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Modulation of neural activity 
in frontopolar cortex drives 
reward‑based motor learning
M. Herrojo Ruiz1,2,3*, T. Maudrich3, B. Kalloch3, D. Sammler4, R. Kenville3, A. Villringer3, 
B. Sehm3,5 & V. V. Nikulin2,3*

The frontopolar cortex (FPC) contributes to tracking the reward of alternative choices during decision 
making, as well as their reliability. Whether this FPC function extends to reward gradients associated 
with continuous movements during motor learning remains unknown. We used anodal transcranial 
direct current stimulation (tDCS) over the right FPC to investigate its role in reward‑based motor 
learning. Nineteen healthy human participants practiced novel sequences of finger movements on a 
digital piano with corresponding auditory feedback. Their aim was to use trialwise reward feedback 
to discover a hidden performance goal along a continuous dimension: timing. We additionally 
modulated the contralateral motor cortex (left M1) activity, and included a control sham stimulation. 
Right FPC‑tDCS led to faster learning compared to lM1‑tDCS and sham through regulation of motor 
variability. Bayesian computational modelling revealed that in all stimulation protocols, an increase 
in the trialwise expectation of reward was followed by greater exploitation, as shown previously. 
Yet, this association was weaker in lM1‑tDCS suggesting a less efficient learning strategy. The effects 
of frontopolar stimulation were dissociated from those induced by lM1‑tDCS and sham, as motor 
exploration was more sensitive to inferred changes in the reward tendency (volatility). The findings 
suggest that rFPC‑tDCS increases the sensitivity of motor exploration to updates in reward volatility, 
accelerating reward‑based motor learning.

One of the hallmarks of motor skill learning is the reduction in movement  variability1,2. As the dancer learns 
to perform pirouettes, the irregularity in the movement decreases and the turns become smoother. In this 
context, movement variability is regarded as motor noise, and is dissociated from the intentional use of motor 
variability, termed motor  exploration3,4. Motor learning can also involve motor exploration, particularly when 
learning from reinforcement, such as feedback about success or  failure2,4,5. In this scenario, initial exploration 
of movement variables in a continuous space is followed by the exploitation of inferred optimal movements and 
gradually refined by reducing motor  noise6. How agents decide about motor exploration and exploitation is the 
subject of an increasing number of studies on motor learning as a decision-making  process4,7–9. Because motor 
learning often depends on making the right decisions about a movement, brain regions involved in regulating 
the exploration–exploitation tradeoff in cognitive or economic decision-making tasks may also modulate the 
use of variability during motor decision making.

Here, we postulate that the human frontopolar cortex (FPC) may have a crucial role in driving motor deci-
sion making when external reward signals are available to drive exploration–exploitation. In decision-making 
tasks involving multiple choices, the right FPC has been identified as promoting  exploration10,11, and tracking 
the reward value associated with competing options, strategies or  goals12. Furthermore, FPC accelerates the 
learning of novel  rules13. Because motor learning takes place in a continuous movement  space7, we reasoned that 
the capability of FPC to monitor multiple discrete choices and their reward would make it an ideal candidate to 
track the reward associated with continuous movement parameters.

To identify the role of the FPC in reward-based motor learning, we used anodal transcranial direct current 
stimulation (tDCS) over the right FPC while participants completed our recently developed reward-dependent 
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motor sequence learning  paradigm14. Participants practiced novel sequences of finger movements on a digital 
piano with corresponding auditory feedback. They were instructed to use trialwise reward feedback to discover 
a hidden performance goal along a continuous dimension: timing. To discover the hidden performance target, 
participants had to deviate from an isochronous performance of temporal intervals. Thus, success in this task 
was coupled to an intentional exploration of anysochronous timing patterns. To assess unintentional motor 
variability, we took an independent measurement of each participant’s baseline motor  noise4.

During learning, trial-to-trial exploratory behavioural changes were assessed using a Bayesian computational 
modelling framework, the Hierarchical Gaussian Filter  (HGF15). This framework allowed us to estimate how par-
ticipants adapted their behaviour (regulating motor variability across trials) following updated beliefs about the 
reward tendency and its rate of change, termed environmental  volatility15). Beliefs in the HGF are updated trial to 
trial using prediction errors (PE)—the mismatch between expected and observed states; PEs are modulated by the 
reliability (or precision) that subjects assign to the state being updated. We hypothesised that FPC-tDCS would 
modulate behavioural exploration in response to updates in reward and volatility estimates. The right FPC was 
selected over the left FPC due to its greater engagement in regulating the exploration–exploitation  balance11,16.

As control tDCS condition we modulated motor cortex activity using contralateral (left) M1  tDCS17,18. Ani-
mal and human neurophysiology studies highlight a crucial role of M1 in modulating motor variability and in 
processing  reward6,14,19. Additional evidence comes from transcranial magnetic stimulation (TMS) and tDCS 
 studies20–24, with investigations also linking M1 to decision  making25–27. In our study, active tDCS conditions 
were contrasted to sham stimulation. The effect of the tDCS stimulation protocols on the individual brain was 
further assessed using simulations of the electric field strength guided by individual T1-weighted anatomical 
magnetic resonance images (MRI).

The central hypothesis was that rFPC-tDCS improves learning of the continuous reward landscape associated 
with movement parameters by balancing the exploration–exploitation tradeoff. Additionally, rFPC-tDCS was 
hypothesised to modulate task-related timing exploration following updates in beliefs on reward and volatil-
ity. On the other hand, animal studies demonstrate a link between variability in motor cortex and behavioural 
 variability6,19, with reduced M1 variability contributing to the refinement of task-related motor variability as 
training  progresses6. Yet, these studies suggest that the role of M1 in this process may be relevant in the later 
stages of  learning19. Accordingly, we hypothesised that the effect of lM1-tDCS on the modulation of intentional 
motor variability would manifest later during training when compared to rFPC-tDCS.

First, we show that rFPC-tDCS compared to sham and lM1-tDCS accelerated learning from online to offline 
learning blocks primarily through regulation of task-related motor variability. Second, the Bayesian modelling 
analysis revealed that rFPC-tDCS and sham promote more exploitative behaviour than lM1-tDCS when the 
expectation on the reward tendency increases. Moreover, as learning progresses, the reward tendency increases 
and the environment becomes more stable, we show that frontopolar stimulation is associated with a more pro-
nounced tendency to exploit the inferred timing solution (smaller timing exploration).

Results
Nineteen right-handed participants took part in our study implementing a sham-controlled, double-blinded, 
cross-over design. They underwent three types of a tDCS protocol (rFPC, lM1, sham condition) over three sepa-
rate weeks in a pseudo-randomised counterbalanced order across participants (Fig. 1A). Study procedure for 
each session was identical, with active or sham tDCS applied to the target area for a period of 20 min during task 
performance (Fig. 1B). One exception was the last block of the learning phase, which was initiated 5 min after the 
cessation of tDCS and thus served to assess offline effects on learning. Notably, however, anodal tDCS stimulation 
effects on motor learning have been shown to last for at least 30 min after halting tDCS  stimulation18,28, but  see29 
showing null results on immediate offline motor effects. Accordingly, we assumed that the recent stimulation 
would strongly influence performance during the last block ( ∼ 5 min after tDCS cessation). To account for a 
possible differential effect of tDCS protocols on the offline (3) and online (1) blocks, we planned to assess the 
offline minus online contrast across stimulation conditions (see “Materials and methods”).

All participants received rFPC anodal tDCS, lM1 anodal tDCS, and sham tDCS (targetting either rFPC or 
lM1, 50%–50% split across participants). In each tDCS session, they completed a motor task with their right 
hand on a digital piano (Yamaha Clavinova CLP-150). The task consisted of an initial baseline phase of 20 trials 
of regular isochronous performance, followed by three blocks of 30 trials of reward-based sequence learning 
(Fig. 1B). Each week, participants played a different sequence of key presses and associated auditory feedback on 
the piano (counterbalanced order; see details in Figure S1 and in “Materials and methods”). The baseline phase 
allowed us to obtain a measure of motor noise, which represents the residual variability that is expressed when 
aiming to accurately reproduce the same  action4,32 (Fig. 1C). During reward-based learning blocks, participants 
completed an adaptation of our recently developed reward-based motor sequence learning  task14. In this task, 
participants receive continuous reward in the form of a trialwise feedback score (range 0–100) to discover a hid-
den performance goal: a timing pattern. Crucially, participants were explicitly instructed to vary the timing of 
the performance during the learning phase as this dimension was associated with reward. The use of continuous 
feedback scores to guide learning was based on previous studies investigating motor variability during reward-
based  learning4,5 and motor decision  making33. Continuous feedback has been shown to be more informative 
than binary signals (success/failure), contributing to faster  learning34.

Behavioural changes across blocks. Analysis of the behavioural data focused on the assessment of 
motor variability across trials and along two dimensions: time, which was the instructed task-related dimension 
and measured here using the inter-keystroke-interval (IKI, seconds) index; and keystroke velocity (arbitrary 
units, a.u.), which was the non-task-related dimension. The keystroke velocity is associated with the loudness of 
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the key press. We used the coefficient of variation (cv = sd/mean) across trials to assess the extent of variability 
within a block in relation to the mean of the sample. The achieved scores and other general performance vari-
ables were also evaluated (“Materials and methods”).

The different tDCS protocols did not have dissociable effects on baseline motor variability for timing 
( P = 0.91 , one-way factorial analysis with synchronised rearrangements; Fig. 2). Neither was there a significant 
main effect of factor Stimulation on the variability of keystroke velocity at baseline ( P = 0.85 ). General perfor-
mance parameters did not differ in this phase of the experiment as a function of the stimulation protocol either 
(Supplementary Results), suggesting that any differential stimulation effects on the subsequent learning phases 
are not modulated by baseline effects.

Figure 1.  Experimental design. (A) All participants were tested on three separate weeks during which either 
an active tDCS protocol over the lM1, or the rFPC, or a sham stimulation condition were applied. The order 
of the tDCS sessions was counterbalanced across participants. The position of the anode and cathode for 
each stimulation condition is illustrated in one participant. The electrode placement during sham was taken 
from active rFPF-tDCS or lM1-tDCS (equal split across participants). Electrode placement figures were 
created with the freely available SimNIBS 2.1  software30,31, https:// simni bs. github. io/ simni bs. (B) All tDCS 
protocols extended for 20 min, which included (i) an initial 3 min resting phase, (ii) a baseline phase of regular 
isochronous motor performance, and (iii) part of the reward-based learning blocks (1 + 1/3 blocks). (C) 
Illustration of timing performance during sham in the baseline and learning phase in two participants. Timing 
was measured using the inter-keystroke-interval (IKI, s), and shown for each IK position (1–7 for sequences of 
8 key presses). Different trajectories denote performance in different trials. During baseline, participants were 
instructed to keep a regular, isochronous rhythm. During reward-based learning, they had to vary the timing 
dimension (IKI pattern) to discover the hidden performance target.

https://simnibs.github.io/simnibs
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During reward-based learning participants demonstrated an initial tendency to explore timing solutions that 
were close-by but also far away in the movement space (Figure S2, S3, see also the right panels on Fig. 1C). This 
indicated that they initially explored the task-related temporal dimension. Participants explored timing patterns 
by (i) changing the ratio of IKI values across neighboring keystrokes (different shape of IKI patterns) but also 
by (ii) increasing/decreasing all IKI values in the sequence, while keeping the relation between neighbouring 
IKI values unchanged (same shape of IKI patterns). This second scenario corresponded with timing solutions 
that were close-by in the movement space (Figure S3). During the last learning block, participants consistently 
exploited the inferred rewarded solution (Figure S4). Our reward-based motor sequence learning task was also 
able to capture the general effects of reward on motor exploration described in previous  work35,36. In particular, 
participants explored the timing dimension more (larger unsigned changes in the IKI pattern trial to trial) 
following a drop in scores than after an increase in scores (Figure S5 and Supplementary Materials). A more 
detailed assessment of trial-to-trial reward-based motor learning used a mathematical model of the behaviour 
described below.

Statistical analysis during reward-based learning demonstrated that participants improved their scores across 
blocks in all tDCS conditions (Fig. 3A; main effect Block, P = 0.0002 , full 3× 3 non-parametric factorial analy-
sis). These data support that participants successfully used the trialwise feedback in all stimulation conditions to 
learn about the hidden goal. There was no significant main effect for Stimulation or interaction effect ( P > 0.05 ). 
The increase in scores across blocks observed in all tDCS sessions was not affected by potential carry-over 
effects. Indeed, participants did not perform the same pattern of IKI values across the separate tDCS sessions 
(IKI general profile: Figure S6). Week on week, participants did not exhibit a tendency to learn faster about the 
hidden performance target (a phenomenon called savings, see Figure S737), which further supports the absence 
of carry-over effects in reward-based motor learning across sessions.

A planned one-way factorial analysis on the change in scores from online to offline blocks (3 minus 1) across 
stimulation conditions demonstrated a significant effect of factor Stimulation ( P = 0.0355 ). Post hoc pair-wise 
comparisons for each pair of tDCS stimulation conditions revealed a significantly larger increase following rFPC-
tDCS relative to lM1-tDCS (Fig. 3B; increase of 20.6 [standard error of the mean or SEM 3.72] for rFPC-tDCS; 
increase of 11.6 [3.8] for lM1-tDCS: P ≤ PFDR = 0.0414 ; moderate effect size, assessed with a non-parametric 
effect size estimator for dependent  samples38, �dep = 0.67, confidence interval or CI = [0.61, 0.75]). There was 
also a significantly larger increase for rFPC-tDCS relative to sham ( P ≤ PFDR = 0.0414 ; moderate effect size, 
�dep = 0.62, CI = [0.50, 0.80]; the average score change for sham was 11.7 [2.43]). No differences between lM1 
and sham were found ( P > 0.05).

The general increase in scores across blocks was paralleled by a reduction in the expression of task-related 
motor variability for timing, measured with the cv index (Fig. 3C; significant main effect of Block in the full 3× 3 
non-parametric factorial analysis; P = 0.0156 ). Notably, we also found a significant main effect of factor Stimu-
lation ( P = 0.0260 ), but no interaction effect. A separate one-way factorial analysis on the difference between 
offline and online blocks in timing variability showed a significant effect of Stimulation ( P = 0.0246 , Fig. 3D). 
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Figure 2.  Behavioural results during baseline. (A–D) Effects of stimulation conditions on performance 
variables during the baseline phase. Large coloured dots indicate means, with error bars denoting ± SEM. (A) 
Temporal variability across trials in the baseline block, measured with the coefficient of variation of IKI across 
trials (cv = std/mean, dimensionless). (B) Variability in keystroke velocity or loudness across trials, measured as 
in (A). (C) Mean performance tempo, mean IKI (s). (D) Average performance tempo during learning. The gray 
horizontal line indicates the mean tempo of the hidden target solutions.
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Post hoc analyses on this difference measure revealed that following rFPC-tDCS the drop in temporal variability 
from online to offline learning blocks was more pronounced than following sham ( P ≤ PFDR = 0.0126 , �dep = 
0.73, CI = [0.61, 0.82]) and also relative to lM1 ( P ≤ PFDR = 0.0126 , �dep = 0.63, CI = [0.53, 0.85]). When 
comparing lM1-tDCS to sham, however, the reduction in motor variability did not differ statistically ( P > 0.05).

Finally, control analyses carried out on the variability in keystroke velocity, revealed no significant main or 
interaction effects (Fig. 3E, full 3× 3 factorial analysis). Thus, variability in this non-task related dimension was 
not significantly modulated by stimulation or learning block (see also Fig. 3F). Additional details on general 
performance variables are presented in Supplementary Results.

Modelling results. We investigated how individuals adapted their task-related behaviour as a function of 
the expectation of reward using a hierarchical Bayesian model, the Hierarchical Gaussian Filter for continuous 
inputs  (HGF15,39). The HGF was adapted to model participants’ beliefs about the reward on the current trial k, 
xk1 , and about its rate of change, termed environmental volatility, xk2 . In the HGF for continuous inputs, the true 
volatility state varies as a function of the changes in the true value of the reward tendency. However, participants’ 
beliefs on volatility could also be modulated by the uncertainty associated with inferring the performance-to-
score mappings (Figure  S3; section “Reward function”), as timing patterns close-by in the movement space 
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Figure 3.  Behavioural results during reward-based learning. (A) Participants increased their scores across 
blocks (significant main effect of Block in full factorial analysis using factors Block (1–3) and Stimulation 
(lM1, rFPC, sham), supporting they successfully used the trial-by-trial feedback to approach the hidden 
performance goal. (B) The change in scores from online to offline blocks (3 minus 1) was significantly larger in 
rFPC-tDCS than sham, and in rFPC-tDCS relative to lM1-tDCS (denoted by the asterisk; P ≤ PFDR = 0.0414 ; 
moderate effect sizes: �dep = 0.67, CI = [0.61, 0.75] for rFPC-tDCS and lM1-tDCS; �dep = 0.62, CI = [0.50, 
0.80] for rFPC-tDCS and sham). (C) Same as (A) but for the degree of temporal variability (IKI variability, 
dimensionless). The full factorial analysis demonstrated significant main effects of Block and Stimulation. 
(D) The reduction from block 1 to 3 in IKI variability was significantly more pronounced in rFPC-tDCS than 
lM1-tDCS ( P ≤ PFDR = 0.0126 , �dep = 0.63, CI = [0.53, 0.85]), and also in rFPC-tDCS relative to sham 
( P ≤ PFDR = 0.0126 , �dep = 0.73, CI = [0.61, 0.82]). (E,F) Same as (C,D) but for keystroke velocity. No 
significant main effects or interactions were found when assessing variability in keystroke velocity. Neither 
were there differential effects of stimulation on the change in this variable from block 1 to 3. Small black dots 
represent individual participant data. Coloured dots display mean values with error bars denoting ± SEM.
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lead to different rewards. Volatility was not experimentally manipulated as in previous decision-making studies, 
where the reward mapping changed every  block15,40,41.

In the HGF, the update equations for the mean of the posterior distribution of beliefs on reward ( µ1 ) and log-
volatility ( µ2 ) depend on the corresponding prediction errors (PE) weighted by precision (pwPE; precision being 
the inverse variance or uncertainty of the posterior distribution, “Materials and methods”). The perceptual HGF 
model was complemented with a response model, which defines the mapping from the trajectories of perceptual 
beliefs onto the observed responses in each participant. We were interested in assessing how belief trajectories or 
related computational quantities (e.g. pwPEs) influenced subsequent behavioural changes, such as trial-to-trial 
timing variability or average tempo. The response models, accordingly, explained in each participant a behav-
ioural dependent variable (Y) with two predictor computational variables ( X1,X2 ), modulated by the regression 
coefficients ( β1 , β2 , and the intercept β0 ): Y = β0 + β1X1 + β2X2 + ζ , with ζ representing the residual term.

Among different alternative response models, random effects Bayesian model selection provided stronger 
evidence for the response model that explained changes in timing variation in the current trial as a linear function 
of pwPEs updating estimates on reward and log-volatility on the preceeding trial (see Fig. 4 and “Materials and 
methods”). Simulations of this model revealed that agents observing a broader range of scores or introducing 
higher trial-to-trial exploration (larger absolute changes in the trialwise timing pattern) have greater expectation 
on volatility, as both contributed towards an increased rate of change in the expectation on reward (Figure S9). 
On the other hand, in agents who steadily increased the achieved scores there was a drop in the log-volatility 
estimate, as the environment (and changes in the reward tendency) became more stable.

In the winning model, all β coefficients of the multiple linear regression response model for the trialwise 
timing exploration were significantly different from zero in each stimulation condition ( P ≤ PFDR = 0.001 ; 
Fig. 4A,B). On average β1 was negative. This outcome indicated that larger pwPEs updating reward estimates 
on the previous trial (pwPE1; increasing the expectation of reward) promoted an attenuation in motor explora-
tion (reduced trial-to-trial unsigned changes in timing). That is, increases in the expectation of reward were 
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Figure 4.  Computational modelling analysis. Data shown as mean and ± SEM. (A,B). β coefficients of the 
response model that explains the behavioural changes in trial k as a linear function of the precision-weighted 
prediction errors (pwPE) updating beliefs on reward (pwPE1) and volatility (pwPE2) on the previous trial, 
k − 1 . The performance measure assessed trialwise timing exploration. It was computed as log(|�cvIKI|), which 
is the unsigned change from trial k − 1 to k in the degree of timing variation across keystroke positions. See 
“Materials and methods”. (A) There was a significant main effect of factor Stimulation on β1 (one-way non-
parametric factorial analysis, P = 0.004 ). (B) Coefficient β2 was also modulated significantly with the factor 
Stimulation (one-way non-parametric factorial analysis, P = 0.012 ). Differences between pairs of stimulation 
conditions in β coefficients, as found in post-hoc analyses, are denoted by the horizontal black line and the 
asterisk ( P ≤ PFDR , see main text). (C) Illustration of the association between trialwise pwPE on reward and 
the subsequent task-related exploration, log(|�cvIKI|), in one subject during sham. (D) Illustration of the 
trajectories of pwPE on reward across all stimulation conditions in the same subject.
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followed by exploitative behaviour in the relevant variable (Fig. 4C,D), as  expected35,36. A non-parametric 
one-way factorial analysis demonstrated a significant effect of Stimulation on the β1 coefficients ( P = 0.004 ). 
Post hoc analyses further revealed that lM1-tDCS decreased the sensitivity of this association relative to sham 
and also when compared to rFPC-tDCS ( reduced “negative” slope, larger β1 values in lM1-tDCS than sham, 
P ≤ PFDR = 0.003 , �dep = 0.68 , CI = [0.57, 0.83]; similar outcome for the lM1-tDCS and rFPC-tDCS compari-
son: P ≤ PFDR = 0.003 , �dep = 0.62 , CI = [0.55, 0.80]; Fig. 4A).

The effect of pwPEs updating log-volatility (pwPE2) on trial-to-trial task-related exploration was also dissoci-
ated between stimulation conditions (significant effect of Stimulation in one-way factorial analysis, P = 0.012 ; 
Fig. 4B). Post hoc analyses additionally demonstrated a dissociation between rFPC-tDCS and sham stimulation 
in this parameter, as β2 coefficients were positive and significantly larger for rFPC relative to sham stimulation 
( P ≤ PFDR = 0.003 ; �dep = 0.68 , CI = [0.55, 0.83]). Accordingly, a larger pwPE updating log-volatility on the pre-
vious trial—related to an increase in the expectation of volatility—was followed by more pronounced exploration 
for rFPC-tDCS than sham. Conversely, negative pwPE2 promoted greater exploitation in rFPC-tDCS. A similar 
dissociation was found when comparing both active stimulation conditions, rFPC-tDCS and lM1-tDCS, due 
to significantly larger β2 coefficients in rFPC-tDCS than in lM1-tDCS (positive coefficients; P ≤ PFDR = 0.003 ; 
�dep = 0.71 , CI = [0.58, 0.89]). These results indicate that for rFPC-tDCS the sensitivity (slope) of this asso-
ciation was greater than for sham or lM1. Accordingly, rFPC-tDCS was associated with a more pronounced 
tendency to exploit the inferred timing solution (smaller trialwise timing exploration) with decreased volatility 
estimates. Thus, the winning response model identified different behavioural strategies in response to updates 
in reward and volatility as a function of the tDCS stimulation condition.

Electric field distribution of tDCS. To control for the confound that anodal tDCS likely increases cortical 
excitability but could also lead to the opposite polarity of the  effect42, we complemented the main analysis with 
a simulation of the electric field induced by tDCS in each participant using SimNIBS (30,31; see “Materials and 
methods”: tDCS). This analysis focused on the focality and magnitude of the neuromodulatory effects induced 
by the active tDCS protocols. The results revealed that the focus of the induced electric field was within the 
targeted regions and had a similar magnitude in both structures (Fig. 5). The peak values of the vector norm 
of the electric field (normE) did not differ between active stimulation conditions ( 99.9% percentile: mean and 
SEM for lM1-tDCS = 0.132 [0.006] V/m; for rFPC-tDCS = 0.134 [0.010] V/m; permutation test, P > 0.05 ). In 
addition, the volume corresponding with the 99.9% percentile of the field strength was not significantly differ-
ent between active tDCS conditions (focality: 1.22 [0.11] ×104 mm3 for lM1-tDCS; 1.14 [0.08] ×104 mm3 for 
rFPC-tDCS; P > 0.05 ). Notwithstanding the similarity in peak and focality of the simulated normE values for 
lM1 and rFPC-tDCS, in both cases the electric field spread to neighboring areas beyond the target coordinate. 
Under lM1-tDCS, the induced electric field was maximum in the left M1 (area 4 of the human connectome pro-
ject multi-modal parcellation, HCP-MMP143), followed by the premotor cortex (6), prefrontal areas (8Av and 
8C) and somatosensory cortex (3). Under rFPC-tDCS, the peak of the electric field corresponded with the rFPC 
(areas 10p and 10pp), followed by regions in the medial prefrontal cortex (mPFC; 9) and orbitofrontal cortex 
(OFC; 11). Lastly, the variability in the electric field strength (standard deviation) did not differ between tDCS 
targets ( P > 0.05 , Figure S11), supporting the comparable effects of both stimulation protocols in our sample.

Figure 5.  Electric field distribution for anodal lM1-tDCS (A) and rFPC-tDCS (B). Norm of the electric field 
strength (normE) derived from FEM calculations using SimNIBS, and averaged across participants using the 
fsaverage-transformed surface. Figure created with the freely available SimNIBS 2.1  software30,31, https:// simni 
bs. github. io/ simni bs.

https://simnibs.github.io/simnibs
https://simnibs.github.io/simnibs
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Discussion
In this study, we identify a potential role of rFPC in reward-based motor learning by using a motor task that 
requires a shift from exploration to exploitation, a Bayesian computational model of the  behaviour15, and simula-
tions of the electric field induced by tDCS. The results indicated that rFPC-tDCS relative to sham and lM1-tDCS 
accelerated the increment in scores from online to offline learning blocks primarily through regulation of task-
related motor variability. Trial-to-trial analyses using computational modelling further demonstrated that across 
all stimulation protocols increased expectation of reward led to subsequent exploitation, as  expected4,36. Because 
the sensitivity (slope) of this association was greater for rFPC-tDCS and sham relative to lM1-tDCS, these results 
suggest that behavioural changes following pwPEs updating reward estimates were enhanced for rFPC-tDCS 
and sham. Frontopolar stimulation was however dissociated from lM1 and sham stimulation with regards to the 
effects of trial-to-trial volatility updates on exploration. While lM1-tDCS and sham were less sensitive to updates 
in the expectation on volatility, rFPC-tDCS promoted greater exploitation of the inferred timing pattern as the 
expectation on log-volatility progressively decreased—with increasing expectation on reward. These findings 
suggest that rFPC contributes to reward-based motor learning by promoting a shift from exploration towards 
successful exploitation. This shift is mediated by an enhanced sensitivity to environmental volatility, which is 
associated with changes in the reward structure over time. Our results extend findings in the area of decision-
making10–13 to that of motor skill learning: Brain regions previously linked to decision-making in the cognitive 
or perceptual domain, such as the FPC, could be relevant in the motor domain. The findings also complement 
recent tDCS work associating the dorsolateral PFC to motor decision-making44.

Neuromodulation of the rFPC via anodal tDCS reduced motor variability during learning blocks. This effect 
was specific to the learning phase, as rFPC-tDCS did not modulate baseline motor noise, similarly to lM1-
tDCS and sham. Recent work has demonstrated that the inhibition of the rFPC via TMS during binary choices 
decreased directed exploration driven by information  seeking10. In line with that result, cathodal versus anodal 
rFPC-tDCS have been shown to decrease or increase exploration, respectively, in a three-armed bandit  task11. 
Thus, a surprising outcome was that, compared to lM1-tDCS and sham, anodal rFPC-tDCS did not increase 
motor variability during learning but instead reduced it towards the third block. This apparent discrepancy can 
be better understood by comparing our motor task with the decision-making tasks used in FPC studies. Binary 
or multi-armed bandit tasks as used in decision-making studies generally use a probabilistic reward function that 
changes over  time10,11,15,40. In this context, an optimal policy should continuously balance the exploration–exploi-
tation  tradeoff45, while FPC might drive exploration as needed for the task  demands10,11. On the other hand, 
motor tasks that use continuous reward signals to guide learning typically maintain the same reward structure 
over  time4,5,34. Here, movement variability is initially high but progressively decreases as participants approach 
the hidden solution. In this scenario, our study demonstrated that rFPC-tDCS facilitates the decline in motor 
variability and an increase in scores. This is consistent with the evidence from human and non-human primates, 
supporting that FPC might have evolved to monitor multiple competing choices and direct the exploratory 
tendency towards the most rewarding  one12. This function of FPC thus makes it particularly suitable to track 
the reward associated with (multiple) continuous movement parameters, such as timing or force in our study.

To understand why FPC stimulation led to the largest increase in scores from online to offline blocks, the 
computational results should be considered. Across blocks, there was an attenuation of the expectation on log-
volatility in all stimulation conditions, which reflects that the reward tendency estimate became more stable over 
time. This result also indicates that over time, trial-to-trial changes in scores (and expectation on reward) were 
associated with increasingly more negative update steps (pwPE2) on volatility. Because under rFPC-tDCS the 
positive slope of the association between exploration and pwPE2 was greater than for lM1-tDCS and sham—
indicating higher sensitivity in this association (larger β2)—smaller pwPE2 values over time would lead to 
more exploitative behaviour in rFPC-tDCS. This finding thus dissociates the effects of lM1-tDCS and sham on 
reward-dependent motor learning from those of rFPC-tDCS. It hints at an important condition for successful 
reward-based motor learning: increased sensitivity of task-related exploration to changes in volatility.

How was the mapping between movement and reward acquired in the different stimulation protocols? In 
the continuous movement space over which our task was defined, timing was the task-related dimension that 
needed to be mapped to reward. Thus, one possibility is that rFPC-tDCS might have facilitated the acquisition 
of this complex mapping, increasing the achieved scores and the expectation on reward, and reducing volatility 
estimates. This remains speculative at this moment as a limitation of this study is that we did not track neural 
dynamics during task performance. Therefore, we could not assess whether rFPC-tDCS modulated the emergence 
of a neural representation of the mapping between movement parameters and reward. On the behavioural level, 
however, the results converge in showing that rFPC-tDCS led in parallel to increased task-related exploitation and 
increased scores. Accordingly, the timing pattern that was exploited under frontopolar stimulation was indeed 
closer to the hidden target than the solutions inferred under sham and lM1-tDCS. The results are consistent with 
previous findings indicating that FPC infers the absolute reliability of several alternative  goals46,47. Moreover, 
FPC manages competing goals by keeping track of alternative  choices12,13. Notably, our results expand previous 
findings by revealing that during motor learning, which is generally solved in a continuous movement  space7, 
learning the mapping between different movement configurations and their associated reward partially relies 
on FPC, although an additional involvement of the dorsolateral PFC is also  likely44.

Stimulation over the contralateral M1 did not modulate motor variability across blocks (IKI variability) when 
compared to sham stimulation. This lack of significant effects should be interpreted with caution as our statistical 
approach does not allow us to make inferences on null results. However, in the modelling analysis, motor cortex 
stimulation was associated with a reduced sensitivity to changes in the expectation of reward. Although we had 
hypothesised that rFPC would accelerate reward-based learning more when compared to lM1-tDCS, which we 
confirmed, we also predicted that lM1-tDCS would increase exploration and improve learning from reward 
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signals relative to sham. This prediction was based on the existing TMS and tDCS studies demonstrating the 
involvement of M1 in reward-based motor  learning27,48 and decision-making25,26. Furthermore, M1 contributes 
to reward-based motor learning via neurophysiological plasticity changes, such as long-term  potentiation27. This 
would be consistent with the maximum electric field intensity over lM1 in our study indicating excitatory effects, 
which relate to a decrease in local GABAergic activity and enhanced long-term potentiation-like  activity17,49,50. 
It is noteworthy that most previous studies linking M1 to reward-based motor learning (see above), reward-
guided motor  processing20,21 and valued-based decision  making22,23 used TMS protocols. Accordingly, the focality 
of TMS may be necessary to overcome the large inter-individual variability affecting tDCS  studies42. Arguing 
 similarly24 used smaller electrodes anterior and posterior to M1 to demonstrate a benefit of reward signals and 
M1-tDCS on motor retention. Thus, resolving the issue of the dissociable role of M1 and FPC in regulating motor 
variability during reward-based motor learning will require follow-up TMS studies and, additionally, a com-
parison between initial learning and motor  retention51. Because the largest effects of rFPC relative to lM1-tDCS 
emerged when contrasting the achieved scores in offline versus online blocks, future work should clarify whether 
the benefits of rFPC over lM1-tDCS during reward-based motor learning are specific to offline stimulation, as 
M1-tDCS effects on motor learning may be limited to online  stimulation18,29. Lastly, follow-up studies should also 
address whether the differential effects of rFPC and lM1 stimulation on the regulation of motor variability can 
be accounted for by a potentially delayed role of M1 in the refinement of task-related behavioural  variability19.

Of note, a limitation of any tDCS study is that the diffuse spatial effect of tDCS does not allow us to determine 
whether modulation of the target area alone is responsible for the observed behavioural  effect42. Even with the 
higher spatial resolution of TMS, it has been argued that any effect of FPC stimulation on behaviour could be 
mediated by other brain regions coupled with FPC during behavioural  exploration10, such as the inferior parietal 
cortex or ventral premotor  cortex46 or by regions engaged in other aspects of goal-directed behaviour, such as 
the ventromedial or dorsolateral PFC and  OFC12,16,44.

To mitigate that limitation, we modelled the electric field in the individual anatomy and assessed the strength 
and focality of the induced electric field for each tDCS target. We found an enhanced focal activation with 
maxima in the targeted areas for both active stimulation protocols. Recent work demonstrated an association 
between enhanced electric field strength in SimNIBS due to anodal tDCS and excitatory  effects49, however their 
results are limited to M1. Accordingly, neurophysiological implications for rFPC stimulation cannot be drawn 
out at this point. Future studies combining electroencephalography and functional MRI should assess the net-
work of interactions between FPC, other regions in the PFC, and cortical motor regions to determine the precise 
mechanism underlying the rFPC-tDCS effect on reward-based motor learning reported here.

Materials and methods
Participants. Nineteen right-handed participants (10 females, mean = 27.7 yrs, std = 3.3 years, range 21–33) 
with no history of neurological disease or hearing impairment and with no musical training outside of the 
requirements of the general music curriculum in school were recruited. Laterality quotient was assessed by the 
Oldfield handedness inventory (52; mean = 90, standard error of the mean or SEM = 3.2; values available in 17/19 
participants). The sample size is small but similar to that found in tDCS studies focusing on motor  learning24,53 
and was based on our previous estimation of the minimum sample size required to detect effects of different 
experimental manipulations in this paradigm (e.g. reward or affective  manipulations14) with a statistical power 
of 0.95. The study protocols were approved by the local ethics committee of the of the University of Leipzig (277-
14-25082014) and agrees with the provisions of the Helsinki  Declaration54. Participants gave written informed 
consent before the beginning of the first experimental session. To incentivise participants during completion of 
the reward-based learning phase of the motor task, they were informed about a €50 voucher for online purchases 
that would be awarded to the participant scoring the highest average score across the three sessions.

Experimental design and procedure. A sham-controlled, double-blinded, cross-over design was imple-
mented. The study was comprised of three sessions with a 7-days interval between them (same time of day) 
to reduce potential carry-over effects. Selection of target coordinates for each tDCS protocol was guided by 
individual T1-MRI. To improve the blinding procedure and prevent any systematic influences of sham effects 
on behaviour, rFPD-tDCS or lM1-tDCS montages were pseudo-randomly used as sham-tDCS montages, coun-
terbalanced across participants.

In the learning phase, participants were explicitly instructed to vary the timing of the performance as this 
dimension was associated with reward. The instructions they received were (approximate translation from Ger-
man): “The winning solution associated with 100 points is a specific combination of short and long time intervals 
between consecutive key presses. Try different combinations of short and long intervals until you discover the 
solution that gives you the most points”. We implemented a mapping rule between movement and reward gov-
erned by uncertainty (see next section), as in our task different timing patterns could receive the same reward, 
whereas similar timing patterns would obtain different rewards (Figure S3). This choice was based on previ-
ous research suggesting that the acquisition of complex motor skills in daily life often involves an uncertain or 
variable mapping between actions and  outcomes55. Moreover, higher reward uncertainty can be beneficial for 
motor  retention55. In our task, the optimal strategy to maximise the mean total reward involves two phases: (i) 
an initial increase in exploration to learn the mapping between reward and movement parameters, followed by 
(ii) a swift switch to the exploitation of the performance inferred as most rewarding. The quantitative analysis 
of exploration is described below. Prior to receiving tDCS and completing the motor task, participants had to 
familiarise themselves with the series of tones they had to produce during each phase of the task. We introduced 
auditory feedback to make the task more engaging and to facilitate the memorisation of the sequence content 
(i.e. to reduce production errors). This choice was based on previous research showing that non-musicians learn 
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audio-motor sequences better than visuo-motor (i.e. silent) sequences of finger  presses56. The stimulus mate-
rial in the baseline phase consisted of a series of eight consecutive white piano keys played with four fingers 
(four notes upwards + same four notes downwards; one finger per key with fixed finger-to-key mapping). In the 
learning phase, the stimulus material was comprised of a sequence of eight notes, which was a combination of 
the four neighboring white keys they had to press during the baseline phase (Figure S1). Three different types 
of sequences were used for each stimulation session, with a pseudo-randomised counterbalanced order across 
participants. Each sequence was defined over a similar range of semitones but the range had a different spatial 
location on the keyboard (i.e. towards higher or lower pitch values, Figure S1). Participants were explicitly taught 
the order of the notes for the baseline and reward-based learning phase by one of the experimenters, who played 
the notes for the participants using an isochronous timing. Participants had to repeat the sequence of notes after 
the demonstration by the experimenter using a self-paced tempo. Because the stimulus materials for both phases 
were short and the order of the notes easy to play, all participants demonstrated an error-free performance after 
just a few repetitions (baseline materials: 2 repetitions on average, range 1–4; learning materials: 4 repetitions 
on average, range 2–6).

Once under tDCS, the baseline phase required participants to press the corresponding series of white keys 
regularly at a self-paced tempo. This phase allowed us to assess fine motor control during regular performance 
as a proxy for baseline motor noise.

Next, during the reward-based learning blocks, participants had to play the corresponding sequence of notes 
(Figure S1). Crucially, however, at this point they were instructed that the timing of the performance target was 
not isochronous and thus their goal was to use trial-based feedback scores to discover and approach that hidden 
target. Participants were not aware that different timing solutions could receive the same reward.

Reward function. The performance measure that was rewarded during learning blocks was the Euclidean 
norm of the vector corresponding to the pattern of temporal differences between adjacent inter-keystroke-inter-
vals (IKI, in s) for a trial-specific performance (as  in14). To approach the hidden target performance, participants 
had to deviate from an isochronous performance and find out the right combination of successive IKIs.

Here we denote the vector norm by ‖�z‖ ,  with �z  being the vector of differences, 
�z = (z2 − z1, z3 − z2, . . . , zn − zn−1) , and zi representing the IKI at each keystroke (i = 1, 2,..., n). Notably, IKI 
values represent the difference between the onset of consecutive keystrokes, and therefore �z indicates a vector 
of differences of differences (put simply: differences of intervals). The target value of the performance measure for 
each sequence was a vector norm of 1.9596 (e.g. one of the maximally rewarded performances leading to this vec-
tor norm of IKI-differences would consist of IKI values: [0.2, 1, 0.2, 1, 0,2, 1, 0.2] s; that is a combination of short 
and long intervals). The score was computed in each trial using a measure of proximity between the target vector 
norm ‖�z

t‖ and the norm of the performed pattern of IKI differences ‖�z
p‖ , using the following expression:

As mentioned above, different combinations of IKIs could lead to the same IKI differences and thus same 
Euclidean norm. Thus, timing patterns that were far away in the movement space could receive the same reward, 
whereas timing patterns close-by in the movement space would obtain different rewards (Figure S3). Accordingly, 
the mapping rule between movement and reward was governed by uncertainty, and higher overall exploration 
could be associated with the perception that the environment and reward structure was more unstable. This was 
explicitly assessed in the mathematical model of the behaviour described below.

tDCS. During the experiment, tDCS was applied via saline-soaked sponge electrodes to the individual tar-
get coordinate using a battery-driven DC-stimulator (NeurConn, Ilmenau, Germany). tDCS can transiently 
modulate cortical excitability via application of direct currents, as shown in combined TMS-tDCS  studies17,57, 
and further supported by recent simulation  studies49. Anodal tDCS has been shown to increase cortical excit-
ability, however additional evidence indicates that it could lead to the opposite polarity of the effect, reducing 
cortical  excitability42. For instance, extending the stimulation duration beyond 26 min has been shown to result 
in inhibitory rather than excitatory effects after anodal  tDCS58. To control for this confound, we complemented 
the main analysis with a simulation of the electric field induced by tDCS in each participant using SimNIBS 
(see below). Anodal or sham tDCS was applied to the right FPC or left (contralateral) M1 regions. The target 
coordinate for rFPC-tDCS was selected from previous tDCS and fMRI work investigating the role of rFPC on 
exploration (Montreal Neurological Institute or MNI peak: x = 27, y = 57, z =  611,16). For lM1-tDCS, we used 
a target coordinate in the hand area of the left primary motor cortex (MNI peak: x = − 37, y = − 21, z = 58), 
based  on59. The target coordinates were transformed to the individual native space using a T1-weighted high-
resolution magnetic resonance image from each participant. Specifically, the MNI coordinates were converted 
into participants’s native MNI space using the reverse native-to-MNI transformation from Statistical Parametric 
Mapping (SMP, version SPM12). The point on the scalp corresponding with each of our targeted brain areas was 
marked to place the active electrode (5 × 5 cm2 ). The reference (cathode, 10 × 10 cm2 ) electrode for rFPC-tDCS 
was placed at the  vertex11, whereas it was located over the frontal orbit for lM1-tDCS17. Flexible elastic straps 
were used to fixate the electrodes on the head. A three-dimensional (3D) neuronavigation device (Brainsight 
Version 2; Rogue Research, Montreal, Canada) was used to guide positioning of active electrodes.

We stimulated with a weak direct current of 1 mA in all conditions for 20 min resulting in a current density of 
0.04 mA/cm2 under the target electrode and 0.01 mA/cm2 under the reference electrode. In general, the modula-
tory effect of tDCS on brain excitability is more pronounced after several minutes and can subsequently outlast 
the stimulation duration for up to 1.5  h17,57. To account for the potential delay in the effect of tDCS, we instructed 

(1)score = 100 exp(−
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participants to wait for 3 min before we initiated the motor task. At the start of the active tDCS stimulation 
the current was ramped up for 30 s to minimise the tingling sensation on the scalp, which generally fades over 
 seconds18, and was also ramped down for 30 s at the end. During sham tDCS, the current was ramped-up for 
30 s, held constant at 1 mA for 30 s and ramped-down for 30 s. This procedure aimed to induce a similar initial 
tingling sensation in active and sham protocols, yet without modulation of cortical excitability for sham  tDCS60. 
Details on the double-blind procedure are presented in the Supplementary Materials.

Before and after each tDCS session, participants rated on a 1–10 scale their fatigue, attention and discomfort 
levels, as well as the sensation with tDCS (post-tDCS, scale 1–5). No significant differences between active and 
sham tDCS sessions were found in the reported levels of fatigue, discomfort or attention levels ( P > 0.05 , post 
minus pre changes; paired permutation test). The sensation was not different between rFPC and sham tDCS, 
either ( P > 0.05 ). However, lM1-tDCS induced a higher sensation than sham (P = 0.0034, non-parametric effect 
size �dep = 0.87, CI = [0.57, 0.88]. Details on statistical methods are provided below).

Acquisition and analysis of behavioural data. Performance information was saved as MIDI (Musical 
Instrument Digital Interface) data, which provided the time onsets of keystrokes relative to the previous event 
(inter-keystroke interval, IKI, s), MIDI note number that corresponds with the pitch, and MIDI velocity (related 
to loudness). Behavioural data are available in the Open Science Framework Data Repository: https:// osf. io/ 
zuab8/.

The assessment of motor variability along each dimension (time, keystroke velocity) was performed by com-
puting the coefficient of variation (cv = std/mean, across trials within the block) for each variable at each key-
stroke position, and then averaging the values across keystroke positions. During the baseline phase participants 
had to accurately reproduce the same action (regular timing and keystroke velocity). In this context, any residual 
variability can be regarded to reflect motor  noise4,32, which here was measured assessing variability in IKI and 
keystroke velocity in this initial phase. During learning blocks, the level of task-related motor variability, IKI 
variability, was considered to primarily reflect intentional exploration of this parameter but also some degree 
of unintentional motor noise—similarly to other  studies4,5,14. Participants were instructed that the keystroke 
velocity of their performance was not related to reward. Thus, changes in variability of keystroke velocity across 
blocks—if present—would be an indication of changes in unintentional motor noise with learning. The achieved 
scores and other general performance variables, such as the block-wise mean tempo, mean keystroke velocity 
and rate of wrong notes (error rate) were also evaluated.

During the baseline phase we assessed statistically the effects of stimulation conditions on the relevant behav-
ioural variables (see “Results”), excluding the scores. During the learning blocks, statistical analysis focused 
on the investigation of the effect of stimulation and learning block on all behavioural dependent variables. In 
addition, we were specifically interested in assessing the influence of tDCS protocols on the change in task-
related motor variability and scores from online to offline (after the cessation of tDCS) learning blocks. Thus, 
additional dependent variables were the difference between blocks 3 and 1 in IKI variability and, separately, the 
scores. Details on statistical testing are provided in section “Statistical analysis”. When providing mean values 
on behavioural variables, we also indicate the standard error of the mean or SEM.

Bayesian model of behaviour. In the HGF model for continuous inputs we  implemented15,39, beliefs on 
x1 and x2 were Gaussian distributions and thus fully determined by the sufficient statistics µi ( i = 1, 2 , mean of 
the posterior distribution for xi , corresponding to participants’ expectation) and σi (variance of the distribution, 
representing uncertainty of the estimate). The belief trajectories about the external states x1 and x2 (mean, vari-
ance) were further used to estimate the most likely response corresponding with those beliefs. An illustration 
of the model output trajectories is shown in Fig. 6. See also Figure S8 for a schematic of the modelling approach 
with the relevant variables and parameters.

The update equations for the posterior mean of the belief distribution at level i and for trial k, µk
i  , are included 

in the Supplementary Materials online. Detailed definitions can also be found  in14,15,39. Details on the free parate-
mers of the HGF model to be estimated in each individual are presented in the Supplementary Materials online. 
In addition, Table S1 shows our choice of prior values on the HGF parameters that were used to generate belief 
trajectories.

The response model defines the mapping from the trajectories of perceptual beliefs onto the observed 
responses in each participant. We were interested in assessing how belief trajectories or related computational 
quantities influenced subsequent behavioural changes, such as trial-to-trial variability or exploration. Accord-
ingly, we constructed different response models associated with different scenarios in which participants would 
link a specific performance measure to reward, such as the mean duration of key presses or the degree of timing 
variation across keystroke positions (measured with the trialwise cvIKI across presses). Response variables that 
were bounded to 0–1 in their native space, such as |� cvIKIk| , were transformed into an unbounded variable 
using the logarithmic transformation. See details on the Supplementary Materials online.

For each performance measure, the corresponding response model explained that variable as a function of (a) 
the mean of the posterior distribution of beliefs µ1 , or µ2 ; (b) the precision-weighted PE (pwPE) about reward, 
pwPE1, or volatility, pwPE2; (c) HGF quantities related to beliefs on the reward tendency: µ1 , pwPE1; (d) HGF 
quantities related to volatility estimates: µ2 , pwPE2. This led to a total of 16 different models. The rationale for 
choosing pwPE1 and pwPE2 as predictors in some of the alternative response models was the relevance of PE 
weighted by uncertainty in current frameworks of Bayesian  inference61,62. Moreover, pwPEs determine the step 
size of the update in the expectation of beliefs (see Supplementary Materials online). That is, larger pwPEs about 
reward increase the expectation of reward, while larger pwPE about volatility increase the corresponding volatility 
estimate.  See14 for a similar use of the response models defined for this paradigm.

https://osf.io/zuab8/
https://osf.io/zuab8/
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Each model was fitted with the 90 trialwise performance values of the corresponding response variable and 
with the input scores for each tDCS session. The log model-evidence (LME) was used to optimise the model 
 fit63. Random Effects Bayesian Model Selection (BMS; code freely available from the MACS  toolbox64) was per-
formed across all 16 models using the LME values. BMS provided stronger evidence for the response model that 
explained log(|� cvIKIk| ) as a linear function of pwPE about reward, pwPE1 (termed ǫ1 in Eq. (2)), and volatility, 
pwPE2 (termed ǫ2 ), on the preceeding trial k − 1:

where ζ is a Gaussian noise variable. The response variable log(|� cvIKIk| ) reflected unsigned changes (explora-
tion) from trial k − 1 to trial k in  cvIKI35. In this winning model, the exceedance probability was 0.9888 and the 
model frequency was 72%.

The HGF with the winning response model provided a good fit to the behavioural data, as the examination of 
the residuals shows (Figure S10). There were no systematic differences in the model fits across tDCS conditions. 
The response model noise parameter ζ was not significantly modulated by the stimulation condition ( P > 0.05 ; 
average value ζ = 1.3 [0.08]).

The effect of stimulation on the learning process, as described by the computational model, was assessed 
by analysing the following dependent variables: The β coefficients of the winning response model ( β1 , β2 ) that 
regulate how pwPE on reward and volatility modulate task-related behavioural adaptations, as well as the noise 
parameter ζ . This analysis thus allowed us to investigate how trial-to-trial update steps in the expectation of 
reward and volatility (related to changes in observed scores) modulated task-related motor exploration in the 
next trial.

SimNIBS. The electric field distribution induced by each tDCS condition was simulated in each partici-
pant with the freely available SimNIBS 2.1  software30,31. SimNIBS integrates different tools, such as FreeSurfer, 
FMRIB’s FSL, MeshFix, and  Gmsh65. Using the headreco head modelling pipeline of SimNIBS, the electrically 
most relevant tissue structures (skin, skull, cerebrospinal fluid, gray matter, white matter, eyes, and air) were first 
segmented from the individual T1-weighted anatomical MRI. The segmentation image of the skin tissue was 
subsequently smoothed to remove any residual artifact. This was carried out independently from the SimNIBS 
pipeline with the freely available software MIPAV by applying a spatial Gaussian filter (2 mm in each xyz direc-

(2)log(|�cvIKIk|) = β0 + β1ǫ
k−1
1 + β2ǫ

k−1
2 + ζ ,

Figure 6.  Computational model: output trajectories. (A) Example of trial-by-trial beliefs about volatility, 
with posterior mean µ2 (variance σ2 ) in the perceptual HGF. (B) Belief on the first level, which represents an 
individual’s expectation of reward, µ1 (variance σ1 ). Black dots represent the trialwise input scores (u). (C) 
Performance output (logarithm of the unsigned change in trialwise cvIKI as a proxy for exploration). Shaded 
areas denote the variance or estimation uncertainty on that level.
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tion). The creation of the head model was then completed with headreco by generating a tetrahedral mesh as vol-
ume conductor model. Next, in the SimNIBS GUI, simulated electrodes were placed manually on the head mesh 
at their precise position and with the corresponding orientation. Stimulation intensities were selected for anodal 
and cathodal electrodes and the simulation based on the finite element method (FEM) was initiated. The vector 
norm of the electric field (normE) was extracted and chosen as dependent variable for subsequent group-level 
statistical analysis. These steps were repeated separately in each active tDCS condition and in each participant.

The individual normE distribution was transformed to the fsaverage space to create a group average of the 
mean normE values and their standard deviation (Figure S11). This was carried out with the MATLAB scripts 
provided in the SimNIBS package. To assess statistical differences between stimulation conditions in the peak 
values and focality of the induced electric field, we extracted the 99.9 percentile value of the normE distribution, 
as well as the volume in which the normE values reached the 99.9 strength percentile.

Statistical analysis. Statistical analysis was performed with the use of non-parametric permutation tests 
with 5000 permutations. During the baseline phase, non-parametric one-way factorial analyses with factor 
Stimulation (lM1, rFPC, sham) were carried out using synchronised  rearrangements66, which are based on per-
mutations. During learning, full 3× 3 factorial analyses with factor Block (1–3 levels during learning or 1 level 
during baseline) and Stimulation were implemented. Effects were considered significant if (P ≤ 0.05 ). In the case 
of significant interactions, follow-up post hoc analyses using pair-wise comparisons between stimulation condi-
tions or blocks were evaluated using pair-wise permutation tests for matched samples.

In all cases, we addressed the issue of multiple comparisons arising from the implementation of several post 
hoc analyses by controlling the false discovery rate (FDR) at level q = 0.05 with an adaptive two-stage linear 
step-up  procedure67. Significant effects after FDR-control are reported as P ≤ PFDR , and providing the explicit 
adapted value of PFDR.

In addition, separately from the main factorial analyses, we performed analyses of offline (block 3) minus 
online (block 1) differences in IKI variability and scores in the learning phase using one-way factorial analyses 
with factor Stimulation (lM1, rFPC, sham). Here, post hoc analyses of pair-wise contrasts between tDCS condi-
tions also controlled the FDR at level q = 0.05.

Throughout the manuscript, non-parametric effect sizes and corresponding confidence intervals are provided 
along with pair-wise permutation tests. As measure of non-parametric effect size we used the probability of 
superiority for dependent samples �dep , ranging 0–138. Confidence intervals (CI) for �dep were estimated with 
bootstrap  methods68.
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