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Abstract
Body representation disorders are complex, varied, striking, and very disabling in most cases. Deficits of body representation 
have been described after lesions to multimodal and sensorimotor cortical areas. A few studies have reported the effects of 
tumors on the representation of the body, but little is known about the changes after tumor resection. Moreover, the impact 
of brain lesions on the hand size representation has been investigated in few clinical cases. Hands are of special importance, 
as no other body part has the ability for movement and interaction with the environment that the hands have, and we use 
them for a multitude of daily activities. Studies with clinical population can add further knowledge into the way hands are 
represented. Here, we report a single case study of a patient (AM) who was an expert bodybuilder and underwent a surgery 
to remove a glioblastoma in the left posterior prefrontal and precentral cortex at the level of the hand’s motor region. Pre- 
(20 days) and post- (4 months) surgery assessment did not show any motor or cognitive impairments. A hand localization 
task was used, before and after surgery (12 months), to measure possible changes of the metric representation of his right 
hand. Results showed a post-surgery modulation of the typically distorted hand representation, with an overall accuracy 
improvement, especially on width dimension. These findings support the direct involvement of sensorimotor areas in the 
implicit representation of the body size and its relevance on defining specific size representation dimensions.
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Introduction

Body representation disorders have quickly become the 
focus of numerous studies as they provide the perfect 
opportunity to identify a network of cortical areas that play 
a central role in representing the body (Berlucchi and Aglioti 
2010; Di Vita et al. 2016; Magnani and Sedda 2016). For 
instance, brain damage to the insula and premotor cortex 
can cause an alteration of the visuospatial or structural 

component of the body parts due to a failed integration of 
sensory motor information with other body representations 
(Di Vita et al. 2015). Further, damage to the right supple-
mentary motor cortex caused a patient to experience super-
numerary phantom limb (Hari et al. 1998; McGonigle et al. 
2002), whereas a pervasive feeling of having four legs has 
been described after the removal of a right parietal meningi-
oma (Vuilleumier et al. 1997). More recently, supernumer-
ary finger phenomenon during drawing (i.e., drawing more 
than five fingers) has been described in a group of patients 
who underwent resection of tumors in the right anterior fron-
tal insula and operculum (Niki et al. 2014). A recent case 
study presented a patient with a right temporoparietal tumor 
that caused complete bilateral loss of a patient’s body owner-
ship, specifically, feeling as if his body had been ‘lost’ (Smit 
et al. 2018). Indeed, distortions caused by brain tumors are 
of particular interest because of their relatively slow pro-
gression of illness (in comparison to traumatic injuries or 
strokes) and the possibility of comparing the effects of injury 
before and after tumor resection. However, pre- and post-
surgery observations on body representation disorders have 
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been rarely reported due to the scarcity of these cases. These 
observations are of interest to understand the involvement of 
specific cortical areas in the representation of the body, the 
potential effects of the lesion, and the recovery of functions 
post-surgery.

One specific body part that has been widely studied in 
body representation research is the hand. Hands are used for 
a multitude of daily activities, such as manipulating objects, 
tactile perception, gestural expression, and showing affec-
tion. No other body part has the ability for movement and 
interaction with the environment that the hands have, and 
their relevance has made them the focus of numerous stud-
ies. Indeed, systematic assessments of different aspects of 
the size and shape of the hands have been published through-
out the recent years. A large bulk of the recent research on 
the topic has involved a research group led by Matthew 
Longo that has predominantly focused on the study of the 
distortions of the representation of the hands. Following the 
study of touch anisotropies (i.e., Weber’s illusion), Longo 
and colleagues (2010) proposed the existence of a body 
model, a stored implicit mental metric representation of the 
body that includes information about the size of body seg-
ments (Longo et al. 2010; Longo and Haggard 2010; Serino 
and Haggard 2010). This body model has been assessed 
by different variants of the localization task (e.g., Longo 
2022; Longo and Haggard 2010). Briefly, participants place 
their hand under an occluded board to locate single land-
marks on it (i.e., knuckles and fingertips), by pointing with 
a baton. The goal is to point to the location where partici-
pants feel their landmarks to be, relying on their position 
sense that indicates where the body is in space at any given 
time (Longo 2015a). By measuring the distances between 
pairs of landmarks (e.g., tip of the thumb and the knuckle), 
these authors compared the real and perceived size judg-
ments. Consistent replications of the results have shown 
that, in the healthy population, fingers are underestimated 
in length, the hand is overestimated in width, and there is a 
radial–ulnar gradient in the underestimation of finger lengths 
(i.e., the thumb is the least distorted, while the little finger is 
the most) (Longo 2015a, 2022). Longo and Haggard (2011) 
postulated that this shared implicit representation of the 
body size and shape (the body model) preserves the char-
acteristics of the somatosensory homunculus, and it is dis-
cerned both by touch and position sense (Coelho and Gon-
zalez 2018; Longo 2014). In their model, distances between 
two touches will be calculated by ‘counting’ the number of 
‘pixels’ (receptive fields) in between them. This explains 
why an identical object touching two skin surfaces with dif-
ferent receptive field distributions (e.g., forehead versus the 
dorsum of the hand) will be perceived as larger or smaller. 
The receptive field geometry then informs the body model, 
producing the perceptual distortions in hand size representa-
tion (Longo 2017, 2022; Longo and Haggard 2011).

Despite the interest in using this task in the healthy popu-
lation and the relevance of these findings, the localization 
task has been rarely used in the clinical population. For 
the first time, Longo and Haggard (2012a, b) adopted the 
localization task for the hand in a study of a patient with 
congenital limb loss, in which they found the hand size rep-
resentation to be preserved even in the absence of the limb. 
A similar localization task was used to study the representa-
tion of lower limbs in patients with body integrity identity 
disorder, which again did not show any impairment in their 
capacity to represent their lower limbs, even though they 
perceived them as foreign (Stone et al. 2020). More recently, 
an adaptation of the localization task was used to study the 
representation of the hands in two patients with sensory 
loss. They found that a combination of reliance on visual 
information and extensive hand use reduced the size of the 
distortions when compared with healthy controls (Miall 
et al. 2021). These studies helped further understand the 
existence of a stored body model in the brain that appears 
stable despite insults to its integrity. Here, we present the 
case of a professional bodybuilder (AM) who had a tumor 
located in the left posterior prefrontal and precentral cor-
tex at the level of the hand’s motor region. AM offered the 
occasion to investigate possible modulations of his contral-
esional (i.e., right) hand representation by tumor presence 
and resection. Considering the location of AM’s lesion, we 
aimed to explore the involvement of sensorimotor areas in 
hand size representation. For this, a task that taps into the 
body model, which is constructed and influenced by the 
homuncular representation (Longo and Haggard 2011), was 
needed. Hence, the localization task was a good alternative 
to measure the effects of the tumor on the metric representa-
tion of the hand. This task taps into the more implicit com-
ponents of body representation (body model), in contrast 
to visual estimates that are more explicit and constructed 
by vision (Longo 2015a, 2017, 2022; Longo and Haggard 
2012b). Indeed, previous research has identified differences 
in the body model of the hands using this task in participant 
experts in the use of hands (i.e., sign language interpreters; 
Mora et al. 2021), a practice that is associated with ana-
tomical structural changes in the motor representation of the 
hand (Allen et al. 2013; Penhune et al. 2003; Sastre-Janer 
1998). We expected to observe specific modulation of his 
contralesional (right) hand representation that would modify 
following tumor resection.

Materials and methods

AM was a 41-year-old man. He had 18 years of formal 
education and was right-handed (laterality index = 0.91), 
as assessed by the Edinburgh Handedness Inventory 
(Oldfield 1971). He was a financial advisor and expert 
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bodybuilder for the last 8 years. He was admitted to the 
IRCCS Neuromed, Mediterranean Neurological Institute 
(Pozzilli, Italy), where he received a diagnosis of left pre-
central glioblastoma (grade IV). Histopathological analy-
sis showed a mutant IDH1 and ATRX, compatible with the 
diagnosis of secondary glioblastoma from an astrocytic 
lineage, and in accordance with the long radiological and 
clinical history. The patient underwent structural MRI 
investigations with and without contrast sequences on a 
3 Tesla GE scanner both before and after surgery, as well 
as pre-surgical functional mapping of language and motor 
functions. The structural scans showed a lesion of about 
3  cm3, localized in the left posterior prefrontal and precen-
tral cortex, within the hand motor region (see Fig. 1). AM 
never reported alterations of his body perception.

AM underwent a resection of the tumor after about 
5  months from diagnosis. Subpial microsurgical (i.e., 
under surgical microscope magnification) resection under 
continuous and real-time neurophysiological monitoring 
was performed. The procedure was conducted under local 
anesthesia (awake surgery) with the aid of a neuronaviga-
tion system. Surface cortical stimulation mapping showed 
critical sites for hand and arm contralateral movements 
localized outside the tumor lesion in the posterior side, 
and a language site eliciting dysarthria in the inferior side 
of the cortical boundary of the tumor. The resection was 
stopped when normal surrounding tissue was encountered, 
paying more attention when motor performance worsened, 
especially during fine movement evaluation.

Immediately after the surgery, AM showed dysarthria 
and a mild strength deficit of the right upper limb, mainly 
distal. Both deficits resolved within 6 days on a clinical 
evaluation. No further cognitive or motor deficits were 
reported in the following months by the patient who soon 
came back to work.

AM was asked to complete a formal psychometric 
assessment to evaluate his cognitive and motor abilities 
before (20 days) and after (4 months) tumor resection. Pre-
surgical neuropsychological examination (see results sec-
tion) did not identify any motor and cognitive deficits on 
the processes investigated. At the same time point before 
surgery and after 1 year from surgery, he was also asked 
to complete the task to assess the mental representation of 
his right (contralesional) hand.

Ethical approval was obtained by the medical ethical 
committee of the IRCCS Neuromed. The study was con-
ducted in accordance with the principles of the Declaration 
of Helsinki (1964) and its later amendments. Data were 
treated anonymously. The patient voluntarily and enthu-
siastically took part in the study, provided an informed 
written consent, and could withdraw from the study at any 
moment without providing any justification.

Cognitive assessment

AM completed ten subtests from the Esame Neuropsicolog-
ico Breve 2—ENB2 (tr. Short Neuropsychological Examina-
tion) (Arcara et al. 2011) which assesses general cognitive 
functioning: digit span (verbal short-term memory), trail-
making test (A and B, selective attention), memory with 
interference test (verbal working memory with two temporal 
delays: 10 s and 30 s), story recall (immediate and delayed 
verbal long-term memory), overlapping figures (visuo-per-
ceptual abilities), phonemic fluency (language and cogni-
tive flexibility), and the clock drawing test (image retrieval, 
reasoning, and praxis abilities).

The Frontal Assessment Battery (FAB) is a short battery 
to assess frontal executive functioning problems (Dubois 

Fig. 1  Patient AM’s T1-weighted magnetic resonance imaging scans 
before and after surgery. A T1-weighted (SPGR) magnetic resonance 
imaging scan in native space showing lesion location in the left pos-
terior prefrontal and precentral cortex at the level of the hand region. 
Top right panel shows a 3D reconstruction of the lesion volume. Top 
left, bottom left and bottom right pictures represent coronal, trans-
verse and sagittal slices centered on the lesion volume, respectively. 
B Transverse and sagittal views of the post-surgery MR scan (with T1 
enhancement after gadolinium administration) in native space, coreg-
istered to the pre-surgery scan
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et al. 2000). It includes six subtests: conceptualization, men-
tal flexibility, motor programming, sensitivity to interfer-
ence, inhibitory control, and environmental autonomy. An 
Italian version of the FAB was administered (Appollonio 
et al. 2005). AM completed the test only before surgery.

Motor function assessment

Motor functions of the hand were explored in terms of finger 
dexterity and maximal grip strength.

Finger dexterity assessment

Finger dexterity was measured with the nine-hole peg test 
(Kellor et al. 1971; Mathiowetz et al. 1985). This test con-
sists of a plastic board with nine holes in it (10 mm diameter, 
15 mm depth) at a distance of 32 mm apart and a shallow 
round dish on the opposite end. It also includes a set of 
nine plastic pegs (7 mm diameter, 32 mm length) which are 
all fitted in the holes. The board was positioned on a table, 
aligned with the participant’s body midline oriented in such 
a way that the dish was on the participant’s preferred hand 
side. AM was seated positioned in front of the board and 
was asked to pick one peg at a time and put them in the 
shallow dish as fast as possible, only using one hand, until 
all pegs were removed. Standard instructions were provided 
(Mathiowetz et al. 1985) and AM was allowed a short prac-
tice. The procedure started with the preferred hand (right 
hand), followed by the non-preferred hand. AM was allowed 
to support the board with the hand not being evaluated in 
each trial. AM was timed with a stopwatch.

Maximal grip strength

Maximal grip strength is normally used as a functional 
measure of the integrity of the upper extremity that quanti-
fies weakness (Bertrand et al. 2015; El-Sais and Mohammad 
2014). AM was tested for both the upper extremities with 
a Jamar digital dynamometer (Sammons Preston Rolyan, 
Bolingbrook, USA), and results were recorded in kilograms 
force (kgf). AM’s grip strength was measured in a seated 
position following the American Society of Hand Therapists 
recommendations: elbow flexed at 90°, forearm in neutral 
position, shoulder adducted and neutrally rotated and wrist 
between 0° and 30° of extension (El-Sais and Mohammad 
2014; Fess and Moran 1981). The patient repeated the test 
twice, and the average value was considered as the result. 
The first session was conducted with the preferred limb.

Hand localization task

AM’s metric representation of his right hand was assessed 
20 days before and 12 months after the tumor resection by 

means of the localization task (e.g., Longo and Haggard 
2012a, b). In this task, participants are asked to point to 
different body parts to discern the metric representation of 
their body. Since the pointing task requires movements of 
one hand to localize specific points of the other hand, repre-
sentations of the right (contralesional) hand were assessed 
requiring pointing of the left (ipsilesional) hand. Represen-
tation of the left hand was not assessed as this would have 
required to point with the contralesional, and thus potentially 
affected, right hand.

We used a modified version of the hand localization task, 
as in previous research (Mora et al. 2021). In this case, a 
horizontal transparent Perspex board (30 × 30 cm) was posi-
tioned on top of four metal posts (10 cm high). The board 
was on a table, in front of the participant. A remote-con-
trolled camera (Nikon 6000) was placed on a tripod (90 cm 
height), perpendicular to the center of the board, in such a 
way that the camera focus was aligned with it. A small can-
vas (20 × 20 cm) was positioned underneath, on which AM 
rested the tested hand with fingers spread comfortably. AM 
sat in front of the table and had his eyes closed for the whole 
duration of the procedure. The middle finger was aligned 
with the participant’s body midline. They kept the hand still 
in this position for the whole duration of the task (Fig. 2).

AM was then asked to use his left index finger (dot 
drawn on the index fingernail for reference) to point on 
top of the board to different landmarks on the occluded 
right hand. There was a total of 11 landmarks requested, 
one at a time (5 fingertips; 4 interspaces; and the two sides 

Fig. 2  Hand localization task. Modified from Mora et al. (2021)
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of the wrist’s bones, ulna and radius). Each landmark was 
requested three times for a total of 33 sets of data for each 
assessment (i.e., pre- and post-surgery). Pointing adjust-
ments were allowed (Kammers et  al. 2009; Króliczak 
et al. 2006). A picture (5184 × 3456 pixels) of each point-
ing response was taken, and these were used to measure 
the accuracy of the metric representation of the hand. A 
measuring tape was placed on the borders of the board 
to provide a reference for later conversion of pixels into 
centimeters. To ensure understanding of the labels given 
to the different landmarks of the hand, AM was asked 
to identify these landmarks on a schematic hand picture 
placed in front of him during a practice trial.

Image processing for hand representation

The pictures were analyzed following the same method 
adopted in Mora et al. (2021) with a bespoke-made image 
analysis program using Borland  C++ Builder (2007) that 
allowed conversion of pixel units into centimeters. The x 
and y coordinates for the real and perceived locations were 
obtained for each landmark (the origin was at the bottom 
right corner of each picture). With the coordinate data, dis-
tances (in centimeters) between pairs of landmarks were cal-
culated, as in previous studies (e.g., Mora et al. 2021): (i) 
length of fingers were represented by the distance between 
each fingertip and adjacent interspace; (ii) the length of the 
hand’s dorsum was represented by the distance between the 
interspace between the ring and little fingers and the exterior 
side of the wrist; (iii) the width of the hand was represented 
by the distance from the interspace between the index and 
middle fingers, and the interspace between the ring and little 
fingers; and (iv) the width of the wrists was represented by 
the distance between the two sides of the wrists.

Further, percentages of over/underestimation for length 
and width perception were obtained by comparing the per-
ceived size against the real size: [(perceived size − real size)/
real size] × 100. Negative values denoted underestimation, 
positive values, overestimation, and zero denoted perfect 
performance. Percentages of over/underestimation for fin-
gers, hand width and wrist width were averaged across the 
three trials to obtain a measure of the overall performance.

Statistical analyses

Patient’s results were considered by running one-sample t 
tests to assess if the distortions were significantly different 
from zero. Paired-samples t tests were used to assess differ-
ences between assessment time (before and after surgery), 
where data for both sessions were available. Corrections for 
multiple comparisons were applied (with p < 0.02).

Results

Cognitive and motor function assessment

Scores for AM’s performance on cognitive tests, normal 
ranges and cutoff scores are presented in Table  1. AM 
showed normal performance in all tests run before and after 
the surgery.

Concerning motor abilities (see Table 1), AM’s perfor-
mance on finger dexterity assessment was compared with 
normative data from a recent study (Oxford Grice et al. 
2003). Crawford t tests for single case were run for both 
hands, before and after surgery and results did not reach 
significance for any (all p > 0.05), confirming that AM per-
formed within norms in both pre- and post-surgery sessions.

Also, AM’s maximal grip strength was compared with 
norms provided by the device’s manual Suaver Digital 
Dynamometer, 90 kg and performance was within norms 
for both hands and both sessions.

Hand localization task

The perceived size of the length of fingers, length of the 
dorsum of the hand, width of the hand and width of the wrist 
were obtained. The results are illustrated in Figs. 3 and 4.

Finger lengths

The perceived size of all fingers was averaged to obtain 
a single overall percentage of distortion. Before surgery, 
AM underestimated the finger lengths (M = −  25.79%; 
SD = 15.06), but the distortion did not differ significantly 
from zero [t (2) = − 2.97, p = 0.097, d = − 1.71]. Also, 
after the surgery, he showed an overall underestimation 
(M = − 19.23%; SD = 16.68), but not significantly different 
from zero [t (2) = − 1.99, p = 0.18, d = − 1.15] (see Fig. 3A). 
In line with this, significant differences before and after sur-
gery were not found [t (2) = − 0.39, p = 0.73, d = − 0.23]. 
These results suggest that finger length representation did 
not change significantly after tumor resection (see Figs. 3A 
and 4).

Dorsum length

Before the surgery, AM tended to overestimate the length 
of his right hand dorsum (M = 19.55%, SD = 14.78) but 
the distortion was not significant [t (2) = 2.29, p = 0.15, 
d = 1.32]. After surgery, AM showed the opposite trend 
with a mild underestimation of the length of the dorsum 
(M = − 6.12%, SD = 11.39), which was not significantly 
different from zero [t (2) = − 0.93, p = 0.45, d = − 0.54]. 
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Despite the opposite direction of the average error between 
sessions, the difference did not survive multiple com-
parison and only showed a trend [t (2) = 4.83, p = 0.04, 
d = 2.79]. These findings are not conclusive, but the trend 
between sessions leaves open a question about a possible 
modulation of the tumor removal on this aspect of hand 
representation (see Figs. 3B and 4).

Hand width

An overall overestimation of the right hand width was 
present in pre- and post-surgery (see Fig. 3C). In detail, 
the right hand was significantly [t (2) = 12.49, p = 0.006, 
d = 7.21] overestimated before surgery by a 71.38% 
(SD = 9.89). After tumor resection, the hand width was 
still significantly [t (2) = 194.2, p < 0.001, d = 112.12] 
overestimated, but to a lesser extent (M = 28.59%; 
SD = 0.36). Difference between the two sessions was 
significant [t (2) = 7.49, p = 0.02, d = 4.33], confirming a 
significant reduction of the distortion after surgery and 
providing evidence of an improvement on its representa-
tion (see Figs. 3C and 4).

Width of wrists

Lastly, before surgery AM significantly [t (2) = 8.57, 
p = 0.01, d = 4.95] overestimated the width of his right wrist 
(M = 101.22%; SD = 20.47). In contrast, the distortion after 
surgery appeared much reduced (M = 25.03%, SD = 35.81) 
and not significantly different from zero [t (2) = 1.21, 
p = 0.35, d = 0.7]. The difference between sessions was not 
significant [t (2) = 3.39, p = 0.077, d = 1.96]. Despite a more 
accurate representation of the wrist size after the surgery, 
these findings do not support a relevant modulation due to 
resection of the tumor (see Figs. 3D and 4).

Discussion

AM’s cognitive abilities were assessed with a wide range of 
cognitive tests and his performance were well above cutoffs 
both before and after the surgery. He also performed within 
norms in motor tasks assessing grip and strength for both 
hands and no relevant difference between the two sessions 
emerged. These findings suggest a stable and normal perfor-
mance on both cognitive abilities and motor skills.

Table 1  AM’s 
neuropsychological and motor 
assessment results

ENB2. Accuracy scores (i.e., number of correctly reported elements) for each subtest, except for the trail-
making test A and B for which the time of execution is provided. FAB, total score was obtained for the 
Frontal Assessment Battery. Cutoffs for each ENB2 subtest and for the FAB are provided with reference 
to the patient’s age and education level. A performance below (above for the trail-making test) the cutoff is 
considered pathological
NA not available, RH right hand, LH left hand
* Normative data

Tests Range Pre-surgery Post-surgery Cutoff

ENB2
Digit span 0–8 7 7 5
Story recall—immediate 0–28 18 16 8
Story recall—delayed 0–28 19 19 11
Memory with interference—10 s 0–9 9 9 6
Memory with interference—30 s 0–9 8 9 4
Trail making test—A (s) NA 32 36 55
Trail making test—B (s) NA 91 92 142
Phonemic fluency test 0–34 12 10 10
Overlapping figures test 0–50 38 NA 32
Clock drawing test 0–10 9 9 8
FAB 0–18 18 NA 13.5
Motor assessment

Mean (SD)*
Nine-hole peg test (s) RH 19.9 20.7 18.54 (2.88)

LH 19.6 20 18.49 (2.42)
Range*

Maximal grip strength (Kgf) RH 42.9 41.8 35.5–55.3
LH 37.25 37.5 35.5–55.3
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On the hand localization task, AM showed the typical 
pattern of distortion for the hand representation, underes-
timation of length (~ 20–30%) and overestimation of width 
(~ 60–80%) that was first described in Longo and Haggard’s 
(2010, 2012a, b) studies and extensively replicated in lit-
erature (see Longo 2022 and Peviani and Bottini 2020 for 
reviews). Since there is no information about AM’s pre-
morbid performance, it is not possible to reach further con-
clusions about the actual impact of the tumor. However, it 
is important to note that he still showed a typical distortion 
pattern.

In contrast to the stable cognitive and motor perfor-
mance across sessions, we observed an overall trend indi-
cating a reduction of the distortion related to the right 
hand representation. This was particularly evident for the 
hand width. In the literature, overestimation of the hand 

width and underestimation of the finger length have been 
associated with the size of the receptive fields and the cor-
tical representation for these body parts (Longo and Hag-
gard 2010, 2011, 2012a). In detail, the areas that occupy a 
larger surface in the cortex are, in turn, perceived as larger 
(Miller et al. 2016). Therefore, disruption or increase of 
the activity in these cortical areas may, in turn, affect the 
perceived size of the body. Increasing the size of a body 
part does enhance the activation of the somatosensory 
cortex (D’Amour and Harris 2017), in the same way that 
direct cortical activation of these areas through repeti-
tive transcranial magnetic current stimulation (rTMS) 
increases the perceived size of the hand (Giurgola et al. 
2019). We cannot comment on AM’s specific impact of 
tumor compression on the somatosensory cortex of the 

Fig. 3  Distortion of widths 
and lengths. Representation of 
perceived underestimation and 
overestimation (%) of finger 
lengths (A), hand dorsum (B), 
hand width (C) and wrist width 
(D), for the right hand. Error 
bars represent the standard 
error of the mean. * Significant 
differences after correction for 
multiple comparisons
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hand, but the width showing a more significant improve-
ment after tumor resection suggests that modulation can 
be highly selective.

Improvement of body representation deficit after tumor 
resection has been occasionally reported previously. In par-
ticular, patients with meningiomas in the parietal–occipital 
areas that showed impairments in body-related tasks, such 
as left–right orientation, recovered their functions once the 
tumor was removed (Nikishina et al. 2016). Partial recovery 
was observed on a patient who showed a severe misoplegia 
toward her left leg, after the removal of a tumor in the right 
medial and temporoparietal lobes (Loetscher 2006). Also, 
the preservation of sensorimotor functions we observed in 
AM is in line with available data (Seitz et al. 1995). Still, it 
is of interest to note that the modulation of the performance 
was only evident in the perceptual task, but not in the motor 
task. Further studies could help elucidate if there is an asso-
ciation between better hand size representation and general 
motor performance due to bodybuilding.

It is important to note that the dimension where we found 
a change post-surgery was the width, but not the length. 
Indeed, variability in length perception seems less frequent, 
whereas width appears more susceptible to change (see Coc-
chini et al. 2018; Coelho et al. 2019; Longo 2022; Mora et al. 
2021). One reason for this finding is that width is intrinsi-
cally related to more representational flexibility to accom-
modate growth (De Vignemont et al. 2005; Hashimoto and 

Iriki 2013). Moreover, width is the dimension that appears 
more linked to own body representation (Ganea and Longo 
2017). For instance, length underestimation is found when 
judging the size of a rubber hand, but not width overestima-
tion (Longo et al. 2015; Saulton et al. 2016). Instead, length 
underestimation appears to be more related to conceptual 
biases (Ambroziak et al. 2018; Longo 2015b; Longo et al. 
2015; Margolis and Longo 2014), whereas width is a ‘pure’ 
perceptual distortion (i.e., spatial warping of the hand tissue) 
(Longo et al. 2015). For all these reasons, it is not surpris-
ing that it is the width dimension that is more susceptible 
to change.

We cannot exclude that some degree of familiarization 
may have played a role in the post-surgery performance; 
however, this seems unlikely since there was a gap of 
12 months between testing sessions and no feedback was 
provided during the task, ensuring the patient was not aware 
of any possible distortion. Moreover, a recent study by Pevi-
ani and Bottini (2020) has shown that performance in the 
hand localization task is rather stable even after increased 
practice (number of trials).

Lastly, expertise in the use of hand, as in sign language 
interpreters (Allen et al. 2013; Mora et al. 2021; Penhune 
et al. 2003) or magicians (Cocchini et al. 2018), has been 
associated with better representation of hands. It is impor-
tant to note that AM was a professional bodybuilder. We do 
not have information about pre-morbid (before the appear-
ance of the tumor) body representation of AM, but we can-
not exclude that he had a particularly refined pre-morbid rep-
resentation of his hands. If this was the case, the pre-surgery 
distortion of the hand, in particular of the dorsum’s width, 
may have been attenuated by a pre-morbid proficiency. How-
ever, it could be that practice in bodybuilding does not influ-
ence the representation of the hands, as bodybuilding is not 
specifically associated with the use of hands and fingers, as 
in the case of magic and sign language interpreters. Indeed, 
body representation malleability is closely associated with 
functionality and the way the body is used (Caggiano et al. 
2021; Caggiano and Cocchini 2020; Di Russo et al. 2006; 
Peviani et al. 2021; Romano et al. 2019). Instead, previ-
ous research has shown that the practice of bodybuilding 
increases the appearance of muscle dysmorphia and associ-
ated nutritional and drug disorders (Lantz et al. 2002).

Even though we did not find any impact on hand motor 
function before or after surgery, we did find an improvement 
in the way the hand was represented after tumor removal. 
Tumors are characterized by disrupting the activity of adja-
cent areas (Wunderlich et al. 1998) and some functions can 
be compensated through topographical reorganization of 
specific body parts (Ebeling et al. 1992). This may underlie 
important mechanisms of functional recovery. The results 
reported in this study support a direct involvement of senso-
rimotor areas in the implicit representation of the body size 

Fig. 4  Cartographic maps for the real and perceived representation of 
the right hand. Black dotted lines represent the real size of the hands. 
The light gray dots represent all AM’s pointing responses from which 
averaged representation is calculated (solid lines)
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and suggests that limited damage of these brain areas can 
selectively affect different dimensions of body size.
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