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Abstract 
Today, there are a lot of useful algorithms for covering array (CA) generation, one of the branches 

of combinatorial testing (CT). The major CA challenge is the generation of an array with the minimum 

number of test cases (efficiency) in an appropriate run-time (performance), for large systems. CA 

generation strategies are classified into several categories: computational and meta-heuristic, to name 

the most important ones. Generally, computational strategies have high performance and yield poor 

results in terms of efficiency, in contrast, meta-heuristic strategies have good efficiency and lower 

performance. Among the strategies available, some are efficient strategies but suffer from low 

performance; conversely, some others have good performance, but is not such efficient. In general, there 

is not a strategy that enjoys both above-mentioned metrics. In this paper, it is tried to combine the 

genetic algorithm (GA) and the Augmented Lagrangian Particle Swarm Optimization with Fractional Order 

Velocity (ALPSOFV) to produce the appropriate test suite in terms of efficiency and performance. Also, a 

simple and effective minimizing function is employed to increase efficiency. The evaluation results show 

that the proposed strategy outperforms the existing approaches in terms of both efficiency and 

performance.  
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1. Introduction 

Software systems include different parameters. Each parameter is assigned some values. In exhaustive 

testing, it is required that all possible states be examined. For example, if the system contains 9 

parameters and there are 5 values for each parameter, totally, this system could have59 (1,953,125) 

distinct inputs that must be tested. As the number of these values grows, it becomes impossible to test 

the whole system in practice[1]. In other words, a calculation explosion occurs in the test. 

CT (Combinatorial Testing) is a good approach to prevent this explosion [2].Test suites generated for CT 

are of various structures, namely CA, VSCA, and CCA.One of the most common combinatorial tests is CA 

(Covering Array), also known as the t-way testing, where t denotes the interaction strength [3]. Here, 

instead of thoroughly examining the interactions of a system, all its t-arys combinations are required. 

Utilizing computational and artificial intelligence solutions together, CA attempts to completely cover 

these combinations by sampling several test cases. The less the number of samples (test cases) is, the 

stronger the solution gets. In general, CA usually deals with three challenges: (1) minimum test case 

selection (efficiency) (2) execution time reduction (performance), and (3) ability to cover high interaction 

strength [2]. Furthermore, the strategies could be evaluated for supporting VSCA and CCA. In general, CA 

generation methods can be classified into four basic categories: (1) artificial intelligence approaches, (2) 

greedy approaches, (3) mathematical approaches, and (4) stochastic approaches. Among these methods, 

greedy and AI are more popular. Many of the greedy strategies have good performance, but they are not 



as efficient as AI strategies. From an efficiency standpoint, the best greedy strategy is In-Parameter-Order-

General (IPOG) [4], and the Classification-Tree Editor eXtended Logics (CTE-XL) [5, 6] strategy also shows 

the best performance compared with other Greedy strategies, but on the other hand, it lacks efficiency 

and can generate CA up to t = 4. Artificial intelligence (AI) algorithms, which are numerous, are in fierce 

competition for efficiency. The crucial problem in producing the minimum test suite for CA using meta-

heuristic algorithms is getting stuck in a local optimum. To overcome this problem, Discrete Particle 

Swarm Optimization (DPSO) [7] provides an efficient solution that is not good enough in terms of 

performance. It is also capable of producing test suites up to t = 10 (taking less than one day to produce 

CA [2]). Of course, given that the support for the high interaction strength is directly related to 

performance, DPSO may also support high-strength configurations (t > 10). Different strategies with 

appropriate efficiency have been proposed that have similar results as DPSO, but unfortunately, since 

they are unavailable, their performance cannot be discussed. Genetic Strategy (GS) [2] is also another AI-

based strategy that has good performance and supports up to t = 20, but is not as efficient as DPSO. In 

general, any solution with high performance, efficiency, and ability to support the high interaction 

strength has not been introduced in CA production, so far. Notable capabilities of these strategies include 

their support of the VSCA. Other powerful algorithms that have been proposed for CCA generation 

include: CASA [8], TCA [1], FastCA [9], MOCSFO [10], etc. 

In this paper, we try to utilize the useful mechanisms of DPSO and GS tools and exploit the advantages of 

both in the form of a single solution. This solution, called GALP, employs the combination of two meta-

heuristic algorithms, namely the Augmented Lagrangian Particle Swarm Optimization with Fractional 

Order Velocity (ALPSOFV)  [11] and Genetic Algorithm (GA), the steps of which are described as follows: 

• Generating the data structures needed to calculate the test sample weight and detecting the total 

coverage of the final test suite (data structure used in GS [2]). 

• Combining GA and ALPSOFV to generate a covering array, in such a way that GA from GS is the 

underlying algorithm, with this difference that it employs the ALPSOFV algorithm in place of the 

CrossOver function. In each step, the mutation function receives the best value and 50% of that 

is re-initialized randomly. 

• The weight of a test case equals the number of cases covered, and the heaviest one is selected. If 

the test cases are the same, a test case that is more different from the previous test cases is 

chosen by the solution used in the DPSO [7]. And this process continues until the complete 

coverage. 

• Finally, after the test suite production, the number of test cases is reduced by a simple minimizing 

solution [11]. 

The rest of this paper is organized as follows. Section 2, titled "Background", provides an initial 

understanding of CA, GA, and ALPSOFV algorithms. Section 3 is devoted to the solutions presented in the 

field of CA. Besides, computational and artificial intelligence strategies are discussed in section 3. Section 

4 describes precisely the steps of implementing the proposed strategy and defines the parameters of GA 

and ALPSOFV algorithms. The comparison results between the proposed solution and other available 

strategies are given in section 5. Section 6 is dedicated to the conclusion and future work. 

2. Background 



2-1.  Covering array 

CA is demonstrated in two forms: if the values of all parameters are identical, it is shown as CA (N; t, vp), 

where v and p is the value and the number of parameters, respectively, t is the t-way interaction strength 

(2 ≤ t ≤ p), and N is the number of selected test cases that form the complete coverage for the interaction 

strength t. But if the parameter values are not identical, then it is represented by CA (N; t, p, v), where v 

is a vector that stores the values of parameters in order. The main goal in generating a covering array is 

to minimize N; that is, the smaller the N, the stronger the strategy of test case selection. 

Here for further explanation of CA, the example of a travel agency [8] is presented. This system consists 

of five components: client, travel agency, bank, airline, and hotel. The relationships between these 

components are depicted in Figure 1. Each of these components is known as an independent parameter 

and can take one or more values. Table 1 lists these parameters and their corresponding values. The 5-

tuple (Sajad, Rakhsh, Aseman, Golestan, Mellat) constitutes a typical test case in this system. 

 
Figure 1: The travel agency components [2]. 

Table 1 
The values of e-travel agency components [2]. 

Client Travel 
Agency 

Airline Hotel Bank 

Vahid 
(0) 

Rakhsh (0) Zagros (0) Parsian 
(0) 

Melli (0) 

Sajad 
(1) 

Safiran (1) Caspian 
(1) 

Golestan 
(1) 

Pasargad 
(1) 

  Aseman 
(2) 

 Mellat (2) 

 

For example, suppose Sajad (client (1)) is not allowed to perform banking transactions with Mellat Bank. 

So the system error is triggered when the client and bank parameters have the values "Sajad" and 

"Mellat", respectively. To identify this error, the state (Sajad, -, -, -, Mellat) must be covered at least once 

by the test suite. This state can be represented as (1, -, -, -, 2). In an exhaustive test, all possible states of 

the parameters must be covered. In this example, we need to produce 3 × 2 × 3 × 2 × 2 = 72 test cases. As 

the number of parameters and their values grow, the cost of testing increases accordingly. In addition, 

because the interaction of a limited number of parameters causes an error [9], the production of a full 

test is not cost-effective at all, and it is recommended to apply some techniques, such as CA, to solve this 

problem. 

Client Travel 
Agency Airline 

Bank Hotel 

Journey-Booking 

Home-Banking 

Payment 

Room-Booking 

Flight-Booking 



As indicated, all scenarios of the Travel Agency example are 72 test cases. By applying a 2-way (t = 2) test, 

the total number of test cases decreases to 9, as shown in  

Table 2. This table contains all possible combinations of every two parameters. For example, there are 2 

× 3 = 6 different binary states for the two parameters of bank and hotel: (-, -, -, Parsian, Melli), (-, -, -, 

Golestan, Melli), (-, -, -, Parsian, Pasargad), (-, -, -, Golestan, Pasargad), (-, -, -, Parsian, Mellat), and (-, -, -, 

Golestan, Mellat), all of which can be seen in  

Table 2. In general, for the configurations whose parameters have equal values, the total number of 

coverage is calculated by equation (1), otherwise, equation (2) is used. 

(1)  𝑀𝑎𝑥_𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = (
𝑝
𝑡

) ∗ 𝑣𝑡 

(2) 𝑀𝑎𝑥_𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = (
𝑝
𝑡

) ∗ |𝑣1| ∗ |𝑣2| ∗ … ∗ |𝑣𝑝| 

 
Table 2 
Test suite for CA (9; 2, 2332) [2]. 

No. Client Travel Agency Airline Hotel Bank 

1 Vahid(0) Rakhsh (0) Zagros (0) Golestan (1) Mellat (2) 
2 Sajad (1) Safiran (1) Aseman (2) Parsian (0) Mellat (2) 
3 Vahid(0) Safiran (1) Caspian (1) Golestan (1) Melli (0) 
4 Sajad (1) Rakhsh (0) Caspian (1) Parsian (0) Pasargad (1) 
5 Vahid(0) Rakhsh (0) Aseman (2) Parsian (0) Melli (0) 
6 Sajad (1) Safiran (1) Zagros (0) Golestan (1) Pasargad (1) 
7 Vahid(0) Rakhsh (0) Aseman (2) Golestan (1) Pasargad (1) 
8 Sajad (1) Safiran (1) Zagros (0) Parsian (0) Melli (0) 
9 Sajad (1) Rakhsh (0) Caspian (1) Parsian (0) Mellat (2) 

 

2-2.  Genetic algorithm 

One of the successful algorithms in optimization is the Genetic Algorithm (GA) [15]. Charles Darwin has a 

famous quote: "It is not the strongest of the species that survives, nor the most intelligent that survives. 

It is the one that is most adaptable to change." In fact, the whole concept of the genetic algorithm is based 

on this quote. For a better understanding, look at the example below: 

Suppose you are a city leader and want to keep your city safe from bad events. So follow this policy: 

 Select all the good people in the city and ask them to expand their generation with childbearing. 

 Repeat this for several generations. 

 Now, the entire city population is good people. 

This example is impossible in the real world, and it is given here only to help you understand the subject. 

So the fundamental idea is to change the input in order to obtain better output. Since the genetic 

algorithm is partly related to biology, to study the relationship between these two, a few new concepts 

are presented. 

Let's return to the primitive example and review this in summary. 

 First, the initial population is defined as our compatriots. 

 A function is defined to determine whether a person is good or bad. 

 Good people are selected for mating and childbearing. 

 At last, bad people are replaced with children (off-springs), and this process is repeated. 



 

The steps above describe how the genetic algorithm works, and essentially tries to somehow mimic 

human evolution. It can be said that GA is an optimization technique and aims to find out the inputs that 

produce the best outputs (results). 

2-3.  Particle swarm optimization 

One of the most well-known population-based algorithms is the particle swarm optimization algorithm 

(PSO) [15]. This algorithm is inspired by the behavior of animals that live in swarms (groups) and is used 

in optimization problems. Particles form problem solutions and compete to achieve a better position in 

the swarm. Since the initial version of PSO algorithm was proposed, multiple variants of this algorithm 

have been presented, some of which are ALPSOFV [16], Complex-Order PSO (CoPSO). [17], etc. In this 

paper, we utilize ALPSOFV, which is briefly described in the following. 

The ALPSOFV algorithm, called FoPSO in [17], uses a fractional derivative to better traverse the search 

space. In order not to lengthen the paper, we do not explain it in details and only outline its steps in 

summary: 

1. r = 0, and initialize the population at random. 

2. According to equation (12), calculate L for each particle. 

3. If the final criterion is satisfied, then B = B1 and terminate the algorithm. 

4. If the counter is in the range of [0, kmax], then update L values. 

5. Update the values of A and B using equations (14) and (15), k = 0, and J = J + 1. 

6. Resume the algorithm from step 2. 

3. Related work 

In general, CA generation methods can be classified into four basic categories: (1) mathematical 

approaches, (2) greedy approaches, (3) artificial intelligence approaches, and (4) stochastic approaches. 

These four categories are discussed below.  

3-1.  Mathematical approaches 

A mathematical approach exploits an orthogonal array (OA) structure to generate a CT. This technique 

can only be applied to generate the test suite for specific configurations. Combinatorial Test Services (CTS) 

[13] and Test Configuration (TConfig) [19] are two well-known mathematical approaches. 

3-2.  Greedy approaches 

In general, computational approaches take advantage of one-test-at-a-time (OTAT) and one-parameter-

at-a-time (OPAT) methods for CA generation. In the former method, one or a set of test cases are chosen 

then the test case that covers the most is looked for. But in OPAT, the CA is generated incrementally in 

two directions: horizontal and vertical. In horizontal expansion, each time one component is inserted into 

the CA then a coverage check is conducted and the best value for that component is taken. If after the 

horizontal expansion some interactions are not covered, the vertical expansion begins to cover them. The 

well-known strategies for OTAT method include Automatic Efficient Test Generator (AETG) [15], mAETG 

[16], Pairwise Independent Combinatorial Testing (PICT) [17], Deterministic Density Algorithm (DDA) [18, 

19], CTE-XL [5, 6], Test Vector Generator (TVG) [20, 21], Jenny [22], GTWay [23] and Intelligent Test Case 

Handler (ITCH) [24]. 



The AETG strategy is the first OTAT-based strategy that selects test cases in a greedy manner and adds 

them to the test suite to complete the coverage. This strategy is later developed as mAETG [16] and 

mAETG-sat [9]. Another OTAT-based strategy that greedily chooses test cases is PICT [17]. This random-

based strategy usually does not appear to be efficient enough, but acts well in terms of performance. TVG 

[20] is also a strategy from OTAT family, which is available like PICT. The strategy uses T-Reduce, plus-one, 

and Random Sets algorithms to produce a test suite, among which T-Reduce has better outcomes than its 

competitors. Jenny is another available OATA-based strategy that produces acceptable results from an 

efficiency standpoint and can support high interaction strength. It can be said that the most efficient and 

purely computational strategy is ITCH [24]. In this method, a test suite is generated by carrying out an 

exhaustive search. In some configurations, this strategy even outperforms AI-based strategies in terms of 

efficiency, but it has poor performance and can produce a test suite up to t = 4. 

Among the strategies mentioned above, the only strategy that generates the test suite using the 

Classification-Tree Method (CTM) is CTE_XL [5]. This strategy often produces test suites up to t = 3, and is 

not good regarding efficiency and performance. The latest pure computational strategy based on OTAT is 

GTWay. GTWay has good results in efficiency and performance. It is capable of producing test suites up 

to t = 12. 

IPOG [4], IPOG-s [25], and IPOG-D [26] are commonly used strategies that are developed based on OPAT. 

IPOG and IPOG-D strategies are presented in the ACTS tool [27], and are the best in CA generation, 

concerning the performance. 

3-3.  Artificial intelligence (AI)-based approaches 

As the most popular methods for CA generation, AI-based algorithms often use the OTAT method to 

extend the test suite. A large number of AI-based algorithms are employed to generate CA, some of which 

found in qualified journals and conferences include Simulated Annealing (SA) [28, 16], Tabu Search (TS) 

[28], GA [28, 2, 29], Ant Colony Algorithm (ACA) [29], PSO [30, 7], Cuckoo Search (CS) [12],Teaching 

Learning-Based Optimization (TLBO) [31], and Harmony Search (HS) [23]. 

CA generation by AI algorithms was first proposed by Stardem [28] by the means of three algorithms SA, 

GA, and TS. These strategies could only produce 2-way interactions. Among them, SA outperforms both 

GA and TS strategies, and GA, in turn, acts better than TS. The increasing development of software systems 

requires the use of higher interactions. Cohen proposed SA in [16], and Shiba offered GA in [29], to support 

interactions up to t = 3. These strategies have far better outcomes than computational strategies. These 

strategies reduce the number of test cases by employing complex algorithms, which results in lower 

production speeds; and also they cannot support high interactions. 

Particle Swarm-based t-way Test Generator (PSTG) [30] strategy can support up to t = 6 by eliminating 

complex algorithms, accelerating the calculation of test cases weights as well as providing a data structure 

to store uncovered states. It seems that PSTG considers a matrix for each combination, the index of which 

is used to detect the coverage or non-coverage of the test case when calculating the test case's weight. 

By changing the PSTG data structure, CS [12]could enhance CA generation performance, but is not 

superior to PSTG in terms of efficiency because it supports up to t = 6. Another robust strategy for CA 

generation is Harmony Search Strategy (HSS) [23], which is based on the Harmony Search algorithm. This 

strategy supports up to t = 15 and has far better results than PSTG in terms of efficiency, but is not 

evaluated for its performance. 



HHH [32] is the first strategy that uses High-Level Hyper-Heuristic. Instead of a single meta-heuristic 

algorithm, four meta-heuristic algorithms are utilized in this strategy, namely Teaching Learning Based 

Optimization (TLBO), Global Neighborhood Algorithm (GNA), Particle Swarm Optimization (PSO), and 

Cuckoo Search (CS). Actually, this strategy uses Tabu search as its underlying algorithm, and in each step, 

based on the three operators including improvement, diversification, and intensification, chooses one of 

those four algorithms to generate the test case. HHH performs greatly from an efficiency viewpoint. 

The main issue of CA generation by particle swarm-based algorithms is that applying velocity does not 

necessarily produce better results. DPSO strategy provides a very effective approach to overcome this 

problem. Among the existing strategies, DPSO is the most efficient one but lacks good performance. High 

interactions are supported in the implementation of this strategy, but due to the one-day time-out for 

each configuration, this strategy supports up to t = 10 [2]. Another strategy presented in [7] is 

Conventional PSO (CPSO) which is more powerful than DPSO with regard to performance, but DPSO is 

more efficient. These two strategies are available in [33]. 

The combination of Fuzzy and AI algorithms shows very good performance results in Fuzzy Self-Adaptive 

PSO (FSAPSO) [34], Adaptive TLBO (ATLBO) [31], and Fuzzy Inference Selection [3]. These three solutions 

combine fuzzy algorithm with PSO, TLBO, and Hyper-Heuristic, respectively. Applying Fuzzy has a negative 

impact on the performance of these strategies, but in some configurations, they produce better results 

than DPSO in terms of efficiency. These strategies often support up to t = 4. 

GS strategy is also another strategy that supports CA. This strategy utilizes bit structure and changes GA 

to produce more appropriate results than AI-based strategies in terms of time, and can support up to t = 

20.  

The strategies presented in [35] and [36] are based on Hybrid Flower Pollination and Q-Learning Sine 

Cosine Algorithm (QLSCA), and they aim to increase efficiency; which provide desirable results in this 

regard. The results show that these strategies support up to t = 4. 

Another hyper-heuristic-based algorithm is Q-EMCQ [43]. This paper presents two approaches, EMCQ and 

Q-EMCQ. Q-EMCQ (based on Q-Learning mechanism) is more efficient than EMCQ but EMCQ is superior 

in terms of performance. In general, Q-EMCQ and DPSO are very close from an efficiency standpoint.  

3-4.  Stochastic approaches 

This method randomly selects test samples using the input distribution. TVG algorithm generates test 

suites by applying four methods, one of which randomly selects test samples. 

4. Implementation 

In this paper, the combination of ALPSOFV and GA algorithms is used for CA generation. The 

implementation steps are described below. 

4-1.  Creating the initial population (Step 1) 

At this step, the parameters for the ALPSOFV and GA are initialized, and also the initial population is 

randomly generated. First, in GA, Chromosome encoding uses three primary methods, namely binary 

encoding when genes accept only 0 and 1, permutation encoding when the permutation between genes 

is needed, and value encoding when genes have numeric and string values. In this research, the value 

encoding method is employed to build chromosomes. Each chromosome is equivalent to a particle in the 

ALPSOFV and represents a test case.The production details of each Chromosome are described in Step 3. 



4-2.  Creating a covering Matrix (Step 2) 

An important and effective factor in CA generation is the calculation of the test case's weight. To do this, 

first, all possible states required for full coverage (equations 1 and 2) should be stored. Various data 

structures are proposed for this purpose. In this study, the data structure of [2] is employed. The number 

of rows in this structure is Ct
p

. Each row consists of two parts: the first stores the combination number 

and the second contains|𝑣1|∗ |𝑣2| ∗ … ∗ |𝑣𝑡| cells, which are 0's (i.e. no coverage) by default. For a more 

detailed explanation, we provide an example here. Suppose a system with 6 parameters of values 2, 2, 2, 

2, 5, and 2, and t = 2. In the first part, values 1 and 2 (combinations 1 and 2) are placed in the first row; 

and the number of cells in the second part equals |𝑣1|∗ |𝑣2| = 2 ∗ 2 = 4. The second and third rows have 

the same conditions except that in the first part, the values (1, 3) and (1, 4) stand for the combination of 

the first and third parameters and the combination of the first and fourth parameters, respectively. The 

first part of the fourth row is (1, 5), and the second part is |𝑣1|∗ |𝑣5| = 2 ∗ 5 = 10. Other rows are also 

created in a similar fashion. Figure 2 (A) illustrates the coverage for the example above. 

For the weight calculation, the covering matrix should be explored row by row. Using the first part of each 

row, the needed values are extracted from the test case, and after calculating the decimal equivalent, the 

corresponding cell is checked. If this value is zero, the cell's value changes to one, and one unit is added 

to the weight. This procedure continues until the last row. Here, we describe these steps by an example. 

For a system with six parameters, the test case (0, 1, 0, 1, 4, 0) is considered. In the first row, the values 1 

and 2 are stored. According to these two values, the first and second cells of the test case (0, 1) are chosen 

(Figure 2 (B)) and their decimal equivalents are calculated; thereafter, the corresponding cell (the third 

cell), which is zero, changes to one, and one unit is added to the weight (Figure 2 (C)). Each row has at 

most one covering. In the initial state, since no state is covered, all combinations of test cases are included; 

so the first test case can be added randomly to the test suite. The maximum weight of a test case is equal 

to the number of rows in the covering matrix, thus the first test case weighs Ct
p

. 



 
Figure 2: The covering matrix and steps to calculate the weight of test case {0, 1, 0, 1, 4, 0} [11] 

 

4-3.  Generating CA by combining ALPSOFV and GA (Step 3) 
There are many different solutions, such as [44, 45], that use a combination of meta-heuristic algorithms 

to solve their problem. But in this study we employ a combination of two algorithms GA and ALPSOFV. 

After generating the initial population in the genetic algorithm, parents are selected and provided as 

inputs for crossover and mutation functions for childbearing. In this approach, the crossover is replaced 

with the ALPSOFV algorithm. The test case with the highest weight is selected (as the best) and given to 

the ALPSOFV. This test case takes the place of gbest (global best), and the full ALPSOFV algorithm is 

executed on this test case and returns a modified test case; if the result is improved, the best is updated. 

Then the best is passed to the mutation function. It receives the best and randomly selects half of the 

genes and replaces them with random values.The implementation details are presented below. The first 

step of the genetic algorithm is initialization. It is assumed that the chromosomes are multiple strands. 

Our initial population is as shown in Figure 3 (A). The values of genes are randomly selected.  Each test 

sample is equivalent to one chromosome in the genetic algorithm, each GEN of which also represents a 

system parameter. For example, the chromosome of a system with 8 parameters has 8 GENs. To reduce 

storage and search space, we convert the values of each test sample into a number. For instance, we 

convert the test sample (Vahid, Rakhsh, Aseman, Golestan, Mellat) to (0, 0, 2, 1, 2) (Figure 3 (B)). 

Test Case = {0, 1, 0, 1, 4, 0} 

Weight = 15 

*, *, 0, *, 4, * 

0, *, *, *, 4, * 
0, *, *, *, *, 0 
*, 1, 0, *, *, * 
*, 1, *, 1, *, * 
*, 1, *, *, 4, * 
*, 1, *, *, *, 0 
*, *, 0, 1, *, * 
*, *, 0, *, *, 0 

*, *, *, 1, 4, * 
*, *, *, 1, *, 0 
*, *, *, *, 4, 0 

0, 1, *, *, *, * 
0, *, 0, *, *, * 
0, *, *, 1, *, * 

1 2    0 0 0 0 
1 3    0 0 0 0 
1 4    0 0 0 0 

3 5    0 0 0 0 0 0 0 0 0 0 

1 5    0 0 0 0 0 0 0 0 0 0 
1 6    0 0 0 0 
2 3    0 0 0 0 
2 4    0 0 0 0 
2 5    0 0 0 0 0 0 0 0 0 0 
2 6    0 0 0 0 
3 4    0 0 0 0 

3 6    0 0 0 0 
4 5    0 0 0 0 0 0 0 0 0 0 
4 6    0 0 0 0 
5 6    0 0 0 0 0 0 0 0 0 0 

3 5    0 0 0 0 1 0 0 0 0 0 

1 5    0 0 0 0 1 0 0 0 0 0 
1 6    1 0 0 0 
2 3    0 0 1 0 
2 4    0 0 0 1 
2 5    0 0 0 0 0 0 0 0 0 1 
2 6    0 0 1 0 
3 4    0 1 0 0 

3 6    1 0 0 0 
4 5    0 0 0 0 0 0 0 0 0 1 
4 6    0 0 1 0 
5 6    0 0 0 0 0 0 0 0 1 0 

1 2    0 1 0 0 
1 3    1 0 0 0 
1 4    0 1 0 0 

   



 
Figure 3: Initial population in GA 

After generating CM, it is time to calculate the weight of the chromosome. In fact, at this stage, each 

chromosome is sent to a fitness function, and this function returns the value of the chromosome as the 

output (the thorough description of these two functions is given in step 2). The next step is the selection 

function. At this point, a number of chromosomes (parents) are selected for parenting. The children being 

born are known as offsprings. There are several methods for selection including roulette-wheel selection, 

truncation selection and tournament selection [2]. Here, we employ tournament selection to select test 

samples. In the previous step, the parents are selected. Now a new child is to be created with the 

crossover function. In this solution, we use the ALPSOFV algorithm instead of the crossover function. In 

other words, in this step, the ALPSOFV algorithm is applied to a fraction (i.e. defined by the crossover rate) 

of the population. If the population is not generated randomly, then manipulation of this population may 

lead to getting stuck in a local optimum. To overcome this problem, at each step, we compare gbest with 

a random test sample and update gbest in case of an improvement. Finally, the best test sample generated 

in this step is provided for the mutation function. 

Do children always have the same characteristics as parents? Of course not. During the growth period, 

changes occur in the genes of the children that make them different from their parents. This process is 

called mutation. A simple mutation method is shown in Figure 4 (A)Figure 4. The children produced in this 

way are again evaluated using the fitness function and, if they are desirable, then they replace the 

previous ones. And this routine continues until the goal is achieved. However, since the CA generation 

problem strongly tends towards a local optimum, modifying just a single cell does not have a significant 

effect on improving the test sample. So in this approach, at each step, half of the genes are randomly 

selected and assigned a random value in the range of [0, v] (Figure 4 (B)). 
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0, 0, 2, 1, 2 

(Vahid, Rakhsh, Aseman, Golestan, Mellat) 

Test Case 

Chromosome 



 
Figure 4: A simple mutation in GA 

 

The higher the weight of a test case, the greater the value of that. However, test cases of equal weight 

may not have the same value. An example given in [7] confirms this fact. This example is for the 

configuration CA (N; 2, 34) and its two test suites are represented in Table 3. As can be seen, the first test 

suite (Sequence 1) consists of three primitive test cases of weight 6. And the three test cases in the second 

test suite (Sequence 2) also have the same status. But there is a difference in the selection of the next test 

case. In Sequence 1, it is not possible to have a new test case of weight 6, but in Sequence 2, the test case 

(1 0 1 2) weighs 6. In general, to select test cases of equal weight, it is advisable to select a test case that 

has the least difference from its previous test case. 

Table 3: Two different sequence of CA(N; 2, 34) [7] 

# Sequence 1 Sequence 2 

1  0 0 0 0 0 0 0 0 

2 1 1 1 1  0 1 1 1 

3 2 2 2 2 0 2 2 2 

4 - 1 0 1 2 

 

4-4.  Minimizing the test suite (Step 4) 

In OTAT-based solutions, in each step, a test case is added to the final test suite. Typically, this test case 
has the largest number of coverings compared with other test cases. In addition to the new coverings, the 
test case also includes some previously covered states. By increasing the number of test cases, all states 
covered by a test case may be covered by other test cases too; thus this test case is redundant and should 
be eliminated [11]. To comprehend the test suite more precisely, consider Figure 5 (A). First, the weight 
of the test cases should be re-calculated, but here the weight means the number of states that the test 
case can cover on its own. For example, row one has the value (*, *, 0, 0, *), which is also seen in row 
four; so no weight is considered for it. But there are (1, *, 0, *, *) and (*, 1, *, 0, *) in the same row, which 
do not appear in any of the test cases. As a result, the weight of this test case is 2 and it cannot be deleted. 
However, all six states in row four are covered by other test cases and the weight of this test case is 
practically zero and can be removed (Figure 5 (B)). The pseudocode in Figure 6 presents the steps of CA 
generation in the proposed strategy and the overall steps of the proposed algorithm are illustrated in 
Figure 7. 
 

1, 0, 0, 1, 2, 1, 0, 2 

Simple Mutation 

1, 0, 0, 1, 0, 1, 0, 2 

 

1, 0, 0, 1, 2, 1, 0, 2 

Mutation 

1, 0, 1, 1, 0, 1, 0, 1 

 



 
Figure 5: Elimination of redundant test cases [11]. 

1. Initialize the variables 
2. Get the configuration from the input 
3. Create the covering matrix (CM) 
4. Select randomly a chromosome and add it to the final test suite (TS) 
5. Update the covering matrix 
6. While (Max_Coverage >0) 
7.  Initialize randomly the population 
8.  Calculate the weight of each chromosome 
9.  Select the best value in the population (gbest) 
10. For (i = 0, i < crossrate) 
11.   Apply the ALPSOFV algorithm to the population and update gbest 
12.  For (i = 0, i < muterate) 
13.   Apply the mutation algorithm to the selected population and update gbest 
14.  If (fitness (gbest) > 0) 
15.   Add gbest to TS and update CM 
16. End While 
Figure 6: The pseudocode for the proposed solution 
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1 1 0 0 1 
0 0 1 1 0 
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1 1 1 1 0 
1 0 1 0 1 
0 1 0 1 1 



 

Figure 7: Flowchart of the purposed approach 

4-5.  Time and space complexity 

Like the solutions in [46], the proposed approach requires the analysis of time and space complexity. Since 

the weight calculation function needs to store the test sample in the memory and this memory has (
p

t
) 

rows and 𝑣𝑡 + 𝑡 columns in the covering matrix, so the space complexity of the proposed solution is 

𝑂((
𝑝
𝑡

) ∗ 𝑣𝑡). After being completely covered, that row is removed from the memory, so gradually the 

number of rows in the matrix tends towards O(1), and consequently the space complexity approaches 

𝑂(𝑣𝑡). To calculate the weight of a test sample, all rows in the matrix must be traversed, and each row 

requires a conversion from binary to decimal, which has an order of 𝑂(𝑡) time complexity, so as a result, 

the time complexity of this solution equals 𝑂((
𝑝
𝑡

) ∗ 𝑡) and tends towards 𝑂(𝑡) by eliminating the covered 

rows. 

4-6.  Parameter setting 

One of the obscure issues in meta-heuristic algorithms is the exact selection of parameters. In this paper, 

two PSO and GA algorithms are combined, so that the parameters of both should be evaluated. The PSO 

algorithm has 4 parameters C1, C2, W, and number of repetitions. The effect of changing the three 

parameters C1, C2, and W are like [35], and it is not studied and explained in detail here in order not to 
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lengthen the paper. The main determinant parameter in the optimal covering array generation is popsize 

(i.e. population size). Due to the fact that the size of the search space depends mainly on the configuration 

size, the selection of popsize value is directly related to the configuration size; and the larger the 

configuration is, the higher the value of popsize should be. Also in the genetic algorithm, in addition to 

population size, the crossover and mutation rates, which range from 0 to 1, play significant roles, too. In 

the proposed solution, the crossover and mutation rates are the same. First, a minimum value of 0.1 is 

considered for crossover and mutation rates. By increasing popsize, its impact on the CA (N; 2, 46) 

configuration emerges. The results of this study are illustrated in Figure 8. As seen in this figure, the best 

value is for the test suite with 21 test cases, where popsize = 200; but the mean is still improved up to 

popsize = 300. Also, as the population grows, test suite production takes longer. Time is expressed in 

milliseconds. 

 
Figure 8: The best and average test suite size and time for CA (N; 2, 46) 

The next study focuses on the effect of increasing crossover and mutation rate, and its results are shown 

in Figure 9. In this evaluation, the value of popsize is considered constant (popsize = 20). The best value 

for these two parameters in the configuration CA (N; 2, 46) is 0.6. The time spent on test suite production 

is close to zero in this evaluation. 
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Figure 9: The best and average test suite size and time for CA (N; 2, 46) 
 

Suppose the configuration CA (N; 2, 57). At first, the impact of increasing popsize is evaluated. The values 

of the two parameters, namely crossover and mutation rates, equal 0.1, and the popsize variations range 

between 10 and 300. As demonstrated in Figure 10, population growth has a great influence on the 

execution time of the algorithm. The best value for this configuration is for popsize = 150; but for larger 

populations, the average is better. 

 
Figure 10: The best and average test suite size and time for CA (N; 2, 57) 

In the further study of the configuration CA (N; 2, 57), the effect of changing the crossover and mutation 

rates is investigated. Here, popsize = 70 and the crossover and mutation rates range between 0.1 and 1. 

Concerning Figure 11, it can be concluded that the increase in these rates affects productivity growth. As 

can be seen, the impact of the crossover and mutation rates on time is less than that of population 

increase. The appropriate value for these two rates in CA (N; 2, 57), given the best value, should be greater 

than 0.3, and if the average is important, then the maximum value can be taken into account for this 

value. 
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Figure 11: The best and average test suite size and time for CA (N; 2, 57) 

Increasing popsize and rates have a positive impact on productivity improvements, but as seen before, 

population growth has a more negative impact on efficiency; hence, an upper limit is set on rates (i.e. 0.8) 

and we try to explore the impact of increasing the popsize which is the most important parameter in the 

proposed strategy. The next evaluation is dedicated to the configuration CA (N; 2, 435362) and its results 

are conveyed in Figure 12. In this configuration, the power time is long, and the results are as in Figure 12 

(in seconds). The best performance of the proposed solution is the test suite with 40 test cases that occurs 

for popsize = 150, so it can be concluded that this is satisfactory for the mentioned configuration. 

 
Figure 12: The best and average test suite size and time for CA (N; 2, 435362) 

The last evaluated configuration in this section is CA (N; 4, 39). The results of this evaluation are plotted in 

Figure 13. As can be seen, the best performance of the proposed solution is for the test suite with 189 

test cases which is obtained with popsize = 150. The time in Figure 13 is expressed in seconds. 
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Figure 13: The best and average test suite size and time for CA (N; 4, 39) 
 

5. Evaluation 

The evaluation in this research is divided into three categories of efficiency (array size), performance 

(production time), and interaction strength [2]. Efficiency concerns the execution steps of the strategy. 

But performance has a direct relationship with and depends on the hardware and software platform [12]. 

There are many strategies for CA generation that checking all of them one by one is beyond the scope of 

this section. With a fair comparison, we try to evaluate a number of available strategies. Among the AI 

strategies, three strategies are selected including CPSO, DPSO, and GS. Among these three strategies, 

DPSO is the most efficient one.  It should be noted that the strategies in [37] and strategies of [3] and [42] 

may have better results than DPSO. Also among non-artificial intelligence strategies, Jenny, TConfig, PICT, 

IPOG are chosen. The platform specifications for this evaluation are Windows 7 OS, 2.20GHz core ™ i7QM 

CPU, and 6GB RAM. Coding is done in the eclipse environment (jdk 1.8). 

Non-artificial intelligence strategies are usually deterministic and running them multiple times makes no 

difference. In contrast, AI-based strategies are nondeterministic and the result changes with re-execution; 

so each configuration is executed one hundred times, and two values "best" and "average" represent 

respectively the best and the average of the hundred times executions for each configuration. Efficiency 

results for GS, CPSO, and DPSO strategies, if available, are taken directly from the related papers, 

otherwise, they are executed as many times as the proposed algorithm and results are acquired.  

According to Section 4.6, when the configuration volume increases, the search space becomes larger, so 

we need more population to traverse the entire state space, and conversely, if the search space is narrow, 

a smaller population can give the optimal answer. As discussed in Section 4.6, for the configurations 

evaluated in this paper, we need a population with a number of chromosomes in the range of [10, 300], 

which proportionally requires crossover and mutation rates of 40% to 100% to be able to generate the 

minimum test suite at an appropriate speed. Table 4 lists the parameters of the proposed solution with 

their corresponding values. 

 

Table 4: Parameter setting 

Algorithm Parameters Value 

GA Population 10 - 300 

10 20 30 50 70 100 150 200 250 300

Avg 205.3 198.7 196.9 195 193.8 193.8 192.9 192.9 192.9 193

Best 201 195 192 192 190 190 189 189 189 189

Time(S) 1 4 9.1 25.2 50 103 229 472 660 946
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Crossover rate 40% - 100% 

Mutation rate 40% - 100% 

Selection method tournament selection 

Crossover method ALPSOFV 

Mutation method Uniform 

ALPSOFV 

Kmax 10-20 

a 0.9 

r 4 

R1, R2 Random 
  

 

5-1.  Efficiency 

The most significant criterion for evaluating the robustness of a strategy in CA generation is the efficiency 

of that strategy. This section gives a comparison among the proposed solution and other strategies, the 

results of which are outlined in Tables 5 - 13. The first evaluation is for t = 2 and its results are listed in 

Table 5. As can be seen, in this evaluation, 13 configurations are considered. Among them, Jenny in one 

case, IPOG in four cases, CPSO in four cases, DPSO in eight cases, and GS and GALP in eleven cases have 

the best outputs. However, to compare the proposed strategy with others, a statistical method, called 

Wilcoxon signed-rank sum, is employed. To compare efficiency between two strategies, this tool from 

SPSS produces two outputs regarding the given input data: test statistics and ranks. For two strategies A 

and B, ranks have three values: the number of samples in which A > B, A < B, and A = B. And test statistics 

are composed of z and Asymp. Sig. (2-tailed). The importance of z in this research is not visible. Asymp. 

Sig. (2-tailed) value ranges between 0 and 1; to put it simply, if this value is less than 0.05, it means that 

there is a semantic difference between A and B. The results of Wilcoxon test (Table 5) are given in Table 

6. The first comparison is between the proposed strategy and Jenny. In the ranks section, there are three 

numbers 12, 0, and 1; where 12 is the number of cases in which GALP is smaller than Jenny (i.e. stronger), 

0 is the number of cases in which GALP is larger than Jenny (i.e. weaker) and 1 is the number of cases in 

which the both are the same. In this row, Asymp. Sig. (2-tailed) value is less than 0.05, which implies a 

semantic difference between these two strategies. From these results, it is understood that GALP strategy 

is more powerful than Jenny. In this comparison, the proposed strategy does not have any semantic 

difference from GS and DPSO strategies, but by referring to the ranks, it can be concluded that our strategy 

has a slight superiority over the two others. 

Table 5: Comparison of proposed solution's array size with that of other strategies at t = 2 
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PICT 
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IPO
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CPS
O 
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DPS
O 
N.Be
st 

DPSO 
N.Avg 

GS 
N.Be
st 

GS 
N.Av
g 

GALP 
N.Bes
t 

GALP 
N.Avg 

CA (N; 2, 
27) 

8 7 7 7 7 7.54 7 7 6 7.33 6 7.25 

CA (N; 2, 
33) 

9 10 10 9 9 9.82 9 9 9 9.52 9 9.63 

CA (N; 2, 
34) 

13 10 13 9 9 10.3 9 9 9 9.92 9 10.26 

CA (N; 2, 
35) 

14 14 13 15 11 13.0
7 

11 11.53 11 12.3
6 

11 12.79 

CA (N; 2, 
36) 

15 15 14 15 14 14.9
3 

14 14.5 13 14.4
8 

13 14.75 

CA (N; 2, 
37) 

16 15 16 15 15 15.4
7 

15 15.17 14 15.5
4 

14 15.26 



CA (N; 2, 
38) 

17 17 16 15 15 15.9
3 

15 16 15 16.6
5 

15 15.61 

CA (N; 2, 
39) 

18 17 17 15 16 16.6
3 

15 16.43 15 16.9
9 

15 16.67 

CA (N; 2, 
310) 

19 17 18 15 16 17.7
0 

16 17.3 16 17.9
1 

16 17.58 

CA (N; 2, 
311) 

17 20 18 17 16 17.9
0 

17 17.7 16 18.3
8 

16 17.60 

CA (N; 2, 
312) 

19 20 19 21 17 18.6
0 

16 17.93 16 18.3
6 

16 18.44 

CA (N; 2, 
47) 

28 28 27 29 25 25.7
7 

24 25.33 24 26.4
7 

24 25.72 

CA (N; 2, 
57) 

37 40 40 45 36 37.9
7 

34 35.47 36 38.3
2 

35 37.24 

2.20GHzcore™ i7QM  CPU, RAM6GB, Windows 7 

 

Table 6: Wilcoxon signed-rank sum test for Table 5 

 Ranks  Test Statistics 

GALP< GALP> GALP= Z Asymp. Sig. (2-tailed) 

Jenny - GALP 12 0 1  -
3.0965549377121
51 

0.0019578357943253
34 

TConfig - GALP 13 0 0  -
3.2073285646685
98 

0.0013397388514189
553 

PICT - GALP 13 0 0  -
3.2103209415265
996 

0.0013258684489075
262 

IPOG - GALP 8 1 4  -
2.3925944182183
168 

0.0167297229892725
07 

CPSO - GALP 7 0 6  -
2.6457513110645
903 

0.0081509715935027
09 

DPSO - GALP 4 1 8  -
1.3416407864998
738 

0.1797124948789998
5 

GS - GALP 1 0 12  -1.0 0.3173105078629141
5 

 

The second evaluation investigates t = 3. For this evaluation, 14 configurations are considered, and the 

results are shown in Table 7. In general, IPOG in one case, CPSO in three cases, DPSO in nine cases, GS in 

four cases, and GALP in thirteen cases produce the best results. The output of Wilcoxon test (Table 7) is 

given in Table 8. The proposed strategy outperforms Jenny, TConfig, and PICT in all fourteen 

configurations. GALP beats IPOG in 13 configurations, and they perform alike in one configuration. CPSO 

appears weaker than the proposed strategy in eleven cases, and they produce the same results in three 

cases. Also, GS is weaker than GALP in ten cases, and their outcomes are the same in four cases. The 

proposed strategy has a semantic difference from all the strategies mentioned and the Asymp. Sig. (2-

tailed) value confirms this claim. Like the previous evaluation, there is no semantic difference between 

the proposed strategy and DPSO; but regarding the ranks values, it can be concluded that the proposed 

strategy is provably stronger. 



Table 7: Comparison of proposed solution's array size with that of other strategies at t = 3 
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3 

15 15.06 12 14.5
9 

12 14.59 

CA (N; 3, 
28) 

14 18 17 18 16 16.1
2 

16 16.21 14 16.6
2 

12 15.76 

CA (N; 3, 
29) 

17 20 17 20 16 16.2 16 1638 16 17.4
1 

16 16.14 

CA (N; 3, 
34) 

34 32 34 32 30 32.1
5 

28 29.71 27 31.0
3 

27 30.43 

CA (N; 3, 
35) 

40 40 43 41 38 40.1
3 

41 43.17 38 40.1
2 

37 40.03 

CA (N; 3, 
210) 

18 20 18 20 16 16.5
6 

16 16.52 16 16.9 16 16.64 

CA (N; 3, 
36) 

51 48 48 46 42 45.5
3 

33 38.3 43 44.6
5 

40 45.5 

CA (N; 3, 
37) 

51 55 51 55 49 51.1
3 

48 50.43 49 52.7
1 

48 50.92 

CA (N; 3, 
38) 

58 58 59 56 53 55.2
7 

52 53.83 54 57.1
7 

52 54.3 

CA (N; 3, 
39) 

62 64 63 63 58 59.4
0 

56 57.77 58 61.3
6 

56 58.02 

CA (N; 3, 
310) 

65 68 65 66 61 62.6
7 

59 60.87 61 63.9
4 

59 61.17 

CA (N; 3, 
311) 

65 72 70 70 63 65.6 63 63.97 63 65.8
2 

62 64.26 

CA (N; 3, 
312) 

68 77 72 73 68 68.9
7 

65 66.83 67 70.3
3 

65 66.8 

CA (N; 3, 
47) 

124 122 124 112 115 117.
97 

112 115.2
7 

116 120.
24 

112 116.7
8 

2.20GHzcore™ i7QM  CPU, RAM6GB, Windows 7 

 

Table 8: Wilcoxon signed-rank sum test for Table 7 

 Ranks  Test Statistics 

GALP< GALP> GALP= Z Asymp. Sig. (2-tailed) 

Jenny –GALP 14 0 0  -
3.3104749708770
163 

9.313778130529632E
-4 

TConfig –GALP 14 0 0  -
3.3014624000946
54 

9.618222539686696E
-4 

PICT –GALP 14 0 0  -
3.3063692084502
607 

9.451346235069721E
-4 

IPOG –GALP 13 0 1  -
3.2053382892273
783 

0.0013490382662570
389 

CPSO –GALP 11 0 3  -
2.9605046065072
935 

0.0030713552860884
468 



DPSO –GALP 5 1 8  -
0.9486832980505
138 

0.3427817111479114
5 

GS –GALP 10 0 4  -
2.8477920519317
377 

0.0044023679987172
94 

 

Table 9 compares the proposed strategy with other strategies for t = 4. In this comparison, it is also clear 

that the AI-based strategies are more powerful than the computational ones. Here, the proposed strategy 

has the best performance in seven configurations. The results of Wilcoxon test in this comparison are 

shown in Table 10. As can be seen, the proposed strategy has no semantic difference just from two DPSO 

and GS strategies. It can be inferred from the ranks column that GALP is better than these two strategies. 

Table 9: Comparison of proposed solution's array size with that of other strategies at t = 4 
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CA (N; 4, 
36) 

140 141 142 141 132 135.3
3 

131 134.7
7 
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CA (N; 4, 
37) 
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7 

150 155.2
3 
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CA (N; 4, 
38) 

187 190 189 192 174 177.7
7 

171 175.6
0 
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CA (N; 4, 
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7 
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CA (N; 4, 
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7 
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220 224.13 
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252 272 269 272 242 244.2
3 

237 239.8
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4 
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2.20GHzcore™ i7QM  CPU, RAM6GB, Windows 7 

 

Table 10: Wilcoxon signed-rank sum test for Table 9 

 Ranks  Test Statistics 

GALP< GALP> GALP= Z Asymp. Sig. (2-tailed) 

Jenny - GALP 12 0 0  -
3.0653122183782
51 

0.0021744287434981
63 



TConfig - GALP 12 0 0  -
3.0605890842655
07 

0.0022090203462313
924 

PICT - GALP 12 0 0  -
3.0605890842655
07 

0.0022090203462313
924 

IPOG - GALP 12 0 0  -
3.0617678207175
523 

0.0022003405269064
905 

CPSO - GALP 11 0 1  -
2.9427945496468
85 

0.0032526419863057
386 

DPSO - GALP 6 3 3  -
0.8908708063747
48 

0.3729984836134871
4 

GS - GALP 4 3 5  -
0.8574929257125
441 

0.3911725228101395
3 

 

The last evaluation is dedicated to t > 4, the results of which are presented in Table 11. In this comparison, 

TConfig can produce the test suite in less than 24 hours only in configurations CA (N; 5, 37) and CA (N; 6, 

38), and it requires more time for the other cases, which are denoted by "> day" in Table 11. IPOG can 

produce up to t = 6 but does not support values larger than 6. DPSO also requires more than one day in 

five cases. But the other strategies support the higher interactions. Among these strategies, the proposed 

strategy emerges as the most powerful.The results of the Wilcoxon test are represented in Table 12. 

Table 11: Comparison of proposed solution's array size with that of other strategies at t > 4 

 

Jenn
y 
N 

TCon
fig 
N 

PICT 
N 

IPO
G 
N 

CPS
O 
N.B
est 

CPS
O 
N.A
vg 

DPS
O 
N.Be
st 

DPS
O 
N.A
vg 

GS 
N.Best 

GS 
N.Avg 

GAL
P 
N.Be
st 

GALP 
N.Avg 

CA (N; 5, 
37) 

458 477 452 466 441 444 428 435 431 438.5 432 440 

CA (N; 6, 
38) 

1466 1515 1455 140
9 

139
7 

140
2 

1402 140
6 

1398 1410.0 1392 1405 

CA (N; 7, 
39) 

4746 >day 4618 NS 442
2 

443
3 

4427 443
3 

4437 4453.5 4425 4433 

CA (N; 8, 
310) 

1499
9 

>day 1459
9 

NS 139
25 

139
44 

1393
3 

139
39 

13907 13943.
0 

1390
3 

13923 

CA (N; 9, 
311) 

4700
9 

>day 4552
1 

NS 43587 43591 >day >da
y 

43808 43880.
0 

4354
5 

43597 

CA (N; 10, 
312) 

1470
04 

>day 1419
90 

NS 1354
98 

135498 >day >da
y 

13609
6 

136109
.5 

1353
85 

13546
4 

CA (N; 11, 
312) 

3057
97 

>day 2789
93 

NS 2681
73 

2681
73 

>day >da
y 

26763
0 

267769
0.0 

2678
06 

26785
2 

CA (N; 12, 
214) 

9422 >day 9112 NS 888
2 

888
2 

8972 897
5 

8890 8912.5 8904 8925 

CA (N; 13, 
214) 

1325
1 

>day 1244
1 

NS 115
88 

113
71 

>day >da
y 

10251 10283.
5 

1105
3 

11068 

CA (N; 14, 
215) 

2657
9 

>day 2503
6 

NS 238
89 

238
89 

>day >da
y 

23377 23399.
0 

2264
5 

22784 

CA (N; 15, 
216) 

5397
7 

>day 5112
7 

NS 458
38 

464
23 

>day >da
y 

46575 46598.
5 

4182
1 

46095 



 

Table 12: Wilcoxon signed-rank sum test for Table 11 

 Ranks  Test Statistics 

GALP< GALP> GALP= Z Asymp. Sig. (2-tailed) 

Jenny - GALP 11 0 0  -
2.9340578815309
546 

0.0033456181158508
82 

TConfig - GALP 2 0 0  -
1.3416407864998
738 

0.1797124948789998
5 

PICT - GALP 11 0 0  -
2.9340578815309
546 

0.0033456181158508
82 

IPOG - GALP 2 0 0  -
1.3416407864998
738 

0.1797124948789998
5 

CPSO - GALP 9 2 0  -
2.4462571584083
9 

0.0144348002095385
72 

DPSO - GALP 4 1 0  -
1.4832396974191
326 

0.1380107375686596 

GS - GALP 7 4 0  -
0.9780192938436
515 

0.3280647817008368 

 

5-2. Performance 

The next comparison deals with the CA generation runtime. This section of the evaluation compares the 

proposed solution with AI-based strategies. As mentioned earlier, one of the factors influencing the CA 

generation in the proposed strategy is how the parameters of the algorithm are determined. For this 

comparison, popsize, the crossover rate, and mutation rate are set to 50, 0.8, and 0.8, respectively. Here, 

the production time of a test case is under consideration. For example, DPSO manages to produce a test 

suite with 14 test cases in 30 ms, as a result, 2.14 (i.e. 30/14) ms is spent for each test case. According to 

the results of this comparison shown in Table 13, the proposed solution is much stronger than AI-based 

strategies. 

Table 13: Comparing performance between AI-based strategies available 

 

CPSO 
time 

DPSO 
time 

GS 
time 

GALP 

CA (2, 37) 0.28 2.14 0.41 0.09 

CA (3, 37) 0.40 4.79 0.68 0.12 

CA (4, 37) 0.82 9.86 0.66 0.12 

CA (3, 38) 0.94 6.92 0.96 0.20 

CA (3, 39) 1.35 9.82 1.21 0.33 

CA (3, 310) 1.82 13.72 2.02 0.53 

CA (3, 47) 0.53 4.82 0.63 0.11 

CA (3, 57) 0.57 7.96 0.57 0.11 

CA (3, 67) 0.57 5.15 0.45 0.10 

CA (3, 77) 0.58 3372 0.51 0.10 

 



5-3. Interaction strength 

Another measure for comparing the strategies in the field of CA generation is the interaction strength. 

The higher the interactions are covered by the algorithm, the more powerful the algorithm is. Among the 

strategies available in this paper, IPOG and TConfig are capable of generating test suits up to t= 6. Other 

strategies have the power to cover higher interactions. DPSO supports up to t = 12, Jenny and PICT support 

up to t = 15, and three CPSO, GS, and GALP strategies support over t > 15 interactions (Figure 14). 

 
Figure 14: Maximum support for interaction strength 

 

6. Conclusions and future work 

AI-based strategies, due to their complex structure as well as their high iterations, have great results in 

the production of test suites.  This complex structure has an inverse relationship with the production time 

and the interaction strength; the more complex the strategy is, the less interaction it produces in a higher 

time. For example, GA, SA, and ACO algorithms are often able to produce the test suite up to t = 3; PSTG 

and CS can support up to t =6 by reducing the complexity, changing the data structure, and increasing the 

speed; DPSO is capable of covering up to t = 12; HSS and CPSO can support up to t = 15. The DPSO and 

CPSO strategies are able to cover higher interactions but take more than one day to do this. DPSO is much 

more powerful than other AI-based strategies in terms of efficiency but does not have good performance. 

GS is more powerful than AI-based strategies in terms of time and interaction strength and covers up to t 

= 20, but has a weaker performance compared with DPSO. The computational strategies have a good 

performance as well, but they are less efficient than AI-based strategies. 

In general, there is no strategy that works in both ways, that is, it covers high interactions and is robust in 

terms of efficiency and performance, as well. Therefore, in this research, we try to produce a test suite 

with good performance and efficiency by combining PSO and GA. In the proposed strategy, we take 

advantage of both DPSO and GS strategies, and integrate their strengths into a strategy, called GALP. 

Moreover, this strategy employs a simple and effective minimization function that improves efficiency. 

Although the GALP strategy has good results in terms of efficiency, performance, and interaction strength, 

this seems to be an ongoing challenge. The main issue with test suite production in CA is becoming trapped 

in a local optimum. Although the DPSO provides a proper solution, it seems that further research can be 

provided. As a final point, the OPAT method can also be utilized to further enhance the speed of AI-based 

strategies. 
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