
Mirikitani, Derrick Takeshi and Ouarbya, Lahcen. 2009. ’Modeling Dst with Recurrent EM Neural
Networks’. In: International Conference on Artificial Neural Networks - ICANN 2009. Limassol,
Cyprus 14 - 17 September 2009. [Conference or Workshop Item]

https://research.gold.ac.uk/id/eprint/30980/

The version presented here may differ from the published, performed or presented work. Please
go to the persistent GRO record above for more information.

If you believe that any material held in the repository infringes copyright law, please contact
the Repository Team at Goldsmiths, University of London via the following email address:
gro@gold.ac.uk.

The item will be removed from the repository while any claim is being investigated. For
more information, please contact the GRO team: gro@gold.ac.uk

Modeling Dstwith Recurrent EM Neural Netwroks

Derrick Takeshi Mirikitani and Lahcen Ouarbya
Department of Computer Science, Goldsmiths College, University of London,

New Cross, London, London SE14 6NW, UK
D.T.Mirikitani@gold.ac.uk

Abstract

Recurrent Neural Networks have been used extensively for space weather forecasts of geomagnetospheric disturbances.
One of the major drawbacks for reliable forecasts have been the use of training algorithms that are unable to account for
model uncertainty and noise in data. We propose a probabilistic training algorithm based on the Expectation Maximization
framework for parameterization of the model, which makes use of a forward filtering and backward smoothing Expectation
step, and a Maximization step in which the model uncertainty and measurement noise estimates are computed. The inputs
to the network are based on three parameters of the interplanetary magnetic field (IMF), bz , b2, and by

2, along with the
Dst index. Through numerical experimentation it is shown that the proposed model allows for reliable forecasts and also
outperforms other neural time series models trained with the Extended Kalman Filter, and gradient descent learning.

1.1 Introduction

For decades, a number of studies [1, 2, 3] have shown that a change in the solar activities induces a disturbance of the earths
magnetic field. This disturbance of the near-earth environment is influenced by the injection of energetic particles through
the solar wind1 into the magnetosphere. The solar wind carries the sun’s magnetic field through the solar system, forming
what we call the Interplanetary Magnetic Field2 (IMF). A transfer of energy from the solar wind into the magnetosphere
takes place when the IMF opposes the Earth’s magnetic field. A disturbance of the magnetosphere, known as a magnetic
storm, occurs if this transfer of energy persists for several hours [3]. Geomagnetic storms can have many negative effects on
technical systems in space and on Earth, such as a change in a spacecraft orientation or power lines on the Earth.

Forecasts of the earth’s magnetic field can give vital information about the intensity of future magnetospheric disturbances.
At mid-latitudes, magnetic storms are measured in terms of the horizontal component of the Earth’s magnetic field [3]. This
horizontal component is averaged to form an index known as Dst. Studies have shown a correlation between the intensity of
magnetic storms and the value of of the Dst index [4, 5, 6, 7]; where the more negative the Dst index the greater the intensity
of the magnetic storm. The physical interaction between the IMF and the Geo-magnetosphere are not fully understood, and
thus previous researchers have built non-parametric predictive models usually based on recurrent neural networks (RNNs) to
forecast the Dstindex [8, 9, 10]. In this paper we extend the work in the field by proposing an EM Kalman filtering and
smoothing framework for estimation of RNN parameters. The advantage of our approach is the probabilistic representation
of model uncertainty and noise in the data, which has been neglected in prior work in the area. This is achieved through the
use of the EMalgorithm for tuning of model hyperparameters representing the process and measurement noise components,
leading to improved out of sample performance on Dst forecasting tasks. In the following section we provide an overview
of the use of neural networks in geomagnetic storm forecasting.

1 Solar winds are a stream of charged particles, mostly electrons and protons, that are ejected from the upper atmosphere of the sun
2 The sun’s magnetic field carried through the solar system by the solar wind

1.1.1 Use of Neural Networks in Geomagnetic Storm Prediction

Solar wind has a great impact on the magnetosphere. A transfer of mass, energy and momentum through various pro-
cesses takes place at the magnetopause boundary. The magnetosphere is a complex system, with multi-scale spatio-temporal
behaviour. Neural Networks have established themselves as effective tools in the prediction of time series behaviour, espe-
cially for noisy data. They have successfully been used in the space weather forecasting. Several models have been developed
for the prediction of the ring current index Dst. In [8, 9, 10] the authors have used Neural Networks to predict geomag-
netic storms. Different combinations of solar wind data, such as the density (n), the velocity (v), And the IMF data
(b, bx,by ,bz)3 have been used as an input to various types of neural networks. It was found that forecasts produced by
feed-forward Neural Networks gives a good results for the initial and main phase of magnetic storms, but not the recovery
phase [3]. This results from the fact that the internal state of the magnetosphere has a great impact on the storm recovery
phase. Freeman et al. [8] have used the Dst index the magnitude of IMF (b), the IMF southward component (bz), and the
solar wind dynamic pressure (n) to give one hour a head prediction of the Dst. The use of Elman recurrent networks [11, 12]
has shown to give a superior Dst prediction than feed forward Neural Networks. Wu and Lundstedt [11] have used different
coupling functions of solar wind and IMF parameters as inputs to their Elman Recurrent Network for Dst prediction.
In [12] Lundstedt et al. have used an optimised recurrent neural network, driven solely by hourly averages of the solar wind
parameters, particle density (n), and velocity (v) and the IMF southward component, bz . They have shown that their re-
current model has smaller errors than previous models. Pallocia et al. [13] argued that the instruments used to measure the
plasma parameter, pressure and velocity, can often be affected by enhanced X-Ray and energetic particle flux. This gives rise
to wrong or missing gaps in the plasma data. The use of wrong data can have a negative effect on the storm prediction. They
used the IMF parameters, bz , b2 and by

2, only as inputs to predict Dst. They have highlighted that for quite periods the in-
puts of Lundstedt and Wu [12] performs better than their algorithm, however their algorithm gives a better prediction in times
of severe storms. They concluded that for the period of severe storms the plasma data are not reliable and will deleteriously
affect the predictions of magnetic activity.

In this paper we incorporate the three components of the (IMF), bz , b2, and by
2, along with the Dst index as exoge-

nous inputs to the RNN. We elaborate on a Maximum Likelihood training algorithm based on the EMalgorithm, for RNN
parameter estimation, which allows for estimation of model uncertainty and noise in the data [16, 17, 18]. The extended
Kalman Filter(EKF) [20] and smoother are used for sequential estimation of the network weights. The EKF is a second order
estimation algorithm for neural networks [15], which evolves an approximate covariance matrix that encodes second order
information about the underlying system during training. Through the use of the EM algorithm, the process and measure-
ment noise hyper-parameters of the filters are estimated via a maximum likelihood approach, which leads to improved out of
sample performance on Dstforecasting. Experimental simulations show that forecasts of Dst with the EM-RNN algorithm
provides more accurate forecasts that the RNN trained with first-order gradient descent [19], and an RNN trained with the
second-order extended Kalman filter(EKF) [20].

This paper is organised as follows. In Section 1.2, the architecture of the RNN network is described. The next section
provides the extended Kalman filter and smoother. Section 1.4 offers the EM-RNN training approach for recursive hyperpa-
rameter re-estimation. Section 1.5 presents the simulation results, and finally a brief conclusion is provided in Section 1.6.

1.2 Recurrent Neural Networks

RNNs are nonlinear adaptive models with internal states trainable by specialised weight adaptation algorithms. The recur-
rent architecture chosen for this study is known as the Williams and Zipser fully recurrent network [19], which is the most
general RNN architecture. We adopt the following notation to describe the fully recurrent network: st is the input vector for
each neuron, which contains the exogenous input to the network xt, the bias b, and the previous activation of each neuron
st = [c(1), . . . , c(H), x(H+1), b(H+2)], where {c(1), c(2), . . . , c(H)} are the activations of the network at the previous time
step. The superscript (l) refers to the lth element s(l) ∈ st for l = 1, 2, . . . , H + 2 where H is the number of neurons. The

output activation of each neuron is defined as a function y
(i)
t = g(w(i)

t , st) where w(i)
t = [wi,1, . . . , wi,H+2] is the weight

vector associated with the ith neuron at time t, and the overall network weight vector is defined as W = [w(1), . . . , w(H)].
The functions g(·) and are logistic sigmoidal nonlinearities g(a) = 1/(1 + exp(−a)) which map the input a from R into a
bounded interval Ω = (0, 1) of length |Ω| = 1 where Ω ⊂ R.

3 b is the magnitude of the IMF , where, bx,by, and bz are the three component of the IMF .

g
1
 g
2

g
H

x

t

...

...

y
t+1

w
i,l

network weights

c
(H)

previous states (context nodes)

x
t

 inputs

b

w
i,l

c
(1)

c
(2)

c
(H)

Fig. 1.1. Fully Recurrent Neural Network.

The fully recurrent neural network architecture consists of a single layer of processing neurons which are fully connected
to each other. The input layer consists of the exogenous inputs along with the bias, which feed temporal information to the
processing layer at each time step. A schematic diagram of the fully connected network is shown in Figure 1.1. Each neuron
in the processing layer computes a weighted sum of the previous processing layer activations, along with the exogenous
inputs to the network, and the bias given by

v
(i)
t =

H+2
∑

l=1

wi,ls
(l)
t (1.1)

where wi,l is the weight connecting the ith neuron to the lth component of the s vector. Each weighted sum vi is then passed
through the nonlinear activation function to produce the activation outputs

y
(i)
t = g(i)(v

(i)
t) (1.2)

where the output of the network is y1. The entire network is referred to as highly nonlinear function h of the weights Wt and
input xt

dt = h(Wt, xt) + εt (1.3)

where the noise εt is assumed to be independent zero-mean Gaussian with covariance R: εt ∼ N (0, R), and where dt are the
targets from the provided data set D = {xt, dt}N

t=1, where xt+1 = dt.

1.2.1 Derivative Computation with RTRL

The gradients of the network can be computed sequentially via the RTRL algorithm [19]. The RTRL algorithm minimizes
the instantaneous squared error of the output neuron where the cost function is defined as

Et =
1

2

H
∑

l=0

(ε
(l)
t)2 = 1(l)l=1(dt − y

(1)
t)2 + 1(l)l6=10 (1.4)

The indicator function is 1(a)a=A = 1 if a = A and 0 otherwise, which sets the error to zero if there is no available output
and target pattern for that particular neuron. Computing the partial derivative of the cost function with respect to the weights

∂E

∂wi,j
= −

H+2
∑

l=0

ε
(l)
t

∂y
(l)
t

∂wi,l
(1.5)

The computation of the gradient of the lth weight of neuron i at time step t is as follows

∂y
(1)
t

∂wi,l
= g′(v

(1)
t)

(

H
∑

l=1

∂y
(l)
t

∂wi,l
w1,l+2 + δi,ls

(l)
)

(1.6)

where δi,l = 1 if i = l and 0 otherwise. The partial derivatives then form the vector

jt = [
∂y

(1)
t

∂w1,1
,
∂y

(1)
t

∂w1,2
, . . . ,

∂y
(H)
t

∂wH,H+2
] (1.7)

As this paper is concerned with time series processing, only one output is used, however derivatives are easily extended
to multiple output systems. In the next section we present Kalman filtering and smoothing algorithms for single output
modelling.

1.3 Kalman Filtering and Smoothing

The most widely known recursive Bayesian state estimation algorithm is the Kalman filter. The Kalman filter provides
the minimum variance and maximum likelihood estimate, assuming linearity in the process and measurement equations and
gaussian noise terms. In situations with nonlinearity in the state space equations, the EKF has been proposed as an extension
to the Kalman filter nonlinear systems.

In the Kalman filtering framework, it is assumed that the neural network parameter vector evolves over time in the sense
of a first order stochastic process

Wt = Wt−1 + νt (1.8)

where the process noise is assumed to be normally distributed ν ∼ N (wt−1, Q). The RNN provides a nonlinear mapping of
the evolving state and the system inputs to the measurements yt, as defined in equation 1.3.

For neural networks, the EKF requires the computation of the Jacobian matrix jt = ∂h(·)/∂Wt of partial derivatives of
the output yt+1 with respect to the weights of the network as in equation 1.7, where the Jacobian jt is evaluated at each time
step. The EKF has been a popular choice for training RNNs [20, 22, 23, 24, 25, 26, 27], due to the availability of neural
network derivatives [20]. The following equations describe the EKF training algorithm:

Wt
t+1 = Wt

t

Pt
t+1 = Pt

t + Q

Kt+1
t+1 = Pt

t+1jt+1[jt+1Pt
t+1jTt+1 + R]−1

Ŵt+1 = Ŵ
t

t+1 + Kt+1(dt+1 − h(Ŵ
t

t+1, xt))

Pt+1
t+1 = Pt

t+1 − Kt+1jTt+1Pt
t+1

(1.9)

The EKF is a suboptimal estimator based on linearization of the nonlinearity of the underlying neural network. It provides an
approximation of the state mean Wt and the state covariance Pt. The matrix Kt is the Kalman gain.

After computing the estimates Wt and Pt by equations 1.9 the Rauch-Tung-Striebel smoother [21] is utilised for recur-
sively computing corrections to the EKF estimates. This is achieved through the following backward recursions:

St−1
t−1 = Pt−1

t−1(P
t−1
t)−1

Ŵ
N

t−1 = Ŵ
t−1

t−1St−1
t−1(Ŵ

N

t − Ŵ
t−1

t−1)

PN
t−1 = Pt−1

t−1 + St−1
t−1(P

N
t − Pt−1

t)(St−1
t−1)

T

PN
t,t−1 = Pt

t(S
t−1
t−1)

T + St
t(P

N
t+1,t − Pt−1

t)(St−1
t−1)

T

(1.10)

The extended Kalman smoother provides a minimum variance Gaussian approximation to the posterior probability density
function p(W|x1:N).

1.4 Expectation Maximisation Learning

The EM algorithm is an iterative method for finding a mode of the likelihood function p(x1:N |R, Q). The algorithm
alternates between two steps, the E-step (expectation) and the M-step (maximisation). In the E-step, an estimate of the state
W given the data x1:N and parameters θ = [R, Q, µ, Σ] is produced, and in the M-step, the parameters θ are then estimated
given the new state.

Maximum likelihood estimation of the parameters W are found through maximising the complete likelihood of the data,
assuming Markovian state evolution and uncorrelated state and measurement noise:

p(W, x1:N |θ) = p(W1|θ)

N
∏

t=2

p(Wt|Wt−1, θ)

N
∏

t=2

p(dt|Wt, θ) (1.11)

It is assumed that the likelihood of the data given the states, and the evolution of the states is Gaussian.

p(W1|θ) =
1

(2π)q/2|Σ|1/2
exp[−

1

2
(W1 − µ)Σ−1(Wt − µ)] (1.12)

p(Wt|Wt−1, θ) =
1

(2π)q/2|Q|1/2
exp[−

1

2
(Wt − Wt−1)Q

−1(Wt − Wt−1)] (1.13)

p(xt|Wt, θ) =
1

(2π)m/2|R|1/2
exp[−

1

2
(dt − h(Wt, xt))R

−1(dt − h(Wt, xt))] (1.14)

By taking the log of the likelihood of the complete data we arrive at

ln p(W, x1:N |θ) = −
N

∑

t=1

[1

2
(dt − h(Wt, xt))R

−1(dt − h(Wt, xt))
]

−
N

2
ln |R| −

N
∑

t=2

[
1

2
(Wt − Wt−1)

Q−1(Wt − Wt−1)] −
N − 1

2
ln |Q| −

1

2
(W1 − µ)Σ−1(Wt − µ) −

1

2
ln |Σ| −

N(m + q)

2
ln(2π)

(1.15)

Taking the Expectation of both sides of the equation and differentiating the expected log-likelihood with respect to R−1

∂

∂R−1
E[ln p(W, x1:N |θ)] ≈

1

2

∂

∂R−1
(
N

2
ln |R−1| −

N
∑

t=1

tr(R−1[jT PN
t j + (dt − h(Ŵt, xt))(dt − h(Ŵt, xt))

T]))

=
N

2
−

N
∑

t=1

1

2
(jT PN

t j + (dt − h(Ŵt, xt))(dt − h(Ŵt, xt))
T)

(1.16)

and setting the resulting solution equal to zero and solving for R results in

R =
1

N

N
∑

t=1

(jT PN
t j + (dt − h(Ŵt, xt))(dt − h(Ŵt, xt))

T) (1.17)

Similarly, differentiating with respect to Q

∂

∂Q−1 E[ln p(W, x1:N |θ)] ≈
N − 1

2
Q −

1

2
(C − 2BT + AT) (1.18)

where Q is a diagonal matrix. Equating to zero and solving for Q leads to

Q =
1

N − 1
(C − BA−1BT) (1.19)

where we define the quantities

A =

N
∑

t=1

(PN
t+1 + Ŵ

N

t−1(Ŵ
N

t−1)
T)

B =

N
∑

t=1

(PN
t,t+1 + Ŵ

N

t (Ŵ
N

t−1)
T)

C =
N

∑

t=1

(PN
t + Ŵ

N

t (Ŵ
N

t)T)

(1.20)

It is also possible to solve for the initial conditions in the M step, via taking the derivative of the expected log-likelihood
with respect to the initial mean

∂

∂µ
E[ln p(W, x1:N |θ)] ≈

1

2
Σ−1(−2Ŵ

N

1 + 2µ) (1.21)

which leads to the initial value of µ = WN
1 and similarly for the covariance, taking the derivative with respect to Σ

∂

∂Σ−1 E[ln p(W, x1:N |θ)] ≈
1

2
Σ −

1

2
(Ŵ

N

1 − µ)(Ŵ
N

1 − µ)T + PN
1 (1.22)

leads to the initial covariance Σ = PN
1 .

1.4.1 The EM steps

The algorithm starts off with an initial guess for θ. Then, in the E-step, the expected values of Ŵ
N

t , PN
t and PN

t,t−1 are
obtained from their current estimates through extended Kalman filtering and smoothing. In the M-step, the new values of θ

are obtained using the above equations.

1.5 Experimental Results

To asses the performance of the proposed model, we have implemented several training algorithms that are similar to
the presented EM-RNN, including the RNN-RTRL algorithm [19], and the Extended Kalman Filter trained recurrent neural
network(RNN-EKF). Here we consider hourly observations of the Dst index, along with observations of the bx, by , and
bzcomponents of the IMF index. The data considered in this study consisted of 9000 data points ranging from January
1, 1980 to February 5, 1981. Three studies were conducted to asses the model’s ability to perform during periods of high
geomagnetic instability (storm), which corresponds to the dates of March 31 to August 14 1980 for the mild series of storms,
and from December 12, 1980 to December 24, 1980 for the severe storm. The quiet period ranged from December 12, 1980
to February 5, 1981. In building the model, we used the period ranging from January 1 1980 to March 31, 1980.

The forecast errors were measured by the root mean squared error (RMSE) computed by RMSE = ((1/T)
∑T

t=1(dt −
yt)

2)1/2, where T is the length of the data set. In all simulations, the weights of the networks were initialised with random
uniformly distributed weights in the range of [−2, 2]. Each of the recurrent networks were initialised with 3 hidden neurons
and 3 input neurons for each factor (bz, b2, by

2,Dst), resulting in a total input window of size 12. All RNNs had one
output neuron corresponding to the one hour ahead value of the Dstsignal. For the EKF trained network, the initial diagonal
elements of the covariance matrix of the [Q]ii and R were set to 1.0e−3 and 1.0e−2 respectively, and for the EM trained
models, both [Q]ii and R were set to 100. The learning rate for the RTRL algorithm was set to .05.

1.5.1 Forecasting Dst

Table 1.1 summarises the experimental results of single step ahead model fitting and prediction of the storms. The in
sample performance of EM and the EKF were quite similar, and the gradient descent trained RNN had the worst fit. In
both the severe and mild storm forecasting tasks, the EM-RNN outperforms the other recurrent network training algorithms
including the recurrent network trained by RTRL and the EKF. However, in the quiet period, the EM-RNN and the RNN-EKF
perform similarly. The plots of the experiments are given in Figure 1.2. The use of the EM algorithm has led to improvements
in out of sample predictions over the EKF, however, the EM-RNN more closely approximates the target series than the
remaining algorithms as shown in the given plots.

Fig. 1.2. Plots of the EM-RNN and Dstmeasurements. The top left plot is of the in sample fitting of
model to the data. The lower left plot shows out of sample forecast performance on a series of mild
storms. The lower right hand plot shows the model performance during a quiet period (no storm),
and in the top right plot, the model performance on the severe storm is provided.

Table 1.1. Numerical Performance of the Studied Algorithms on One Hour Ahead Forecasts of the
Dstindex

Model RMSE(training) RMSE(severe) RMSE(mild) RMSE(quiet)

RNN-RTRL 9.64 21.17 11.83 12.78
RNN-EKF 3.57 16.625 4.04 3.16
RNN-EM 3.41 11.78 3.65 3.24

1.6 Conclusion

This paper presented a probabilistic training algorithm for dynamic recurrent neural models suitable for modelling the
Dstindex. It has demonstrated that the EM training of the RNN has lead to improvements in prediction accuracy when

processing the Dstfor one hour ahead forecasts. The presented results are encouraging as they show that EM-RNN has the
capacity to accurately model complex Geo-magnetic phenomena.

References

1. Dungey, J.W. (2000). Interplanetary magnetic field and the auroral zones.Phys. Rev. Lett., 26 , 47–48
2. Axford, W.I. and Hines, C.O.(1961). A unifying theory of high-latitude geophysical phenomena and geomagnetic storms. Can. J. Phys.,39,

1433.
3. Gonzales, W. D., J. A. Joselyn, Y. Kamide, H. W. Kroehl, G. Rostoker, B. T. Tsurutani, and V. M. Vasyliunas (1994). What is a geomagnetic

storm?. Journal of Geophysical Research,99, 5771–5792.
4. Gosling, J. T. and McComas, D. J. and Phillips, J. L. and Bame, S. J.(1991). Geomagnetic activity associated with earth passage of interplanetary

shock disturbances and coronal mass ejections. Journal of Geophysical Research, 96,7831-7839.
5. Farrugia, C. J. and Freeman, M. P. and Burlaga, L. F. and Lepping, R. P. and Takahashi, K. (1993). The earth’s magnetosphere under continued

forcing - Substorm activity during the passage of an interplanetary magnetic cloud. Journal of Geophysical Research, 98,7657-7671.
6. Lindsay G. M. ; Russell C. T. ; Luhmann J. G.(1995). Coronal mass ejection and stream interaction region characteristics and their potential

geomagnetic effectiveness. Journal of Geophysical Research, 100,16999-17013.
7. Tsurutani, B. T., W. D. Gonzalez, F. Tang, S. I. Akasofu and E. J. Smith (1988). Origin of interplanetary southward magnetic fields responsible

for major geomagnetic storms near solar maximum. Journal of Geophysical Research, 93, 8519-8531.
8. Freeman, J., A. Natal, P. Reiff, W. Denig, S. Gussenhoven-Shea, M. Heinemann, F. Rich, and M. Hairston (1993) The use of neural networks

to predict magnetospheric parameters for input to a magnetospheric forecast model. In: Proceedings of Artificial Intelligence Applications in
Solar-Terrestrial Physics Workshop, 167-181.

9. Lundstedt, H. (1992). Neural Networks and prediction of solar-terrestrial effects. Planet Space Science, 40, 457.
10. Lundstedt, H. and P. Wintoft (1994). Prediction of geomagnetic storms from solar wind data with the use of a neural network. Planet Space

Science, Ann Geophys., 12, 19–24.
11. J.-G. Wu, and Lundstedt H. (1997). Geomagnetic storm predictions from solar wind data with the use of dynamic neural networks. Journal of

Geophysical Research, 102(A7), 14,255 - 14,268.
12. H. Lundstedt, H. Gleisner, P. Wintoft (2002). Operational forecasts of the geomagnetic Dst index. Geophysical Research Letters, 29(24), 2181.
13. Pallocchia, G. and Amata, E. and Consolini, G. and Marcucci, M. F. and Bertello, I.(2006). Geomagnetic Dst index forecast based on IMF

data only. Ann Geophys, 24, 989–999.
14. A. M. Schafer and G. Zimmerman (2007). Recurrent Neural Networks are Universal Approximators. Int J Neural Syst, 7(4), 253–263.
15. B. Schottky and D. Saad (1999). Statistical mechanics of EKF learning in neural networks. J. Phys. A, 32(9), 1605–1621.
16. R. H. Shumway, D. S. Stoffer (1982). An Approach To Time Series Smoothing and Forecasting Using the EM Algorithm. J Time Ser Anal,

3(4), 253–264.
17. J.F.G. de Freitas, M. Niranjan, and A.H. Gee(2000). Dynamic Learning with the EM Algorithm for Neural Networks. J Vlsi Signal Proc, 26,

119–131
18. S. Roweis and Z. Ghahramani (1999). A Unifying Review of Linear Gaussian Models. Neural Computation, 11(2), 305–345.
19. R.J. Williams and D. Zipser (1989). A learning algorithm for continuously running fully connected recurrent neural networks. Neural Compu-

tation, 1, 270–280.
20. G. V. Puskorius and L. A. Feldkamp (1994). Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks. IEEE

T Neural Networks, 5(2), 279–297.
21. H.E. Rauch F. Tung, and C.T. Striebel (1965). Maximum Likelihood Estimates of Linear Dynamic Models. AIAA Journal, 3(8), 1445–1450.
22. A. Krok, Z. Waszczcyzyn. (2007). Kalman filtering for neural prediction of response spectra form mining tremors. Comput. Struct., 85, 1257–

1263.
23. W. L. Mao (2008). Novel SREKF-based recurrent neural predictor for narrowband/FM inference rejection in GPS. International Journal of

Electronics and Communications, 62, 216-222.
24. K. Nouri and R. Dhaouadi and N. B. Braiek (2008). Adaptive control of a nonlinear dc motor drive using recurrent neural networks. Applied

Soft Computing, 8(1), 371–382.
25. D. V. Prokhorov (2008). Toyota Prius HEV neurocontrol and diagnostics. Neural Networks, 21, 458–465.
26. J. d. J. Rubio and W. Yu (2007). Nonlinear system identification with recurrent neural networks and dead-zone Kalman filter algorithm.

Neurocomputing, 70, 2460–2466.
27. Simon s. Haykin (2001) Kalman Filtering and Neural Networks. John Wiley & son, New York.

