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A neurobiologically constrained model of semantic learning in the human
brain was used to simulate the acquisition of concrete and abstract concepts,
eitherwith orwithout verbal labels. Concept acquisition and semantic learning
were simulated using Hebbian learning mechanisms. We measured the
network’s category learning performance, defined as the extent towhich it suc-
cessfully (i) grouped partly overlapping perceptual instances into a single
(abstract or concrete) conceptual representation, while (ii) still distinguishing
representations for distinct concepts. Co-presence of linguistic labels with
perceptual instances of a given concept generally improved the network’s
learning of categories, with a significantly larger beneficial effect for abstract
than concrete concepts. These results offer a neurobiological explanation for
causal effects of language structure on concept formation and on perceptuo-
motor processing of instances of these concepts: supplying a verbal label
during concept acquisition improves the cortical mechanisms bywhich experi-
ences with objects and actions along with the learning of words lead to the
formation of neuronal ensembles for specific concepts and meanings. Further-
more, the present resultsmake a novel prediction, namely, that such ‘Whorfian’
effects should be modulated by the concreteness/abstractness of the semantic
categories being acquired, with language labels supporting the learning of
abstract concepts more than that of concrete ones.

This article is part of the theme issue ‘Concepts in interaction: social
engagement and inner experiences’.
1. Introduction
Are words merely handy tools which, by providing convenient ‘labels’ for
concepts, allow for more efficient communication? Or do words as linguistic
symbols have a more profound wide-ranging influence on conceptual develop-
ment and semantic processing?1 This question can be viewed as part of the
more fundamental question as to whether cognition can be viewed as modular
[1], with different independent cognitive modules that are informationally
encapsulated from each other, and processing of concepts being independent
from that of their corresponding symbols, or whether different cognitive fac-
ulties such as language, perception and conceptual processing rely on at least
partially shared neural substrates and therefore might also functionally interact
and depend on each other [2–4].
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In recent years, two aspects have received particular atten-
tion; on the one hand, the Sapir-Whorf hypothesis [5], also
known as the linguistic relativity hypothesis (for reviews, see
[6–8]), predicts that a speaker’s language, specifically the way
in which this language ‘carves up’ and categorizes percepts,
influences how those percepts are processed to start with. This
has most extensively been studied in the domain of colour
where an impressive body of evidence now exists suggesting
that differing colour vocabularies in different languages are
linkedwith different performance in colour perception, categor-
ization and memory, both at the behavioural and neural levels
[9,10]. Recentwork has extended these findings to tactile stimuli
[11,12], odours [13] and motion and event perception [14–18].
Crucially, experiments on perceptual learning could directly
confirm a causal effect of the presence of consistent ‘verbal
labels’ on perception in the same individuals [11,12,19].

The linguistic relativity debate can be viewed as part of a
more general discussion concerning the question of whether
perception and higher cognition, including conceptual categ-
orization, interact, in particular, whether there are ‘top-down’
influences of cognition on perception [20,21]. If so, this would
question a strictly modular distinction between cognition and
perception with functionally separate processing components
[22]. Effects of linguistic relativity, for example, the relatively
better perceptual discrimination of visual or tactile stimuli
that have been learnt in context of consistent verbal labels,
can tentatively be explained by causal and functional inter-
action between perceptual and linguistic representations.
In this context, Lupyan proposed the term ‘label feedback
hypothesis’ [23–25] and argues that labels ‘play an active
role in perception and categorization by selectively activating
perceptual features that are diagnostic of the category being
labelled’ [24, p. 4]. However, in order to explain the emer-
gence of such a link between linguistic and perceptual
properties, a biologically plausible cognitive-computational
model is necessary. Lupyan presents a connectionist model
implementing a 30-unit ’perceptual’ layer and a 2-unit
’label’ layer, with a 60-unit hidden layer between them
along with learning driven by the technically efficient back-
propagation rule [26]. He shows that, within this model,
labels help sharpen categorical perception, i.e. exemplars
belonging to the same category (with the same label) are per-
ceived as more similar to each other and those belonging to
different categories as more dissimilar to each other [26].
However, we see several shortcomings in this work: (i) the
model used was a connectionist model with fully distributed
representations and no connections within ‘layers’, features
that contrast with the frequently assumed sparseness of cogni-
tive representations and strong within-area connections in the
cortex [27]; (ii) the acquisition of only two concepts was simu-
lated, and for each concept, only a single prototype was used
during learning, which is cognitively not very plausible, as
humans can experience a wide range of different object
instances when learning the meaning of a linguistic object
label; (iii) Lupyan’s model is applied to concrete object related
concepts and their ‘labels’, whereas the emergence and
language-relatedness of abstract concepts, which do not
simply ‘label’ objects, remain unaddressed; and (iv) Lupyan’s
associative model of three layers is far removed from the struc-
ture and connectivity of the cortical areas contributing to the
processing of symbols, perceptions, actions and concepts.
A fewother earlier neural network studies had also investigated
concept formation (e.g. [28,29]), but the same caveats which we
mentioned in relation to Lupyan’s model [26] apply and any
conclusions suggested by them might still need modification
in view of more realistic simulation studies [27]. We therefore
think it is worthwhile to take a closer look at the putatively
underlying mechanisms and ask how semantic and conceptual
representations develop in a neuroanatomically and neurophy-
siologically more realistic architecture receiving information
about the co-occurrence of linguistic expressions and the per-
ceptions and actions which these ‘labels’ relate to, and
applying a learning algorithm consistent with synaptic
dynamics observed in neurobiological research.

In the developmental psychology literature, the role of
concrete verbal labels in conceptual acquisition in infants
has long been a subject of interest as well, with a plethora
of evidence suggesting that labels play an important role in
normal concept acquisition (see [30] for review). For example,
Waxman & Markow [31] argue that labels are ‘invitations to
form categories’ and help to highlight similarities between
objects belonging to the same semantic category (and hence
being referred to with the same word). This does not imply
that it is always strictly necessary to associate a label with
a concept; for example, Pinker [32] argues that even non-
German speakers who are not familiar with the German
word ‘Schadenfreude’ seem to have a concept for this socially
established emotion nonetheless, even before finding out
that a single word for this concept exists (in a different
language). A related example given by Pinker—with only
anecdotal evidence—is that many people would agree that
they have a concept of dust that has accumulated into a
dust ball under a bed despite not having an apt label for
this. In addition to such anecdotal evidence for concepts
that supposedly exist before and independent of any
language, a recent study with patients suffering from organic
language impairments, aphasias, claimed that despite their
language impairments they performed normally on a categor-
ization task [33], thus suggesting that language is not necessary
for categorization. However, other studies [34–36] had pre-
viously reported that aphasic patients were indeed impaired
in categorization tasks, even if these tasks themselves were
purely non-verbal. Caution is required in interpreting these
data, however: although lesion loci causing aphasic deficits
(posterior inferior frontal and superior temporal cortex) may
dissociate from those sites where the most pronounced pro-
blems with conceptual tasks have been reported after lesion
(anterior inferior temporal cortex) (e.g. [37]), these lie in close
vicinity; also, additional cortical areas are important for con-
cept processing [4,38]. Furthermore, and most importantly,
the presence or absence of a conceptual distinction in aphasic
patients who do not speak overtly is no proof of entirely
absent language ability in these individuals, and hence
cannot be interpreted as evidence for language-dependent or
-independent conceptual processing.

In summary, the evidence in favour of language-indepen-
dent concept formation appears to be either on weak
empirical grounds or anecdotal. On the other hand, the
strong position that labels are strictly necessary for category
learning is not fully supported either. However, it seems
that, at the very least, labels improve or guide category learn-
ing in important ways. For example, a number of studies
indicate that labels guide infants’ attention to perceptual fea-
tures common to many objects that fall under a given
category, therefore promoting concept formation [39,40]. As
Dove puts it, ‘the act of labelling […] may help learners
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become attuned to perceptual commonalities and overcome
the inherent complexity and noisiness of perceptual inputs’
[41, p. 4]. However, whereas theoretical proposals postulate,
and some experimental data support, ‘guidance’, ‘shaping’
or ‘warping’ of attention, category building or perception,
the mechanisms underlying such linguistic conceptual effects
remain poorly specified or restricted to simple cases, in
particular to concrete words. How—and based on which
mechanisms—could such guidance toward common object
features come about? Also, how could any concrete
mechanism account for the formation of abstract concepts?

When it comes to explaining crucial differences between
concrete and abstract concepts, a range of authors make
purely quantitative claims, for example, that the number of
total semantic features [42] or the proportion of shared
semantic features is relatively larger for concrete concepts
[36,43,44]. However, as discussed elsewhere [45,46], we
believe this approach is too superficial and fails to capture
the nature of abstract concepts. Consider concepts such as
DEMOCRACY or GAME, where certain semantic features
only apply to subgroups, but not to all members of the con-
cept. Hence, although we agree that in general, the purely
quantitative distinction (fewer features shared by all mem-
bers of abstract than concrete concepts) made by many
authors is correct, this description misses the important
point that the degree of ‘sharedness’ of semantic features dif-
fers. Therefore, we here adopt the view that abstract concepts
do not normally have many semantic features shared across
all their category members. Instead, these show a pattern
of family resemblance [45,47–49], where features are not
shared across all category members but just across a subset
(see also figure 1 for illustration). Property generation tasks
[50–52] show that abstract concepts are much more depen-
dent on context than concrete ones and that a much more
variable set of features characterizes the situations (objects,
actions etc) associated with the concepts; we interpret this
as indirect evidence that modelling abstract concepts as
being characterized by a family resemblance structure is
appropriate, although we acknowledge that a systematic
empirical investigation on this question is still needed. This
approach, which we implemented and discuss in detail in a
recent simulation study [46], provides a straightforward bio-
logical explanation for why concrete and abstract concepts
are processed differently in the mind and brain: the fre-
quently occurring shared perceptual (or action-related2)
features of the instances of concrete concepts are activated
together whenever prototypical category members are
being processed; assuming that each perceptual or action-
related feature has a neuronal basis, this leads to strong
binding between the neurons involved, thereby leading to
the formation of neural category representations. By contrast,
the variable and non-overlapping perceptual features acti-
vated in processing the more heterogeneous instantiations
of abstract concepts activate not-fully overlapping neural rep-
resentations so that there is less opportunity to bind together
the feature neurons contributing to an abstract concept
according to biological learning mechanisms. Previous simu-
lations [46] showed that the biological correlates of concrete
categories emerged spontaneously during the processing of
similar objects or actions that fall under a concrete concept.
However, for abstract concepts, the formation of functionally
coherent category representations was more fragile. We here
ask whether the addition of labels, a feature of human
conceptual development, significantly influences the for-
mation of the neurobiological correlates of concrete and
abstract concepts and whether there are differences in such
influences for the two main conceptual types. We expect
that the consistent perception of a wordform during concept
formation will improve the building of a category represen-
tation for concrete concepts but will be even more beneficial
for building abstract categories. We here focus on direct con-
ceptual grounding only but do acknowledge that after a
grounding kernel of concrete and abstract concepts has
been acquired by direct grounding (or ‘word-world-corre-
lations mapping’), additional new concrete and abstract
concepts can be learned through indirect grounding via dis-
tributional associations (word-word-correlations mapping)
[47,53–55].

From a theoretical neurobiological perspective, the for-
mation of concepts and categories can be founded in
neuronal learning. Biologically realistic neuronal learning
translates the strength of correlated neuronal activation into
the strength of the connections of the partaking (and
previously already connected) nerve cells. We take the ‘neur-
ons’ schematically shown in figure 1 to represent information
about the relevant word forms and semantic features of the
concepts. Briefly, because the shared features of all the ham-
mers (e.g. all have a handle, can be grasped and have a
heavy head) are active whenever any hammer object is pro-
cessed together with the related word ‘hammer’, there will
be strong links between shared conceptual/semantic feature
neurons and the word form representation. This link will be
weaker for abstract concepts because each of the partly
shared semantic feature neurons is active only for a subset
of the available instances (raising one’s hand or expressing
one’s opinion is relevant for decision making in only some
instances of democracies, not for example in parliamentary
democracies, where a cross has to be made every few years
and most decisions are taken by delegates). Therefore, the
abstract word form representation co-activated while proces-
sing instances of democracies will lead to relatively weaker
binding between word form and the partially shared seman-
tic-conceptual features. Still, the association of a ‘label’ with
all the partly shared semantic feature neurons will interlink
these partially shared feature neurons more strongly with
each other, thus potentially facilitating the formation of a
coherent concept. Therefore, from a theory-driven neurobio-
logical perspective and under certain assumptions, the
addition of word forms to both types of concepts can produce
a significant advantage in building categories; this effect may
be most significant for abstract ones, as their previously
fragile neuronal representations become interlinked by the
word form neurons. In this case, the word forms act as the
computational ‘glue’ that holds together the concept. None-
theless, it remains unclear whether—and if so, to what
extent—the result of this ‘toy’ example would transfer to a
large-scale, brain-like model, in which the number, connec-
tivity among, and complex nonlinear physiological features
of the component elements more closely approximate those
of the real cortex.

For investigating the role of word forms and language in
the formation of concrete and abstract concepts, we chose to
build a neurobiologically constrained neural network model
of several areas of the human cortex that are known to be
involved in language and conceptual processing. The model
used for simulating the brain mechanisms of conceptual
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Figure 1. Adapted from [46]. Schematic illustration of a structural difference between concrete (left) and abstract (right) concepts (semantic feature overlap versus
family resemblance). We model the semantic features of any given concept as shared neuronal elements of three ‘grounding patterns’, with 12 neurons per ground-
ing pattern and modality (sensory/visual and motor, i.e. 24 per grounding pattern across both modalities). Only one modality is shown for clarity; procedures were
identical for grounding patterns used as input to the visual and motor ‘cortices’ of the model (see figure 2). Top left panel: concrete concepts were modelled as
containing 12 neurons per grounding pattern in total, six shared between all three (therefore representing semantic features) and six unique to each instance
(representing instance-specific perceptual or action-related features). In the example of HAMMER, the six shared and therefore ‘semantic’ neurons represent general
visual features such as shape features including long handle, head attached at a 90 degree angle along with general action-related ones, including typical motor
trajectories characterizing the beating with a hammer. The six instance-specific sensory and motor neurons represent unique features of each hammer exemplar
including idiosyncratic properties (e.g. differing sizes, materials, shapes of the head, presence or absence of a wedge), along with specificities of the way each
hammer requires sensorimotor adjustment to these individual properties when being used. Top right panel: abstract concepts were modelled by an implementation
of family resemblance, whereby each grounding pattern of an instance is represented by 12 neurons, four shared between two instances and four unique to only one
instance. In the example of DEMOCRACY, pairwise shared neurons might represent hand actions involved in casting a vote (shared between i2/i3) or the visual image
of several people coming together (shared between i1/i2). Unique features might represent differences in the hand movements for raising one’s hand versus throw-
ing a ballot in a ballot box (i2 versus i3) or differences in the size and layout between an official parliament room and a smaller room where people cast votes in an
informal setting. Bottom panel: all wordform patterns (supplied as input to perisylvian areas during training in the label conditions) consisted of 12 neurons per
pattern that were always identical for all three instances of a concept. Brown lines: illustration of the correlation structure (i) among shared neurons in conceptual
grounding patterns and (ii) between these shared neurons and the neurons of wordform patterns. For illustration purposes, the correlations are illustrated with
examples (brown solid and dashed lines). Whereas for concrete concepts (left), the average correlation is p = 1 both among shared-conceptual and between shared-
conceptual and wordform neurons, for abstract concepts there is a higher correlation between shared neurons and word form neurons ( p = 2/3, as the wordform
always co-occurs with two thirds of the set of neurons formed by the union of all pairwise-shared neuronal sets) than among shared neurons ( p = 1/3, as any two
concepts share only a third of such a union set). Hence, this difference in correlations—which is present for abstract concepts only—might exert a ‘pull’ on the
emerging cell assemblies during training, such that the word form neurons, because of their relatively higher correlation, end up playing a more important role in
the entire cell assembly’s structure (and, hence, dynamics). See the Introduction for a detailed discussion. Photographs were obtained from the world wide web and
were published under a CC0 license (https://creativecommons.org/share-your-work/public-domain/cc0/).
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and semantic learning included model analogues of those
brain regions that are involved in processing perception
and action-related information which may give rise to cat-
egory formation. These are visual areas, through which
sensory information about the surrounding world comes in,
as well as motor systems, which are essential for action
processing (other sensory modality systems were omitted to
keep the model manageable). For each of the systems—
visual and motor—three cortical areas were modelled, one
primary (M1L and V1), one secondary (PML, TO) and one
‘higher’ area (PFL, AT) with strong links to other systems.
We asked whether the perception of similar objects and the
execution of similar actions would give rise to the formation
of neuronal representations for object/action categories. In
addition, to implement the learning and processing of sym-
bols, i.e. spoken words, the articulatory motor cortex (M1i)
and the auditory cortex (A1) was modelled, again with sec-
ondary and higher areas for each system (PMi, PFi and AB,

https://creativecommons.org/share-your-work/public-domain/cc0/
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Figure 2. Panels (a) and (b) adapted from [46]. (a) Structure and connectivity of the neural network model. Twelve brain areas were modelled in total, including
areas in frontal, temporal and occipital cortex. Perisylvian areas comprise an inferior-frontal articulatory (red colours) and a superior temporal auditory system (blue
colours), and extrasylvian areas comprise a lateral dorsal hand-motor system (yellow/brown) and a visual ‘what’ stream of object processing (green). Numbers refer
to Brodmann Areas (BAs) and the arrows represent long distance cortico-cortical connections as documented by neuroanatomical studies (see table 2 in [56] for
neuroanatomical evidence). (b) Schematic depiction of the brain areas modelled (using the same colouring for different brain areas as in panel (a), along with their
connectivity structure. The different colours of arrows (black, blue, purple) stand for ‘next-neighbour’ connections linking cortically adjacent areas within each system
(black arrows) and ‘jumping links’ between non-adjacent cortical areas within each system (blue links) as well as ‘long distance links’ between pairs of multimodal
areas *PB, *PFi, *AT and *PFL ( purple links). (c) Illustration of the training phase (top) and testing phase (bottom). In the training phase, there were two conditions,
either without labels or with labels. In the no label condition, noise instead of wordform patterns were presented to perisylvian primary areas as input. Input of
conceptual patterns (marked with a ‘C’ for illustration) was always given to the primary extrasylvian areas (top row) and input of wordform patterns (marked with ‘L’
if present) was given to the primary perisylvian areas (bottom row). Note that the differential colouring and marking with ‘C’/’L’ of input patterns is for illustration
purposes only and is not information that was explicitly given to the model.
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PB). This allowed us to first study the formation of concepts
based on sensory input (object perception, stimulation to V1)
and action execution (to M1L, see also [46]) and then, second,
to investigate the influence of word form learning (triggered
by activity in A1 and M1i) on concepts when these merge into
symbolic semantic circuits. Therefore, our choice of areas was
oriented towards the to-be-addressed problems but also
aimed at a maximum of neurobiological realism, insofar as
seven constraints recommended for biologically realistic
neural modelling [27] were implemented (in contrast to stan-
dard deep neural networks which do not tailor network
structure to the research question and are not explicitly
oriented towards modelling specific brain parts and areas
and their connectivity). Note once again that the only areas
which receive patterns as direct input during training are
the primary sensory/motor areas (figure 2c).

Using the same approach to simulating semantic category
learning as in a recent simulation study [46], we created
‘grounding patterns’ of neuronal activity each thought to
represent an object and/or a related action. A concept was
thought to be grounded in three related individual objects
(and object representations), also called ‘instances’ of the
concept. Each grounding set thus consisted of three grounding
patterns,whereby triplets ofpatterns showeddifferent similarity
structures for concrete and abstract concepts, exhibiting either
full sharing of neuronal elements or family resemblance. Our
strategy here was to simulate the perceptuo-motor processing
of conceptual instances. During a learning phase, these concep-
tual instances were either associated, through Hebbian learning
mechanisms, with linguistic labels, or not, allowing us to inves-
tigate possible causal ‘Whorfian’ effects of language on
conceptual and perceptual processing in the model. Based on
the outlined neurobiological language model, we hypothesize
that (i) concrete semantic category formation is slightly
improved by the addition of wordforms denoting the category,
whereas (ii) abstract semantic category formation is deficient



Table 1. Parameter values used for the simulations. (Equation numbers refer to the equations in the appendix of [46], where further details about the
mathematical implementation of the model are described.)

eqn (1) time constant (excitatory cells) τ = 2.5 (time steps)

time constant (inhibitory cells) τ = 5 (time steps)

total input rescaling factor: k1 = 0.01

noise amplitude: k2 = 7·√(24/Δt) (Δt = 0.5 ms)

global inhibition strength: kG = 0.80

eqn (3) spiking threshold thresh = 0.18

adaptation strength α = 8.0

eqn (4) adaption time constant τADAPT = 10 (time steps)

eqn (5) rate-estimate time constant τFavg = 30 (time steps, training)

τFavg = 5 (time steps, testing)

eqn (6) global inhibition time constant τGLOB = 12 (time steps)

eqn (7) postsynaptic potential thresholds for ϑ+ = 0.15 (LTP)

ϑ− = 0.14 (LTD)

presynaptic output activity required for any synaptic change: ϑpre = 0.05

learning rate: Δw = 0.0008
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without any interplay with verbal language, but substantially
improved by the addition of wordforms for the semantic
categories.
2. Methods
Building on earlier modelling work [46,56–58], we used a
neuroanatomically grounded, neurophysiologically plausible
computational model with spiking neurons and 12 model areas
representing visual andmotor as well as auditory and articulatory
areas in frontal, temporal and occipital cortices alongwith adjacent
multimodal hub areas that are known to be important for proces-
sing words and their meaning.

(a) Model architecture3
We adopted a model architecture constrained by neurobiological
information and previously applied to explore neural mechan-
isms of semantic learning [46,56,57,59,60]. The following brain
constraints were applied to the model (for a recent review of
this brain-constrained modelling approach, see [27]):

(i) neurophysiological dynamics of spiking pyramidal cells
including temporal integration (summation) of inputs,
threshold-based probabilistic spiking and adaptation
[61,62] were implemented (following [56,58]);

(ii) synaptic weights were modified by way of unsupervised
Hebbian-type learning, including both long-term poten-
tiation (LTP) and long-term depression (LTD) [63]
(following [58]);

(iii) global and local activity regulation [64,65] and control were
realizedbyarea-specific and local inhibition (following [66]);

(iv) 12 areas commonly distinguished in inferior and dorso-
lateral frontal, superior temporal and ventral temporal
and occipital cortex were modelled (following [60]);

(v) within-area connectivity included local excitatory
and inhibitory connections (see also (iii)) excitatory
connections were sparse, random and initially weak
exhibiting a neighbourhood bias toward close-by links
[67,68] (following [69]);

(vi) between-area connectivity was implemented in accord-
ance with neuroanatomical studies (following [59,70];
for a review of the evidence on all implemented connec-
tions, see table 2 in [56]); and

(vii) inherent baselinenoise (white noise)was constantly present
in all neurons of all areas during learning andwhile record-
ing the network response to learnt patterns. In addition,
perisylvian areas not receiving a specific pattern as input
during learning received further uncorrelated white noise
activation to simulate variable inputs (following [57,60]).

For further details about the implementation, including the
equations implemented in the simulation software used, the
reader is referred to the Appendix in [46]. The parameters used
in the simulation are described in table 1.

(b) Simulated brain areas and their connectivity
structure4

The spiking network model mimicked 12 different cortical areas
with area-intrinsic connections and mutual connections between
them (figure 2a,b). Note that we refer to model brain areas using
an asterisk (e.g. *V1). Six areas were modelled for the left-perisyl-
vian language cortex including the primary auditory cortex
(*A1), auditory belt (*AB) and modality-general parabelt areas
(*PB) constituting the auditory system, and the inferior part of
primary motor cortex (*M1i), inferior premotor (*PMi) and multi-
modal prefrontal motor cortex (*PFi) representing the articulatory
system (i.e. inferior face-motor areas). Additionally, six extrasyl-
vian areas were modelled including the primary visual cortex
(*V1), temporo-occipital (*TO) and anterior-temporal areas
(*AT) for the ventral visual system and the dorsolateral fronto-
central motor (*M1L), premotor (*PML), and prefrontal cortices
(*PFL) for the dorsolateral action system.

The network’s between-area connectivity structure reflects
existing anatomical pathways between corresponding cortical
areas of the cortex revealed by neuroanatomical studies using
diffusion tensor and diffusion-weighted imaging in humans
and non-human primates that are discussed in detail in a pre-
vious study [56,58] and summarized in table 2 of Tomasello
et al. [56]. In summary, these anatomical pathways were mod-
elled between adjacent cortical areas within each of the four
‘streams’ (see black arrows in figure 2a,b) and between all pairs
of multimodal areas (*PB, *PFi, *AT and *PFL) through the
long distance cortico-cortical connections (purple arrows).
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Additionally, as a previous neurocomputational study [70]
demonstrated the importance of non-adjacent ‘jumping’ links
for verbal short-term memory, such second-next-neighbour-
links (skipping one intermediate area) were also included
within the superior and inferior temporal and the superior and
inferior frontal processing streams (blue arrows).

(c) Conceptual grounding patterns5
In the present simulation, conceptual grounding patterns were
used as input to extrasylvian brain areas during training and
wordform grounding patterns were used as input to perisylvian
brain areas. The conceptual grounding patterns were identical to
the ones used in a recent publication [46]. In order to model
effects related to semantic category learning, we created sets of
grounding patterns each thought to represent one object and/
or action. For each semantic concept, we created three grounding
patterns, whereby triplets of patterns showed different similarity
structures for concrete and abstract concepts, exhibiting either
full sharing of neuronal elements or family resemblance
(figure 1). There were 10 concepts per semantic category
(abstract/concrete), and thus 30 instances of grounding patterns
overall for each semantic category type. For example, the concept
of HAMMER would be represented by three grounding patterns
of hammers differing in size, shape, material etc. and hence each
one having somewhat differing perceptuo-motor experiences. An
abstract concept like DEMOCRACY would similarly be rep-
resented by three grounding patterns representing the image
and/or experience of a parliament building, a polling booth
and a situation where people vote by raising their hands (for
illustration, figure 1).

Each (simulated) grounding pattern consisted of 12 ‘active’
cells in *V1 and 12 *M1L each (i.e. 12 ‘active’ out of the possible
625 neurons per area). Patterns were designed in such a way that
each neuron occurred in only one concept, i.e. overlap always
only occurred within the three instances of one concept, but
never across the 10 different concept patterns used. Furthermore,
different models were used for concrete and abstract simulations
(i.e. each individual model was trained with either concrete or
abstract grounding patterns only). This allowed us to use identi-
cal wordform patterns for both concrete and abstract concepts,
ruling out any possible differences between the set of wordform
patterns used as confound. A further reason for using different
models for concrete and abstract concept simulations was to
avoid possible interferences between conceptual types. We here
follow the idea that concrete concepts have feature overlap neurons
which all instances of a grounding pattern representing a concept
share, while for abstract concepts, there are no neurons common
to all three instances, but only neurons shared by 2 out of 3
instances (i.e. pairwise shared neurons), resulting in a family
resemblance structure. In addition, both concrete and abstract con-
cepts also had unique neurons occurring in only one grounding
pattern. For a detailed discussion of this approach of modelling
the conceptual grounding patterns for concrete and abstract
concepts, see Henningsen-Schomers & Pulvermüller [46].

(d) Labelling and wordform patterns
Apart from the semantic factor (concrete versus abstract concep-
tual patterns), which has been studied in more detail elsewhere
[46], we introduced a further factor in the present simulations,
that of wordform labelling. That is, each model was not only
run in a version where it only received conceptual grounding
patterns as input to extrasylvian areas (‘no label’ condition),
but we also ran each model in a condition where, simultaneously
with the inputs presented to extrasylvian areas, ‘wordform’
patterns were active on the perisylvian model areas (‘label’
condition). These wordform patterns can be thought of repre-
senting a linguistic label, hence causing the model to associate
a wordform (or label) with the conceptual information. Such
association takes place by virtue of the presence of Hebbian
learning. Just like the conceptual grounding patterns, wordform
patterns also consisted of 12 ‘active’ cells, i.e. 12 each to be used
as input to *A1 and *M1i. The wordform patterns for a given con-
cept (consisting of three varying, but related conceptual patterns)
were always entirely identical.

(e) Training procedures
Our simulations had a 2 × 2 factorial design with factors seman-
tic-type (concrete/abstract) and labelling (label/no label),
resulting in four conditions in total. We ran a total of 12 instan-
tiations of the model for each condition (the model correlate
of running 12 human participants in an experiment), each
with identical training patterns and procedures, hence 48
models in total. To implement the equivalent of some random
variation as would be present across individual human partici-
pants, we randomized for each model all synaptic links (and
corresponding weights) between cells in connected areas (and
within areas) before training (model initialization). The same
set of initial randomized synaptic links and weights was then
used to train a model with concrete patterns and with abstract
patterns but in separate model instances. Separate instantiations
were used for the learning of concrete and abstract concepts
to avoid interference between the two types of conceptual
representations.

In the ‘no label’ conditions, each training trial consisted of
randomly choosing one of the 30 sensorimotor patterns (consist-
ing of 12 ‘active’ neurons per area, described in detail above) and
presenting it as input to extrasylvian primary areas (*V1 and
*M1L) continuously for 16 time steps. No correlated input was
given to the ‘phonological’ part of the model (perisylvian pri-
mary areas *A1 and *M1i) in this case. Instead, uncorrelated
white noise stimulation was applied to these at all times. How-
ever, in the ‘label’ condition, additional input of the wordform
patterns was given to the perisylvian primary areas (*A1 and
*M1i), also continuously for 16 time steps.

To avoid potential contamination between successively
presented stimulus patterns, an interstimulus interval (ISI) fol-
lowed each pattern presentation. This ISI lasted until global
inhibition in areas *A1 and *PB had returned below a specific
threshold so that network activity had returned to a baseline
value to prevent one trial from affecting the next one. During
these ISIs network activity was driven entirely by uniform
white noise, simulating the spontaneous baseline neuronal
firing observed in real neurons. Instead of stimulus patterns,
additional (environmental) white noise was also presented as
input to all primary model areas (*V1, *M1L, *A1, *M1i) during
ISIs. Training continued until 4000 repetitions of each instance
of a pattern had occurred, i.e. 12 000 repetitions per concept.

( f ) Testing procedures
After learning, a testing phase was implemented to examine the
result of learning. This testing phase was always identical for all
four conditions of the 2 × 2 design. Hence, any differences
observed between conditions are a result of the different patterns
presented during the training phase, and cannot have arisen in
the testing phase. Note that during the testing (or so-called
‘read-out’) phase no learning in the network was allowed. Because
the aim of our project was to investigate a ‘Whorfian’ influence of
linguistic labels on perceptual processing in the absence of linguis-
tic input, in testing we only stimulated the extrasylvian model
areas with the previously learnt conceptual grounding patterns
and recorded the model activity (see details below). Hence,
during the testing phase—which all analysed results are based
on—the perisylvian part of themodel did not receive any linguistic
patterns in input. Therefore, any differences observed between the
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‘label’ and ‘no label’ conditions can only be attributed to the Heb-
bian learning that occurred during the training, and which was
driven by the presence—or absence—of awordform in the perisyl-
vian areas, leading to the formation (or resulting in the lack) of an
association between such label and the simultaneously presented
conceptual patterns.

In the testing phase, each of the trained 30 sensorimotor
grounding patterns were presented to the extrasylvian primary
areas, *V1 and *M1L. Prior to the presentation of each pattern,
a global network reset was carried out, upon which the mem-
brane potential of all excitatory and inhibitory cells was set to
0, to ensure that neuronal activity of a previously presented pat-
tern did not affect results. Subsequently, each sensorimotor
grounding pattern was presented for two time steps to extrasyl-
vian areas *V1 and *M1L and network responses were recorded
during stimulation and the subsequent 28 time steps (30 time
steps total). During the two time steps of pattern presentation,
no baseline noise was present in any area; during the subsequent
28 time steps of the recording phase, baseline noise stimulation
was present in all model areas again, as during training. How-
ever, in contrast to the training phase, no uncorrelated white
noise was given as input to the perisylvian areas (*A1, *M1i)
during testing. We computed the estimated mean firing rate of
every excitatory neuron in the model in response to each pattern
and used this to calculate dissimilarity matrices. More precisely,
the estimated instantaneous firing rate ωE(e,t) of an excitatory cell
e at time t is defined by:

tFavg � dvEðe,tÞ
dt

¼ �vEðe,tÞ þ fðe,tÞ, ð2:1Þ

where ϕ(e,t) is the output of cell e (either 0 or 1) at time t (the
definition of ϕ(e,t) can be found in eqn (3) in [46]). The value
ωE(e,t), solution to equation (2.1), is the low-pass-filtered
output of cell e, integrated using time constant τFavg (here, 5).
This value provides an estimate (at time t) of the cell’s recent
mean spiking activity. We took the (time discrete) solution to
equation (2.1) at time t = t30 (i.e. the value of ωE(e,t30), where
t30 = thirty simulation time-steps after pattern-presentation
onset) as the estimated mean response (firing rate) of cell e to a
pattern, and used this value to calculate dissimilarity matrices
(see below).
(g) Data analysis

Dissimilarity analysis. We first recorded the estimated mean
firing rate of all model neurons at time t30 on a per-instance
basis (i.e. separately for each of the 30 conceptual grounding pat-
terns). Based on this, we calculated a 30 × 30 dissimilarity matrix
showing how dissimilar the network’s activity was in response
to the different 30 conceptual grounding patterns. We used Eucli-
dean distance as a similarity measure. However, since the 30
patterns consisted of 10 triplets of related patterns (10 concepts
consisting of three related patterns each), we further divided
the dissimilarity analysis into within-category dissimilarity and
between-category dissimilarity (see figure 3b for illustration,
where letters stand for one semantic concept and 1/2/3 for the
three instances). That is, of all the dissimilarity values in the
30 × 30 matrix (only 9 × 9 is shown for illustration), the average
of all the light grey values was the within-category dissimilarity
(DissimW) and the average of all the dark grey values was the
between-category dissimilarity (DissimB). Finally, we used the
difference DissimB -DissimW (DissimDiff) as a measure of ‘categ-
orical perception’ and hence as a way to quantify how well the
model’s activity represents the semantic categories inherent in
the overlap structure of the conceptual patterns. We, therefore,
use the DissimDiff as a way to quantify the semantic category
learning performance of the models in our four conditions.
Other authors have made a similar proposal, calling this value
the global discrimination value [71].

Simulations were carried out on the high-performance
computing systemof FreieUniversität Berlin [72]. Data processing,
statistical analyses and figure creation was performed using
Python (version 3.7), numpy (version 1.19.2; [73]), pandas
(v. 1.1.5; [74]), matplotlib (v. 3.3.2; [75]), seaborn (v. 0.11.0; [76]),
scipy (v. 1.5.2; [77]) and statsmodels (v. 0.12.1; [78]). The
significance threshold was adjusted to a conservative critical p
of 0.01.
3. Results
In a first step, to illustrate the effect of the presence or absence
of linguistic labels during training, we analysed the dissimi-
larity (Euclidean distance) of model activity in response to
input of the 30 grounding patterns to the primary extrasyl-
vian areas. Representational dissimilarity matrices (RDMs)
are shown for each of the 12 model areas in figure 3a.
While within-concept dissimilarity is always quite low
(‘narrow diagonals’, i.e. within a light-grey shaded 3 × 3
box as illustrated in figure 3b), it can clearly be seen that
there are differences depending on the factors semantic-
type and label in the between-concept dissimilarity. In gen-
eral, in the labels condition, between-concept dissimilarity
was much higher for both semantic types, indicating that if
conceptual patterns were learnt in association with labels
the purely perceptuo-motor activity in response to these con-
ceptual patterns on their own was more ‘categorical’, i.e. the
differences between the 10 different semantic concepts were
amplified. In addition to this strong labelling effect in gen-
eral, some smaller differences can be seen even in the
no label condition between concrete and abstract conceptual
patterns: in this case, the between-concept dissimilarity was
higher for concrete than for abstract concepts, indicating
that with concrete conceptual patterns, ‘categorical’ percep-
tual processing is more an inherent property of the overlap
structure of the grounding patterns, even in the absence of
labels. To quantitatively investigate these differences and
test for their statistical significance, we conducted further
analysis on the DissimDiff values obtained from the
dissimilarity matrices in figure 3a.

Figure 4a shows DissimDiff (dissimilarity difference)
values (i.e. DissimB−DissimW) with factors semantic-type
(abstract/concrete) and label (label/no label) across the 12
model areas. This confirmed the visual impression obtained
from figure 3a. For statistical analysis, we collapsed the Dissim-
Diff across all 12 areas (figure 4b) and conducted a repeated
measures ANOVAwith factors semantic-type (2) and labelling
(2). This resulted in a main effect of semantic-type (F1,11 = 49.9,
p < 0.0001), a main effect of label (F1,11 = 14 927, p < 0.0001) and
a significant interaction between semantic-type and label
(F1,11 = 672.6, p < 0.0001). Post-hoc Bonferroni-corrected t-tests
confirmed that this interaction was disordinal: without labels,
the DissimDiff was larger for concrete than for abstract con-
cepts ( p < 0.0001), whereas the converse was true with labels
( p < 0.0001).

We also quantified the label effect in terms of percentage
change from no label to label condition (in per cent of the
no label value as baseline), separately for DissimB and DissimW

(figure 4c). As we were also interested in how processing chan-
ged towards the ‘deeper’ model areas as activity propagated
from the primary input areas in extrasylvian cortex towards
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Figure 3. (a) Representational dissimilarity matrices (RDMs) for the label condition (top) and no label condition (bottom). In each panel half, concrete concepts are
shown on top and abstract concepts on the bottom. In each case, a total of 12 RDMs (one for each model brain area) are shown, arranged in the same way as the 12
brain areas depicted in figure 2b. Each RDM is 30 × 30, with three successive positions always reflecting one concept (see also panel b). Each cell in a RDM shows,
through colour-coding, the dissimilarity between the respective pair of 30 patterns. The dissimilarity measure used was Euclidean distance (with 0 indicating iden-
tity). (b) Enlargement of a 9 × 9 section of an RDM (i.e. showing 3 out of 10 concepts with letters denoting concepts, and numbers denoting instances within a
concept; e.g. A1 denotes instance 1 of concept A etc.) to illustrate the calculation of DissimDiff. We separately calculated overall average dissimilarity for all pairs of
conceptual patterns belonging to the same concept (DissimW – within, light grey) and for all pairs of conceptual patterns belonging to different concepts (DissimB –
between, dark grey). Note that in this enlargement it can be seen that whereas the ‘inner’ (narrow) diagonal has a dissimilarity of 0 (by definition), the ‘within-
concept’ dissimilarity values (broader diagonal) in a 3 × 3 grid typically still have a fairly low dissimilarity (lower than outside of this diagonal), but not 0.
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Figure 4. (a) DissimDiff (dissimilarity difference) values (i.e. DissimB−DissimW) with factors semantic-type (abstract/concrete) and label (label/no label) across the
12 model areas. This confirmed the visual impression obtained from figure 3. (b) For statistical analysis, we collapsed the DissimDiff across all 12 areas and conducted
a repeated measures ANOVA with factors semantic-type (2) and label (2). This resulted in a main effect of semantic-type (F1,11 = 49.9, p < 0.0001), a main effect of
label (F1,11 = 14 927, p < 0.0001) and a significant interaction between semantic-type and label (F1,11 = 672.6, p < 0.0001). Post-hoc Bonferroni-corrected p-tests
confirmed that without labels, the DissimDiff was larger for concrete than for abstract concepts ( p < 0.0001), whereas the converse was true with labels ( p <
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motor patterns for the same concept become increasingly more similar to processing ‘depth’ increases (see main text for discussion). Error bars show 95% confidence
intervals. (d ) Because the label effect is much larger for DissimB than DissimW (see main text for discussion of possible reasons), we here additionally show raw
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the central areas, we conducted a repeated measures 2 × 2 × 2
ANOVA on these data with factors between-within (2), seman-
tic-type (2) and centrality (2). The intermediate secondary level
is shown in figure 4c for illustration; for simplicity of the statisti-
cal analyses, we just contrasted the primary areas and the most
central ones, i.e. treating centrality as binary factor. We found a
significant three-way interaction (F1,11 = 427, p < 0.0001). Run-
ning further 2 × 2 ANOVAs separately for each of the two
levels of centrality, we found that in both cases there were sig-
nificant main effects of semantic-type and between-within
as well as significant interactions: for primary extrasylvian
areas, there was a main effect of between-within (F1,11 = 8613,
p < 0.0001), semantic-type (F1,11 = 1336, p < 0.0001) and a
significant interaction (F1,11 = 1570, p < 0.0001). For central extra-
sylvian areas, therewas amain effect of between-within (F1,11 =
5993, p < 0.0001), semantic-type (F1,11 = 783, p < 0.0001) and a
significant interaction (F1,11 = 948, p < 0.0001). Post-hoc Bonfer-
roni corrected t-tests showed that in both primary and central
areas, the label effect was always larger for abstract than con-
crete concepts, but with a different polarity for DissimB and
DissimW: in primary areas, the label effect on DissimB was
higher for abstract (143.0%) than concrete (58.6%) (p < 0.0001);
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in contrast, the label effect on DissimW was negative, but
more negative for abstract (−13.5%) than concrete (−9.9%)
(p < 0.0001). For central areas, the same pattern of results was
obtained, but with larger differences: the label effect onDissimB

was again higher for abstract (319.0%) than concrete (147.4%)
(p < 0.0001), and for DissimW again more negative for abstract
(−37.4%) than concrete (−31.0%) (p < 0.0001). Although the
effect on DissimW is also significant, it is difficult to see in
figure 4c owing to the relatively smaller magnitude compared
to DissimB. We therefore additionally show raw DissimW

values in figure 4d. Bonferroni-corrected t-tests on these raw
values confirmed that for both concrete and abstract concepts,
DissimW was significantly lower with labels than without
(both p < 0.0001).
il.Trans.R.Soc.B
378:20210373
4. Discussion
We used a neuroanatomically grounded computational model
of language and concept processing in the human brain
(figure 2) and trained the model by co-presenting neural
patterns (see figure 1 for illustration) thought to correspond
to word forms (presented to perisylvian primary areas) and
perceptuo-motor grounding patterns indexing real world
instances of concepts (to extrasylvian primary areas). Any
input supplied to the model during training was only given
to the model’s primary sensorimotor areas (*A1, *V1, *M1L,
*M1i), whereas our data analysis was based on examining
both primary as well as ‘deeper’ areas in the model which cor-
respond to multimodal areas. We asked whether associative
learning between categorical instances (grounding patterns)
and word forms which relied on biologically realistic Hebbian
mechanisms had an effect on the perceptuo-motor processing
of these instances. To assess this, the grounding patterns (with-
out their correspondingword form patterns) were presented in
a later testing phase and the similarity structure of the elicited
activation patterns in the model was assessed. This design
allowed us to assess anyWhorfian effects of linguistic learning
on subsequent perceptuo-motor processes, because, crucially,
direct activation of word form patterns was provided only
during the training phase, but not during the test phase, on
which our data analysis is based.

We found strong evidence that the presence or absence of
linguistic labels (word form patterns on extrasylvian areas)
during training influenced the processing of conceptual
instances (perceptuo-motor processing) during testing and
hence evidence for a Whorfian effect of linguistic learning on
perceptuo-motor processing, as indicated by two dependent
measures. First, we looked at the dissimilarity structure of
perceptuo-motor processing (figures 3 and 4), using the dissim-
ilarity difference (DissimDiff) to quantify the degree of
simulated categorical ’perception’ (in the model). A high Dis-
simDiff indicates that the model’s processing of the input of
the perceptuo-motor patterns is reflective of the semantic cat-
egory structure (i.e. patterns which are instances of the same
category would be perceived as more similar by the model
(hence grouped together), and/or instances of different cat-
egories as more dissimilar). Therefore, the DissimDiff is a
measure of how strongly the model abstracts away from the
specific perceptuo-motor input and instead exhibits processing
carved up along the semantic category structure. Our key result
is an interaction between semantic type and labelling for this
DissimDiff measure (figure 4b): when no labels had been
supplied during learning, DissimDiff was almost zero for
abstract concepts, indicating that hardly any structuring of the
input into different concepts occurred. DissimDiff was signifi-
cantly higher for concrete concepts, indicating that a
moderate amount of semantic category learning had occurred,
despite the absence of labels during training. By contrast, with
labels DissimDiff values became much larger in general and
were similar for concrete and abstract concepts (or even slightly
higher for abstract concepts). This means that, by adding labels
to the concepts, the learning of concrete semantic categorieswas
slightly improved, whereas that of abstract concepts was sub-
stantially changed from an almost-absent category structure
to a full-fledged one comparable to that of concrete concepts.
The Whorfian effect is by far stronger for abstract than for con-
crete concepts. As hypothesized in the introduction, the fragile
categorical conceptual binding for abstract concepts is substan-
tially solidified by the learning and grounding of verbal
category terms.

We quantified the label effect separately for DissimB and
DissimW (figure 4c), in percentage change from no label to
label conditions (i.e. the no label-label difference in per cent
of the no label value as baseline). This shows, firstly, that
the presence or absence of labels causes major changes of
DissimB, but much smaller (but still significant) ones of
DissimW (see figure 4d ). Furthermore, the label effect was sig-
nificantly larger for abstract than concrete concepts. Secondly,
in the ‘deeper’ areas of the model (i.e. those further away
from the primary sensorimotor areas where stimulation was
given), the difference in DissimB between abstract and con-
crete concepts became even larger. This indicates that the
further away (in the layer hierarchy) from the semantic
input (conceptual patterns), the more the network’s activity
reflects the category structure imposed by the verbal labels,
and the more important the role of labels becomes for abstract
concepts (compared to concrete ones) in such conceptual
structuring. This finding is consistent with neuroimaging
results showing that processing abstract words primarily
engages inferior frontal and middle temporal regions
[79–82]. We see a general tendency for DissimW to decrease
towards central areas, which suggests that the distance
between patterns belonging to the same category becomes
increasingly smaller as processing depth increases (i.e. these pat-
terns are being treated as increasingly more similar).

In summary, our results clearly demonstrate a positive
Whorfian benefit of interlinking conceptual instances with
labels. While labels improved category learning performance
of the network in general, their addition made a huge differ-
ence for abstract category member processing contrasting
with a moderate effect on concrete ones. These results lead us
to conclude that in order to fully capture the semantic category
structure of abstract concepts, the interplay between language
and other perceptual and cognitive processes is necessary.
Although this conclusion is in line with some of the theoretical
proposalsmentioned in the introduction, not all of these propo-
sals trace back the result to the mechanism identified here, i.e.
the structuring effect of verbal category terms on the learning
of abstract concepts with family resemblance relationships.

(a) Label-induced increase of within-category similarity
and between-category dissimilarity

Over and above discussing a general measure of categorical
separation induced by language, we here provide evidence
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for two partly independent processes jointly contributing to
such separation. First, as many researchers have emphasized
(e.g. [26,30,31]), the learning of words for a set of similar
instances increases their representational similarity. Thus
objects, actions or scenes from the same category are perceived
as more similar to each other. Mechanistically, this effect is
owing to a relative increase of model neurons shared by the
cell assemblies of the different instances, and, at the same
time, relative decrease of neurons specific to individual
instance representations. A second process and factor is the
label-induced increase of the representational distance between
categories. The latter effect appeared to be much more pro-
nounced than the former. Here, we will discuss briefly why
this might be so in our present simulations, thereby also dis-
cussing aspects of the mechanisms of ‘label addition’ and the
change in semantic representation it comes with.

The measure we here use for accessing (dis-)similarity, the
Euclidean distance between representational patterns, comes
with the property that representations which involve more
active neurons come with longer (larger) vectors so that their
dissimilarity will be more different from each other than ‘smal-
ler’ representations (with fewer active neurons). In addition, this
makes it easy to increase the distance between representations
(by adding new active neurons) and thus increase dissimilarity
but more difficult to decrease dissimilarity, especially if, as in
the present simulations, representational patterns are chosen
that strongly overlap in the first place. It may be that when
using a different dissimilarity measure (e.g. cosine dissimilarity
or a measure normalized for ‘representational size’ or vector
length) the results will change in such a way that within- and
between-category dynamics appear more comparable in size.
We suggest not over-emphasizing this difference between
within- and between-category dissimilarities, but instead con-
sider both facts, each of which is based on significant results,
as relevant.

As the label-induced ‘moving apart’ of different categories
in representational space seems to have received less attention
in previous work compared with the ‘moving together’ of rep-
resentations within the same category, we now turn to the
mechanisms underlying the increase of dissimilarity between
categories related to language. The addition of different
labels to conceptual representations in a network can be mod-
elled in an elementary way by adding a different activation
vector – representing the added word form – to each concept
vector. For instances (i.e. objects, actions or scenes) from the
same semantic category and thus falling under the same cate-
gorial term, the same word form vector is added to each
instance vector, so that the distance between the resultant
vectors remains unchanged. However, if two instances are
interlinked with different word form vectors, the difference
between the sum vectors (word form + instance vectors) will
increase. In this latter case, the sumvectorswill bemore dissim-
ilar than the instance ones had been on their own. Because all
concepts within a category have the same label vector added,
the categories move apart from each other in representational
space—but not the concepts within each category.

Even though the scenario described above is a simplification
(since, for example, nonlinear processes may play an additional
role), it might nevertheless capture an important factor moving
labelled semantic representations further apart compared with
the non-labelled instance and conceptual representations. One
may, however, object that the addition of labels in itself
does not imply a difference in semantics. Even though
representational dissimilarity increases between categories,
this would not constitute a semantic effect but purely a
consequence of the addition of knowledge about symbol form.

That this latter position is however not fully appropriate
can be seen when looking not at dissimilarities, but instead at
details of the representational changes in the underlying cell
assemblies (an analysis type that we carried out in the context
of a previous simulation project [46]). One important aspect
here is that the number of neurons responding to all instances
of a conceptual category increases when the category label is
added. In particular, some neurons previously activated by
only 1 or 2 category instances are nowactive for all the category
members. This effect is most prominent for the abstract con-
cepts and their neurons responsive to only 2 of the 3 category
members but occurs likewise for single instance neurons of
concrete and abstract ones. What this implies is that the
addition of a label changes the semantic representation so
that previously instance specific perceptual and action related
features become attributed to all members of the semantic
category. The semantic structure changes as a consequence of
the addition of a word form. The mechanism behaves as if
some features, which in fact characterize only some category
instances, were shared by all category members.
(b) Limitations and future research needs
In spite of the present attempts to look more closely at the
mechanisms by which verbal labels may aid semantic cat-
egory learning, this work leaves many related questions
unanswered. We believe that a likely mechanism is owing
to the differing patterns of correlations that (i) the semantic-
feature neurons, on the one hand, and (ii) the word form
neurons and semantic-feature neurons, on the other, exhibit
for concrete and abstract concepts. A proposed explanation
is that the relatively stronger correlation between label and
semantic neurons (see the Introduction and figure 1 for expla-
nation) for abstract concepts exerts a ‘pull’ on the emerging
cell assemblies during training such that the word form neur-
ons play a larger role in the entire semantic cell assembly than
they do for concrete concepts. However, to assess this sugges-
tion in detail, one would need to follow the formation of
novel cell assemblies for concepts and then semantic concep-
tual-linguistic representations step by step throughout the
learning process. Most importantly, we assume and suggest
that the implemented associative learning between concrete
and abstract conceptual instantiations and their respective
linguistic correlates leads to the formation of neuronal mech-
anisms that bind the form and meaning of concrete and
abstract symbols. These mechanisms are characterized by
overlapping neuronal units carrying shared or partially
shared semantic features. Actually searching for and even-
tually documenting these neuronal units after learning in
the brain-constrained networks is an important task for
future research. A related question is how the learning of con-
ceptual mechanisms affects the neural representations of the
individual conceptual instances, the object representations
built before label learning started. Would the conceptual
representations ‘glue together’ different instance represen-
tations or would both coexist in the same model? These are
but a few relevant questions to be addressed in future neuro-
computational studies.

Although the observed linguistic effects can, following our
argument, be explained at the neurobiological level, one may
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claim that there are cognitive effects of importancewithout any
known neurobiological correlate. For example, infants pay
more attention to novel and unfamiliar objects if they are
labelled with a category term compared to when they are
unlabelled; the mere existence of a verbal label may therefore
exert a similar attention-attracting effect as a pointing gesture
[39]. In category learning, experiencing several similar objects
always paired with the same linguistic label has been shown
to cause the learner to paymore attention to the shared features
of the objects than the presence of object-specific labels
[31,85,86]. However, such attraction of attention and focusing
on shared features by verbal category labellingmay have a neu-
robiological mechanism causing it. We here submit that the
proposed formation of a strongly connected cell assembly
including neurons representing the shared semantic features
of concrete concepts is such a mechanism. Such a strongly con-
nected neuron set will, owing to its strong interconnectedness,
more easily activate and therefore may provide the mechanism
behind the cognitive feature of attention-attraction of labelled
object categories.

An obvious simplification introduced in our model is
that every concept has only a single label. Realistically,
however, most objects can be named at several levels of speci-
ficity, for example that of the basic category (e.g. CHAIR,
ROBIN) and the larger domain (e.g. FURNITURE, BIRD)
[87,88]. A related question concerns the converse situation
where a single word form is associated with several concep-
tual patterns; a recent study [89] found that it is easier
for children to learn related meanings of a word form
(polysemy) compared to learning unrelated meanings (i.e.
homonyms or homophones). Future simulation studies
could address semantic hierarchies, polysemy/homonymy
and other form-meaning relationships and try to clarify
how more complex relationships between form and meaning
are neurobiologically realised and affect perceptual and con-
ceptual processing. A related simplification, which we
introduced here, was that there was zero overlap between
the grounding patterns of different concepts; as we focus
on investigating how the differential within-category overlap
structure affects the resulting neuronal representations, we
avoided additional uncontrolled between-category dis/simi-
larity, as it could perturb or even confound the study
results. However, we acknowledge that this is a potential
limitation which future simulations could address.

Finally, we would like to emphasize that there are several
aspects of human word learning which might play an impor-
tant role but which are not captured by our current model.
These include, for example, the influence of functional object
properties on semantic categorization [90], phonological fac-
tors such as stress patterns [91] or the classification of words
into semantic classes based on distributional and syntactic
similarities (syntactic bootstrapping) [92,93] as well as cogni-
tive factors related to the nature of the learning tasks [94] or
how easily semantic features of a category can be verbalized
[95,96]. One additional aspect not yet addressed here is the
cross-linguistic variability of semantics [97]. For example, we
do not simulate here cases such as that of colour terms which
may partition perceptual space in a language-specific
manner—with some languages including one high-frequency
symbol for a range of colours (e.g. ‘blue’) and others offering
a verbal separation into lighter and darker variants [7]. We
note that the present approach to the neurobiology of language
and concepts addresses these issues and even provides expla-
nations for the interaction between language and perception
processes [10,98].
5. Conclusion
A brain constrained neurocomputational simulation study
was performed to explore putative brain mechanisms of
associating conceptual categories (each constituted by three
distinct, but related, grounding patterns) with linguistic
labels. We found a clear Whorfian effect of category labels
on the processing of conceptual instances: the model’s
activity in response to perceptuo-motor grounding patterns
was modulated depending on whether or not labels had
been provided during the earlier training phase. Labels
were highly beneficial for semantic category learning per-
formance, and this benefit was more strongly pronounced
for abstract compared to concrete concepts and even more
so in the deeper-lying semantic ‘hub’ areas of the model
than in the primary areas, where stimulation was given.
Thus, these effects of linguistic relativity are substantially
modulated by the similarity structure of concepts, being
more effective and relevant for the formation of abstract con-
cepts with family resemblance structure than for concrete
concepts with shared semantic features.
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Endnotes
1We use ‘conceptual’ to refer to purely conceptual processes when no
language is involved; by contrast, we use ‘semantic’ when language
is involved, which means that a symbol (e.g. a spoken word form,
written word, gesture or other symbol) is interlinked with a concept.
2We sometimes speak about ‘perceptual’ features but would like to
stress that the same applies to action related features too. If the
same perceptual (or action) feature is shared by all or most category
instances, this feature can be considered semantic (e.g., CUCUMBER
is [+GREEN]).
3This section has been adapted from [46,58], as we used the same
model architecture and connectivity features here.
4This section has also been adapted from [46,58], as we used the same
model architecture and connectivity features here.
5This section has been adapted from [46], as we used the same
conceptual grounding patterns here.
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