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Abstract

The neurophysiological bases of mind wandering (MW)—an experiential state

wherein attention is disengaged from the external environment in favour of internal

thoughts—and state meta-awareness are poorly understood. In parallel, the relation-

ship between introspection confidence in experiential state judgements and neural

representations remains unclear. Here, we recorded EEG while participants com-

pleted a listening task within which they made experiential state judgements and

rated their confidence. Alpha power was reliably greater during MW episodes, with

unaware MW further associated with greater delta and theta power. Multivariate

pattern classification analysis revealed that MW and meta-awareness can be dec-

oded from the distribution of power in these three frequency bands. Critically, we

show that individual decoding accuracies positively correlate with introspection con-

fidence. Our results reaffirm the role of alpha oscillations in MW, implicate lower fre-

quencies in meta-awareness, and are consistent with the proposal that introspection

confidence indexes neurophysiological discriminability of representational states.
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1 | INTRODUCTION

Our brains are constantly bombarded by dynamic sensory input, yet

we frequently shift away from the external environment toward

thoughts, emotions, and images that do not emerge from ongoing per-

ceptual processes, are self-generated and unrelated to one's current

task (mind wandering; (Antrobus, Singer, Goldstein, & Fortgang, 1970;

Christoff, Gordon, Smallwood, Smith, & Schooler, 2009; Smallwood &

Schooler, 2015). Research suggests that mind wandering (MW) occurs

in �30–50% of our waking hours (Killingsworth & Gilbert, 2010;

McVay, Kane, & Kwapil, 2009) and has deleterious effects on sensory

and cognitive processing with corresponding reductions in event-

related potentials (ERP) in response to external stimuli (Baird,

Smallwood, Lutz, & Schooler, 2014; Barron, Riby, Greer, &

Smallwood, 2011; Kam et al., 2011; Smallwood, Beach, Schooler, &

Handy, 2008). These effects produce concomitant negative effects in

a variety of tasks from driving (Geden, Staicu, & Feng, 2018) to read-

ing (Feng, D'Mello, & Graesser, 2013; Hollis & Was, 2016; Schooler,

Reichle, & Halpern, 2004).

Converging findings implicate default mode network (DMN; Fox

et al., 2005; Raichle et al., 2001) in mind wandering (Christoff

et al., 2009) and its associated cognitive operations such as self-

related processing (Fingelkurts & Fingelkurts, 2011), autobiographical

memory, theory of mind, and future planning (Andrews-Hanna, 2012;

Andrews-Hanna, Smallwood, & Spreng, 2014; Spreng & Grady, 2010).

Mind wandering episodes can occur with (tuning-out) and without

(zoning-out) meta-awareness (Schooler et al., 2004, 2011; Smallwood,

McSpadden, & Schooler, 2007) with the latter suggested to reflect a

more pronounced form of mind wandering characterised by poorer

performance (Smallwood, McSpadden, & Schooler, 2007) and greater
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recruitment of DMN and executive control network (Christoff

et al., 2009).

Despite advances in its network architecture, the patterns of

oscillatory activity underpinning mind wandering are poorly under-

stood (Martinon, Smallwood, McGann, Hamilton, & Riby, 2019). Multi-

ple studies indicate that mind wandering states (Boudewyn &

Carter, 2018; Compton, Gearinger, & Wild, 2019; Groot et al., 2021;

Macdonald, Mathan, & Yeung, 2011), and particularly zoning-out

(unaware mind wandering) (Boudewyn & Carter, 2018), are

characterised by elevated alpha (�8–12 Hz) power. Alpha oscillations

are suggested to support inhibition-related processes

(Klimesch, 2012; Palva & Palva, 2007) and attentional suppression

(Foxe & Snyder, 2011), and are further implicated during working

memory and mental imagery tasks (Von Stein & Sarnthein, 2000),

internally oriented brain states (Cooper, Croft, Dominey, Burgess, &

Gruzelier, 2003; Hanslmayr, Gross, Klimesch, & Shapiro, 2011), and

inner speech (Villena-González, L�opez, & Rodríguez, 2016), all of

which figure prominently in the experience of mind wandering. How-

ever, at least two studies failed to replicate these effects (Braboszcz &

Delorme, 2011; van Son et al., 2019) and observed greater delta (�2–

3 Hz) and theta (�4–7 Hz) power during mind wandering. Activity in

these frequency bands may reflect lapses in sustained attention, redi-

rection of attention from external stimuli to internal representations

and, or the maintenance of these representations in awareness. For

example, slow-wave brain oscillations are typically associated with

decreased sustained task-related attention (Klimesch, 1999). Delta

frequency contributions have also been shown during increased focus

on internal processing and pertinent inhibition of interference

(Harmony, 2013) whereas theta activity has been consistently shown

to relate to maintenance of information in working memory

(Klimesch, 1999; Mitchell, McNaughton, Flanagan, & Kirk, 2008). Dis-

crepancies in the observed association between alpha and mind wan-

dering are plausibly attributed to the tasks and methods used in the

aforementioned studies (Braboszcz & Delorme, 2011; van Son

et al., 2019). That is, lower alpha activity during mind wandering epi-

sodes in some studies might be due to the concurrent task (breath-

counting) involving internally-focused attention and counting (Palva,

Palva, & Kaila, 2005; Sauseng et al., 2005). In parallel, it is difficult to

compare findings between self-reports that are prompted (probe-cau-

ght) and the above studies due to the latter using self-caught mea-

sures (participants are asked to indicate when they catch themselves

mind wandering), which likely capture shifts from internal to external

focus that probably involve different mechanisms to the occurrence

of mind wandering.

Measuring the neurophysiology of self-generated thoughts

requires experience sampling methods in which participants report on

aspects of their experience, thereby affording a prominent role to

introspective abilities in the assessment of mind wandering

(Smallwood & Schooler, 2006). A neglected feature of these abilities

within the context of mind wandering is confidence in these intro-

spective reports. Emerging evidence suggests that confidence reflects

variability in access to experiential states (Fleming & Lau, 2014; Seli,

Jonker, Cheyne, Cortes, & Smilek, 2015) and thus is likely to be highly

informative in elucidating variability in the phenomenology and neuro-

physiology of mind wandering episodes. Confidence in perceptual

judgements (Fleming & Lau, 2014) positively correlates with decision

accuracy (Gherman & Philiastides, 2018; Kunimoto, Miller, &

Pashler, 2001; Morgan, Mason, & Solomon, 1997) and reliably tracks

ERP dynamics related to error (Boldt & Yeung, 2015) and sensory

processing (e.g., Zakrzewski, Wisniewski, Iyer, & Simpson, 2019). Con-

fidence in mind wandering reports has to date been neglected but

preliminary work has shown that it varies greatly within and between

individuals and moderates the relationship between response time

variability and self-reports of mind wandering (Seli et al., 2015) (but

see Meier, 2018). Nevertheless, the neurophysiology of these effects

is unknown.

One possibility is that if confidence reflects superior access to

experiential states, high confidence would be associated with more

clearly dissociable neural representations. Multivariate pattern classifi-

cation analysis (MVPC) has been successfully used to identify the

mapping between distributed patterns of neural activity and

corresponding mental states (Bae & Luck, 2018; Haxby et al., 2001;

Haynes & Rees, 2006; Jin, Borst, & van Vugt, 2019; Mittner

et al., 2014). An advantage of MVPC is that it allows researchers to

assess whether shared information across multiple features

(e.g., channels, frequency, time points) encodes class-related informa-

tion (Haxby et al., 2001). Using this method, recent research has rev-

ealed associations between decoding accuracy and individual

differences in perceptual discrimination (Kim et al., 2015) and intra-

individual variability in confidence (Weaver, Fahrenfort, Belopolsky, &

Van Gaal, 2019). The extent to which experiential states can be dec-

oded, reflecting multivariate dissimilarity of neural representations,

may thus underlie confidence in the corresponding mental

representations.

The present study investigated the oscillatory dynamics of experi-

ential states using an ecological task lacking performance indicators

(Smallwood, Nind, & O'Connor, 2009) in order to examine the neuro-

physiological basis of mind wandering, dissociate meta-awareness of

mind wandering (henceforth state meta-awareness) and investigate

the neurophysiological implications of participants' confidence in self-

reports. During concurrent EEG recording, participants listened to an

audiobook and were intermittently probed regarding their experiential

state and state meta-awareness and rated their confidence in both

judgements. We expected that mind wandering would be

characterised by elevated alpha power (Compton et al., 2019)

whereas unaware mind wandering would additionally be associated

with differential power in slow oscillatory bands (delta, theta). Moti-

vated by previous research showing that joint activity patterns across

different features (e.g., frequency bands) can be more informative of

mental representations than univariate information (Allefeld &

Haynes, 2015), we then assessed whether distributed information

across patterns of EEG spectral features could be used to decode dif-

ferent experiential states using MVPC. These analyses were further

guided by our aim to evaluate the hypothesis that introspection confi-

dence in experiential states reflects higher dissimilarity of the underly-

ing neural representations.
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2 | MATERIALS AND METHODS

2.1 | Participants

Forty-six right-handed participants (28 females, age range: 18–43,

MAge = 25.9, SD = 5.7; years of education [post-secondary school]:

MYoe = 4.3, SD = 2.2) with normal or corrected-to-normal vision pro-

vided written informed consent to volunteer in the study and were com-

pensated £10 per hour. A sample size of 40 allowed us to detect paired-

samples effects of d ≥ .45 (α = .05, 1-β = .80, two-tailed). We recruited

46 participants due to potential attrition and loss of participants because

of insufficient numbers of trials for the different state responses. All par-

ticipants self-reported proficiency in English (1 = no proficiency, to

10 = native speaker; M = 9.2, SD = 1.04). Seven participants were

excluded due to technical issues during EEG data recording (n = 1), or

insufficient number of response types in the task (n = 6; see section 2.5),

resulting in a final sample of 39 participants (25 females, age range: 18–

43,MAge = 25.6, SD = 5.8, English language skills: [M= 9.2%, SD = 1.0]).

The study was approved by the Research Ethics Committee of the

Department of Psychology at Goldsmiths, University of London.

2.2 | Materials

2.2.1 | Audiobook listening task

This task consisted of participants listening to an audio version of Bill

Bryson's A Short History of Nearly Everything (Bryson, 2004), a general sci-

ence book that has previously been used in mind wandering research

(e.g., Smallwood, Nind, et al. 2009). Participants focused on a central

white fixation cross on a grey background at a distance of approximately

90 cm and listened (through speakers) to the audiobook in three 20 min

blocks (corresponding to chapters 7, 24, and 30 in counterbalanced

order). During the task, participants were prompted via on-screen

thought probes at pseudorandom intervals (30, 40, or 50s) to report on

their experiential state: “Just before the probe, were you mind wander-

ing?” (ES Judgement, response options: yes, no). If a participant

responded in the affirmative, they were next prompted regarding state

meta-awareness: “Just before the probe, were you zoning-out or tuning-

out?” (MA Judgement, response options: tuning-out, zoning-out). Partici-

pants responded to both probes using a continuous visual analogue scale

in which they made their binary judgement combined with an estimate

of confidence in their response (ranging from completely not confident,

to completely confident). Response options for both probes alternated

sides randomly to control for response biases.

2.2.2 | Audiobook listening assessment

A sequence of 20 true/false questions (corresponding to the content of the

preceding block) were administered to participants after each block. Question

order followed the presentation order of the information in the audiobook

with each question corresponding to approximately 1 min of content.

2.3 | Procedure

After EEG preparation and general instructions, participants com-

pleted a battery of psychometric measures (to be reported elsewhere).

Participants sat in a dimly lit room and first underwent a 5-min eyes-

open resting state condition in which they focused on a central white

fixation cross (1 cm2) while their EEG was recorded and subsequently

completed a self-report resting state measure (to be reported

elsewhere).

Prior to completing the task, mind wandering was defined to

participants as any thoughts that are not related to the material

being presented (Christoff et al., 2009; Lindquist & McLean, 2011),

and are usually internally focused. Participants were provided with

examples of mind wandering, such as thoughts about past events,

friends or significant others or concerns about an upcoming exam

(Varao Sousa, Carriere, & Smilek, 2013). Tuning-out was defined as

a state in which one mind wanders and is aware while they are

doing so whereas zoning-out was defined as a state in which one

mind wanders and is unaware that they are doing so until they

“catch” themselves.

The experimenter introduced the audiobook listening task and

defined the response options in the ES and MA judgements and

ensured that participants understood these options and the response

scale. Participants completed a 3 min training block followed by three

20 min experimental blocks (30 probes per block), resulting in 90 pro-

bes in total. After each block, participants completed the audiobook

listening assessment. Blocks took approximately 25 min to complete

with the entire experiment lasting approximately 2.5 hr. The experi-

ment was programmed and implemented in MATLAB 2018a (The

MathWorks, Inc., Natick, MA), using the Psychophysics Toolbox

extensions (Kleiner et al., 2007).

2.4 | Behavioural analyses

Participants' data were segregated at the probe-level according to

self-report in two ways for separate analyses: dichotomously (on-task

vs. mind wandering) and trichotomously (on-task vs. tuning-out

vs. zoning-out). Frequency (%) of each state report and performance

on the audiobook listening assessment (accuracy [%]) were addition-

ally computed at the block-level.

2.5 | Electrophysiological data acquisition and
analyses

EEG signals were recorded using a 64-Ag-AgCl electrode Biosemi

ActiveTwo system. Electrodes were placed according to the Interna-

tional 10-20 system. Two electrodes placed on the participants' ear-

lobes were used as reference. Additional electrodes recorded right

side vertical (VEOG) and bilateral horizontal (HEOG) electro-

oculogram signals to be used for artefact detection and rejection. The

recording was sampled at 512 Hz for all participants.
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Data preprocessing was implemented using the EEGlab toolbox in

MATLAB (Delorme & Makeig, 2004). The average of the two earlobe

electrodes was used as reference and the data were subsequently fil-

tered with a high-pass filter at 0.5 Hz and a notch-filter between

48 and 52 Hz. We used the pop_eegfiltnew function in EEGlab, which

applies a finite impulse response (FIR) filter to the data using an auto-

matic filter order (3,380 and 846, respectively). Bad electrodes (range:

0–2 across participants) detected during the recording, or via visual

inspection of the raw data, were removed. Next, independent compo-

nent analysis (ICA) was performed on the continuous data to detect

eye-movement artefacts. IC scalp maps, spectra and raw activity were

visually inspected to reject further artefacts (range: 1–5, M = 3.15,

SD = 1.48) such as eye movements, further channel noise, and promi-

nent muscle movements. Next, data from removed electrodes were

replaced using spherical interpolation and all data were re-referenced

using the average of the 64 channels.

For each participant, continuous data were next segmented into

14 s epochs: �12 to 2 s relative to probe onset. The time window

of interest extended from �10 to 0 s, but an additional 2 s were

included on each side to avoid edge artefacts in subsequent ana-

lyses; these data were omitted after time-frequency transformation.

Further epoch exclusion was conducted via manual rejection based

on visual inspection. Data were subsequently segregated into two

conditions corresponding to the experiential states reported by the

participants: on-task vs. mind wandering. Mind wandering states

were further partitioned into two meta-awareness states: tuning-out

vs. zoning-out. A 700-ms epoch during the interstimulus interval

after the probe response phase and start of the next trial was used

as a baseline. A time-frequency transformation of the data was

implemented by applying a Hanning window at 50 ms steps to each

14 s-long epoch and corresponding baseline segment for frequen-

cies of 1–45 Hz. Window length varied along the frequency dimen-

sion, with 7,000 ms at the lowest frequency (1 Hz) decreasing

linearly (time window = 7/frequency) at each frequency bin, and

150 ms for 45 Hz. Trial-wise spectral power was averaged and then

normalised by division of the baseline level (gain model;

Grandchamp & Delorme, 2011).

Participants varied in their mind wandering and state meta-

awareness reports, resulting in different sample sizes and respective

numbers of trials per state for each comparison. State-specific data

that included fewer than 10% of probes (9 probes) were excluded

from any analyses involving the respective state. Four main contrasts

were implemented with variable trials (M ± SD) and sample sizes (N).

After artefact removal and participant exclusions the number of trials

per state for each of the four contrasts were: (i) on-task (39.7 ± 15.0)

vs. mind wandering (27.4 ± 12.0) [N = 39]; (ii) on-task (36.0 ± 13.0)

vs. tuning-out (20.5 ± 9.8) [N = 27]; (iii) on-task (35.5 ± 13.7)

vs. zoning-out (14.1 ± 5.4) [N = 25]; and (iv) tuning-out (22.0 ± 13.4)

vs. zoning-out (13.3 ± 4.0) [N = 21]. Insofar as the number of trials

differed across states, we performed a series of control analyses in

which significant contrasts were repeated with closer matching of the

number of trials; these yielded similar results (see Control Analyses in

Data S1, Supporting Information).

2.6 | Multivariate pattern classification analysis

2.6.1 | Time-varying MVPC

Complementing the univariate analysis of spectral power differences,

we implemented a two-class MVPC for the four aforementioned two-

state contrasts. Here, we hypothesised that information about the dif-

ferent experiential states would be shared across different frequency

bands and electrodes. Insofar as this information could unfold over

time, we used time-varying MVPC to investigate whether subjective

reports about experiential states could be decoded from trial-wise

EEG patterns of oscillatory activity across different frequency bands,

and separately for different time points.

The features used for the decoding analyses were the trial-wise

measures of spectral power for delta, theta, and alpha frequency

bands for each of the 64 EEG channels. After preprocessing the data

(see section 2.5), a time-frequency transformation was implemented

in the same way as in spectral analysis however data were neither

baselined nor collapsed across trials. The spectral power values were

then averaged separately for each frequency band (delta [2–3 Hz],

theta [4–7 Hz], alpha [8–13 Hz]). For the time-varying MVPC, these

measures were additionally averaged in bins of 500 ms within 10s

epochs, resulting in 20 time bins. A linear support vector machine

(SVM library for MATLAB; Lotte, Congedo, Lécuyer, Lamarche, &

Arnaldi, 2007; Chang & Lin, 2011) was trained to distinguish between

classes (states) at each time bin. In order to examine whether single-

frequency classification was superior or comparable to cross-

frequency classification (multifrequency model), we further performed

MVPC analyses separately for each frequency band (reduced feature

space). The multifrequency model used data with

192 (64 electrodes � 3 frequency bands) dimensions for each trial,

while the three single-frequency models (delta, theta, alpha) were

comprised of 64-dimensional data per trial. Each of the implemented

two-class MVPC analyses were balanced by matching the number of

trials in each class using random trial selection. The matching of trials

resulted in the following number of trials (M ± SD) per class for each

two-class decoding: (i) on-task vs. mind wandering (23.4 ± 9.0,

N = 39); (ii) on-task vs. tuning-out (18.8 ± 8.2, N = 27); (iii) on-task

vs. zoning-out (13.9 ± 5.1, N = 25); and (iv) tuning-out vs. zoning-out

(12.6 ± 3.6, N = 21). MVPC was implemented using a threefold leave-

one-out cross-validation procedure to assess the effectiveness of the

model. The individual empirical decoding accuracy was the average

accuracy across the three folds. Details on the participant- and group-

level statistical analyses on time-varying MVPC decoding accuracies

are described in section 2.7.3.

2.6.2 | Time-averaged MVPC

An important consideration is that, although mind wandering pro-

cesses could unfold over time, they are inherently not time-locked,

and indeed our experimental design was not event-related. To

account for the case that there would not be a reliable temporal
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representation of mind wandering states across trials, we further com-

plemented the time-varying MVPC with a time-averaged MVPC

approach. We collapsed the spectral power measures across time to

assess whether we could still decode classes from the same features.

An additional advantage of this second approach is that using time-

averaged measures of spectral power in MVPC reduces the number

of multiple comparisons. Spectral power at each time point was aver-

aged across the whole epoch (�10 to 0 s before probe onset). Similar

to the time-varying analyses, the time-averaged MVPC was per-

formed using the spectral power values for each frequency band and

for the set of 64 channels as features. This was performed separately

for the multifrequency model (192 dimensions) and for each fre-

quency band of interest (single-frequency models: 64 dimensions).

This was carried out 11 times after partitioning the data into balanced

classes 11 times, which aimed to obtain accuracy estimates more rep-

resentative of the total trial sample. Classification parameters and trial

amounts per class used for each two-class time-averaged MVPC were

the same with time-varying MVPC (see section 2.6.1). The individual

empirical decoding accuracy was the average accuracy across the

three folds and 11 analyses. Details on the participant- and group-

level statistical analyses on time-averaged MVPC decoding accuracies

are described in section 2.7.3).

The general time-averaged MVPC was complemented with a

method that allows assessing the activation patterns that describe

the contribution of each channel or frequency band to the decoding

of class-related information (Haufe et al., 2014). In the case of linear

classifiers, we can obtain an estimate of the activation patterns

A by projecting the extraction filters of the classifier, W, onto the

channels as follows: A / ΣxW, where Σx is the covariance matrix of

the data. This calculation can be simplified by computing the covari-

ance between the data (x) and hidden factors (y, vector of labels of

each class): A / ΣxW = Cov[x(n), y(n)], where n is the number of tri-

als (Haufe et al., 2014). The covariance Cov[x(n), y(n)] is computed

for each pattern dimension (i.e., each channel or frequency band)

across the total number of training trials n, and separately for each

fold (followed up by an average across folds). The amplitude and

sign of the covariance matrix Cov[x(n), y(n)] can be interpreted as

the strength and polarity with which class-related information is

reflected in each pattern dimension (channel or frequency band).

The interpretation of the polarity depends on the order in which

data from each class is concatenated for MVPC analysis and pattern

extraction: a positive polarity in a pattern dimension reflects that

the activity (e.g., theta power) is greater in class 1 than in class

2 for that specific dimension (channel). In the results, we specify the

order in which the class-related data were concatenated for each

analysis. Importantly, MVPC is a multivariate analysis method, and

thus drawing inferences from the pattern amplitude (strength) to

describe univariate effects (e.g., in individual channels) should be

avoided. For multifrequency models, we averaged the activation

maps across frequency bands, to obtain a single topographic repre-

sentation across 64 channels. The activation patterns associated

with each frequency range were assessed using the single-frequency

models.

Finally, we conducted correlation analyses between decoding

accuracies derived from our time-averaged models and participants'

confidence in their respective reports. Correlation analyses were per-

formed exclusively in a subset of the models, based on our EEG find-

ings and previous research (see section 2.7.3).

2.7 | Statistical analyses

2.7.1 | Behavioural data

Confidence ratings between states were compared with paired-

samples t tests (2-tailed) and assessment performance was compared

to 50% using a one-sample t test. Associations between task-level

mind wandering frequency and accuracy in the task were assessed by

correlational analyses following automatic bivariate outlier (boxplot

method) removal using the Robust Correlation toolbox in MATLAB

(Pernet, Wilcox, & Rousselet, 2013) in the computation of skipped

correlations (Rousseeuw, 1984; Rousseeuw & Van Driessen, 1999;

Verboven & Hubert, 2005). We report Spearman's rs for data that vio-

lated parametric test assumptions.

2.7.2 | Spectral analysis

Significant differences in the spectral power between different states

were assessed by means of cluster-based paired permutation tests

across participants (Maris & Oostenveld, 2007). Nonparametric cluster

permutation tests were used separately for prespecified oscillatory

frequency bins (delta [2–3 Hz], theta [4–7 Hz], alpha [8–13 Hz]).

These analyses were undertaken in two phases. First, we calculated

the observed test statistic for the respective contrast by:

(i) conducting paired-samples t tests comparing the two states at each

data sample (frequency � channel � time); (ii) samples whose t-values

were below threshold (α < .05) were selected and clustered in sets

based on feature adjacency (spectral, spatial, and temporal); and (iii) t-

values were summed to compute cluster-level statistics whose maxi-

mum served as the test statistic to evaluate state differences. The sec-

ond phase entailed the same steps but this time the test statistic was

computed for 500 permutations of randomly partitioned data in two

subsets (Monte Carlo permutation test). These test statistics were

compared to the observed test statistic (Maris & Oostenveld, 2007).

The cluster-level significance value was set at two-tailed α < .025 with

a minimum of two neighbouring channels constituting a cluster. This

method controls for multiple comparisons by controlling the family-

wise error rate at α = .05. We interpret effects in the range of

.025 < p < .030 as reflecting trends and p-values greater than .030 as

reflecting nonsignificant effects. For nonsignificant findings, we report

p-values for the most prominent cluster. The analyses were conducted

with the Fieldtrip toolbox in MATLAB (Maris & Oostenveld, 2007).

Effect sizes were estimated using Hedges's g and bootstrap 95% con-

fidence intervals (CI, bias-corrected and accelerated method, 10,000

samples; Efron, 1987), on power averages across frequency, time
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window, and electrode sites identified by cluster analyses, using the

Measures of Effect Size Toolbox in MATLAB (Hentschke &

Stüttgen, 2011).

2.7.3 | MVPC analyses

Statistical inference for the time-varying MVPC analyses was initially

performed at the participant level, followed by group-level analysis. At

the participant level, the null distribution for accuracy was generated

by performing MVPC 500 times after randomly shuffling the class

labels in the data. P-values were computed at each time bin as the

proportions (%) of permutation accuracies that are greater than or

equal to the observed decoding accuracy (mean accuracy of threefold

cross-validation), yielding one p-value per time bin. We report the pro-

portion of participants for which we observed significant decoding in

at least one time bin. Next, at the group level, we aimed to identify

the time bins showing statistically significant above-chance decoding

accuracy, using a pairwise permutation test (Monte Carlo permutation

test, 5,000 iterations). Both at the participant- and group- levels, we

corrected for multiple comparisons by controlling the false discovery

rate (FDR) at .05 by using an adaptive two-stage linear step-up proce-

dure (Benjamini, Krieger, & Yekutieli, 2006). At the group-level, the

corrected threshold p-value obtained from this procedure, pth, is

given when multiple comparisons were performed.

Time-averaged MVPC analyses were performed in the same man-

ner but were limited to a single averaged time bin and repeated

11 times. At the participant level, the null distribution for accuracy

was computed by performing the analysis 500 times after randomly

shuffling the class labels in the data. For each of the 11 repetitions, p-

values were computed as the proportions (%) of permutation accura-

cies that are greater than or equal to the observed decoding accuracy

(mean accuracy of threefold cross-validation), yielding one p-value per

participant for each repetition. We report the range and mean per-

centage of participants across the 11 repetitions for which we

observed significant (p < .05) decoding for each model. We then

obtained the average empirical decoding accuracy per participant

across the 11 analyses and used the results to conduct statistical ana-

lyses at the group level. Here we used as chance level the average

accuracy of the permutation distributions (11 analyses) in each partici-

pant. Statistical assessment with a permutation test was performed by

comparing these group mean accuracies and the estimated null distri-

bution (Monte Carlo permutation test, 5,000 permutations) to identify

statistically significant decoding accuracy across participants at

p < .05. Different models were compared using the Monte Carlo

approach described above (paired permutation test).

Finally, we assessed associations between mean participant-level

decoding accuracies (averaged across the 11 repetitions) and partici-

pants' corresponding mean confidence ratings. Toward this end, confi-

dence in ES and MA Judgements were averaged within participants

for each state in order to obtain the average confidence for each class.

These were then correlated at the group-level with decoding accura-

cies of the respective classification. To minimise the family-wise error

rate, we selected a small number of models for this analysis based on

the previous literature and our EEG data. For decoding of mind wan-

dering vs. on-task states and tuning-out vs. on-task states, we exam-

ined the associations between decoding accuracies in the

multifrequency model and confidence ratings. For zoning-out vs. on-

task states and zoning-out vs. tuning-out decoding we examined cor-

relations between confidence ratings and the delta and theta models'

decoding accuracies. As described above, bivariate outliers were

removed in the computation of skipped Pearson correlations

(Rousseeuw, 1984; Rousseeuw & Van Driessen, 1999; Verboven &

Hubert, 2005). For discrepancies between 95% confidence intervals

(95% CIs) and p-values, correlations are interpreted as nonsignificant.

3 | RESULTS

3.1 | Characteristics of mind wandering, state
meta-awareness, and introspection confidence

During the audiobook listening task, participants (N = 39) reported

mind wandering (M% ± SD) on 39.7 ± 17.9 of the probes, with stable

rates across blocks (block 1: 41.2 ± 20.6; block 2: 40.9 ± 21.6; block

3: 36.9 ± 19.0). Among mind wandering states, participants reported

tuning-out (56.6 ± 19.0) more often than zoning-out (43.4 ± 19.0).

Participants varied (range, M% ± SD) in their confidence for ES judge-

ments (14.8–91.4, 61.7 ± 7.7), and displayed less confidence in mind

wandering reports (11.3–90.0, 53.2 ± 19.9), than in on-task reports

(8.6–94.2, 64.4 ± 19.0), t(38) = 4.78, p < .001, g = .57, [0.32 0.90].

Specifically, on-task reports were rated with significantly higher confi-

dence than both tune-out (t(38) = 2.39, p = .02, g = .34, [0.08 0.67])

and zone-out reports (t(38) = 3.80, p < .001, g = .58, [0.28 0.96]). Par-

ticipants were moderately confident in their MA judgements during

mind wandering states (16.7–92.0, 58.1 ± 6.3), with numerically, albeit

nonsignificantly, greater confidence in tune-out (17.2–92.3, 58.0

± 18.8) than in zone-out (6.9–90.5, 52.3 ± 21.8) reports, t(38) = 1.55,

p = .13, g = .27, [�0.06 0.64]. These rates are similar to previous

research (Christoff et al., 2009; Seli et al., 2015; Varao Sousa

et al., 2013) and demonstrate variability in experiential states, state

meta-awareness, and introspection confidence during the task.

3.2 | Audiobook listening assessment and mind
wandering frequency

Accuracy on the assessment averaged across blocks (M% ± SD: 74.5

± 10.0) was above chance performance (50%, one sample t-test: t

(38) = 15.3, p < .001, g = 2.44, [1.84, 3.59]). Performance was compa-

rable across blocks (block 1: 72.3 ± 12.0, block 2: 74.6 ± 14.4, block 3:

76.5 ± 12.1), suggesting stable motivation throughout the task. Mind

wandering frequency reliably significantly correlated negatively with

assessment accuracy in the last two blocks (block 1: r = �.29 [95% CI:

�0.53, 0.02], p = .079 (p = .017, with outliers), block 2: rs = �.43

[�0.68, �0.10], p = .009 (p < .001, with outliers), block 3: r = �.41
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[�0.68, �0.11], p = .011 (p = .011, with outliers), thereby providing

an indirect behavioural validation of participants' self-reports and cor-

roborating previous research (Boudewyn & Carter, 2018; Schooler

et al., 2004).

3.3 | Oscillatory characteristics of mind wandering
and state meta-awareness

As expected, the cluster-based permutation test revealed greater alpha

power during mind wandering than on-task states (Figure 1). The analysis

revealed two temporally-adjacent clusters just prior to probe onset,

p = .004, g = 0.56 [0.32, 0.92]; p = .024, g = 0.50 [0.29, 0.80]. Both

effects were topographically diffuse and most pronounced over bilateral

fronto-central and right posterior sites. Similarly, we observed greater

alpha power during tuning-out than on-task states in a single cluster,

p = .008, g = 0.66 [0.37, 1.05] (Figure S1). This effect was also close to

probe onset and was primarily observed over fronto-central and parieto-

occipital regions. There were no other significant differences between

states in the other frequency bands (Figure S2): for on-task vs. mind

wandering, the analysis did not yield any significant clusters for delta,

p = .24, or theta power, p = .40. Similarly, delta and theta power did not

significantly differ between tuning-out and on-task states (Figure S2,

delta: p = .23; theta: p = .20).

In line with the foregoing results, zoning-out (unaware mind wan-

dering) states were characterised by greater power than on-task

states in delta, theta, and alpha bands in two distinct time windows

(Figure 2). Alpha power was greater for zoning-out than on-task states

in a short interval early in the epoch, p = .004, g = 0.75 [0.51, 1.06],

and a long interval just prior to probe onset, p = .002, g = 0.86 [0.57,

1.28]. Both effects were larger in magnitude than the comparisons

between on-task and mind wandering and tuning-out states and topo-

graphically diffuse but strongest over bilateral frontal and posterior

sites. Similarly, theta power was greater in zoning-out than on-task

states in a single window overlapping with the late alpha effect,

p = .010, g = 0.83 [0.54, 1.24]; this effect was larger in right frontal

electrodes but over time shifted to left temporo-parietal sites. A sec-

ond theta band cluster overlapped in time with the early alpha cluster

but did not achieve significance despite a large effect size, p = .028,

g = 0.76 [0.50, 1.14]. Zoning-out states were also associated with

greater delta power than on-task states in two clusters that were tem-

porally coincident with the foregoing effects but with substantially

larger effect sizes, p = .018, g = 1.43 [1.04, 2.16]; p = .018, g = 1.16

[0.74 1.73]. These effects were topographically more focal and largely

restricted to midline central electrodes.

Zoning-out states were also characterised by greater theta power

than tuning-out states in a single cluster close to probe onset at a

trend-level of significance, p = .026, g = 0.86 [0.45 1.41] (Figure S3).

This effect was most pronounced in parieto-central electrodes. Failure

to reach significance is plausibly due to the reduced sample for this

analysis (N = 21) due to MW trial partitioning. There were no other

significant effects in the other frequency bands (Figure S2). Specifi-

cally, tuning-out and zoning-out states did not differ in delta (p = .05)

or alpha power (p = .16). Similarly, exploratory analyses of beta power

did not yield significant differences between any ES or MA states (see

Figure S4).

F IGURE 1 Oscillatory differences between states (MW – on-task, N = 39) as a function of time relative to probe onset (0 s). (a) Time-
frequency decomposition averaged across electrode sites. Broken black rectangles denote spectrotemporal clusters reflecting significant state
differences (p < .025, two-sided cluster-based permutation test). (b) Alpha (8–13 Hz) spectral power averaged over the electrode sites of the two
clusters (significance denoted by black bars on the x-axis). (c) Topography of the clusters at different 500/550 ms subwindows (black markers
denote electrodes that were present on at least 50% of samples in each time window). MW = mind wandering
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3.4 | Multivariate pattern classification analyses

The univariate analyses of the EEG signals managed to identify spec-

tral and spatiotemporal differences between states. This analysis,

however, failed to demonstrate a robust and significant difference

between aware and unaware mind wandering. In the following, we

present the results for two sets of analyses: the time-varying MVPC

analyses performed in the epoch before probe onset (�10 to 0 s;

20 bins of 500 ms) and the time-averaged MVPC analyses performed

after collapsing temporal information for decoding across the entire

epoch.

3.4.1 | Time-varying MVPC

For each two-class (state) comparison, we tested four models that

used as features the spectral power in the 64 channels in the delta,

theta and alpha frequency bands (multifrequency model) and in these

three bands separately (single-frequency band models). At the

participant-level, we report the percentage of participants for which

significant decoding was obtained in at least one bin.

The multifrequency model (trials per class: 23.4 ± 9.0) signifi-

cantly decoded mind wandering from on-task states in 26% of partici-

pants, with similar proportions in single-frequency models: delta: 23%;

theta: 15%; and alpha: 26% (Figure S5a). At the group level, both the

multifrequency and the single-frequency models were able to decode

mind wandering and on-task states with significant accuracies observed

at various bins in the window (Figure 3a). Similarly, the multifrequency

model (trials per class: 18.8 ± 8.2) significantly decoded on-task from

tuning-out states in 22% of participants although the single-frequency

models displayed superior decoding: delta: 44%; theta: 30%; alpha: 33%

(Figure S5b). Group-level classification was significant in four bins in the

multifrequency model with similar results for theta and alpha, but not

delta (Figure 3b). Significant decoding accuracy between zoning-out and

on-task states (trials per class: 13.9 ± 5.1) was observed in 24% of partic-

ipants for the multifrequency model, with comparable or superior accu-

racy in the single-frequency models (delta: 44%; theta: 36%; alpha: 24%;

Figure S5c). Group-level significant decoding was found for the multi-

frequency model and the single-frequency models (Figure 3c). The theta

and delta effects were spread throughout the window with the delta

model exhibiting significant decoding accuracy across the full window.

Tuning-out and zoning-out states (trials per class: 12.6 ± 3.6) were dec-

oded in 14% of participants in the multifrequency model, with superior

decoding in the single-frequency models (delta: 24%; theta: 19%; alpha:

29%, Figure S5d). At the group-level, the multifrequency and single-

frequency models showed significant decoding although this was

restricted to one bin in the former and generalised throughout the win-

dow in the latter (Figure 3d). These results indicate that decoding for all

two-class comparisons was significant in several time bins for models

using both the multifrequency and the reduced feature space (single-fre-

quency) suggesting that the individual frequency bands alone are suffi-

cient to decode experiential states and state meta-awareness

(a histogram demonstrating the frequency associated with each number

of significant bins is shown in Figure S6 for each analysis. The latencies

of the significant bins per participant are illustrated in Figures S7–S10).

3.4.2 | Time-averaged MVPC

At the participant-level, the multifrequency model significantly decoded

mind wandering from on-task states in (M ± SD) 19 ± 6% (range: 10–

28%) of participants (Figure 4a). Individual-frequency models decoded

states in similar proportions of participants: delta: 13 ± 3% (10–21%);

theta: 15 ± 5% (8–26%); alpha: 22 ± 4% (15–26%), and did not signifi-

cantly differ, p > pth (Figure 5e). At the group-level (Figure 5a), the multi-

frequency model displayed significant decoding accuracy (M% ± SE:

54.72 ± 1.47, p = 0), as did single-frequency models: delta (52.85 ± 1.11,

p < .001), theta (53.23 ± 1.18, p < .001), and alpha (55.11 ± 1.31, p = 0).

The multifrequency model decoded tuning-out from on-task states in

14 ± 7% (4–30%) of participants (delta: 12 ± 4% [4–19%]; theta: 14

± 6% [11–30%]; alpha: 12 ± 6% [4–22%]), with no significant differences

between models, p > pth (Figure 5f). At the group-level (Figure 5b), the

multifrequency model displayed significant decoding accuracy (53.93

± 1.51, p < .001), as did the single-frequency models (delta: 52.52 ± 1.30,

p < .001, theta: 54.77 ± 1.26, p = 0, alpha: 52.61 ± 1.30, p < .001).

Zoning-out from on-task states were significantly decoded in 28

± 6% (20–44%) of participants. Performance varied across single-

frequency models (delta: 18 ± 11% [4–40%]; theta: 19 ± 5% [8–28%],

Figure 4b; alpha: 28 ± 9% [12–44%]). Both the multifrequency and alpha

models were significantly better than the delta, p = .004, p = .003 and

theta models, p = .049, p = .035 (Figure 5g). At the group-level

(Figure 5c), the alpha model showed the greatest decoding accuracy

(58.44 ± 1.83, p = 0), albeit with comparable accuracy in the multi-

frequency model (57.32 ± 2.30, p = 0). The delta (53.18 ± 1.75, p = .002)

and theta (54.64 ± 2.01, p = .001) models were also significant.

Meta-awareness of mind wandering (zoning-out [unaware]

vs. tuning-out [aware]) was significantly decoded in 20 ± 6% (14–

29%) of participants by the multifrequency model. Single-frequency

models decoded states in similar proportions of participants (delta:

17 ± 5% [10–24%]; theta: 18 ± 7% [10–33%]; alpha: 18 ± 10% [5–

38%]), and these differences were not significant, p > pth (Figure 5h).

At the group-level (Figure 5d), all models showed comparable

decoding accuracies (multifrequency [55.46 ± 2.27, p = .002], delta

[54.47 ± 1.91, p < .001], theta [54.02 ± 2.56, p = .016], alpha [56.06

± 2.22, p = 0]). Owing to the fluctuating nature of mind wandering

states, we expected that time-varying MVPC would reveal less consis-

tent individual and group-level effects than time-averaged MVPC.

However, the results did not suggest any substantial differences

between the two approaches.

To further uncover the activation patterns that represent the

expression of class-decoding information in each channel, we visualised

the topography of the activation patterns reconstructed from the classifi-

cation filters, following Haufe et al. (2014). The polarity of the values in

the activation map denotes the effect direction of the class-related infor-

mation represented in each channel, which depends on the order in

which the data are concatenated. For decoding on-task and mind
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wandering states (Figure 6), we conducted the analysis by concatenating

the data in the following order: (1) mind wandering and (2) on-task. This

analysis revealed that, for the theta model, class-related information was

strongly present at frontal electrodes across participants and was associ-

ated with negative activation values, which reflects reduced theta power

during mind wandering than on-task states in those electrodes. In the

delta model, posterior electrodes represented class-related information

more strongly, also in association with negative values (lower delta

power for mind wandering states in those channels). By contrast, pro-

nounced positive values were observed for the multifrequency and alpha

F IGURE 2 Oscillatory differences between states (zoning-out – on-task, N = 25) as a function of time relative to probe onset (0 s). (a) Time-
frequency decomposition averaged across electrode sites. Broken black rectangles indicate spectrotemporal clusters reflecting a significant
difference (p < .025, two-sided cluster-based permutation test) and the grey rectangle indicates a trend-level (.025 < p < .05) cluster. (b–d) Alpha
(8–13 Hz), theta (4–7 Hz) and delta (2–3 Hz) spectral power averaged over the electrode sites of the clusters (black bars = significant, grey
bar = trend). (e) Topography of the clusters at different subwindows within the cluster (black markers denote electrodes that were present on at
least 50% of samples in each time window, white electrodes mark topography of the trend-level effect)
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models at left parietal and fronto-central regions, suggesting that these

electrode regions represented class-related information more strongly

(with a positive direction of the effect: elevated total/alpha power in

mind wandering relative to on-task states in the multifrequency/alpha

model). The topography of the reconstructed activation maps for the

additional MVPC analyses was partially different from the patterns

obtained for on-task vs. mind wandering decoding (see Supplementary

Results in Data S1 and Figure S11).
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3.4.3 | Association between decoding accuracy and
introspection confidence

Our final set of analyses were motivated by the hypothesis that intro-

spection confidence reflects conscious accessibility to experiential

states. Toward this end, we evaluated the predictions that individual

decoding accuracies in select models would positively correlate with

confidence in experiential state and state meta-awareness

judgements. We computed correlations between decoding accuracies

of the multifrequency model for on-task vs. MW and on-task

vs. tuning-out states and decoding accuracies of theta and delta

models for zoning-out vs. on-task and zoning-out vs. tuning-out, with

judgement confidence in the respective state.

In support of our overarching prediction, decoding accuracies for

MW vs. on-task (multifrequency model) positively correlated with ES

judgement confidence ratings of mind wandering, p = .034 [0.07,
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0.59] (Figure 4c, [p = .011, with outliers]), but not with on-task ES

judgement confidence, r = .23, p = .18 [95% CI: �0.09, 0.52] (p = .49

with outliers). Accuracies for the multifrequency model decoding

between on-task and tuning-out states did not correlate significantly

with ES judgement confidence (on-task): r = .004, p = .99 [�0.34,

0.38] (p = .81 with outliers) or MA confidence (tuning-out): r = �.02,

p = .92 [�0.48, 0.34]. Accuracies for the theta model decoding

between on-task and zoning-out states did not correlate significantly

with ES judgement confidence (on-task) r = .01, p = .95 [�0.30, 0.30]

(p = .48 with outliers), but did correlate with MA confidence (zoning-

out), p = .034 (Figure 4d, [p = .067 with outliers]). We also found that

delta model decoding accuracies between on-task and zoning-out

states did not correlate with ES confidence (on-task) r = �.09, p = .67

[�0.63, 0.04] (p = .39 with outliers) and MA confidence (zoning-out),

r = .32, p = .12 [0.04, 0.57]. Accuracies for the theta model decoding

state meta-awareness did not correlate significantly with MA confi-

dence for tuning-out states, r = .08, p = .73 [�0.49, 0.44], nor with

MA confidence for zoning-out states, r = .02, p = .95 [�0.40, 0.40].

Delta model decoding accuracies between tuning-out and zoning-out

states did not correlate with MA confidence (tuning-out: r = .10,

p = .66 [�0.27, 0.40], zoning-out, r = .35 p = .12 [�0.13, 0.66]).

4 | DISCUSSION

Using EEG and an ecological listening task, this study investigated the

neural oscillatory dynamics of mind wandering and meta-awareness

states. Mind wandering was reliably characterised by greater alpha

power than on-task states with more prominent effects in this band

and both delta and theta bands for unaware mind wandering. Consis-

tent with the notion that mind wandering is more pronounced when

one lacks meta-awareness (Christoff et al., 2009), moment-to-moment

variations between unaware mind wandering and on-task states were

the most reliably decoded via multivariate pattern classification. Criti-

cally, we found that decoding accuracy in the classification of differ-

ent experiential states predicted confidence in the corresponding

state judgements. This is consistent with the proposal that confidence

indexes metacognitive access to experiential states.

4.1 | Mind wandering as external inattention and
internal focus

As in previous research demonstrating the impact of mind wandering

on comprehension (e.g., Boudewyn & Carter, 2018), self-reported

mind wandering was associated with poorer recall in the listening task.

One of the principal results of this study was that power in the alpha

frequency band was greater during mind wandering than on-task

states, replicating previous work (Baldwin et al., 2017; Boudewyn &

Carter, 2018; Compton et al., 2019; Macdonald et al., 2011). This

effect was specific to the alpha band and generalised across meta-

awareness states suggesting that elevated alpha power is a

frequency-specific but generalised neurophysiological characteristic

of mind wandering. Alpha power differences had a relatively diffuse

distribution and were concentrated in frontal and posterior sites. The

broad distribution of alpha power is consistent with a previous study

on mind wandering during a listening task and commensurate with

alpha activity during auditory language comprehension (Boudewyn &

Carter, 2018, see also Compton et al., 2019). Posterior alpha has been

extensively linked to mind wandering (Baldwin et al., 2017;

Boudewyn & Carter, 2018; Compton et al., 2019; Macdonald

et al., 2011), as well as internally oriented states more generally

(Hanslmayr et al., 2011). Our findings are in line with studies showing

elevated alpha power when attention is focused internally (Cooper

et al., 2003) as well as multiple lines of evidence suggesting that mind

wandering is associated with decay of perceptual processing (Barron

et al., 2011; Smallwood et al., 2008). These results suggest that

greater alpha power reflects detachment from the external world and

a shift toward internal processing (Smallwood & Schooler, 2015).

Our findings suggest that unaware mind wandering is more diver-

gent from on-task states than episodes of mind wandering with

awareness (Christoff et al., 2009). Although both were characterised

by higher alpha power compared to on-task states (Boudewyn &

Carter, 2018), unaware mind wandering was additionally associated

with greater delta and theta power, particularly in right frontal and

parieto-central sites, respectively. Aware and unaware mind wander-

ing had suggestively distinct oscillatory features thereby implying that

state meta-awareness represents a dimension of attention that is

orthogonal to the direction of attention. These findings may help to

explain previous reports of elevated delta and theta during mind wan-

dering in self-caught paradigms (Braboszcz & Delorme, 2011; van Son

et al., 2019), which in our view almost exclusively index unaware mind

wandering, since they investigate EEG correlates seconds before par-

ticipants realise they are mind wandering.

The observation of elevated delta and theta power during

unaware mind wandering, which was validated in the activation pat-

terns of the corresponding decoding analysis, aligns with previous

research on the cognitive correlates of oscillatory activity in these

bands. Theta oscillations are suggested to be involved in cognitive

control (Cavanagh & Frank, 2014), working memory (Klimesch, 1999;

Mitchell et al., 2008) and conflict detection (Cohen, 2014), processes

that could be implicated in appropriate selection between multiple

simultaneous thoughts related to the processing of current concerns

during unaware mind wandering. This aligns with hypothesised paral-

lels between mind wandering and meditative states related to

moment-to-moment navigation through mental objects (Vago &

Zeidan, 2016). In particular, our finding of higher theta power during

unaware than aware mind wandering states is potentially congruent

with higher frontal midline and temporo-parietal theta during medita-

tive states characterised by deeper absorption (DeLosAngeles

et al., 2016) and thus suggest potential links between absorption and

zone-outs. Delta frequency contributions have been revealed during

increased focus on internal processing and pertinent inhibition of

interference (Harmony, 2013). Delta and theta activity could therefore

reflect the involvement of memory in self-related processing during

self-generated thoughts in the context of unaware mind wandering
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episodes. The complementary role of delta activity might be to pre-

serve internal processing during unaware mind wandering by

inhibiting external interference (Harmony, 2013; Harmony

et al., 1996). Accordingly, our findings may align with the proposal

that mind wandering recruits processes to ensure that one's internal

train of thought is maintained (Smallwood, Brown, Baird, &

Schooler, 2012; Smallwood, Fishman, et al., 2007).

4.2 | Decoding of experiential states

Although our data were not event-related, our time-varying multivari-

ate classifier was able to trace mind wandering in several temporal

segments within the 10 s time window preceding experiential state

probes. Moreover, MVPC allowed us to decode experiential states

from oscillatory activity at both participant- and group-levels,

highlighting the utility of spectral measures coupled with machine

learning in decoding mind wandering (Groot et al., 2021; Jin

et al., 2019) and state meta-awareness. The time-varying and time-

averaged analyses did not reveal substantially different results. In both

analyses, all models decoded mind wandering from on-task states,

including in approximately one-quarter of participants (multi-

frequency, alpha) and with comparable classification accuracies. Simi-

larly, aware mind wandering was decoded from on-task states in both

analyses, with models using power in the delta and alpha bands for

classification showing the weakest performance. It is potentially nota-

ble that the time-varying analyses yielded significant decoding

between unaware mind wandering and on-task states in multiple time

windows, particularly for the delta and theta models, which decoded

the two experiential states across almost the entire epoch. By con-

trast, the time-averaged MVPC delta and theta models showed a wea-

ker classification performance compared to the multifrequency and

alpha models which achieved the highest decoding accuracy at the

group- and participant-levels. Although insofar as all models achieved

significant decoding, our analyses do not suggest that decoding

between these two states is frequency specific per se. Finally, the

time-averaged multifrequency MVPC decoded aware from unaware

mind wandering states in 20% of participants on average with compa-

rable decoding accuracy values across all models. Taken together,

these results suggest that information pertaining to state meta-

awareness might be distributed across different frequency bands

including slow oscillations—as shown in the higher prevalence of sig-

nificant decoding in the sample (relative to other decoding analyses).

However, our analyses did not reveal any robust evidence for fre-

quency specificity and thus it seems that there is not a specific oscilla-

tory pattern that contains more information about mind wandering

and state meta-awareness.

Assessment of the topography of the decoding results (Haufe

et al., 2014) highlighted that the single-frequency models comprise

differential activation patterns representing class-related information

regarding experiential states and meta-awareness. Insofar as these

analyses are purely descriptive, we should exercise caution in inter-

preting the topographic results, however these analyses suggested

that class-related information tended to be strongly represented in

fronto-central and posterior regions which broadly aligns with the

effects observed in the cluster-based analysis. Combined EEG-fMRI

studies investigating the topography in different frequency bands

associated with activation of resting state networks can shed light on

the neural correlates of mind wandering through the observed activa-

tion patterns (e.g., Jann, Kottlow, Dierks, Boesch, & Koenig, 2010).

One interpretation of the activation maps associated with each single-

frequency model is co-activation of the DMN and executive control

(fronto-parietal) network (Jann et al., 2010) during mind wandering

states which aligns with a wealth of research (Christoff et al., 2009;

see also Fox, Spreng, Ellamil, Andrews-Hanna, & Christoff, 2015). In

addition, previous evidence has shown inverse associations between

DMN activity and delta (Hlinka, Alexakis, Diukova, Liddle, &

Auer, 2010) and frontal midline theta power (Scheeringa et al., 2008),

while activity in the alpha band is positively associated with DMN

recruitment (Mantini, Perrucci, Del Gratta, Romani, & Corbetta, 2007;

Marino, Arcara, Porcaro, & Mantini, 2019; see also Knyazev, 2013). A

complementary interpretation is that the activation maps for the delta

and theta frequency bands are also similar to the topography associ-

ated with network activity supporting working memory (Jann

et al., 2010) and thus may point to its recruitment during mind wan-

dering episodes (Marcusson-Clavertz, Cardeña, & Terhune, 2016).

Finally, the observed activation patterns may reflect auditory suppres-

sion during mind wandering, compared to on-task states (Jann

et al., 2010) which is consistent with poorer performance on the lis-

tening task during mind wandering.

We further corroborate that unaware mind wandering is more

dissimilar at the neural level to external attention (on-task states)

(Christoff et al., 2009). Combined with our MVPC results decoding

aware from unaware mind wandering, we confirm that state meta-

awareness should be considered as an important dimension of mind

wandering in future studies, with evidence for disparate neural sub-

strates for aware and unaware mind wandering. Collectively, MVPC

trained on EEG-extracted features reliably decoded different experi-

ential states both at participant and group levels. Discrepancies

between group-level and participant-level classification is in line with

research showing the utility of using individualised markers in

decoding mind wandering (Dhindsa et al., 2019). Even though our task

involved passive listening, one possibility is that residual eye move-

ments could have contributed to the decoding. Eye movements can

have confounding effects in neural decoding, particularly within visual

tasks that involve active viewing (Thielen, Bosch, van Leeuwen, van

Gerven, & van Lier, 2019). An additional limitation of our study is that

we used a small fold number (3) for leave-one-out cross-validation,

which may lead to an overestimation of the model's skills

(Kohavi, 1995). An inherent feature of the phenomenon we are inves-

tigating is that some participants only report very few instances of

mind wandering, which results in small trial numbers. This limited the

use of higher folds for cross-validation, which is preferable

(e.g., 10-folds). On the other hand, we estimated the chance level sep-

arately in each participant using a permutation distribution. Accord-

ingly, our decoding analyses overcome the previously reported caveat
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of using theoretical chance levels (e.g., 50% for two-class classifica-

tion), which are not accurate for small data sets (Combrisson &

Jerbi, 2015).

4.3 | Introspection confidence

Previous research investigating confidence suggests that self-reports

of mind wandering characterised by higher confidence constitute

more accurate evaluations of one's experiential states (Seli

et al., 2015). Our results build upon this, showing that confidence in

experiential state judgements tended to map onto state meta-aware-

ness: participants reported the greatest certainty for on-task episodes,

were less confident in aware mind wandering, and the least for mind

wandering episodes without awareness, although confidence ratings

between the latter two were not significantly different. Future work

could investigate how confidence relates to other prominent dimen-

sions of mind wandering, such as intentionality (Seli et al., 2017; Seli,

Risko, Smilek, & Schacter, 2016). Participant-level decoding of experi-

ential states allowed us to evaluate the prediction that introspection

confidence would be positively associated with decoding accuracy.

Indeed, confidence in different experiential state and state meta-

awareness judgements reliably correlated with individual differences

in MVPC decoding accuracies. In particular, confidence correlated

with cross-frequency decoding accuracy in classifying mind wandering

from on-task states. In addition, consistent with findings implicating

theta activity in metacognition (Wokke, Cleeremans, & Ridderinkhof,

2017), we also found that confidence was associated with decoding

of unaware mind wandering from on-task states accuracy in the theta

model. Collectively, these results demonstrate that confidence in

one's experiential states is positively related to the multivariate

decodability of these states with implications for the neural bases of

experiential state confidence.

Our results align with previous findings (Seli et al., 2015)

suggesting that high confidence levels reflect a more accurate assess-

ment of one's experiential state reflected in stronger coupling

between mind wandering reports and well-established impacts on

behaviour. We extend this notion and provide evidence that higher

confidence may reflect greater dissociation of experiential states at

the neurophysiological level. In MVPC, higher decoding accuracy

denotes better discriminability or separation between EEG patterns

associated with each experiential state class. Although this discrimina-

bility refers only to pattern analysis, it is possible that more dissociable

or distinct neural patterns are metacognitively represented and there-

fore reflected in individuals' confidence ratings. One interpretation of

these findings thus is that states accompanied by high confidence are

quantitatively more intense or salient and thus characterised by supe-

rior conscious access that is grounded in or related to underlying neu-

rophysiological discriminability. Alternatively, this relationship might

be attributable to participants with low confidence displaying weak

experiential state discriminability, that is, they have relatively poor

metacognitive access in their experiential states, associated with

lower multivariate decoding. However, whether and to what extent

confidence judgements about internal states reflect a readout of dis-

criminability between neural patterns remains an unresolved issue.

Recent work demonstrated that confidence judgements and behav-

ioural accuracy are dissociated during decision making and these dis-

sociations can be explained by differences in neural computations

(Peters et al., 2017). One limitation in this analysis is that due to the

small number of trials per certain classes in certain participants, our

analyses were limited to mean confidence ratings. Future research on

mind wandering could utilise confidence ratings on a trial-by-trial

basis to provide a more precise estimate of the relationship between

confidence and classification accuracy (Weaver et al., 2019).

5 | CONCLUSIONS

Our findings expand upon research linking elevated alpha power

with mind wandering episodes and reveal distinct electrophysiolog-

ical characteristics of state meta-awareness. Unaware mind wan-

dering was consistently more dissimilar from on-task states than

aware mind wandering, as evidenced by superior decoding and

greater neurophysiological differences. These results highlight a

clear distinction between unaware and aware mind wandering

states and confirm the utility of introspective methods in the study

of transient fluctuations in conscious experience. The observed

effects demonstrate the potential of using EEG machine learning

classifiers to capture mind wandering and state meta-awareness

during an ecological task without performance indicators. We

found that confidence in experiential state and state meta-

awareness reports correlated with the decoding of the respective

states, suggesting that introspection confidence scales with neuro-

physiological dissimilarity. These effects suggest that introspection

confidence taps into variability in metacognitive access to, and dif-

ferential phenomenological characteristics, of experiential states.
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