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Abstract

Economic systems are characterised by constant change and evolution, and ex-
planations concerning the properties of economic structures have received sustained
interest. The structure of a system and its dynamics can influence each other
through feedback effects. In this paper we offer a brief survey of how structure
plays a role in dynamic economic theory — in particular, growth and business cy-
cles. We propose a morphogenetic framework, inspired from the creation of forms
in developmental biology, as a potential unifying approach for studying economic
structures and their dynamics. We synthesise insights from three different strands
of research, focusing on the role of coupling, diffusion and symmetry-breaking. We
highlight their existing and prospective links with economics.

Keywords: Economic dynamics; Morphogenesis; Turing instabilities; Symmetry-
breaking; Structural Change

1 Introduction

Economic systems are far from stable, uniform or homogenous. The same applies to
the processes by which they evolve over time and space, presenting a wide range of pat-
terns that merit investigation, including: inhomogeneous development across countries
and regions, sustained oscillations in aggregate output and growth, financial instability
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own.
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that punctuates long periods of relative stability, spatio-temporal patterns of innovation
and technological change, skewed distributions of wealth, income, evolving patterns of
demand and consumption. These patterns have clear links with the structural properties
of economies, but unearthing the exact mechanisms that guide their formation is both
challenging as well as a topic of sustained interest.

The term ‘structure’ has wide-ranging interpretations across different disciplines,
and any definition specific to the discipline of economics must recognise the characteris-
tics unique to economic structures. These include the time irreversibility of changes and
the complexity of their dynamics. Technological change, for instance, acts as a disruptive
force with cumulative effect on economic structures, and is mostly unidirectional. As eco-
nomic structures grow and evolve, they also display increasing complexity. They display
neither complete stability nor instability, and they undergo significant transformations in
composition and organisation at gradual or sudden rates of change. Theories of struc-
tural change in economics are geared towards identifying the underlying mechanisms and
processes that explain these patterns, but the concept of structure is relevant for eco-
nomic theory more widely as well. The latter aspects include: formulating methods for
comparing different structures, developing a notion of structural equivalence, identifying
the extent of self-regulating capabilities, understanding structural stability, complexity,
drivers of transformation, and tools to study their potential and actual dynamics.

Historically, these questions have been studied separately across different branches of
economics. What is arguably lacking is a unified approach to investigate diverse questions
concerning economic structure and dynamics. The main thrust of this article is to explain
why morphogenetic frameworks — an idea which originates from developmental biology —
can serve as a potential candidate. Our suggestion is that this framing provides a broad
umbrella for the unified study of structure, transformation paths, dynamics, complexity
and evolution. To this effect we discuss three traditions to investigating morphogenetic
frameworks and their links with economic thinking: (i) Turing’s model of morphogenesis
in developmental biology, (ii) Fermi-Pasta-Ulam-Tsingou approach to numerically inves-
tigating thermalisation in solids, (iii) Cellular automata tradition, also one of the origins
of agent-based modelling. Structure and dynamics play a prominent role in each of these,
and there are significant variations in how directly these ideas can, and have historically
been applied to understand economic structures.

In this paper, we focus on theoretical approaches to model structure and dynam-
ics. Empirical issues concerning these topics such as econometric methods for detecting
structural change, though important, are outside the scope of this paper. The remain-
der of the paper is organised as follows: §2 introduces structure, dynamics, complexity
and their interconnections from a mathematical point of view. §3 offers an overview of
the term structure in economics, surveying how growth, development and business cycles
have been conceptualised. §4 introduces approaches to morphogenetic frameworks in the
three traditions, while §5 synthesises core insights from these models and, together with
coupling and diffusion, their application in economics. §6 concludes.



2 Structures, transformations and complexity

As a first approximation, we may say that a structure is a system of trans-
formations. Inasmuch as it is a system and not a mere collection of elements
and their properties, these transformations involve laws: the structure is pre-
served or enriched by the interplay of its transformation laws, which yield
results external to it. In short, the notion of structure is comprised of three
key ideas: the idea of wholeness, the idea of transformation and the idea of
self-regulation [Piaget, 1971, p.5]

The term ‘structure’ is frequently understood as a loose description of relationships
between parts and the whole. However, it is used to refer to a wide range of concepts
across different disciplines such as physics, psychology, mathematics, linguistics, biology,
ecology and social sciences. It is quite challenging to have a definition that covers all these
different usages in a consistent manner. Piaget [1971] has attempted to synthesise some
common threads and his tripartite characterisation of this notion mentioned above can
serve as a useful heuristic for the purpose of this paper. Closely associated with struc-
ture is the idea of transformation, and in particular, dynamics. One can view dynamics
as the transformation of a given structure over time. Furthermore, we can speak of the
structure of solutions or trajectories of a system evolving over time. Several questions
concerning structure may be of interest across different domains: the extent of invariance
of a structure under various transformations, properties that can or cannot be deduced
from a given structural specification, stability, symmetry, to mention a few. Similarly,
dynamics presents a whole set of issues such as appropriate formalisms to encapsulate
dynamic behaviour, characterisation of its long term attractors, their uniqueness prop-
erties, transitional paths, stability, equivalence and so on. Complexity is an overarching
idea which applies to both structure and dynamics. For instance, descriptive complexity
of structures, dynamic complexity, and computational complexity. Clearly, it would be
useful to integrate these interrelated themes within a unified framework.

In terms of formal methods, there are distinct fields of mathematics that have been
developed over the years. Structure has been a central theme in group theory, category
theory, topology, measure theory, model theory (mathematical logic) among other fields.
In the case of dynamics, ordinary and partial differential equations, difference equations,
numerical analysis and dynamical systems theory have been developed to study qualitative
and quantitative aspects. It is intuitive to expect that in study of structures, the idea of
equivalence is central. One needs to map properties between various structures and should
be able to conclude whether they are equivalent, alike or different. The exact notion of
formal equivalence will obviously vary based on the field of study, the nature of structure
and space. In general, the idea of morphism (a generalisation of homomorphism) plays a
central role for understanding equivalence in category theory. If we consider a category
of topological spaces, continuous functions play the role of morphisms. We now describe
some of these ideas in the context of dynamical systems since it will be useful for our
subsequent discussion on structural change, bifurcation and symmetry-breaking.



2.1 Structural equivalence
Consider two continuous time dynamical systems with smooth right-hand sides!
= f(x), zeR" (1)
y=9y), yeR" (2)
Let ¢! and v denote the corresponding flows.

Definition 1. A dynamical system {T,R™, ¢'} is called topologically equivalent to another
dynamical system {T,R"™ '}, if there is a homeomorphism h : R™ — R™ mapping orbits
of the first system onto orbits of the second system, preserving the direction of time.

A homeomorphism is an invertible map such that both the map and its inverse are
continuous. Topological equivalence implies that if x and y are related by the homeo-
morphism h, y = h(x), then the first orbit is mapped onto the second one by this map
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Let y = h(x) be an invertible map h : R™ — R™ which is smooth together with its
inverse (i.e., h is a diffeomorphism) and such that, for all x € R", we have

flw) =M (2)g(h(x)), (3)

where, M denotes the Jacobian matrix of h(z) evaluated at the point x.

)
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Definition 2. Two dynamical systems are called smoothly equivalent, if they satisfy (3)
for some diffeomorphism h.

Let us now consider a parametrised dynamical system
= f(z,a), ze€R" aecR" (4)

As the parameters vary, the dynamical system may or may not be topologically equiva-
lent in terms of the phase portraits.? The appearance of non-equivalent phase portraits

IThe discussion on structural equivalence and morphogenesis has been predominantly been in relation
to differential equations. We will focus largely on differential equations and continuous time dynamical
systems in this paper. For definitions related to smooth equivalence concerning discrete dynamical systems
and for local topological equivalence, see Kuznetsov [2010, ch. 2].

2We note that whether a dynamical system is topologically equivalent to another may not always
be effectively (i.e., algorithmically) decidable in general. We thank the anonymous referee for pointing
this out. A detailed discussion of computability issues in relation to topological spaces and dynamical
systems, while important, are outside the scope of this paper.
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due to variation of parameters is called a bifurcation. It marks a qualitative change in
the dynamics associated with parametric variations and can also be seen as a failure of
the structural stability. Based on Kupka-Smale conditions, bifurcations can be classified
as local (e.g., Andronov-Hopf, saddle-node, Neimark-Sacker) or global (e.g. homoclinic,
heteroclinic) as well as according to the number of parameters that vary (i.e., codimen-
sion). For instance, as the parameter « is the above dynamical system varies, the stable
node or a focus (equilibrium point) can become unstable and give birth to a limit cycle.
In this case, these bifurcations can be supercritical or subcritical based on stability of
the associated limit cycle. In general, bifurcation theory works with a given structure
(parametrised dynamical system) and develops methods to investigates bifurcation that
happen within a family of solution trajectories associated with that structure.
Structural change on the other hand, refers to non-trivial changes that have impli-
cations for some or other properties in structure. At times this is narrowly interpreted
as changes in the proportions and ratios associated with different sub-parts. However, in
some situations a mere change may not be sufficient, but it should also be non-trivial.
Bifurcations described above might capture some aspects of structural change. Growth
often poses interesting questions concerning feedback influences on the original structure.
These feedback effects can be self-regulatory or destabilising to varying degrees. The ex-
tent to which these feedback effects render the structure invariant is an important aspect
of studying structural change, and it is intertwined with the notion of symmetry. In the
case of biological organisms, growth can lead to symmetry-breaking as the organism takes
on definite shapes and forms. Finally, the irreversibility of time can also introduce an
interesting dimension while studying these issues. In the following section we provide a
selective overview of how the terms structure and dynamics are used in economic theory.

3 Structure and dynamics in economics: A bird’s-eye
view

We begin with a brief overview of how the term structure is understood and used in
different branches and schools. Thereafter, we outline the ways in which change or trans-
formation of economic structures has been conceptualised.

3.1 Varieties of structure in economics

The notion of structure has been an integral part of economic theorising right from its
origins in pre-classical thinking. With the emergence of a systemic vision in the eighteenth
century, starting from Richard Cantillon and through the physiocrats, an economy was
seen as an integrated system composed of different sectors, markets or classes. Their
theories dealt with the circular flow of income, expenditure and labour between these
subcomponents of the system, the mechanisms that underpin balance in these flows, and
policies that lead to a supposed natural state. The idea of perpetual reproduction of
the structure and associated questions of value and relative prices were at the core of



their analyses. A quintessential expression of this way of representing and analysing an
economic system can be seen in Frangois Quesnay’s Tableau Economique([1759} 1972).

Among the classical economists, a structural approach was evident in Adam Smith’s
analysis of the factors that determine the wealth of nations. For Smith, the division of
labour that generates productivity gains, which in turn alters the structure of employ-
ment (i.e., the allocated proportions of productive labour) is the key driver of economic
expansion. For Ricardo, an alteration of the relative proportions of different components
in the economic system through distribution was central to increasing production. The
presence of structural thinking in Marx is evident too with his conceptualisation of social
structures. In particular, his analysis of production, class structures in capitalism, the
organic composition of capital and circuits of commodity production are all striking ex-
amples. An emphasis on the notion of proportions in relation to the aggregate structure,
its consequent influence on the creation of surplus and thus on the expansion of economic
system are all hallmarks of the classical approach. The physiocrats and most classical
economists also believed in the self-regulating capabilities of the economic system.?

Although classical economists focused on structural characteristics and the inter-
relationships between respective components, their emphasis was largely on the propor-
tionate or uniform expansion of economic systems. They paid relatively less emphasis to
the intricacies concerning alterations in structure caused by growth, or in other words,
to structural dynamics [Pasinetti and Scazzieri, 1987]. Similarly, the circular flow models
of the classicals did not substantively focus on the time structure of economic processes
either.

In the marginalist tradition, von Thiinen deserves a special mention for his work on
how economic forces shape spatial structures by influencing land use patterns over time.
Among the neoclassicals, Walras in particular focused on the interconnections between
different markets and strived to solve for the exchange ratios that would establish an
overall systemic equilibrium. Preferences, endowments and technology (the neoclassical
closure) jointly define the structural properties of an economic system within this the-
ory. In Walras’ work on general economic equilibrium, despite claims about the role of
tatonnement processes, dynamics play little role [Velupillai, 2015]. Instead, Walras was
devising solution methods to find prices (exchange ratios) that are associated with equi-
libria, but he did not study dynamic features such as the expansion of a system and its
subsequent influence on the structure.

In modern usage, the term structure is used in economic theory in a variety of con-
texts: preference structures, endowment structures, time structure of production, struc-
ture of production networks, industrial structures, sectoral structures, capital structures,
market structures, spatial structure of development, to name a few. Not all of these refer-
ences to structure appeal to the underlying concept in a consistent manner, for instance
as a way of specifying a relationship between parts and the whole. The notion of structure
is also invoked at various, and in particular higher, levels of aggregation. For instance,
it is legitimate to speak of the structure of relationships between variables even in the

3Robert Malthus was among the notable dissenters to this view.



highly aggregate representation of an economy.*

We will not attempt to provide an all-encompassing definition of structure here
since this is outside the scope of the current paper, but it is still worth pointing out the
distinction between static and dynamic structures. Static structures deal with a descrip-
tion of interrelationships between different variables or components of the system, or as
describing patterns without an explicit time element. For example, input-output tables
that capture a snapshot of horizontal interdependencies between different sectors in the
economy.® In contrast, dynamic structures can be seen as the collection of possible time
paths or trajectories associated with a given system. In the framework of the classicals
and neoclassicals, economic theory was predominantly tied to the idea of equilibrium.
Incorporating dynamic changes — and in particular crises and fluctuations in the economy
— posed an important challenge. We will now turn to exploring this distinction in a bit
more detail.

3.2 Structure and change in economics

While static characterisations are capable of providing informative descriptions of an eco-
nomic system, we will mainly focus on dynamic structures that are used to characterise
how systems evolve over time. Even a cursory understanding, it is safe to state that eco-
nomic systems are characterised by a ceaseless process of transformation. Investigating
the possibilities of these transformation processes is an integral part of any structural
inquiry: the structure we endow in models of economies determines the nature of dy-
namics, the possibilities of evolution, and the implicit policy choices available to influence
this direction.® Attempts to incorporate dynamic elements into economic theory that was
hitherto predominantly static originate with Knut Wicksell and Irving Fisher’s contribu-
tions around the turn of the twentieth century. These developments culminated in the
birth of modern macroeconomics, in particular business cycle theory, theory of economic
policy and growth theory. These attempts saw a major surge in theoretical innovations,
particularly those in mathematical applications, through the inter-war year (particularly
in the 1930s) and the immediate decades that followed the second world war. Major con-
tributors include Frisch, Kalecki, Tinbergen, Keynes, Hayek, Myrdal, Lindhal, Hawtrey,

4Thus it may be erroneous to claim that structure is completely absent at high levels of aggregation,
even though higher levels of disaggregation can yield a more nuanced understanding of a system. Potential
loss of information that accompanies aggregation and the conditions on structure (of relationships) under
which aggregation can be performed have been extensively researched in economics. A relevant example
would be the conditions under which individual demand structures are preserved through aggregation,
as outlined by Gorman Aggregation Theorem. Note that this is usually valid only for (quasi) homothetic
preferences. Multi-sectoral models of structural change typically possess non-homotheticity assumptions
of one form or other, thus reclaiming the role of disaggregated structure.

5Tt is however possible to endow time structure to these interdependencies, as the dynamic input-
output literature specifies.

6Tt is possible that there may be multiple ways in which the same underlying system or structure
can be represented [Pasinetti, 1973]. Even if they are formally equivalent, the choice of representation
can have non-trivial implications in terms of the dynamic possibilities and potential actions within these
different representations [Cardinale, 2018].



Aftalion, Schumpeter, Hicks, Harrod, Samuelson, Hansen, Leontief, Solow and Goodwin,
among others.” For the present purpose, it is useful to focus on the development of
business cycle and growth theories to illustrate the use of dynamic structures.

3.2.1 Business cycle theories

Business or trade cycle theory originated from attempts to incorporate fluctuations within
the existing corpus of economic theory that was otherwise predominantly static and tied
to the notion of equilibria. From the outset there were at least two competing visions
of how this can be achieved. For Hayek, trade cycles needed merely to be reconciled
with static-equilibrium economic theory rather than jettisoning the latter. However for
Kuznets, static-equilibrium theory itself needed be abandoned. These contrasting view-
points reflected diverging beliefs concerning the self-regulating capabilities of economic
systems:

What [should] be discarded is the notion of a stable or slowly varying equi-
librium and the equational system of solving economic problems. What is sub-
stituted for it is a general recognition of the importance of the time element
— a recognition which permits the utilization of the generalized experience of
various special investigations in a more complex and a more realistic general
theory of economic change. The equilibrium theory, in the limited mean-
ing in which it is retained, will also be enriched, since the general theory of
economic change will point out many more important economic factors than
have heretofore been included in the equational systems of the mathematical
school. If we are to develop any effective general theory of economic change
and any complete theory of economic behaviour, the practice of treating change
as a deviation from an imaginary picture of a rigid equilibrium system must
be abandoned [Kuznets, 1930, p. 415; emphasis added] .

These developments themselves occurred against a backdrop of flourishing develop-
ment in the mathematical theory of oscillations. In terms of the mathematics utilised,
business cycle theories were formalised predominantly in terms of (linear or non-linear)
ordinary differential, difference, or mixed difference-differential equations and later in
terms of dynamical systems theory. Economic relationships formalised in such a manner
were formulated as systems of equations, and the practise was to solve for or prove the
existence of equilibrium solutions (or attractors).®

The choice of mathematical formalism was not trivial: the choice of models in the
specification of structure decisively determines the dynamic possibilities associated with
the economic system. Ragnar Frisch’s early work on economic dynamics offers an illus-
trative example. In his foundational work on macrodynamics, Frisch [1933] developed a
macrodynamic model in terms of mixed difference-differential equations to demonstrate

"See Ragupathy and Velupillai [2012] and references therein for more details.
8Note that the limit cycles that often characterise business cycles are tied to the notion of equilibria.
They are merely a higher-dimensional analogue of fixed points.
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the possibility of oscillations. He also makes a distinction between impulse and propa-
gation mechanisms, which influenced subsequent approaches in equilibrium real business
cycle theories. When subjected to exogenous impulses, the economic system is displaced
from its equilibrium, but is supposed to return to equilibrium in an oscillating manner
owing to its structure.” The role of structure may need a bit more elaboration: first,
the choice of linear second-order differential equation in principle allows for oscillations.
However, these oscillations can only be kept alive through a regular exposure to impulses
in the form of erratic shocks external to the system. Second, the nature of characteris-
tic roots associated with linear second-order differential equations (necessarily damped)
implies that the effect of these shocks will dissipate and the system eventually returns to
equilibrium. Thus the stability or the self-regulating capabilities of the economic struc-
ture were implicitly determined by the chosen mathematical formulation. As Samuelson
wrote:

In leaving Frisch’s work of the 1930s on stochastic difference, differential
and other functional equations, let me point out that a great man’s work
can, in its impact on lesser men, have bad as well as good effects. Thus, by
1940, Metzler and I as graduate students at Harvard fell into the dogma ...
that all economic business-cycle models should have damped roots [...][W]hat
was so bad about the dogma? Well, it slowed down our recognition of the
importance of non-linear autorelaxation models of the van der Pol-Rayleigh
type, with their characteristic amplitude features lacked by linear systems
[Samuelson, 1974, p.10]

For instance, an alternative specification of an economy in terms of nonlinear dif-
ferential equations allows for the possibility of sustained endogenous oscillations, i.e., en-
dogenous instability of the economic structure.!® Despite its beginnings as an endogenous
theory, business cycle theory eventually came to be dominated by the exogenous approach
in the form of Real Business Cycles. In this class of (neoclassical growth) models, busi-
ness cycles are viewed as fluctuations in output (or employment) along a steady-state
growth path. The baseline version of the model considers a representative agent endowed
with rational expectations who maximises her utility, and the representative firm which
maximises profit. The equilibrium is characterized by the paths of evolution of different
variables (e.g. output, consumption and prices) in the steady state. In the presence of
stochastic shocks, the equilibrium paths of evolution (known as the Dynamic Stochastic
General Equilibrium or DSGE) for quantities and prices are characterized as stochastic
processes. Here, studying business cycles translates into understanding how positive or
negative stochastic shocks to a variable such as technology or productivity translates into
output fluctuations. It may be reasonable to state that the scope of drastic changes to
the original structure is rather limited.!!

9See Zambelli [2007] for an in-depth discussion on the Frisch model and its shortcomings.

0For a detailed story of the origins and early development of endogenous business cycle theories in
their mathematical mode, see Ragupathy and Velupillai [2012].

1 The term ‘scope’ in this context is to be understood in terms of the notion of relative invariance:
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3.2.2 Theories of growth, development and structural change

Growth or expansion of the economic system has been a topic of interest in several schools
of economic thought, ranging from the classical, Marxian (reproduction schemes), neo-
classical, evolutionary, Keynesian and structuralist approaches. Without attempting to
provide an overview of the development of growth theory, in this subsection we will focus
specifically on aspects that relate to structure and change.'?

The process of economic expansion was explained in terms of mathematical mod-
els that encapsulated these dynamics. Early developments like the Harrod-Domar model
focused on explaining the growth of aggregate income in an economy, and its relation to
savings and productivity. von Neumann’s [1945] growth model, which is difficult to clas-
sify within any single tradition, characterised the equilibrium state of an economy as that
where production of all commodities grow at an equiproportionate rate. Influential contri-
butions in this early period to growth theory by Solow and Swan were highly-aggregated
single-sector models that relied on exogenous factors (such as technological progress, pro-
ductivity) to explain growth. Disparities in income and growth across countries was
attributed to differences in technology and the availability of capital per worker.

Later neoclassical models by Cass and Koopmans relaxed the assumption of constant
savings rates in these models, introduced explicit micro foundations with optimising rep-
resentative households and firms. The savings decisions were explicitly couched in terms
of the preferences of these agents, thereby cementing an explicit link with competitive gen-
eral equilibrium theory. This link gave rise to a focus on the optimality of these equilibria,
and also provided scope for invoking the fundamental welfare theorems. The Ramsey-
Cass-Koopmans model and Overlapping Generations Model both became the work horses
of neoclassical growth theory. The problem of optimal growth was posed as one of de-
ciding on the allocation of resources by the planner so as to maximise the utility of the
household. The exogenous factors that drove growth in early models of growth were later
endogenised with the introduction of investments in human capital, R&D, and associated
spillover effects (in particular by the work of Romer and Lucas).”® Multi-sector growth
models with more disaggregated structures were again mostly concerned with optimal
equilibrium growth paths, often within the context of planning.

Neoclassical growth theory (one, two, multi-sector, exogenous, endogenous, closed

“..the analysis of structural dynamics is associated with a general postulate of relative
invariance, according to which any given economic system subject to an impulse or force
is allowed to change its original state by following an adjustment path that belongs to a
limited set of feasible transformations.” [Landesmann and Scazzieri, 1990, p. 96]

The authors go on to explain why changes to equilibrium paths of evolution which arise from stochastic
shocks to key variables are limited in scope, wherein a combination of a priori choices of allowing only
certain structural-specification parameters to be variable in effect implies that only a limited set of
transformations are feasible.

12WWe restrict our overview mostly to developments in growth theory in the post-war period, given our
interest in the corresponding mathematical approaches.

13For an informative survey on the relationship between growth theory and theories of structural change
in the historical context, see Gabardo et al. [2017].
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and open economy versions) predominantly focuses on equilibrium configurations and
steady states. Most models are geared towards solving for equilibrium growth paths,
focusing on existence, uniqueness, stability, transitional dynamics and optimality of these
paths. Stability of aggregate growth is taken as granted, and the models seek to explain
this pattern of sustained growth. Part of the analysis focuses on testing for convergence
or divergence in growth across different countries, and identifying the causes of these
patterns. Structure, if at all it gets any attention, usually plays secondary role. The
mathematical tools utilised in this framework are predominantly (linear and nonlinear)
differential or difference equations, finite or infinite horizon optimisation (for instance by
households and firms) solved using (deterministic or stochastic) dynamic programming or
tools from optimal control.

In contrast to orthodox neoclassical growth theory’s emphasis on balanced growth
paths and the related transitional dynamics, the literature on development and structural
change aims to understand the processes that accompany growth, and how the economic
structure is itself transformed. The latter is often understood in terms of the composition
of employment, output, sectoral structure of production and more broadly the organisa-
tion of the economy as a whole. The legitimacy of this focus can be justified as follows.
First, there is no reason, prima facie, to view growth processes as being equilibrium
phenomena. The stability of growth patterns is by no means universal across different
countries, especially outside the developed world. Second, the dynamic forces that result
in economic growth do not necessarily affect different parts of the economy in a propor-
tionate manner. This unbalanced or non-uniform nature of growth at different levels and
the accompanying drivers of these patterns are too crucial to be ignored. Third, there
is a two-way effect at play as economies grow: the possibilities of growth are determined
or constrained by the initial economic structure, and growth in turn affects the struc-
ture through feedback effects. Consequently, various kinds of interdependencies, dynamic
adjustments and the role of structural aspects underlying growth all become relevant.!4
For example, the industrial revolution that unleashed a significant impetus for growth,
resulted in important structural changes that in turn shaped the growth trajectory in
subsequent years. Growth and structural transformation are thus highly interrelated.

4Such a broad, holisitic vision of growth-though still narrower then economic development which also
includes social-political elements—is eloquently expressed in Kuznets [1966, p.1, italics added]:

We identify the economic growth of nations as a sustained increase in per capita or per
worker product, most often accompanied by an increase in population and usually by sweep-
ing structural changes. In modern times these were changes in the industrial structure
within which product was turned out and resources employed—away from agriculture to-
ward nonagricultural activities, the process of industrialization; in the distribution of pop-
ulation between the countryside and the cities, the process of urbanization; in the relative
economic position of groups within the nation distinguished by employment status, attach-
ment to various industries, level of per capita income, and the like; in the distribution of
product by use—among household consumption, capital formation, and the government
consumption, and within each of these major categories by further subdivisions; in the
allocation of product by its origin within the nation’s boundaries and elsewhere; and so on.
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Early investigations into structural aspects were largely empirical, including Clark
[1940]; Fisher [1939]; Kuznets [1957]; Leontief [1936] and Chenery [1960]. Clark’s early
work pointed towards important factors that underpin structural change. These relate
to differential productivity growth and FEngel effects, which subsequent shaped a lot of
theoretical research in this area. Leontief [1936, 1953] made important fundamental con-
tributions in developing input-output methods to study economies and the vast amount of
literature that it generated also played an important part in studying sectoral aspects of
structural change. The focus of this literature was on explaining the falling employment
share of labour in agriculture over time and the corresponding increase in manufactur-
ing and services. The early literature in development economics took a broader view
than growth theory, focusing relatively more on aspects of structural change. Kuznets,
Hirschman, Nurske, Chenery, Lewis and Rosenstein-Rodan are amongst those who made
important early contributions. Dual economy models in development concentrated on a
range of asymmetries between the two sectors in an economy [Syrquin, 1988].

Explanations concerning structural change can be broadly divided into the following
groups or combinations thereof: (a) the demand side view that focuses on the income
elasticity of demand across different sectors; (b) the supply side view that focuses on
technological factors and largely on productivity differences across different sectors. The
demand side view crucially departed from mainstream growth theory in its discarding of
the homothetic preferences assumption, whereby increases in income were accompanied
with differential income elasticities.!® On the supply side, non-homogenous nature of
technological progress was the crucial factor which led to differential productivity growth
across sectors [Gabardo et al., 2017].1® There have also been attempts to integrate these
two explanations within a single framework [Guill6 et al., 2011].

It is easy to see that introducing a representative household into a model limits the
scope for variation or heterogeneity in the structure of the underlying economy. And,
with a representative household, characterising an economy through aggregation is then
possible only under the restrictive conditions of the Gorman Aggregation Theorem. Gor-
man preferences imply linear Engel curves (depicting how the proportion of income spent
on various goods change with variations in income) for each household (see Gorman
[1961], Acemoglu [2009, §5.2]). In other words, the demand side of the economy remains
unaffected by changes in the distribution of income. Many departures from aggregate,
balanced growth theory in the neoclassical tradition routinely invoke non-homothetic pref-

5For a comprehensive treatment of structural change and Engel’s law in the neoclassical framework,
see Matsuyama [2019].
16See Syrquin [2012, p.72]:

Once we abandon the fictional world of homothetic preferences, neutral productivity
growth with no systematic sectoral effects, perfect mobility, and markets that adjust in-
stantaneously, structural change emerges as a central feature of the process of development
and an essential element in accounting for the rate and pattern of growth. It can retard
growth if its pace is too slow or its direction inefficient, but it can contribute to growth if it
improves the allocation of resources by, for example, reducing the disparity in factor returns
across sectors or facilitating the exploitation of economies of scale
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erences that violate the Gorman conditions.

Studies on structural change can also be broadly divided into neoclassical and non-
neoclassical approaches. Within the neoclassical, a further categorisation follows from
whether or not the models aim to situate structural change alongside balanced growth
properties (so called Kaldor facts). Studies like Acemoglu and Guerrieri [2008]; Foellmi
and Zweimiiller [2008]; Ngai and Pissarides [2007] focus on explanations that reconcile
structural changes with aggregate balanced growth. In contrast, studies like Baumol
[1967]; Echevarria [1997]; Kongsamut et al. [2001]; Laitner [2000]; Matsuyama [1992] con-
struct a range of models that explain structural change without relying on balanced
growth. There is also now a considerable literature on the empirical divers of structural
change [Van Neuss, 2019].

From a non-neoclassical perspective, there have been several contributions relating
to structural change and growth. An important approach that focuses on changes in
structure (composition) associated with lasting changes in economic magnitudes was put
forward by Pasinetti [1983, 1993]. Changes in population, technological progress and de-
mand patterns due to increasing income were at the core of his analysis. More specifically,
changes in labour productivity brought about by varying levels of technological progress
across sectors in turn affect patterns of demand, leading to adjustments in composition via
prices and factor rewards. Consequent effect on attempts to maintain full employment,
the coexistence of expanding and declining industries, and the dissonance between pat-
terns of demand and output expansion were analysed within the framework of a vertically
integrated production system.

The time structure of adjustments, and the viability and traverse of how the eco-
nomic structure evolves have also been analysed within a neo-Austrian framework [Amen-
dola and Gaffard, 1998; Hicks, 1973]. A useful classification of different analytical frame-
works for analysing structural dynamics — horizontal interdependencies with and without
time structure, varieties of vertical integration — can be found in Landesmann and Scazzieri
[1990]. Schumpeterian approaches focus on the mechanics of innovation, their diffusion,
emergence of new products, industries and uneven growth, which have been analysed
in both neoclassical [Aghion and Howitt, 1992] and evolutionary frameworks [Filippetti
et al., 2020; Saviotti and Pyka, 2004].

In what follows, we discuss a framework inspired from the creation of biological
forms to think about the relationship between structure and dynamics. Our aim is to
relate this to the ideas discussed so far in order to outline a unified perspective.

4 Structure and dynamics: A morphogenetic view

Morphogenesis is the branch of developmental biology concerned with how shapes are cre-
ated as organisms grow. For example, how they develop from a simple egg into complex,
full-fledged animals or plants. The subject has a long history dating back to at least the
ancient Greek philosophers. The etymology of the term morphogenesis can be traced to
its Greek roots; morph denotes ‘form’” and genesis means ‘creation’. Thus, ‘morphogen-
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esis’ refers broadly to the creation of forms, shapes or structures which accompanies a
dynamic process of development. In biological systems, morphogenesis is often viewed as
resulting from interactions between molecules and cells. However, even within a biological
context, morphogenetic mechanisms depend not only on interactions, but also on vari-
ous constraints and ‘elaborate systems of feedback that regulate where and when those
interactions take place’ [Davies, 2013, p.8]. A central issue in biological systems is that
growth of the different parts of the organism may not be uniform because sub-parts grow
at different rates.!”

It is fairly straightforward to see the potential relevance of morphogenesis to the
study of economic structures and how they evolve. However, with the exception of in-
frequent allusions, to the best of our knowledge a detailed exploration of the connection
and analogies between growth theory, structural change in economics and morphogenetic
literature has yet to be undertaken.

Consider for instance morphometry, viz. the quantitative study of relationships
between the size and shape of organisms and their variability.!® As organisms grow
and acquire definitive shape, questions concerning scaling become important. Two oft-
invoked ideas in this context are isometry and allometry. Isometry refers to cases where
the proportions between respective parts are preserved as growth takes place, whereas
with allometric scaling this proportionality can change.

To appreciate the almost direct parallel with economic structures, consider Per-
roux’s influential definition of economic structure as ‘proportions and relationships that
characterize . . . an economic setting in space and in time’ [Pasinetti and Scazzieri, 1987].
Further, the view of economic growth as an uneven process across space and time is in
fact characterised as the case in which structural proportions are not maintained [Ray,
2010]. There are other similarly striking parallels as well between isometric scaling and
balanced growth paths.’

Unlike morphometry which focuses on the quantitative analysis of changes in pro-
portions with growth, morphogenesis has broader scope, and seeks not only to characterise
but also identify the mechanisms underpining the generation of shapes and form. Some
notable works on morphogenesis include D’Arcy Thompson’s “On Growth and Form” and
Turing’s paper on “The chemical basis of morphogenesis”, which each adopt a different
approach. Thompson relied heavily on geometric reasoning, whereas Turing largely re-
sorted to algebra and calculus. At the risk of over-simplification, Thompson’s approach
can viewed as one in which structure or variations in shapes result from varying rates of
growth in different directions. In contrast Turing can be seen as searching for a dynamic
mechanism that underpins pattern formation, and below we now provide a brief review

17 As Wolpert [2011, p.95] notes: “After 9 weeks of embryonic development, the head of a human embryo
is more than a third of the length of the whole embryo, whereas at birth it is only about a quarter. After
birth, the rest of the body grows much more than the head, which is only about an eighth of the body
length in the adult.”

18Some early pioneers of a geometric approach to morphometry based on proportions included artists
such as Leonardo da Vinci and Albrecht Diirer, especially the latter’s book Vier Biicher von Menschlicher
Proportion (Diirer, [1528] 1969).

9For the history of morphometrics, see Reyment [2010].
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of this approach.?’

4.1 Turing Bifurcations

In an attempt to provide theoretical insights into morphogenesis, Alan Turing focused
on the chemical basis of morphogenesis and showed that patterns can emerge from a
previously homogenous, structureless state. These patterns emerge when two morphogens
— form-creating substances — react amongst themselves and diffuse through the tissue. In
such a reaction-diffusion system, Turing was able to mathematically demonstrate that
even small, random disturbances can trigger off a process that eventually leads to loss
of stability of the initial, symmetrical, structureless state. Thereby, this study proposed
diffusion-induced symmetry-breaking as a plausible mechanism for pattern formation.

A notable feature of Turing’s analysis is that he managed to demonstrate the
counter-intuitive idea that two stabilizing influences could interact in a way that leads to
instability. That is, a homogenous configuration of cells which is stable, loses its stability
in the presence of diffusion (which is generally perceived to be a stabilizing factor) be-
tween the cells, thereby forming distinct patterns. Below, we present a schematic version
of Turing bifurcation in a reaction-diffusion system.?!

Consider a continuous ring of tissue, and let  and y be the morphogens and D,, D,
be the respective diffusion coefficients.?? We consider x and y as activator and inhibitor,
respectively. An activator is a chemical that facilitates the growth in concentration of both
chemicals, where as an inhibitor in contrast leads to a reduction in their concentrations.
The rate of change of these morphogens is specified as below as a system of partial
differential equations:

oz = f(z,y) + D,V%z
o (5)
a—i = g(z,y) + D,V?y

Let us assume x = zy,y = yo to be the (constant) values of x and y at the spatially
homogenous state and 0 < D, < D,. This condition means that the inhibitor diffuses
faster than the activator (‘short range activation and long range inhibition’), which is
considered to be one of the general patterning principles in this system.

Consider a random disturbance that displaces the system from this homogenous
state and by considering the system just outside the spatially homogenous state, we
define x = xg + & and y = yo + y and =,y < 1. By linearising of the system in terms of
Z,1, we have,

20Gtrictly speaking, there is no growth in Turing’s original published model and his main analysis
concerned the formation of patterns and not shapes.

21The exposition closely follows Hoyle(2006), pp.12-21

22Instead, if we consider a ring of discrete cells then this will yield a system of ordinary differential
equations. See section 6 of Turing [1952].
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% = ai — by + D;V*i
’ : )
E:cx—dy—i-DgV Y

The marginal reaction rates a, b, ¢ and d are given as below:

0= of _of . dg Oy
Oz (z0,y0) % (wo,y0) Oz (zo,y0) Oz (wo,y0)
By setting & and ¢ as below, with 2/, 3 as constants:
i =a'eM
Zj — yle)\t
The associated marginal reaction rate matrix (Jacobian) of the system 6 is:
a —b
it

The characteristic equation of this system is given by
N+ (d—a)\+ (bc — ad) =0
Its corresponding eigenvalues are the following:

(a —d) £ +/(a+d)? — 4bc
2

Ao =

If the conditions a < d and ad < bc are satisfied, then © = xy,y = 1o is the stable
solution since both the eigenvalues are negative in that case. However, we are interested in
analysing the nature of the solutions , ¢ which are spatially varying and in the potential
loss of stability that results from diffusion.

The solution (Z(u,t),y(u,t)) of the system, which varies across space can be ex-
pressed in terms of Fourier series and we can analyse the Fourier modes.

B(u, t) = o'e* A

]j(u,t) — yleikqu/\t + .

where k is the wave vector. We can impose boundary conditions and obtain disper-
sion relation in terms of A to analyse the stability of the linearised system. However, for
simplicity, let us consider that the system is unbounded and ignore the higher order terms
for z,y. Substituting the above in to the equation system 6, we can get an equation that
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relates the eigenvalues A\ and the dispersion coefficients D,, D, and k = |k|, the norm of
the wave vector:

N+ ANDyk* + Dyk* —a+d) + (D.k* — a)(Dyk® +d) +be =0

This is characteristic equation in terms of A. We can examine the trace and determinant
of the associated Jacobian to analyse conditions under which linear stability is violated.
The trace (D,k*+ D,k* —a+d) cannot be negative given our assumptions about diffusion
coeflicients D,, D, > 0 and the assumption that a < d (for the stability of the original
spatially homogenous state). Therefore, the only possibility through which instability can
arise is when the product of eigenvalues is negative.

A(K?) = (D.k* — a)(Dyk* + d) + be < 0

Using this we can find the value of k? for which minimum value of the product of
the roots, A, is attained, which is:

k2—1 i_i
- 2\D, D,

Turing instabilities set in when A,,;, < 0 and k? > 0, that is:

L d
D, D,
Definition 3. Turing Instability
A Turing instability, Turing bifurcation, or diffusion-driven instability occurs when a

steady state, which is stable in the absence of diffusion, becomes unstable with the presence
diffusion.

Remark 4. Note that the factors that determine the loss of stability are totally intrinsic
to the system, such as the diffusion rates and the reaction coefficients.

At this juncture, it would be useful to contrast Turing bifurcation with another form
of bifurcation used to model economic dynamics, viz. the Andronov-Hopf bifurcation
theorem [Benhabib and Nishimura, 1979; Velupillai, 2006].

Definition 5. Andronov-Hopf Bifurcation
Consider a one parameter, smooth dynamical system,

i=f(r,a),r € R" a € R!

As the parameter « is varied, if the hyperbolicity of equilibrium is violated due to a bifur-
cation that corresponds to the presence of A\ o = Fiwy,wy > 0, it is called Andronov-Hopf
bifurcation.
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Note that in this case, the bifurcation indicates the birth of a limit cycle from an
equilibrium as the parameter is varied. For the case of continuous time dynamical systems,
an equilibrium loses its stability when the eigenvalues cross the imaginary axis, due to
which closed orbits bifurcate from the fixed point. Although both processes involve the
loss of stability of an equilibrium, there are differences. Turing instabilities are associated
with spatial patterns, while Hopf bifurcation relates to temporal oscillations. In the latter
case, the topological equivalence or symmetry of the solution trajectories is broken. In
the next two subsections, we outline two other approaches that developed in the early
1950s for studying structures. Even though they do not necessarily relate directly with
morphogenesis, they have certain elements in common which subsequently we will attempt
to synthesise.

4.2 Fermi-Pasta-Ulam—Tsingou approach

The Fermi-Pasta-Ulam-Tsingou (FPUT henceforth) problem in non-linear dynamics and
vibration theory [Fermi et al., 1965] provides another approach to explaining structural
properties and dynamics in economics. Unlike the chemical-mechanical approaches to
explaining pattern formation in biological systems, this approach lies entirely within the
physical sciences. Unlike also many chaotic systems in which apparent erratic behaviour
can result from purely deterministic (non-linear) systems, this problem belongs to a class
of problems where instead predictable and regular properties of a structure are themselves
unexpected and incredibly hard to explain. A brief introduction to the problem is as
follows.?

In the early 1950s Enrico Fermi, John Pasta, Stanislaw Ulam and Mary Tsingou
studied the problem of thermalisation in mechanical systems in Los Alomos laboratory
through one of the earliest examples of experimental mathematics using computers. Con-
sider a string of atoms, suspended in a straight line, and coupled to one another with
springs that have small deviations from linearity in how their movements interact with
that of the other springs. The problem arises from how energy applied along a given tra-
jectory of possible oscillatory movements — a mode — leads to the system transitioning to a
combination of other modes. The expectation was that with nonlinearities introduced in
the springs, energy applied to one mode would, over time, end up being shared across all
other possible modes. However, while energy was initially shared across different modes
as expected, over time the system moved towards complicated dynamics where the vast
majority of energy provided returned to the original mode.

Specifically, FPUT investigated a one-dimensional lattice composed of N=64 oscil-
lators (atoms) which are coupled to their nearest neighbour under zero boundary condi-
tions.2* Let [ be the length of a one-dimensional string and the equilibrium positions of

ZFor a historical overview of the problem and later developments, see Weissert [1997] and Galavotti
[2008].

24Tt can be instructive to think about a string of atoms (vibrating oscillators) being tied at both ends
to a wall.
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the oscillators be given as:
pi=th, i=1,...N—1

where h is the lattice spacing. The positions of oscillators at any given time ¢ is specified as
X;(t) = pi+x;(t), where x;(t) is the displacement from equilibrium. The force of attraction
between an oscillator and its neighbour in this arrangement is given as k(8 + v4?), where
7 is the strain. Based on the total force acting on the oscillator ¢ (by taking in to account
its right and left neighbours), assuming that the mass of all oscillators is m and #(0) = 0,
we have the following laws of motion, with boundary conditions zy(t) = zx_1(t) = 0:

mxz = k(xi+1 + T — 21‘1)[1 + ’7(1’,‘4_1 — l’,’_l)]

When v = 0, the interactions are linear and we have a case with N — 2 coupled
oscillators resulting in no thermalisation. When ~ is small, it was expected that the
system will equilibrate with energy shifting gradually between different modes, leading
to thermalisation. To their surprise, they found that not only did thermalisation fail to
occur, but the dynamics were much more complicated in terms of the behaviour of the
modes, with almost all emergent periodic behaviour difficult to explain. This landmark
study led to a large literature on nonlinear dynamics and advanced our understanding of
solitons.?

There are remarkable similarities between the set up of the problems investigated
by Turing and FPUT roughly around the same time. They both consider a string (or a
ring) of coupled units, are interested in understanding the process of homogenisation of
a system (or lack thereof), where the cumulative effects of initial displacements lead to
counterintuitive results. In both cases, the notion of symmetry plays an important role
- while pattern formation in Turing’s model of morphogenesis is the result of symmetry-
breaking, recent research on the FPUT problem and theory of solitons has shed light on
the persistence of certain properties in such systems having to do with hidden symmetries
(symmetry as understood in light of Emmy Noether’s theorem on symmetry).?® Thus,
symmetry analysis and the search for underlying mechanisms associated with preservation
or change in systemic properties can potentially lend significant insight for structural
analysis.

4.3 Cellular automata, networks and agent-based models

The third approach that we wish to focus on involves agent-based models, particularly
those where structural influences play a prominent role. Early developments in the field
of agent-based models had explicit structural features in the form of coupling or net-
works. One of the origins of modern agent-based models lies in the cellular automata
tradition. John von Neumann and Stanislaw Ulam carried out some foundational work

Z5In particular, through the important contributions by Norman Zabusky and Martin Kruskal (also
see Palais [1997]).

26To the best of our knowledge, the deeper connections between FPUT, Turing’s model of morphogen-
esis and von Neumann’s work on cellular automata was first pointed out by Velupillai [2013].
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on cellular automata (viewed as a biophysical computational model) in the 1950s. They
were interested in constructing a self-replicating automata so as to understand biologi-
cal evolution and the self-organizing capabilities of the human brain. Cellular Automata
(CA) are discrete mathematical structures (both in space and time) and their evolution
is based both on the rules of (local) interaction and the structure of the ‘neighbourhood’
or network, where the idea of a network is implicit, related to the nature of coupling or
physical proximity to nearby cells.?

The role of structure in dynamics within the cellular automata tradition can be best
understood by examining two early models : (a) John Conway’s Game of Life, (b) Stephen
Wolfram analysis of elementary cellular automata [Wolfram, 1983, 2002]. These models
have network structures as essential ingredients, and neighbourhood-based decision rules
which can be specified as follows:

Xigr1 = [(X(Nig)) (7)

where N;; represents the set of neighbours of the cell (or agent) i and X (NN;;) is the state
of the neighbours at time ¢. The neighbours can in principle be defined based on physical
or social distance. From the decision rule, the decisions of agent ¢ at time ¢ + 1 can be
seen to depend on the decisions made by the neighbours at or up to time ¢. In order to
relate it to the previous examples, let us consider the simplest case of coupling involving
a one-dimensional lattice. The agent has two neighbours (right and left) and needs to
make a binary choice (0 or 1). The decision rule of the agent can be described via the
mapping

Xisr1=f:{1,0} x {1,0} x {1,0} — {1,0} (8)

Wolfram [2002] systematically studied these decision rules for binary strings and gen-
erated their time-space patterns. He then classified these decision rules into four classes,
which can be seen as representing a hierarchy of complexity. This four class classification
links one-dimensional cellular automata, dynamical systems theory, formal language the-
ory and the theory of computation. Expressed from the view point of dynamical systems
theory, these four classes are fixed points, limit cycles (periodic cycles), chaos (pseudo
randomness, strange attractors), and on the edge of chaos (complex patterns). Thomas
Schelling and James Sakoda employed neighbourhood-based decision rules in the form of
checker board models to study patterns of segregation in residential choices, where agents’
decisions are influenced by their neighbours Sakoda [1971]; Schelling [1971].® These mod-
els examined how unexpected or undesirable macro-level patterns are plausible from the
interactions of several individuals under neighbourhood-based decision rules, within a
rational choice theoretic framework. Depending on the distribution of threshold values
of tolerance, we can characterise a tipping point or critical point, at which a morpho-
genetic change in demographics can occur. Note that the social structure or networks

2"In a two-dimensional square lattice, the number of cells that constitute a neighbourhood varies
depending the definition of distance, such as Chebyshev distance (Moore neighbourhood), Manhattan
distance (von Neumann neighbourhood).

28 Although without explicitly relating them directly to CA or agent-based models.
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are exogenously specified in the these models. Another class of models that made use
of neighbourhood or lattice structure relate to Spatial games, which can be seen as a
predecessor to network games. They contain a framework akin to the prisoner’s dilemma
and the game is played by many agents who are distributed across space, with the aim
of studying the emergence and evolution of cooperation [Axelrod, 1984; Nowak and May,
1992]. Unlike the early generation models which worked with a given structure, later de-
velopments in network theory (among others, Watts and Strogatz’s small-world networks,
Barabasi and Albert’s scale-free networks) made it possible to investigate the endogenous
processes underpinning network structure formation.?”

5 Structure, coupling, diffusion and economic dy-
namics

The study of dynamics of the industrial capitalism should not proceed as the
solution of a given system subject to exogenous shock. The economy has
been characterized by the fact that it generates not only perpetual
motion but one which exhibits continual alteration of its own struc-
ture in the pursuit of private profit. It can be considered either as a
single species altering its structure (morphogenesis) or as a selection of new
species through competitive survival and/or disappearance. [Goodwin, 1993,
p.45, emphasis added|

The paths of evolution of the economic system are determined by the existing struc-
ture at any given point in time and the dynamic processes, in turn, alter that very
structure. There are also associated questions concerning the stability and complexity
of the evolving structures. We believe that this ceaseless process of ‘being to becoming’
[Prigogine, 1980] ought to be understood not by confining it the narrow strictures of
equilibrium, but by instead focusing on the adjustment process of this transformation,
mediated by the variety of economic and institutional constraints.

The crucial insights from the approaches described in the previous section that
have a potential to form a basis for structural economic dynamics can be synthesised as
follows: (a) the role of coupling as a modelling percept for gaining insights into structure;
(b) the role of diffusion in studying endogenously generated inhomogeneities; (c) the
idea of symmetry-breaking. Although they are interrelated, but there is subtle difference
in their roles of the first two. Coupling emphasises the importance of structures that
are capable of producing interesting dynamics. On the other hand, diffusion has to do
with the functional role of the forces through which changes come about. The other
overarching theme in this approach is indispensability of the algorithmic methods, which
offer a powerful way to move forward from baseline models with simplifying assumptions.

For a detailed discussion the evolution of agent-based models through the lens of networks, see Chen
and Venkatachalam [2017].
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We move on to briefly discuss how the two concepts identified have a place in economic
investigations.

5.1 Coupling and diffusion

The idea that coupling — interconnections — between different economic units is an im-
portant factor in understanding economic structures and dynamics is not entirely new to
economic theory. It is natural to think of the economy as comprised of different agents,
sectors, regions, and countries that are interdependent, at the least because outputs from
one sector are frequently inputs for production in another sector.

In this regard it may be useful to distinguish between two kinds of coupling: static
and dynamic. Under static coupling the economy is characterised through interconnec-
tions between sectors. This approach has a rich tradition in economics, including the
input-output models of Leontief, multi-sectoral models of various types, and Sraffian sys-
tems. In the case of dynamic coupling, different countries can be viewed as economies
coupled to each other in multiple ways, for example through trade flows, technology, factor
flows and financial flows. Variations in the intensity of interdependency between differ-
ent components (sectors, countries) is expected to a have an influence on the aggregate
dynamics and patterns of the economy. Note that interconnections (structure) are only
one part of the story, and what flows through these interconnections (e.g. traded goods,
financial capital, factor services) is equally important in determining the final pattern.
Given the same intensity of interconnections, we intuitively expect different kinds of flows
(say goods vs. financial capital) to give rise to different patterns and outcomes, both due
to their varying roles as well as the associated economic and institutional constraints they
face within the structures of production and consumption. Overall, analogies between
these flows and diffusing agents or form creators, however inadequate, can be instructive.
Equally, the role of competition and factors of production (labour and capital) are also
amenable to investigation through the lens of diffusion and morphogens.

The key then is to identify the relevant structures and economic forces which can
explain observed patterns.®® Let us first consider Turing’s approach to pattern formation
and his emphasis on coupling — thereby endowing a structure or geometry — to study inter-
actions between component parts as the source of dynamics. This idea was independently
introduced in economics by Goodwin [1947], a theme that resonates in many of his later
works. His model of the economy as a coupled system with different sectors investigates
the effect of dynamic coupling in the presence of production lags. Some notable works in
this strand include Zambelli [2011, 2015] and Lorenz [1987]. Zambelli works with a sys-
tem of economies, each a (non-linear) oscillator, coupled through trade. Each economy
is formulated in terms of a Hicks-Goodwin-type dynamic multiplier-flexible accelerator
model, generalized to allow for openness, where each oscillator (economy) is “forced” by
the effect of trade flows. Through numerical simulations, he investigates how the dy-
namics of the system can shift from limit cycles to chaotic attractors, and demonstrates

30For the purpose of this paper, we focus on spatial and sectoral inhomogeneities that are endogenously
generated via coupling.
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the presence of rich dynamics such as mode-locking and the devil’s staircase. Lorenz
[1987] instead works with a system of three oscillating sectors, each characterized by a
Kaldor (1940)-type nonlinear model. The source of coupling are the interconnections
through demand and investment. By interpreting coupling as a source of perturbation
on a three-dimensional torus, he invokes the theorem by Newhouse, Ruelle and Takens to
demonstrate the possibility of a strange attractor and explores this numerically.

The unifying theme across these studies is the role of coupling that leads to a
qualitative change in the dynamics of the system. Zambelli [2015] attempts to isolate the
effect of coupling on oscillating economies in a lattice explicitly in the FPUT framework
and shows that the effects of small perturbations do not die down, thereby permanently
altering the nature of oscillations within individual economies. There is also a sizeable
literature on diffusion of innovations, technology across sectors and space [Hall, 2004;
Rogers, 2010; Zanello et al., 2016]. Their subsequent effect on growth and transformation
has been studied in neoclassical and evolutionary frameworks.

5.2 Symmetry-breaking

Symmetry-breaking is the second aspect of the morphogenetic approach. An early expo-
sition of this idea in the context of the social sciences can be found in Allen and Sanglier
[1978], who employ a model highlighting the role of economic forces in transforming a
homogeneous region into an urban one with different population concentrations. Even
though the idea itself may not be new, the connection with symmetry-breaking is what
is relevant for our purposes. Theoretical contributions using related ideas to understand
trade patterns and Economic Geography can be found in Krugman [1991], Krugman and
Venables [1995a,b], where transport costs (‘iceberg’ costs) play a crucial role in explaining
how the core and periphery are created as a result of symmetry-breaking. Krugman and
Venables make an explicit reference to Turing’s work on morphogenesis and their model
(the continuous version) is along similar lines to those developed by Turing. Predatory-
prey models have been fruitfully employed in economics by Richard Goodwin to explain
growth cycles, and have also been used to analyse spatial patterns emerging through dif-
fusion [Aly et al., 2011]. Turing bifurcation is conspicuous by its relative absence in the
context of models dealing with economic dynamics. Exceptions to this include Fujita
et al. [1999], Akamatsu et al. [2012], de Cérdoba and Galiano [2020] and Velupillai [2005,
ch. 7].

Notable works that deal with symmetry-breaking in economics within the neoclas-
sical framework are by Matsuyama [1996, 2002, 2004, 2008]. In the context of compli-
mentarity games, diversity is often explained by demonstrating the presence of multiple
equilibria, which result from coordination failures between players aiming for better equi-
libria. Instead, Matsuyama [2002] emphasises symmetry-breaking bifurcation to explain
observed economic diversity across space, time and groups. Matsuyama [2004] makes a
case that inequality among nations can result endogenously when there is financial mar-
ket globalization. This is shown in an overlapping-generations setting with credit market
imperfections. The initial, symmetric steady state (where countries are equally rich) loses
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its stability with the globalization of financial markets and moves to an asymmetric steady
state where rich and poor countries co-exist. The key idea underpinning this approach is
to show how small variations or advantages can build up over time, resulting in persistent
patterns. The main ingredients of this class of model are the presence of agglomera-
tion effects (increasing returns) which overpower the effect of (equilibriating) diminishing
returns, generating complimentarities through feedback effects. The cumulative effects
eventually lead to symmetry-breaking once the steady state loses stability.

Similar to the activators and inhibitors in reaction-diffusion systems, increasing
and decreasing returns in these models lead to symmetry-breaking, eventually giving
rise to various inhomogeneous patterns. In both cases, it is the difference between the
intensities of the two factors which eventually gives rise to symmetry-breaking. Likewise,
there is similarity with endogenous models of business cycles in the multiplier-accelerator
tradition, in terms of the basic forces at play. The accelerator mechanism can be viewed
as the force (though unstable) that propels the system, while the multiplier produces a
dampening effect. The relative power of these two mechanisms determines the overall
behaviour of the system. This realization led Goodwin to develop his nonlinear model
of endogenous economic fluctuations, in which the system remains locally unstable, but
globally stable.

6 Dynamic patterns, economic theory and indeter-
minacy

Now, after many years ... I sympathise much more with [Schumpeter’s|
point of view. ... Like Marx he was a student of the morphogenetic nature
of capitalism. The economy is not a given structure like von Neumann’s
model, .... | it is an organism perpetually altering its own structure,
generating new forms. Unlike most organisms it does not exhibit durable
structural stability: it is perhaps best thought of as a kind of hyper-Darwinian,
perpetual evolution. [Goodwin, 1989, p.107-108, emphasis addded.]

The main thrust of this article is that the study of capitalistic economic structures
can be fruitfully supplemented through the use of morphogenetic frameworks. There are a
number of possibilities that emerge from the pathways and connections we have attempted
to elucidate, as well as certain caveats.

First, moving from morphogenetic models in their current, mathematically-idealised
forms towards forms adapted to enquiries in economics would likely introduce new com-
plexities in the original models, but it is possible that the conceptual innovations needed
to tackle these would enrich the morphogenetic literature itself. As Turing notes, (see fn.
31) increasing complexity with the introduction of relevant non-linearities and the study
of evolution of inhomogeneous patterns may come at the cost of mathematical tractability
and overarching theories. Perhaps this alerts us also to the trade-offs involved in subscrib-
ing to a narrow methodology focused on establishing existence-uniqueness of equilibria,
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optimal trajectories, cycles and so on.

Second, the alternative, i.e., developing rigorous algorithmic methods to investi-
gate structural evolution through a careful investigation and classification of special cases
(much in the spirit of Carl Linnaeus), may prove fruitful. This will involve studying tran-
sitional paths in the light of economic and institutional constraints. There is also the case
of using policy to redistribute resources across different parts of the system — a special
feature of economic systems — which can alter growth trajectories. Such counterfactual
experiments concerning structure and dynamics can exploit the power of computational
frameworks. Third, the crucial issue of the economic system ‘perpetually altering its
own structure, generating new forms’ that Goodwin points to has yet to be convincingly
addressed. Increasing product varieties, new technologies, and sectors emerging endoge-
nously as a result of economic dynamics, all need significant unpacking. This points
to synergies that ought be exploited between structural and evolutionary perspectives.
Fourth, notions of stability from dynamical systems theory are often applied uncritically
in economics. It may be worthwhile to develop instead a notion of stability that is tai-
lored to economic problems. To give an example, notions like structural stability may be
too restrictive, and other notions of stability that focus on aspects of relative invariance
within a structure may be useful [Scazzieri, 2012]. To this end, a comprehensive theory of
intermediate stable forms and its integration with structural evolution remains wanting.

That noted, the mere existence of a mathematical structure capable of generat-
ing interesting dynamics does not in itself warrant an application to economic models,
especially if this involves untenable assumptions to suit the requirements of the mathe-
matical approach. Clearly, the models discussed all have limitations as well as simplifying
assumptions.! Yet they also share several interesting features vis-a-vis defining and cate-
gorising economic structures and their dynamics, and the onus is on the economic theorist
to demonstrate the suitability of a model for studying economic processes as they exist.
Equally, an outright rejection of these cross-disciplinary insights is also unlikely to be
tenable — clearly, several significant advancements in scientific theory have originated
from insightful analogies and interdisciplinary perspectives, and economic theory is no
exception.®?

31For instance, Turing [1952, p.72, emphasis added] acknowledges that perhaps a more relevant case in
morphogenesis may be the one in which organisms are seen to develop from pattern to pattern and not
from homogeneity to pattern (for some recent progress on tackling this issue, see Krause et al. [2020]).
Similarly, the role of linear specification and uniformity assumption concerning the individual cells can
be seen as restrictive.

The difficulties are, however, such that one cannot hope to have any very embracing
theory of such processes, beyond the statement of the equations. It might be possible,
however, to treat a few particular cases in detail with the aid of a digital computer. ... The
essential disadvantage of the method is that one only gets results for particular cases. But
this disadvantage is probably of comparatively little importance.

32Famous metaphors range from the invisible hand, rocking horses, pendulums, oscillators, sunspots,

predator and prey, prisoner’s dilemma, trembling hands, utility computers, turnpikes, cob-webs, billiards
players, random walks - to name just a few.

25



We conclude with some remarks on the epistemological dimensions of predictability,
and in particular the quest to predict and characterise novelty within a system. Morpho-
genetic frameworks allow for the emergence of potential surprises even in non-stochastic
systems. They allow us to pose questions that are directly relevant for policy: Given a
state (pattern) X, can we decide, in general, whether the system will reach an attractor
(pattern) Y7 By decidability we are referring here to problems that can be resolved by
means of an algorithmic procedure. The question can also be posed in recursion-theoretic
mode as a problem of reachability, and it can be proved that in general, reachability is
algorithmically undecidable for nonlinear systems. If a structure is ‘sufficiently complex’,
such undecidabilities concerning (disequilibrium) dynamics may be even more pervasive
[Velupillai, 2010]. In this sense, epistemological incompleteness will always exist, but we
believe that this is to be embraced: the general undecidability concerning morphogen-
esis means simply that we need to examine scenarios through simulations in order to
understand actual future paths of evolution.
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