
Studio report: sound synthesis with DDSP and
network bending techniques

Matthew Yee-King1 and Louis McCallum2

1 Goldsmiths, University of London
2 Creative Computing Institute, University of the Arts

m.yee-king@gold.ac.uk

Abstract. This paper reports on our experiences synthesizing sounds
and building network bending functionality onto the Differentiable Digi-
tal Signal Processing (DDSP) system. DDSP is an extension to the Ten-
sorFlow API with which we can embed trainable signal processing nodes
in neural networks. Comparing DDSP sound synthesis networks to preset
finding networks and sample level synthesis networks, we argue that it
offers a third mode of working, providing continuous control in real-time
of high fidelity synthesizers using low numbers of control parameters.
We describe two phases of our experimentation. Firstly we worked with
a composer to explore different training datasets and parameters. Sec-
ondly, we extended DDSP models with network bending functionality,
which allows us to feed additional control data into the network’s hid-
den layers and achieve new timbral effects. We describe several possible
network bending techniques and how they affect the sound.

Keywords: Sound synthesis, neural networks, network bending

1 Introduction

Google Magenta released DDSP in early 2020 (Engel, Hantrakul, Gu, & Roberts,
2020)3. It is an extension to the TensorFlow machine learning library, allowing
network designers to embed signal processing nodes in a neural network archi-
tecture. With DDSP, we can create neural networks with embedded, trainable
sound synthesis and sound processing capabilities. In this paper, we will explain
why we think DDSP networks represent an exciting creative method for working
with sound synthesis, and we will report on our experiences working with and
extending on DDSP sound synthesis networks in a composition project.

1.1 Previous work

We shall split previous research using machine learning for sound synthesis into
two areas: work focusing on synthesis and work concentrate on sampling. A com-
mon problem that researchers address in the synthesis work is eliciting control

3 https://github.com/magenta/ddsp



2 Matthew Yee-King and Louis McCallum

data or parameter settings for synthesis algorithms. On the other hand, in the
sampling work, a typical problem is how to generate a sequence of audio samples
that are statistically similar to a large dataset of input samples. We shall now
consider these two areas of study, providing examples and noting limitations.

1.2 Machine learning and sound synthesis: preset finders

Preset finders are a category of machine learning-driven sound synthesis sys-
tems. They take as an input an audio signal and produce at their output syn-
thesizer parameter settings which cause a given synthesizer to approximate the
input sound. When eliciting parameter settings for sound synthesis algorithms,
researchers typically view the algorithms as black-box systems external to the
machine learning system. In classic early work in this field, (Horner, Beauchamp,
& Haken, 1993) used genetic algorithms to optimize FM synthesis parameters
to match an input timbre. A more recent example of a preset finder is (Barkan,
Tsiris, Katz, & Koenigstein, 2019), wherein the researchers trained a neural
network to output a set of parameter settings for a subtractive synthesizer.

One motivation for this black-box approach is the desire to integrate the
systems with the mass of commercially available synthesis software. For ex-
ample, (Yee-King, Fedden, & d’Inverno, 2018) demonstrated the capability of
deep networks to automatically program VST plugins4, and (Tatar et al., 2016)
used a genetic algorithm to elicit presets for a commercial hardware synthesizer.
Another motivation for preset finding is enabling a more fulsome or dynamic
exploration of the space of possible sounds for a given synthesis engine than is
possible using standard synthesizer programming techniques or through the use
of presets. In other words, to answer the question ‘What is the full timbral range
of this synthesizer?’. (Tubb & Dixon, 2014) and (Yee-King, 2011) considered ex-
ploration of sound synthesis spaces and more recently, (Esling, Masuda, Bardet,
Despres, & Chemla-Romeu-Santos, 2020) applied the concept of latent spaces to
the exploration of sound synthesis space.

One advantage of preset finders based on neural networks is that the resulting
networks are comparatively small and can potentially run in real-time. For ex-
ample, (Yee-King et al., 2018) were able to infer parameters for a Yamaha DX-7
emulator in milliseconds once they had trained the network, and (Esling et al.,
2020)’s preset finder operated in ‘almost real-time’. On the other hand, a limi-
tation of systems that learn to program external synthesizers, especially preset
finders, is that they are one-shot systems that do not generally provide contin-
uous control. So preset finders may not unlock the dynamic timbral potential
of the synthesizer. DDSP models address this problem by mapping low dimen-
sional but continuous features such as pitch and amplitude to high dimensional
synthesizer controls, enabling dynamic and stateful timbre control.

4 https://steinbergmedia.Github.io/vst3 doc/vstsdk/index.html



Studio report: working with timbre transfer and DDSP networks 3

1.3 Machine learning and sound synthesis: sample generators

The other body of work mentioned above has audio samples as its substrate
instead of synthesis algorithms and parameter settings. The aim is to train neural
networks to generate raw audio samples, normally with raw audio samples as
training input. Wavenet, reported by (van den Oord et al., 2016) is an example of
such a system. These systems are capable of generating remarkable results. For
example, a collection of example outputs from OpenAI’s jukebox system led to a
flurry of media attention because they were realistic enough to be considered as
’long lost’ tracks by famous artists (Dhariwal et al., 2020). The DadaBots project
of Zukowski and Carr also uses the SampleRNN model to generate audio in
specific genres, including Black Metal and Math Rock (Zukowski & Carr, 2017).

One major problem with these raw audio synthesis networks is that they
tend to be very large. For example, the openAI jukebox system was trained
using hundreds of GPUs for weeks, and it has billions of parameters. It takes
hours with many GPUs to render a minute of audio, so these systems are not
accessible to regular musicians.

In response to this problem of size, researchers have explored other ap-
proaches for synthesizing raw audio with smaller networks. For example (Collins,
Ruzicka, & Grierson, 2020) generated sequences of spectral frames and (Kiefer,
2019) used conceptor networks to create highly malleable sonic models. The
realism of the resynthesis is not comparable to the larger systems, but these
systems have much potential for creative exploration. An interesting approach
to creative exploration is using network bending techniques to manipulate the
network’s hidden layers, as described by (Broad, Leymarie, & Grierson, 2020).
We build on this work by using network bending techniques to patch into the
hidden layers of trained DDSP models.

In summary, we have discussed some machine learning systems that operate
on synthesis algorithms and others that operate upon raw audio samples. The
former offer limited dynamic synthesizer control, but they integrate with existing
technology, and they can potentially run in real-time. On the other hand, low-
level sample generators can create impressive results, but they are extremely
computationally expensive to train and run and offer little chance any time soon
of real-time interactive control. Recent work has shown that smaller networks
can generate audio, but their fidelity and long-range coherence is not comparable
to the larger networks.

In this paper, we will consider the capabilities of a third class of sound gen-
erating system besides preset finders and raw audio synthesizers, which is made
possible via the DDSP library. This class of system combines features of the
synthesizer preset-finder systems with features of the audio-based systems. The
system uses a fixed architecture, additive and noise synthesizer to create realis-
tic instrument sounds, but the model is embedded in a deep, recurrent neural
network. We can train the same model to emulate different instruments with
fine-grained, continuous control via a stream of pitch, amplitude and feature
data. We have run these models in real-time on a current-generation commodity
GPU (Geforce 2070).



4 Matthew Yee-King and Louis McCallum

2 Artistic context

2.1 Artists making use of ‘unwanted’ artefacts

We position our work as aiming to explore the space of possible sounds cre-
atively, rather than endeavouring to solve the engineering problem of how to
perfectly model and resynthesize a given instrument. Consider the example of
the Roland TB-303 synthesizer, which according to music technology folklore,
Roland originally designed as a guitar practice aid5. Once the 303 arrived in the
hands of certain musicians, they exploited the artefacts of its resonant filter and
oddly designed, accented step sequencer to contribute to the sound of a com-
pletely new musical movement, acid house. The idea of taking a musical tool and
exploiting its (often unintended) quirks to create interesting new sounds should
be familiar to most electronic musicians and sound designers.

2.2 The composition project

The other contextual element of this work is the project we are working on. We
have been developing our DDSP models in the context of a creative project work-
ing with the human voice. When we gained access to DDSP in early 2020, our
first experiments involved incompletely training a model on a Whitney Houston
acapella and then using it to resynthesize new vocal inputs. The model gener-
ated a fascinating, ghostly noise that was somewhat pitched and subtly dynamic.
The results of these initial experiments inspired us to put together a composition
project based around DDSP networks. In this project, we are working with a
composer to create a through-composed piece of music for human singer and
neural network.

3 Experiments with DDSP

3.1 Phase 1: working with the basic models

We trained the model using a Whitney Houston acapella. The recording includes
some backing vocals and delays on the voice, which it was not possible to easily
remove. In the initial phase of the project, it was only possible to train and run
the model at a 16kHz sample rate due to technical constraints in the data pro-
cessing pipeline. The DDSP library was undergoing rapid development during
our project, meaning our code had to be re-written a couple of times. We carried
out the training using the DDSP colab notebook from the DDSP GitHub repos-
itory with a GPU back-end on the Google infrastructure. We ran the training
for a few hours, aiming for the loss value recommended by the instructions in
the notebook of around 5.0. We then downloaded the trained model for offline
inference (resynthesis).

5 https://www.theguardian.com/music/2011/jun/15/tadao-kikumoto-roland



Studio report: working with timbre transfer and DDSP networks 5

In order to run the network in inference mode in real-time, we reworked the
resynthesis colab notebook provided by the DDSP repository into a standalone
script. This script reads audio in blocks from the audio input of the machine and
feeds the blocks to the model for resynthesis. We have made the script available6.
The resynthesis script operates at a 16kHz sample rate with a window size of
2048 samples and a hop size of 64 samples. This provides 250 pitch and loudness
values per second as an input to the network. We were able to run this system in
real-time on a Geforce 2070 GPU-equipped laptop. Further investigation showed
that the main bottleneck was actually the CREPE pitch extractor, as opposed
to the resynthesis model itself. The model can be run on a regular CPU if the
pitch extraction is done beforehand. Figure 1 illustrates the output of our first

0 5 10 15
Time

0
64

128
256
512

1024
2048
4096
8192

Hz

Input

0 5 10 15
Time

Output

80

60

40

20

� ��� ��� ��� ��� � ��� ��� ��� ���

����

�

��

���

���

���

����

����

����

����

�
�

��

��

��

��

��

��

��

��

�system response
(+1 octave transposition)

human
voice

Fig. 1. Top left and right spectrograms are from our first experiment. Firsly the input
which is a string-like sound playing an ascending note sequence on an analog Korg
MS20 synthesizer, secondly the Whitney Houston model resynthesizing this input.
Below that is a spectrogram of a live demonostration on national radio of our realtime
DDSP model.

trained model in response to an ascending note sequence played with an analog
string-like sound on a Korg MS20. The interesting features of this image are
the wavering pitch around the later note transitions and the additional noise
that can be seen in the output spectrogram. The wavering pitch is most likely
because the pitch tracker is uncertain during the attack and release portions of
the notes.

The noise is partly inadequate training data - we were training with only a
few minutes of quite noisy audio as opposed to training with about 30 minutes
of clean single instrument sound as described in the original DDSP paper. The

6 https://github.com/yeeking/ddsp-experiments/



6 Matthew Yee-King and Louis McCallum

noise is also a characteristic of the voice which has a much breathier timbre
than the synthesizer sound fed to the input. Around note onsets, the noise was
quite dynamic - the sound had the breathy, ghostly quality that first encouraged
us to work more with DDSP and voices. We were also able to give a public
demonstration of our real-time DDSP system. Figure 1 shows the spectrogram
of a DDSP flute model interacting in real-time with a human singer on national
radio. We used this impromptu opportunity to test out the real-time performance
of the system. The singer was Taryn Southern, who was a guest on the radio
show. All the guests on the show were clearly taken aback by the rich timbral
quality of the model. We have archived the section of the radio show7.

3.2 Phase 2: network bending

DECODER
MLP

3 layer
512 unit

MLP
3 layer

512 unit

GRU
512 unit

CONCAT
MLP

4 layer
512 unit

DENSE

DENSE

CONTROL 
VALUES

FOR OSCILLATOR 
BANK

CONTROL
VALUES FOR

FILTERED
NOISE

CONCAT

stream
of

frequency
values

stream
of 

amplitude 
values

INPUT OUTPUT

1 2 3

Fig. 2. The DDSP network model. Frequency and amplitude values are fed in, and
control values for the 101 harmonic oscillator bank and noise FIR filter are produced.
The three network bending points are highlighted as 1, 2 and 3. Transforms and signals
are applied to the activation values of nodes in these layers.

Having familiarised ourselves with DDSP operations such as training and
resynthesis in the first phase, in the second phase, we investigated how we could
gain new types of control over the synthesis engine. We took inspiration from the
ideas of network bending reported by (Broad et al., 2020), who used it to manip-
ulate image generating networks. In essence, the concept of network bending is
to take a pre-trained network and to apply additional signals or transformations
to activations between its hidden layers during inference. The technique does not
intend to improve the performance of the network in a technical sense. Instead,
it aims to expose additional creative capabilities.

We developed several iterations of the software, and this process is described
below. We experimented with four types of transformation and signal inserts: sine
modulation, signal inversion, signal ablation and thresholding. Table 1 provides
details of the transformations, and Figure 2 shows where the insert points are

7 https://github.com/yeeking/ddsp-experiments/blob/main/radio5-
system/call and response radio5 2.mp3



Studio report: working with timbre transfer and DDSP networks 7

on the network model. We discuss the effects of the transformations below. The
software is available on GitHub8. We have also provided audio examples of the
network bending experiments online9.

Transform Operation Parameters

Oscillate A[:,units] + sin(freq) * depth freq, depth, units

Threshold A[:,units]<thresh=A.min, A[:,units]>thresh=A,max thresh, units

Invert 1 - A[:,units] units

Ablate A[:,units] = 0 units

Table 1. The network bending transforms we applied to the network

Developing the user interface and workflow The first version of the net-
work bending software used a JSON-style data structure to specify the transfor-
mations. The workflow for this system was to write out the JSON specification,
run the resynthesis offline, then audition the resulting audio file. When working
with the composer, we found that this workflow did not meet their needs as writ-
ing JSON was unfamiliar to them, and the offline processing did not allow for
rapid parameter exploration. To solve these problems, we implemented a graph-
ical user interface on top of a real-time audio renderer, as shown in Figure 3.
This allowed the composer to specify the same parameters but using sliders and
drop-downs. It also allowed them to hear the effects of the parameter changes in
real-time. This is more aligned with how a typical synthesizer or DAW works.

In this second version, the resynthesis engine operates upon a pre-existing
audio file from which the pitch and amplitude inputs for the DDSP model have
already been extracted. This allows the resynthesis to run in real-time without
GPU acceleration as it only requires the computationally expensive step of ex-
tracting pitches with the CREPE model to happen once. In a third iteration of
the software, we added MIDI control for the network bending parameters.

Selecting the input point As you might expect, we found the position in
the network where we apply the transformation has an impact on the percep-
tual changes to timbre in the sound generated by the model. The first fully
connected layer seemed to be where the most fruitful and interesting timbral
changes occurred. The effects of applying changes to the final fully connected
layer tended to be more pronounced although with less subtlety, often charac-
terized by a general boosting in terms of amplitude across the whole spectrum.
Changes in the recurrent middle layer (GRU) seem to have a limited auditory
effect.

Effect of transform type: ablation, oscillation, thresholding and inver-
sion The ablation (zeroing) of a proportion of units in the first fully connected

8 https://github.com/Louismac/network-bending/
9 http://louismccallum.com/network-bending-audio-examples



8 Matthew Yee-King and Louis McCallum

Fig. 3. A screenshot of the graphical interface for applying transformations

layer causes a vibrato effect across all frequencies. The effect ranges from a sub-
tle vibrato at 65% ablation through to a strong effect at 95%. The oscillation
transformation adds filtering and artefacts to the output at a controllable depth
and frequency. In this respect, it has some similar qualities to using an LFO to
control a filter parameter on a regular synthesizer. Adding a threshold to the first
layer adds more noisy artefacts, whilst including it in the final fully connected
layer blows up into heavy white noise with only a small proportion of units. We
did not find very interesting effects from the inversion transformation. It is also
possible to chain multiple transformations together to craft a sound quite far
from the timbre of the original training audio. Even in these more destructive
modes, the input pitch often remains perceptible.

Unit Selection In our original design, we selected units for transformation at
random with a fixed proportion. In our second, GUI version we able to change
the proportion over time, rather like a gain for the timbral effect of a particular
transform. Being able to control this whilst playing creates opportunities to work
on structure and variation throughout a longer performance or composition.
Beyond this positive outcome, a more informed selection process for the subsets
of units is a promising area for further research.

4 Next steps and future work

At the time of writing, we are completing the final composition phase of the
project, wherein we will produce the final piece of music. We have commissioned
two vocal recordings, each from a different vocalist. We are working closely with
the composer to evaluate a range of different configurations of training data,
network bending and pre-processing of pitch and amplitude data. A particularly
interesting recent development is the release of a PyTorch implementation of
DDSP, which allows models to be exported to PureData external format10. We
are currently enjoying investigating this and will report more in a later paper.

10 https://github.com/acids-ircam/ddsp pytorch



References 9

References

Barkan, O., Tsiris, D., Katz, O., & Koenigstein, N. (2019). InverSynth: Deep
Estimation of Synthesizer Parameter Configurations From Audio Signals.
IEEE/ACM Transactions on Audio, Speech, and Language Processing ,
27 (12), 2385–2396. (Publisher: IEEE)

Broad, T., Leymarie, F. F., & Grierson, M. (2020). Network Bending: Ma-
nipulating The Inner Representations of Deep Generative Models. arXiv
preprint arXiv:2005.12420 .

Collins, N., Ruzicka, V., & Grierson, M. (2020). Remixing AIs: mind swaps,
hybrainity, and splicing musical models. In Proceedings of the 1st Joint
Conference on AI Music Creativity. Sweden.

Dhariwal, P., Jun, H., Payne, C., Kim, J. W., Radford, A., & Sutskever, I. (2020).
Jukebox: A generative model for music. arXiv preprint arXiv:2005.00341 .

Engel, J., Hantrakul, L., Gu, C., & Roberts, A. (2020). Ddsp: Differentiable
digital signal processing. arXiv preprint arXiv:2001.04643 .

Esling, P., Masuda, N., Bardet, A., Despres, R., & Chemla-Romeu-Santos, A.
(2020). Flow synthesizer: Universal audio synthesizer control with normal-
izing flows. Applied Sciences, 10 (1), 302. (Publisher: Multidisciplinary
Digital Publishing Institute)

Horner, A., Beauchamp, J., & Haken, L. (1993). Genetic {A}lgorithms and
{T}heir {A}pplication to {FM}, {M}atching {S}ynthesis. Computer Music
Journal , 17 (4), 17–29.

Kiefer, C. (2019). Sample-level sound synthesis with recurrent neural networks
and conceptors. PeerJ Computer Science, 5 , e205.

Tatar, K., Macret, M., Pasquier, P., Tatar, K., Macret, M., & Pasquier, P.
(2016). Automatic Synthesizer Preset Generation with PresetGen Au-
tomatic Synthesizer Preset Generation with PresetGen. Journal of New
Music Research, 45 (2), 124–144. (Publisher: Routledge) doi: 10.1080/
09298215.2016.1175481

Tubb, R., & Dixon, S. (2014). The Divergent Interface: Supporting Creative
Exploration of Parameter Spaces. In Proceedings of the International Con-
ference on New Interfaces for Musical Expression (pp. 227–232). Retrieved
from http://www.nime.org/proceedings/2014/nime2014 415.pdf

van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A.,
. . . Kavukcuoglu, K. (2016). Wavenet: A generative model for raw audio.
arXiv preprint arXiv:1609.03499 .

Yee-King, M. J. (2011). Automatic sound synthesizer programming: techniques
and applications (PhD Thesis). University of Sussex.

Yee-King, M. J., Fedden, L., & d’Inverno, M. (2018). Automatic program-
ming of VST sound synthesizers using deep networks and other techniques.
IEEE Transactions on Emerging Topics in Computational Intelligence,
2 (2), 150–159. (Publisher: IEEE)

Zukowski, Z., & Carr, C. (2017). Generating black metal and math rock: Beyond
bach, beethoven, and beatles. NIPS Workshop on Machine Learning for
Creativity and Design.


