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This paper introduces an information-based model for the pricing of storable com-

modities such as crude oil and natural gas. The model uses the concept of market
information about future supply and demand as a basis for valuation. Physical

ownership of a commodity is taken to provide a stream of convenience dividends
equivalent to a continuous cash flow. The market filtration is assumed to be gen-
erated jointly by (i) current and past levels of the dividend rate, and (ii) partial

information concerning the future of the dividend flow. The price of a commodity
is the expectation under a suitable pricing measure of the totality of the discounted

risk-adjusted future convenience dividend, conditional on the information provided
by the market filtration. In the situation where the dividend rate is modelled by
an Ornstein-Uhlenbeck process, the prices of options on commodities can be derived

in closed form. The approach that we present can be applied to other assets that
yield potentially negative effective cash flows, such as real estate, factories, refineries,
mines, and power generating plants.
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I. INTRODUCTION

In the extensive literature devoted to the pricing and risk management of commodity deriva-
tives, most investigations take as a starting point the specification of a dynamical model for
the price process for the commodity. The outcome of chance in the market in which the
commodity is traded is usually represented in such studies with the specification of a fixed
probability space equipped with the filtration generated by a Brownian motion of one or
more dimensions, and it is typically assumed that the commodity price can be modelled as
an Ito process adapted to this filtration. Such an approach to the pricing of commodities
and related derivatives is in line with the “standard” modelling framework for asset pricing
within which much or event most of modern finance theory has been pursued [1, 2].

Nevertheless, there is a fundamental methodological issue in the standard framework:
namely, that the market filtration is fixed in an essentially ad hoc way, and that no indi-
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cation is provided concerning the nature of the information it purports to convey, or why
it is relevant to the price. The information is in practice normally no more than that of
the price movements themselves, so it can hardly be claimed in any useful way that the
price movements are taking place “in response” to “shocks” associated with the arrival of
information, for the shocks, as we have said, are no more than the asset price movements
themselves.

One knows, however, that in real markets, information concerning the possible future cash
flows and other benefits or obligations linked to the physical possession of an asset can be
crucial in the determination of trading decisions, even in situations where such information
is imperfect. The movement of the price of an asset should thus be regarded as a derived
concept, induced by the flow of information to market participants. This is the point of view
put forward in the information-based asset pricing theory of Brody, Hughston & Macrina
[3–5] that forms the analytical basis of the present investigation; see also [6, 7].

The goal of this paper is to incorporate the role played by forward-looking information
in commodity markets in such a context, and to derive a model for the prices used as
underlyings in the valuation of commodity derivatives. Specifically, we make use of the
concept of market information about future supply and demand as a basis for the valuation
of storable commodities. The theory of commodity pricing from a modern perspective has a
long history, starting from the work of Black [8] and Brennan & Schwartz [9]. For a detailed
treatment of theory of storage, convenience yield, and related concepts, the reader can be
referred to Geman [10] and references cited therein. In our approach, we shall assume that
the possession of one standard unit of a commodity provides a net “convenience dividend”
equivalent to a cash flow {Xt}t≥0. We thus work directly with the actual flow of benefit
arising from the possession of the commodity, rather than the percentage convenience yield.
The point is that the percentage convenience yield so often used in commodity modelling
is a secondary notion, since it depends on the price, which is what we are trying to de-
termine. In what follows, we present a simple model for the convenience dividend process
{Xt}. Additionally, we introduce a market information process {ξt}t≥0 that provides partial
or speculative information about the future dividend flow. The market filtration is then
assumed to be generated jointly by these two processes. In that sense, we are explicitly
constructing the market filtration in such a way that it contains information relevant to the
commodity price. Given the market filtration, the price of the commodity is taken to be
the risk-adjusted discounted expected value of the totality of the future convenience divi-
dends. We model {Xt} by an Ornstein-Uhlenbeck process. We model {ξt} by a process that
consists of two terms: a “signal” term containing information about the future convenience
dividend flow, and a “noise” term given by an independent Brownian motion. By use of this
information-based model we are able to derive closed-form expressions for both the price of
the commodity and for the prices of associated derivatives.

The remainder of the paper is organized as follows. In §II we introduce our model for the
net convenience dividend and for the market filtration. In §III various useful facts relating
to the Ornstein-Uhlenbeck (OU) process are recalled – in particular, certain features of the
OU bridge. These are used in §IV to show in Proposition 1 that the information process
and the convenience dividend rate are jointly Markovian, and in §V to derive an expression
for the commodity price. Finally, in §VI we present pricing formulae for call options on the
underlying spot price.
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II. INFORMATION-BASED COMMODITY PRICING

In the information-based approach of Brody, Hughston &Macrina [3–5], the starting point
is the specification of (i) a set of one or more random variables (called “market factors”)
determining the cash flows associated with a given asset, and (ii) a set of one or more random
processes (called “information processes”) determining the flow of information to market
participants concerning these market factors. The setup, more specifically, is as follows. We
model the outcome of chance in a commodity market with the specification of a probability
space (Ω,F ,Q). The market is not assumed to be complete, but we do assume the existence
of a preferred pricing measure (or “risk neutral” measure) Q. In more detail, we assume the
existence of a physical measure and a pricing kernel that with respect to the physical measure
takes the form of a discount factor times a strictly positive martingale. The martingale is
used to change the measure to Q, and from that point onward we formulate the details of
the theory with reference to that measure. Then if {Xt} represents the net convenience
dividend, which is given by the benefits associated with possession of the commodity less
storage costs and any other direct costs associated with the said possession, the price of the
commodity at time t is given by

St =
1

πt
E

[
∫ ∞

t

πuXudu

∣

∣

∣

∣

Ft

]

, (1)

where the expectation is taken under Q. Here the discount factor {πt}t≥0 is given in terms
of the short rate {rt}t≥0 by

πt = exp

(

−

∫ t

0

rsds

)

. (2)

The associated money-market account process is then given by {1/πt}t≥0. For simplicity, we
assume that the default-free interest rate system is deterministic. The market filtration {Ft},
with respect to which the conditioning is taken in (1), is taken to be generated jointly by
(a) the convenience dividend process {Xt}t≥0 and (b) a market information process {ξt}t≥0

of the form

ξt = σt

∫ ∞

t

πuXudu+Bt , (3)

representing partial or noisy information about the future dividend flow. The parameter σ
determines the rate at which information about the future dividend stream is revealed to
the market. The Q-Brownian motion {Bt} represents noise arising from rumour, baseless
speculation, uninformed trading, fake news, and the like, and is assumed to be independent
of the dividend process {Xt}. Therefore for each t ≥ 0 we have

Ft = σ [{ξs}0≤s≤t, {Xs}0≤s≤t] . (4)

The next step is to specify the form of the dividend process. We consider in this paper
the case in which {Xt} is an Ornstein-Uhlenbeck (OU) process. It is worth recalling, by
way of contrast, that Gibson & Schwartz [11, 12] assume that the percentage convenience
yield should follow a mean-reverting process, an approach that has been followed in many
subsequent works [13–20]. The idea of the present work, however, is that a mean-reverting
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absolute convenience dividend reflects the notion that in the long term there is an equilibrium
rate of benefit obtained by storing or holding the commodity. We thus assume that the
dividend process satisfies a stochastic equation of the form

dXt = κ(θ −Xt)dt+ ψ dβt, (5)

where {βt} is a Q-Brownian motion that is independent of {Bt}. We allow for the possi-
bility that the dividend rate may occasionally be negative. The mean reversion level θ, the
reversion rate κ, and the dividend volatility ψ are assumed to be constant in the present
discussion, although the results can be readily generalized to the time-dependent case.

III. PROPERTIES OF THE ORNSTEIN-UHLENBACK PROCESS

Before we proceed to work out the conditional expectation (1), it will be useful to com-
ment on various properties of the Ornstein-Uhlenbeck process. These properties, some of
which will be well known, but others perhaps less so, will help us simplify the calculations.
It is an elementary exercise to check that the solution to (5) takes the form

Xt = e−κtX0 + θ(1− e−κt) + ψe−κt

∫ t

0

eκsdβs. (6)

The Ornstein-Uhlenbeck process has the property that if we “reinitialize” the process at
time t then its value at some later time T > t can be expressed as

XT = e−κ(T−t)Xt + θ(1− e−κ(T−t)) + ψe−κT

∫ T

t

eκu dβu. (7)

Since {Xt} is a Gaussian process, one can verify the following by use of covariance relations:

Lemma 1 The random variables Xt and XT − e−κ(T−t)Xt are independent.

Proof. The mean of Xt is given by

E[Xt] = e−κtX0 + θ(1− e−κt). (8)

A straightforward calculation using the Ito isometry then shows that

Var[Xt] =
ψ2

2κ
(1− e−2κt) (9)

and that for 0 ≤ t ≤ T we have

Cov[Xt, XT ] =
ψ2

κ
e−κT sinh κt, (10)

from which it follows that

Cov[Xt, XT − e−κ(T−t)Xt] = 0, (11)

and hence the claimed independence. !
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This property of the OU process corresponds to an orthogonal decomposition of the form

XT = (XT − e−κ(T−t)Xt) + e−κ(T−t)Xt (12)

for T > t. The validity of Lemma 1 can also be checked by direct inspection of (6) and
(7). It should be evident that if the reversion rate is set to zero, then (12) reduces to the
independent-increments decomposition of a Brownian motion.

Interestingly, there is another orthogonal decomposition of the OU process that is some-
what less obvious than (12). This is given by the identity

Xt =

(

Xt −
sinh κt

sinh κT
XT

)

+
sinh κt

sinh κT
XT . (13)

The process {btT }0≤t≤T , defined for fixed T by

btT = Xt −
sinh κt

sinh κT
XT , (14)

appearing in (13), is an Ornstein-Uhlenbeck (OU) bridge. The OU bridge interpolates
between the fixed values b0T = X0 and bTT = 0, and we are led to another useful result.

In particular, a calculation shows the following:

Lemma 2 The Ornstein-Uhlenbeck bridge {btT }0≤t≤T and the random variable XU are in-
dependent for all T and U such that 0 ≤ T ≤ U .

Proof. Since {btT }0≤t≤T and XU are jointly Gaussian, it suffices to show that for any choice
of t, T, U such that t ≤ T ≤ U the random variables btT and XU are independent. We have

Cov[Xt, XU ] =
ψ2

κ
e−κU sinh κt, (15)

and

Cov[XT , XU ] =
ψ2

κ
e−κU sinh κT, (16)

from which it follows that

Cov

[

Xt −
sinh κt

sinh κT
XT , XU

]

= 0, (17)

and hence the claimed independence. !

We note that the mean and variance of the OU bridge are given, respectively, by

E[btT ] =
sinh κ(T − t)

sinh κT
X0 +

[

1−
sinh κt + sinh κ(T − t)

sinh κT

]

θ (18)

and

Var[btT ] =
ψ2

κ
sinh κt

[

cosh κt−
sinh κt

sinh κT
cosh κT

]

. (19)
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IV. MARKOV PROPERTY OF MARKET INFORMATION

When working with conditional expectations, we often use the shorthand E[Y |Z] in place
of E[Y |σ{Z}], where σ{Z} denotes the σ-algebra generated by Z. Keeping in mind this
notation, we frequently make use of the following. Let X , Y , and Z be random variables,
and assume that X is integrable. Then if σ{X, Y } and σ{Z} are independent it holds that

E[X| Y, Z] = E[X|Y ]. (20)

See, for example, Williams [21], section 9.7. We proceed to work out the conditional ex-
pectation in (1) to determine the commodity price. The following result will facilitate the
calculations.

Proposition 3 The information process {ξt} and the dividend rate {Xt} are jointly Markov.

Proof. We need to show that for 0 ≤ t ≤ u it holds that

Q [ξu < a ∩ Xu < b | {ξs}0≤s≤t, {Xs}0≤s≤t] = Q [ξu < a ∩ Xu < b | ξt, Xt] . (21)

Let us define a process {ηt} by setting

ηt = σt

∫ ∞

0

πuXudu+Bt. (22)

It should be evident that

σ[{ξs}0≤s≤t, {Xs}0≤s≤t] = σ[{ηs}0≤s≤t, {Xs}0≤s≤t]. (23)

This follows from the fact that

ηt = ξt + σt

∫ t

0

πuXudu. (24)

We observe that {ηt} is Markov in its own filtration. To see this, it suffices to verify that

Q
(

ηt ≤ x
∣

∣ ηs, ηs1 , ηs2, . . . , ηsk
)

= Q (ηt ≤ x| ηs) (25)

for any collection of times t, s, s1, s2, . . . , sk such that t ≥ s ≥ s1 ≥ s2 ≥ · · · ≥ sk > 0.
Now, it is an elementary property of Brownian motion that for any times t, s, s1 satisfying
t > s > s1 > 0 the random variables Bt and Bs/s−Bs1/s1 are independent. More generally,
for s > s1 > s2 > s3 > 0, we find that Bs/s−Bs1/s1 and Bs2/s2 − Bs3/s3 are independent.
Observing that ηs/s− ηs1/s1 = Bs/s− Bs1/s1, we find that

Q
(

ηt ≤ x
∣

∣ ηs, ηs1, . . . , ηsk
)

= Q

(

ηt ≤ x
∣

∣ ηs,
ηs
s
−
ηs1
s1

, · · · ,
ηsk−1

sk−1
−
ηsk
sk

)

= Q

(

ηt ≤ x
∣

∣ ηs,
Bs

s
−

Bs1

s1
, · · · ,

Bsk−1

sk−1
−

Bsk

sk

)

.

(26)
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But since ηt and ηs are jointly independent of Bs/s−Bs1/s1, · · · , the Markov property (25)
follows for {ηt}. Let us now define

Gt = σ

(

{ηt
t
−
ηs
s

}

0<s≤t

)

. (27)

Then clearly we have

Gt = σ

(

{

Bt

t
−

Bs

s

}

0<s≤t

)

, (28)

that is to say, Gt is generated by the Brownian bridge underlying the noise component of
the information process. Note that the sigma algebras σ[ηt, {Xs}] and Gt are independent.
As a consequence, writing

F [a, b | Ft] = P [ξu < a ∩ Xu < b | Ft] (29)

for the conditional bivariate distribution function, we have

F [a, b | Ft] = E [1(ξu < a)1(Xu < b) | Ft]

= E [1(ξu < a)1(Xu < b)| {ξs}0≤s≤t, {Xs}0≤s≤t]

= E [1(ξu < a)1(Xu < b)| {ηs}0≤s≤t, {Xs}0≤s≤t]

= E [1(ξu < a)1(Xu < b)| ηt,Gt, {Xs}0≤s≤t]

= E [1(ξu < a)1(Xu < b)| ηt, {Xs}0≤s≤t]

= E [1(ξu < a)1(Xu < b)| ξt, {Xs}0≤s≤t] . (30)

On the other hand, recalling the definition of the OU bridge given by (14), we have

σ[ξt, {Xs}0≤s≤t] = σ[ξt, Xt, {bst}0≤s≤t]. (31)

Now, it is easy to see that {bst}0≤s≤t and {Xu}u≥t are independent. It follows that
σ[{bst}0≤s≤t] and σ[ξt, Xt, ξu, Xu] are independent, from which we get (21).

V. COMMODITY PRICING FORMULA

The joint Markov property (21) implies that

E

[
∫ ∞

t

πuXu du

∣

∣

∣

∣

{ξs}0≤s≤t, {Xs}0≤s≤t

]

= E

[
∫ ∞

t

πuXu du

∣

∣

∣

∣

ξt, Xt

]

, (32)

which allows one to reduce the problem of working out the commodity price (1) to that of
calculating

St =
1

πt
E

[
∫ ∞

t

πuXu du

∣

∣

∣

∣

ξt, Xt

]

. (33)

One observes that from the orthogonal decomposition (12) we can isolate the dependence of
the commodity price on the current level of the convenience dividend rate Xt. Remarkably,
the dependence turns out to be linear. That is, we have

∫ ∞

t

πuXu du =

∫ ∞

t

πu
(

Xu − e−κ(u−t)Xt

)

du+

(
∫ ∞

t

πue
−κ(u−t) du

)

Xt. (34)
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Substituting this formula in equation (33), we deduce that

πtSt = E

[
∫ ∞

t

πu
(

Xu − e−κ(u−t)Xt

)

du

∣

∣

∣

∣

ξt, Xt

]

+E

[(
∫ ∞

t

πue
−κ(u−t) du

)

Xt

∣

∣

∣

∣

ξt, Xt

]

= E [At | ξt, Xt] +

(
∫ ∞

t

πue
−κ(u−t) du

)

Xt, (35)

where

At =

∫ ∞

t

πu(Xu − e−κ(u−t)Xt)du. (36)

Next we observe that as a consequence of (3) and (36) we have

ξt = σt

[

At +

(
∫ ∞

t

πue
−κ(u−t)du

)

Xt

]

+Bt. (37)

It follows that

πtSt = E [At |σtAt +Bt, Xt] +

(
∫ ∞

t

πue
−κ(u−t)du

)

Xt. (38)

Note that the conditioning with respect to Xt in the first term above drops out since by
Lemma (1) the random variables {Xu−e−κ(u−t)Xt}u≥t and Xt are independent, which allows
one to deduce that the sigma-algebras σ{Xt} and σ{At, Bt} are independent. Therefore,

πtSt = E [At |σtAt +Bt] +

(
∫ ∞

t

πue
−κ(u−t)du

)

Xt. (39)

The problem of determining the commodity price is thus reduced to that of calculating a
conditional expectation of the form E[At|At + Ct] for t > 0, where At is given by (36) and
Ct = Bt/σt. We observe that At and Ct are independent Gaussian random variables. To
compute the conditional expectation above, we recall another result concerning orthogonal
decompositions of Gaussian random variables:

Lemma 4 If A and C are independent Gaussian random variables, then A + C and (1 −
z)A− zC are independent if z = Var[A]/(Var[A] + Var[C]).

In view of this observation, let us express At in the form

At = zt(At + Ct) + (1− zt)At − ztCt, (40)

where

zt =
Var[At]

Var[At] + Var[Ct]
. (41)

Then we find that

E[At|At + Ct] = zt(At + Ct) + (1− zt)E[At]− ztE[Ct]. (42)
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Clearly, we have E[Ct] = 0. Furthermore, if we set T = u in equation (7) we deduce that

E[At] = E

[

θ

∫ ∞

t

πu
(

1− e−κ(u−t)
)

du+ ψ

∫ ∞

t

e−κuπu

∫ u

t

eκsdβsdu

]

= θ

∫ ∞

t

πudu− θ

∫ ∞

t

πue
−κ(u−t)du. (43)

The final step in deriving the commodity price is to determine the variances of At and Ct.
To simplify the notation let us write

pt =

∫ ∞

t

πudu, qt =

∫ ∞

t

πue
−κ(u−t)du. (44)

Then a short calculation shows that

Var[At] = ψ2

∫ ∞

t

q2sds, Var[Ct] =
1

σ2t
, (45)

and hence that

zt =
σ2ψ2t

∫∞

t
q2sds

1 + σ2ψ2t
∫∞

t
q2sds

. (46)

Putting these results together, we deduce that the price of the commodity at t is given by

πtSt = (1− zt) [θpt + qt(Xt − θ)] +
1

σt
zt ξt. (47)

Observe that the first term in (47) is essentially the annuity valuation of a constant dividend
rate set at the reversion level θ, together with a correction term to adjust for the present
level of the dividend rate. The second term, on the other hand, represents the contribution
from the noisy observation of the future dividend flow.

Several interesting observations can be made regarding the weight factor (46), which lies
between zero and one for all t. For large ψ and/or large σ, the value of zt tends to unity; for
small ψ and/or small σ, the value of z tends to 0. Hence, if the market information has a low
noise content, or if the volatility of the convenience dividend is high, then market participants
also rely heavily on the information available about the future in their determination of the
price, rather than assuming that the current value of the dividend is a good indicator for
the future.

Conversely, in the absence of a strong signal concerning the future dividend flow, an
annuity valuation based on the current dividend level will dominate the price. We see
therefore that important intuitive characteristics are encoded explicitly in the pricing formula
(47). Indeed, (47) captures rather well the idea of information-based asset pricing, showing
how varying amounts of information about the future can affect the development of prices,
and that prices typically represent a kind of compromise between what we know for sure at
some given time, and the less trustworthy but nevertheless significant intelligence that we
may possess regarding events that lay ahead.

In the special case for which the interest rate is constant, the valuation formula (47)
simplifies somewhat to give the following:

St = (1− zt)
1

r

[

κ

r + κ
θ +

r

r + κ
Xt

]

+
ert

σt
zt ξt, (48)
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where the weight factors are

zt =
σ2ψ2t

2r (r + κ)2 e2rt + σ2ψ2t
, 1− zt =

2r (r + κ)2 e2rt

2r (r + κ)2 e2rt + σ2ψ2t
. (49)

We have performed Monte Carlo simulation studies to gain further intuition concerning
the dynamical behaviour of the commodity price. Furthermore, we have calibrated the
model parameters to the prices of crude oil, and we have compared the resulting simulated
sample paths to market data. In the case of the crude oil markets we are able to estimate
the expected long-term future spot price from the historical average of spot prices, since
there exists a supply-demand equilibrium price level to which the long-run price tends to
converge. The results indicate that even in the constant-parameter model considered above,
the model is sufficiently rich to capture elements of the behaviour of market data

VI. PRICING COMMODITY DERIVATIVES

We now return to the price process (48) in the case of a constant interest rate and work
out the value of a European-style call option with strike K and maturity T . Since Q is the
pricing measure, we have

C0 = e−rTE
[

(ST −K)+
]

. (50)

We observe that ST consists of a linear combination of three random components, namely
XT ,

∫∞

T
e−ruXudu, and BT , and that all three components are Gaussian. It follows that ST

is also Gaussian, and therefore we can write

C0 = e−rT 1
√

2πVar[ST ]

∫ ∞

K

(z −K) exp

(

−
(z − E[ST ])

2

2Var[ST ]

)

dz. (51)

Performing this integral, we obtain

C0 = e−rT

[
√

Var[ST ]

2π
exp

(

−
(E[ST ]−K)2

2Var[ST ]

)

+ (E[ST ]−K)N

(

E[ST ]−K
√

Var[ST ]

)]

, (52)

where N(x) is the normal distribution function. Thus, the problem reduces to a determina-
tion of the mean and the variance of ST . A calculation gives

E[ST ] =
1

r

[

κ

r + κ
θ +

r

r + κ

[

e−κTX0 + θ(1− e−κT )
]

]

(53)

and

Var[ST ] =
ψ2

2κ (r + κ)2
(1− e−2κT ) + z2T

[

ψ2

2r(r + κ)2
+

e2rT

σ2T

]

. (54)

Substitution of (53) and (54) in (52) then gives the option price. One can also work out the
price processes for options. Similar calculations can be carried out to obtain the prices of
futures contracts and futures options.
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Although very simple in its structure, the model we have presented captures nicely certain
aspects of the pricing of commodities in an information-theoretic framework. Looking ahead,
it would be interesting to pursue a similar line of argument in more complex settings, such
as those presented by electricity markets. To get a sense of what is involved in that case
see [22]. For an alternative approach to the pricing of commodities in an information-based
setting see [23]. For further discussion of the ideas developed in the present paper see [24].
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