete soliton admits one pair of eigenvalues bifurcating from the origin and two pairs of nonzero eigenvalues. On the other hand, for all three types of onsite discrete soliton, each structure possesses only one pair of nonzero discrete spectrum for small values of the horizontal linear coupling parameter.

We observed the dynamics of the discrete spectra ranging from the anticontinuum to continuum limits, which correspond to an increasing value of the horizontal linear coupling parameter.
parameter, for all the six types of discrete solitons. While all three types of intersite discrete solitons are always unstable, depending on the values of the propagation constant \(\omega \) and the gain-loss parameter \(\gamma \), onsite discrete solitons can be stable. A prevalent feature of the time dynamics for unstable discrete solitons is oscillation and annihilation as time progresses. For future research, in addition to extending the \(\mathcal{PT} \)-symmetric structure to a higher-dimensional model [57, 75], we can also implement a novel and universal method called the “bilinear neural network” for obtaining exact analytical solutions of the coupled DNLS equations [76].

Acknowledgements

We are grateful to Professor Hadi Susanto, Department of Mathematical Sciences, University of Essex, UK and Department of Mathematics, Khalifa University, Abu Dhabi, The United Arab Emirates, for his assistance and valuable comments in improving this paper significantly.

Conflict of interest

The authors declare that they have no conflict of interest.
References

