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Abstract
In this study, we aimed to find biomarkers of autism in young children. We recorded magnetoencephalography (MEG) in 
thirty children (4–7 years) with autism and thirty age, gender-matched controls while they were watching cartoons. We 
focused on characterizing neural oscillations by amplitude (power spectral density, PSD) and phase (preferred phase angle, 
PPA). Machine learning based classifier showed a higher classification accuracy (88%) for PPA features than PSD features 
(82%). Further, by a novel fusion method combining PSD and PPA features, we achieved an average classification accuracy 
of 94% and 98% for feature-level and score-level fusion, respectively. These findings reveal discriminatory patterns of neural 
oscillations of autism in young children and provide novel insight into autism pathophysiology.

Keywords Autism spectrum disorder · Brain oscillations · Preferred phase angle · MEG · Classification · Biomarker

Introduction

Autism spectrum disorder (ASD) is a complex neurodevel-
opmental disorder that influences the brain's information 
processing during infancy. Autism is characterized by disa-
bilities in social association and communication, which gen-
erally exhibits repetitive behaviours and a restricted range 
of interests (Frith, 2008). Its prevalence rate in children is 
reported to vary from 0.23% in India (Rudra et al., 2017), 
1.7% in the UK (Baio, 2014), to 2.5% in the USA (Xu et al., 
2018). ASD influences individuals in various manners and 

can vary from mild to extreme (Amaral et al., 2017) and 
causes a significantly debilitating effect on the quality of life 
(Farley et al., 2009). There is no remedy for ASD, yet early 
identification followed by suitable intervention can reduce 
symptom severity, uphold improvement in behaviour and 
learning of an autistic child. Of note, predominant behav-
ioural symptoms of ASD emerge later in the developmental 
phase, so there is a critical need for identifying early signs 
of ASD (Wolff et al., 2018).

This study aims to identify early neural markers of ASD 
in young children from their resting state neuromagnetic 
brain responses. A growing body of literature suggests that 
ASD is often associated with disruptions in the features of 
large scale brain oscillations (Billeci et al., 2013; Simon & 
Wallace, 2016), and this has been reported as the core fea-
ture of ASD pathophysiology in very young children (Gab-
ard-Durnam et al., 2019). Electroencephalography (EEG) 
and Magnetoencephalography (MEG) are traditional neu-
roimaging techniques that record macroscopic brain activ-
ity with millisecond precision in a non-invasive fashion. 
Here, the MEG signal is preferred as it is reference-free. We 
recorded brain responses from young children between 4 and 
7 years of age using a MEG device specially customized for 
children while they were watching cartoons of their choice. 
There were sixty children, equally divided into two groups: 
children with ASD and age-matched typically developing 
(TD) children.
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One of the dominant theories of autism is based on the 
disturbance in the balance of excitation and inhibition (E/I) 
in key neural circuits (Rubenstein & Merzenich, 2003; Sohal 
& Rubenstein, 2019). It was found that altered excitation 
and inhibition were present in ASD due to increased or 
decreased high-frequency gamma-band activity based on 
context or task (Kessler et al., 2016). Literature report that 
the brain oscillatory changes in ASD are consistent with a 
disturbance in the balance of excitation and inhibition (Kes-
sler et al., 2016; Port et al., 2019; Rubenstein & Merzenich, 
2003; Simon & Wallace, 2016; Sohal & Rubenstein, 2019) 
as well as disruption in functional connectivity and altered 
thalamic function in multiple frequency bands of the oscilla-
tory hierarchy (Simon & Wallace, 2016). The E/I imbalance 
can be surveyed non-invasively during a resting-state scan 
via patterns of neural oscillations that reflect the synchro-
nous firing of large populations of neurons intervented by 
E/I interactions. In the literature of the last decade, phase-
based features were investigated in the connectivity-based 
analysis (O'Reilly et al., 2017; Velazquez et al., 2009; Ye 
et al., 2014), but not in the spectral-domain analysis. Hence, 
we focus our analysis on phase-based features in the spec-
tral domain for autism classification. We hypothesized that 
ASD might be reliably differentiated from normal brain 
function in young children by analyzing their ongoing brain 
oscillations power and phase in spectral-domain analysis. 
A study recently introduced phase angle clustering, a phase 
angle-based characteristic that quantifies the synchronisa-
tion of oscillatory activity within a conventional frequency 
spectrum (Barik et al., 2020). However, it is fundamentally 
different from phase-amplitude coupling (Port et al., 2019), a 
measure of functional connectivity. In the present study, the 
phase angle clustering property is the preferred phase angle 
(PPA). Since the angle of the average phase offset vector is 
the ‘preferred’ position of the phase angles of the frequency 
bins in a specific frequency band. In this study, along with 
the phase-based and power-based spectral features, we have 
combined these two complementary features in a machine 
learning classification framework for detecting ASD in a 
MEG data set.

Using pattern recognition and classification approach, 
this study presents an artificial neural network (ANN) based 
modelling for differentiating ASD children from TD chil-
dren. As phase is independent of amplitude (Cohen, 2014), 
PPA based results are compared with frequently used power 
spectral density (PSD) based ones. Using the complemen-
tary characteristics of phase and power based features, a 
fusion based model is introduced in spectral-domain analy-
sis to distinguish ASD from TD children by analyzing their 
ongoing large-scale neural responses. Findings show that the 
PPA feature yields better classification accuracy than PSD. 
Further, results highlight that dominant phase based features 
are mostly from theta band oscillations which correlates with 

the autistic symptomatology; however, the discriminating 
PSD features are mostly from high gamma band oscilla-
tions. The current study demonstrates a superior classifica-
tion method by combining PSD and PPA based features in 
a fused system framework. In this paper, both feature-level 
fusion and score-level fusion are explored in autism chil-
dren detection. In autism detection using MEG signals, this 
fusion-based method is a novel machine learning approach. 
This study investigates how different sets of children are 
misclassified in the individual model to understand the 
efficacy of this fusion-based technique of PSD and PPA 
features. Findings demonstrate that the multimodal fusion 
method effectively classifies ASD and TD children.

Materials and Methods

Participants

In this study, we focused on the age range of 4–7 years 
(47–86 months) as our primary goal is to identify early 
pathophysiological biomarkers of ASD in young children. 
There were two groups of children: (i) ASD and (ii) TD. 
The ASD group included 30 children (4 females) with 
autism spectrum disorder with a mean (± SD) age of 64.66 
(± 10.12) months, and the TD group included 30 typically 
developing children (4 females) with a mean (± SD) age 
of 64.83 (± 10.51) months; the two groups did not signifi-
cantly differ in age (two-tailed t-test, p > 0.95). The ASD 
children were diagnosed by an experienced psychologist and 
clinical psychiatrist using different screening tools; such as 
the Autism Diagnostic Observational Schedule, Generic 
(ADOS) (Rutter et al., 2003), the Diagnostic Interview for 
Social and Communication Disorders (DISCO) (Wing et al., 
2002) and the DSM-IV (APA, 1994) criteria before taking 
the MEG data. Specifically, the ADOS cutoff and parent 
report on the social communication questionnaire are the 
popular screening tools with which the ASD was confirmed. 
The children in the TD group had no behaviour or language 
problems as reported by their parents. The written informed 
consents were obtained from the parents prior to the data 
acquisition. The Ethics Committee of Kanazawa Univer-
sity Hospital, Japan, approved this study protocol, and the 
experiment was conducted as per the World Declaration of 
Helsinki.

Data Acquisition and Preprocessing

The MEG signals were acquired using a 151-channel 
superconducting quantum interference device (SQUID) 
whole head coaxial gradiometer MEG system (PQ1151R; 
Yokogawa/KIT, Kanazawa, Japan) that was customized 
for children in a magnetically shielded room (Daido Steel, 
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Nagoya, Japan). The custom child-sized MEG system 
ensured the sensors were placed quickly and effectively to 
minimize head movement (Johnson et al., 2010). An experi-
menter was also present in the MEG room at the time of 
recording to ensure that the children remained relaxed to 
prevent movement throughout the recording. Resting MEG 
data were recorded from all children while they lay supine 
on the bed and viewed a silent cartoon of their own choice 
that was selected before the recording. There was no task 
involved, and the duration of the resting MEG data was 
180 s. The sampling frequency was 1000 Hz and filtered 
online with a 200 Hz low-pass filter.

In this experiment, the preprocessing and analysis of 
MEG data were incorporated by MATLAB based toolbox, 
FieldTrip (Oostenveld et al., 2010), and by custom-made 
MATLAB scripts. The data were first visually inspected for 
large artefacts. Afterward, bad sensors that were either flat 
or noisy were detected and replaced by nearest-neighbour 
interpolation. Next, the MEG dataset was subsequently fil-
tered between 1 and 100 Hz, and to reduce powerline noise, 
a notch filter was applied at 50 Hz. Finally, independent 
component analysis (ICA) was applied to remove eye-blink 
related artifacts.

Data Analysis Overview

Given the role of large scale brain responses characterizing 
ASD, we divided the broadband MEG signal into six stand-
ard frequency bands (fb) (Donner & Siegel, 2011): delta-
band (1–4 Hz), theta-band (4–8 Hz), alpha-band (8–13 Hz), 
beta-band (13–30 Hz), lower gamma-band (30–50 Hz) and 
higher gamma-band (50–100 Hz). Our primary focus was 
classifying ASD children from TD children using resting-
state MEG signals. Towards this, we adopted a machine 
learning framework (Barik et  al., 2019a, 2019b; Barik 
et al., 2019a, 2019b); machine learning based approaches 
are useful in diagnostic and intervention research in clini-
cal neuroimaging (Iniesta et al., 2016; Vieora et al., 2017), 
including ASD (Hyde et al., 2019). Furthermore, experts 
have a certain degree of subjectivity (supported by rigorous 
statistical analysis) in creating the diagnostic instruments 
(i.e., ADOS, DISCO). Hence, it is reasonable to believe 
that objective machine learning methods may provide more 
reliable performance and increased efficiency by reducing 
redundancy within an instrument. The supervised machine 
learning framework consists of the following main blocks—
feature extraction, feature selection and modelling which 
leads to the classification of two different classes, TD and 
ASD. We followed a nonliear artificial neural network 
(ANN) based modelling scheme (Bishop, 1995; Haykin & 
Network, 2004) to learn the underlying relationship among 
the selected fetaures of a particular class to separate it from 
the other class.

Feature Extraction

Frequency domain analysis is the most common and familiar 
analysis for characterizing neural oscillations of a signal. 
Fourier Transform (FT) is the keystone of this frequency 
domain analysis. FT decomposes a time-domain signal into 
its constituent frequencies with different amplitude and 
phase angles (Oppenheim, 1999). It was found that phase 
angles are independent of magnitude (Cohen, 2014). We 
investigated the power spectral density (PSD) and phase-
based features to compare classification performance. In this 
paper, we explained a frequency band-wise preferred phase 
angle (PPA) as a novel feature in MEG signal processing. 
The power spectral density of a continuous-time and finite 
power signal estimates the power of each of the constitu-
ent frequency components. For each channel of the MEG, 
the PSD is estimated using Welch’s method (Welch, 1967), 
where the whole time-series (180 s) is divided into equal 8 
segments with 50% overlap. Hence, the length of each of 
the 8 segments is 40 s. Then, each segment is windowed 
with a Hamming window, and its magnitude squared FT is 
computed. The PSD estimate for each channel is obtained 
by averaging the periodogram estimates across segments, 
as shown below:

The frequency domain representation, Xn(f ) is the FTof 
time signal xn(t) . After getting all the PSD over 1 to 100 Hz 
in steps of 1 Hz frequency components, we averaged the 
power spectrum over the six frequency bands as shown in 
the following equation.

where fb represents each frequency band, and Nfb represents 
the number of components in each fb. For example, in case 
of alpha band, fbmin = 8, and fbmax = 13, so Nfb = 6, as our 
frequency resolution was 1 Hz. The frequency band-wise 
power spectral density estimates are denoted as PSDfb.

A frequency band-wise phase angle-based feature 
named phase angle clustering was initially developed in 
a previous study (Barik et al., 2020). In this study, we 
have analyzed this phase-based feature in detail. After 
the computation of Fast Fourier Transform (FFT), we get 
phase angles (θ) at each frequency component (f) from 1 
to 100 Hz in steps of 1 Hz for each channel (Oppenheim, 
1999). The phase angle is calculated using simple Euler's 
formula ei�(f ) (Strang, 1991). Phase angles are commonly 
represented in polar space, ranging from 0 to 2π. These 

(1)

Sxx(f ) =
1

N

N∑

n=1

||Xn(f )
||
2
; f = 1, 2,… , 100 and N = 8

(2)���
��

= 10 log10

(
1

Nfb

fbmax∑

f=fbmin

Sxx(f )
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can be illustrated as vectors on a unit circle. In the polar 
space, the length of the average phase angle vector is 
known as phase consistency (Cohen, 2014), and the angle 
of this resultant phase vector is termed as preferred phase 
angle (PPA). For each MEG channel, in a given frequency 
band ( fb ), PPAfb is calculated as:

where all the notations are similar to the first equation. Here, 
Fig. 1 is shown for a detailed illustration of PPAfb. Figure 1 
represents the PPA of theta band (PPAtheta), where each unit 
length phase angles depict 4 Hz, 5 Hz,…, 8 Hz frequency 
components. These phase angles of different frequency 
bins within a frequency band are represented by different 
colors (line of blue, orange, yellow, violet, green, cyan). The 
average phase angle represents PPA clustered of theta band 
frequencies (indicated by red color), and the average phase 
consistency (indicated by magenta color) is the length of the 
average phase angle vector in the polar space. Similarly, it 
is found for the alpha band in the right side from 8 to 13 Hz 
with the gap of 1 Hz frequency components. All the ASD 
subjects’ PPAtheta and PPAalpha are shown in Fig. 1 from 
a randomly chosen channel (sensor: AG102). Here, in the 
polar space, PPAtheta value is 77.95°, and PPAalpha value is 
196.85°.

For comparison of classification performance, we com-
puted commonly used power-based along with phase-based 
spectral domain features. In addition, PSDfb and PPAfb 

(3)���
��

= ∡

(
1

Nfb

fbmax∑

f=fbmin

expi�(f )

)

features are computed across all MEG channels. Hence, 
for both features (PSDfb and PPAfb), the dimension for each 
participant is 906 [channel (151) × frequency-band (6)] for 
the overall brain, whereas, for each hemispheric features, 
the dimension is 420 [channel (70) × frequency-band (6)]. 
The features are normalized using z-score normalization 
(Kochendörffer, 1965) before proceeding to the feature 
selection step.

To note that as the feature values are normalized, the 
time-shift-related phase offset does not show up in the nor-
malized PPA features. Here, the normalization confines the 
values of PPA features to ± 1 rad. Therefore, the normaliza-
tion reduces the arbitrariness of the range of the computed 
PPA values which is a standard step to feed extracted fetau-
res for modelling. Accordingly, it also confines the time-shift 
of the data (phase shift of the features) to the same range.

Feature Selection

The objective of feature selection is to extract a subset 
of the most relevant features while removing redundant 
ones (Yu & Liu, 2003). Feature selection is helpful as 
it reduces feature dimensions. When there are many fea-
tures, the simple filter feature selection method, such 
as t-test, performs better than the complex wrapper and 
embedded techniques (Haury et al., 2011). We used a t-test 
and ensured the normality assumption (see Fig. 2). Even 
it is to be noticed that the relevance ranking strategies 
(e.g., t-test) take moderately less calculation time (Chan-
drashekar & Sahin, 2014) for feature selection. We have 

Fig. 1  Presentation of PPA of theta band and alpha band  (PPAtheta 
and  PPAalpha) in the polar space (indicated by red color). The bold 
magenta line indicates the average phase consistency and the aver-
age phase angle represents PPA feature indicated by bold red color. 
In the first polar plot (left side) of theta band representation, the phase 

angles of 4 to 8 Hz frequency bins are represented by blue, orange, 
yellow, violet and green lines respectively. A similar color convention 
is followed in the right side polar plot for the alpha band with fre-
quency bins ranging from 8 to 13 Hz in increasing order
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used p-values to rank the features. The p-value is the prob-
ability of obtaining the calculated t-statistics. From the 
ranked features, we selected a subset of the features that 
were below the chosen p-value. These p-values are used 
as thresholds to obtain a coarse selection of features to 
reduce the feature dimension. Different thresholds were 
employed to investigate the effect of increasing the num-
ber of selected features (Mwangi et al., 2014; Wang et al., 
2014).

Classification Modeling

After feature selection step, the classification model finds the 
underlying associations or relationships among the normal-
ized features to arrive at the decision model. Using t-distrib-
uted Stochastic Neighbor Embedding (t-SNE) plots (Hinton 
& Roweis, 2002), which convert high-dimensional data into 
its two-dimensional analogues, we present a visualization of 
the clustering effect for the fetaures extracted from TD and 
ASD classes in Fig. 3. This t-SNE embeds high-dimensional 
points in low dimensions solely based on their relative simi-
larities that correspond closely to the true labels. Figure 3, 

Fig. 2  Representation of normality plot of PSD and PPA data averaged for lower gamma band features (randomly chosen frequency band)

Fig. 3  Representation of the t-SNE plots before and after normalization (over all the discriminative PPA features) of ASD and TD class
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also shows reduction in the number of outliers after z-score 
normalization which helps in modeling by making the deci-
sion boundary simpler, thereby, enhancing the classification 
model's discriminative ability.

This work aims to study and analyze how the underlying 
neural mechanisms of autistic children differ from typically 
developing children based on a machine learning framework. 
Here, MEG signals are used to classify ASD children from 
TD children. The detailed classification process through a 
block diagram is illustrated in Fig. 4. It must be stressed here 
that the training data set and test data are completely inde-
pendent in terms of different subjects, i.e., the subjects of 
the test dataset are different from the subjects of the training 
dataset. The problem of distinguishing between the TD and 
the ASD children is posed as a two-class classification prob-
lem where the classification accuracy indicates the distin-
guishable ability of the spectral features. In this framework, 
a two-layered feedforward back-propagation artificial neural 
network (ANN) (Bishop, 1995; Haykin & Network, 2004) 
is used as a classifier. This ANN model finds the underlying 
relationships among these features for a particular class or 
category by learning the training data. The ANN is trained 
through an iterative, backpropagation algorithm which is 
essentially nonlinear and finds higher order statistical dis-
tribution related patterns or relationship embedded in the 
normalized feature vectors. This underlying relationship 

comes from the relative positioning of the feature vectors 
that remains invariant for a particular class and caters to the 
decision making process. We incorporated fivefold cross-
validation (CV) in our classification model to remove the 
confusion of data biases. In this ANN model, a hidden layer 
consisted of 10 neurons, and an output layer included two 
neurons indicating the two classes. The scaled conjugate 
gradient descent algorithm (Møller, 1993) is used to train the 
neural network, as it converges fast and does not get stuck 
on local minima.

For the analysis using ANN, the hyperbolic tangent sig-
moid transfer function is set as activation function, and the 
analysis has been carried out considering 10,000 as an upper 
limit for cycles and 10e-5 as mean square error. Normaliza-
tion of feature vector is embedded before classification, and 
this z-score normalization rescales the feature values such 
that the mean of all of the values is 0 and the standard devia-
tion is 1 (Kochendörffer, 1965). Early stopping criteria are 
employed in the validation set to restrict the overfitting of the 
current model. In this classification process, the three sub-
sets are training, validation, and testing. The available data 
of all participants are divided into three subsets, with test set 
subjects differing in each fold of the fivefold CV. The fol-
lowing is the distribution of all 60 patients in each fold: the 
training set has 36 participants (18 from each class), the vali-
dation set contains 12 subjects (6 from each class), and the 

Fig. 4  Block diagram of classification process: All subjects pro-
ceeded to the main classification block. Then typical machine learn-
ing classification process is executed with a fivefold nested cross-vali-
dation technique. Here simple filter feature selection technique (t-test) 

is followed by Artificial Neural Network for the two-class problem. 
Finally, the outcomes are classification accuracy, sensitivity, and 
specificity
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test set contains the remaining 12 individuals.The first sub-
set is a training set, wherein gradient computation, network 
weights, and bias updation are performed. The second subset 
(validation set) validates the errors throughout the training 
process. Our model tried to minimize the errors through the 
validation process from the beginning. The continuation of 
this process is stopped when the validation error showed 
reversal trends. Here, the stopping criterion is the maximum 
validation error increasing check up to 6 times. Finally, the 
model with minimal validation error is used for the testing 
process. The third subset, i.e., the test set, evaluates the aver-
age classification performances over all CV. The fivefold CV 
technique is used with mutually exclusive test sets to calcu-
late the performance matrices in our classification process. 
Our model calculated the classification accuracy, sensitivity, 
specificity, and standard error of the mean (SEM) for all the 
feature types. Here, sensitivity and specificity referred to the 
percentages of ASD and TD children correctly identified, 
respectively. Finally, the percentage to correctly classify the 
ASD and TD children in their respective classes is indicated 
as the classification accuracy. In this experiment, we calcu-
lated average classification accuracy, which averaged over 
fivefold classification outcomes.

Fusion

It is challenging for any pattern classification task to model 
the perfect one by only one hypothesis. An effective fusion 
method is necessary to combine information from multi-
ple single modality systems in a multimodal experimental 
framework. Information from multiple sources of different 
attributes can be consolidated at several levels, including the 
feature extraction level, score level, and decision level. This 
paper examined the feature level's performance and the sum 
rule-based score level fusion.

Feature‑Level Fusion

All the features are concatenated to form a single feature 
vector (Ross et al., 2005). The final fused vector is obtained 
by simple concatenation of normalized feature vectors of 
frequency band-wise power spectrum density (PSDfb), and 
frequency band-wise preferred phase angle (PPAfb) fea-
tures into a single vector (Nadheen & Poornima, 2013). Let 
ti = {t1, t2, t3,… tn} and si = {s1, s2, s3,… sn} be the normalized 
feature vectors of PSD and PPA, respectively. The fused vec-
tor after feature level fusion ( fvFeatureLevel ) is represented as

The PSD and PPA features of individual subjects are 
obtained in the testing phase and then preprocessed to 
extract their feature vectors. Finally, the feature vectors are 

(4)fv
FeatureLevel

=

{
t1, t2, t3,… t

n
, s1, s2, s3,… s

n

}

fused to form the final test feature vector. The feature-level 
fusion results in large feature dimensions, and the curse of 
dimensionality are mitigated by feature selection.

Score‑Level Fusion

In score-level fusion, the classifier output is combined such 
that appropriate weights are given to the decisions of differ-
ent participating systems. Score-level fusion is commonly 
preferred in multimodal biometric systems because match-
ing scores contain sufficient information to make genuine 
and impostor cases distinguishable, and they are relatively 
easy to obtain (He et al., 2010). First, the matching prob-
ability scores of the individual feature types are found at the 
output of the classifier model. Then, the transformed scores 
are combined using one of the integration methods. There 
are different well-known methods of score-level fusion, 
namely, a simple sum of scores, product rule, maximum 
score, minimum score, and weighted sum rule-based fusion 
(Varchol et al., 2008). In our study, we obtained a weighted 
summation of the output scores according to:

where fvScoreLevel is the fused vector after score-level fusion. 
Here, si of Eq. (5) represents an ith model of the multimodal 
system. The P

(
si
)
 is represented as the posterior probabil-

ity score from the model si ., and (i = 1,…,M), where M is 
the number of modalities. Weights ( wi) are assigned to 
individual modalities. We empirically gave weights to the 
classifiers’ probabilistic outputs, and the values of empiri-
cal weights (wk) are chosen from 0.1 to 0.9 (where k = 1: 
9). Here PSD and PPA are the only two models (M = 2) 
available, with P(�) and P(�) being the probability matrices, 
respectively.

In our case, the system wh better performance should 
be given more weight in the decision-making process. This 
aspect makes score-level fusion superior to feature-level 
fusion. Here weights are chosen empirically (Waldekar & 
Saha, 2018) as it took less computation time than multi-
modal weight optimization algorithm.

Criteria for Fusion

Though theoretically, power and phase are independent of 
each other, we have to check whether fusion can be applica-
ble in these (PSD and PPA) feature sets before implementing 
a fusion-based model. For one sample, if the classification 
score of one feature is different from that of the other, it 

(5)fv
ScoreLevel

=

M∑

i=1

w
i
P
(
s
i

)

(6)fvScoreLevel = wkP(�) +
(
1 − wk

)
P(�)
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implies that the two features are complementary. In other 
words, if two features are complementary, the correlation 
coefficient of their scores is expected to be close to 0. Fig-
ure 5 represents the histogram of the correlation coefficient 
of the training scores of the PSD feature and PPA feature. 
If the two feature types each have n feature vectors, we will 
get n-correlation coefficients. It is necessary to check the 
mean of these n-correlation coefficient values spread out 
across a range of values near to 0. Here the mean correlation 
coefficient value is 0.0274, indicating that the PSD and PPA 
features are complementary. As the correlation coefficient 
between the scores of two features is projected to be close 
to zero, the two feature types (PSD and PPA) are comple-
mentary to some extent.

Results

PPA and PSD Based Classification

The analysis of PPAall , PPALeft and PPARight features were 
carried out for each participant. To compare the perfor-
mances with PSD features, we have investigated PSDall , 

PSDLeft and PSDRight features. PPAall and PSDall features 
were chosen from all 151 MEG sensors. The PPALeft and 
PPARight correspond to the left and right hemispheric sen-
sors, respectively. Hemispheric features were similarly 
considered for PSDLeft and PSDRight features. In these hemi-
spheric features, 11 midline sensors were excluded. Hence, 
in each hemisphere, there are 70 sensors only.

The classification outcome of PPA features illustrated 
in Fig. 6. The classification accuracy was graphically illus-
trated with the empirical chance level of 60% (Combrisson 
& Jerbi, 2015) by setting the p-value threshold in between 
0.005 to 0.05 with the interval of p-value 0.005. Thus, a suit-
able threshold was empirically ascertained for selecting the 
features. With the stricter p-value threshold, selecting dis-
criminating features becomes less, resulting in degradation 
in the classification accuracy. As the classification accuracy 
did not show substantial improvement than the chance level, 
the p-value was gradually increased to find out the optimal 
threshold beyond which the classification accuracy almost 
saturated. The optimal p-value was chosen using the clas-
sification results of the validation set data only.

Table 1 shows the classification performances of the ANN 
classifier using these PPA feature types, whereas similarly, 

Fig. 5  Histogram of the correlation coefficient of the training scores 
of PSD feature and PPA feature. The histograms are near to correla-
tion value 0, i.e., our features are to a large extent complementary. 
Histogram of correlation coefficient of the training scores of two ideal 
complementary feature types (in ‘red’ color) and the histogram of the 

correlation coefficient of the training scores of PSD feature and PPA 
feature (in ‘blue’ color). Blue histograms are nearer to correlation 
value 0, i.e., our features are to a large extent complementary (mean 
correlation value = 0.0274)
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Table 2 represents the same for PSD feature types. We only 
mentioned the decision outcomes at optimal p-values for 
each feature type. Comparing the results of both the features, 
it is found that PPA features yield better classification accu-
racy than PSD features for ASD classification in children 

from their resting state MEG data. The classification per-
formance of PPAall is 88.20 ± 3.87%, whereas the same for 
PSDall is 82.13 ± 2.11%. For PSD features, right hemispheric 
features contained more discriminative information than the 
left hemispheric ones. However, for PPA features based on 
classification outcome, we have found that the distinguishing 
information of either left or right hemisphere was compa-
rable. The hemispheric differences were statistically tested 
for both the PPA and PSD features. The statistical t-test indi-
cated that the hemispheric PPA feature groups (i.e.,PPALeft 
and PPARight ) did not significantly differ in performances 
(p > 0.95). However, the hemispheric PSD feature groups 
significantly differed (p < 0.002) in fold-wise test accuracy, 
according to a paired t-test.

By comparing the results of Tables 1 and 2, this phase 
based feature (PPAall) demonstrated superior (88%) classifi-
cation performance over the one (82%) based on commonly 
used power spectral density (PSDall) based feature. As a con-
sequence, this phase-based feature is investigated further. 
The mean angle of the PPA features of each frequency band 
is illustrated here in polar plots of Fig. 7 for both ASD and 
TD classes. It represents frequency band-wise PPA features 
at the AG102 sensor (located at right parietal area) for 30 
participants before normalization. To give an example, we 
randomly chose one sensor (AG102) for each of the fre-
quency bands. Observations from this Fig. 7 reflect that the 
PPA value ranges from 0° to 360°. The mean angle of PPA 
(angle of the magenta line) reflects that the mean angle of 
PPA of the ASD class is greater than the mean angle of the 

Fig. 6  Representation of aver-
age classification accuracy (in 
%) of different preferred phase 
angle (PPA) features (for the 
whole brain and each hemi-
sphere) with respect to each 
p-value threshold (from 0.005 
to 0.05) along with empirical 
chance level (pink horizontal 
line)
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Table 1  Representation of classification outcomes (in %) of PPA fea-
tures of overall cortex along with left and right hemisphere

Feature: PPA PPAall PPALeft PPARight

p-value < 0.045 0.040 0.040
Accuracy ± SEM (%) 88.20 ± 3.87 83.40 ± 2.48 80.47 ± 2.01
Sensitivity ± SEM (%) 90.80 ± 3.24 86.53 ± 2.62 80.93 ± 1.71
Specificity ± SEM (%) 85.60 ± 5.61 80.26 ± 3.56 80.00 ± 3.52
Number of selected 

features
60 23 29

Table 2  Representation of classification outcomes (in %) of PSD fea-
tures of overall cortex along with left and right hemisphere

Feature: PSD PSDall PSDLeft PSDRight

p-value < 0.015 0.015 0.015
Accuracy ± SEM (%) 82.13 ± 2.11 73.93 ± 2.53 80.87 ± 4.68
Sensitivity ± SEM (%) 82.13 ± 3.62 74.53 ± 6.90 77.20 ± 7.93
Specificity ± SEM (%) 82.13 ± 2.46 73.33 ± 4.96 84.53 ± 3.02
Number of selected 

features
46 15 26



 Journal of Autism and Developmental Disorders

1 3

PPA of the TD class in all frequency bands except the low 
gamma band.

Using a data-driven approach, we can classify autistic 
children from normal children. However, this is not the only 
target of this study. We also explored neural oscillations and 
spatial pattern analysis to identify the frequency bands and 
spatial patterns that consistently show discriminative ability 
between two classes across all the subjects. Most discrimi-
nating PPA features are found here from the theta frequency 
band. Spatial patterns of PPA discriminatory features are 
located in the central, parietal, and frontal brain regions. 
However, in this frequency band-wise spatial pattern analy-
sis, discriminating PSD features are found mostly from high 
gamma-band oscillations, and these discriminating features 
are mostly selected from central, parietal, and temporal 

regions. The row-wise representation of Fig. 8 represents the 
discriminatory features of PPAall and PSDall. The frequency 
band-wise distribution of selected features is illustrated in 
Fig. 8a,c and the spatial pattern of those features ispresented 
in topoplots of Fig. 8b,d.

Fusion‑Based Classification

For feature-level fusion, we combined PSDall and PPAall fea-
tures for each participant. Since the feature dimension was 
large, we performed feature selection as mentioned earlier. 
Following ANN based classification, we only choose the 
optimal p-value, i.e., p < 0.05 (the highest threshold) for both 
the PSD and PPA features. After feature-level fusion, the 
average classification accuracy of features is 94.46 ± 1.35% 

Fig. 7  Representation of frequency band-wise preferred phase angle 
range in both ASD class and TD class and the mean angle of that 
PPA features (red color) in each class at the randomly chosen AG102 
sensor (located at right parietal area) before normalization. The mean 

angle of PPA of all 30 subjects (angle of the magenta line) reflects 
that the mean angle of PPA of the ASD class is greater than the mean 
angle of the PPA of the TD class in all frequency bands except the 
low gamma band
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for the specific p-value mentioned above. The sensitiv-
ity, specificity, and the number of selected features are 
94.13 ± 2.90%, 94.80 ± 2.52%, and 508, respectively. Among 
these 508 discriminative features, 20 discriminative features 
are common in both PSD and PPA. These discriminative 
features are mostly from theta-band oscillations, which cor-
relate with autistic symptomatology. The discriminating 
features, those are common in individual feature types, are 
shown in Fig. 9. Notably, the feature-level fusion of PSD and 
PPA features performance is, on average, 6% better than the 
classifier based on PPA features.

For score level-fusion, the classification performance 
of sum-rule based score-level fusion is 98.33 ± 0.74% at 

p-values threshold on < 0.02. Here probability weight is 
set to 0.2 (wk) of PSD features, and that for PPA feature is 
0.8. Table 3 shows the classification performances of ANN 
classifier using these fusion-based models, i.e., feature-level 
fusion and score-level fusion types. We only mentioned the 
decision outcomes at optimal p-values for each fusion-based 
model type. Using ANN, the performance of score-level 
fusion has improved 4% compared to feature-level fusion.

Figure 10 shows the average classification performance 
of power spectral density (PSDall) features, preferred phase 
angle (PPAall) features, and fused feature vector after fea-
ture-level fusion and score-level fusion concerning differ-
ent p-value thresholds used in the feature selection method. 

Fig. 8  Representation of discriminating features: (a) the frequency 
band-wise distribution of selected PPA features from all 151 chan-
nels (PPAall). (b) Topoplot represents the spatial pattern distribution 
of discriminating PPAall features. The topoplot color scales indicates 
PPA, ranges from − pi to + pi (from − 3.141 to + 3.141) radians. The 
distribution of 60 discriminating sensors in the brain and their corre-
sponding PPA values are represented in the layout. (c) Similarly, the 

frequency band-wise distribution of selected PSDall features. (d) The 
spatial pattern distribution of discriminating PSDall features is repre-
sented in this topoplot. The distribution of 46 sensors in the brain and 
their corresponding brain signals are represented in the layout. The 
color scale is  10−26 *[− 0.14 to + 14.41]  T2 (or 1.0e−28 *[− 0.00143 
to 0.14417]  Tesla2). The value represents the brain signal amplitude 
square at those particular sensors averaged over all the 3 second data
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After feature and score-level fusion, using spectral-domain 
analysis, we achieve a classification accuracy of 94% and 
98%, respectively, thereby score-level fusion offering a 
slightly better classification accuracy than the feature-level 
fusion. Finally, we show the comparison of classification 
accuracy, sensitivity, and specificity at individual feature 
level (PSD and PPA), feature-level fusion, and score-level 
fusion in Fig. 11 through barplot.

In autism detection using MEG signals, this fusion based 
model is a novel machine learning approach. To understand 

Fig. 9  Representation of 
discriminating features of the 
fusion based system: (a) the fre-
quency band-wise distribution 
of selected 20 features, common 
in both PSD and PPA feature 
types. (b) Topoplot represents 
the spatial pattern distribution 
of these discriminating features. 
The topoplot color indicates 
"count"

Table 3  Representation of classification performances (in %) of 
fusion based models of overall cortex

Fusion Feature-level fusion Score-level fusion

p-value < 0.05 0.02
Accuracy ± SEM (%) 94.46 ± 1.35 98.33 ± 0.74
Sensitivity ± SEM (%) 94.13 ± 2.90 98.70 ± 0.52
Specificity ± SEM (%) 94.80 ± 2.52 97.96 ± 1.49
Number of selected 

features
506 86 (PPA:31; PSD:55)

Fig. 10  Representation of 
average classification accuracy 
of PSDall, PPAall, and fused 
feature vector after feature-level 
fusion and score-level fusion 
with respect to different p-value 
thresholds used in the feature 
selection method. The average 
accuracy is presented with the 
empirical chance level (pink 
horizontal line). Error bars 
indicate the standard error of 
the mean (SEM)
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how efficient this fusion of PSD and PPA features is, we must 
check which subjects are misclassified in individual models. 
It is illustrated using boxplots in Figs. 12 and 13 that the PSD 
model misclassified 11 subjects and PPA misclassified 7 sub-
jects, respectively. The first 30 boxplots (in ‘blue’color) rep-
resent the TD class, and the rest 30 represent the ASD class. 
The TD subjects are correctly classified if the output scores 
are ≤ 0.5, and ASD subjects are correctly classified if those 
scores are ≥ 0.5. Among these sets of subjects, only the 17th 
subject is commonly misclassified. Except for this (17th) sub-
ject, different sets of subjects are misclassified from the ANN 
model, using each model (with PSD and PPA features). Hence, 
from the perspective of classification scores or output, it is 
evident that the PSD feature cannot misclassify a different set 
of subjects than the PPA characteristics. Instead of criteria of 
fusion of individual features, here on the other way again, we 
showed that two individual models are complementary; hence 
multimodal fusion is more effective to classify ASD and TD 
in this machine learning framework.

Discussion

In this study, we compared the ongoing neuromagnetic brain 
activity of young children (4–7 years) with autism spec-
trum disorder (ASD) to age and gender-matched typically 

developing (TD) children. Using features based on spectral-
domain analysis (both in power and phase) along with the 
fusion analysis in a machine learning classifier, we exhibited 
that we could classify the ASD from TD children with an 
accuracy well above chance level. Further, we found that 
the preferred phase angle (PPA) showed higher classifica-
tion accuracy than the traditional power spectral density 
(PSD) feature. However, by fusing these two features, we 
demonstrated a considerable improvement of classifica-
tion accuracy, thereby suggesting the complementarity of 
these two features in distinguishing ASD from TD children. 
In this paper, using spectral features, we have proposed a 
fusion-based classifier model with a supervised classifica-
tion method. However, in clinical practice, in new and real-
istic conditions, we will get the MEG signals of other new 
sets of children with their screening tool test scores which 
will indicate their class labels. Therefore, we can test the 
spectral features extracted from the MEG signal of a new 
set of children using our experimental protocol and consid-
ering our model as a trained model. Here, the classification 
accuracy reported in this paper reflects how accurate our 
classifier is and how proficient this experimental method is 
to distinguish autistic children from TD children using their 
MEG signal. In the following paragraphs, we discuss each of 
these findings in further detail and include some limitations 
of the current study.
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Fig. 11  Representation of classification performances (in %) of individual features, feature-level fusion, and score-level fusion
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Fig. 12  Representation of classification output scores of PSD features with respect to all 60 subjects. PSD misclassified 11 subjects and the sub-
ject indices are: 1, 3, 6, 17, 34, 37, 50, 53, 57, 58, 60. The first 30 boxplots (in ‘blue’ color) represent TD class and rest 30 represent ASD class

Fig. 13  Representation of classification output scores of PPA features with respect to all 60 subjects. PPA misclassified 7 subjects and the sub-
ject indices are: 2, 17, 18, 25, 32, 35, 41. The first 30 boxplots (in ‘blue’ color) represent the TD class, and the rest 30 represent the ASD class
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Preferred Phase Angle in Autism

We employed a pattern classification approach using artifi-
cial neural network (ANN) based modelling for discriminat-
ing ASD and TD children using PPA features. As noted that 
phase angles are independent of power (Cohen, 2014), we 
compared our results with power spectrum density (PSD) 
features that capture the mean amplitude of the neural oscil-
lations in each frequency band. We found that PPA yields 
better classification accuracy than PSD, suggesting that 
phase angles aggregated in each frequency reveal significant 
phase alignment effects that distinguish autistic brain func-
tion from typically developing brain. Furthermore, in spec-
tral analysis, the phase-based measures reflect considerable 
improvement over power-based measures, giving insight into 
the presence /absence of systematic rhythms across oscil-
lations in each neural frequency band. Hence, this result 
suggests a new way to quantify temporal synchronization of 
brain oscillations as an effective measure in discriminating 
ASD from TD children.

According to the E-I hypothesis, when the neuronal 
membrane potential is balanced, the relative phase and 
magnitude of excitation-inhibition (E-I) are also balanced, 
reflecting systematic synchronous neuronal oscillations in 
the brain (Sohal & Rubenstein, 2019; Zhou & Yu, 2018). 
The imbalance of E-I can disturb this signature of relative 
neural firing time and magnitude, reflecting synchronous 
neural oscillation’ power and phase. Hence, spectral power 
and phase are disrupted in functioning. Our proposed feature 
PPA measures the resultant phase angle of frequency bins 
over a frequency band. It reflects the phase of excitability of 
the underlying neuronal assemblies oscillating at different 
nearby frequencies but belonging to a frequency band. It is 
not directly linked to the phase of the membrane potential. 
Instead, PPA may be linked to the cortex’s imbalanced syn-
aptic excitation and inhibition during the resting state and 
sensory processing. Our experimental outcome shows that 
the phase of excitability of underlying neurons of the autistic 
brain is different from the typically developing brain in each 
frequency band.

Frequency Band‑Wise Preferred Phase Angle in Each 
Class

The length of the average phase angle vector in polar space 
within a typical frequency band is known as phase consist-
ency (Cohen, 2014), and the angle of this resultant vector 
is known as the preferred phase angle. Phase angles are 
commonly represented in polar space, ranging from 0 to 2π. 
These can be illustrated as vectors on a unit circle. These 
PPA ranges are different in each class, particularly for discri-
minant features. Frequency band-wise observations in phase 
based feature reflect that the PPA of ASD class is greater 

than PPA of TD class in all frequency bands except low 
gamma (Fig. 7). PPA represents how much phase synchro-
nization within a frequency band deviates from the initial 
phase in a counter-clockwise direction. Using PPA, it is clear 
that the initial phase angle deviation of phase in autism class 
is more than in TD class.

Neural Oscillations and Spatial Pattern Analysis

Using a data-driven exploratory approach, we showed that 
it is possible to classify ASD from TD children. However, 
we also explored the ASD pathophysiology by performing 
frequency band-wise analysis and spatial pattern analysis of 
the features over whole cortex MEG sensors. More specu-
latively, the results of neural oscillations and spatial pattern 
analysis are presented in Fig. 8. In the case of PPA features, 
neural oscillations that distinguished the ASD class from the 
TD class were not specific to any particular frequency band. 
Instead, the discriminatory PPA features were from all the 
frequency bands; a marginal dominance (p-value = 0.054) 
of theta band (4–8 Hz) was observed. In the spatial pattern 
analysis, the discriminatory features were dominant in the 
central, parietal, and frontal brain regions. In the case of 
PSD, discriminatory features were observed in the high-fre-
quency gamma band. Discriminating power-based spectral 
features are found in central, parietal, and temporal brain 
regions. Already, NeuroSPECT work concluded that tem-
poral and frontal lobe dysfunction is significantly involved 
in autism spectrum disorder (Goldberg et al., 1999). For 
both spectral features, discriminating features are common 
from central and parietal brain regions. The explanation of 
the relationship between autistic symptomatology and these 
brain areas is found in the literature (Courchesne et al., 1993; 
DeRamus et al., 2014). It was found that compared to TD, 
ASD children showed significantly enhanced activation in 
the parietal region (particularly the angular gyrus) while 
detecting the location of objects on visuospatial processing 
(DeRamus et al., 2014). Even parietal lobe abnormalities 
of autistic children were detected in neuroanatomy investi-
gation (Courchesne et al., 1993), where the cerebrum was 
reported as the origin of this abnormality. The cerebrum 
region mediates many high cognitive functions; several of 
those (i.e., social communication, language, reasoning, plan-
ning, and organizing) are severely disrupted in the autistic 
brain.

Previous research has found abnormal high gamma spec-
tral power in young ASD children (Lushchekina et al., 2012; 
Orekhova et al., 2007; van Diessen et al., 2015). Our study 
also found that the discriminating PSD features were gener-
ally from high gamma oscillations. Likewise, this finding 
aligns with the studies that identified unusual activation 
of gamma-band oscillations in ASD children (Lushchek-
ina et al., 2012; Orekhova et al., 2007; van Diessen et al., 
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2015). In addition, this study demonstrates a rightward-
lateralized neural oscillation in power analysis similar to 
previous literature (Cornew et al., 2012; Kikuchi et al., 
2013). In the literature of the last decade, phase-based fea-
tures were investigated in the connectivity analysis (O'Reilly 
et al., 2017; Velazquez et al., 2009; Ye et al., 2014), how-
ever not yet explored in spectral-domain analysis for the 
autism classification problem. In spectral analysis, the pre-
ferred phase angle is a novel feature, where phase features 
are implemented even in frequency band-wise clustering. 
Our proposed feature yields better classification accuracy 
(88.20 ± 3.87%) than the PSD features (82.13 ± 2.11%). So 
we suggest that PPA can also be used as a useful measure 
to identify early ASD in children from their ongoing brain 
responses.

Analysis of Fusion Based System

To explore the frequency band-wise analysis and spatial pat-
tern analysis of the fusion-based system, features over all 
151 sensors were also investigated. The average classifica-
tion performance in the feature-level fusion-based system is 
94.46 ± 1.35% for the p-value < 0.05. In this specific p-value 
threshold (p < 0.05), the number of selected features is 508. 
Among these 508 discriminative features, 20 discrimina-
tive features are common in both PSD and PPA (Fig. 9). 
These discriminative features are mostly from theta-band 
oscillations, corresponding to autistic symptomatology. 
Finally, this fusion-based system estimates are correlated 
with ASD scores indicating clinical relevance of the feature 
level fusion of PPA and PSD matrices.

Role of Theta Band in Autism

In this study, autism detection in young children is extended 
using spectral features based on large-scale neural oscilla-
tions in a machine learning classifier in a fused system. 
Overall this work demonstrates the resting-state neural 
function aberration, a key component of the autism symp-
tom profile (Kessler et al., 2016). Even to distinguish ASD 
children from TD children, disrupted oscillatory synchroni-
zation is found in multiple frequency bands as reported in 
(Simon & Wallace, 2016). In the current study, theta oscil-
lations are found as discriminative features closely linked to 
changes in memory state, memory performance, and audi-
tory responses. Hence, this theta-band preferred phase angle 
can also be an optimal measure to discriminate ASD from 
TD, as autistic children have specific memory and memory 
strengths difficulties. Autistic children use fewer strategies 
spontaneously to retrieve information (e.g., visual and rote 
memory) (Williams et al., 2006). Multiple studies suggest 
that memory deficit observed in ASD has a biological expla-
nation linked to abnormalities in the hippocampus and other 

neural regions responsible for strategic regulation, such as 
the amygdala and the frontal cortex (Wojcik et al., 2013).

Limitations

Our approach is not without limitations. First, we restricted 
our analysis to the MEG sensor space only, so we cannot 
provide any clear conclusion about the precise involvement 
of underlying brain sources. Future studies could adopt 
advanced source localization methods that would provide 
a more accurate measure of brain activity to examine PPA 
features in ASD better. Second, both PPA and PSD features 
were computed at each sensor, so our findings cannot pro-
vide any direct information about the nature of information 
transfer between near and distant sensor regions. Third, 
we only analyzed a brief 3 min period of brain data, and 
it would be essential to obtain a longer recording to vali-
date the robustness of our findings. Fourth, our findings 
suggested some complementarities between PPA and PSD; 
however, additional studies are needed to substantiate this 
claim further. For example, future studies with larger sample 
sizes could match children on PSD values and then deter-
mine whether PPA would still discriminate between ASD 
and TD (a similar approach can be adopted by first matching 
on PPA values). Finally, we termed our recording as resting-
state brain activity while the children watched cartoons of 
their choice, and such natural viewing conditions might have 
introduced various heterogeneities in the recording. Though 
this type of data collection is increasingly being used in 
studies with young children (Richardson et al., 2018), one 
cannot distinguish between intrinsic and task-driven con-
tributions to the reported patterns, both in terms of phase 
and amplitude, of brain oscillations. Future studies could 
investigate individual contributions of both task-driven and 
intrinsic by collecting MEG data during the task and actual 
resting state from the same child.

Conclusion

The present findings demonstrate that it is feasible to differ-
entiate autistic children from typically developing children 
based on their resting-state brain oscillations recorded by 
MEG. We have introduced a feature, preferred phase angle, 
which utilizes frequency band-wise phase consistency. We 
showed that the PPA-based classifier outperformed the 
PSD-based classifier, and the best classification accuracy 
was obtained by combining PPA and PSD in a fusion-based 
framework. The complementarity of power and phase-based 
spectral features are demonstrated in this work, where we 
have proposed a fusion-based machine learning framework 
in autism children detection. Altogether, this study suggests 
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that characteristics of ongoing large-scale brain oscillations 
contribute towards the core pathophysiology of ASD.
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