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Augmenting a colour lexicon
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Languages differ markedly in the number of colour terms in their lexicons. The Himba, for

example, a remote culture in Namibia, were reported in 2005 to have only a 5-colour term

language. We re-examined their colour naming using a novel computer-based method

drawing colours from across the gamut rather than only from the saturated shell of colour

space that is the norm in cross-cultural colour research. Measuring confidence in commu-

nication, the Himba now have seven terms, or more properly categories, that are independent

of other colour terms. Thus, we report the first augmentation of major terms, namely green

and brown, to a colour lexicon in any language. A critical examination of supervised and

unsupervised machine-learning approaches across the two datasets collected at different

periods shows that perceptual mechanisms can, at most, only to some extent explain colour

category formation and that cultural factors, such as linguistic similarity are the critical driving

force for augmenting colour terms and effective colour communication.
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Introduction

Languages differ markedly in the number of colour terms in
their lexicons. The languages of some remote populations
are reported to have no or as few as two colour terms

whereas most European languages have many more; at least 11
according to most definitions of a colour term (Berlin and Kay,
1969/1991; Wierzbicka, 2015). We wish to consider the
mechanisms whereby the number of colour terms increases in a
language and to report data where this has occurred in a remote
population. Furthermore, we wish to show that understanding of
colour term acquisition may be enhanced by considering machine
learning.

The assessment of colour terms in remote populations is not
without its problems. Using paper swatches, as in all previous
studies, obtaining colour name responses to a large number of
samples can be time-consuming. Thus, studies vary greatly in the
number of colour samples they have used, from as few as 23
(Lindsey et al., 2015) to the much more extensive World Color
Survey (Kay et al., 2010), where responses were obtained for
320 samples. Even here, the colour terms were obtained from only
highly saturated colour samples as is general in cross-cultural
studies of colour naming (Berlin and Kay, 1969/1991, Bimler and
Uusküla, 2017; Gibson et al., 2017; Kay et al., 2010; Lindsey et al.,
2015; Roberson et al., 2005), despite worries about the outcomes
being affected by the variation in that dimension (Paramei, 2005;
Roberson et al., 2005; Witzel, 2016; Witzel, 2018; Witzel et al.,
2015). To our knowledge, there have been few, if any, studies with
remote populations that have used computerised colour pre-
sentations to overcome these problems, perhaps because of
worries about uncontrolled colour reproduction and the unfa-
miliarity of computer screens to indigenous populations. The
latter objection has been shown to be of no concern for the
Himba (Biederman et al., 2009; Linnell et al., 2018) and
the former is now easily overcome (Mylonas et al., 2019; Paggetti
et al., 2016). In consequence, we revisited the Himba who, when
tested in 2004 (Roberson et al., 2005), were found to use a
5-colour-term grue language, by which is meant that the same
word is used for green and blue regions of colour space (Kay,
1975). We will not only examine the colours tested in 2004 but
also those from the inner core of colour space. Here, we may find
colour terms that could not have been found in ours and all other
previous cross-cultural research.

We wish to consider the augmenting of colour terms to a
colour lexicon by which we do not mean the addition of any
colour term but only those that can be considered to be colour
categories (Berlin and Kay, 1969/1991; Davidoff, 2015; Gibson
et al., 2017; Levinson, 2000; Lindsey et al., 2015; Mylonas and
MacDonald, 2016). For example, in English, the term crimson
denotes a type of red—not a different category—so would be an
addition rather than an augmentation of the colour lexicon. There
have been many attempts to answer the augmentation question.
The earliest extensive attempt was by Berlin and Kay (1969/1991),
who used the term “basic” for the major colour terms and
declared an order for the acquisition of colour categories. In their
view, augmentation occurred by partitioning existing colour
terms that were previously able to name all colour space. Though
behavioural rules were given by which a term could be considered
basic, their origin was thought to be in universal colour phy-
siology (Kay and McDaniel, 1978). Their physiological account
proposed six colour terms that align with the postulated oppo-
nent channels of Hering and all other colour terms arise from
their mixture (Hering, 1878/1964; Kay and McDaniel, 1978). The
idea that primary colours are associated with the opponent-
process cells in early vision has been disputed (Abramov and
Gordon, 1994; Valberg, 2001; Wuerger et al., 2005). Nevertheless,
these primary perceptual categories contain examples that are

held to be unique in that they are perceived to contain no other
colour and have been considered by some important in the
development of colour categories (Forder et al., 2017; Kuehni,
2005; Philipona and O’Regan, 2006, but see also Jameson, 2010).

A notable subsequent alternative explanation is that colour
categories appear maximally spaced within the 3D sub-volume of
perceptual colour space. Colour lexicons, it is argued, develop by
optimising the division of an irregular perceptual colour space to
maximise similarity within a category and minimise similarity
across categories (Boynton and Olson, 1987; Jameson and
D’Andrade, 1997; Regier et al., 2007; Regier et al., 2015; Zaslavsky
et al., 2018). These accounts are based on discrimination data
and, though this could be considered independently of the
underlying physiology (Jameson and D’Andrade, 1997), they are
presumed reliant on early perceptual mechanisms (Kay and
McDaniel, 1978; Zaslavsky et al., 2019). An optimal division of
the surface of the colour solid into six well-formed categories by
Regier et al. (2007) corresponded to the English terms: white,
black, red, yellow, green and blue-purple. However, a subsequent
study showed that the optimal criterion produced inadequate
results for colour lexicons with more than 6 terms (Jraissati and
Douven, 2017) and it is unclear whether the optimal partition
principle can hold across the colour space (Lindsey and Brown,
2014).

There is a somewhat similar proposal, though from a clearly
cultural perspective, whereby a category is achieved through
language (colour terms) rather than early level colour physiology
(Roberson et al., 2000). In that approach, the greater similarity for
within-category colours is known as Categorical Perception (CP)
though, in practice, to determine CP a colour category needs to
have a large extension in colour space and is unavailable, say, for
assessing a category such as yellow (see Davidoff, 2015).

There are other culturally determined views on augmentation;
for example, the emergence hypothesis (Levinson, 2000; Lyons,
1995) proposed that new colour categories emerge in regions of
colour space that previously were not named or were named
inconsistently (Everett, 2005; Gooyabadi et al., 2019; Kay and
Maffi, 1999; Levinson, 2000; Lindsey and Brown, 2014; Lindsey
et al., 2015). Yet, a further culturally based alternative for aug-
mentation is that terms are simply borrowed from other cultures.
Such loanwords are a more than “plausible” alternative for aug-
mentation (Lindsey and Brown, 2009).

Turning to existing empirical data, there are at least two
accounts of changes over time to a colour lexicon (Kuriki et al.,
2017, Mylonas and MacDonald, 2016). Kuriki et al., found dif-
ferences in current Japanese from those recorded by Uchikawa
and Boynton (1987). Most of the changes are in the forms of
additions or clustering of colour names but there was also the
report of a new basic term for light blue as found in many Eur-
opean and other Asian languages (Androulaki et al., 2006;
Paramei, 2005; Paramei & Bimler, 2021 for a review). Through a
crowdsourcing colour naming experiment, Mylonas and Mac-
Donald suggested the augmentation of the English inventory
from the 11 basic colour terms reported by earlier studies (Boy-
nton and Olson, 1987; Sturges and Whitfiled, 1995) to 13 terms
including lilac and turquoise. The candidacy of turquoise as basic
colour term is further supported by the recent category insertion
hypothesis where an incipient basic colour category is added at
the BLUE-GREEN category boundary (Paramei et al., 2018;
Roberson et al., 2009; for a review see Paramei & Bimler, 2021).

For remote groups with smaller colour lexicons, all previous
studies offer only a single snapshot of the development of colour
lexicons on the surface of the colour solid (see Lindsey and
Brown, 2006, Regier et al., 2015). It is, therefore, of great interest
to return to a remote society and ask whether there have been
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augmentations to their colour lexicon. We note that the Himba,
while still outwardly similar to the population of 15 years ago,
now have more contact with other cultures. These contacts are
not great, yet we have already documented that they affect local/
global processing (Caparos et al., 2012, 2013), the perception of
geometric illusions (Bremner et al., 2016) and lightness percep-
tion (Linnell et al., 2018). To consider whether there might also
be changes to their colour categories, we clearly need and thus
introduce a procedure to identify the minimal number of inde-
pendent colour categories that can name all colours.

We wish to consider the long-standing debate on whether
perceptual or linguistic similarity is the critical force driving the
augmentation of colour lexicons from the field of machine
learning. A debate that is also relevant for other modalities of
perceptual learning, such as acoustic (Goudbeek et al., 2009),
emotion (Azari et al., 2020) and object (Khaligh-Razavi and
Kriegeskorte, 2014) category acquisition. In a computational
framework, the question can be viewed as whether unsupervised
learning or supervised learning is the most appropriate strategy to
train an artificial intelligent system that can communicate about
colour with speakers of different languages (Mylonas et al., 2010;
Mylonas et al., 2013). In unsupervised learning, algorithms
deduce some inherent structure to the data using only unlabelled
samples and produce a set of universal categories based on per-
ceptual similarity between colours (Kuriki et al., 2017; Lindsey
and Brown, 2006; Regier et al., 2007; Yendrikhovskij, 2001;
Zaslavsky et al., 2019). In supervised learning, algorithms learn
colour categories from labelled data in different languages based
on linguistic similarity between colours. There are many different
supervised colour-naming models, using variants of Gaussian or
Gaussian-Sigmoid distributions (Benavente et al., 2008;
Lammens, 1994; Mylonas et al., 2010), multinomial conditional
probability distributions (Chuang et al., 2008; Heer and Stone,
2012) and deep-neural networks (Cheng et al., 2017). Here, we
use criteria expressed as an ensemble of random decision trees
(Mylonas, 2020) that have been shown to be highly effective for
many diverse supervised classification or regression problems
(Breiman, 2001; Cutler et al., 2007; Gislason et al., 2006).

Effective algorithms for construction of ensembles of decision
trees based on training examples ensure that models are strongly
diversified by infusing randomisation into the learning algorithm
and exploit at each run a different random subset of the training
data. An advantage of them is that they do not assume com-
mensurate feature dimensions, or normally distributed feature
values. To generalise our observations to any colour and identify
the indispensable colour terms in the Himba language, we will use
a Rotated Split Trees (RST) approach in regression mode that
predicts probabilities and provides state-of-the-art performance
in computational colour naming models (Mylonas, 2020). Given
our training set of colour points X= x1, ..., xn with their Himba
naming responses Y= y1, ..., yT, and a free parameter B= 100
trees, RST ensembles B random split trees, fb= {T1,…,TB} by using
for each tree T the full training dataset (Geurts et al., 2006). Prior
to any splitting, a proper rotation matrix R is generated using
Householder QR decomposition (Andrews et al., 2017; Blaser and
Fryzlewicz, 2016; Householder, 1958). The rotated trees have
different orientation and vastly dissimilar data partition and are
capable of producing smoother, non-axis, parallel decision
boundaries than un-rotated trees. The regular, un-rotated, trees,
would make splits parallel to the axis in the feature space of the
dataset by selecting at each node the split on the attribute that
produces the maximum gain. In contrast, rotated trees, combine
attribute values and produce a rotated hyperplane with a smaller
number of splits that tend to outperform un-rotated trees by
separating better instances of the dataset that pertain to distin-
guishable categories. For growing a tree, RST splits the training

data at each node independently of the target variable fully at
random, unlike the optimum criterion of Random Forests
(Breiman, 2001). Top-down binary recursion continues until no
further splits are possible, that is, until all samples have been
partitioned into their own leaf node. The predictions of each tree
are then aggregated to predict the distribution of colour names
for each test colour sample ex. In practice, the RST estimator
favours colour names with high probability to maintain con-
gruence between observed and predicted data. So, more frequent
and consistent colour categories tend to subsume less common
and inconsistent terms. In Table S1, we show a comparison of
computational colour naming models on the Munsell array
(n= 320 chips) against Sturges and Whitfield’s (1995) results in
English (Mylonas, 2020). RST performed equally well (100%
classification accuracy) with other state-of-the-art colour naming
models (SFKM, TSMES and NICE, see also Parraga and
Akbarinia, 2016) on Sturges and Whitfield’s results but RST also
identified five additional terms on the Munsell array. Thus, RST
better determines the number of colour categories from the data
compared to previous models that constrained their lexicons only
to the 11 basic colour terms. In addition, RST produces perfect
performance on estimated distributions of the 11 basic terms.

In contrast, perception-based-learning methods process unla-
belled colours to group them into clusters based on statistical
regularities of the data. k-means is the most common clustering
method where colour samples are assigned into a predefined
number of k categories based on the Euclidean distance from each
category’s centroid in CIELAB (Kuriki et al., 2017; Lindsey and
Brown, 2006; Yendrikhovskij, 2001; Zaslavsky et al., 2019). The
number of k clusters needs to be defined in advance based on the
number of colour terms in the observed data or through statistical
analysis. Then the k-means algorithm can be used to construct a
set of imaginary colour naming systems without any colour
naming observations.

To evaluate the performance of unsupervised and supervised
machine-learning methods we will measure classification accuracy
against observed data collected at different time periods and in
different colour spaces, namely CIELAB and sRGB. The reasons for
examining model performance in different colour coordinate sys-
tems are twofold. First, we would desire models to be neutral about
the approximately perceptually uniform structure of CIELAB and
the non-uniform perceptual structure of sRGB. We selected CIELAB
over CIELUV for consistency against earlier studies and because the
latter can only marginally improve the accuracy of machine-learning
methods over CIELAB (Table 5.2 in Mylonas, 2020). Second, we
wish to quantify, against observed data, the divergence of colour
categories produced by unsupervised perceptual learning in different
colour spaces reported earlier using computer simulations (Steels
and Belpaeme, 2005) that we feel has not been given appropriate
attention by recent studies (Chaabouni et al., 2021).

Comparing different machine-learning methods and selecting
the most effective model for communicating with humans at
different time periods provides a new framework to advance our
understanding of colour categorisation and helps identify the
crucial factors that determine category acquisition.

Methods
Participants. There are several groups of Bantu origin in north-
west Namibia but the Himba are the most remote; they still have
very few Western artifacts including clothes and the women cover
themselves daily in ochre. Himba is part of the Niger-Congo
language family (Zone B). Himba is a dialect of Herero and they
can communicate with speakers of that language. They are no
longer entirely pastoralists and grow some maize (Bollig, 2010,
p. 206).
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Fifty-five native Himba speakers (female: 23, male: 32, mean
age= 27.4, age range= 16–60, mean years of schooling= 1.4;
schooling range 0–10) from remote villages in north-west
Namibia completed the experiment. Of these, 31 were below
the mean age (i.e., young) and 38 never went to school. The
educational attainment among Himba people remains low with
65% of the adults found to be non-literate in this region
(Ndimwedi, 2016). Participants were compensated for their time
with gifts of flour. The study received ethical approval from
Goldsmiths University of London (N°1390, 4th of June 2018).

Stimuli and apparatus. Test stimuli were 2 degrees uniformly
coloured discs with a black outline of 1 pixel. The stimuli con-
sisted of 589 simulated samples approximately uniformly dis-
tributed in the Munsell Renotation Data and restricted in the
sRGB gamut plus 11 achromatic samples (Mylonas and
MacDonald, 2010; Newhall et al., 1943). To achieve an approxi-
mately uniform sampling within the Munsell colour solid, we
followed the suggestions of Billmeyer in Sturges and Whitfield
(1995). Specifically, a variable number of hues were sampled at
different levels of Value and Chroma. At Chroma 2, 10 hues were
sampled, whilst at each successive Chroma step the sampled hues
were increased by 10. That means from Chroma 8 to the
boundaries of the sRGB gamut, all 40 hues were sampled.

The overlap on the surface colours against the sampling of the
World Color Survey is 91% due to the limits of the sRGB gamut
but we have shown in earlier studies (Mylonas and MacDonald,
2010) and in Table S1 that we can estimate the distribution of
basic colour terms in English with 100% accuracy on the surface
of the Munsell solid. The 600 in total colour samples were
presented one at a time and in a random order for each observer
and against a neutral grey background with luminance of 40 cd/
m2.

Two Asus Transformer Mini T102HA (10.1”) were calibrated
using a ColorCal CRS colorimeter (Cambridge Research Systems,
Rochester, UK) and a RadOMA spectroradiometer (Gamma
Scientific, San Diego, California). The measured CIE 1931
chromaticity coordinates of the white point of the monitors were
x= 0.3067, y= 0.3318, and x= 0.3055, y= 0.3296 with a
correlated temperature of 6816 K and 6907 K, respectively.
Repeating the spectro-radiometric measurements of the monitors
a month later after the fieldwork showed only a minimal drift of
their white point over time (<0.003). The stimulus presentation
was controlled by PsychoPy-version 1.84.2 software (Peirce,
2007).

Procedure. Observers were seated inside a tent during daytime
approximately 80 cm away from a monitor. The task of the
observers was to name out loud the colour of the stimulus so that
others would know to which colour they were referring. Obser-
vers were free to use as broad or narrow names as they liked.
They were not instructed to answer “don’t know” if unsure but
such answers were always accepted without question. Under
direction, responses were both audio-recorded and typed by a
research assistant who spoke the native language of the
participants.

Results
The new Himba colour naming dataset included in total 33,000
raw naming responses for 600 colour samples from 55 observers
(mean age= 27.38, SD Age= 9.79, age range= 16–60;
Female= 41.82%, Male= 58.18%). For the data analysis, we
considered colour names given by two or more observers. Unique
responses (0.8%) from single observers were excluded because we
could not be confident that other observers would understand the

colour name and, therefore, these responses were considered
idiosyncratic. Contrary to Lindsey et al. (2015) where the Hadza
observers were explicitly instructed to use a specific don’t know
response to cluster together difficult to name regions, Himba
observers did not offer a name to a colour in 665 responses. These
were sparsely distributed to 434 samples of colour space (max-
imum 4 don’t know responses to any sample) and were excluded
from further analysis (see Fig. S1). This filtering resulted in a
dataset of 32,087 responses. Before considering outcomes from
machine learning, we first analyse our data in terms of frequency
and modal naming as is usual in previous studies.

Frequency of colour terms. In line with the analysis in Roberson
et al. (2005), we report the frequency of each colour term in our
new Himba data and the number of observers producing each
term. The meaning of frequency for our data needs clarification.
It is, as usual, the number of times that each colour name is used
to describe our colour stimuli but, as we sample from the whole of
colour space, frequency of any colour term is likely to increase
with the extent of a category in colour space. Figure 1 shows the
centroids of the more frequent Himba colour names given by two
observers or more scaled by their frequency of occurrence. Ser-
andu (19.6%; reddish) was the most frequent colour name fol-
lowed by burou (19.3%; bluish). Both terms were offered by all 55
Himba speakers. These were followed by grine (12.4% by 51
observers; greenish). Zoozu (6.9% by 39 observers; blackish) was
the fourth most frequent term followed closely by dumbu (5.9%
by 45 observers; yellowish), vapa (5.3% by 54 observers; whitish),
pinge (5.1% by 32 observers; pinkish), zorondu (3.7% by 20
observers; a second blackish term), ranje (3.2% by 28 observers;
orange-ish), ngara (3.2% by 33 observers; pale yellowish) and
vinde (3.1% by 33 observers; brownish). Colour terms with
relatively lower frequency of use (<3%) include worindja, peese,
honi, pepera, vahe, baraona, kuze, dovazu, otji, siriva, hurune,
gerei and mbambi. We found no purple terms in the Himba
colour lexicon. The nearest terms to purple, peese (2.1% by 15
observers) and pepera (1.6% by 4 observers), both describe an
overlapping magenta-ish region. The lack of a Himba purple term
rather questions the claim that indigenous cultures share the
same categories as infants (Skelton et al., 2017).

In total, the Himba offered 24 colour terms shown in Fig. S2
for naming the 600 approximately uniformly distributed Munsell

Fig. 1 Centroids of most frequent (> 3%) Himba colour terms in a* vs. b*
planes of CIELAB. The size of each disc corresponds to the frequency of
occurrence of the term. The colour of each disc corresponds to the centroid
of each colour term.
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samples of the computerised experiment, a large increase over the
9 colour terms (5 frequent and 4 infrequent) that were reported in
our previous study for naming the 160 fully saturated samples of
the physical Munsell Book of Color (Roberson et al., 2005) and
the 10 colour terms elicited in a list task (Grandison et al., 2014).
In agreement with earlier studies, Himba speakers did not make
use of modifiers in their responses.

The high frequency of grine offered by 51 out of 55 observers
(mean age= 27.38; SD= 9.84) requires further investigation
because in our previous study, grine was an infrequent term
(0.5%) that was offered by only 2 observers out of 31 (Roberson
et al., 2005) though Grandison et al. (2014) in their list task
found it was offered by 43 out of 62 observers. For stimuli
(n= 98) where grine was now the most frequent term, the ratio of
using grine over burou was higher, t(53)= 3.1, p < 0.003, for
younger (n= 31; younger mean age= 21.06, SD= 4.09, age
range= 16–27; Mratio= 0.83, SD= 0.28) than for older (n= 24;
older mean age= 35.54, SD= 9.07, age range= 28–60;
Mratio= 0.55, SD= 0.37) Himba. Those who had attended school
(n= 17; educated mean age= 22, SD= 7, age range= 16–41;
Mratio= 0.91, SD= 0.1) also used grine more than burou for these
stimuli than did Himba who had not been to school (n= 38; non-
educated mean age= 29.79, SD= 10.05, age range= 16–60;
Mratio= 0.61, SD= 0.38), t(53)= 3.2, p= 0.002. However, educa-
tion by itself was not the main determinant of colour term change
as, considering only the young observers (n= 31), there was no
difference between the educated (n= 14; younger educated mean
age= 19.57, SD= 4.16, age range= 16–26; Mratio= 0.91,
SD= 0.1) vs. non-educated (n= 17; younger non-educated mean
age= 22.29, SD= 3.70, age range= 16–27; Mratio= 1.5,
SD= 0.36) young Himba; t(29)= 1.5, p= 0.14. Furthermore,
we found no significant differences t(53)= 0.12, p= 0.24 between
male (Mratio= 0.66, SD= 0.36) and female (Mratio= 0.77,
SD= 0.33) Himba in using grine over burou for greenish
samples. We found very large colour differences between the
centroids of the GRUE category in the earlier data and the new
BLUE (burou) category ΔΕab= 45.1 and also against the centroid
of the new GREEN category ΔΕab= 17.95 that provide support
for the augmentation of the Himba colour lexicon. Yet, colour
differences above 10 CIELAB ΔE units cannot be trusted (Xu
et al., 2001) and alternative methods are required to demonstrate
the augmentation of the new colour terms.

Consensus of modal terms. Continuing with analyses of our new
data in line with the previous, we consider consensus that
describes the agreement among observers in naming colour
samples (Brown and Lenneberg, 1954; Boynton and Olson, 1987).
The modal term with the highest consensus for each colour
sample was determined as the peak of the conditional probability
P(n | c) that each name n= 24 was reported for each colour
c= 600 (Chuang et al., 2008; Heer and Stone, 2012). Figure 2
shows the 600 colour samples named by most Himba using 10
modal terms. 73% of all stimuli were named with 0.5 (max= 1)
or above agreement involving the major modal terms for c colour
samples: serandu, c= 219; burou, c= 131; grine, c= 98; zoozu,
c= 69; dumbu, c= 42 and vapa, c= 35. The high consensus of
the frequent grine term for a large number of samples confirms its
status as an important new colour category in Himba. There were
also a few areas with lower agreement (>0.2 and <0.5) that
involved colour samples of the above terms plus of the less-
frequent ngara c= 3; vinde, c= 1; pinge, c= 1 and peese, c= 1.
These minor modal terms could not have been found without
sampling the interior of the colour space but being the most
frequent term for an inconsistently named colour sample was not
a sufficient condition to show high consensus. Similarly, previous

studies using thresholds for a colour sample being named with
consensus gave undefined results for rarely named colours
(Boynton and Olson, 1987; Conway et al., 2020; Davies and
Corbett 1995; Lindsey et al., 2015). Our consensus analysis sup-
ports earlier conclusions that the modality of colour terms is not a
simple dichotomous but a continuous gradual characteristic that
can reveal potentially important colour terms in further investi-
gations (Witzel, 2019). For example, while we used almost double
or greater number of samples than earlier studies, the mean
colour difference of the four nearest neighbours across our
600 stimuli was ΔΕab= 7.14 and it could be that the density of
our sampling was still not sufficient to capture the regions of
these minor modal terms with higher consensus. In later sections
we will examine the indispensability of these terms using com-
putational models but first we will compare naming differences
from 2005 to the present and then consider the naming that
occurs when using the full colour gamut.

Comparison of Himba naming in 2005 and 2019. To illustrate
the change in naming behaviour between the earlier and new
studies, in Fig. 3 we show the estimated categories on the tradi-
tional Mercator projection of the surface of the Munsell Book of
Color (n= 320 samples) by RST using the Himba data of our
earlier study (Roberson et al., 2005) and the Himba data of this
study. The classification of the Munsell array into the five Himba
colour terms (serandu, dumbu, zoozu, burou, and vapa) by RST
when trained by the earlier Himba data was overall consistent
with the distributions of the five modal terms reported in Fig. 1 of
Roberson et al. (2005) with a classification accuracy of 88% for
the n= 160 samples. We note that using our probabilistic
approach for identifying modal terms (peak of P(n|c)) in the
earlier data, we found an additional minor modal term (vinde) for
a few inconsistently brownish and purplish samples but RST
classified them to the major modal terms. RST with our new data
show six colour terms on the Munsell array (the earlier five terms
plus grine). There was a large area (19.4%) on the surface of the
colour solid named consistently across observers as grine. RST
found no minor terms on the surface on the Munsell system.

We considered if the grine term could have been latent in our
2005 data but there is no evidence of separate green and blue foci
within the GRUE category. In fact, the confidence for the

Fig. 2 Modal terms in Himba (serandu, n= 219; burou, n= 131; grine,
n= 98; zoozu, n= 69; dumbu, n= 42; vapa, n= 35; ngara, n= 3; vinde,
n= 1; pinge, n= 1; peese, n= 1). Disc size corresponds to the peak of the
conditional probability P(n|c) that colour name n was used for each colour c.
The colour of each disc corresponds to the centroid of each colour name.
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boundary chips (7.5BG) between GREEN and BLUE in the new
data (Mconf= 0.6, SD= 0.1) is significantly lower, t(14)= 3.5519,
p= 0.003, than in the old data (Mconf= 0.8, SD= 0.1). In other
words, the chips with the highest confidence of the GRUE
category have become boundary colours between GREEN and
BLUE categories. Similarly, the location of the colour chips with
the highest confidence for grine (Pconf= 0.8, h= 7.5GY, V= 6)
and for burou (Pconf= 0.9, h= 7.5PB, V= 5) in our new data
were boundary colours in our earlier data. We also note that our
highest confidence stimuli correspond roughly with the locations
of the green and blue foci in English (Sturges and Whitfield,
1995).

Colour naming across the full colour gamut. To explore the
confidence of Himba colour naming across the full colour gamut
we classified a grid in CIELAB of 4-unit bins at 8 lightness levels
constrained in the sRGB gamut (Heer and Stone, 2012) using RST
and the recent Himba data. Figure 4 shows categories with high
confidence (of various shapes due to the non-parametric nature
of RST), separated by boundaries of lower confidence where there
was higher naming confusion across the colour gamut.

The test samples (n= 5693) were classified to 7 colour
categories: the six most common terms that we identified on
the surface of the colour solid: serandu (assigned to 34.5% of
samples), grine (23.2%), burou (22.9%), zoozu (8.1%), dumbu
(7.7%), vapa (3.5%), and the additional but smaller brownish
category vinde (0.2%) in the interior of the colour space. The
colour samples of the other minor modal terms, ngara, pinge and
peese, were replaced by major neighbour modal terms. Although
vinde is assigned to fewer samples and with relatively lower

confidence than the other major Himba terms, unlike the other
minor modal terms, is an indispensable term retained at two
different lightness levels (L*= 33–44) by our RST analysis in this
dataset. Interestingly, there is no neutral category at mid lightness
levels nor a category between red and blue as the Himba are
missing both consistent grey and purple terms.

Comparing supervised and unsupervised learning. To gain
some leverage on whether cultural (i.e., linguistic) or perceptual
similarity is the critical driver for effective colour communication
with the Himba, we evaluated the classification accuracy of
supervised (RST) learning in a leave-one-out cross validation
mode and unsupervised (k-means) learning on predicting the
observed modal terms for each colour stimulus in both Himba
datasets. First, we consider the 160 colour samples on the surface
of the Munsell system in the approximately perceptually uniform
colour space of CIELAB used by Roberson et al. (2005), second
the 600 colour stimuli used in this study in CIELAB and finally
we compare the performance of both methods, again for the new
dataset, but in a different colour space, namely sRGB, a non-
uniform but the most widely used colour space of the Internet.

To investigate unsupervised learning, we used a k-means
algorithm. The output of the k-means algorithm is not labelled;
hence to compare model performance and avoid local optima, we
constructed a distance matrix between the centroids of the
perceptual k categories, and the centroids of the observed
categories obtained in the colour naming experiments and then
we assigned optimally the first to the latter categories using the
Munkres assignment algorithm (Kuhn, 1955). We repeated this
process 100 times and retained the optimal imaginary k system of

Fig. 3 A Simulated Munsell array (n= 320 chips) of hue (horizontal axis) against value/lightness (vertical axis) with each disc having equal size (top).
B Segmentation of Munsell array by RST into five Himba colour terms (burou 30.0%, serandu 26.9%, zoozu 17.5%, dumbu 16.3% and vapa 9.4%) based
on data of Roberson et al. (2005) (middle) and C into 6 Himba terms (serandu 28.1%, burou 20.6%, grine 19.4%, vapa 13.4%, zoozu 11.3% and dumbu
7.2%) based on Himba data of the new study (bottom). Disc size corresponds to the confidence of classification by the RST algorithm for the old and new
data. The colour of each disc corresponds to the centroid of each colour term. Black square outlines show the location of green and blue foci in English
(Sturges and Whitfield, 1995).
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categories that produced the smallest mean Euclidean colour
difference in CIELAB (Zaslavsky et al., 2019). We confirmed that
a larger number of iterations did not significantly change the
results.

Culture-based-learning approaches learn colour categories
directly from labelled data but the output is not always correct
due to noisy data labels as the naming process can be long, costly
and prone to error. Indeed, evaluating supervised classifiers on data
on which they were trained is generally misleading. To ensure that
the predicted classes are generalisable to unknown samples we
employed a leave-one-out cross validation strategy and trained our
models on all other chips and predicted the name of the test
sample that was not known in advance. For each Himba dataset
that we assessed, we built j separate RST classifiers where j is equal
to the number of colour examples in each dataset (c= 160 and
c= 600). Each RST classifier was trained on c− 1 labelled colour
samples, with a different colour sample left out. The communica-
tion accuracy for each colour sample was then computed by the
classifier, which was trained with it left out. Then we aggregate the
results of all these classifiers for all left out test colour samples.

For Roberson et al. (2005), on the surface of the Munsell solid,
the classification accuracy of k-means with k= 5 (equal to the
reported modal terms) was 64% while RST produced a better
accuracy by classifying 89% of the samples correctly. RST
identified five colour categories (serandu, dumbu, zoozu, burou,
and vapa). The vinde term was not identified on the surface of the
colour space in the leave-one-out mode by RST. A McNemar test
(Dietterich, 1998) showed that the two proportions were
significantly different χ2(1, N= 160)= 32, p < 0.01 with a Yates’
correction. Given that we found a 6th dispensable modal term in
Roberson’s data, we also tested the k-means algorithm with k= 6
but its performance deteriorated further with a classification
accuracy of 54%.

Considering the new Himba data that also cover the interior of
the colour space, the k-means with k= 10 (equal to the number
of the modal terms) classified 40% of the 600 samples correctly
while the RST produced again superior performance with a
classification accuracy of 93% including the major modal terms
plus a smaller vinde category in the interior of the colour space. A
McNemar test showed that the two proportions were significantly
different χ2(1, N= 600)= 296, p < 0.01 with a Yates’ correction. It
is possible to set k= 24 equal to the number of all Himba colour
terms given by two observers or more by using an automatic
process for determining the number of k clusters using the Elbow
method (Thorndike, 1953). When carried out, performance of k-
means dropped to a classification accuracy of just 16%.
Considering earlier results that showed the unfitness of
perceptual-learning methods (Jraissati and Douven, 2017; Regier
et al., 2007) to capture more than 6 categories, we also tested the
k-means approach with k= 6 equal to the number of major
modal terms but again its classification accuracy of 60% was
significantly lower than RST’s χ2(1, N= 600)= 170, p < 0.01 with
a Yates’ correction.

In our third comparison of the two learning approaches in a
different coordinate system, we set k= 7 equal to the number of
indispensable terms identified by RST for a direct comparison
and we tested both methods on the 600 stimuli specified in the
sRGB colour space (Fig. 5). The k-means algorithm achieved 49%
classification accuracy while the RST retained its performance
with 93% accuracy. Again a McNemar test showed that the two
proportions were significantly different χ2(1, N= 600) =243,
p < 0.01 with a Yates’ correction. The k-means approach with
k= 7 in both CIELAB (59%) and sRGB (49%) colour spaces
produced significant diverging results χ2(1, N= 600)= 25,
p < 0.01, confirming, with empirical data, an earlier report using
simulations that explanations of colour categories being based on

Fig. 4 Segmentation of CIELAB grid (n= 5693) of 4-unit bins at 8 lightness levels into 7 Himba colour terms: serandu (red) 34.5%, grine (green)
23.2%, burou (blue) 22.9%, zoozu (black) 8.1%, dumbu (yellow) 7.7%, vapa (white) 3.5% and vinde (brown) 0.2%. The position of the newly identified
term vinde is shown on two lightness levels. Disc size corresponds to the confidence of classification by the RST algorithm for the new data. The colour of
each disc corresponds to the centroid of each identified colour term.
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statistical regularities of the data are spurious (Steels and
Belpaeme, 2005).

Overall, our results show that supervised learning significantly
excelled unsupervised learning for effective colour communica-
tion with the Himba. It excelled for data collected at different
time periods, various number of colour terms, surface and
interior colours as well as different colour spaces.

Discussion
Theories of augmentation have been essentially conjectural as
there is little actual augmentation data but we now provide, along
with Kuriki et al. (2017) for Japanese and Mylonas and Mac-
Donald (2016) for English, information concerning the language
of a remote group where we have seen just such a development.
In 2005, the Himba were reported to use a 5-colour-term grue
language. Today, they have seven colour categories. If a regular
pattern of colour term evolution exists as suggested by Kay et al.,
(1991), Himba has evolved from a Stage V to a Stage VI language
with 7 colour terms using their classification scheme. One of these
new categories (the brown term vinde) could have been present in
2005 since it is only with our present methodology that we can
investigate the desaturated interior of colour space. In fact, the
term was in inconsistent (non-categorical) use then for a variety
of saturated brownish and purplish colours. The augmentation of
the other term is because Himba is no longer a grue language with
the possibility that the change has been gradual (Grandison et al.,
2014). It might be thought that 15 years would provide insuffi-
cient time to observe the introduction of a GREEN category.
However, there has been an increase in tourism with accom-
panying roads and infrastructure and therefore contact with other
cultures and it might not require much contact to produce cog-
nitive change (see Caparos et al., 2012). In any case, laboratory
studies might have advised otherwise given that the acquisition of
a new colour category can take a matter of days with sufficient
practice (Özgen and Davies, 2002). It is easy to imagine that
many of the languages in the World Color Survey would have
reported more important colour names should they have also
examined desaturated colours and revisited these preindustrial
societies.

Before considering any claims about augmentation from our
machine-learning data, we need to assure that the arrival of the
new colour terms is not a result of the new methodologies. The
computational procedures of the new method gave the same
outcome of a 5-colour term language for our 2005 data so any
differences cannot be due to the change to RST. Could it be that
the new procedure produced, for the many other additional

colours, somewhat different hues that were greener than their
equivalent paper swatches? Our own studies (Mylonas and
MacDonald, 2016; Paramei et al., 2018) show that this is not so
but, in any case, the Himba can only name the stimuli as green if
they have that colour term and clearly in 2004, they did not. It
still could be that the colours were slightly different and the new
boundary between their green and blue terms would be in a
different place if naming had been measured from paper swat-
ches. However, the boundary between GREEN and BLUE in our
new data is where it would be either if the category had been
imported from another culture or if it were perceptually driven.
So, there is no reason to believe that the new computerised
procedures by themselves would have produced any different
outcomes than that obtained with paper swatches. We therefore
turn to consideration of what are the driving forces for aug-
mentation of colour terms.

One hypothesis for the Himba grue term having split in the last
15 years is that there might be optimal ways of dividing colour
space and so predict how a 5-colour-term grue language might
form 6 categories (Regier et al., 2007; see also Kay and Regier,
2007). It was argued that these proposed optimal partitions could
be based on the uneven shape of perceptual colour space where
several large “bumps” of saturation presumably produce areas
with greater consensus among speakers across languages (Jame-
son and D’Andrade, 1997; Jameson, 2005). Indeed, the speed with
which the augmentation has taken place might argue that the
change “was waiting to happen”. However, the new bluish
(burou) and greenish (grine) categories were not latent in the
GRUE category of the old data (Roberson et al., 2005) as has been
suggested (Kay and McDaniel, 1978; Lindsey et al., 2015; Regier
and Kay, 2004). The colour chips with the highest confidence of
the GRUE category in our earlier data have become boundary
colours between the new grine and burou categories in our cur-
rent data. Alike, the location of the chips with the highest con-
fidence for grine and for burou in our new data were boundary
colours in our earlier data. So, there is no evidence that latent
categories were responsible for augmenting the colour lexicon in
the adult Himba nor indeed that they drive colour naming in the
development of colour naming in Himba children (Roberson
et al., 2004).

Further insight into augmentation can be obtained from our
machine-learning data but it is important to issue a caveat. All the
machine-learning models are statistical techniques and by
themselves do not predict the underlying mechanisms of change.
Even the k-means models do not necessarily entail that there is a
physiological underpinning of the perceptual structure that they
discover (Davidoff, 2015; Jameson and D’Andrade, 1997). How-
ever, our evaluation of supervised (RST) and unsupervised (k-
means) machine-learning approaches suggests that perceptual
similarity alone cannot explain colour categorisation and that
linguistic similarity is the driving force for facilitating effective
colour communication with the Himba at different time periods,
for any number of categories, on the surface and across the colour
gamut and in different colour spaces. Even for a language with
only five terms, the unsupervised (perceptual structure) is sub-
optimal compared to the consistent performance of supervised
learning.

In contrast to supervised cultural learning, the communication
accuracy of unsupervised perceptual learning falls short mainly
because minimising the variance in the data tends to produce
equal size clusters that fail to fit human colour categories of
various sizes and also because exploiting statistical regularities
found in data is sensitive to scaling and produces diverging results
in different coordinate systems (Steels and Belpaeme, 2005). As a
result, perceptual learning produces a suboptimal universal
hypothetical scheme that ignores the variation on the number

Fig. 5 Comparison of supervised (RST) and unsupervised (k-means)
machine-learning methods for the earlier Himba dataset on the surface of
the Munsell system n= 160 (Roberson et al., 2005; left) and the current
Himba data across the Munsell system, n= 600 in CIELAB (middle) and in
sRGB colour spaces (right).
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and distribution of human colour categories in different lan-
guages (Mylonas and MacDonald, 2012). Generally, the main
advantage of unsupervised learning is that no human labelled
data are required but in the case of colour naming this is not true
as they still need human feedback to define the number of cate-
gories and optimise their performance (Lindsey and Brown, 2006;
Zaslavsky et al., 2019). Contextual information found in suffi-
ciently representative large sets of natural images could boost
their performance (Yendrikhovskij, 2001) but again their per-
formance will be sensitive to scaling of different colour spaces
(Steels and Belpaeme, 2005).

It is not certain which of the supervised (cultural) explanations
for the need of additional terms (Gibson et al., 2017) is most
appropriate for the augmentation of the colour lexicon in the
Himba. However, the emergence hypothesis (Levinson, 2000) that
highlights regions of colour space with less consensus and with-
out a name would seem an inadequate explanation for the aug-
mentation of the Himba green term. Observers in our 2005 study
were sure about their responses; they were consistent and with
very few sparsely distributed unnamed stimuli. In any case, as the
Himba did not have areas of blue/green colour space unnamed,
the emergence hypothesis could not provide an explanation for
the splitting of the grue term. Indeed, augmentation of colour
terms in English is also indifferent to whether their region is on a
boundary between two existing categories or is inserted within an
existing category. Mylonas and MacDonald (2016) reported the
augmentation of colour terms in British English from the 11
terms of Berlin and Kay (1969/1991) to 13 terms by the addition
of turquoise and lilac. Neither the emergence nor the partitioning
hypothesis alone could explain these results as turquoise emerged
at the boundary region between blue and green while lilac parti-
tioned the large colour category of purple in agreement with the
results of Lindsey and Brown (2014) that showed both processes
also in the development of modern American colour terms (teal
and lavender). The category insertion hypothesis could only
explain the addition of turquoise but not of lilac. Nevertheless, it
would be possible to propose an emerging case for other terms in
the Himba colour lexicon that are obviously related to objects
(Conklin, 1973; Davidoff et al., 1999; Levinson, 2000) and where
there were areas of inconsistent colour naming. The vinde
(brown) Himba term that is present at the boundaries between
GREEN (grine), BLACK (zuzou) and YELLOW (dumbu) cate-
gories in the interior of the colour space is from cattle appearance,
and the pale yellowish term ngara is from a flower that may be
borrowed from a neighbouring Bantu language (Nurse and
Philippson, 2006). A similar desaturated LIGHT BROWN cate-
gory (color de coyuche) borrowed from Spanish and denoting the
colour of organic cotton was reported by MacLaury (2007) in
Zapotec (see Jameson, 2018 for a digitised archive of MacLaury’s
dataset).

The augmentation that we have shown for the Himba seems
unlikely to be simply the result of schooling as suggested by
Grandison et al. (2014) but very much as if the Himba, especially
the younger ones (Griber et al., 2021), have imported a green
term, probably from Herero who recently started using the term
ngirine (Nguaiko, 2010) instead of the earlier tarazu (Kolbe,
1883); a process we refer to as cultural transfer or simply loan-
words. The centroid of the newly acquired Himba word for
GREEN was indeed located at much the same place in colour
space as it is in English, but it is also in the same place in the
neighbouring language of Herero where its words for green and
blue come from European languages (Roberson et al., 2005).
Inspection of the less-frequent Himba terms (e.g., ngara~light
yellow, pinge~pink and ranje~orange) suggests that there are
other loanwords on the way to becoming independent
colour terms.

Of course, we cannot claim that loanwords have been the
mechanism for augmentation in all languages. However, it is
important to note (see Witzel and Gegenfurtner, 2018) that all
colour names in all languages derive from the colours of objects.
It is important because one might argue that there could be a
different, perhaps physiological, origin for the colour term in the
language from which the term was borrowed. Loanwords would
seem to be important in their adoption to colour lexicons and
much more the case than has been widely accepted. Even as
apparently elementary a colour as red can be traced back to the
Proto-Indo-European Breudh^ for red ochre and copper and is
related to the Sanskrit word, rudhiraB for blood (Alexander and
Kay, 2014; Jones, 2013). Other major colour terms have similar
roots in naming; green has its roots in the Germanic word Bghro^
that refers to growing and flourishing (Jones, 2013; Welsch and
Liebmann 2004, p. 64), which links green to plants. Orange ori-
ginates in the Sanskrit word narangah for orange trees (Jones,
2013). So, it could be that new colour categories largely arrive in a
lexicon simply by being imported from other languages and, it
could even be that perceptual similarity had no role in the origin
of the colour terms.

In conclusion, our findings showing the augmentation of a
green term provide further evidence against the claim that pri-
mary colour categories are constrained by early perceptual
mechanisms (Abramov and Gordon, 1994; Bosten and Boehm,
2014; Emery et al., 2017; Malkoc et al., 2005; Mylonas and Griffin,
2020; Valberg, 2001; Wool et al., 2015; Wuerger et al., 2005) and
challenge explanations based on this claim (Berlin and Kay, 1969/
1991; Kay and McDaniel, 1978; Kuehni, 2005; Philipona and
O’Regan, 2006; Regier et al., 2007). Our findings from machine
learning give priority to linguistic similarity as the mechanism for
augmentation. While we recognise that there is some common-
ality in the organisation of colour categories across the world’s
languages that could be due to perceptual similarity expressed as
variation of saturation on the surface of the Munsell system
(Lindsey and Brown, 2009; Olkkonen et al., 2010; Regier et al.,
2007; Witzel, 2016; Witzel et al., 2015), one needs to look for
complete explanations elsewhere (Davidoff, 2015; Gibson et al.,
2017). To explain the augmentation of colour lexicons, we need to
address how colour naming functions are learned by individuals
in communities through interactions with other cultures, context
and technological development.

Data availability
The dataset generated during the current study are available in the
Dataverse repository: https://doi.org/10.7910/DVN/MGDCX6.
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