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The After-Glow of Flow: Neural Correlates of Flow in Musicians
Jasmine Tan a,b, Caroline Di Bernardi Luft a,c, and Joydeep Bhattacharya a

aGoldsmiths University of London; bMassachusetts General Hospital, Harvard Medical School; cBrunel University London

ABSTRACT
Flow is a state of optimal or peak experience, commonly associated with expert and creative 
performance. Musicians often experience flow during playing, yet the neural mechanisms under
lying this elusive state have remained underexplored due to challenges posed by substantial 
artefacts in the neural data. Here, we bypassed these issues by focusing on the resting-state 
immediately following a flow experience. Musicians performed pieces expected to reliably induce 
a flow state, and, as a control, non-flow-inducing musical pieces. Following the flow state, we 
observed higher spectral power in the upper alpha (10-12 Hz) and beta (15-30 Hz) bands, primarily 
in the frontal brain regions. Connectivity analysis, using the phase slope index, showed a right 
frontal cluster influencing activities in the left temporal and parietal areas at the theta (5 Hz) band, 
particularly pronounced in musicians reporting high dispositional flow. Theta band connectivity 
within the frontoparietal control network facilitates cognitive control and goal-directed attention, 
potentially crucial for achieving the flow state. These results reveal large-scale oscillatory correlates 
associated with the immediate post-flow state in musicians. Importantly, this framework holds 
promise for exploring the neural basis of flow-related states in a laboratory setting while preserving 
ecological and content validity.

PLAIN LANGUAGE SUMMARY
Flow is an optimal state that is of interest to many who have experienced it while engaged in an 
enjoyable and fulfilling activity, performing at their very best. Musicians often experience this state 
of flow during playing. However, we know little about the brain’s activity during this unique state. 
One challenge in studying the brain during musical performances is the potential interference 
caused by movements, which can disrupt the recorded brain responses. To overcome this, we 
focused in this study on the immediate period following the flow state, right after musicians 
finished their performances. During this time, the musicians were asked to close their eyes and 
remain still, allowing us to collect EEG signals. In our study, musicians played music that they felt 
would put them into a state of flow. Additionally, as a control, they also played music that did not 
induce flow in themselves. By comparing these two scenarios, we could observe the brain’s 
responses immediately after experiencing flow. The brain state immediately after flow showed 
more activity within certain frequency bands: the upper alpha (10-12Hz) and beta (15-30 Hz) 
frequency bands, with a particular emphasis on the frontal brain regions. In addition, connectivity 
analysis found a right frontal cluster influencing activity in the left temporal and parietal areas at 
the theta (5 Hz) frequency band, most notably in musicians who reported frequently experiencing 
flow. These results show that there are changes in brain activity that occur immediately after the 
performance, reflecting the flow experience. By adopting a novel approach that focuses on 
studying musicians, this study offers promising avenues for investigating brain activity during 
this captivating state of flow under controlled laboratory conditions.
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Introduction

Flow refers to an altered state of consciousness invol
ving highly focused engagement while participating in a 
challenging, enjoyable, and intrinsically rewarding 
activity (Csikzentmihalyi, 1990). It is considered an 
optimal psychological state (Jackson & Eklund, 2004) 
that is usually associated with high levels of perfor
mance and positive subjective experience. Hence, there 

is significant interest in studying the neural correlates of 
the flow state. Although flow is frequently reported by 
musicians (Butkovic, Ullén, & Mosing, 2015), our 
understanding of the underlying brain activity during 
this state is not properly characterized. Therefore, in this 
study, we recorded electroencephalography (EEG) to 
measure the brain activity of musicians while they 
were engaged in music-making leading to flow.
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Neural correlates of flow experience

One of the key conditions for flow is when the perceived 
challenges of a task align with an individual’s skill, 
neither underutilizing nor overutilising their abilities 
(Nakamura & Csikszentmihalyi, 2014). Previous labora
tory-based studies attempting to characterize neural 
activity during flow have manipulated task demands to 
create different conditions, from easy, which induces 
boredom, to difficult, inducing frustration (Keller & 
Bless, 2008). In contrast, a third condition that aims to 
create an optimal level of challenge, neither too easy nor 
too difficult for an individual’s expertise in a given task, 
is more likely to induce a flow-like state. Therefore, 
ratings of flow experience will be higher when the chal
lenge level matches the individual’s skill level compared 
to situations when the challenge is too low or too high. 
The relationship between flow and challenge can thus be 
described as following a negative quadratic trend, form
ing an inverted U-shaped curve (Engeser & Rheinberg,  
2008). In previous experimental designs investigating 
neural activity during flow, researchers utilized this 
challenge-skill balance as an indicator of flow while 
participants were solving mental arithmetic problems 
(Katahira et al., 2018; Ulrich, Keller, & Grön, 2016b) 
and playing computer games like Tetris (Barros, 
Araújo-Moreira, Trevelin, & Radel, 2018; Harmat 
et al., 2015; Yoshida et al., 2014).

Several of these studies have investigated the 
“transient hypofrontality hypothesis” (Dietrich,  
2004), which suggests that during flow, the prefron
tal cortex (PFC) becomes less active, allowing auto
matic and unconscious processing to dominate. This 
can be particularly helpful when performing well- 
practiced movements. Within a dual process frame
work that distinguishes between spontaneous (type 
1 processes) and deliberate (type 2 processes) modes 
of processing, flow has been associated with type 1 
processes characterized by fast and automatic pro
cessing; in contrast, type 2 processes involve slower 
and conscious deliberation and effortful recall from 
memory. Therefore, according to this hypothesis, 
flow is associated with reduced activity in the pre
frontal regions, which typically show increased 
activity during tasks requiring mental effort 
(Dietrich, 2004; Ullén, De Manzano, Theorell, & 
Harmat, 2010). However, findings relating to the 
hypofrontality hypothesis have been mixed. One 
study found no association between flow scores 
and activity in the frontal regions (Harmat et al.,  
2015), while two studies reported increased activity 

in the prefrontal cortex during the challenge-skill 
balance condition (Barros, Araújo-Moreira, 
Trevelin, & Radel, 2018; Yoshida et al., 2014). One 
interpretation is that the hypofrontality hypothesis 
may be too broad and may apply only to specific 
areas of the prefrontal cortex. For instance, Barros 
et al. (2018) found increased activations within the 
lateral part of the frontoparietal network during a 
flow condition, which they interpreted as an active 
engagement of attentional resources during flow. 
These activations were accompanied by deactivation 
in the medial PFC, which the authors linked to 
reduced mind-wandering and self-referential 
processing.

Ulrich et al. (2014) conducted an fMRI study 
examining flow during mental arithmetic and 
observed reductions in neural activity in the medial 
PFC, posterior cingulate cortex, and medial tem
poral lobe, including the amygdala; these regions 
are part of the default mode network (DMN). 
Conversely, they also observed increased activity 
during flow in the inferior frontal gyrus (IFG), left 
putamen, and posterior cortical regions, areas that 
are associated with a “multiple demand system,” 
involved in various demanding cognitive tasks. 
Many studies have also found decreased activity in 
the DMN during flow, indicating the downregula
tion of task-irrelevant processes due to focused 
attention (Huskey, Craighead, Miller, & Weber,  
2018; Ju & Wallraven, 2019; Ulrich, Keller, & 
Grön, 2016b). Additionally, increased activity dur
ing flow has also been observed in brain regions 
associated with cognitive control, such as the dor
solateral prefrontal cortex (DLPFC) and the visual 
orienting and alertness attentional networks 
(Huskey, Craighead, Miller, & Weber, 2018). A 
reduction in default mode network activity and an 
increase in executive control during flow seems, on 
the surface, to be counterintuitive to thinking of 
flow as a type 1 process.

Several EEG studies have examined differences in 
spectral power between flow and non-flow states, yield
ing mixed results. An exploratory study using EEG to 
study flow designed a computer game to induce flow, 
immersion, and boredom (Nacke, Stellmach, & Lindley,  
2011); no significant differences in the EEG spectral 
power were found between flow and boredom. 
Another computer game experiment found that spectral 
power in the alpha (8–12 Hz), low beta (12–15 Hz), and 
mid-beta (15–20 Hz) bands reliably distinguished 
between flow, boredom, and frustration (Berta, 
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Bellotti, De Gloria, Pranantha, & Schatten, 2013). 
Katahira et al. (2018) used the mental arithmetic task 
and found increased theta (4–7 Hz) band activity in 
frontal areas during flow and overload conditions. The 
authors also observed increased alpha (10–13 Hz) power 
in the frontal and right central areas as task difficulty 
increased, and the EEG activities correlated with self- 
reported flow experience, especially ratings of concen
tration and task difficulty.

These studies have primarily operationalized flow 
based on challenge-skill balance in cognitive tasks 
such as mental arithmetic and simple computer 
games. Such a balance has been linked to reduced 
self-referential processing (Ulrich, Keller, & Grön,  
2016a), increased intrinsic motivation (Huskey, 
Craighead, Miller, & Weber, 2018; Meng, Pei, 
Zheng, & Ma, 2016), and greater cognitive control 
and attention (Katahira et al., 2018; Núñez Castellar 
et al., 2019). Though these studies offer novel con
tributions to the neuroscientific literature on flow, 
there are inherent limitations in relying solely on the 
challenge-skill balance as the criterion for inferring 
flow. While the challenge-skill balance may be a 
central condition of flow, it is not a sufficient con
dition for flow, and using it as the sole determinant 
of flow can lead to unreliable results (Moller, Meier, 
& Wall, 2010). A meta-analysis investigating the 
antecedents of flow found that the correlation 
between challenge-skill balance and flow was only 
moderate and decreased when intrinsic motivation 
was taken into account (Fong, Zaleski, & Leach,  
2015). In addition, the difficulty of capturing flow 
is compounded when the experiments are conducted 
in the sterile environment of a laboratory, where 
participants typically engage in an unfamiliar task 
within an evaluative context. These factors can 
work against the already slim chances of experien
cing flow in a laboratory since flow is more likely to 
occur in individuals who are highly skilled in an 
activity, and performance anxiety is not conducive 
to flow (Abuhamdeh, 2020). Further, a task is more 
likely to induce flow if it is personally meaningful to 
the individual and can be carried out for prolonged 
periods without interruption (Nakamura & 
Csikszentmihalyi, 2014). In particular, the automati
city predicted by the transient hypofrontality hypoth
esis may require domain-specific expertise, more 
than is possible from participants learning a novel 
task for an experiment. Therefore, neural mechan
isms underlying flow in the lab-based activities could 
differ from those underlying flow induced by com
plex real-life activities like music performance.

Naturalistic inductions of flow

Given the limitations of the challenge-skill balance 
model in a novel experimental task, alternative opera
tionalizations of flow that do not solely rely on this 
approach can be explored. Klasen et al. (2012) con
ducted a study where computer gamers played a first- 
person shooter game inside an MRI scanner. 
Independent raters then evaluated recorded gameplay 
based on the nine characteristics of flow. Moments rated 
as more conducive to flow were associated with 
increased activity in the neocerebellum, left and primary 
somatosensory cortex, and motor areas. The authors 
suggested that the experience of flow involves the acti
vation of a reward-motor loop, which synchronizes 
brain areas sensitive to reward with task-relevant corti
cal and cerebellar areas (Klasen, Weber, Kircher, 
Mathiak, & Mathiak, 2012).

Advancements in mobile neuroimaging have opened 
up exciting opportunities for collecting data during 
complex, personally engaging, and ecologically appro
priate, activities frequently associated with flow. For 
example, Leroy and Cheron (2020) collected EEG data 
from a tightrope walker to study brain responses before, 
during, and after a tightrope walk. They found that flow 
during the walk was accompanied by alpha oscillations, 
which disappeared after a stressful situation that 
occurred unexpectedly during the walk. These findings 
suggest that the flow state involves the recruitment of 
additional brain areas beyond those associated with 
online control of the skill, with activation observed in 
structures of the basal ganglia (Leroy & Cheron, 2020). 
Of note, these findings seem more in line with the 
predictions of the transient hypofrontality hypothesis.

Hence, there is a contradiction in flow research about 
the role of automaticity and frontal neural activity that is 
arguably task-related (van der Linden, Tops, & Bakker,  
2021). For instance, a computer game like Tetris may 
require more explicit control and, accordingly, involve 
more frontal activity (Harmat et al., 2015), while flow in 
tasks such as music performance or sports, which 
involve effortless automatic processing of well-learned 
actions, may be associated with reduced frontal activity. 
This task discrepancy may explain some of the contra
dictory findings in flow research, where flow in cogni
tive tasks and simple computer games is associated with 
increased frontal activity and activated brain areas 
related to strong attentional focus and controlled pro
cessing while studying flow during tightrope walking 
yielded findings more in line with hypofrontality (van 
der Linden, Tops, & Bakker, 2021). Of note, a bias 
toward cognitive tasks, for the practical purposes of 
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avoiding movement artifacts during neuroimaging, may 
result in more evidence against hypofrontality in exist
ing studies on flow.

The differences in brain responses between complex 
activities in a natural setting and flow data obtained 
through the challenge-skill balance paradigm in a 
laboratory highlight the importance of including those 
activities that naturally induce flow in neuroscientific 
studies. One possible approach is to examine the self- 
induction of flow by skilled practitioners, such as the 
tightrope walker as studied by Leroy and Cohen (2020), 
or expert computer gamers engaged in free gameplay of 
their preferred game. However, this approach has the 
limitation of relying on retrospectively categorizing 
events rather than experimentally controlling them. 
Additionally, it is challenging to predict whether a 
recording session will result in flow or an unexpected 
event. To advance this research, it would be beneficial to 
investigate a large group of experts who can deliberately 
induce their own flow experiences. Comparing flow and 
non-flow experiences within the same activity would 
provide valuable insights. We consider musicians an 
appropriate expert group for such a study. Music is 
recognized to offer various opportunities to enter the 
flow state (Bakker, 2005), and different conditions can 
be more predictably induced by selecting specific musi
cal pieces. Therefore, conducting a study with musicians 
would contribute significantly to our understanding of 
flow experiences and their neural correlates.

Flow in music performance

In a study conducted by de Manzano, Theorell, Harmat, 
and Ullén (2010), it was demonstrated that playing 
music can serve as an effective naturalistic flow experi
ence. The researchers examined professional pianists 
and identified psychophysiological correlates, specifi
cally EMG, cardiovascular and respiratory measures, 
associated with flow (de Manzano, Theorell, Harmat, 
& Ullén, 2010). To keep sensorimotor processing and 
physical output similar across five sessions, the pianists 
were instructed to play a single piece of music five times 
(de Manzano, Theorell, Harmat, & Ullén, 2010). This 
study, though informative, lacked a control condition 
where participants played music but without experien
cing flow. Hence, it is challenging to attribute the find
ings solely to the flow state during music performance, 
as they could be associated with the act playing music 
itself. Additionally, as the flow scores remained consis
tent across time, it raises questions about whether play
ing the same piece is sufficient to discern differences in 
physiological measures exclusively related to the 

experience of flow. Therefore, it is necessary to include 
a contrasting piece as a control condition, where the 
musician is still actively performing but not experien
cing flow.

Marin and Bhattacharya (2013) found that pianists 
reported experiencing flow more when playing in certain 
musical styles. Among the various styles, the Romantic 
style was the most familiar, preferred, and flow-inducing 
(Marin & Bhattacharya, 2013). This indicates that musi
cians know the music that frequently induces flow in them 
and the music that does not. Familiarity and preference for 
a particular musical genre may be related to the frequency 
of experiencing flow in that genre, but certain musical 
styles may also be particularly conducive to flow. Self- 
induction of intense musical experiences has already 
been successfully used to study other powerful musical 
phenomena, such as chills. Using self-selected music 
already known to affect them, participants could reliably 
self-induce the desired experience during neuroimaging 
experiments (Salimpoor, Benovoy, Larcher, Dagher, & 
Zatorre, 2011).

Neuroimaging studies on performing musicians have 
been conducted in the context of creativity, often using 
musical improvisation as a model for studying creative 
thinking. Such studies are also interested in the hypofron
tality hypothesis and the extent to which creativity and 
improvisation depend on type 1 spontaneous processes or 
type 2 deliberate processes. Initially, Dietrich (2004) asso
ciated the state of flow with type 1 processes and creativity 
with type 2 processes as conscious deliberation over the 
quality of ideas would be necessary for selecting creative 
ones. The type 2 processes for the evaluation and selection 
of creative ideas were thought to involve the dorsolateral 
prefrontal cortex (DLPFC). However, subsequent research 
on musical improvisation has shown different patterns of 
brain activity. For example, studies have revealed increased 
activity in the medial PFC and decreased activity in the 
DLPFC during improvisation (Limb, Braun, & Greene,  
2008). Additionally, activation of the DMN was also 
observed during improvisation (Pinho, de Manzano, 
Fransson, Eriksson, & Ullén, 2014), implying a shift toward 
a spontaneous processing mode. Such studies have often 
drawn links between flow experience and improvisation. 
Improvisation is recognized as an activity that is likely to 
induce a flow state, so findings such as more widespread 
DLPFC deactivation (McPherson, Barrett, Lopez- 
Gonzalez, Jiradejvong, & Limb, 2016) and attenuated con
nectivity in prefrontal areas (Vergara et al., 2021), have 
been interpreted as reflecting aspects of flow and specifi
cally as evidence for hypofrontality. Therefore, it is worth 
noting that the findings on musical improvisation have 
been contradictory to the findings of experimentally 
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induced flow; the latter typically involve a reduction of 
DMN activity and an increase of DLPFC activity. This 
discrepancy may be related to task specificity, suggesting 
that experimentally induced flow in a cognitive task may 
not be directly comparable to flow induced by music 
performance. Importantly, these studies were conducted 
with highly skilled improvisers who possessed the auto
maticity that comes with extensive practice and experience. 
This is in contrast to the tasks employed in flow research, 
which typically involve novel activities that participants are 
unfamiliar with and have to learn during the experiment. 
However, the abovementioned improvisation studies do 
not include a measure of flow experience during improvi
sation. As not every act of improvisation inevitably leads to 
a state of flow, it becomes difficult to conclusively link their 
findings to the experience of flow.

Neuroimaging studies on improvisation have found 
differences related to expertise. Lopata, Nowicki, and 
Joanisse (2017) found increased frontal alpha in the 
right hemisphere during improvisation, which corre
lated positively with experience and improvisation qual
ity in trained improvisers but negatively in improvisers 
without formal training. Rosen et al. (2020) found simi
lar results in a sample of jazz guitarists that performance 
quality, after controlling for experience, was associated 
with the right hemisphere, mostly frontal, activity. The 
results were interpreted in the context of the dual pro
cess theory in which novices rely more on frontally 
mediated type-2 executive processing, while experts 
rely more on type 1 associative processing mediated by 
more posterior brain regions. It is plausible that the 
experts in these improvisation studies possess the skills 
to better meet the challenges they face during music 
performance, thereby increasing their likelihood of 
experiencing flow (Cohen & Bodner, 2019b). Musical 
training has been found to correlate with dispositional 
flow, indicating that musicians with higher levels of 
training are more likely to enter a state of flow (Tan, 
Yap, & Bhattacharya, 2021).

To measure flow experience during music perfor
mance, EEG would be an ideal neuroimaging modality. 
Unlike fMRI, EEG allows greater freedom of movement, 
enabling the measurement of flow experience across a 
wide range of activities. This is particularly advanta
geous for studying musicians as it allows EEG data to 
be collected from a wider variety of musicians, without 
being restricted to instruments that can be safely used in 
an MRI environment.

The current study

The aim of this study was to explore the feasibility of 
imaging the neural activity associated with flow in a 

complex and typically flow-inducing activity in a more 
controlled approach. To explore the effect of naturalistic 
flow inductions, musicians were asked to bring a piece 
of music that they knew would induce a state of flow. As 
a control, they were also asked to bring a piece that they 
knew would not get them into a flow. Based on the 
findings of Marin and Bhattacharya (2013), we hypothe
sized that musicians would report higher levels of liking 
and familiarity for the flow-inducing pieces than the 
non-flow-inducing pieces, and they would experience 
a higher flow state after performing the self-selected 
flow-inducing pieces, indicating a successful flow- 
induction.

In this study, we recorded high-density EEG signals 
from musicians in both flow-inducing and non-flow- 
inducing conditions. However, because movement from 
playing an instrument can cause large artifacts that 
would adversely affect the analysis, we focused our 
analysis on the EEG data during a post-performance 
resting state immediately after musicians stopped play
ing. This approach of recording post-activity measure
ments, instead of during the activity itself, has been used 
earlier to mitigate movement artifacts (Leroy & Cheron,  
2020; Yoshida et al., 2014) and to avoid interfering with 
the activity itself (Henz, John, Merz, & Schöllhorn,  
2018). This post-performance EEG data, recorded 
while participants were still and had their eyes closed, 
was expected to be relatively free of large artifacts and 
temporally close to the actual experience, making it a 
suitable proxy for capturing the experience itself. In 
addition, as we have included various types of musicians 
in our study, the resting state after playing was deemed a 
more suitable comparison, where all participants 
engaged in the same state of having their eyes closed 
and not actively performing.

We investigated the immediate aftereffects of flow on 
brain oscillations and functional connectivity during the 
resting period of 1 min immediately after the completion 
of the musical piece. Due to the unpredictable nature of 
flow occurrence in a piece and the limited number of flow 
states that can be reliably induced within an experimental 
session, traditional event-related potentials (ERPs) were 
not suitable for our purpose. Instead, we analyzed the 
EEG data in terms of spectral power and functional 
connectivity and investigated the differences between 
the flow and non-flow conditions. After previous EEG 
research findings on flow, we hypothesized that signifi
cant effects distinguishing the flow condition from the 
non-flow condition would be observed in the theta, 
alpha, and beta frequency bands. However, to provide a 
comprehensive characterization, we also examined spec
tral power in the delta and gamma frequency bands in an 
exploratory manner. The functional connectivity was 
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estimated by the phase slope index (PSI), which allowed 
us to infer a directional measure of connectivity (Nolte et 
al., 2008). Considering the potential variations of effec
tiveness with which musicians could self-induce flow in 
this open-ended experiment, we also examined the influ
ence of dispositional flow by comparing spectral power 
and connectivity measures between musicians with high 
and low dispositional flow. Given the wide range of 
abilities of the musicians participating in the study, we 
also included expertise to test if any differences in EEG 
spectral power and functional connectivity measures 
between conditions interacted with expertise. Overall, 
we aimed to shed light on the neural correlates of flow 
states during music performance by analyzing post-per
formance EEG data, and exploring the role of disposi
tional flow and musical expertise in these brain activities.

Methods

Participants

Forty-eight amateur and professional musicians (mean 
age = 24.25 years, SD = 4.076 years, 20 males, 28 females, 
4 left-handed) took part in this study. Their musical 
background varied in terms of skill level and musical 
involvement. Participants played their main instrument 
for a range of 6 to 29 years (mean = 15.5 years, SD = 5.23  
years). The participants represented a diverse range of 
musicians, including 9 wind players, 5 singers, 6 guitar
ists, 12 string players, and 16 pianists. Sixteen participants 
were enrolled in undergraduate or postgraduate music 
performance programs at a conservatory or university. 
Among the remaining participants, 15 had graduated 
from a music performance course and remained active 
in the music scene to varying degrees. Seventeen partici
pants had never studied music at the tertiary level but 
frequently played as a hobby. Participation in the study 
was entirely voluntary, and all participants provided writ
ten informed consent. The study was approved by the 
local ethics committee and conducted following the 
Declaration of Helsinki. Three participants were part of 
the pilot data and did not have post-flow data available 
for analysis due to modifications made to the experiment 
after the pilot phase. One participant was excluded from 
the analysis due to not following the instructions. Thus, a 
total of 44 participants were considered in the analysis of 
the post-flow EEG data.

Materials

Two flow questionnaires were used to measure disposi
tional (trait) and state flow in the study. The 
Dispositional Flow Scale-2 (DFS-2) (Jackson & 

Eklund, 2004) was employed to assess dispositional 
flow. The DFS-2 consists of 36 items reflecting the 
nine dimensions of flow and is reliable in assessing 
flow in musicians (Sinnamon, Moran, & O’Connell,  
2012). Participants rated the frequency of their experi
ences related to the nine dimensions of flow on a 5- 
point scale (1 = never to 5 = always). Participants were 
instructed to answer it as a general measure of their flow 
experience when playing their instrument, regardless of 
whether it was during practice or performance. To mea
sure state flow, we used the Flow State Scale-2 (FSS-2) 
(Jackson & Eklund, 2004), which consists of the same 36 
items in the DFS-2, but responses on the same 5-point 
scale were collected after musicians finished playing 
each piece, and musicians were instructed to respond 
to the items based solely on their experience with the 
specific piece they had just performed. The FSS-2 is 
suitable for studying musicians’ state flow (Wrigley & 
Emmerson, 2013).

Musical expertise was assessed using the Goldsmiths 
Musical Sophistication Index, version 1.0 (Gold-MSI) 
(Müllensiefen, Gingras, Musil, & Stewart, 2014), which 
consists of 39 items (α = .90) and includes five subscales 
(active musical engagement (F1), perceptual abilities 
(F2), musical training (F3), singing abilities (F4), emo
tional engagement with music (F5)). It also provides one 
overall measure of general musical sophistication. 
Responses were obtained on a 7-point Likert scale (1 =  
Completely disagree to 7 = Completely agree).

At the end of the experiment, participants were also 
asked to rate each piece they brought on a 10-point 
scale, indicating how much they liked the piece and 
how familiar they were with it.

Experimental procedure

The study was a within-participant, repeated measures 
design where all participants took part in both condi
tions, flow and non-flow. Participants were provided 
with the following brief description of flow:

Flow state refers to the feeling or state of mind we 
sometimes get into while playing music where we’re 
so focused on the music that other things seem to 
disappear from your awareness. Often your perception 
of time will change. It’s usually a very euphoric experi
ence and it’s associated with peak performance. Some 
people call it being “in the zone.”

Participants were instructed to bring two familiar and 
fluent pieces for the two conditions of the experiment: 
one piece that they knew would induce a flow state (the 
flow condition), and one piece that they would not 
induce a flow state (the non-flow condition). Each 
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piece was repeated three times in a block design, result
ing in three consecutive flow trials and three consecutive 
non-flow trials. A block design was chosen based on its 
higher signal-to-noise ratio (SNR) and statistical power 
over event-related design (conditions are randomized), 
both of these features are relevant for flow that unfolds 
over an extended period (Palazzo et al., 2020; Valente, 
Kaas, Formisano, & Goebel, 2019). Further, by maxi
mizing the SNR and statistical power, the likelihood of 
detecting any difference between conditions is 
increased.

During the musical performance of each piece, EEG 
data were recorded. Participants were given the choice 
to either stand or to sit while playing, based on their 
comfort and preference. Some preferred the mobility of 
standing up, while others felt more comfortable sitting 
down to play. These preferences could be due to varying 
musical experiences, such as orchestral musicians being 
used to sitting while playing, while singers and those 
playing in jazz bands often perform while standing. For 
ease of performance, participants either played from 
memory or from a score, based on personal preference. 
Two participants brought recordings of accompaniment 
to play along with. Although these differences intro
duced potential confounds in the experimental condi
tions, this also ensured high autonomy during the 
experiment and therefore maximized the chances of 
experiencing flow while playing in the unusual labora
tory setting while brain data was being recorded. It is, 
however, important to note here that the EEG data 
analysis focused on the period after both performances 
when participants were in a seating position and not 
reading music. This ensured consistency in the analysis 
and minimized any large artifacts.

The order of the conditions was counterbalanced, 
with half of the participants beginning with the flow- 
inducing piece and the other half beginning with the 
non-flow-inducing piece. Participants were told that the 
experiment focused on their subjective experience while 
playing and that the quality of their performance was 
not relevant to the study. This instruction aimed to 
encourage participants to focus on their internal experi
ence and to minimize any concerns about any external 
evaluation of their musical performances, allowing them 
to fully engage in the flow-inducing state.

As mentioned earlier, we focused on the EEG data in 
the resting period immediately after participants fin
ished playing. This period is referred to as the post- 
playing state. Therefore, upon finishing each piece, par
ticipants were instructed to sit down, if they were not 
already seated, close their eyes for 1 min. This duration 
was chosen to ensure adequate data for conducting EEG 
power analysis including the low-frequency delta (1–4  

Hz) range, while also keeping the overall duration of the 
experiment manageable. This brief period allowed for 
capturing the immediate brain activity influenced by the 
specific state of playing, flow or non-flow. After this 
post-playing resting state, participants completed the 
FSS-2 to report their subjective experience of flow 
while playing the piece. This provided vital information 
about the degree of state flow experienced during each 
condition, allowing for a comprehensive analysis of the 
relationships between brain responses and subjective 
flow states.

EEG recording and Preprocessing

EEG signals were recorded using 64 active electrodes 
placed according to the extended 10–20 electrode place
ment system and amplified by a BioSemi ActiveTwo 
amplifier (www.biosemi.com). The vertical and hori
zontal eye movements (EOGs) were recorded by four 
additional electrodes placed above and below the right 
eye and from the outer canthi of both eyes, respectively. 
Two additional electrodes were placed on both left and 
right earlobes, and their average was used as a reference. 
During recording, the signals were band-pass filtered 
between 0.16 and 100 Hz. The sampling frequency was 
512 Hz.

The MATLAB toolbox EEGLAB (Delorme & 
Makeig, 2004) was used to clean and pre-process EEG 
data. The EEG data were re-referenced to the average of 
the two earlobes. The data were high-pass filtered at 0.5  
Hz and epoched from −2 s before and 60 s after parti
cipants stopped playing and closed their eyes. The post- 
flow data was relatively free from large artifacts. No eye- 
blink corrections were needed because the data were 
recorded while participants had their eyes closed. The 
data were visually inspected before subsequent analysis.

EEG spectral analysis

The EEG signals were first analyzed in terms of the 
constituent oscillatory components, which involves 
splitting up the broadband signal from each electrode 
into standard frequency bands. We computed the 
power-spectral density using Welch’s method by divid
ing the 1 min period into 2 sec windows with an overlap 
of 500 msec. The periodogram was calculated for each 
electrode position and trial for each participant. EEG 
spectral power values were subsequently averaged in 
each of the classical EEG frequency bands: delta (1–4  
Hz), theta (4–8 Hz), lower alpha (8–10 Hz), upper alpha 
(10–12 Hz), beta (12–30 Hz), lower gamma (30–45 Hz) 
and upper gamma (55–70 Hz). The resulting power 
values were converted to relative power (i.e. power in a 
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specific frequency band divided by the total power 
across frequency bands). Finally, the relative power 
values were averaged among 3 flow and 3 non-flow 
states.

To statistically compare the spectral power differ
ences between the two conditions, flow and non-flow, 
we used an exploratory approach based on a non-para
metric cluster-based permutation test (Maris & 
Oostenveld, 2007). This data-driven approach is widely 
used in the field of EEG/MEG studies (Lindsen, Jones, 
Shimojo, & Bhattacharya, 2010; Luft & Bhattacharya,  
2015; Meyer, Lamers, Kayhan, Hunnius, & Oostenveld,  
2021). This approach is preferred over standard para
metric tests because it avoids the multiple comparison 
problem and controls the Type-1 error rate (Pernet, 
Latinus, Nichols, & Rousselet, 2015). It consists of two 
steps. First, clusters in the two-dimensional space of 
frequency and electrode were defined by grouping 
neighboring data points showing a significant effect (p  
< .05) of condition (flow vs non-flow) in paired two- 
tailed t-tests, and a cluster-level statistic was computed 
by summing the t-values of the data points in each 
cluster. In this study, electrodes were considered to be 
neighbors in the spatial sense if the distance below them 
was less than 4 cm. Second, the Monte-Carlo permuta
tion was used to obtain the exact probability that a 
cluster with the maximum cluster-level statistic was 
observed under the assumption that the spectral profiles 
of the two conditions were equal. We used 500 permu
tations in this analysis, and the threshold for inclusion 
in the cluster was set at 0.05. This analysis was con
ducted using the Fieldtrip Toolbox (Oostenveld, Fries, 
Maris, & Schoffelen, 2011).

The cluster-based permutation test was applied to the 
relative spectral power values in 7 frequency bands. Two 
participants were removed from the upper alpha band 
power analysis due to extreme outliers. To investigate 
the association between oscillatory activities and self- 
reported flow, power values from significant electrode 
clusters were calculated and subsequently correlated 
with the scores obtained from the flow state question
naire, including both overall flow state scores and scores 
of the specific dimensions of flow. We applied the 
Holm-Bonferroni correction to the correlations to con
trol for multiple comparisons (Holm, 1979).

To examine the potential influence of dispositional 
flow and musical expertise, participants were divided 
into two groups based on a median split of their scores 
on the dispositional flow scale (high vs low) and the 
overall Gold-MSI score (high musical expertise vs low 
musical expertise). These groups were then used as 
between-subject factors in two-way mixed analysis of 
variances (ANOVA). The power values obtained from 

the significant electrode clusters were included as the 
dependent variables. The within-subjects factor was the 
condition (flow vs non-flow) and the between-subjects 
factor was either dispositional flow (high vs low) or 
musical expertise (high vs low).

EEG Connectivity Analysis

To measure the directed functional connectivity 
between electrode regions, we used the phase slope 
index (Nolte et al., 2008), a bivariate index quantifying 
the consistency of the phase lag/lead between two sig
nals. It is based on the imaginary part of the coherence 
and is robust against spurious connectivity due to 
volume conduction effects (Schiff, 2005); of note, PSI 
is only sensitive to lagged connectivity as it does not 
capture any instantaneous or zero-lag connectivity. To 
maximize the differences between flow and non-flow 
conditions, we selected the epochs associated with the 
highest-rated flow and lowest-rated non-flow and cal
culated the PSI for the 1 min time window. We analyzed 
the PSI from AF8 to all electrodes for all frequencies and 
identified the frequency at which the PSI value was 
maximum. This analysis revealed a peak in PSI values 
at 5 Hz, and this frequency belonging to the theta band 
became the frequency of interest. The PSI at this fre
quency was subsequently extracted for a two-way mixed 
ANOVA to compare the functional connectivity 
between two conditions, flow vs nonflow, as well as 
between two groups of participants, high vs low in 
dispositional flow.

Results

Behavioral data

As expected, participants reported higher flow state 
scores after playing the self-selected flow-inducing 
piece compared to the non-flow-inducing piece. The 
average flow state score, as measured by the Flow State 
Scale (FSS-2), was significantly different (t(43) = 9.08, p  
< .001) between the flow condition (M = 4.02, S.D.  
= .385) and the non-flow condition (M = 3.34, S.D.  
= .400). Further, participants rated their flow-inducing 
piece significantly higher in both liking and familiarity 
(Liking: t(42) = 5.89, p < .001; Familiarity: t(42) = 3.89, 
p < .001). These self-reported ratings (Figure 1) alto
gether suggest that the manipulation of the experimen
tal conditions was effective in inducing different 
subjective experiences of flow and non-flow.

A two-way repeated measures ANOVA with time 
and condition as within-subject factors were run to 
examine whether flow state scores differed across the 
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repetitions of the flow and non-flow pieces. We 
observed a main effect of time (F(2, 258) = 3.782, p  
= .024). Figure 2b shows that there was a slight 
increase in flow state scores from the first to the 
third repetition of both the low-inducing and non- 
flow-inducing pieces. This suggests that participants 
may have become more immersed and engaged in 
the playing experience over time, regardless of the 
specific condition. However, there was no significant 
interaction between condition and time (F(2, 258) =  
1.364, p = .257). This suggests that the increase in flow 

state scores across repetitions was not significantly 
different between the flow and non-flow conditions.

A two-way mixed ANOVA was also conducted to 
examine the influence of dispositional flow on flow state 
scores. We found a significant main effect of disposi
tional flow (F(1, 84) = 8.566, p = .004). Participants with 
high dispositional flow reported higher flow state scores 
for both the flow and non-flow conditions (Figure 2a). 
This suggests that individuals who generally experience 
more flow during music performance were more likely 
to report higher flow state scores in both experimental 

Figure 1. Flow state scores (FSS) and liking and familiarity ratings are significantly higher for the flow piece than the non-flow- 
inducing piece. A) barplot for mean FSS scores. FSS scores are significantly higher, both overall and in all nine dimensions, for the flow 
condition. B) barplot for liking and familiarity ratings.

Figure 2. Flow scores by dispositional flow and session. A) dotplot of flow state scores according to dispositional flow. Participants 
high in dispositional flow tended to report higher flow state scores in both flow and non-flow conditions. B) dotplot of flow state 
scores by repetition. The reported flow increased slightly from the first to the third time the piece was played.
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conditions. However, the interaction between disposi
tional flow and condition was not significant (F (1,84) =  
0.739, p = .39). This indicates that the effect of disposi
tional flow on flow state scores did not differ between 
the flow and non-flow conditions. Further analysis 
revealed that the dispositional flow was not significantly 
correlated with flow state scores during the flow condi
tion (r =.203, p = .187); however, there was a significant 
positive correlation for the non-flow condition (r = .527, 
p < .001). This suggests that participants with higher 
dispositional flow were more likely to experience flow 
characteristics during the non-flow condition.

The analysis examining the influence of musical 
expertise (as measured by Gold-MSI) on dispositional 
flow scores revealed no significant differences in average 

dispositional flow scores between participants in the 
high and low music expertise groups. Further, the 
music expertise did not significantly interact with con
dition (Figure 3). These findings indicate that musical 
expertise did not have a significant effect on individuals’ 
dispositional flow scores or their experience of flow state 
during the experimental conditions.

EEG data

Brain oscillations
Figure 4 shows scalp maps of statistical contrast (i.e. t- 
values) between the flow and non-flow conditions for 
seven frequency bands.

Figure 3. Dispositional flow and flow state scores by expertise. There were no significant differences in dispositional flow and state 
flow scores between high and low expertise groups.
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The non-parametric cluster analysis revealed signifi
cant clusters in the frequency bands of upper alpha 
(cluster statistic = 30.465, p = .0359) and beta (cluster 
statistic = 42.57, p = .01). Power values from the signifi
cant electrodes within these clusters were averaged and 
compared to flow state scores. However, the neural 
differences observed in the upper alpha and beta bands 
did not correlate with the behavioral differences in flow 
state scores. In an exploratory analysis (see supplemen
tary material), correlations were examined between dif
ferences in upper alpha and beta power and the flow 
dimensions. We found only one significant correlation 
between upper alpha power and the dimension of time 
perception (r = 0.51, p = .02), which, however, did not 
survive correction for multiple comparisons. These 
findings indicate that although significant differences 
were observed in the upper alpha and beta frequency 
bands, they did not directly align with the behavioral 
differences in flow state scores.

Figure 5 shows the results of two-way mixed 
ANOVAs conducted on the power values extracted 
from the significant electrodes to test the effects of the 
between-subject variables of dispositional flow and 
music expertise. The results showed that dispositional 
flow was not a significant predictor for spectral power in 
the upper alpha band or beta band (alpha: (F(1,40) =  
0.529, p = .471, beta: F(1,42) = 0.014, p = .907). 
Additionally, the interaction between dispositional 
flow and condition was not significant for either of the 

frequency band (alpha: (F(1,40) = 0.464, p = .500, beta: F 
(1,42) = 1.750, p = .193). Similarly, no main effect of 
expertise was found (alpha: (F(1,40) = 0.000151, p  
= .990, beta: F(1,42) = 2.023 p = .162). However, the 
interaction between expertise and condition was signif
icant for upper alpha (F(1,40) = 6.172, p = .017); this 
effect was primarily driven by the high expertise 
group, as the difference between flow and non-flow 
conditions was more pronounced in this group. Of 
note, this finding initially did not reach significance (F 
(1,42) = 1.76, p = .192) and only became significant after 
removing two participants, one from each group, iden
tified as extreme outliers, one in the high expertise 
group and one in the low expertise group. 
Furthermore, there seems to be a larger difference 
between conditions in the beta band for the high exper
tise group compared to the low expertise group, 
although the interaction was not significant (F(1,42) =  
3.074, p = .087). No values of beta power were identified 
as being extreme outliers. Additional moderator ana
lyses were conducted with dispositional flow and exper
tise as continuous variables, without applying a median 
split to the between-subject variables. The results were 
similar to the findings with median splits applied (see 
Supplementary Material) but the increased power from 
the continuous between-subject variables resulted in a 
significant interaction between expertise and condition 
for power in the beta band. Overall, these findings 
suggest that dispositional flow did not significantly 

Figure 4. Topoplots of t-values by comparing EEG power of seven frequency bands between flow and non-flow states. Red indicates 
that spectral power is higher in the flow condition, while blue indicates higher power in the non-flow condition. Statistically significant 
(p < .05) electrodes are indicated by black dots.
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Figure 5. The between-condition differences in neural activity in significant electrode clusters do not differ based on dispositional 
flow, but differences in the upper alpha band are driven by the contrast in participants high in expertise. A) topoplot of electrodes 
showing significant differences between flow and non-flow from a non-parametric cluster analysis of power in the upper alpha band. 
Dispositional flow did not have a significant main or interaction effect. B) topoplot of electrodes showing significant differences 
between flow and non-flow from a non-parametric cluster analysis of power in the beta band. Dispositional flow did not have a 
significant main or interaction effect. C) barplot showing differences in upper alpha band power between conditions in participants 
high and low in dispositional flow. D) barplot showing differences in beta band power between conditions in participants high and 
low in dispositional flow. E) barplot showing differences in upper alpha band power between conditions in participants high and low 
in expertise. There is a significant interaction between condition and expertise (F(1,40) = 6.172, p = .017), with the mean difference 
between conditions mostly found in the high expertise group. F) barplot showing differences in beta band power between conditions 
in participants high and low in expertise. The interaction between expertise and condition is not significant (F(1,42) = 3.074, p = .087).
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influence spectral power in the upper alpha and beta 
bands, while expertise showed a significant interaction 
with condition in the upper alpha and beta bands.

Functional connectivity
The functional connectivity analysis also showed differ
ences between conditions (Figure 6). The PSI values 
show increased information flow from a right frontal 
cluster (FP2, AF4, AF8, F4, F6) to central and parietal 
areas in the flow condition. In contrast, in the non-flow 
condition, there was an increase in information being 
sent to the right frontal cluster from the parietal regions. 
A subsequent ANOVA showed that this significant dif
ference between flow and non-flow was primarily 
mainly found in participants with high dispositional 
flow scores (F(1,42) = 4.724, p =.035). On the other 
hand, expertise did not significantly predict the 
observed differences in connectivity (F(1,42) = 0.006, p 
=.938). Additional moderator analyses with disposi
tional flow and expertise as continuous variables had 
similar results (see Supplementary Material).

These findings suggest that the pattern of connectiv
ity varied between flow and non-flow conditions, with 
participants high in dispositional flow showing the most 
pronounced differences. Expertise, however, did not 
play a significant role in this regard.

Discussion

This study aimed to examine whether naturalistic flow 
induction using music, an activity commonly associated 
with flow experience, would successfully induce flow 
states in a laboratory setting. Additionally, a non-flow 
control state was induced by doing the same activity but 
not flow-inducing. Finally, by comparing brain 
responses immediately after the activity, the study 
aimed to identify distinct neural differences associated 
with the flow state. The results indicated significant 
differences in state flow scores between the flow and 
non-flow conditions, suggesting that participants suc
cessfully brought musical pieces that induced the 
desired states, flow or non-flow, in them. Further, 
flow-inducing musical pieces were rated significantly 
higher in both liking and familiarity, which aligns with 
previous findings that suggest the role of liking and 
familiarity in music-induced flow experiences in musi
cians (Marin & Bhattacharya, 2013). Importantly, we 
observed significant differences in brain oscillatory 
activity and functional connectivity immediately after 
playing flow-inducing pieces compared to the same time 
period immediately after playing non-flow-inducing 
pieces. This suggests that neural processes associated 
with flow states can be observed even after the 

completion of the activity that induced flow, indicating 
a continued influence of the flow experience even after 
the activity has ended.

We observed a significant effect in upper alpha fre
quency power in the frontal areas, with higher power 
observed in the flow condition compared to the non- 
flow condition. The alpha oscillations in the brain are 
known to reflect an active inhibition mechanism across 
cortical networks (Klimesch, Sauseng, & Hanslmayr,  
2007). Increased alpha oscillations have also been asso
ciated with a decrease in the blood oxygen level-depen
dent (BOLD) signal measured using functional 
magnetic resonance imaging (fMRI) (Scheeringa et al.,  
2011). The inhibition in the frontal areas during the flow 
state may provide some evidence for the transient hypo
frontality hypothesis (Dietrich, 2004), although the 
broad coverage of EEG (i.e. poor spatial resolution) 
limits the specificity compared to more nuanced find
ings based on fNIRS and fMRI (Barros, Araújo-Moreira, 
Trevelin, & Radel, 2018; Ulrich, Keller, & Grön, 2016c). 
Since we observed this effect after musicians had 
stopped playing, it could suggest that this inhibition 
might have lasted beyond the end of a performance. 
However, a more recent study on flow has linked frontal 
alpha oscillations to cognitive control processes and 
attentional engagement (Núñez Castellar et al., 2019). 
It may be related to the suppression of irrelevant infor
mation which might occur while switching between 
different subcomponents of the task or the control of 
motor activities involved in the task (Jensen & 
Mazaheri, 2010; Klimesch, Sauseng, & Hanslmayr,  
2007; Maclin et al., 2011; Mathewson et al., 2012). 
Other studies on flow have linked frontal alpha oscilla
tions with working memory (Katahira et al., 2018) and 
sustained attention (Knierim, Nadj, Hariharan, & 
Weinhardt, 2018). However, without specific controls 
for these cognitive mechanisms in our study, it remains 
challenging to conclusively link frontal alpha oscilla
tions to any specific cognitive process. It is important 
to note, however, that the time period analyzed in our 
study was an eyes-closed resting state, which typically 
induces a shift to internally directed attention (Boytsova 
& Danko, 2010). Therefore, the links between frontal 
alpha and attentional processes may be more relevant in 
this context. Furthermore, it is also worth mentioning 
that listening to music, whether calming or stimulating, 
has been shown to increase upper alpha amplitude and 
power in the frontal and parietal regions (Iwaki, 
Hayashi, & Hori, 1997; Kawasaki, Karashima, & Saito,  
2009). Because we controlled for the effects of music by 
including a non-flow condition that also involved play
ing music, the observed alpha effects cannot solely be 
attributed to music-induced emotion or arousal. 
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However, the effects of flow cannot be strictly distin
guished from those of arousal induced by music. Given 
the emotional nature of music, it is possible that the 
observed effects could be a neural correlate of flow state 
that is specific to musicians.

Greater frontal upper alpha synchronization, parti
cularly in the right hemisphere, has also been observed 
during improvisation, particularly during high-quality 
performances (Rosen et al., 2020) and in improvisers 
with formal training in improvisation (Lopata, Nowicki, 
& Joanisse, 2017). The authors suggest that compared to 
musicians not formally trained in improvisation, 
trained improvisers are more likely to experience flow 
as their increased skill level enhances the likelihood of 
reaching a challenge-skill balance. The frontal alpha 
synchronization is proposed to be a marker of sponta
neity and creativity arising from intuitive Type 1 pro
cessing (Lopata, Nowicki, & Joanisse, 2017). Further, 
well-trained musicians are capable of inhibiting frontal 
executive control processes and recruiting more implicit 
and automatic processes during improvisation (Rosen et 
al., 2020). Consistent with Lopata, Nowicki, and 
Joanisse (2017) and Rosen et al. (2020), our study 

revealed a larger difference in frontal alpha power 
between flow and non-flow conditions among musi
cians with higher expertise. This finding further sup
ports the notion that the observed frontal alpha activity 
may represent a mechanism also present during the 
state experienced by trained improvisers during an 
improvisation task. However, it is important to note 
that the interaction between expertise and condition 
emerged only after removing an outlier in the low 
expertise group who showed a large contrast between 
flow and non-flow conditions despite being less musi
cally trained. This could suggest that this pattern of 
activity may not be exclusive to highly expert musicians. 
It is possible that in our experiment, participants with 
lower expertise were able to adapt the task demands to 
their skill level effectively, enabling them to engage in 
similar mechanisms as the experts.

Beta activity is usually associated with motor activity. 
One interesting study has suggested that frontal beta 
oscillations may reflect the post-processing of successful 
motor activity (Feingold, Gibson, DePasquale, & 
Graybiel, 2015). Based on intracranial recording in 
monkeys, the study demonstrated larger beta 

Figure 6. Functional connectivity (PSI) in theta band significantly differs between flow and non-flow, but only for participants high in 
dispositional flow. A) heads-in-head plot of PSI values at 5Hz in the post-playing resting state after flow. B) heads-in-head plot of PSI 
values at 5Hz in the post-playing resting state after non-flow. C) arrows showing the direction of information transfer in flow (black 
arrows) compared to non-flow (red arrows). In flow, information is sent from a right frontal cluster to central and parietal regions, 
while in non-flow, there is an increase in information being sent to the right frontal cluster from parietal regions. D) barplot showing 
mean PSI values across conditions in participants with high and low expertise. The pattern of connectivity does not differ based on 
expertise. E) barplot showing mean PSI values across conditions in participants high and low in dispositional flow. The connectivity 
pattern to and from the right frontal cluster is only found in participants high in dispositional flow.
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oscillations following correct movements compared to 
incorrect ones. This suggests that beta oscillations may 
be involved in the evaluation or consolidation of motor 
performance. In the context of flow, which is associated 
with peak performance and challenge-skill balance 
(Engeser & Rheinberg, 2008), it is reasonable to assume 
that more correct movements are made in the flow 
condition than in the non-flow condition. Therefore, it 
is possible that the observed increase in the frontocen
tral beta activity reflects the enhanced processing of 
successful motor actions during the flow state. 
Additionally, the frontocentral beta has been found in 
improvising musicians during high-quality perfor
mances and is linked to movement facilitation (Rosen 
et al., 2020). This further supports the idea that beta 
oscillations may play a role in motor-related processes 
during musical performance. The fact that there is a 
more pronounced difference between flow and non- 
flow conditions in musicians with higher expertise sug
gests that they exhibit a greater contrast in movement 
facilitation when playing in a state of flow compared to 
when they are not. However, it is important to note that 
beta activity could also be related to inhibition. Alpha 
and beta activity in the frontal cortex may reflect top- 
down inhibition of bottom-up information carried by 
gamma oscillations, thereby exerting top-down control 
over neural processing (Miller et al., 2018).

The functional connectivity results showed a signifi
cant difference in activity within a right frontal cluster 
between the flow and non-flow conditions. 
Interestingly, this pattern of activity was only found in 
individuals with high dispositional flow, suggesting that 
this right frontal brain region area may play an impor
tant role in flow experience. Recent research has linked 
theta band connectivity to attentional processes. Theta 
connectivity within the frontoparietal control network 
has been reported to facilitate cognitive control and 
goal-directed attention (Cooper et al., 2015; Fellrath, 
Mottaz, Schnider, Guggisberg, & Ptak, 2016). As flow 
is a state of goal-directed attention, individuals who are 
more likely to experience flow while playing music may 
exhibit better attentional control in the presence of 
distractions, leading to increased theta connectivity. 
Past studies have linked flow to the right dorsal lateral 
prefrontal cortex, which has been linked to the experi
ence of increased reward during flow (Huskey, 
Craighead, Miller, & Weber, 2018). While the functional 
theta connectivity observed in our study originated 
from the right frontal areas, further analysis using the 
source space reconstruction method will be needed to 
precisely locate the neural sources of this theta connec
tivity. Additionally, network analysis will be needed to 
confirm whether this pattern of connectivity represents 

activity within the frontoparietal network. Taken 
together, the findings from spectral power and func
tional connectivity results suggest a top-down control 
of attention in the flow state. This interpretation is not 
necessarily contradictory to a model of frontal deactiva
tion as a sign of spontaneity, as proposed by Dietrich 
(2004), who noted that flow may be a state of hypofron
tality, with the notable exception of executive attention 
required to direct and sustain attention on the activity 
(Dietrich, 2004). In addition, Beaty, Benedek, Silvia, and 
Schacter (2016) have proposed a framework suggesting 
that a coupling between the DMN and the frontoparietal 
control network allows for a complex interplay of pro
cesses during creative tasks, involving both bottom-up 
generative and top-down evaluative monitoring. The 
possible involvement of the frontoparietal network, 
also known as the executive control network, ECN 
(Uddin, Yeo, & Spreng, 2019), along with the frontal 
deactivation, may reflect the interactions between the 
DMN and ECN that enable both bottom-up spontaneity 
and top-down evaluation (Beaty, Benedek, Silvia, & 
Schacter, 2016).

Our findings also share similarities with other EEG 
studies that have investigated experimentally induced 
flow. The observed differences in the upper alpha and 
beta bands are consistent with an earlier study that 
utilized support vector machine classification on EEG 
data collected during a plane battle video game. This 
study found that alpha (8–12 Hz), as well as lower-beta 
(12–15 Hz) and mid-beta (15–20 Hz) power, most reli
ably distinguished between flow, boredom, and frustra
tion states (Berta, Bellotti, De Gloria, Pranantha, & 
Schatten, 2013). Unlike Katahira et al. (2018), we did 
not find significant differences in theta band power. 
This could be due to the differences in the tasks 
employed. Katahira et al. (2018) analyzed data collected 
during a mental arithmetic task that likely involved a 
greater working memory load and mental effort than 
our resting state collected after a musical performance. 
In addition, music performance, particularly when play
ing a familiar and well-liked piece, may be characterized 
by a heightened sense of being in the present moment 
and automaticity. This task-related difference explains 
how flow experienced during a typical flow-inducing 
complex activity could differ from experimentally 
induced flow and show greater hypofrontality.

It is important to note that the findings in this study 
were based on eyes-closed resting state data, which 
differs from other flow studies that typically analyze 
data collected during the task, where participants 
usually had their eyes open. Another study examining 
flow during mental arithmetic reported decreased alpha 
activity, suggesting a reduction in the DMN activity, as 
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alpha activity has been shown to correlate with DMN 
(van der Linden, Tops, & Bakker, 2021). However, it is 
difficult to draw definitive conclusions regarding DMN 
in this study. While alpha activity correlates with DMN 
in the eyes-open resting state, it has also been shown to 
correlate with the cingular-opercular network in the 
eyes-closed resting state (Sadaghiani & Kleinschmidt,  
2016). Therefore, the specific neural networks involved 
in flow states during different tasks and resting condi
tions require further investigation.

Implications

This study demonstrates that it is possible to study flow 
using naturalistic stimuli and that highlights distinct 
differences in the neural correlates between the state 
immediately following flow and the state following 
non-flow, as measured by EEG. Expertise showed a 
significant interaction with condition for alpha and 
beta power but surprisingly, did not significantly influ
ence the pattern of connectivity between flow and non- 
flow conditions. However, the theta band connectivity 
pattern associated with flow was primarily found in 
musicians with high dispositional flow. These findings 
suggest that future neuroimaging studies aiming to 
induce flow naturally should target individuals with 
high dispositional flow and carefully control for exper
tise. Moreover, engaging experts in an activity that typi
cally elicits flow may result in a more spontaneous mode 
of thinking and neural activity, resembling hypofrontal
ity, as compared to using novel computer-based tasks in 
laboratory settings.

Our findings show similarities to previous studies on 
improvisation, especially regarding spectral power in 
the upper alpha band in the right frontal regions 
(Lopata, Nowicki, & Joanisse, 2017; Rosen et al., 2020), 
which suggests that their findings on improvisers may 
also apply to flow state. Their improvisers may have 
experienced flow during their highly creative states. 
Since we measured post-flow neural activity, a plausible 
conclusion is that flow could induce a brain state con
ducive to creativity. However, our current methods are 
limited in differentiating between creativity and flow 
during music performance. A potential solution would 
be to measure both creativity and flow in the same 
neuroimaging experiment (Rosen et al., 2020) to control 
for both constructs when comparing neural activity. In 
addition, alternative methods of analyzing neural activ
ity, such as microstate analysis (Vidaurre et al., 2016), 
could help address the question of DMN and CEN 
activity during concurrent flow and creativity. 
Moreover, our results indicate that post-performance 
measurement can serve as a useful proxy for during- 

performance measurement, extending the validity of 
this approach. Furthermore, the observed findings 
were not limited to improvising musicians; they also 
generalized to non-improvising musicians, suggesting 
that aspects of the states measured in our study and in 
other improvisation studies may also apply to non- 
improvising musicians. Cognitive mechanisms such as 
an internal focus of attention, creativity, and facilitation 
of movement during performance are relevant to musi
cians even when they are not improvising (Lopata, 
Nowicki, & Joanisse, 2017; Rosen et al., 2020).

Our findings have implications for musicians as well. 
They not only shed light on the mechanisms underlying 
a highly motivating experience in music, which 
encourages continued participation and improvement 
(Marin & Bhattacharya, 2013) but flow has also been 
proposed as a way to deal with performance anxiety 
(Cohen & Bodner, 2019a). Understanding the neural 
activity associated with flow could potentially inform 
the development of neurofeedback interventions that 
could enhance the likelihood of experiencing flow rather 
than performance anxiety during musical performance.

Study limitations

Studies conducted so far have faced challenges in effec
tively assessing the flow state due to the inherent diffi
culties of inducing flow state on demand and the 
complexities associated with its operationalization and 
measurement (Abuhamdeh, 2020). In addition, the con
strained environment of a neuroimaging laboratory 
imposes further physical limitations when studying 
flow. Although this study employed naturalistic stimuli 
to induce flow and included a control condition for 
comparison, it has several limitations that can be 
improved as follows.

Firstly, it is difficult to ascertain if the participants’ 
understanding of flow was the same as our construct. It 
would be useful to conduct qualitative interviews with 
participants to determine if it matches the stated defini
tion of flow, while also ensuring consistency across 
participants. Secondly, this study relied exclusively on 
participants’ self-reports of their experience of flow 
state, particularly their perception that the music they 
played induced a state of flow. To complement self- 
report measures, it would be beneficial to include psy
chophysiological correlates of flow as objective indica
tors of participants’ flow experience. These measures are 
well-researched and could provide additional evidence 
to support participants’ self-reported flow ratings. In 
addition, it may be useful to combine multiple opera
tionalizations of flow. For example, participants in this 
study instinctively brought non-flow-inducing pieces 
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that were less familiar to them, resulting in a possible 
mismatch between the challenge level and their skill 
level. To address this, participants could be instructed 
to bring pieces that are deliberately too easy to induce 
boredom and something too difficult to induce frustra
tion. By contrasting flow states with states of boredom 
(low challenge, negative affect) and overload (high chal
lenge, negative affect), the findings would be more 
comparable to other studies (Ulrich et al., 2014; 
Katahira et al., 2018).

An obvious limitation of this study is that it exam
ined the brain activity after participants played in a flow 
state, rather than during the actual flow-inducing activ
ity. As a result, the findings may not directly be compar
able to other studies that collected data during the 
activity. It is important to acknowledge that neural 
activity in the post-flow state may differ from neural 
activity during the flow state, and there is a possibility of 
rebound effects after the activity has ended. Therefore, 
caution should be exercised when comparing these find
ings to studies that focus on neural activity during the 
flow-inducing activity. Further research is needed to 
explore the similarities and potential differences 
between neural activity during and after the flow state.

Using an eyes-closed resting state in this study was 
advantageous in reducing artifacts. However, it also 
limits the comparability of the results to other studies 
that measure neural activity during the task when parti
cipants usually have their eyes open. It is worth noting 
that spectral power, especially in the lower frequency 
bands, tends to be higher during eyes-closed resting 
states compared to eyes-open resting states (Barry, 
Clarke, Johnstone, Magee, & Rushby, 2007; Geller et 
al., 2014). Additionally, the connectivity and topogra
phy of functional networks can differ between eyes- 
closed and eyes-open states (Xu et al., 2014). 
Therefore, discussing band power as proxies for net
work activity can be challenging, as the relationship 
between spectral power and network activity can vary 
depending on whether eyes-closed or eyes-open resting 
states were collected (Sadaghiani & Kleinschmidt, 2016). 
While this study maintained consistency by examining 
eyes-closed resting states in both flow and non-flow 
conditions, it is important to consider the differences 
between eyes-closed and eyes-open states when compar
ing data collected during the activity and post-activity 
data, especially if the post-activity data was collected 
with eyes closed.

We observed only one significant correlation 
between alpha power and the time perception subscale 
of flow, but this correlation did not survive for multiple 
comparisons. As a result, the relationship between 
neural and behavioral measures of flow in this study is 

not clear. This makes the link between flow experience 
and the neural findings less clear and opens up the 
possibility that the neural findings may reflect cognitive 
processes other than flow. For example, frontal alpha 
power has been associated with reward, cognitive con
trol (Sadaghiani & Kleinschmidt, 2016), emotion, top- 
down suppression of distractors (Núñez Castellar et al.,  
2019), or an internal focus of attention (Klimesch, 
Sauseng, & Hanslmayr, 2007), all of which can be 
involved during music performance apart from flow 
experience. However, the presence of frontal alpha 
power specifically after self-induction of flow, as well 
as during other flow-inducing activities such as gaming 
and tightrope walking (Berta, Bellotti, De Gloria, 
Pranantha, & Schatten, 2013; Leroy & Cheron, 2020; 
Núñez Castellar et al., 2019), suggests a potential con
nection to the flow experience. The similarities between 
these findings and those observed in improvising musi
cians also suggest a potential link to a creative mental 
state (Lopata, Nowicki, & Joanisse, 2017; Rosen et al.,  
2020). Disentangling flow from a related phenomenon 
like creativity could be difficult. To improve the inter
pretability of future findings, it would be beneficial to 
design experiments based on recent theories of the 
neural mechanisms underlying flow and specifically 
target and test those mechanisms (Gold & Ciorciari,  
2021; van der Linden, Tops, & Bakker, 2021).

Specifically for musicians, the EEG findings here 
could also be attributed to other cognitive mechanisms 
relating to the music rather than flow experience. It was 
assumed that the direction of association between flow 
and EEG measures would remain consistent, indepen
dent of the average emotional and physiological state, 
which could be affected by the mood of the musical 
piece being performed. However, this assumption 
could be problematic as EEG is also sensitive to mood 
and mental exertion. Musicians may also associate cer
tain moods and tempi with the experience of flow more 
than others. This potential confounding factor is signif
icant because music-related emotion does affect EEG 
activity, particularly in the frontal regions (Trainor & 
Schmidt, 2003). With a larger sample, it would be pos
sible to group participants based on the tempo and 
mood of the music they perform, which would help 
control for the effect of tempo and mood and provide 
an opportunity to examine how music-related emotion 
specifically influences the flow state.

Musicians taking part in the study brought a large 
variety of instruments and music that varied in style and 
complexity. In addition, to maximize the chances of 
experiencing flow, musicians played under conditions 
that they felt most comfortable with, which could 
involve playing from memory or playing from a score 
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or playing with accompaniment. The heterogeneity of 
the sample contributes to the ecological validity of the 
findings, allowing us to examine an experience that is 
common across various instruments and musical styles. 
This also shows that neural activity previously observed 
only in improvisers on instruments like piano or guitar 
can be found in other musicians. However, the differ
ences in instrumentation and musical styles could also 
potentially introduce variability, which warrants further 
investigation in future experiments with a larger and 
more diverse sample of musicians.

Further directions

The post-performance design as adopted in our study 
allows for the inclusion of a wide range of musicians, 
not just limited to pianists (Lopata, Nowicki, & Joanisse,  
2017) and guitarists (Rosen et al., 2020). One advantage 
of measuring post-activity data is that it alleviates con
cerns about maintaining the quality of neural data dur
ing the activity itself. This allows for a more ecologically 
valid experience, where the focus can be on inducing the 
specific phenomenon of interest, such as flow. It is 
worth noting that the concept of flow is domain-gen
eral, i.e. it has been described in similar terms across 
various activities. By examining post-activity data, 
researchers can establish a common point of reference 
across different activities, making it a viable approach 
for studying the domain-general neural correlates of 
flow. Furthermore, post-activity neural data analysis 
can be effectively combined with data collected during 
the activity. This integration enables a more compre
hensive understanding of the neural processes asso
ciated with flow. Further, by examining both pre- and 
post-activity data, researchers can gain insights into the 
neural changes that occur as a result of the flow experi
ence. Knowledge of the neural correlates of flow could 
be combined with physiological measures like electro
cardiography and galvanic skin responses to possibly 
time-lock flow state onset in data collected during the 
activity.

We suggest that this is hopefully just the beginning of 
studying naturalistic inductions of flow with neuroima
ging. Motion is always a source of noise and artifacts in 
neural data, but some neuroimaging methods are less 
vulnerable. For example, fNIRS is less susceptible to 
head and body motion artifacts than fMRI, has a reason
able temporal resolution, and can be performed while 
subjects perform tasks in a natural and comfortable 
environment (Yoshida et al., 2014). In addition, 
improved data processing methods, such as artifact sub
space reconstruction (Blum, Jacobsen, Bleichner, & 
Debener, 2019), are promising tools for removing 

movement artifacts, even during online data acquisition. 
Finally, there are exciting promises offered by the newly 
developed wearable magnetoencephalography system 
that allows free and natural movement (Boto et al.,  
2018), while recording brain activity with high temporal 
and spatial precision.

Alongside the tools that allow us to study neural 
activity during complex tasks like tightrope walking 
and music performance, it is crucial to develop both 
the theoretical framework and experimental designs 
that accommodate the unique nature of flow. Flow is a 
rare and unpredictable phenomenon, and studies like 
Leroy and Cheron (2020) show the need for flexible 
experimental designs that can adapt to unexpected 
occurrences. However, the challenge arises in interpret
ing data from such unstructured experiments. One solu
tion is to incorporate the concept of scalable 
experiments, as seen in the field of mobile brain/body 
imaging (Parada, 2018). At one end of the scale, highly 
structured experimental designs, like the challenge-skill 
balance inductions offer tight control over the experi
mental conditions. While this control facilitates the 
linkage of neuroscientific findings to specific aspects of 
flow, such as attention and cognitive control, it can limit 
the depth of flow experienced. On the other end, less 
structured experiments allow participants the freedom 
of action and movement, allowing flow to unfold natu
rally in all its complexity, as exemplified by Leroy and 
Cheron’s (2020) study on tightrope walking. Although 
these less structured experiments increase the chances 
of flow, the increased and unregulated complexity com
plicates the interpretation of the results. This type of 
semi-structured experiment can strike a balance 
between structure and freedom. They increase the 
chances of flow by incorporating more complex and 
personally meaningful tasks but still face challenges 
with interpreting the findings due to the ill-posed nature 
of the question being investigated. The purpose of scal
able experiments is not to suggest that any particular 
approach is better than the others, but rather to allow 
researchers to transition between experiments with 
varying levels of structure and benefit from their respec
tive strengths. For example, highly structured experi
ments can uncover signals that serve as markers in 
experiments with less structure and more complex 
tasks. This way, interpretability becomes easier even in 
unstructured experiments conducted in unpredictable 
environments. Further, models trained on neural data 
collected from highly controlled experiments, closely 
linked to behavioral data, can then be applied to extract 
information from data collected in more unstructured 
experiments (Woo, Chang, Lindquist, Wager, & 
Author, 2017).
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Finally, we suggest that sharing data, both neural and 
behavioral, and code would be crucial for the integra
tion of flow studies conducted at various levels of com
plexity and structure. Enabling the principles and 
practices of the open science movement will greatly 
enhance the progress of flow research (Arza & Fressoli,  
2017; Huston, Edge, & Bernier, 2019; Lebel, Campbell, 
& Loving, 2017). This will facilitate research in different 
populations, with different data modalities, and on dif
ferent scales. By collecting and comparing data, 
researchers can integrate findings and contribute to a 
broader framework of flow neuroscience.

Conclusion

In this study, we investigated the neural correlates of 
flow using a naturalistic induction of flow and devel
oped a method to cope with the challenges of measuring 
EEG during flow-inducing activities. We showed dis
tinct differences in the brain activity patterns between 
the states following flow and non-flow experiences zin 
musicians. Flow was associated with a higher power in 
the upper alpha and beta bands over the frontal brain. 
Further, frontal regions exerted greater influence over 
temporal and parietal regions at the theta band, but only 
in musicians with high dispositional flow. Additionally, 
we examined the impact of expertise and dispositional 
flow on the state flow experience. We observed that 
while expertise correlated with dispositional flow, it 
did not significantly predict higher state flow scores. 
Dispositional flow did not significantly contribute to 
differences in power in the beta and upper alpha bands 
between flow and non-flow, but expertise played a role 
in higher upper alpha power during flow. Notably, dis
positional flow drove primarily the differences in con
nectivity between flow and non-flow. Overall, our semi- 
structured exploratory study showed some parallels to 
lab-based studies, supporting the notion that even in an 
artificial and constrained environment, essential aspects 
of the flow experience can still be captured. However, 
the differences in the findings highlight the unique 
insights gained from studying flow in activities that 
typically induce flow, particularly regarding the role of 
hypofrontality in the flow state. Of particular note, the 
resting state immediately after musical performance 
exhibited measurable differences between induced con
ditions. This suggests that it could be used as a suitable 
proxy when it is not feasible to collect useable brain data 
during the actual performance itself. In conclusion, this 
study demonstrates the feasibility of designing an 
experiment that closely resembles the music-making 
experience and provides novel insights into the flow 
experience that is essential to music’s significance.
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