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Abstract

Immersive virtual environments (IVEs) have received increased popularity with applications in many
fields. IVEs aim to approximate real environments, and to make users react similarly to how they
would in everyday life. An important use case is the users-virtual characters (VCs) interaction.
We interact with other people every day, hence we expect others to appropriately act and behave,
verbally and non-verbally (i.e., pitch, proximity, gaze, turn-taking). These expectations also apply
to interactions with VCs in IVEs, and this thesis tackles some of these aspects.

We present three projects that inform the area of social interactions with a VC in IVEs, focusing
on non-verbal behaviours. In our first study on interactions between people, we collaborated with
the Social Neuroscience group at the Institute of Cognitive Neuroscience from UCL on a dyad
multi-modal interaction. This aims to understand the conversation dynamics, focusing on gaze and
turn-taking. The results show that people have a higher frequency of gaze change (from averted to
direct and vice versa) when they are being looked at compared to when they are not. When they
are not being looked at, they are also directing their gaze to their partners more compared to when
they are being looked at. Another contribution of this work is the automated method of annotating
speech and gaze data.

Next, we consider agents’ higher-level non-verbal behaviours, covering social attitudes. We present
a pipeline to collect data and train a machine learning (ML) model that detects social attitudes in
a user-VC interaction. Here we collaborated with two game studios: Dream Reality Interaction and
Maze Theory. We present a case study for the ML pipeline on social engagement recognition for
the Peaky Blinders narrative VR game from Maze Theory studio. We use a reinforcement learning
algorithm with imitation learning rewards and a temporal memory element. The results show that
the model trained with raw data does not generalise and performs worse (60% accuracy) than the
one trained with socially meaningful data (83% accuracy).

In IVEs, people embody avatars and their appearance can impact social interactions. In collabora-
tion with Microsoft Research, we report a longitudinal study in mixed-reality on avatar appearance
in real-work meetings between co-workers comparing personalised full-body realistic and cartoon
avatars. The results imply that when participants use realistic avatars first, they may have higher
expectations and they perceive their colleagues’ emotional states with less accuracy. Participants
may also become more accustomed to cartoon avatars as time passes and the overall use of avatars
may lead to less accurately perceiving negative emotions.

The work presented here contributes towards the field of detecting and generating nonverbal cues
for VCs in IVEs. These are also important building blocks for creating autonomous agents for IVEs.
Additionally, this work contributes to the games and work industry fields through an immersive ML
pipeline for detecting social attitudes and through insights into using different avatar styles over
time in real-world meetings.
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1
Introduction

1.1 Motivation

The use of immersive virtual environments (IVEs) has increased over the past years due to great
technical advances making this technology more accessible and available on the commercial market.
Consequently, these environments are more and more used in areas such as science, education,
training, social and cultural experiences, travel, entertainment and news [Slater and Sanchez-Vives,
2016]. Of particular importance for developing virtual environments across many of these domains
is the social interaction between humans and the characters within the virtual environments.

Virtual characters are a powerful tool for building these interactions in many applications for im-
mersive virtual environments (Virtual Reality- VR, Mixed Reality- MR). Humans are engaging
in social interactions every day developing strong observational skills which lead to being able to
quickly notice errors in a virtual character’s performance. These errors can be easily interpreted as
the virtual character’s attributes rather than technological flaws. Take for example incorrect gaze
modelling: having a virtual character (VC) avoiding eye contact or not looking at the other person
creates an impression of hostility and disinterest. Implementing a behaviour that makes it perform
too much eye contact makes the virtual character appear too keen and unsettling. Moreover, poorly
timed gaze behaviour, such as having the virtual character looking at the other person at the wrong
time can disturb the conversation’s smooth flow. Therefore, to create behaviour that transmits
predetermined messages using an animated virtual character, developers have to carefully synchro-
nise the virtual character’s gestures with speech, facial expression and gaze with body posture, its
actions with the contextual changes, and so on.
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Research around low-level behaviour during human-to-human social interaction (such as modelling
gaze shifts, head movements, gestures or speech turns) facilitate social interactions in IVEs. Hence,
the development of virtual characters has applications in a range of areas such as therapy, training
or entertainment. During social interactions, these low-level nonverbal behaviours contribute to
implicit behaviour (that happens without conscious awareness) which has a role in driving social
interaction. Another aspect lies in the interaction loop between the participants in an interaction.
People adapt and adjust their verbal and nonverbal behaviours in day-to-day interactions based on
their partner’s behaviour and overall social interaction. Hence, during social interactions in virtual
environments, the virtual character’s non-verbal behaviour needs to take into account the user’s
and their own behaviour.

There are a few ways to generate and control a VC’s behaviour in virtual environments. This
can take place fully using algorithms (resulting in autonomous agents) or through a mixture of
algorithms and human control (via Wizard-of-Oz, where a confederate partly drives the VC). When
it comes to driving the VC using algorithms, there are a few types predominantly appearing in the
literature. machine learning (ML) models are the ones that work in a diverse number of cases and
topics, especially reinforcement learning and imitation learning as well as temporal models.

1.2 Goals and contributions

The work advances the area of developing virtual characters in IVEs from a point of view of detect-
ing and generating nonverbal behaviours. A starting point for this is understanding interactions
dynamic between people. This informs the development of virtual characters in IVEs. When it
comes to virtual characters, they can be:

• agents, with no humans embodying them and being controlled mainly by computer scripts;

• avatars, with humans primarily controlling, embodying and being represented by them.

Hence, an agent is controlled by a computer script/algorithm[Bailenson and Blascovich, 2004]. If
the algorithm controls everything about the agent (verbal and nonverbal behaviour), then they can
be called ‘autonomous agents’. However, this is a hard AI problem to date, as social interactions
are very complex and differ from situation to situation. What happens instead is a middle ground,
the agent is usually controlled partly by algorithms and partly by people. An example of this
situation is the Wizard-of-Oz model, covered in many studies [Rizzo et al., 2015, Pan et al., 2012].
For instance, this is a Wizard-of-Oz system used Pan and Hamilton: an agent is performing basic,
usually rule-based, nonverbal behaviours (i.e., gaze, blinks), and a human (usually a confederate)
controls the higher-level nonverbal behaviours (i.e., hand/arm movements, body posture) and the
verbal behaviour through a control panel with different buttons and sliders. When an agent is
controlled by both humans and algorithms, they are usually called ‘semi-autonomous agents’ [Pan
and Hamilton, 2018].

Usually, an agent is not represented as and identified by a certain person who is controlling it.
For instance, in the work of Pan et al., the agent Christina is controlled by a confederate [Pan
et al., 2012]. The confederate can be anyone who is trained to use the system, and they are not
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identified with the character Christina. Whereas, in the work of Moustafa and Steed, the users
embodied a virtual representation that was available on the social VR system. They could choose
what representation to embody; over time they changed the representation to fit the interaction and
the expectations of the rest of the group. [Moustafa and Steed, 2018] In this case, the user partly
controls their virtual character- head movement, speech body and arms movement. Automatic
scripts/algorithms control some other elements (blinks, eye movement, lip-flapping). Even though
this seems very similar set-up to the semi-autonomous agents, these virtual characters are referred
to as avatars. Ideally, an avatar will be fully controlled by the user embodying that avatar: the
avatar will copy the human’s exact behaviours (facial expression, body movement, gesticulations);
and an agent will be fully controlled by computer algorithms (without the need for a human’s input).
However, this is not the case yet due to computational and technological limitations. Agents are
partly controlled by humans (even though those who control them are not meant to embody them)
and avatars are partly controlled by automated scripts.

Given this situation, the thesis’s main focus is on virtual characters in IVEs. We focus on un-
derstanding the dynamics between people in social interactions to apply it to virtual characters in
IVEs.

The initial aim of this work lies in advancing the area of autonomous agents in IVEs. As the
autonomous agents are not triggered by humans, they need to sense (and consequently understand)
what is happening in the interaction. After sensing, they need to respond to the information
received. These two actions (sensing and responding) happen in a continuous loop, being the base
of an autonomous agent. This loop is illustrated in Figure 2.1.

Building autonomous agents in immersive virtual environments can be very complex as there are
many ways to approach this problem. Hence, creating fully autonomous agents is out of the scope
because of the complexity of the problem and the time limitations of this PhD. Instead, we are
contributing towards an autonomous agent and are focusing on social interactions in IVEs covering
three interconnected areas: people, agents and avatars. Therefore, below are the three main
research questions and the backbone of in this thesis:

• Research Question 1:
What are the dynamics of low-level non-verbal behaviours, in particular, gaze and turn-taking,
in face-to-face social interactions between two people?

• Research Question 2:
How can an agent be trained to recognise implicit social attitudes during social interactions
in virtual reality?

• Research Question 3:
What is the influence and response to the others’ personalised avatars appearance during
repeated social interactions between co-workers in mixed reality?
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Figure 1.1: Overview of the three main projects in this thesis

Highlights of the three thesis chapters, showing the overview of the work, technical
contributions, features of the ecological validity, the medium we run the study in,
the equipment used, the collaboration bodies and the peer-reviewed venues where we
published the results. F2F stands for face to face. *The dataset from the People study
is a contribution from the Social Neuroscience group at the Institute of Cognitive

Neuroscience from University College London.

RQ1. People’s conversational dynamics: gaze and turn-taking The low-level nonverbal
behaviours that we focus on are gaze and turn-taking. These are important cues in social interac-
tions. They are related to each other and they are core to social interactions. Gaze, for instance,
manages the flow of the discussion, it is used to reference or to show interest in objects or other
people, it can improve comprehension (in a teacher-learner situation), expresses complex emotions
and facilitates interpersonal processes [Argyle and Ingham, 1972a, Mason et al., 2005, Bayliss et al.,
2006].

There are shortcomings when implemented on two-dimensional (2D) displays, like on monitor
screens. However, their roles are perceived more accurately once implemented in three-dimensional
(3D) ones, such as IVEs. This is usually the case as gaze targets are more difficult to perceive on 2D
screens compared to in 3D environments [Moubayed et al., 2012]. Gaze behaviours and turn-taking
are intertwined in social interactions. Hence, the gaze targets perception affects turn-taking. For
instance, in an interaction between a user and a VC, it is more challenging to convey the next
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speaker on 2D displays compared to in 3D environments [Fischer and Tenbrink, 2003, Al Moubayed
and Skantze, 2011].

Low-level non-verbal behaviours have a strong influence on social interactions hence an application
that would take into account these signals can detect suitable non-verbal behaviours for the VC.
By doing so, it can create an environment closer to the real-life one and hence, the user might have
a higher sense of presence.

Although progress in the detection and generation of gaze and turn-taking are important contribu-
tions to the field, these cues are also conditioned by many other non-verbal cues or social aspects.
Thus, they are difficult to generalise over, being influenced, for instance, by the relationship, user
background interaction type or discussion topic. To design a study, these need to be controlled,
hence they are not generalised for an autonomous VC.

In this work, we collaborated with the Social Neuroscience group at the Institute of Cognitive
Neuroscience from University College London. They collected a multimodal dataset of dyads with
free-flow conversations. We used this dataset in our study to understand the conversational dynam-
ics in terms of gaze targets and turn-taking between two people.

RQ2. Agents recognising social attitudes Models for gaze and turn-taking help advance
the field towards autonomous agents. Apart from these low-level cues, there are other nonverbal
behaviours that are more abstract to define, for instance, social attitudes in an interaction. These
higher-level nonverbal behaviours are more complex and they are impossible to describe with a
straightforward set of rules. Examples of social attitudes include social engagement, sympathy,
affection or aggression. These are more difficult to detect without rich multi-modal and socially
relevant data. By allowing the VC to sense them (as humans do), the VC can respond appropriately
to things that happen subconsciously/implicitly within the user.

This detection is useful in many application domains, especially in narrative VR games. In this
situation, the VC is able to sense whether the user (or player) is showing a certain social attitude.
Based on this, they could take actions that would fit that scenario. For this work, we collaborated
with two game studios to build an ML pipeline that would detect a social attitude during a VR
interaction. Our approach is based on ML models that have temporal features and that can learn
from human examples.

RQ3. Avatars’ appearance evaluation The last contribution tackles how the avatar’s appear-
ance influences the interaction in immersive virtual environments. The way a person is represented
in virtual environments impacts the functional communicative value of the interaction, playing an
important role in social encounters.

Setting aside the specific nonverbal behaviours, we focus on the overall avatar’s representation.
According to Benford et al., avatars represent people’s identities, positions, interests, and activities
[Benford et al., 1995]. Avatars can be represented in many ways, from floating spheres to full or
partial humanoid bodies with various aesthetics (such as cartoon or realistic). Avatars may now be
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extensively customised to closely resemble real people and adopt a particular look thanks to tech-
nological advancements. Different avatar styles have advantages and disadvantages. Using realistic
avatars might cause people to feel uneasy and reduce their sense of affinity [Shin et al., 2019]. This
is frequently caused by a mismatch between the avatar’s behaviour and the high expectations of
nonverbal behaviours (such body language and facial expressions). Generic or customised cartoon
styling may make people question their appropriateness in a professional setting.

Additionally, a one-off interaction in virtual spaces might cause a novelty effect [Koch et al., 2018,
Parmar, 2017]. This usually happens because users are not familiar with the new technology (such
as headsets for IVEs). The task users do also plays a factor. In most cases, the task is distant
from people’s usual activities. Repeated exposure through a longitudinal study should tackle these
aspects. However, they are not very common as they come with a high time and logistical cost.

For this study, we collaborated with Microsoft Research Cambridge. We investigated the effect of
repeated usage of two avatar styles, photo-realistic and cartoon-like, during work meetings between
two or three people in MR.

The results will inform how the repeated usage of different avatars will interact with the functional
communicative value, task satisfaction, presence and the ability to identify other’s emotional states.

In this thesis, we present contributions on these three elements: people, agents and avatars. First,
we highlight insights into the social dynamics between people, then we cover how an agent could
sense and recognise what is happening in social interactions with a user in VR in order to respond
accordingly, and lastly, we evaluate the avatars’ appearance in MR during repeated real-world
meetings between co-workers.

1.3 List of publications

This thesis includes first-authored peer-reviewed material that has been or is under review to be
published as follows:

Chapter 3:

Dobre, Georgiana Cristina, Marco Gillies, Patrick Falk, Jamie A. Ward, Antonia F. de C. Hamilton,
and Xueni Pan. "Direct gaze triggers higher frequency of gaze change: An automatic analysis of
dyads in unstructured conversation." In Proceedings of the 2021 International Conference on Mul-
timodal Interaction, pp. 735-739. 2021 https://doi.org/10.1145/3462244.3479962

Chapter 4:

Dobre, Georgiana Cristina, Marco Gillies, and Xueni Pan. "Immersive machine learning for social
attitude detection in virtual reality narrative games." Virtual Reality 26, no. 4 2022: 1519-1538
https://doi.org/10.1007/s10055-022-00644-4

https://doi.org/10.1145/3462244.3479962
https://doi.org/10.1007/s10055-022-00644-4
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Dobre, Georgiana Cristina, Marco Gillies, David C. Ranyard, Russell Harding, and Xueni Pan.
"More than buttons on controllers: engaging social interactions in narrative VR games through so-
cial attitudes detection." In Proceedings of the 22nd ACM International Conference on Intelligent
Virtual Agents, pp. 1-8. 2022 https://doi.org/10.1145/3514197.3551496

Chapter 5:

Dobre, Georgiana Cristina, Marta Wilczkowiak, Marco Gillies, Xueni Pan, and Sean Rintel. "Nice
is different than good: Longitudinal communicative effects of realistic and cartoon avatars in real
mixed reality work meetings." In CHI Conference on Human Factors in Computing Systems Ex-
tended Abstracts, pp. 1-7. 2022 https://doi.org/10.1145/3491101.3519628

1.4 Research presentations and demos

This section contains a list of the venues where we have presented formally the projects from this
thesis. It contains talks, workshops, posters and demos. These cover largely initial results or pro-
posed works. Although they are less rigorously reviewed than the published articles in conferences
and journals, they have other advantages. First, they tend to be presented to the community in a
more relaxed and practical manner, leaving room for discussions and further explorations of topics
and ideas. They provide visibility to a wider audience, sometimes outside of the main study field.
Furthermore, these allow raising awareness of our research and the gaps in the current work, inspir-
ing further advancements in the field.

Talks

• "Almost humans in VR games: humanoids for social interactions", peer-reviewed, at the
Intelligent Games and Game Intelligence Conference, London, UK, 2018

• "Virtual character’s ability to recognise social behaviours in VR", at the AI and Character
Driven Immersive Experiences Workshop, London, UK, 2019

• "AI-driven characters in VR, co-presented", at the Immersive UK Webinar, online, 2020

• "Implicit and engaging social interactions through social attitudes detection", co-presented,
at Develop Conference, Brighton, UK, 2022

Posters

• "Non-Verbal Cues for Interactive Virtual Characters in Immersive Virtual Environments- Why
Bother?", peer-reviewed, at the Intelligent Games and Game Intelligence Conference, London,
UK, 2018

https://doi.org/10.1145/3514197.3551496
https://doi.org/10.1145/3491101.3519628
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• Mutual Gaze in Social Interactions, peer-reviewed, at the 4th Workshop on Virtual Social
Interaction (VSI), London, UK, 2018,

• "Non-verbal cues for interactive NPCs in VR games", peer-reviewed, at the Intelligent Games
and Game Intelligence Conference, York, UK, 2019

Doctoral Consortium - each including a talk and poster presentation

• "Using machine learning to generate engaging behaviours in immersive virtual environments",
peer-reviewed, at the 8th International Conference on Affective Computing and Intelligent
Interaction (ACII), Cambridge, UK, 2019

• "People, Agents, and Avatars: nonverbal behaviours in immersive social interactions", peer-
reviewed, at the 22nd Conference on Intelligent Virtual Agents (IVA), Faro, Portugal, 2022

Workshops

• "Interactive ML for VR Game Controls", co-run, peer-reviewed, at the Intelligent Games and
Game Intelligence Conference, London, UK, 2018

• "Imitation Learning for Unity Games", co-run, peer-reviewed, at the Intelligent Games and
Game Intelligence Conference, York, UK, 2019

• "Immersive Interaction design for IVAs", co-run, peer-reviewed,at the 20th Conference on
Intelligent Virtual Agents (IVA), online, 2020

Demos

• "Virtual agents recognising social engagement in VR", at the AI and Character Driven Im-
mersive Experiences Workshop, London, UK, 2019

1.5 Overview of next chapters

The following Chapter 2 will cover the social interactions theory with a focus on communication,
gaze and speech turns. It will include insights into the nonverbal behaviour dynamics in interactions
and different models of gaze behaviour and speech turns. It will include the background on building
agents, evaluating avatars and the implications of these in different industries, along with aspects
of ecological validity.

Next, in Chapter 3 we will introduce the first study on the nonverbal behaviour dynamics in dyadic
social interactions, focusing on conversational turns and gaze. This is based on a dataset on dyadic
interaction during an unstructured and free-flow conversational task. The results bring insights into
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the conversational dynamics of speech turns and gaze targets that will contribute to building agents
for IVEs.

Then, in Chapter 4 we present an Imitation Learning approach to developing an ML framework to
detect complex attitudes in social interactions in VR. We give the case study of social engagement
in a VR environment build in partnership with and for two game studios.

In Chapter 5 we introduce a longitudinal study on the effect of avatars’ appearance in mixed reality
work meetings. Here, we cover the study design, research questions and the data collected to
compare the effect of avatars in cartoon and realistic styles.

This will be followed by Chapter 6 where we will conclude with the future work on the contributions
of this thesis, the implications and the impact of the work proposed.
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2
Literature Review

The area of social interactions is complex, and to get a better understanding of the underlying
mechanics of social interaction is essential to look into the research and discoveries from this and
related disciplines.

This chapter starts with understanding People by introduction: grounding in communication,
theory and the state of the art on gaze and turn-taking (Section 2.1).

In the next part, we cover some of the elements of building Agents: how is the data collected and
used to generate behaviour for agents (with a focus on gaze and speech turns); what is the state of
the art on virtual characters for 2D displays; and concluding with the most up to date agents for
IVEs and the gaps in the field (Section 2.2).

After this, we focus on a different area regarding social interactions: the evaluation of the virtual
representations or appearance of Avatars in IVEs (Section 2.3). Here we bring insights into the
avatar’s body, style, resemblance to the user and avatar usage (one-off interaction or repeated,
long-term one).

Next, we include how are the virtual characters and avatars used in the industry covering two main
industries: gaming and remote working (Section 2.4). This brings into the discussion the ecological
validity of the state-of-the-art existing work and their applicability in the real world. We conclude
this chapter by summarising the literature review (Section 2.5).
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2.1 Understanding People - Social Interaction Theory

2.1.1 Monologue and dialogue

A dialogue can pose a number of difficulties that have to be addressed for an effective conversation.
For instance, it could be difficult to predict how the conversation will unfold and therefore, people are
not able to plan what to say far in advance; or decide who to address in a multi-party conversation.
Other problems are knowing when it is socially appropriate to speak, planning what to say while
still listening to the partner, dealing with incomplete and very brief conversational utterances and
so on. Despise all of these difficulties, a dialogue is still easier than a monologue because, as Clark
describes, it is a joint process [Clark, 1996]. The conversational partners work together to form a
mutual understanding of what they are discussing. They are also aligning their representation of
time, space, causality and intentionality, in short, their representations of situation models [Garrod
and Pickering, 2004]. Garrod and Pickering argue that this process, which they call ‘interactive
alignment’, takes place unconsciously, automatically, and it reinforces the fact that humans are
designed for dialogues rather than monologues[Pickering and Garrod, 2004].

2.1.2 Grounding in communication

When people are taking part in a conversation they coordinate both the content of the conversation
and the process. They start coordinating the content before starting the conversation by estimating
their common ground : mutual knowledge, beliefs and assumptions [Clark and Marshall, 1981, Clark
and Carlson, 1982, Clark and Schaefer, 1987, Clark and Schaefer, 1989]. They tend to coordinate
their communication process by referring back to the updates on their common ground [Clark and
Brennan, 1991]. Grounding is a process introduced by Clark and Schaefer, to illustrate how, during
a conversation, the common ground is changing from moment to moment [Clark and Schaefer,
1989]. During a conversation, people are trying to determine if what they said was understood, or
if what they said is now part of the participants’ common ground. To do this, people are looking
for evidence in grounding, evidence that shows the speaker was heard and understood. This can be
negative (expressing an utterance misunderstanding) or positive (expressing comprehension of what
was said). From these two types, the positive evidence is the most sought one, the most common
forms employed by the addressees are acknowledgements (or back-channels), relevant next turn or
continued attention.

Evidence in grounding. People show their understanding of an utterance using different meth-
ods, such as acknowledgements, continuing with a relevant next turn, or expressing a continuing
attention towards the speaker. Acknowledgements include back-channels responses (such as uh huh,
yeah), assessments (like: really, oh God) [Goodwin, 1986] and various gestures (such as head nods)
[Goodwin, 1981]. An example of a relevant next turn is the answer to a question which forms a
so-called adjacency pair. After the first part of this adjacency pair is finished (an asked question),
the second part is a conditionally relevant next turn (the answer). In this case, the turns are not
only utterances but answers that are directly related to the question, hence the evidence of under-
standing/of grounding is much stronger [Schegloff and Sacks, 1973]. Finally, the last way to express
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evidence in grounding is by continuing the attention stream to the speaker. This is the most basic
form of showing understanding when communicating. People tend to closely monitor their partners
and also observe what they are attending to [Goodwin, 1981]. In this way, the listener accepts the
information given in the conversation.

The least collaborative effort. In grounding, people try to minimise effort from themselves and
from the conversational partner. This principle is known as the least collaborative effect [Clark and
Wilkes-Gibbs, 1986]. This effect is further described as the participants in the conversation trying
the minimise their work starting with the initiation of each utterance to mutual acceptance of an
ended utterance.

Grounding and communication purpose. In conversations, people automatically set a com-
mon purpose, common topic of discussion, and a certain type of content is expected to be discussed
[Grice, 1975]. Special techniques have evolved for grounding certain pieces of conversation. It is
important in a conversation to have a reference well establish and people use techniques that are
designed for that purpose. For instance, many conversations focus on objects and their identities.
People often need to identify and reference those objects quickly and effectively.

There are a few ways people reference objects [Clark and Brennan, 1991]. It can be through pro-
viding an alternative description of a new object using information that is already in the common
ground. Or by using indicative gestures to point to the new object that needs to be identified.
Another way is by using a trial reference: speakers might present a description of a new item/object
and if they are not entirely sure about its comprehensiveness, they might ask their conversational
partner to confirm their understanding of the new information before finishing/continuing the ut-
terance [Clark and Brennan, 1991].

There are different ways of grounding in the case of referencing verbatim content. The most com-
monly used ones are: repeating the verbatim, spelling the information or, in the case of an address
or long number, breaking the information into manageable chunks (instalments). The former is
often carried out as people have limited immediate memory spans. In a study on calls to directory
inquiries by Clark and Schaefer, the operators always divide the phone numbers into conventional
groups [Clark and Schaefer, 1987].

Grounding, communication mediums and its constraints. As there are techniques for
grounding different communication purposes (as seen above), grounding can be also different based
on the conversation medium. People tend to ground with those techniques available in a medium
that would eventually lead to the least collaborative effort [Clark and Wilkes-Gibbs, 1986]. There
are a number of constraints on grounding that vary for each medium. A few examples of constraints
are: co-presence (having the participants share the same physical space), audibility (having the par-
ticipants communicate by speaking) or reviewability (being able to review a message). Face-to-face
medium benefits co-presence and audibility but, in this medium, the messages are not reviewable.
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For instance, answering machines benefit from audibility and reviewability but lack co-presence
whereas letters and electronic mails are reviewable but they don’t benefit from audibility or co-
presence.

Grounding costs. As mediums are differently constrained, people are forced to use alternative
grounding techniques, these being further balanced based on grounding costs. A grounding cost
refers to the cost the participants would pay in communication to ground their conversation. A few
examples of these costs are: formulating costs (time and effort to plan and formulate an utterance),
start-up costs (cost for starting a conversation, of getting the conversation partner to notice and
accept your utterance), delay costs (cost of delaying an utterance in order to plan it; this could be
also mistaken for a finished turn if the pause takes place in the middle of an utterance); other are
speaker change costs, fault costs or repair costs.

In conclusion, in a conversation, grounding changes with both the content and medium. People
set the common ground and communicate effectively in most mediums by taking into account the
techniques available in the medium, the constraints and by carrying out cost trade-offs. As seen
above, grounding is a core element in social interactions between people, and the same concepts
apply to social interactions in immersive virtual environments. Making use of the relevant ground-
ing elements when building a virtual character helps create impactful social interactions in these
virtual environments. For example, interactions between users and agents are smoother if there is
appropriate evidence in grounding. This can be done by providing suitable back channels (yeah,
uh huh), head nods, assessments (oh, really) or even appropriate eye contact when listening and
averting gaze when processing new information and attempting to take the next turn. If grounding
is missing, the interaction flow gets disrupted. For instance, this can happen when in a conversa-
tion with a user the agent gazes or gesticulates toward an area or object that is not relevant to
the discussion. This situation is likely to happen if the agent has pre-recorded nonverbal behaviour
(body movement, gaze) that is not contextual and adaptable to a large range of interactions. As
gaze and turn-taking are important nonverbal cues for establishing grounding, next we cover the
theory and early work on gaze and turn, and how these social signals are essential building blocks
for virtual characters in IVEs.

2.1.3 Gaze and turns

Gaze directions and utterance occurrences. Gaze direction has a great social significance,
Tomkins reviewed the early writers on this topic [Tompkins, 1963]. The direction of gaze can have
different functions in social settings. Kendon performed an exploratory study on the relationship
between gaze direction and turn-taking in the context of an ongoing conversation between two
people with a focus on two functions of gaze direction [Kendon, 1967]. First is the function of
perception, by which a person in a conversation can monitor the other person’s behaviour. Second,
the gaze direction is seen as a sign of expressiveness and regulation in a conversation, by which one
influences the behaviour of the other people in the conversation.
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Changes in conversational turns usually take place when the speaker passes their turn to their
partner; these are signalled by low-level and easy-to-observe behaviours, such as vocal and lexical
features, head and eye direction [Duncan, 1972]. Direct and averted gaze behaviours are also linked
with speech and turn transitions and are used as signals for different social intentions [Sandgren
et al., 2012]. Speakers tend to start their turn with averted gaze and to end it with direct gaze,
possibly to signal the turn is ending and to yield it to the other person [Kendon, 1967, Cummins,
2012, Duncan and Fiske, 1977].

Frequency and duration of averted and directed gaze. During conversations, the amount
of time one person looks at the other one varies considerably. In Kendon’s work it ranges from 28%

to 70% [Kendon, 1967]. Similar discrepancies are also found in Exline’s or in Nielsen’s work [Exline,
1963, Nielsen, 1964]. Kendon notes that, on average, in a conversation during listening, people look
at the speaker for longer, these direct gazes being broken only by very short averted gaze periods
[Kendon, 1967]. However, the direct and averted gaze behaviour of the person who has the turn
(person who speaks) tends to be, on average, more equal in length. In this case, the averted gaze is
considerably longer than the listener’s averted gaze.

Kendon also notes that the mean period of time the speaker looks at the listener and its gaze
direction change rate are closely related to the other person’s direct gaze and the corresponding
change in gaze direction [Kendon, 1967]. In each dyad from this study, the participants coordinate
their gaze behaviour, hence the proportion of direct and averted gaze changes from dyad to dyad.
Kendon also suggests that the behaviour of one looking at the other is influenced by the dyad’s
participants. In one example where participants were discussing in dyads, one participant (P1) took
part in a conversation with two other different participants (P2, P3). In these conversations, the
mean direct gaze of P1 toward P2 and of P2 toward P1 was half of the mean directed gaze of P1
towards P3 and P3 towards P1.

Gaze behaviour considering long and short utterances. A long utterance or a speaking
turn usually requires one person to speak while the other remains silent for almost the whole dura-
tion of the turn. Often, these involve the participant planning their speech in advance of starting
the long utterance. The short utterances, however, are prompt reactions to the other person’s on-
going behaviour, requiring no planning phase. They are speech habits (such as back-channels, and
assessments), exclamations, attempt interruptions or very short questions. In many cases, these are
produced during the other person’s long utterance.

Kendon suggests that there is a gaze direction pattern at the beginning and at the end of long ut-
terances [Kendon, 1967]. Results show that 76% of gaze is averted from the listener as the speaker
starts their turn or in advance of starting their turn. And during the last sentence, as the turn
ends, 78% of the gaze is directed to their interlocutor. This is also suggested by the fact that the
person who is about to start a turn would not be able to effectively plan their speech and monitor
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the interlocutor’s behaviour at the same time.

The direction of gaze during long utterances is also influenced by the speed of speech or by whether
a speech section is fluent or hesitant. During a hesitation, the speaker might be planning the next
speech section and averting the gaze would allow them to do so without having to simultaneously
audit the other person’s behaviour. In Kendon’s study, 72% of speech rate was faster during direct
gaze than during averted gaze, and 26% of speech rate was slower while direct than during averted
gaze [Kendon, 1967]. The proportion of fluent speech during direct gaze was also higher - 50%,
whereas the proportion of hesitant speech was only 20.3%.

During long utterances, the listener might interrupt the speaker by performing a short utterance.
Such short utterances influence the gaze direction [Kendon, 1967]. For example, during short ques-
tions (these are usually asked when one needs more information on the current topic) the person
who asks the question looks straight at the other person while asking it; if the answer is short and
prompt, the person who answers continues looking at the other person while answering, whereas if
they are hesitant about the answer, it is likely their gaze will move away from the interlocutor.

Gaze direction can also signal the preferred response to a question. Polar questions are structured
in a distinct way to imply a specific response, either yes or no. In their study, Kendrick and Holler.
analyse the relationship between gaze direction and the preferred response. The results show that
82% of dis-preferred responses are answered with averted gaze and 60.2% of preferred responses are
answered with directed gaze [Kendrick and Holler, 2017].

Another factor in gaze is an approach/avoidance conflict. Argyle and Dean propose that eye contact
or mutual gaze (when both participants are gazing at the other) is, on one hand, actively sought
in conversations for increasing closeness and self-validation [Argyle and Dean, 1965]. On the other
hand, there is a tendency to avoid excessive mutual gaze, as it can be overly intimating and arousing.
This leads to a conflict that is normally resolved by reaching an equilibrium level of mutual gaze.

2.2 Building Agents

2.2.1 The sensing and responding loop

Based on the literature on early work (see Chapter 2.1), the social interactions between people
happen taking into account a loop of two actions: sensing and responding. For example, in a dyad,
one person senses what is happening in the interaction and acts (responds) accordingly. The other
person perceives the action (senses the change in the interaction) and responds based on that too.
The first person senses (again) the response and takes action as expected. The loop continues this
way until the end of the interaction. Hence, in order to build an agent that will be able to take
part in social interactions with users, they need to sens what is the current state of the interaction
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Figure 2.1: The sensing and responding loop

Representation of the sensing and responding loop in social interactions between a
dyad. First, the virtual character (VC) senses what is happening in the interaction
with the user. Based on this information that the VC senses from the user and
the environment, the VC responds as expected by the user. This loop continues

throughout the social interaction.

and then to respond as expected by the user. The sensing and responding loop is also illustrated in
Figure 2.1.

To develop the sensing part of the loop for an agent, first, we collect data from the user, we
annotate it and make sense of it. Based on this first process, the agent responds to the other
person by a generated behaviour (verbal and nonverbal). Further in this section, we cover the data
annotation practices (including manual and automatic annotations) which are the building blocks
for the sensing part in the loop. Then, we detail the responding part, introducing different methods
of generating nonverbal behaviour, what are their advantages and shortcomings, and when it is best
to use them. Finally, we cover the state-of-the-art models for generating conversational cues.

Data annotation

To gather insights into social interactions and nonverbal behaviours, different kind of data is col-
lected and analysed. Nonverbal and verbal behaviour data can be collected using different types
of technologies. Usually, this data is recorded in its raw format. For instance, gaze data can be
recorded using different types of eye-tracking devices. The outcome from the recording of eye be-
haviour using this technology is usually different video streams from the user’s view, and some dots
(via pixels locations) representing where the user is looking at. This data can be also exported as
pixel coordinates of the gaze. Similarly, speech data is recorded as audio files and their acoustic
features (i.e., amplitude, pitch) represent the raw data.

This kind of raw data needs to be analysed in order to extract information from it. There are many
ways of annotating data. The most common one is to manually label it. Usually, a few people go
through the same data individually. They manually mark when a certain action happens such as
when a participant speaks, when two participants look at each other, and so on. After each person
annotates the data, the annotations are usually compared for accuracy, a widely used method is
calculating the Cohen’s Kappa [Cohen, 1960]. Cohen’s Kappa is an agreement index that takes into
account the agreement occurring by chance.
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Manual annotations are time-consuming and challenging to scale to large datasets. Although there
are no automatic solutions for all nonverbal behaviours, there are some alternatives for speech for
instance. The field of speaker segmentation looks at ways of determining where there is a change in
speakers from audio data [Kotti et al., 2008]. This is not an easy task, as the audio could contain
backchannels or overlapping speakers, known as the cocktail party effect [Haykin and Chen, 2005].
The methods of speaker segmentation usually fall into two categories: metric-based or classification-
based. The metric-based approach works by using a sliding window on the audio data and measuring
the similarity between the adjacent sub-windows of the data within it at each window positioning.
If the level of similarity is below a certain threshold, then it registers a speaker change [Dhananjaya
and Yegnanarayana, 2008, Tritschler and Gopinath, 1999, Yang et al., 2005]. The classification-
based approach is usually a binary classifier (i.e., support vector machine, neural networks) trained
to detect talking [Gupta, 2015, Wang et al., 2017].

There is some prior work automatically annotating gaze targets in social interaction using video
and/or gaze-tracking information. For instance, McLaren et al., describe a heuristic-based approach
to detect gaze in a three-party dialogue [McLaren et al., 2020] using video data and the OpenCV
library [Bradski, 2000]. Another example could be from the computer vision field, where Recasens
et al. predict where someone is looking in videos, including the cases where the gaze target is not
in the same frame [Recasens et al., 2017].

Generating nonverbal cues

Literature suggests that in most cases, VCs’ nonverbal behaviour is generated through statistical
modelling, rule-based or by making use of machine learning (ML) models. These approaches lead
to semi-autonomous (partly controlled by a human) or autonomous VCs.

Statistical modelling refers to generating nonverbal behaviour based on conditional probabilities
observed in human-to-human interactions, based on results from existing literature [Kendon, 1967,
Argyle and Ingham, 1972a]. For example, the VCs can have set percentages for looking and not
looking at the user, categorised by the speaking/listening mode they are in [Lee et al., 2002].

Rule-based methods use simple hard-coded algorithms, the VC performing a behaviour based on
predefined if-then rules [Marsella et al., 2013]. Nonverbal behaviour is often pre-captured (body
and face motion capture, eye tracking) and then played back based on these rules. These are more
expressive, however, the behaviour is limited to what was captured offline, not taking into account
the user’s real-time feedback in the interaction. Pre-recorded motion data can be incorporated
with a Wizard-of-Oz system, where an assistant operates or partially operates the VC [Pan and
Hamilton, 2018, Pauw et al., 2022]. In most cases, a mixture of these methods is used to represent
the VC’s nonverbal behaviour.

ML models use pre-recorded data to learn nonverbal behaviour which is then applied to the VC.
A large number of ML models show good results in predicting and generating nonverbal behaviour
[Morency et al., 2008, Chiu et al., 2015, Haag and Shimodaira, 2016, Ferstl and McDonnell, 2018,
Greenwood et al., 2017]. For instance, in Ferstl and McDonnell’s work, features from an utterance
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are fed into a recurrent network with an encoder-decoder structure to generate a sequence of gesture
motions [Ferstl and McDonnell, 2018].

Nonverbal behaviour based on tasks. The methods described above can perform differently
based on the nature of the interaction. Usually, this is determined by the task participants do, which
can be structured and unstructured. In an interaction with structured tasks, the user performs set
actions (such as changing the location of a cube based on a given instruction [Nguyen et al., 2018]).
Interactions with unstructured tasks are more flexible. They don’t have a pre-defined structure or
some fixed actions to be completed. An example of an unstructured task is the free-flow conversation.
Although there might be a pre-defined topic of conversation, people in interactions with unstructured
tasks are not given precise instructions on when to be a speaker or a listener.

Statistical modelling works well for generating specific nonverbal cues (looking away/looking at the
partner) in structured tasks.

Unlike statistical modelling which looks at specific low-level behaviours, rule-based models often use
pre-recorded animation and can provide expressive whole-body nonverbal behaviour that fits into a
structured task. This results in a more coordinated behaviour for the VC, but limits it to what is
pre-recorded, making it less suitable for unstructured tasks. Both methods lack flexibility (able to
adapt to different changes) and are not contextual (able to relate to complex circumstances).

ML models address some of these drawbacks. When trained on unstructured tasks, the ML models
can be applied to a variety of scenarios; whereas ML models trained on structured tasks are limited
to the types of scenarios they could be applied to. An example is the work of Nguyen et al, where in
the structured task, the user moves a cube from one location to another based on the instructions
received [Nguyen et al., 2018]. The complex ML model that generates head motions is built on
head orientation along with task-related features (such as the user’s hand location: grasp/move
cube). Although the results are good, the model’s features are task-related, making it unable to be
re-applied to other scenarios.

The interaction between the VC and the user is not predictable. Hence, statistics and rule-based
models do not perform well on unstructured tasks as not all possible events can be covered and
foreseen. In an unstructured scenario, the VC-user rapport plays an important role. An example
is in the IVE applications used for general practitioner training [Pan et al., 2016, Pan et al., 2018].
Here, the nonverbal behaviour is strongly linked to the empathic social interaction, the doctor’s
gaze and body orientation influencing the viewer’s perception of their empathy [Brugel et al., 2015].
Another example is the use of virtual humans to provide socio-emotional support. Pauw et al.
found that participants felt an improvement after talking to a virtual human, in terms of emotional
and cognitive support [Pauw et al., 2022].

Various ML models have been used to generate nonverbal behaviours [Chiu et al., 2015, Haag and
Shimodaira, 2016, Ferstl and McDonnell, 2018]. However, these are based on the data captured from
a single person (for instance, gestures are generated from only their own speech without considering
the interaction with another person [Ferstl and McDonnell, 2018]). This is an important aspect as
a person’s behaviour is different in the presence of another person, compared to when they are left
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alone [Schilbach et al., 2013]. Thus, using ML models trained on self-data to generate behaviour
for VC might result in non-engaging, less dynamic interaction, that lacks empathy. To tackle this,
ML models could be based on the synchronised data from all participants in the interaction. The
interaction dynamics could be captured, and the model could be able to generate engaging nonverbal
behaviour, driven by the interaction between the participants. This approach is successfully used
by Hoegen et al. to update an agent’s conversational style based on the one the interlocutor is using
[Hoegen et al., 2019].

The methods presented perform differently based on the type of interaction they are applied to.
In scenarios with structured tasks (where the user’s actions are limited to specific ones), they tend
to perform well. However, in free-flow scenarios, with no pre-defined structure or no fixed actions,
statistical modelling and rule-based models struggle. For these cases, ML methods tend to show
good results [Forbes-Riley et al., 2012, Dermouche and Pelachaud, 2019a].

Models for conversational cues. So far we covered the background theory and how to anal-
yse the collected social interaction data. The next step is using these results to build nonverbal
behavioural models for an autonomous agent. With these models, the autonomous agent can auto-
matically perform context-relevant non-verbal behaviours. Although this seems straightforward, it
is still an open challenge to develop animated models that can map between the agent’s context-
relevant emotional states and its gaze or speech behaviour (or other nonverbal behaviours). There
are a number of approaches proposed in the literature and a selection of them is described next in
this section.

Park Lee at al. define an eye movement model that is based on empirical models of saccades
and statistical models of eye-tracking data [Lee et al., 2002]. The model is built on three major
components. First, the Attention Monitor component monitors the system’s current state (such as
changes in listening/speaking modes, gaze and head orientation and so on) and based on this, invokes
one of the other two components: Parameter Generator or Saccade Synthesizer. The parameter
Generator component decides on the duration of direct or averted gaze and on saccade magnitude,
velocity or duration. Finally, the Saccade Synthesizer component collects the synthesizer parameters
from the previous component and generates the sequence of coordinates value for the eye movement.

Andrist et al. describe a hybrid stochastic and heuristic bidirectional gaze mechanism which is
synthesized from data collected from human-to-human interactions [Andrist et al., 2017]. It is built
on top of an additional gaze model that is able to execute gaze shifts from one target to another
[Andrist et al., 2012]. The bidirectional model has two main components. First, a stochastic part
containing statistical parameters about what object/direction to gaze at and when to perform this
gaze action. And second, a heuristic rule-based component that defines what the agent should gaze
at in response to the information gathered from monitoring the user’s actions.

Zoric et al. present a method for automatically adjusting facial gesturing for virtual agents based
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on their speech [Zoric et al., 2011]. Facial gestures include nods, head movements, blinks, eyebrow
movements, and gaze. The method is based on a hybrid data-driven and rule-based approach and it
works in three consecutive steps. First, it uses a Hidden Markov Model to classify the facial gestures
into four main categories (blink, eyebrow movement, nod and swing). Next, the results are further
defined by rules generated from information on non-verbal communication (from the literature).
Finally, the facial gesture is fine-tuned assigning a gesture sub-type, amplitude and duration based
on the statistics gathered from a training dataset.

Bohus and Horvitz introduce another approach to create a gaze model from speech [Bohus and
Horvitz, 2010]. In their study, they design gaze shifts for agents to shape a multi-party conversation.
The agent shows their turn-taking intentions by directing their gaze towards specific participants
and averting it from other ones.

Le et al. also use speech inputs to generate gaze, eyelid motion and head motion [Le et al., 2012]. In
their study, statistical models for each component are learnt separately. Such as, the head motion is
generated using Gaussian Mixture Models and gradient descent optimisation algorithm. The non-
linear Dynamic Canonical Correlation Analysis model is used to create gaze behaviour from both
head motion and speech features. Finally, for generating eyelid motion, they employ non-negative
linear regression.

A rule-based system is proposed by Marsella et al. that determines the semantic, pragmatic and
rhetorical content of the utterance by using a shallow analysis [Marsella et al., 2013]. This analysis
is then used to generate head movements, eye saccades, gestures, blinks and gazes.

Vinayagamoorthy et al. propose a method for designing a gaze model for immersive virtual environ-
ments [Vinayagamoorthy et al., 2004]. This model is designed for user-controlled virtual characters
involved in dyadic verbal communications. The mechanism is built based on data and using prior
results from studies on the behaviour of eye gaze while face-to-face social interactions.

2.2.2 Virtual characters in different media

There are a large number of autonomous and semi-autonomous virtual characters that are deployed
on non-immersive 2D screens (monitors). Some of these are also available for immersive virtual en-
vironments, with some limitations. Below is a description of the more developed ones. They could
act as the base for further development and further integration into immersive virtual environments.

Based on the SEMAINE API [Schröder, 2010], the Sensitive Artificial Listeners (SALs) are virtual
characters with very limited verbal understanding [Kenny et al., 2007]. There are four SALs, each
with a different personality: aggressiveness (Spike), cheerfulness (Poppy), gloominess (Obadiah)
and pragmatic (Prudence). There are four SALs prototypes developed. The first version is the
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PowerPoint SAL. For this, an operator chooses a sentence from 20-30 options and delivers it in an
appropriate tone of voice. The Semiautomatic SAL uses the same concept as in the first version
with the improvement of using pre-recording audio of the chosen sentence. Solid SAL is similar
to PowerPoint SAL with the difference of fewer options to pick from when selecting a response.
This tries to shift the focus on the operator’s speech to be as relevant as possible to the character’s
personality. The main aim of this prototype is to train emotion recognition and feature detection
systems. Finally, the Autonomous SAL is built on the previous versions. Even with limited domain
knowledge, it is able to engage in interactions with a participant without being directly controlled
by a human. The system analyses the user behaviour, manages the dialogue with the user, and
synthesises its speaking and listening behaviours. The speaking behaviour mostly covers utterances
that prompt the user to say more or are determined by the SAL’s “goal” to draw the user toward
the character’s emotional state [Kenny et al., 2007].

Researchers from ArticuLab at Carnegie Mellon University developed a number of virtual char-
acters studying human interaction in social and cultural contexts. Of particular interest is the
Socially-Aware Robot Assistant (SARA) [Matsuyama et al., 2016]. SARA is a virtual character that
achieves a task or a social goal by expressing visual, vocal and verbal behaviours using multimodal
user data. Data includes the user’s face and head movements, vocal features, and conversational
strategy. SARA is designed to raise or maintain the level of rapport with the user over the course
of a conversation by understanding the information extracted and generating visual, vocal, and ver-
bal behaviours. SARA’s architectural components are built on top of the Virtual Human Toolkit
[Hartholt et al., 2013], additional modules include Microsoft’s Cognitive Services API for converting
speech to text, Microsoft’s LUIS (Language Understanding Intelligent Service) for recognising the
user intent, OpenFace and OpenSmile for extracting facial features, head pose, gaze and acoustic
features from the audio signal further used in the rapport estimator and so on.

Researchers at the Institute of Creative Technologies from the University of Southern California
have designed a number of virtual characters for 2D displays. These characters are able to use
natural language, perform appropriate gestures, show emotion and react to verbal and non-verbal
stimuli, each of them being design for specific purposes. For example, SimSensei Kiosk Ellie is able
to recognise and identify psychological distress such as PTSD, anxiety or depression from multiple
signals with a specific aim of providing early support to military personnel [DeVault et al., 2014].
Two virtual human projects were designed to be used at the Boston Museum of Science:Ada and
Grace [Swartout et al., 2010, Traum et al., 2012] -museum tours and Coach Mike [Lane et al., 2011]
-museum staff. The museum tours’ main role is to engage the middle school children in science
and technology topics, while the museum staff help visitors use the ’Robot Park’ exhibit. There are
also a number of agents designed for training purposes including negotiation prototypes, game-based
simulations for soldiers or simulations for interviewing bombing suspects [Kenny et al., 2007, Terada
et al., 2021]. Part of this category are also the virtual patients [Kenny et al., 2009] that use realistic
scenarios for both military and non-military issues, in order to train future clinicians in therapeutic
interview skills; and Virtual Interactive Training Agent (VITA) [Burke et al., 2016] who is built
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for practising job interviews and specially designed to reduce anxiety in young adults with ASD
(Autism Spectrum Disorder).

A recent version of Virtual Human Toolkit has been described by Hartholt et al. highlighting a few
case studies [Hartholt et al., 2020]. These include the toolkit usage during a seated VR application
where the agent is a virtual therapist [Gordon et al., 2019], during a room-scale VR interaction
with the aim of exploring the virtual area with an agent, and in MR using the HoloLens, where the
agent took the role of a job interviewer [Hartholt et al., 2019].

FAtiMA is another toolkit for creating autonomous virtual characters that can evoke empathic re-
sponse [Dias et al., 2014, Mascarenhas et al., 2022]. This toolkit’s core is a computational model of
emotion and decision-making that can be incorporated when building virtual characters. Mascaren-
has et al. highlight different use cases of this toolkit: a single-player mobile game where players
provide customer service to different customers with unique emotional profiles; serious games for
practising social skills [Mascarenhas et al., 2018]; or a VR demo where users embody a police inter-
viewer and interact with a VC suspect [Mascarenhas et al., 2022].

Most of these virtual characters are developed based on the SmartBody character animation system
[Thiebaux et al., 2008] and uses the Virtual Human Toolkit architecture [Hartholt et al., 2013,
Hartholt et al., 2022]. In order to respond to the user’s multimodal inputs (actions, expression,
nonverbal behaviour, and so on) the system tracks the user using the MultiSense framework [Stratou
and Morency, 2017] as well as a number of other modules for head orientation, face tracking, gaze
direction analysing expression and audio data (for further information please refer to [DeVault et al.,
2014]).

Shortcomings of using VCs form 2D environments into IVEs. Immersive Virtual Envi-
ronments aim to simulate reality such that people would respond naturally to the situations and
events that happen within the virtual environment setting. Two illusions are linked to the user’s
presence: place and plausibility illusions [Slater, 2009].

• place illusion refers to the user’s feeling that they are in the virtual environment, knowing
they are not actually there

• plausibility illusion covers the objects’/people’s response to the user’s actions in the virtual
environment and their behaviour based on the user’s expectation

The user’s feeling of presence decreases or is absent when any of these illusions are broken. This
leads to users not reacting to the events happening in the virtual world, but to the ones from the
world they are physically in.

Virtual characters’ behaviour highly influences the user’s plausibility illusion. If the VC is limited
in sensing what is happening during the interaction with the user, their behavioural response might
not be as expected by the user and hence, the plausibility illusion will drop. Humans have very
good observational skills: they can easily spot when the VC’s verbal and nonverbal behaviours
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are asynchronous or not responsive, decreasing their plausibility illusion and hence, their level of
presence [Neff and Pelachaud, 2017].

Although there is extensive research on virtual agents for 2D screens, not all of the contributions
from these works are fully transferable and compatible with immersive virtual environments. In
many cases, the virtual agents presented above rely on rich facial expressions, the users have a
limited area to look at (the monitor) and there is a small amount of body movement that can be
taken into account. IVEs allow for richer interactions where the user can immerse in an environment
and make use of more low-level social signals as well as more abstract non-verbal behaviours such
as social attitudes.

Social attitudes are very little studied for IVEs. We identified this gap and designed a study in VR
to detect social attitudes (see Chapter 4). Further, in the next section, we cover the literature and
state of art regarding social attitudes in IVEs.

2.2.3 Social attitudes

Detecting social attitudes

As seen in the previous section 2.2.1, there is extensive research on low-level non-verbal behaviours.
There are however more complex social behaviours that are less researched and not as straightfor-
ward to detect. Examples of these social behaviours are social attitudes, which refer to an abstract
activity or action taking place in social interactions, such as sympathy, affection, aggression, or
social engagement. These social attitudes are too complex to be identified using a set of rules.
However, people can identify them in human-human (or human-VC) interactions and can interpret
complex non-verbal behaviours, even from a still image [Vinciarelli et al., 2011].

There is increasing literature on detecting different social attitudes such as dominance, agreement
or engagement in interactions [Dermouche and Pelachaud, 2019a, Khaki et al., 2016, Bee et al.,
2009]. These tackle the interaction from video recordings and could be applicable to VC on 2D
displays. They make use of features such as prosodic information, gaze direction, turn taking or
facial expressions (action units). Though these studies are influential contributions to the field, they
are not applicable in IVEs. This is because not all user’s features are traceable and because the
interaction in virtual environments has more dimensions available. For instance, social interactions
in IVEs allow for other nonverbal behaviours, such as proximity, that are distorted on a 2D screen.

Social engagement is an important aspect to consider during user-VC interactions. As with other
social attitudes, the VC should adapt its behaviour with a change in the engagement level. This
has been researched on many occasions [Gordon et al., 2016, Woolf et al., 2009, Bohus and Horvitz,
2014, Dhamija and Boult, 2017]. They propose methods that tackle engagement in interactions,
however, they disregard the user-VC interaction dynamics loop during the model training.

Dermouche and Pelachaud include this loop in their work, detecting the engagement from dialogue
videos on a 5-level engagement scale [Dermouche and Pelachaud, 2019a]. They also assess the ML
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models that use only one person’s data. However, these models show lower performance than the
one taking into account both people’s data. They train the model on actions units (AUs), head
rotation, gaze angle and the conversational state of the interaction. They report the AUs as the
feature that has the highest contribution to the model’s performance. When trained on this alone,
the model’s performance on detecting engagement is 98% improving to 99% when all features are
used [Dermouche and Pelachaud, 2019a].

User-VC rapport

The rapport between the user and the VC has an essential role in their social interactions, especially
when it comes to unstructured situations. For instance, in a general practitioner training, the doc-
tor’s nonverbal behaviours link to the overall rapport between themselves and the user. The doctors’
nonverbal behaviours also influence the viewers’ perception of their empathy. [Pan et al., 2018, Pan
et al., 2016] In humans’ social interactions, people adapt and adjust their verbal and nonverbal
behaviours based on their partner’s behaviour and the overall social interaction [Burgoon et al.,
2006]. Work such as [Dermouche and Pelachaud, 2019b, Feng et al., 2017], takes into account all
participants in that interaction to train an ML model to detect or generate different elements of
social interactions; however, social elements (attitudes) between the user and the VC also influence
the interaction dynamics.

Taking into account this aspect in human-VC interactions makes the VC’s behaviour flexible and
able to adapt to the scenario at hand. Being able to detect different interaction dynamics and atti-
tudes between the user and VC could be used to develop behavioural models. These drive the VC
in social interactions, its nonverbal behaviour being dependant on the rapport/empathy between
the user(s) and the VC [Cafaro et al., 2016].

Training an ML model with the data from all participants in an interaction better illustrates the
interaction, leading to more robust outcomes when compared to data from only one participant.
This is because, during dyadic human-human social interactions, one person’s behaviour highly
influences the behaviour of the other person [Steed and Schroeder, 2015, Burgoon et al., 2006].
Moreover, humans behave differently depending on whom they are interacting with, their culture or
their upbringing. People’s behaviour also relates to whether they are by themselves or in someone
else’s presence [Schilbach et al., 2013]. Hence the behaviour learnt from one person is not as
applicable to the one learned from multi-party interaction.

In summary, social attitudes are complex behaviours that are difficult to automatically detect.
Social attitudes are also impacted by the rapport and the interaction dynamic loop between the
participants in an interaction. Having covered the grounds on nonverbal behaviours for virtual char-
acters, the next section introduces how the appearance of avatars influences social interactions. It
focuses on the avatar appearance, and how the perception of using different types of avatars changes
over time, it is influenced by the user-avatar resemblance and the task the users are performing.
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2.3 Evaluating Avatars’ Appearance

2.3.1 Avatars in immersive virtual environments

Avatars are virtual characters whose behaviours are driven in real time by the humans they repre-
sent. Representing humans’ behaviours in virtual spaces has an important impact on the feeling of
co-presence. Co-presence is defined by Salter et al. as the sense of being and acting with others in
a virtual space [Slater et al., 2000]. Therefore, in most cases, accurately representing the user be-
haviour can increase its sense of being in the virtual environment and consequently the co-presence.
While the current technology allows for various methods of reproducing the user’s general whole-
body movements, reproducing subtle facial gesturing or gaze behaviour is still a challenging task.
When avatars and agents are designed for 2D displays, the users’ facial behaviours can be recorded
and analysed; this task is more troublesome when it comes to an immersive virtual environment,
as the current head-mounded displays cover the upper part of the face. This implies challenges
for both developing avatars and building autonomous agents for immersive virtual environments,
and this is because the agents’ behaviours are built to react to the user’s subtle cues such as eye
behaviour or facial expressions.

A few studies tackle gaze behaviour for immersive virtual environments. Models of gaze behaviour
are covered in Section 2.2.1. Pejsa et al. look at the conversational footing or signalling who
has a certain speaking role in a group conversation [Pejsa et al., 2017]. Examples of these roles
include being a speaker, addressee, bystander, or overhearer. They propose models of gaze and
spatial orientation for a virtual agent that can be used to signal specific footing configurations.
Based on their evaluations, participants match the conversational roles signalled by the agent, but
these results are observed only in immersive virtual environment settings, not on 2D displays (flat
screens). This suggests that people tend to be more sensitive to agents’ non-verbal cues in immersive
virtual environments than on 2D interfaces. On the other side, Seele et al. look into how important
is to have avatars with realistic gaze behaviour, that would better reflect the users [Seele et al.,
2017]. They compare three gaze models with different levels of realism fidelity: a model with
saccadic movements only, a simulation model that extends the saccadic model, and a user’s real eye
movements recorded with an eye tracking device. The results show that the participants perceived
high-quality communication in all three different gaze models, however, the authors describe a
number of possible drawbacks and future improvements in their experiment setup. They mention
that the task is not very gaze-dependent and the sample size is relatively small (21 pairs divided into
3 groups for each condition). They also suggest that the novelty factor of the virtual environment
technology might have prevented the observation of subtle eye behaviour- an aspect that can be
overcome in the future with people getting more familiar with such setups.

Another aspect of avatars in virtual environments is their appearance. Users can be represented as
different types of avatars and their looks might impact their interaction with other users or their
own impression of themselves.
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The appearance, body representation, and resemblance of an avatar all play a crucial role in de-
termining the level of trust, efficiency, and presence experienced during virtual interactions. Prior
research has shown that the use of avatars can enhance these aspects of social interaction in IVEs,
comparable to face-to-face interactions [Yoon et al., 2019, Pan and Steed, 2017]. On the other hand,
forgoing an avatar or being represented only by hands or controllers can lead to a deterioration of
communication and feelings of loneliness among participants [Smith and Neff, 2018]. Table 2.1
summarises the literature studying the effect of different types of avatars in IVEs and face-to-face.
The review was performed by using the keyworks ‘avatars’, ‘virtual characters’, ‘VR’, ‘AR’, ‘MR’,
‘appearance’, and ‘longitudinal’ on literature search engines such as Google Scholar and Scopus.
The review also includes work found as a snowball effect from the relevant literature. The table
summarises the field of comparing different avatars’ appearance in IVEs, covering relevant work on
longitudinal studies, different task contexts, the familiarity between participants, style and resem-
blance of avatars. Further, we detail these factors and the importance of temporality in the field of
social interactions in IVEs.

Avatar Style

Avatar style can significantly impact the way users experience and perceive VR environments.
Realistic representations include avatars created via 3D modelling, 3D scanning, video avatars
(streaming the 2D video of a user to IVEs), or point-cloud avatars. As realistic representations
are both more difficult to create and may evoke the uncanny valley effect [Lugrin et al., 2015],
cartoon-style avatars that are more stylised and simplified are also a common way to represent
users.

The appearance of an avatar can greatly influence users’ sense of embodiment, social presence,
and trust [Pan and Steed, 2017, Smith and Neff, 2018, Collingwoode-Williams et al., 2021]. In
some cases, no significant differences were found between cartoon and realistic avatars [Yoon et al.,
2019, Garcia et al., 2021]; in other studies on the realism of appearance, contradictory findings
have been reported. Some research shows participants preferring realistic avatars [Yuan et al.,
2019, Pakanen et al., 2022] and reporting higher quality of experience while using them [De Simone
et al., 2019]. Latoschik et al. found that participants in their study reported higher body ownership
when using realistic avatars compared to wooden-block-person ones [Latoschik et al., 2017]. On the
other hand, a realistic appearance can induce the uncanny valley effect. This is especially evident
with respect to faces, which have been reported as lacking in human spark ("their eyes seemed
empty") and lacking communicative flexibility ("expressions were hard to read") [Sakurai et al.,
2021]. Lugrin et al. conducted an experiment in which they compared the effects of using a robot
avatar, a block-person avatar, and a realistic avatar in a find-and-touch game set in a virtual forest
environment [Lugrin et al., 2015]. They found that the use of realistic avatars led to a lower illusion
of virtual body ownership.

In addition to appearance, personality can also play a role in users’ affinity towards a virtual
character. Zibrek et al. found that the user’s affinity towards the VC was based on the VC’s
appearance and personality and that realism in VC appearance can be a positive choice in VR
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[Zibrek et al., 2018]. Overall, the appearance of an avatar can greatly impact users’ experience in
VR environments, and it is important to consider the effects of different avatar styles when designing
VR systems.

Avatar Body

Several studies have examined the effects of various body structures on VR and MR experiences,
including full-body, upper-body, head and hands, and controller-only avatars [Yoon et al., 2019,
Pan and Steed, 2017, Smith and Neff, 2018, Herrera et al., 2020, Aseeri and Interrante, 2021,
Collingwoode-Williams et al., 2021, Pakanen et al., 2022]. In general, participants preferred full-
body avatars, which were associated with higher levels of social presence and co-presence [Yoon
et al., 2019, Smith and Neff, 2018, Aseeri and Interrante, 2021], increased trust and faster task
completion [Pan and Steed, 2017], and overall higher preference [Aseeri and Interrante, 2021]. In
two different works, one of Pan and Steed, and the other of Smith and Neff, they compared head-
and-hands avatars to full-body cartoon or robot-style avatars. In both cases, the full-body avatar
was preferred against the simplistic head-and-hands representation, showing higher levels of social
presence and trust [Pan and Steed, 2017, Smith and Neff, 2018]. Similarly, in two surveys with 16

and 87 participants respectively, Pakanen et al. asked participants to rank their first, second, and
third preferred avatar in VR and MR [Pakanen et al., 2022]. Participants had to choose from 36

pictures of avatars with altered representation styles and body types. The most preferred avatar
for both VR and MR was the realistic full-body avatar, with the full-body hologram avatar (which
had a lower alpha, ‘see-through’, effect) being the second most popular choice for MR.

However, this does not always hold. Herrera et al. conducted a study in which only the movements of
the hands and head were mapped from participants’ movements, with all other body parts remaining
static [Herrera et al., 2020]. Participants using head-and-hands avatars demonstrated higher social
presence, self-presentation, and interpersonal attraction compared to those using full-body avatars
in the same cartoon style.

Avatar-User Resemblance

In many cases, researchers have recruited groups of participants who are unfamiliar with one another
and observed their experiences while using pre-defined avatars. However, this may not accurately
reflect how avatars are (or will be) used in real life, as people often interact with acquaintances
while using avatars in virtual environments. In Table 2.1

Moustafa and Steed conducted an experiment in which they provided 9 groups of friends or family
with VR headsets and asked them to meet in VR regularly for a month [Moustafa and Steed,
2018]. Participants were able to customise their avatars using the options available in the GearVR
application. The researchers found that participants were influenced by the group dynamics to
adjust their avatar appearance to fit a version that resembled them. De Simone et al. had dyads of
acquainted participants embody both customised cartoon avatars and personalised realistic avatars
(via video stream) [De Simone et al., 2019]. They asked the participants to watch a video together
in VR and rate the quality of their experience in comparison to watching a video together in person.
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The personalised realistic avatars received ratings that were similar to those given for the in-person
condition, whereas the experience quality using cartoon avatars was rated as the lowest.

2.3.2 Tasks and Environment Setting

Many studies have looked at the impact of avatar appearance on various tasks, such as play-
ing games yoon2019effect, moustafa2018longitudinal, khojasteh2021working, langa2022multiparty,
pan2017impact, smith2018communication, herrera2020effect, aseeri2021influence, pakanen2022nice
or tasks requiring more movement [Lugrin et al., 2015, Freiwald et al., 2021, Sakurai et al., 2021].
Other tasks that have been examined include listening tasks [Zibrek et al., 2018, Yuan et al.,
2019, Garcia et al., 2021], waving in a mirror [Latoschik et al., 2017], and watching videos [De Si-
mone et al., 2019]. However, fewer studies have focused on more formal tasks that typically take
place in professional settings, such as brainstorming [Sun and Won, 2021], work meetings, confer-
ence networking [Nordin Forsberg and Kirchner, 2021], or classroom work and discussion [Han et al.,
2022].

Nordin and Kirchner explored the use of avatars in virtual business contexts using semi-structured
interviews with two groups of participants: conference attendees using customised realistic avatars
and coworkers using personalised realistic avatars in a VR business meeting [Nordin Forsberg and
Kirchner, 2021]. The researchers found that the participants in the meeting did not feel restricted by
the appearance of their avatars. In the conference scenario, participants reported that the avatars
helped them ‘break the ice’ and initiate conversation, but also mentioned difficulties in recognising
different people.

Sun and Won conducted a study in which dyads of participants completed a brainstorming task
in VR while using either a personalised realistic avatar or a cube avatar [Sun and Won, 2021].
The participants were strangers to each other. After the task, they were asked about their own
emotional state and the perceived emotional state of their partner. The researchers did not find
any differences in emotional state recognition between the two different avatars.

2.3.3 Temporality in IVEs Communication

Research on longitudinal studies in IVEs can provide insights into user behaviour changes. Due to
the repeated exposure to the immersive environment, the novelty of using the environment fades,
making the outcome more generalisable in a real-world situation. However, there are not many lon-
gitudinal studies in IVEs as they tend to take more time and resources to conduct. For example, in
a study by Bailenson & Lee, participants experienced less simulation sickness and had a stronger
connection with their team over time, but they did not report significant changes in the level of
presence and co-presence [Bailenson and Yee, 2006]. Moustafa & Steed report that friends and family
members who met in GearVR 1− 2 times per week for a month updated their avatars to resemble
themselves more accurately over time, at the request of others who found the interactions with
the initial avatar uncomfortable and unnatural [Moustafa and Steed, 2018]. The VR environment
did not allow for nonverbal behaviours or facial expressions, so initially, participants had difficulty
interpreting social cues. However, over time, they learned to rely on other cues such as voice tone.
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Khojasteh and Won conducted a longitudinal study in Facebook Spaces where participants in dyads
met for 5 sessions and played games in VR [Khojasteh and Won, 2021]. Over time, participants
became more comfortable using the controllers and the app, which allowed them to better connect
with their partners. Again, since the system did not implement facial expressions, the participants
also learned to use voice tone and word choice to perceive their partner’s emotional state. Some
participants reported improvements over time in completing tasks, but there was no significant
difference in workload over time.

Han et al. conducted a longitudinal study which compared customised avatars to generic avatars
[Han et al., 2022]. Eighty-one students participated in 8 weekly discussion sessions in the Engage VR
platform, alternating between using platform-customised avatars and uniform upper-body avatars
(bald avatars in school uniform clothing). The results show improvements over time in presence,
enjoyment, entitativity, and realism. Groups that knew each other prior to the study showed higher
social presence and enjoyment. Participants using the generic avatars reported lower self-presence
but higher levels of enjoyment.



C
hapter

2.
Literature

R
eview

37

Author
Env.

Group
size

Famil-
iarity

Task Context
Avatar
style

Avatar
body

Resem-
blance

Lon-
git.

Contributions

Yoon ’19 MR,
VR

48;
dyads1 strangers

puzzle,
furniture
placement

casual
cartoon,
realistic

full-
body,
h&h, up-
per-body

pre-de-
fined

no

Avatar body matters; no
difference between avatar
styles; best performance
with realistic full-body.

Zibrek ’18 VR
1106;
indiv. strangers

30s listen-
ing task

casual
ren-
dering
styles

full-body
pre-de-
fined

no

Appearance and personality
influence VC’s affinity; real-
ism is a positive choice for
VCs in VR

Moustafa
’18

VR
17;
diff2

friends,
families

activities in
GearVR

casual cartoon
upper-
body

pre-de-
fined

yes:
4-5x

VR group dynamics and
emotional states similar to
F2F

Lugrin ’15 VR
30;
indiv.

-

find\touch
targets in a
forest envi-
ronment

casual
block,
realistic,
robot

full-body
pre-de-
fined

no
Lower illusion of virtual body
ownership in realistic avatars

Khojasteh
’21

VR
20;
dyads strangers

5 games casual cartoon
upper-
body

cus-
tomis-
able

yes:
5x

Adaptation to VR increases
over time; new ways to com-
municate in VR

Seymour ’19
2D,
VR

32;
group strangers*

listening to
conversa-
tion

casual;
confer-
ence

cartoon,
realistic

upper-
body

cus-
tomis-
able,
person-
alised

no
Realistic preference over Car-
toon appearance.
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Latoschik
’17

VR
21;
indiv.

-
wave in a
mirror

casual
realistic,
wooden

full-body
pre-de-
fined

no
Realistic appearance shows
stronger body ownership illu-
sion;

Han ’22 VR
81;
diff2

mixed3
school
tasks

educa-
tion

realistic
upper-
body

cus-
tomis-
able

yes:
8x

Personalised avatars show in-
creased self-presence but de-
creased enjoyment

Langa ’22 VR
32:
diff2

ac-
quain-
tance

charades casual
point-
cloud

upper-
body

person-
alised

no
Platform for low-cost holo-
graphic communications

Pan ’17 F2F,
VR

48;
dyads strangers

games; dis-
cussions;

casual
cartoon,
con-
trollers

full-
body,
hands

pre-de-
fined

no
Embodying avatars is pre-
ferred for VR; results similar
to F2F

Smith ’18 F2F,
VR

60;
dyads strangers

negotia-
tion and
furniture
placement

casual
con-
trollers,
robot

full-
body,
hands

pre-de-
fined

no
Full-body VR embodiment
shows a higher level of social
presence, similar to F2F

Herrera ’20 VR
102;
dyads strangers

20 ques-
tions game

casual cartoon

full-
body,
h&h,
static

pre-de-
fined

no

Head&hands avatars outper-
form full-bodied ones on so-
cial presence, self-presence,
and interpersonal attraction

De Simone
’19

F2F,
VR

32
dyads

ac-
quain-
tance

watching
videos

casual
cartoon,
video-
avatar

upper-
body

cus-
tomis-
able,
person-
alised

no

Similar quality of experi-
ence for Video-VR and F2F
but lowest for cartoon; more
movement and direct gaze in
VR
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Aseeri ’21 VR
36;
dyads1 strangers

conver-
sation,
survival
items, cha-
rades

casual

con-
trollers,
scanned,
video-
avatar

full-
body,
h&h

pre-de-
fined

no

Video-avatars show high
trust and co-presence (as
do scanned ones); avatar
preference order: video,
scanned, no-avatar

Freiwald ’21 VR
17;
dyads strangers

snowball
fight game

casual
realistic,
non-hu-
man

full-body
pre-de-
fined

no
No significant difference on
the avatar’s appearance but
rather on the locomotion

Sakurai ’21 VR
8;
dyads1 strangers

twister casual
cartoon,
realistic

full-body
pre-de-
fined

no
The avatar appearance af-
fected the interpersonal cog-
nition for males only

Nordin ’21 VR
44;
diff2

mixed3

conference;
business
meeting

profes-
sional,
confer-
ence

realistic

full-
body,
upper-
body

cus-
tomis-
able,
person-
alised

no

Meeting the avatars weren’t
restrictive; conference
avatars were enablers and
obstacles for the interaction

Garcia ’21 VR

105-
survey;
12-VR
task

-
lecture-
listening
task

educa-
tion

cartoon,
realistic

upper-
body

pre-de-
fined

no

VR user study: no differ-
ence on the familiarity, en-
gagement, trust, humanness,
and learning

Pakanen ’22 MR,
VR

16;
dyads strangers

game casual
cartoon,
realistic

full-
body,
static,
upper-
body

pre-de-
fined

no

Comparison of different
avatar appearance styles and
body; the preferred one for
MR and VR was realistic full
body
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Collingwoode-
Williams
’21

VR

17-
dyads1;
18-
dyads

strangers

investment
collabora-
tive game

casual
realistic,
con-
trollers

upper-
body,
hands

pre-de-
fined

no

Consistency improves trust
in an equal social dynamic in
IVEs; the use of confederate
could shift social dynamics.

Sun ’21 VR
152;
dyads strangers

brain-
storming

casual
cube,
realistic

full-
body,
upper-
body

person-
alised

no

No difference in perceiving
the emotional state from the
cube and realistic avatars; a
link between proximity and
emotional states.

Bailenson
’06

VR
9;
trias strangers

games,
problem-
solving
tasks

casual realistic
upper-
body

person-
alised

yes:
15x

Less simulation sickness,
stronger team connection,
less direct gaze over time

Table 2.1: Review of studies on avatars in IVEs and 2D environments. Env.: Environment; Longit.: Longitudinal; indiv.: individual;
F2F : face-to-face; h&h: head&hands. 1Dyads consist of user and confederate. 2Different group sizes. 3Participants were a mix of
strangers and acquaintances. To ease the table navigation, the following are colour coded: Environment, Avatar Style, Avatar Body,

Resemblance and Longitudinal.
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2.4 Industry Application and Ecological Validity

2.4.1 The game industry

Players’ interaction in VR games

The entertainment industry uses virtual environments to build creative and engaging experiences
for their uses. Virtual Reality devices offer a virtual medium that enables richer input mechanisms
compared to traditional video games, allowing for novel interactions and different gameplay. Hence,
many game companies develop and adapt their games to this platform.

The mechanism through which players interact in traditional video games is different from playing
a VR game. In non-VR video games, players actively interact using traditional controllers (mice,
keyboards, and/or game controllers). In VR, the players’ input tends to be more complex allowing
for 3D interactions that are closer to the real-life ones. Along with using the buttons on the hand
controllers, users can play a game with a diverse range of motions. They can use their limbs, head
or their whole body as a form of input to drive the interaction, as they would do in their day-to-day
life. Engaging with their whole body in these activities allows for more immersive interactions in
VR games, especially social interactions typically seen in narrative games.

In everyday life, we, humans don’t interact with others or go about our daily tasks via the con-
trollers popular in traditional video games. IVEs are meant to simulate reality. Hence making use
of traditional games’ approaches in a virtual environment impacts the user’s sense of presence. Ap-
proaches from traditional video games could highly influence the plausibility illusion, particularly
when it comes to the user’s interaction with agents (or non-player characters, NPCs).

VR games with non-VR implementations

During everyday social interactions, we show complex behaviours: verbal (e.g., speech) and non-
verbal (e.g., gestures, head movements, eye gaze). It is highly challenging to account for these
behaviours, in particular for nonverbal behaviours, in games and media in general. In most cases,
this is due to hardware and software limitations. However, these drawback leads to not implementing
verbal/nonverbal behaviours in non-VR games or having them expressed via button presses or
mouse/joystick move (in games such as Heavy Rain (quanticdream.com/en/heavy-rain), or L.A.
Noire (rockstargames.com/lanoire). In narrative VR games or immersive media, verbal and non-
verbal behaviours are key factors, strengthening the plausibility illusion and the sense of presence
in VR settings.

Because in a VR environment users can move freely, the interaction in these games does not have
to be restricted by the buttons on game controllers. Although there are many applications in IVEs
that rely on triggering events based on button-pressing, it does not have to be this way. The user’s
large and diverse range of inputs can be manipulated to design interactions with VCs that are
closer to the ones taking place in real life. This aspect helps maintain the user’s plausibility illusion.
Consequently, this means that the user’s experience of interacting with a VC is as similar as possible
to an interaction that happens face-to-face with a real person.

quanticdream.com/en/heavy-rain
rockstargames.com/lanoire
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Using the classic game mechanics and the interaction methods from non-VR games in VR ones,
often influences the players’ presence, negatively impacting the players’ experience and leading to
increased simulation sickness [Christensen et al., 2018].

There are popular VR games that make good use of natural interactions, such as Beat Saber
(beatsaber.com) or SuperHot VR (superhotgame.com/vr). Most of them are not centred on a
story or the interaction with NPCs. Dance Central (dancecentral.com) is another popular VR
game where players dance based on instructions, mimicking dance movements from VC instructors.
Although there are many NPCs whom the users can interact with, the interaction itself is done
through a virtual mobile phone. Because of this, controlling the game is much closer to natural
interactions as many people are used to handling a mobile phone on daily basis.

VCs (or in games, NPCs) are a core element in most games, with players being able to interact
with them (fight/get help from them) or even have a dialogue with them. The outcome of the
interaction often leads directly to the next actions available, making the interaction itself part of
the game mechanics.

The narrative genre in games is designed around the user’s interaction and dialogue with NPCs.
For example, games that fall into this category include Heavy Rain (quanticdream.com/en/heavy-
rain), The Walking Dead Series (skybound.com/telltales-the-walking-dead-the-definitive-
series), L.A. Noire (rockstargames.com/lanoire) or Mass Effect (ea.com/en-gb/games/mass-
effect). Here the dialogue is mainly implemented by selecting pre-defined phrases from a list,
using the mouse, keyboard or joysticks.

It is more difficult to develop narrative games in VR with natural social interactions. This is because
the natural interactions with NPCs are more complex than the interactions in non-narrative settings
(such as slicing cubes with lightsabers- in Beat Saber). Other VR games, such as Half-Life Alyx
(half-life.com/en/alyx), implement ways of interacting with the environment that are very
close to how people do in daily life. Being able to open doors by pushing them, manually reloading
weapons, crawling and freely moving around, enhances users’ feeling of presence. However, most of
the games like this one, rely on core mechanics such as shooting or fighting, making them violent.
Having these violent behaviours happen in VR can have a strong and profound effect on the players’
emotions and behaviour [Bailenson and Beall, 2006, Yoon et al., 2019], thus excluding users less
interested in violent or action-based games.

Passive and active interaction in VR applications

VR devices enable richer input mechanisms by accessing the users’ body movements and hence, users
are able to engage and express themselves more naturally. This unlocks the possibility of using body
movements (actions that they would naturally perform in real life), as a game input, leading to a
new input interaction. The traditional active interaction (where, for example, the players would
‘actively’ select the option by clicking a button) can be replaced by a passive interaction (where
the player’s non-deliberate, ‘passive’ actions are inputs for a game). This way the user can interact
with the non-player character through their non-verbal behaviours, unlocking a VR-specific way
of interacting in games, especially in narrative VR games. Through rule-based methods, different

beatsaber.com
superhotgame.com/vr
dancecentral.com
quanticdream.com/en/heavy-rain
quanticdream.com/en/heavy-rain
skybound.com/telltales-the-walking-dead-the-definitive-series
skybound.com/telltales-the-walking-dead-the-definitive-series
rockstargames.com/lanoire
ea.com/en-gb/games/mass-effect
ea.com/en-gb/games/mass-effect
half-life.com/en/alyx)
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specific behaviours can be detected, such as raising hands, crawling or archery, as the hands and
head need to be in a certain position and location one from the other. This allows the system to
detect those actions by applying certain rules. However, more complex behaviours such as social
attitudes (e.g., sympathy, affection, aggression or social engagement) are very difficult to detect
using fixed rules. These behaviours enhance these applications/games, offering a more complex
interaction system, which is richer and closer to how humans interact in real life. Consequently, it
better simulates reality, increasing the user’s plausibility illusion.

2.4.2 Avatars in remote meetings

IVEs are widely used in the work sector in areas such as film-making, training, education, medicine,
therapy, remote collaborations and so on [Baniasadi et al., 2020, Bellanca et al., 2019, Stavroulia
et al., 2019]. In many of these areas, using virtual environments keeps the costs low while allowing
for repetitions (e.g., training or therapy). The value of using it for other sections is in the co-location
of people and shared space to complete tasks (e.g., film-making, remote collaborations). Performing
remote meetings in these environments helps preserve the spatial dynamics and social behaviours
such as gaze targets and proximity. In most activities in virtual environments, users embody avatars.
They represent the user’s position, activity and identity. They can range from geometric shapes
(spheres/rectangles with hands) to human-resembling upper-body or full-body shapes in different
styles. The avatar style could also range from cartoon-like to hyper-realistic. A concern for realistic
avatars is that they may trigger a mismatch between high expectations and delivery of nonverbal
behaviour (i.e., movement, gesticulation, facial expressions), leading to decreased user affinity and
feelings of unease [Shin et al., 2019]. Cartoon-like styling, whether generic or customised, may also
lead users to be anxious about the appropriateness of non-realistic representation in a work context
[Bailenson and Beall, 2006].

The majority of the research on avatars in virtual environments is focused on presence, workload
or trust [Yoon et al., 2019, Khojasteh and Won, 2021, Heidicker et al., 2017], with mixed results
[Latoschik et al., 2017, Yuan et al., 2019]. These topics are common because participants do not
know each other before the study. However, in the case of work meetings, it is likely that participants
know each other beforehand. They have seen each other either face-to-face or in video calls, hence
they know how the others should look like.

Moreover, study participants have one-off interactions with others [Lugrin et al., 2015, Waltemate
et al., 2018, Jo et al., 2017, Yoon et al., 2019, Zibrek et al., 2018, Heidicker et al., 2017], making
the findings prone to novelty effects [Koch et al., 2018, Parmar, 2017]. Real-life collaborative work
in immersive environments involves users who know each other and interact regularly, trying to get
real work done. Then, the communicative functionality of avatars is essential. Since the spatial
audio common to most immersive environments provides a highly naturalistic vocal representation,
it is nonverbal communicative functionality that is primarily at issue, such as the ability to identify
one another and then recognise facial expressions and gestures [Burgoon et al., 2016], negotiate
proxemics [Hall et al., 1968], and to trust that the avatars have authentic representations [Oh et al.,
2018].
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2.4.3 Ecological validity in IVEs

Ecological validity refers to the ability to generalise the outcomes of an experiment run in a lab
into the real-world situations that are studied [Schmuckler, 2001]. It is of high value to design
experiments with outcomes that can be generalised to natural real-world behaviour. In this section
we will focus on the ecological validity of some of the previous work on each of the three main topics
of this thesis (people, agents, avatars), and how these motivated the decisions behind designing the
studies presented in this thesis.

People. In Section 2.1 we covered in detail the theory of grounding in communication focusing
then on the gaze and turn-taking nonverbal cues. This helps us understand how social interactions
work between people.

In lab studies, participants often are asked to perform a certain task in social interactions. For better
experimental control, the tasks are often structured. For instance, participants could be asked to
move a cube from one location to another [Nguyen et al., 2018] or to speak during their pre-defined
turn only [Cañigueral et al., 2021]. This kind of behaviour during the experiment leads to restrictive
social interactions. Consequently, the behaviours from these rigid setups do not generalise to how
social interactions carry out in real-world environments.

We were motivated by this shortcoming and we addressed it in Chapter 3 in collaboration with the
Social Neuroscience group from the Institute of Cognitive Neuroscience at the University College
London who proposed the dataset from this study. We present the work on understanding the social
dynamics between People’s interaction with a focus on gaze. The dataset used was multimodal,
covering rich gaze, speech and the participant’s video data. The Social Neuroscience group at the
Institute of Cognitive Neuroscience designed the study and collected the data. The dataset consisted
of dyads of participants performing two unstructured tasks. Using this data we took into account the
synchronised participants’ behaviour data to illustrate the conversational dynamics. These aspects
increase the ecological validity and hence the generalisability of the outcomes.

Agents. One of the building blocks of creating agents in IVEs is sensing and recognising behaviour
from the interaction in order to respond accordingly (see Figure 2.1). We detailed the state of the art
in this field in Section 2.2. As extensive research has been done in generating nonverbal behaviour for
VCs, often it was implemented using data from one person. For example, VC’s nonverbal behaviour
is generated using the audio feature of their own speech disregarding the other person’s behaviour in
the interaction [Haag and Shimodaira, 2016, Ferstl and McDonnell, 2018]. These models do not take
into account the sensing and responding loop, hence the behaviour generated might be asynchronous
and not in line with the interaction dynamics. Consequently, it might impact negatively the user’s
plausibility illusion and it does not generalise to a real-world situation.
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There is a challenge in taking the user’s behaviour into account while generating the VC’s synchro-
nised and believable verbal and nonverbal behaviours during social interactions. To address this
challenge, different attempts generate nonverbal behaviours from data where the participants have
to perform various pre-defined tasks. In most cases, these tasks are highly structured, leading to
restrictive social interactions. Therefore, the users perform only a concrete set of actions [Nguyen
et al., 2018]. The nonverbal generation model from this data works on similarly task-dependant
scenarios, unable to generalise on other situations. Hence, the lack of generalisation lowers the
chances of the model being used outside of the lab.

Our study on Agents addresses these points regarding ecological validity. Our model of recognising
social attitudes takes into account the data from both the agent and the user in order to generate the
outcome. This is crucial for the targeted application- a narrative VR game. Keeping the players’
plausibility illusion stable is key when it comes to keeping the players enjoying the game. Even
though for the data collection in our study the participants were given a certain task to perform,
it was not restrictive, and we used it only as an objective (an example of a task is: "try gaining
the VC’s trust"). Further, it did not specifically control the participants’ verbal and nonverbal
behaviour, allowing the collection of unrestricted data from participants. Lastly, this work was
developed and run in close collaboration with two game companies: Dream Reality Interactive and
Maze Theory. The project was also funded by the InnovateUK body. This allowed designing the
study in the best way possible to have the ML model reused in both companies’ own professional
work, outside of the lab settings. Maze Theory’s narrative VR game Peaky Blinders was the target
project for our ML model and we used the case study of recognising social engagement for a virtual
character in this game. Furthermore, as the proposed ML pipeline is generalisable to recognise other
social attitudes, Dream Reality Interaction worked on a prototype karaoke game making use of this
pipeline.

Avatars. In Section 2.3 we present the avatar’s evaluation in immersive media and traditional
2D environments. Table 2.1 gives an overall view of the state of the art and highlights the gaps
in this area. A particular shortcoming in this field is the limited longitudinal studies. Taking into
account the user’s behaviour over time provides richer insights into how the behaviour changes and
how people interact with others once the novelty effect wanes. The results from repeated usage
of the system (i.e., meetings in IVEs) can be generalised to the natural behaviour in real-world
interactions. The majority of studies on avatars for IVEs and 2D screens are not longitudinal, their
data coming from one-off interactions (for example:[Yoon et al., 2019, Langa et al., 2022, Pakanen
et al., 2022]; see Table 2.1). The task the participants perform has a big factor when evaluating the
appearance of the avatars they embody and the overall experience. A large proportion of the studies
on avatar appearance base their results on pre-defined and rigid tasks such as waving the hand in
front of a mirror [Latoschik et al., 2017] or furniture placement [Yoon et al., 2019, Smith and Neff,
2018]. Although these tasks allow for interesting results, the outcomes are not as generalised to the
real-world use of these systems. Tasks that are less limiting and more free-flow (i.e., conversations)
have higher ecological validity.
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We attempt to address these shortcomings in Chapter 5 where we present our work in collaboration
with the Future of Work and Mixed Reality labs from Microsoft Research Cambridge. Our proposed
study takes place over the 2−3 weeks recording around 10 sessions of work meetings per each group
of co-workers. The meetings are not pre-defined. The participants have their usual meetings with
their co-workers. This allows collecting data on how the Avatars appearance interacts with the
tasks during a work meeting. Furthermore, the meeting takes place in the participant’s house or
office, rather than in a lab. These factors (longitudinal data from real-work meetings performed
in natural settings) strengthen the ecological validity of the work, assuring that the outcomes on
avatars’ appearance are generalised outside of the study set-up.

2.5 Summary of literature review

The aim of this work is to advance the area of autonomous VCs in IVEs during social interactions.
Building on previous research means taking into account the theory on social interactions, being
aware of grounding, the least collaborative effort, the grounding costs and their link to non-verbal
behaviours. Diving in more specific non-verbal behaviours, gaze and speech-turns are core to social
interactions. Hence, it is crucial to understand the dynamics of these non-verbal behaviours and how
they are detected, analysed, and generated. Social attitudes are very difficult to be described with
straightforward rules. They are very useful to detect, being applicable in many fields, especially
in the narrative VR games area. Finally, the appearance of VCs and avatars can impact social
interactions and how other users perceive them. These are key in social interactions in the industry,
in particular in collaborative remote team meetings in immersive virtual environments. All these
aspects are the building blocks and contributions to moving forward in the field of social interactions
in virtual environments.

After this overview of the literature and the current state of the art in this area, we present the initial
work on gaze and speech. Hence, Chapter 3 shows the work on the low-level non-verbal behaviour
dynamics in dyadic social interactions. This work is the initial step towards the understanding of
non-verbal behaviours from face-to-face interactions, which acts as the base for building models and
advancing the area of autonomous agents.
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3
PEOPLE: Direct Gaze and the Frequency of Gaze

Change

In this chapter1, we analyse gaze and speech behaviours to gain insights into conversational dynamics
between dyads, during an unstructured free-flow conversation. Nonverbal cues have multiple roles
in social encounters, with gaze behaviours facilitating interactions and conversational flow. Using
automatic analysis (rather than manual labelling), we investigate how the gaze behaviour of one
person is related to how much the other person changes their gaze (frequency in gaze change) and
what their gaze target is (direct gaze-DG or avert gaze-AG). Our results show that when one person
is looked at, they change their gaze direction with a higher frequency compared to when they are
not looked at. They also tend to maintain a direct gaze on the other person when they are not
looked at. The outcomes of this work contribute to a more realistic gaze model for agents, by
modelling more complex dynamics for virtual characters. This could be applied to a wide range of
VR applications, such as soft skill training, language learning, and entertainment.

3.1 Introduction

When we interact with other people we use both verbal and nonverbal signals, not only to make
ourselves understood but also to check if the message is received as we intended. Gaze behaviour is
one of the nonverbal cues that facilitates interaction and the conversation flow. Its dynamics can
be very different in live social interaction from, for instance, when watching a video [Cañigueral

1Results published in: Dobre, Georgiana Cristina, Marco Gillies, Patrick Falk, Jamie A. Ward, Antonia F. de
C. Hamilton, and Xueni Pan. "Direct gaze triggers higher frequency of gaze change: An automatic analysis of
dyads in unstructured conversation." In Proceedings of the 2021 International Conference on Multimodal
Interaction, pp. 735-739. 2021 https: // doi. org/ 10. 1145/ 3462244. 3479962

https://doi.org/10.1145/3462244.3479962
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et al., 2021]. Gaze is tightly coordinated with other nonverbal behaviours such as speech [Kendon,
1967, Ho et al., 2015]. Gaze is an important part of social interaction with many different functions.
Some of these functions are: regulating the conversational turns [Kendon, 1967], providing extra
information in ambiguous situations [Macdonald and Tatler, 2013], giving insights about how people
think or feel [Baron-Cohen et al., 1997], getting the other person’s attention or approval [Efran and
Broughton, 1966], signalling attractiveness, dominance and threat [Ellyson et al., 1981, Argyle and
Dean, 1965, Emery, 2000].

During a conversation, the amount of time one person looks at the other person varies considerably
[Kendon, 1967, Exline, 1963]. On average, listeners tend to give more DG to speakers, with these
DGs being broken only by very short AG periods [Kendon, 1967]. However, the DG and AG of
the speaker tend to be, on average, more equal in length. In other words, the speaker’s AG is
considerably longer than that of the listener. This led to our first hypothesis H1, such that listeners
performs more DG than speakers, which also serves as a validation of our data and method.

H1: Listeners perform more DG than speakers.

Another factor in gaze is an approach/avoidance conflict. Argyle and Dean [Argyle and Dean,
1965] proposed that eye contact or mutual gaze (when both participants are gazing at each other)
is, on one hand, actively sought in conversations for increasingly closeness and self-validation. On
the other hand, there is a tendency to avoid excessive mutual gaze, as it can be overly intimate
and arousing. This leads to a conflict that is normally resolved by reaching an equilibrium level of
mutual gaze. This was the motivation for our second hypothesis H2 when a participant is being
looked at by their conversational partner (i.e., when their own gaze towards the partner would result
in mutual gaze), they will be more actively managing the level of mutual gaze through their own
gaze behaviour and will therefore switch between directed gaze (towards the partner) and averted
(away) more often (H2a). They will also look less overall at the other person (lower overall mutual
gaze), H2b.

H2a: When someone is being looked at (receiving DG), they would switch back and forth between
performing DG and AG with a higher frequency compared to when they are not being looked at.
H2b: When someone is not being looked at (receiving AG), they would look more at the other
person’s face (DG) than somewhere else (AG).

Hence, the interaction dynamics between people are greatly influenced by the participants in the
interaction. Looking at only one’s behaviour gives only partial insights into nonverbal behaviours
in interactions. Works such as [Dermouche and Pelachaud, 2019b, Ahuja et al., 2019, Feng et al.,
2017] take into account data from all participants in that interaction to detect or generate different
aspects of social interactions. Although it helps advance the field, a nonverbal behaviour model
based solely on one’s data leads to behaviour that is neither flexible nor contextual.

Understanding the gaze behaviour dynamics between two people can inform constructions of gaze
and non-verbal behaviour models for conversational agents. This is particularly relevant now, as
some Virtual Reality (VR) headsets come with gaze tracking capacity (e.g. VIVE Pro Eye), enabling
a whole range of applications in gaming and social skills training, where gaze behaviours appear
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to be similar to when taking place in real-world interactions [Sidenmark and Gellersen, 2019].
Importantly, the agent’s nonverbal behaviour has implications in maintaining the user’s plausibility
illusion [Slater, 2009]. For instance, poor coordination between gestures and speech can make
the agent be seen as nervous or not eloquent, while poorly timed gaze behaviour can disturb the
conversation’s smooth flow [Neff and Pelachaud, 2017].

In previous works, researchers would either observe and label a social interaction live [Kendon and
Cook, 1969] or they would video record the interaction for later analysis [Duncan, 1972]. Some of
these studies look at a structured task between two participants [Freeth et al., 2013] when they have
predefined actions such as going through a set of predefined questions. A benefit of these types of
structured interactions is the ability to control better the conversational roles (speaker/listener).
Although they do have important contributions to the field, the results from structured tasks are
not always applicable in free-flow conversations, with clear limitations when used as a building block
for nonverbal behaviour models used in autonomous virtual agents.

In unstructured tasks, participants are usually instructed to speak about a certain subject (free-
flow conversations) or to speak with a confederate about a certain topic [Hessels et al., 2019].
These tasks are closer to how people interact every day and can capture different conversational
dynamics between participants. Insights from studies with unstructured tasks could help create
a nonverbal behaviour model for autonomous agents. Gaze behaviour, for example, is one of the
social behaviours that has been well studied [Ho et al., 2015, Argyle and Ingham, 1972b, Kendon
and Cook, 1969].

One major challenge in the analysis of unstructured conversation data is the annotation or labelling
of the specific events within the recording, which are typically more time-consuming than struc-
tured ones. Although interesting results are emerging from these, it would be difficult to scale the
manual annotations to large datasets. Also, it brings challenges when working with interactive
autonomous agents, as the same manual data labelling needs to happen in real-time, making it not
truly autonomous.

We aim to explore conversational dynamics between two people in a free-flow discussion that could
be later integrated into a nonverbal model for an autonomous agent for real-time social interactions.
We use automatic data annotation methods and considered the gaze targets of either looking at the
other person’s face (direct gaze) or not looking at the other person’s gaze (avert gaze). We consider
the following hypotheses:

• H1: Listeners perform more DG than speakers.

• H2a: When someone is being looked at (receiving DG), they would switch back
and forth between performing DG and AG with a higher frequency compared to
when they are not being looked at.

• H2b: When someone is not being looked at (receiving AG), they would look more
at the other person’s face (DG) than somewhere else (AG).
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This initial work aims to strengthen our understating of gaze dynamics. We plan to further include
these findings in building nonverbal behaviour models for autonomous agents in virtual environments
however, this is not covered in this chapter.

3.2 Dyadic multimodal dataset

The multimodal data was planned and recorded by the Social Neuroscience group at the Institute
of Cognitive Neuroscience from University College London (antoniahamilton.com). The setup in-
volved a room with two stools so that each pair of participants was facing each other at a distance
of approximately 1.5 m (Fig. 3.1). A projector screen to the participants’ side showed instruc-
tions, with pre-recorded audio cues played by a speaker. The researcher was separated from the
participants with a curtain. They remained in the same room, but could not be seen nor did they
interact with participants during the experiment. A video camera recorded the whole session. Each
participant wore a lapel microphone. Their voices were registered on an audio file (left and right
channels). Each of them also wore the PupilLab glasses (pupil-labs.com) that recorded their eye,
gaze data, and a video stream of that person’s view. Upper body motion capture was also recorded
but excluded from this work.

There were 62 participants recruited from a local mailing list. They were paired up as 31 dyads
given their availability. Participants acclimatised to the experimental set-up through a PupilLab
glasses calibration session and a task of watching a short cartoon. We did not include these parts
in the analysis. Next, they were engaged in three types of tasks: discussion, picture description
and meal planning (recipe). There were five sessions in the following order: discussion 1, picture
description 1, recipe, picture description 2 and discussion 2. The activity took on average one hour
to complete. Here only discussion 1 & 2 and recipe were included as they both are unstructured
tasks where participants were not told when to speak or listen. They were left to talk freely. During
the discussion task, the participants talked about a three-minute short children’s cartoon video that
they previously watched together. The video had no words and it was about a drawn line creating
obstacles for a character [Roberts, 2011]. The aim is to re-create a scene of remembering shared
events with others. During the discussion task, both participants are asked to recall the events from
the cartoon video. This task allowed participants to have a free-flow unstructured conversation, to
discuss what happened in the video and help each other remember as many details as possible.

This task lasted two minutes, and took place on two occasions for each pair, resulting in a total of
four minutes of dialogue for each dyad. In the recipe task, the participants spoke freely in order to
plan a meal that uses ingredients both dislike. This task took approximately five minutes for each
dyad.

The gaze target data was exported from the PupilLab software, and it can have low confidence when
the eyes are closed (blinks) or when the target gaze can not be detected due to the eye shape, the
participant’s makeup, or if the PupilLab glasses were not well fitted. Out of the 31 dyads and 93

task datasets (three tasks per dyad), we removed 37 datasets as the overall gaze target confidence

antoniahamilton.com
pupil-labs.com
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Figure 3.1: Setup for recording the dyadic data

Person 1 and 2 are seated in front of each other. The footage was recorded from a
camera on each person’s PupilLab Glasses. The blue box and the facial landmarks

were exported from OpenFace software and added to the original video.

was less than 65%. We consider 56 tasks from 23 dyads. There were 18 same-sex dyads and 5
mixed-sex dyads (41 female and 5 male).

Out of the total 56 datasets there were: 21 for discussion 1 (D1), 18 for discussion 2 (D2), and 17

for the recipe (R) task. A total of 164 minutes were recorded, with 78 from D1 and D2 combined,
and 86 from R. Out of these 23 dyads, 11 had the speech recorded only from one lapel microphone
due to a technical error. They were excluded from the speech-related results (i.e., H1). From those
with full audio available, we considered all three tasks from 8 of the dyads, D1 from one dyad, R
from one dyad, D1 and R from one dyad and finally both discussions (D1, D2) for one dyad. There
are in total 10 recordings for D1 and R, and 9 for D2. This brings a total of 29 tasks and 88 minutes
of data (50 from R and 38 from D1&2).

Data post-processing

We post-processed the data from the PupilLabs glasses and the audio files. Here, the term audio
describes the sound that comes from a participant - it includes the speech but also laughter or
backchannels.

From the PupilLabs software, we exported the gaze targets and the person’s view in video format.
We used the video for getting the face location of the other person (the person they were looking
at). To generate the face position data, we used OpenFace software [Zadeh et al., 2018]. From
OpenFace we calculated a square to fit the participant’s face. However, as the returned values
represented the face contour (excluding the forehead), we enlarged it with 10%, to capture the edge
of the face. With the gaze target data for each participant and the face coordinates of the other
person, we were able to detect the behaviour of looking or not looking at the other person’s face
(DG/AG) by checking if the gaze target is inside the facial contour. The data was recorded at a
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30Hz frames per second frequency. However, to limit the noise in the data, we scaled it down to 6

frames per second, combining each continuous 5 frames.

Each channel from the audio files was post-process by applying Google’s WebRTC Voice Activity
Detector (webrtc.org/) via the python interface pyvad version 0.1.3 (pypi.org/project/pyvad/).
The detector output was binary voiced or unvoiced data (value 1 or 0) per sample for each audio
channel with a sample rate of 22050 Hz. Each channel represents one person from a given dyad. As
the gaze data is represented with 6 frames per second (166ms) frequency, we used the same frequency
for the audio data. We summed the values for each 166ms window: if the window was unvoiced,
the resulted value was 0, whereas if the window was fully voiced, the resulted value for that window
was 3675 (dividing the sample rate by six: 22050/6). Hence, the outcome voice detection file had
a frequency of 166ms, and each of these data points had a value between 0 and 3675.

Participants were in close proximity, hence the microphone from one person was recording some of
the activity from the other person. We considered this when post-processing the voice detection
files. Given person A with their microphone mA and person B with their microphone mB, in the
ideal scenario, mA would record only A’s voice and mB only B’s voice. In reality, as A starts
speaking (while B remains quiet), mA captures A’s speech, however, mB also captures some of
this speech. In this situation, in the data from the voice detection file, the values from mA are
higher than the values from mB (the voice detection files contain values between 0 and 3675, see
above). Because of this, we compared the values from mA and mB by each data frame and marked
as ‘speaking’ the person whose voice detection value is higher. If the value is equal, then both of
them are marked as speaking. This is usually the case when both data points from mA and mB
had the highest value (3675). After this second data post-processing, the voice detection file has
binary values: 0 for listening and 1 for speaking.

This post-processing might also introduce very short speaking duration sections (less than one
second) that are not from the person currently speaking but rather their microphone captured
them from the other person’s speech. To tackle this issue, we filtered any sections of speech shorter
than one second. This also removed some of the backchannels or laughter that appear in the audio
as the voice activity detector does not account for them.

3.3 Data analysis and results

3.3.1 Gaze behaviour during conversational roles

Firstly, we analysed the data to validate the most common gaze behaviour recorded in previous
literature [Kendon, 1967]. In line with our hypothesis, the speaker has a higher amount of AG
behaviour (looking away from their partner’s face) while the listener has a higher DG (looking at
their partner’s face). We split the data into two parts based on the conversation role label (speaking
or listening). Then we calculated the percentage of which a participant is looking at their partner
or is averting their gaze, for both parts. On average, the listener looked more at their partner (69%)
while the speaker had a DG of (61%). The percentages differed based on the task. In D1 and D2,

webrtc.org/
pypi.org/project/pyvad/
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Figure 3.2: Direct Gaze percent speaking and listening

The y-axis shows the DG percent while being a speaker or a listener during each task.
The tasks on the x-axis are in chronological order (D stands for discussion (1 and 2)

and R stands for recipe)

the listener had 71% DG while the speaker only 60%. The difference is smaller in the Meal Planning
(Recipe) task with 65% of direct gaze while listening and (61%) while speaking.

We performed a repeated measure two-way ANOVA with the conversational role (speaker and
listener) and the task (D1, D2 and R) as factors. No interaction effect was found (F (2, 7) =

4.148, p = 0.065, η2 = 0.542), and no effect was found for Task (F (2, 7) = 0.238, p = .794, η2 = 0.64).
However, there was an effect on role (F (1, 8) = 71.024, p < .001, η2 = 0.899). As expected, the
speaker performed significantly less DG, confirming H1. Figure 3.2 shows the values for each task
and by role.

3.3.2 The effect of being looked at on own gaze

We were interested in the hypothesis that when someone is being looked at, they change their
gaze differently compared to when they were not (H2a). Here we analyse how much they were
changing their gaze behaviour per second. The gaze behaviour can be either DG (looking at the
other person’s face), or AG (looking away from the other person’s face). Here we used all 56 tasks.
We first separated the data into two datasets: when the participant is looked at (dataset L) and
where they are not (dataset nL). We did this for each participant in the dyad. Next, we computed
the sum of all the changes in gaze behaviour of the person being looked at (from dataset L) or not
being looked at (from dataset nL). We then calculated how many seconds are in L and in nL. With
these values, we calculated the frequency of gaze change per second by dividing the total seconds
from the gaze change value (see Equations 3.1 & 3.2).
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Figure 3.3: Gaze dynamics while being or while not being looked at

a: Gaze change frequency while being or while not being looked at during each task.
b: Direct Gaze percent while being or while not being looked at by task. The tasks
are in chronological order (D stands for discussion (1 and 2) and R stands for recipe)

Lgaze_change_fq =

∑
Lgaze_change∑
Lduration

(3.1)

nLgaze_change_fq =

∑
nLgaze_change∑
nLduration

(3.2)

Figure 3.3a shows the results by task, with the nLgaze_change_fq having lower value compared to
Lgaze_change_fq. A repeated measure 3 × 2 two-way ANOVA (task and L: looked at/nL: not looked
at). No interaction effect was found (F (2, 15) = 1.001, p = 0.391, η2 = 0.118), so as for Task
(F (2, 15) = 1.590, p = .236, η2 = 0.175). However, there was an effect on Looked at (F (1, 16) =

21.681, p < .001, η2 = 0.575). This confirms H2a that when being looked at, participants change
their gaze pattern significantly more frequently compares to when they are not.

Given that participants were making fewer changes in gaze while they were not being looked at, we
analysed behaviour during those periods, which led us to H2b. Hence, we calculated the percentage
of DG of each person while being or not being looked at. We considered all 56 task datasets for
this analysis.

As before, we first separated the data into two datasets: the part where the participant is looked at
(dataset L) and the part where they are not looked at (dataset nL). We considered each participant
in the dyad separately. Next, we summed the DG by the person being looked at (from dataset L) or
not being looked at (from dataset nL). The percent is calculated by dividing the amount of direct
gaze by the dataset size, either dataset L or dataset nL (see Equation 3.3 & 3.4).

Ldirect_gaze_percent =

∑
Ldirect_gaze

Lsize
(3.3)

nLdirect_gaze_percent =

∑
nLdirect_gaze

nLsize
(3.4)
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A repeated measure 3 × 2 two-way ANOVA was performed with two factors (task and gaze behaviour
of their partner - L: looked at/nL: not looked at). No interaction effect was found (F (2, 15) =

2.995, p = 0.080, η2 = 0.285), and no effect was found for Task (F (2, 15) = 2.026, p = .166, η2 =

0.213). However, there was an effect on Looked at (F (1, 16) = 28.091, p < .001, η2 = 637). This
confirms H2b that when not being looked at, participants tended to perform more DG than when
they were (see Figure 3.3b).

3.4 Limitations and discussion

A limitation of this study is our dataset which contains only dyads between strangers. The social
dynamics cues between people can be different based on the familiarity of those participating in
the conversation. Therefore, the results presented here might not generalise to different groups of
people that are acquainted with each other from before the study. Further work is needed here to
test whether our results stand if there is a level of familiarity between the conversation partners.

As with manual annotations, it is possible that our automatic data analysis process brings some
degree of error. Hence, our H1 serves as a validation and was supported. We manually annotate
a limited part of our data and the results were largely in agreement with our automatic analysis.
We also used statistical tests to compensate for the noise. Further, with our automatic annotation
method small errors can be compensated by the use of a large number of frames of data (higher
frequency and longer time), also making it possible to scale to much larger datasets which would
lead to better generalisation. Thus, we argue that the automated annotation method is one of the
contributions of this study. However, a replication of this work using manual annotations could
further strengthen our annotation method and results.

The Recipe task has a smaller effect for all three hypotheses. These differences in results could be
explained by the task’s nature. During the recipe task, the participants were asked to come up
with a meal plan containing only foods both participants dislike. This led to silent periods where
participants were thinking about the food they do not like, but also to more speech overlap, sections
of laughter and backchannels. We believe that the smaller effect of this task is due to the nature of
it. This is a great example of natural free-flow social interactions between people. This could take
different shapes based on the main aim of the conversation and the common ground that gets built
as the interaction progresses.

We used in this study multimodal data collected by the Institute of Cognitive Neuroscience from
UCL. The whole dataset includes upper-body motion capture, speech and rich eye data. Our work
from this chapter focused on speech turns and direct/averted gaze direction (looking or not looking
at the other person in the dyad). More complex data could have been used, such as upper-body
movement, and other low-level eye data (blinks/saccades). However, this was outside of the scope
of this work. We believe that future work examining other social dynamics in free-flow conversation
could bring important contributions to the field and could add to the insights presented in this
chapter.
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3.5 Summary

This work is the initial step towards the understanding of non-verbal behaviours from face-to-face
interactions which act as the base for building models and advancing the area of autonomous agents.
We analyse gaze and speech behaviour to gain insights into conversational dynamics between dyads,
during an unstructured conversation. We used an automated method to annotate speech and gaze
data from 56 unstructured tasks, from 46 participants. We found that people tended to have a
higher frequency of gaze change (from averting to directing and vice versa) when they were being
looked at compared to when they were not. During the times when the participants were being
looked at, they were also directing their gaze to their partners more compared to when they were
not. Alongside the proportions of gaze, we also looked at how it changes when being looked at (hence
the use of gaze change frequency as a dependent variable). The outcomes are a direct contribution
to understanding human interaction towards developing a diagnostic tool for neurological disorders
such as autism and depression. Also, the work contributes to a more realistic gaze model for VR
applications such as soft skill training, language learning, and entertainment, by modelling more
complex dynamics for VCs.

After this insight into conversational dynamics, in Chapter 4 we move towards understanding and
recognising higher-level and more complex nonverbal behaviours in social interactions. We cover
social attitudes, with a case study on social engagement, and similarly to conversational dynamics,
this work on social attitudes further contributes to building models for autonomous agents.
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4
AGENTS: Immersive ML for Social Attitude Detection

In this chapter1, we present our work on the development of a pipeline for training an ML model to
detect social engagement. The pipeline features an immersive data collection and data annotation
in VR for training an ML model to detect social engagement in a VC-user interaction. People can
understand how human interaction unfolds and can pinpoint social attitudes such as showing interest
or social engagement with a conversational partner. However, summarising this with a set of rules is
difficult, as our judgement is sometimes subtle and subconscious. Hence, it is challenging to program
NPCs to react towards social signals appropriately, which is important for immersive narrative games
in VR. We collaborated with two game studios to develop an immersive machine learning pipeline
for detecting social engagement. We collected data from participant-NPC interaction in VR, which
was afterwards annotated in the same immersive environment. Game design is a creative process
and it is vital to respect the designer’s creative vision and judgement. We, therefore, view the
annotation as a key part of the creative process. We trained a reinforcement learning algorithm
(PPO) with imitation learning rewards using raw data (e.g., head position) and socially meaningful
derived data (e.g. proxemics); we compared different ML configurations including pre-training and
a temporal memory (Long Short-Term Memory algorithm - LSTM). The pre-training and LSTM
configuration using derived data performed the best (84% F1-score, 83% accuracy). The models

1Work published at Springer Virtual Reality: Dobre, Georgiana Cristina, Marco Gillies, and Xueni Pan. "Im-
mersive machine learning for social attitude detection in virtual reality narrative games." Virtual Reality 26, no.
4 2022: 1519-1538 https: // doi. org/ 10. 1007/ s10055-022-00644-4
and at the Conference on Intelligent Virtual Agents: Dobre, Georgiana Cristina, Marco Gillies, David C. Ranyard,
Russell Harding, and Xueni Pan. "More than buttons on controllers: engaging social interactions in narrative VR
games through social attitudes detection." In Proceedings of the 22nd ACM International Conference on
Intelligent Virtual Agents, pp. 1-8. 2022 https: // doi. org/ 10. 1145/ 3514197. 3551496

https://doi.org/10.1007/s10055-022-00644-4
https://doi.org/10.1145/3514197.3551496


Chapter 4. AGENTS: Immersive ML for Social Attitude Detection 58

using raw data did not generalise. Given the pipeline’s results for social engagement detection, we
generalise it for detecting human-defined social attitudes.

Overall, this work introduces an immersive ML pipeline for detecting social engagement in user-VC
social interactions. We aim that the user-VC’s engagement information from the trained model will
be used in the future by game creators as an add-on in their design pipelines. With it, they could
enable the development of rich interactions for the VCs based on VC’s interactions with the players
during the game. As these are our separate long-term goals, they are out of the scope of this chapter.
Thus, this chapter covered the motivation for this project, the joint academia-industry work, the
study design for the data collection, and the configuration, training and evaluation of different ML
models.

4.1 Introduction

Complex human behaviours exhibited in everyday social interaction are hard to recognise automat-
ically and therefore to use as a mechanic in video games. As a result, players often find themselves
driving a social interaction in a video game by choosing what to do from a menu (see Section
2.4.1 for examples). In immersive virtual environments, this could break the plausibility illusion
[Slater, 2009] and lead to break-in-presence [Slater and Steed, 2000], which takes the players back
to the real-world and significantly reduces the level of immersion. In this chapter, we explore a
novel pipeline in game design, combining ML and VR, with the aim to make social interactions in
VR narrative games more engaging, immersive, and inclusive (in the sense that it will appeal to a
broader audience than current video games).

VR devices could enable richer input mechanisms than that of traditional video games. In non-VR
games, often players are limited to 2D user interfaces (keyboards, 2D game controllers). In VR,
users can deploy a diverse range of motions in 3D: they can use their limbs, head, or their whole
body as a form of input to drive the interaction, as they would do in their day-to-day life.

One of the most promising uses of body movement in VR is social interaction with VCs, or NPCs.
In face-to-face interactions with people, we use our bodies extensively as non-verbal communication
(colloquially called ‘Body Language’), including actions such as gaze (eye contact), gestures, posture
and the use of personal space. VR opens the possibility to use these social cues as first-class elements
of gameplay and thus creating much richer social experiences in games.

However, when the user input is more complex than button-pressing, it is a challenge to interpret its
meaning in real time. Rule-based methods work well for detecting certain social behaviours when
the hands and head need to be in a certain position and/or rotation (e.g., raising hands or looking
at something). On the other hand, more complex social behaviours such as social attitudes (e.g.
sympathy, affection, aggression or social engagement) are more difficult to detect using fixed rules,
and we might even judge the same situation differently due to our personality and expectations.

Nevertheless, there are clear benefits to replacing traditional explicit interactions (selecting an option
by clicking a button) with implicit interactions (social attitudes expressed via body language),
where the player’s non-deliberate, implicit actions are inputs for a game [Schmidt, 2000]. This is in
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particular important for maintaining the plausibility illusion in character-driven narrative games in
VR where players could engage with NPCs naturally. Furthermore, being able to explore the use of
social attitude with NPCs as a possible game mechanic (as opposed to, for instance, shooting NPCs
with a gun) also makes games more inclusive and appealing to a wider demographic than current
video games.

For this project, we worked closely with two immersive game studios (Dream Reality Interactive
and Maze Theory) to create a pipeline for detecting such social attitudes that could be used as
implicit interaction in a narrative VR game. The detected social attitude can then be used to
trigger different behaviours in the NPC or in the game environment itself, influencing how the game
continues. These triggers are to be decided by the game designers and game creators, based on how
they envision the game and the gameplay. For instance, if a player is detected to be sympathetic
to an NPC, they could gain a higher trust score from this NPC. Or if a player is perceived to
be socially engaged with an NPC, the NPC could display animations that reflect a higher level of
social engagement in return. The developed pipeline is meant to be integrated into the game studio’s
animation process in order to use the predictions to animate the NPC or the game environment.
The pipeline is independent of any company-dedicated software as the set-up (Figure 4.2 part A, B)
can be recreated and the algorithms used are available for implementation in other software. In this
chapter, we focused on the social attitude detection part, the NPC’s response to the user’s social
attitude in the game being out of our scope. Although we used the pipeline for the case of detecting
social engagement, we argue that the pipeline can be generalised and used for other social attitudes
such as sympathy, affection or aggression. For more details into the social attitude chosen, see the
first challenge (gamer behaviour) in Section 4.2.

Game design is a creative process that involves the design of mechanics that guide players into
certain desired behaviour patterns. While it is important that these behaviours in some way reflect
players’ natural inclinations, they are also defined by game designers who may want to guide players
away from their more common patterns of behaviour. This is particularly true of the scenario we
are studying in this chapter, as there was an explicit desire to guide players away from traditionally
anti-social behaviour in narrative games towards pro-social interaction. Therefore, we view the work
on social engagement detection as a creative interaction design process. Game designers should be
in control of how the game, and characters in particular, respond to different actions in a player,
just as, in traditional games, designers are in control of how the game responds to button presses.
The definition of social engagement should not be viewed as an attempt to capture some objective
measure (as might be done in traditional machine learning), but as a reflection of the game designer’s
creative judgement. The integration of machine learning into the creative process of game design
and the foregrounding of creative judgement is one of the main contributions of this work.

The above-mentioned factors, that social attitudes are largely subconscious, that the behaviour
is implicit and that this forms part of a creative project (a game), create a situation that we
believe is relatively little studied. We are attempting to recognise a concept with no clear explicit
definition. Social engagement, and certainly the behaviours associated with it are highly variable
and contextual. If we were to attempt a definition it would be far higher level than the detail needed
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for computational implementation. There is also no ground truth. Biometric measures might be
used in some emotional contexts, but can only really distinguish low-level physiological states such
as arousal, not high-level cognitive/emotional/social concepts like engagement. So we are dealing
with a concept that can be defined only implicitly through human judgement. It might be possible
to use player’s own judgement of their feelings while interacting with a character, but these may
not correspond well to their outward behaviour, it is perfectly possible for a person to be interested
in what another is saying without outwardly displaying it, or conversely to outwardly appear highly
engagement while inwardly feeling bored and thinking of other things (a fairly common human
behaviour pattern). More importantly, the use of the player’s own annotations would compromise
the creative process. As described above how players interact with the game should be the result of
a design process led by creative judgement. In this work we, therefore, treat the definition of social
attitudes as a creative process driven by the judgement of a game designer. Social attitudes are, in
this work, therefore concepts without explicit definition or ground truth and defined solely through
expert creative judgement. This type of interaction design concept will be increasingly common as
VR becomes a medium used by creative practitioners and which attempts to tap more complex and
subtle aspects of human behaviour. Machine learning is particularly well suited to this task as it
does not require an explicit definition at any point, simply a set of examples, which can be created
through creative judgement. This is the key aim of this chapter.

4.2 Challenges and Contributions

Challenges

As we are collaborating with two game companies, we aim to develop a workflow which supports
their creative design process and can be implemented into a production-ready VR game for the
consumer market. At the beginning of the process, we identified our three key challenges:

1. Gamer Behaviour: this is part of a product that will be available on the market. Thus it
has to work for most gamers (who will be paying for the game), which is very different from
experimental studies with paid participants in the lab we were more accustomed to.

2. Creative Process: not only do we want to automatically detect a complex social attitude
in real-time, but the expert annotator’s judgement also has to be part of the creative process.
In the game industry, Creative Directors define the artistic design of a game - we will need to
include them as much as possible in this process.

3. Market Reach: the game has to be accessible for as many players as possible, meaning it
will be developed cross-platform, considering the most commercially available headsets. This
also means we are limited to the consumer market VR Headsets inputs (i.e., no access to
eye, mouth, or EEG trackers) and software platforms that are compatible with major game
consoles.

In order to tackle the first challenge, we need to better understand the Gamer Behaviour. After
several in-depth discussions, we learnt from our industry partners that although players usually
talk to other players in an online game, they almost never directly talk to NPCs. Thus, we needed
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to create a scenario where the specific chosen social attitude could be present without the user
speaking to the NPC. Through multiple brainstorming sessions (see Figure 4.1), we identified social
engagement as an initial suitable social attitude to detect, as it could be present merely as a listener
behaviour. It is also suitable for their current game in production, where the player has to gain the
trust of various NPCs as part of their mission.

Figure 4.1: Notes from brainstorming sessions with collaborators from the game
industry.

To address the challenge of detecting complex social behaviours and making it part of the Creative
Process (in which the creative director could be involved as much as possible) we decided to explore
the method of imitation learning where the ML algorithms could learn from their creative director.
We taught an ML model to imitate how a human judges social interactions (Figure 4.2). We chose
this because, as humans, we can easily detect the level of social engagement without always being
able to verbally describe it, and different people might make different judgements for the same
set up of behaviours due to their individual experiences. The ML model was trained on human
annotations of the interaction between the user and the NPC in VR. The annotation also took
place in VR, making it an immersive process (Figure 4.7). This enhances the annotator’s capability
of observing the interaction from multiple angles and moving around the scene freely in the recorded
interaction.

To make the game accessible to a broad market (Market Reach), we were limited to developing the
pipeline with data captured from the player’s headset and hand controller. We were also platform
restricted, having to design the data collection study and train the ML model within the Unity3D
game engine (unity.com), using Unity ML-Agents. Further, we needed to use less complex ML
models to reduce the computational cost, increasing the successful deployment and usage on all VR
consumer devices, such as Oculus Quest, PSVR and PC-powered VR devices, in order for the game
to work in real-time while maintaining frame rate required for running VR.

We chose an imitation learning approach, rather than, for example, a supervised classification in
order for the method to fit more broadly within the framework of virtual agent behaviour used
in industry. While supervised learning focuses on learning direct mappings between an input and
output, reinforcement and imitation learning methods learn policies: probability distributions on
the actions agents take in particular circumstances. A policy determines which actions should be

unity.com
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taken in a given state of the world and the agent. Thus, this is a direct driver of the agent’s
behaviour. This focus on actions taken rather than mappings makes it well suited to modelling the
behaviour of agents. Reinforcement learning is, for this reason, the most commonly used learning
approach in the games industry [Shao et al., 2019]. This makes it appealing in our context for two
reasons. Firstly, it is the most familiar approach in the games industry and is therefore more likely
to be adopted. Secondly, it is more readily extensible to more complex agent behaviour models,
which might not be the case for supervised learning. However, reinforcement learning per se is not
suitable for this application, since it requires a well-defined measure of success or failure to use as
a reward signal. In a standard game, the score or win/lose condition can be used, however, this
does not apply to social interaction. Instead, we use imitation learning in which the reward signal
is determined based on how well the agent’s behaviour matches a human demonstration.

Contributions

The main contribution of this work is the introduction of a creative director-focused pipeline for
machine learning of social attitude detection. This pipeline provides three principle novel con-
tributions:

1. Immersive experiment design

2. Immersive data annotation environment

3. ML model for implicit social attitudes detection.

First, we designed and conducted an experimental study of an immersive data collection process
in which participants listened to an NPC’s monologue (prepared by professional writers from the
national centre for immersive storytelling, StoryFutures Academy) in a VR environment closely
resembling a real game social interaction. In three different VR stages, we gave participants either
no instructions (VR stage 1 ), instructions that would very likely lead to socially engaged (VR stage
2 ) or socially disengaged behaviours (VR stage 3 ). Results from this experiment not only gave us
useful insights into how players could behave in a VR game but also provided data to train our
ML algorithms. Participants without instructions did not normally engage in social interactions,
showing the benefit of providing realistic game tasks to guide behaviour during data capture (see
Section 4.3.3).

Secondly, we developed an immersive environment where game designers could annotate the cap-
tured data, identifying instances of particular social attitudes. This VR environment placed the
annotator in the same virtual space as the participant and the VC, enabling them to watch the
interaction as if it were a real-life conversation. This allows, first, to make the most effective use
of their social cognition, and second, to create an artist-friendly environment for data annotation,
which is close to real gameplay experiences. The latter turns data annotation from a technical task
to one that benefits from an interaction design skill.

Finally, with our pipeline, we were able to train an ML model to detect implicit social attitudes in
VR interactions with 83% accuracy. Specifically, we used a reinforcement learning algorithm with
imitation learning rewards from examples set by human experts. We report our comparison between
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Figure 4.2: Pipeline for detecting human-defined social engagement

The pipeline includes an immersive data collection (user interaction (A) and expert
annotating (B)) for training the machine learning model. This takes place by pre-
training the model, creating Generative Adversarial Imitation Learning (GAIL) re-
wards for the reinforcement learning algorithm Proximal Policy Optimisation (PPO)
that also uses a temporal memory called Long Short-Term Memory (LSTM) algo-
rithm (C). This process exports a trained ML model (D). In a user-VC interaction
(E), the trained model (F) detects in real time the human-defined social attitude (G)

which could be used in different scenarios.

the model’s configurations and features that worked well. Our results show that pre-training the
ML model improved the performance as did the use of temporal memory via an LSTM network. In
addition, we propose several psychologically derived data features as inputs to the training which
we show generalise better than raw features.

In the following, we describe how the pipeline is used for detecting social engagement in Section 4.3,
where we also cover the experimental study with the data collection and the annotation process in
VR. In Section 4.4 we describe how the model is trained, covering different input data and model
configurations; then we present our results in Section 4.5. Section 4.6 explains how the pipeline
could be generalised to be used as a detection tool for other social attitudes. We cover the limitations
and discussion in Section 4.7 and conclude in Section 4.8.

4.3 Method: social engagement detection

Here, social engagement broadly refers to the social engagement one shows in social interactions
linking it to the action of paying attention and showing interest. However, social engagement is a
complex and subjective social attitude that is difficult to be described using concrete rules. Humans,
on the other hand, have the ability to easily identify when social engagement takes place. Since
this understanding is implicit, and we are designing a machine learning process based on creative
judgements not on an objective definition, we do not formally define social engagement. Instead,
the concept emerges implicitly from the annotator’s judgement of participants’ behaviour. In this
Section, we describe how to detect social engagement between a user and a VC in an immersive VR
scenario using the ML pipeline from Figure 4.2.

In the next part of this Section, we detail how we used the pipeline to collect data for detecting
social engagement. We collected the data from users and then from the annotator. These processes
happened separately but both in VR. We first describe the scenario we designed especially for
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this data collection process (Section 4.3.1), then data collection with participants (Section 4.3.2),
followed by how the annotation was done (Section 4.3.3) and finally, in Section 4.3.4 we present an
overview of the human’s annotations and the questionnaire result (Section 4.3.5).

4.3.1 The scenario for data collection

We created an immersive and interactive VR scenario where users’ behaviour can be recorded.
Specifically, users can interact with a VC (Figure 4.5 and Figure 4.4) created using Adobe Fuse
Software (adobe.com/uk/products/fuse.html) and rigged using Mixamo (mixamo.com). This in-
teraction took place in a room that we designed to reassemble a bedroom that will be used in
the game, as suggested by the game company Maze Theory (Figure 4.3). The user can interact
with, grab or change the location of the majority of objects in the room, for example, vanity box,
birdcage, pillow, flower and vase, books, bin or chair, but not others, such as picture frame, poster,
candle, rug, room divider.

Figure 4.3: Representation of the environment for data collection

Top view of the environment. It contains the main bedroom and a small hallway.
The user is able to freely move in the room and interact with most objects. It was
created in close discussion and with design assistance from both game companies.

Virtual character implementation. During the interaction, the VC carried out a monologue
about her family and her life. We collaborated with StoryFutures Academy, the national centre
for immersive storytelling where professional writers wrote a captivating monologue. Table 4.1
illustrates part of the monologue; for the full monologue see Appendix C. While performing the

adobe.com/uk/products/fuse.html
mixamo.com
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Figure 4.4: Frontal view of the virtual character

First person view of the VC that is used for the user interaction. It is shown with
two different poses, looking at the user and looking into the distance. The VC is
configured to fit the monologue scenario. It’s modelled using Adobe Fuse Software

and rigged using Mixamo.

monologue, the VC carried out animations for different behaviours as described in the monologue
script. The VC performed generic animations using inverse kinematics to express specific behaviours.
The VC maintained gaze and orientation towards the player for the whole duration of the mono-
logue. There were short parts when the VC gazed and faced different objects in the room (see the
full monologue in Appendix C). The VC’s behaviour was scripted to collect data to train the ML
model (see Section 4.4) and hence, it did not detect social engagement.

Study design. The study took place in VR and contained three stages based on the user in-
structions, which aimed to trigger both high and low social engagement behaviours in users. In the
first VR stage (S1) the user was not given exact instructions. They were told to interact with the
environment and the VC as they would do in gameplay, allowing us to study the range of different
behaviours that participants would perform without prompting, gaining insights into the type of
gameplay behaviours we could expect. In the second VR stage (S2), the user received instructions
to try to gain the VC’s trust, representing the kind of task players would be given in the game. This
VR stage aims to record mostly high social engagement data. For the third and final VR stage (S3),
the user received instructions to explore the room, representing a typical task that players would
be familiar with from other games. The interaction from S3 aimed to produce primarily low social
engagement data. All tasks were designed based on feedback from our game developer partners
from Dream Reality Interactive and Maze Theory to represent typical gameplay. For an example
of the participant’s behaviour in each part, see the video under the Supplementary Information on
the paper publication website: https://doi.org/10.1007/s10055-022-00644-4.

The three VR stages took place in the same order for all users: S1, S2, and then S3. Since we
are not comparing different stages, counterbalancing is not required. It was also not possible to

https://doi.org/10.1007/s10055-022-00644-4
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Figure 4.5: Example of users interacting with the VC

On the left, the user is listening while looking directly at the VC. In the middle, the
user is patting the VC on the shoulder. Based on the user’s questionnaire after the
session, the user is interacting with the VC by trying "[...] to comfort her [the VC]
by touching her shoulder when she was emotional [...]". In the image on the right, the
user is interacting with objects in the environment, in this case, the user is swinging

a birdcage.

counterbalance since doing Stages 2&3 before Stage 1 would prime participants’ performance in
Stage 1.

Ahead of S1, participants explored a training room that is similar to the room in the experiment,
where they could interact with objects (open drawers/doors, grab objects) and move around the
room. This extra step ensured the users were comfortable with the VR headset, navigation, and
VR interaction techniques. All three VR stages and the training step took place in VR with an
Oculus Rift Headset. It took about 5 minutes for each VR stage, resulting in each participant
spending about 20 minutes in VR, with a small break between each VR stage when they filled in
questionnaires.

4.3.2 User data collection in VR

There were in total 13 participants, 9 males and 4 females, aged between 20 and 46 years and an
average of 32 years old. In terms of VR experience, 31% used VR less than 10 times, 38% more
than 10 times but less than 50 and 31% more than 50 times. All participants voluntarily agreed
to take part in the experiment and signed a consent form. The whole process was approved by the
University’s ethics board.

The data collection took place in two batches because of time and participants’ availability restric-
tions. The first batch was with 6 participants and the second with 7. The only difference between
the first and second batches is the VC’s location and gaze direction (Figure 4.6). This difference
was introduced to investigate the effect of the agents’ gaze at various key objects, however, this did
not give significant results and will not be discussed in this chapter. Nonetheless, this did allow
for a more diverse dataset, where the VC had more than one location and variable head and body
orientations.
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Wistful monologue spoken with a sombre tone.
VC: That’s the only place we could laugh freely. The park with the
rose finches. They’ve built apartments on it now. No longer can I
ever go there. I wonder what happened to all the finches? Maybe they
found a new home.
VC stares directly at the player again, her brow slightly crumpled.
VC: Do you think they would have found a new home?
VC shakes her head briefly and her shoulders slump over a little bit.
VC: No, they’re like me, still looking for somewhere else to call
home. I often imagine them happy[...]

Table 4.1: A snippet of VC’s monologue.

The text in italic represents the scriptwriter’s indications. As an interactive mono-
logue, the user was directly addressed in sections such as Do you think they would
have found a new home? The monologue was created by the StoryFutures Academy.
For the monologue animation, see the video under the Supplementary Information on
the paper publication website: https://doi.org/10.1007/s10055-022-00644-4.

Figure 4.6: Virtual Character’s view in both data collection batches

The term session refers to each time the participant took part in the virtual scenario (regardless of
the VR stage), hence, there are three sessions for each participant. There is a missing session from
S3 in the second batch due to a software error, resulting in a total of 38 sessions, with 18 sessions
from the first batch (6× 3) and 20 from the second (7× 3− 1). In total, the time spent in the VR
environment by all participants is approximately 190 minutes (38 sessions × 5 minutes per session).

We run the experiment in Unity3D and we collected data from both users and the VC. As described
in Table 4.2, we recorded head, hands and root positions and rotations from the VC and the user.
The root for the VC was situated in the hip, and in the head of the user. The root is not the
same for the user and VC because the character model used was structured differently. Apart from
that, we also collected the user’s index and trigger buttons from the controller. They were using
these buttons to grab objects in the scene. And lastly, we collected the user’s headset velocity and
angular velocity to capture the user’s motion. We chose to collect the position and rotation data to
record where the user and the VC are in the scene and where they are facing. The user’s and VC’s
non-root (hands and head) information is relative to the root data as these elements are "children"
of the root element in the Unity hierarchy. This data is then mapped in between −1 and 1 to meet
the Unity ML-Agents recommended best practice (see Section 4.4.3). Because we used these values

https://doi.org/10.1007/s10055-022-00644-4
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straight from the trackers as they were available in the Unity3D engine, we refer to this dataset as
raw data. Although there is no clear definition of raw data in the literature, in this chapter we use
this notation to refer to the unaltered version of the data.

In total, over 108000 frames of data (multi-modal and at high frequency) were collected to train
and evaluate the ML model (see Section 4.4 and Table 4.4).

Information Recorded Data Type
User’s head position 3D Vector
User’s head rotation Quaternion

User’s left- and right-hand position 3D Vector
User’s left- and right-hand rotation Quaternion
User’s main head anchor position 3D Vector
User’s main head anchor rotation Quaternion

User’s left and right index and hand triggers Float
User’s Headset velocity and angular velocity 3D Vector

VC’s head position 3D Vector
VC’s head rotation Quaternion

VC’s left- and right-hand position 3D Vector
VC’s left- and right-hand rotation Quaternion

VC’s main anchor (hip) and chest position 3D Vector
VC’s main anchor (hip) and chest rotation Quaternion

Table 4.2: Types of data recorded during the VC-user interaction

Data was recorded from participants and VC; 3D Vectors represent the X, Y and Z
components in a vector data structure; The Quaternion represents the X, Y, Z, and

W rotation components

4.3.3 Human annotations in VR

A human annotator watched a playback of the user interacting with the VC and annotated their
interaction. As social engagement is a very subjective term and it has many definitions [Glas and
Pelachaud, 2015], a human annotator marked the data without directly defining social engagement.
In this case, the annotator implicitly defined social engagement by annotating it during the user-VC
interactions. The annotator labelled the sessions’ playbacks in random order. They did not know
which VR stage or which user they were annotating.

To ensure the annotator had rich social interaction information, they could access the user’s and
the VC’s camera view (showing their current viewpoint). This allowed the human annotator to
have access to exactly what they were viewing at any time while being in the same place as the
user and the VC. An example of this is seen in Figure 4.7 A. Different hand controller buttons (‘A’
and ‘B’) switched on/off the user’s or the VC’s camera view. The annotator marked the beginning
of the high or low social engagement period, using the other hand controller buttons (‘Y’ and ‘X’
respectively, Figure 4.7 B). As they pressed ‘Y’ or ‘X’ the ‘-’ or ‘+’ signs coloured for 0.5 seconds
with the corresponding colour (red or green). The ‘-’ or ‘+’ signs were on the annotator’s (virtual)
hand side.
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Figure 4.7: The expert’s annotation process

Expert’s annotations: A Controls mapping the camera view: the ‘A’ and ‘B’ buttons
act as a switch to activate/deactivate the camera view from the user’s or VC’s per-
spective. B Controls mapping the social engagement level: ‘X’ and ‘Y’ records the
current social engagement level rating, illustrated by colouring for 0.5 seconds the
red ‘-’ or the green ‘+’ signs next to the (virtual) hand. C Engagement marked by
the human annotator: P1 shows the average (x) and median (line) percentage of all
38 sessions by the VR stage. These VR stages took place in the same chronological
order (S1, S2, S3) for all participants. P2 illustrates the average percentage of all
sessions by the VR stage and by the participant. The back dotted line shows the 50%
threshold that delimits the high from low social engagement sessions. Each other
coloured line represents one participant. Sessions with a large mixture of low/high
social engagement are positioned on a grey background and marked with a square.

The participant’s avatar was represented in a simple way which showed only the head and hands
in an abstract form (see Figure 4.5 & Figure 4.7 A). This was important as it removed features
that were not accessible by the ML algorithm. Instead, the playback displayed only representations
reconstructed from the data collected from the players. Therefore, it ensured that the annotator
was not making judgements based on features that were inaccessible to the ML algorithm, and thus
cannot be learned by it. Gillies et al. [Gillies et al., 2015] give examples of this problem. Annotators
used video to annotate motion, but the learning algorithm used motion capture data. The result was
that annotators (consciously or subconsciously) detected different behaviours based on features such
as muscle tone or facial expression that were not available to the algorithm, which was therefore not
able to learn to distinguish the movements. Although facial and voice information are relevant when
it comes to social attitude detection (see Section 2.2.3), in this work we focused particularly on body
gestures. This is because of the technical limitations imposed by the HMDs available in the current
VR consumer market. We also decided not to include voice because each player could have very
different background noise and different accents (making recognition challenging and unreliable),
and we were informed by our game industry collaborators that gamers do not normally talk to
NPCs (see the Gamer Behaviour and the Accessibility challenges in Section 4.1). Furthermore, the
most important features from the literature (Section 2) such as gaze and body posture are strongly
related to the feature we chose: head and body movements.
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4.3.4 Annotations overview and validation

We computed the percentage of high/low social engagement labels between the user and the VC
from each session by each VR stage. We calculated it as a percentage of all high (respectively low)
social engagement frames over the total number of frames. As expected, when the users received
instructions to behave with high or low social engagement (S2 respectively S3), the users acted
accordingly. For VR stage S2, the mean of high social engagement is 79%. Similarly, for VR
stage S3 the mean percentage of high social engagement is 6%. For the VR stage S1, however,
the behaviour is mixed: most users showed low social engagement with some users displaying high
social engagement. Figure 4.7 C-P1 shows these averaged levels over the three VR stages for all 38
sessions. In Figure 4.7 C-P2, these values are separated by each user, showing their behaviour in
each session. The grey background colour highlights the sessions with a mix of high and low social
engagement.

Most of the sessions have the expected engagement level (most of S2 recording high social engage-
ment and S3 low social engagement level) with two exceptions for S2. Many users showed low
social engagement when not given an instruction (S1). Although most of the averaged session’s
social engagement can be categorised as low or high, there are two sessions (from S1 and S2) that
are very close to the 50% threshold (marked with a black dotted line). These two sessions have a
square marker in Figure 4.7 C-P2.

4.3.5 Questionnaire results

Participants answered a few questions after each VR stage. These questions were customised to the
VR stage they just experienced. They could also leave some free comments about that stage.

VR stage 1. After S1 (where they would hear the monologue for the first time without any
instructions), they were asked to answer questions about the VC, such as: to list the family members
the VC was talking about, the relationship the VC has with her family and how they think the VC
was feeling; they were also allowed to write any comments about this stage.
Three participants wrote that they didn’t listen to the VC and the other six that they stopped
listening after a while; these participants had an incomplete or wrong list of family members or
wrote that the VC’s relationship with her family is ‘loving, good memories’ (the VC was talking
about the affair her mother had with her uncle and how her father didn’t come to her mother’s
funeral). Based on the annotator’s marking, these participants had either a low social engagement
score, less than 15% (the ones who said they didn’t listen) or between 19%-26% and one score of
43% for those mentioning they stopped listening after a while. The remaining four participants were
able to answer the question about family members correctly, or almost correctly (two of them missed
the mother, and one even mentioned the finch- the bird that the VC was talking about). In the
general comments part, those participants also wrote about the way they perceived the monologue
and what they think of the VC. Based on the human annotator, these participants had over 97%

social engagement scores.
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VR stage 2. Here, we instructed the participants to gain the VC’s trust. After this VR stage,
they were asked how well they performed at gaining the trust and also to write any comments
regarding this VR stage. The majority of them (11 out of 13) described what they tried to do to
gain the VC’s trust. They said they listened, tried to be empathetic, nodded when appropriate and
‘stopped messing around ’ because ‘If I start looking through drawers and cupboards, I think she would
be more suspicious of me.’. These participants got over 76% high social engagement score based
on the annotator’s marking. One of the remaining two participants said they were ‘expecting some
"helpers" to point out what you can or can’t do to a character ’ and that they could not earn her
trust by themselves. This participant’s score of social engagement was 48%. The last participant
wrote that they did not interact with the VC at all which reflects their low score of 20% given by
the human’s annotations.

VR stage 3. After the last VR stage, where the instruction was to explore the room and remember
as many objects as possible, the participants were asked to list all items they recall and to write
any comments they have about this VR stage. All of them described how they explored the room
and how that felt like: for some, it felt more immersive than the previous sessions, for others it
was the opposite: ‘having full control on exploring I lost a bit of immersion as I was behaving as I
wouldn’t do in the real world’. Others mentioned that the VC did not comment on them exploring
the room (the VC having the same monologue as in the first sessions) or that they found ‘it more
interesting to interact with the objects while she speaks about them, (looking at the birdcage when she
talks about the finches) ’. All participants reported a high number of items (from 9 to 17, with an
average of 14), while in the room there were 23 items. As expected, the annotator gave low social
engagement scores to all participants in this VR stage, as can be seen in Figure 4.7 C, P1 and P2.

In summary, the results for S1 show that participants had a range of different behaviours when they
were not prompted with a particular task, but with the majority biased towards low engagement.
S2 and S3 were successful in generating the desired behaviour, using realistic gameplay tasks.
This shows the benefit of giving data capture participants tasks to implicitly guide their behaviour
(though the inclusion of unprompted behaviour could still be useful to identify unexpected behaviour
patterns).

4.4 Training the detection component

We trained the model using imitation learning with the Unity ML-Agents platform (v0.11) and
their main reinforcement learning algorithm Proximal Policy Optimization (PPO).

In this Section we explain the algorithms used (Section 4.4.1), then in Section 4.4.2 we cover the ML
configuration, followed by what input data we considered (Section 4.4.3) and ending with Section
4.4.4, the ML implementation.

4.4.1 ML algorithms

We proposed different model structures, including pre-training with recorded data, and adding
temporal memory through a recurrent neural network (Long Short-Term Memory: LSTM). Below
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we present a brief description of each model.

PPO [Schulman et al., 2017] is a Reinforcement Learning algorithm and the idea behind these
algorithms originated from behavioural psychology. It refers to an agent that changes its behaviour
to maximise a reward function. The goal of a reinforcement learning algorithm is to develop a policy.
This policy maps states to probabilities of selecting a certain action, with the aim of maximising the
expected reward. More specifically, PPO trains a stochastic control policy where the agent learns
its behaviour from experience without prior information on the environment or the task. Here,
stochastic refers to having a probability distribution associated with all actions from each state.

To ensure that the model has a good starting point for optimisation, we pre-train the model using
behaviour cloning (a simpler imitation learning model than GAIL, described below). This uses the
training examples to find a good initial set of weights for the neural network for the full training
algorithm.

GAIL [Ho and Ermon, 2016] is an approach to imitation learning, learning to execute a task by
imitating human performance. It does this by generating reward signals from a human performance
that are used to train the PPO reinforcement learning algorithm. It relies on data usually provided
via human (or expert) demonstrations to learn a policy that behaves similarly to the human. The
algorithm compares state-action pairs (each input and current circumstance with the corresponding
response) from expert data against state-action pairs generated using the policy. At the same time,
a classifier trains to differentiate expert data from the generated one. Thus, the policy develops to
generate data that the classifier would mistake for the expert data.

Long Short-Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997] is a recurrent neural net-
work. It learns a series of events with time order that have long time intervals. Based on this,
it automatically determines the optimal time lags (time between two consecutive events), used for
the next prediction. Its neural network is composed of one input layer, one output layer, and one
recurrent hidden layer. The recurrent layer contains a memory block structure that memorises the
temporal state and controls the information flow. It learns how past actions unfolded, thus knowing
when to incorporate or drop past events and take future decisions.

4.4.2 Proposed ML configurations

PPO provides positive rewards for performing the desired behaviour and negative ones for the non-
desired behaviours. In this case, to mimic an imitation learning scenario, the rewards are calculated
using GAIL. These rewards show the performance of the action the model took and influence future
actions.

We hypothesise that both pre-training it and adding a temporal memory (through LSTM) would
improve the PPO’s performance. The behaviour learned from pre-training influences the action
taken by PPO, at the same time, PPO’s policy attempts to maximise the reward. The temporal
memory takes into account past actions, hence the algorithm considers past behaviour and current
actions when deciding what to do next (what action to take). We hypothesise this because the
behaviour that needs to be learnt is complex and temporal. We compare these models with those
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Description Datatype
Distance between the user and VC, based on Hall’s

personal space [Hall, 1966], value mapped between 0 and 1
float

User’s facing direction: the angle between VC’s head
rotation and user’s head rotations divided by 180

float

Interaction with objects: data from the controllers’ trigger
(the trigger allows objects interaction) float

User’s headset velocity 3D vector
User’s headset angular velocity 3D vector

Table 4.3: Socially meaningful derived data

These data are calculated based on the raw data detailed in Section 4.3.2 Table 4.2

without (using random initialisation instead of pre-training and a standard feedforward network
instead of LSTM).

4.4.3 Input data for proposed ML training

There is strong evidence in the literature that certain behaviour aspects (such as body posture or
gaze) are linked to social engagement [Mota and Picard, 2003, Sanghvi et al., 2011]. Based on
this, we trained the model with psychologically-based features, such as the user’s facing direction,
distance from the VC, interaction with other objects and their velocity and angular velocity (as
shown in Table 4.3). Since these are calculated from the raw data we collected, we call them
derived data.

The user’s distance from the VC is calculated based on Hall’s personal space [Hall, 1966]. We cal-
ibrate the virtual space units using the average human’s height of 1.65m [Max Roser and Ritchie,
2013] and mapped it to the user’s height in the virtual space units from the VR headset. Hall’s
personal space has three different space layers: intimate (0.4m), personal (1.1m) and social space
(3.6m). From these three, we use the intimate and social spaces as the lower and higher bound-
ary. We calculate these thresholds from the VR headset height, which we assume represents the
average person’s height (1.65m). Therefore, the 0.4m intimate space threshold is calculated from
height/4 =0.4m; and the 3.6m social space threshold from height/0.45 =3.6m. The values are then
mapped between 0 and 1. Thus, 0 is the further away from the VC: the maximum and above of
social space and 1 is the closest to the VC: minimum of intimate space and below.

The use of derived data features inspired by the psychology of social interaction has the potential
to improve ML performance. However, recent trends in Deep Learning have shown that deep neural
networks are able to learn effective representations directly from raw data [Bengio et al., 2013]. In
our evaluation, we, therefore, compare models trained on derived data with those trained directly
on raw data. This comparison was done by training the best-performing model configuration on
both raw data and derived data, detailed in Table 4.2. Both models (derived and raw data) use
human annotations as ground truth data, and their output is a discrete binary value. The discrete
value shows the current user’s social engagement at each frame. It can have a value of 1, for the
user’s high social engagement, or −1, for the user’s low social engagement.
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Sessions Dataframes High ann. % Low ann. %
S1 13 37226 37.1 62.9
S2 13 37288 78.5 21.5
S3 12 33931 6.1 93.9

Total 38 108445 41.5 58.5

Table 4.4: The dataset used for the ML model training

Proportions of High and Low social engagement annotated data used for all three
VR stages for training the model. In this table, Ann. is short for Annotations and

S1− 3 for each VR stage.

These two options aim to mimic the human’s ratings of low/high social engagement during the an-
notation. To label the data, the human presses buttons for high or low social engagement behaviour;
the data in between the button presses represents the most recent pressed value. For instance, if
the annotator marks high at time ti, low and time ti+1, and then high again at ti+2, all timeframes
from ti to ti+1 are labelled high social engagement, all timeframes from ti +1 to ti+2 are low social
engagement and everything from ti+2 until the next button pressed is high again. This way, the
annotations are in the same format and frequency as the model’s output, generating a value for
each frame. The data has a frequency of 9 to 10 frames per second. We decided on this frequency
as it has been used in the literature for low-level and subtle behaviour such as fast head nods [Hale
et al., 2020].

The dataset for training with both raw and derived input data are detailed in Table 4.4, also showing
the percent of the annotated low and high social engagement for all three VR stages. There are
fewer dataframes in the last VR stage (S3) as there is a missing session due to a software error. The
missing session doesn’t unbalance the dataset because the expected social engagement from that
VR stage is low engagement, and there are already more than half low social engagement sessions
from S1 (see Table 4.4 and Figure 4.7 C-P2.)

4.4.4 Implementation

We analysed two additions to the PPO ML structure: pre-training and a temporal memory via
LSTM. Therefore, we compare the PPO algorithm implemented with different configurations: with
and without pre-training it, and with and without LSTM.

We randomised the dataset sessions and divided them into three folds of 13, 13 and 12 sessions
each, for a 3-fold cross-validation; the training data consists of two folds while the remaining one
represents the evaluation data. The hyper-parameters are tuned for both models with derived
and raw input data (see 4.5). The hyper-parameters corresponding to LSTM and pre-training are
dropped for the training configurations where these models are not used (in PPO+GAIL+LSTM,
PPO+GAIL+PreTrain or PPO+GAIL).
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Model Hyper-parameter Value (D) Value (R)
PPO batch_size 64 64
PPO beta 5.0e-4 5.0e-4
PPO num_epoch 5 3
PPO buffer_size 2048 2048
PPO epsilon 0.1 0.1
PPO batchses_per_epoch 10 10
PPO hidden_units* 128 512
PPO lambd .99 .99
PPO learning_rate 1.0e-4 1.0e-4
PPO normalize false false
PPO max_steps 75000 150000
PPO time_horizon 128 128
PPO num_layers 2 2
PPO summary_freq 1000 1000

LSTM use_recurrent true true
LSTM memory_size* 256 384
LSTM sequence_lenght 64 64
LSTM learning_rate_schedule linear linear

pre-train pretraining/strenght .5 .5
pre-train pretraining/steps 1000 1000
GAIL gail/strenght .5 .5
GAIL gail/gamma .9 .9
GAIL gail/use_actions true true

Table 4.5: Hyper-parameters and their values for the ML models

These are used to train the PPO algorithm. (D) stands for Derived, while (R)
stands for Raw, referring to the dataset used for training the different models.
*The derived data was used for all four configurations, with the only modification
of memory_size=128 and hidden_units=256 for PPO+GAIL, PPO+GAIL+LSTM
and PPO+GAIL+PreTrain. These modifications took place as a result of hyper-
parameters tuning, training the models with these hyper-parameters increasing accu-

racy and F1-score performance.

4.5 Results

In this Section, we present the results of the presented pipeline. Section 4.5.1 covers how the model’s
prediction data is post-processed to match the format of the ground truth data. In Section 4.5.2 we
present the results of the models trained with derived features while in Section 4.5.3 we provide the
comparison of the model trained with derived features and the model that uses the raw dataset.

4.5.1 Data post-processing

We post-process the data on two different occasions: (1) we smooth out the model’s predictions
data to remove noise and (2) we averaged the model’s predictions and the ground truth data from
a 1-second section. The latter process returns one value for each section, which will be used to
compare the model’s predictions to the ground truth data. We detail the post-processing actions
in the remainder of this Section.
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First data post-processing

We describe how the human annotates the ground truth data in Section 4.3.3. Briefly, the annotator
marks only the change in the social engagement (from low to high or from high to low engagement),
thus the ground truth data contains large blocks of either low or high social engagement data.
The ML model outputs the predictions in a different way: it predicts a social engagement value at
each frame. In many cases, this can result in noisy output, with regions of low social engagement
containing a few frames of high social engagement (or vice versa). For instance, if we take a segment
of length 10 dataframes (approx. one second), it can contain a majority of high engagement values,
say 8, the remaining 2 being low engagement values. If we would compare frame-by-frame, the 2

low social engagement values are in minority in that window, and they can be seen as noise. When
evaluated against the ground truth data, the 2 dataframes would appear as false negatives if the
whole window would have high social engagement values.

Because of this difference between how the annotator created the ground truth data and how the
models output the predictions, we post-process only the model’s output data to remove the noise.

We smooth it out by applying a rolling window of 0.5 seconds on the model’s outcome (Equation
4.1). This results in a float value; because it is not compatible with the ground truth data (integer
datatype), we average the result to 1 if the rolling window result is higher than 0 and to −1 otherwise
(Equation 4.4). The post-processing is further explained below:
Generically, a rolling window can be represented as:

W j,h
i = {xi−j , .., xi, .., xi+h} j, hϵN. (4.1)

The number of samples in W j,h
i being: |W j,h

i | = j + h + 1. For a 0.5s window size on a 10fps
frequency, the number of samples is 5, hence the values for j and h could be 2 and 2 respectively,
creating a symmetric window centred in xi.
Given X containing all dataframes from a session, such as:

X = {x1, x2, ..., xn} (4.2)

a window can be represented as:

W 2,2
i = {xi−2, xi−1, xi, xi+1, xi+2}, iϵ[3, |X| − 2] (4.3)

Then, the value for a dataframe (xi) from X is:

xi =
1∣∣∣W 2,2
i

∣∣∣
∑

xmϵW 2,2
i

xm

{
−1, xi ≤ 0

1, xi > 0
(4.4)
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Second data post-processing

Although the ML model outputs a value at each time frame, the social attitude is very unlikely
to switch from one state to another and then back to the initial state in a very short period of
time (one-tenth of a second). Similarly, in other studies, the authors consider certain time sections.
For instance, Yu et al. manually divide the conversation in utterances and use those for prediction
[Yu et al., 2004] and Bohus and Horvitz consider a 5-seconds section for forecasting disengagement
[Bohus and Horvitz, 2014].

We take a similar approach and average both ground-truth data and the predicted data over a time
of one second. With this, we compare the model’s output to the ground-truth data and calculate
the performance metrics.

We calculate the mean value from each time section, then we round the result to use: 1 if the mean
is greater than .49; 0 if the mean is in between −.49 and .49; and −1 if the mean is smaller than
−.49. Thus, given the time section St:

St = (xt, xt+1], tϵN, tϵ[0, T ] (4.5)

and T is the session length in seconds, then the value V of each section is:

Vsection =
1

|St|
∑
xmϵSt

xm


1, Vsection > .49

0, −.49 ≤ VSection ≤ .49

−1, Vsection < −.49

(4.6)

The results have three categories: 1 for High social engagement, 0 for Mix social engagement and
−1 for Low social engagement. The Mix social engagement appears when a time section contains
very similar numbers of High (1) and Low (−1) datapoints, such that the average on that time
section is greater than −.49 but lower than .49 (as in the equation above). In the ground truth
data, this tends to happen at transitions between low and high, but in the prediction data it can
also happen when the model is not very stable, the output fluctuating from one social engagement
rating to another. These are the three categories for all model’s confusion matrices as seen in Table
4.6 and Table 4.7.

To compute the performance, we compare each rounded window value from the true data to the
corresponding time window in the predicted dataset. We evaluate all trained models based on
accuracy and F1-score metrics. Accuracy is a measure that shows how often the model’s output
is correct. F1-score [Chinchor, 1992] measures how well a model performs, combining precision
and recall by their harmonic mean (Equation 4.7). Precision is the number of true positives (true
data that is predicted as being true) divided by the number of true positives plus the number
of false positives (true data that is predicted as being false); while recall is the number of true
positives divided by the number of true positives plus the number of false negatives (true data that
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is predicted as being false):

F1 =
2× precision× recall

precision+ recall
(4.7)

4.5.2 Model configurations

We consider different model configurations for training the model with the derived data (Table 4.3).
We compare these configurations to test our assumption that the temporal model (LSTM) and/or
pre-training improve the performance of detecting social engagement. We performed these tests
using derived input data related to social engagement, as described in Section 4.4.

We considered derived input data because certain behaviours are related to social engagement [Mota
and Picard, 2003, Sanghvi et al., 2011]. We pre-processed the raw data to calculate some of these
behaviours. We use the derived data to train the machine learning model on four different model
configurations (see Section 4.4).

A repeated two-way ANOVA indicated both LSTM and pre-training had a significant effect on
the accuracy and F1-score (accuracy - LSTM: F(1,37) = 58.52, p < 0.001, η2 = 0.613, pre-training:
F(1,37) = 386.12, p < 0.001, η2 = 0.913; F1-score - LSTM: F(1,37) = 14.83, p < 0.001, η2 = 0.286,
pre-training F(1,37) = 412.74, p < 0.001, η2 = 0.918), there is also an interaction effect LSTM x
pre-training (accuracy F(1,37) = 11.13, p = .002, η2 = 0.231, F1-score F(1,37) = 7.57, p = .009, η2 =

0.170). This means both LSTM and pre-training have significantly improved the result, and both
should be used at the same time to get the best results.

Figure 4.8 A shows the variance of accuracy and F1-score metrics on different model configurations
trained on derived data; the numbers on the figure represent the averages of these. As hypothesised,
the configuration with both LSTM and pre-training performs the best in terms of accuracy and
F1-score average (83.4% and 84.1%). The second best is the configuration where the model is pre-
trained but does not have a temporal memory (LSTM). Although its average accuracy and F1-score
are considerably higher than the other two configurations, the model results show a high variance
compared to the best performing one (PPO+GAIL+LSTM+PreTrain), see Figure 4.8 A. Without
considering the outliers, it registers values as low as 9.9% for F1-score and 27.4% for accuracy.

The remaining two models show a low performance: 31.8% accuracy, 40% F1-score for PPO+G
AIL+LSTM configuration and 34.2% accuracy, 45.2% F1-score for the PPO+GAIL configuration.
This indicates that pre-training has a significant contribution to the model configuration. However,
pre-training and LSTM together with PPO and GAIL performs the best across all tested data.

The confusion matrices for all configurations are shown in Table 4.6. The three categories (Low,
Mix and High) are a result of the second data post-processing (see Equation 4.6). Unlike PPO+G
AIL+LSTM+PreTrain, all other three model configurations (PPO+GAIL+PreTrain, PPO+GAI
L+LSTM and PPO+GAIL) have a high values in the Mix category: 60, 110 and 102 compared to
the actual amount of the Mix category: 3. The Mix category represents roughly equal amounts of
high and low social engagement values (1 and −1). High proportions of Mix are therefore likely to
indicate a noisy model, the prediction fluctuating from one social engagement rating to another.
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Act.
Pred. Low Mix High

PPO+GAIL+LSTM+PreT
Low 145 2 21
Mix 2 0 2
High 21 1 97

PPO+GAIL+PreT
Low 136 19 14
Mix 2 0 1
High 32 41 47

PPO+GAIL+LSTM
Low 77 65 26
Mix 2 1 0
High 60 43 14

PPO+GAIL
Low 44 61 63
Mix 1 1 1
High 25 40 54

Table 4.6: Confusion matrices for each ML model configuration.

The confusion matrix for each configuration is an averaged confusion matrix from all
38 sessions.

The Low, Mix, High are the categories, denoting high social engagement, mix social
engagement and low social engagement. The rows show the actual (Act.) data (from
the ground truth) and the columns show the predicted (Pred.) data (the model’s

outcome)

4.5.3 Derived vs raw features

Based on results in deep representation learning [Bengio et al., 2013], we hypothesise that the model
trained with raw input data might yield similar results as the models trained with the derived data.
The raw features are the base of the derived features. Therefore, an ML model with a complex
configuration such as (PPO+GAIL+LSTM+PreTraining), which performed best with derived data,
could be able to infer from the raw data and generalise to detect the engagement level in a social
interaction [Bengio et al., 2013].

Therefore, we train the best-performing configuration with raw data, following the same procedure
to calculate the accuracy and F1-score. The mean values of these metrics are not too low, with
60% accuracy and 63% F1-score, however, there is a very high variance in the model’s predictions
(Figure 4.8 B -combined dataset). We collected the data used for training both types of models
(with raw and derived data) in two slightly different setups (see Section 4.3.2). Briefly, the first
setup (batch 1) has the VC in a different location than in the second setup (batch 2); apart from
that, the VC’s gaze behaviour is triggered in the same way in both batches, however, the VC is
gazing at different objects in batch 1 compared to batch 2.

We suspected that the VC’s new position (in batch 2) might have influenced the model trained with
raw data. This is because the model performs well on the sessions from batch 1 (for both high and
low social engagement), but very low on the sessions from batch 2, especially when trying to detect
high social engagement. The difference between the two batches is in the VC’s location. Since the
input for training the model includes the VC’s location, we consider this a potential reason.

To test this, we separate the results into each of the two batches and into the engagement categories
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Figure 4.8: Accuracy of different ML models configurations using derived and raw
data

A: Accuracy and F1 score values for all model configurations trained with derived
data on all 38 sessions. PreT stands for pre-training. B: Accuracy values for
PPO+GAIL+LSTM+PreTrain model configurations trained with derived and raw
input data on 38 sessions. The high eng and low eng refer to high, respectively low
engagement data based on the human’s annotations. The (b1) and (b2) represents
the first or second batch in which the data was recorded. Finally, combined refers
to the dataset that puts together all the high, low, and average engagement data.
The average engagement data is omitted as there are only 2 sessions, one in each
batch. The accuracy for these are: from batch 1, 54.9% and 58.0% for the model with
derived respectively raw data; from batch 2, 51.7% and 37.0% for the model with

derived respectively raw data.

(low and high). Figure 4.8 B shows a comparison of the two models’ accuracy: one model trained
on derived data, and the other on raw data. The F1-score values have a very similar trajectory,
hence they are omitted from the figure to not clutter it and placed separately in Figure 4.9. Figure
4.8 B shows raw model’s large accuracy (and F1-score) variance over these 38 sessions. The high
engagement data from the second data recording batch register very low accuracy and F1-score
values compared to the high engagement data from the first batch. There is no significant difference
between the low engagement data from the first and second batches.

We ran a 2×3 Mixed ANOVA analysis (within-group factor treatment : raw input data, derived input
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Figure 4.9: Accuracy and F1 values for the PPO+GAL+LSTM+PreTrain model
configuration trained with raw data

For this we used the raw data from 38 sessions. The high eng and low eng refer to
high, respectively low engagement data based on the human’s annotations. The (b1)
and (b2) represents the first or second batch in which the data was recorded. Finally,
combined refers to the dataset that puts together all the high, low and average en-
gagement data. The average engagement data is omitted as there are only 2 sessions,
one in each batch. The accuracy and F1-score for these are: from batch 1, 58.0% and

62.6% respectively and from batch 2, 37.0% and 35.2% respectively.

data; between-group factor VR stage: S1, S2, S3). This reveals that the derived data performed
significantly better than raw (p < 0.001) and that there is a significant VR stage effect (p =
0.045), but no interaction effect was found (p = 0.172). Post-hoc Tukey test reveals that the model
performed significantly better for VR stage S3, as compared to VR stage S2 (p = 0.035). No other
effects were found between the VR stages.

Table 4.7 contains the confusion matrices for models trained on derived and raw data split based
on the data collection batch. The model trained on raw data fails to detect a large proportion
of the High social engagement parts, mostly miss-predicting them as low social engagement. This
model also shows a much higher fluctuation of social engagement rating per 1-second window. This
is illustrated in the high amount of predictions for the Mix social engagement, 40 (20 + 1 + 19 in
Batch 1) and 45 (26 + 1 + 18 in Batch 2) compared to the actual value of 4 (2 + 1 + 1 in Batch 1)
and 3 (2 + 1 + 0 in Batch 2).

The model trained with raw data might have learned very specific features, for example, the exact
position of the VC. If that condition is not fulfilled (the VC is not positioned in the same location or
has a changing position), then the raw data model incorrectly predicts the engagement level. This
is a problem as it is very common in games to have VCs that would move in the environment.

There could be a possible solution to improve the raw model’s performance while keeping the VC
active in the scene. To do this, more data needs to be collected with the VC in different locations
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Derived Data Raw Data

Act.
Pred. Low Mix High Low Mix High

Batch 1
Low 137 2 15 112 20 21
Mix 2 0 2 2 1 1
High 26 1 103 30 19 82

Batch 2
Low 152 3 27 148 26 8
Mix 1 0 2 2 1 0
High 16 1 90 82 18 6

Table 4.7: Confusion matrices for PPO+GAIL+LSTM+PreTrain model configura-
tion

The confusion matrice for the models trained with derived and raw data. The confu-
sion matrix for each model is an averaged confusion matrix separated into two data

collection batches: Batch 1 (with 18 sessions) and Batch 2 (with 20 sessions).
The Low, Mix, High are the categories, denoting High, Mix and Low social engage-
ment. The rows show the actual (Act.) data (the ground truth) and the columns

show the predicted (Pred.) data (the model’s outcome)

and using more participants to interact with the VC. This might decrease the variance in accuracy
for the raw model. However, the process of recording the data and training the model is very
expensive and time-consuming, making it unfeasible for a game production process. The use of
psychologically inspired derived features is therefore a better approach within the practical time
and budget constraints of game development.

4.6 Generalisation: ML pipeline for social attitude detection

In this section we go over the pipeline used to detect social engagement (Section 4.3), generalising it
to be used for detecting other social attitudes detection (such as sympathy, affection or aggression).

Both the data collection and the data annotation take place in VR. First, a user interacts with the
VC and their behavioural data is collected (see Figure 4.2 A). Next (Figure 4.2 B), a human anno-
tator labels the presence of a social attitude while watching a playback of the user-VC interaction
in VR (see Section 4.3).

The data from the user-VC interaction is the base data for training the ML model. It consists
of data about the user’s and VC’s activity, such as the movement (head and hands position and
rotation), interaction with other objects or with each other, and so on. By performing this data
collection in VR, we are able to create a situation that is as close as possible to real gameplays
and also to real social interactions. The data collected in this step can be different to the one
we collected for social engagement detection (Section 4.3); it should contain relevant data for the
specific social attitude (e.g. eye or pulse information).

This data is then played back in VR to be labelled for training the ML model. Because of this, it
should contain instances of the social attitude’s presence (positive value) and its absence (negative
value). Thus, the VR scenario needs to contain situations that allow both positive and negative
examples of a participant’s social attitude.
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The human annotator is a key figure in this pipeline. They have the ability to look at the behaviours
from the interaction and choose the ones that resemble the complex social attitude the ML model
will learn to detect. In game development, a creative director could be the annotator. They use
their artistic vision on the final product and decide what social attitude is important to be detected
in a particular scene in the game, while a user is socially interacting with a VC/NPC.

To decide this, instead of having to provide a concrete definition of the social attitude, the annotator
labels it while observing the playback interaction. In our social engagement example, they can
perform this action by pressing a ‘plus’ button on the VR controller when they see the attitude
(social engagement) and a ‘minus’ button when there is a lack of it (Figure 4.7 B). This way, the
annotations conceptualise the complex and abstract activity (social attitude). Then, the trained
ML model will detect this activity during social interaction. Other features could be included in
the labelling task in VR to ease and improve the outcome based on the social attitude (e.g. video
feed overlay).

By annotating in VR, the annotator is able to make full use of their social cognition skills as they
would do in a real-world social interaction. By performing it in a game environment, it can become
a game design task, in which a designer can judge the interaction as it would fit into the real
gameplay.

The ML model trains on the dataset: the user’s data and the annotator’s labels as ground truth
data (Figure 4.2 C). The ML model replicates the human annotations by using an imitation learning
algorithm approach, thus mimicking the human intuition of marking an attitude within a social
interaction (Figure 4.2 D).

After training the model for detecting, for example, aggression, it can be applied to different sce-
narios. The model outputs whether aggression is present or absent based on the input data from
the interaction (Figure 4.2 E, F & G). Finally, the output can be manipulated and used in real-time
in applications (e.g. games) to trigger various actions or behaviours based on the designer’s vision.
For instance, when the player is detected to be too aggressive, the NPC could stop talking and
could be animated to reflect the behaviour received; when the player is showing empathy, the NPC
will start talking again and their animation would change indicating that.

4.7 Limitations and discussion

The exact results of the social engagement detection presented here could be difficult to replicate
without the same annotator. However, the aim of the project was not to create a general detection
model for social engagement (or other social attitudes) because individuals often have their own
standards of what counts as engaged or not [Glas and Pelachaud, 2015]. In our case study of
detecting social engagement using the proposed pipeline, instead of explicitly defining the present
or absent criteria of a certain social attitude, we rely on the annotator’s ability to label it. In game
companies, this annotator role should be taken by their creative director, making the labelling itself
part of the creative process. In other words, we aim to detect the High/Low social engagements
that are modelled based on the creative game designer’s (the annotator’s) markings. During the
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VR interaction playback, they would be labelling the behaviours identified in players which are
related to the presence or absence of social engagement. Thus, when real-life players exhibited those
behaviours during gameplay, certain events (NPC behaviours, or change of game environment) could
be then triggered.

For this work, the annotator marked the data in a binary way: either high or low social engagement
data. This can be a limitation of our approach since social attitudes are not necessarily binary.
We decided to go with this approach because the algorithms within the Unity ML agents have the
requirement of binary input data hence we kept the annotations and the model’s predictions binary.
However, the model predicts at a higher frequency (9 to 10 frames per second) compared to other
work such as Yu et al.’s study [Yu et al., 2004], where predictions take place per each utterance,
or Bohus and Horvitz’s work [Bohus and Horvitz, 2014], where they use a 5- seconds window to
forecast disengagement. In this case, the game system can use the prediction model at a finer level.
For instance, the game designer can choose to calculate an average social engagement over time
spams of 5 seconds (as in Bohus and Horvitz’s study [Bohus and Horvitz, 2014]). For that time
window, there will be a total of 45-50 (5x9, 5x10) predictions which can be used to calculate a
fine-grained outcome, rather than a binary one.

We ensured the annotator was making judgements only on the data available to the ML model.
Thus, the annotator labelled the data in VR, they could have access only to the data available
to the ML model. If the annotator was making judgements using data inaccessible to the ML
algorithm, we argue that the algorithm cannot learn from it, as described in Gillies et al. [Gillies
et al., 2015]. However, we based this decision on prior literature and we did not attempt to annotate
the interactions on more data compared to the one used for training the models. For future work,
we could rerun the annotation process on the user-VC interactions giving the annotator more data
(i.e., the audio feed).

We trained the ML models using data from all those participating in the interaction (the user and
the VC). We took this decision based on prior literature (see Chapter 2.2.3): as the VC should
be able to assess the social engagement based on the interaction with the user. Additionally, prior
work shows that ML models that use only one person’s data have lower performance than the ones
taking into account both people’s data [Dermouche and Pelachaud, 2019a] . However, a limitation
of our work in this chapter is the comparison of the ML models trained on data from the user-VC
interaction versus ML models trained solely on the user’s data. Based on prior work, we believe that
including data from the VC improved our ML model performance and made it more ecologically
valid. Nevertheless, this was not tested with our dataset, and it is open for future work.

We collected data from participants in a western city who volunteered to take part in the study hence
they might have an interest in XR. For this reason, the behaviour and social attitude expression
recorded are linked to the cultural background. A potential further work could be to run studies
with participants from other backgrounds to enrich and compare the dataset and the detection
model. Even though we collected data from 38 sessions and from 13 participants, the dataset was
not very large. We also selected features that were readily available to train the ML model. It would
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be interesting further work to consider a different array of features available from more cutting-edge
hardware.

We run the data collection in two batches to investigate the effect of the agents’ gaze at various key
objects. This aspect is out of scope for this chapter, however, recording the data in two batches
with a distinct VC location for each allowed for a more diverse dataset (see Section 4.3.2). As future
work, we could diversify it even more by assigning a different VC starting point for each participant.

Despite our limitations, we received very positive comments from our industry collaborators. The
industry collaborators helped to create the tool and as a retrospective note, they commented on
how non-verbal communication is at the centre of the tool, and that the use of nonverbal behaviour
widens the applicability of this work for other types of games and applications within the entertain-
ment and games industries. During the collaboration we chose the social engagement case study,
however, one of the game companies applied the pipeline for developing a VR karaoke-style ap-
plication where the user would sing along with an NPC singer, which will change their attitude
depending on the social attitude of the player in real-time. Likewise, they didn’t define the social
attitude but the annotation was based on the way the players sang, moved, performed, and how
involved they were in the experience. The CEO of the game company commented on their expe-
rience of building the VR karaoke app using the immersive ML pipeline:‘The ML project was very
interesting to be a part of, seeing it grow from a very simple idea into something quite sophisticated.
What impressed me the most was seeing the same principles used in a 19th century narrative game
also grimy applied to a modern karaoke game. This generalisation convinced me of the merit of the
approach taken. From experience, I think it is relatively straightforward to get a system working on
one context, but to reapply the same principles in a fundamentally different context proves its true
worth.’

4.8 Conclusion

In this chapter, we present our collaborative work with two game companies (Dream Reality In-
teractive and Maze Theory) to develop a pipeline with immersive data collection and annotation
in VR for training an ML model. We design the pipeline to support the games industry’s creative
design process and to be integrated into production-ready VR games for the consumer market.

The pipeline is used to train an ML model to detect social attitudes, such as sympathy, social
engagement, or aggression, using a reinforcement learning (PPO) approach with rewards based on
an imitation learning algorithm (GAIL). In this study, we show how the pipeline is used to train an
ML to detect social engagement.

We consider different model configurations and input data for training the model: derived data
and raw data. The model using derived data performs the best, while the model based on raw
data is not able to generalise to different VC positions. The model configuration that yields the
highest accuracy and F1-score (83.4%, 84.1%) is based on a reinforcement learning algorithm (PPO)
with imitation learning rewards (GAIL) implementing a temporal memory (through LSMT) and a
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pre-training algorithm. The other model configurations perform poorly, the outcome being a rapid
change between high and low social engagement values in a short period of time.

The proposed work contributes to the field of socially responsive VCs, offering a design-by-example
tool for immersive ML, to detect abstract social attitudes in VR social interactions. This could be
useful in designing social interactions in VR games or in other immersive experiences (simulations,
training, social platforms), where the user can interact with the VC using their own bodies, as they
do in everyday life. This opens opportunities for novel input interactions, game mechanics or VC’s
behavioural models that are related to the rapport/empathy between the user(s) and the VC.

In this chapter, the focus is on high-level behaviours in social interaction, detecting social engage-
ment with a case study in the games industry. Next, we consider a different industry field that
relies extensively on virtual environments (2D displayed and immersive virtual environments): the
remote-working field. In the next chapter, we focus more on avatars rather than on virtual char-
acters as they are more frequently encountered in the work industry and remote meetings. We are
interested in the impact of different appearance styles of avatars, comparing personalised cartoon
and realistic avatars in real-work meetings in mixed reality. Even though our application is specific
to a certain industry (remote working) the results from this study are also applicable to virtual
characters in other immersive virtual environments.



87

5
AVATARS: The Appearance Impact in Real-World

Meetings

In this chapter1 we present a within-subjects study that examines the effects of realistic and cartoon
avatars on communication, task satisfaction, sense of presence, emotional state perception, and
useful cues in mixed reality meetings. Over the course of two weeks, six groups of co-workers
(14 people) held recurring meetings using Microsoft HoloLens2 devices, each person embodying a
personal full-body avatar with either a realistic or cartoon face. Half of the groups started with
the realistic condition and half with the cartoon condition; all groups switched conditions halfway
through the study. Results showed that participants using realistic avatars first may have had higher
expectations and more errors in perceiving their colleagues’ emotional states. Participants using
cartoon avatars first reported that the avatars’ appearance mattered less over time and experienced
increased comfort and improved identification of their colleagues. Participants rated words, tone
of voice, and movement as the most useful cues for perceiving colleagues’ emotions, regardless of
avatar style. When starting with realistic avatars, participants rated gaze as more useful than
facial expressions, while when starting with cartoon avatars, both gaze and facial expressions were
rated as the least useful. Results also suggested that participants had more errors when perceiving
negative emotional states in their colleagues, with this trend appearing for most emotional states
but depending on the avatar style order. Implications of these findings for mixed and virtual reality
meetings are discussed. This work contributes to the field of remote collaboration by providing

1Work published in: Dobre, Georgiana Cristina, Marta Wilczkowiak, Marco Gillies, Xueni Pan, and Sean Rintel.
"Nice is different than good: Longitudinal communicative effects of realistic and cartoon avatars in real mixed reality
work meetings." In CHI Conference on Human Factors in Computing Systems Extended Abstracts, pp.
1-7. 2022 https: // doi. org/ 10. 1145/ 3491101. 3519628

https://doi.org/10.1145/3491101.3519628
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insights from longitudinal data on the impact of avatar appearance on various aspects of work
meetings in virtual environments.

5.1 Introduction

As remote meetings have facilitated a significant increase in global collaboration, there has been a
growing demand for 3D immersive systems that address the limitations of traditional 2D formats.
The aim of these 3D systems is to connect remote users as if they were in the same location.
This allows people to work more effectively on shared tasks because the value of mixed and virtual
reality (MR/VR) meetings is the preservation of spatial relationships [Otto et al., 2006] and social
behaviours such as proximity or gaze [Bailenson et al., 2001].

When people use this technology for remote collaborations, they embody an avatar. These avatars
represent people’s identities, positions, interests, and activities [Benford et al., 1995]. Avatars can
have different representations, ranging from floating spheres with hands to full or partial humanoid
bodies with different appearance styles (e.g., cartoon, realistic). Thanks to advances in technology,
avatars can be highly customised to resemble a person and follow a particular style. There are
positive and negative aspects to different avatar styles. For example, the use of realistic avatars may
make people feel uncomfortable and lower their feelings of affinity [Shin et al., 2019]. This is often
due to the discrepancy between high expectations of nonverbal behaviour (such as body movement,
and facial expressions) and the avatar’s actual behaviour. Cartoon styling, whether generic or
customised, may lead to anxious feelings about the appropriateness of non-realistic representations
in a professional context [Bailenson and Beall, 2006]. Most of the research on avatars focuses on
presence, workload, or trust [Waltemate et al., 2018, Lugrin et al., 2015, Latoschik et al., 2017, Yoon
et al., 2019, Khojasteh and Won, 2021, Heidicker et al., 2017], with mixed results (see Section 2.3).

Furthermore, during studies, participants often look at only short animations or still images of
avatars [MacDorman and Chattopadhyay, 2016, Shin et al., 2019] and/or have one-off interactions
with others [Lugrin et al., 2015, Waltemate et al., 2018, Jo et al., 2017, Yoon et al., 2019, Zibrek et al.,
2018, Heidicker et al., 2017], making the findings prone to novelty effects [Koch et al., 2018, Parmar,
2017]. However, real-life collaborative work in immersive environments involves users who know
each other and interact regularly, trying to get real work done. The communicative functionality of
avatars is essential in these cases. Since the spatial audio common to most immersive environments
provides a highly naturalistic vocal representation, it is the nonverbal communicative functionality
that is primarily at issue, such as the ability to identify each other, recognise facial expressions
and gestures [Burgoon et al., 2016], negotiate proxemics [Hall et al., 1968], and, when presented
virtually, trust that these are authentic representations of their colleagues [Oh et al., 2018].

In summary, most of what we know about avatar appearance in meeting-style settings comes from
one-off lab studies in virtual reality environments. We know little about how these findings apply to
MR, less about effects in real-world contexts, and very little about the longitudinal effects on avatar
acceptance. To our knowledge, there is a gap in VR/MR literature regarding this combination of
aspects.
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Figure 5.1: The Avatars and the Mixed Reality environment

Example of realistic (a,c) and cartoon (b,d) avatar upper bodies. The main menu
controls the session (e). A meeting between two participants in realistic avatars (f)
and three in cartoon avatars (g) with the adjustable blue table marking the centre.

Participants gave consent to use their avatars publicly.

In this chapter, we address this gap by investigating how people feel about using avatars with
different appearance styles in immersive meetings over an extended period of time. For two to
three weeks, six groups of co-workers (14 people) from Microsoft Corporation conducted a series of
virtual meetings using Microsoft HoloLens2 (HL2) devices. Each participant used a personalised
avatar with either a realistic or cartoon face. Half the groups began with realistic avatars and
the other half with cartoon avatars; all groups switched halfway through the study period. Our
main focus was to determine whether the acceptance ratings for both realistic and cartoon avatars
would change over time as the novelty factor waned. Specifically, we were interested in examining
the functional communicative value, task satisfaction, presence, and the self-reported and perceived
emotional states of individuals during immersive virtual meetings.

In the following sections, we introduce the research questions in Section 5.2 and detail our method-
ology in Section 5.3. We then present our data analysis and results in Sections 5.4 and 5.5, respec-
tively, before embarking on a discussion of these findings in Section 5.6 where we also report the
limitations. Finally, we conclude in Section 5.7.

5.2 Research Questions

Prior research results on the effects of realism versus cartoon styling of avatars are decidedly mixed,
and they depend a great deal on the context and timing of participants’ engagement (see Section
2.3. It seems that for body appearance there is a greater likelihood of preference for full-body
traditionally-proportioned "realistic" avatar bodies compared to heads-and-hands, robot, block-
style, or non-traditionally-proportioned cartoon-style bodies [Aseeri and Interrante, 2021, Yoon
et al., 2019, Pan and Steed, 2017, Smith and Neff, 2018, Herrera et al., 2020, Pakanen et al.,
2022]. Results on realistic versus cartoon styling in facial appearance are less clear cut, as are
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the interactions with gestural capabilities of traditionally proportioned "realistic" avatar bodies,
especially over time and engaged in real-world tasks.

To the best of our knowledge, there have been no studies comparing personalised realistic versus
cartoon face styles on the same full-body avatars in IVEs, over time, in the field, and especially in
business contexts. Similarly, very few studies focus holistically on the communicative encounter–
the functional communicative value, task satisfaction, sense of presence, and the self-reported and
perceived emotional states of the individuals [Nordin Forsberg and Kirchner, 2021, Garcia et al.,
2021, Sun and Won, 2021]. Given the emergent popularity of meetings in IVEs, and the likely
variety of choices that IVEs will provide users, it is crucial to compare and contrast the experiences
afforded by realistic and cartoon styling.

In this chapter, we cover seven research questions (RQs) split into two sets. The first set of questions
covers the effect of the avatar style on communicative value, task satisfaction, and presence. The
remaining set of research questions covers the ability to recognise others’ emotional states. For ease
of expression in the chapter, we cover the two RQ sets separately in the Results (Section 5.5), but
bring them together in the Discussion (Section 5.6).

The research questions are as follows:

SET ONE
How do the avatar representations influences:
RQ1: the functional communicative value based on (a) the identification of the other person (peo-
ple); (b) the perceived authenticity of communications; (c) the perceived usefulness of expression
and movement.
RQ2: the task satisfaction based on: (a) the level of task impact, (b) comfort and (c) engagement.
RQ3: the concept of presence based on: (a) co-presence and (b) social presence.

SET TWO
RQ4: Does the avatar representation change the self-reported emotional states overall and over
time?
RQ5: Does the type of avatar style affect how accurately people perceive the co-workers’ emotional
states (a) overall and (b) do they improve overtime?
RQ6: Do positive or negative emotional states affect how accurately they are perceived by others?
RQ7: What are the most valuable cues available for identifying emotional states and are these
different depending on the avatar styles?

5.3 Methodology

Device and application. The study run in Mixed Reality using the HoloLens 2 (HL2) device
(microsoft.com/en-gb/hololens). We built a networked application using Unity3D game engine
(unity.com) where users see a hologram of a blue table (Figures 5.1f and 5.1g) and a control menu

microsoft.com/en-gb/hololens
unity.com
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(Figure 5.1e). The table is adjustable and represents the centre of the meeting, all other participants
in the meeting are located in space around the table. The control menu allows the participants to
go to the ‘Home’ menu and to create a new meeting, see who is in the current meeting, join a
meeting, mute themselves, adjust their microphone gain, switched their avatar, leave the meeting
and quit the application.

Avatars. Participants used full-body avatars in both a cartoon and a realistic style. The avatar
heads were personalised for each participant using a picture taken from the shoulders up. We used
the local version of Avatar SDK (avatarsdk.com) to create the heads for both types of avatars
(Cartoon: version 1.2.4; Realistic version 2.0.5). The heads were then attached to the bodies using
Autodesk Maya (autodesk.co.uk/products/maya).

Both the Cartoon and Realistic bodies had the same skeleton structure and naming conventions, and
there were four bodies available in total (two male and two female, one of each with a cartoon and
realistic appearance). To minimise the impact of body variations, the bodies were very similar in
appearance. Both types of avatars featured traditionally-proportioned human bodies wearing long
trousers and long-sleeved polo neck sweaters, with the primary difference being that participants
had different coloured clothing (as shown in Figures 5.1c-e).

The avatars were animated in real-time using inverse kinematics, with the input being the HL2
hand and head tracking signals. The hands moved when the HL2 detected hand movement using
its external cameras, and the legs moved when the headset detected location movement based on
the headset’s position. The heads’ facial animation was generated using a simple lip-flapping script
based on voice amplitude, as well as a blinking animation. However, due to time constraints, the
avatars did not have a seating animation or seated static position, so participants were instructed
to stand for the duration of their meetings.

Participants. We recruited participants in groups of 2 or 3 from the same company by sending out
recruitment emails. The requirements for participation were that the individuals must know each
other, work together, be part of daily work meetings, and be willing to conduct one of their regular
daily meetings in mixed reality using HL2 for a period of 2 to 3 weeks (10 meetings). We offered
a charity donation of £75.00 per person on their behalf as an incentive. A total of 32 participants
in 13 groups volunteered to take part, but 7 groups (18 participants) were unable to participate
due to time and logistical constraints. As a result, a total of 14 participants (7 female, 6 male, 1
non-binary; aged 21 − 45) completed the study, forming 6 groups: 4 dyads and 2 triads. Out of
these 6 groups, 4 were same-gender groups (2 male-only, 2 female-only), and 2 were mixed-gender
groups. One of the 2 groups with 3 participants was a mixed-gender group, and the other was
same-gender (see Table 5.1). The members of each group remained the same throughout the study,
and no participant missed a planned meeting.

Some participants had the HL2 device at home (8 participants), while others were supplied with a
device (6 participants) for the duration of the study. None of the participants had previously worked
on remote MR meetings, although some had used the HL2 before. We installed the application on
all of the HL2 devices. To maintain a high level of ecological validity, we did not ask the participants
to perform a specific task. Instead, we allowed them to conduct their meeting as usual for at least

avatarsdk.com
autodesk.co.uk/products/maya
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# Style W1 Style W2 Gender Size Sessions Q.
1 Realistic Cartoon F, F 2 10 20
2 Realistic Cartoon F, M 2 10 18*
3 Realistic Cartoon F, F, Non-Binary 3 8 24
4 Cartoon Realistic M, M, M 3 10 30
5 Cartoon Realistic M, M 2 6 12
6 Cartoon Realistic F, F 2 10 20

Total 3-R;3-C 3-C;3-R 7-F; 6-M; 1-Non-B 4-Dyads; 2-Triads 54 124

Table 5.1: Details on the participants and the data collected

Details on the group size, participant’s demographic, avatar order and sessions. There
are 18(*) (instead of 20) questionnaires filled in for group 2 because, due to a technical
error, there is a missing set of questionnaires from the last session using the cartoon

avatars.

10 − 15 minutes. These meetings often took the form of daily stand-ups, status reports, or daily
team catch-ups.

Figure 5.2: Personalised full-body avatars

Example of some of avatars used (a-d); from left to right: female realistic(a), female
cartoon(b), male realistic(c), male cartoon(d). The faces are blurred as not all par-
ticipants provided consent for using their personalised avatars publicly. This figure
shows examples of the full-body avatars and the difference in shirt colour for each

avatar.

Dataset.

We collected data from questionnaires, daily meetings, and one focus group from each group. The
participants completed consent forms and the following questionnaires: demographic, onboarding
(covering their expectations of having meetings in MR), and a daily questionnaire that they com-
pleted after each meeting. In the daily meetings we collected head and hand movements, audio
amplitude, and proportion of speaking participation, but to maintain confidentiality we did not
capture actual speech data (audio or transcribed).



Chapter 5. AVATARS: The Appearance Impact in Real-World Meetings 93

In Table 5.1 we structure the details regarding the participants and the groups they were part
of. Throughout the study, each group alternated between using one avatar type for half of their
meetings and the other avatar type for the other half. In total 54 meetings were held (total number
of Sessions in Table 5.1), resulting in 124 daily questionnaire responses. However, one questionnaire
was missing due to a technical issue during a meeting with cartoon avatars. This means there were
63 questionnaire responses from meetings with realistic avatars and 61 responses from meetings with
cartoon avatars. Half of the groups used cartoon avatars first, while the other half used realistic
avatars first. Unfortunately, two groups were unable to complete all 10 sessions due to circumstances
beyond our control: one triad had 8 sessions (with realistic avatars first) and one dyad had 6 sessions
(with cartoon avatars first). Both triads also balanced the order of avatar use, with one starting
with cartoon avatars and the other starting with realistic avatars.

The daily questionnaire was divided into two parts. The first part contained 12 items with responses
on a 1 − 7 Likert scale ranging from "strongly disagree" to "strongly agree". These items were
selected and adapted from previous studies ([Bailenson et al., 2003, Lombard et al., 2009, Harms
and Biocca, 2004, Slater, 1999]) to fit the design of the current study and address RQs 1 − 3. For
all questions see Table 5.2.

The second part of the questionnaire focused on the recognition of emotional states and the use-
fulness of cues for perceiving these emotional states. Four emotional states were selected based
on the UWIST mood checklist [Matthews et al., 1990]: optimistic, focused, annoyed, and stressed.
We selected these emotional states as they were relevant to the study setup (workplace meetings).
Also, we did not choose a larger subset of emotional states to keep the length of the questionnaires
short. Participants were asked to fill these questionnaires every day after the meetings and by using
a longer questionnaire, we were expecting to see a drop in completing them or in dropping partic-
ipants from the study [Galesic, 2006]. Thus, participants were asked to rate their own emotional
states and the perceived emotional states of their colleagues on a 1 − 7 Likert scale ranging from
"strongly disagree" to "strongly agree" for each emotional state. Participants in triads rated the
perceived emotional states of the other two participants. Next, they were asked to rank 5 cues
in order of their usefulness for recognising emotional states in their colleagues. These cues were:
choice of words, movement/gesticulations, gaze, facial expressions, and tone of voice. The second
questionnaire was used to address RQs 4− 7.

Procedure.

After providing their consent, participants completed the demographic and onboarding question-
naires and submitted a head and shoulders picture of themselves. This picture was used to create
their cartoon and realistic avatars. The application was then installed on the HL2 devices and
credentials were set up for each participant to access the application. Following this, the partic-
ipating group and the researcher held a test meeting in MR to introduce the functionality of the
application and perform a walk-through. The researcher was available to troubleshoot during each
daily scheduled session.

The procedure for each session was as follows: the participants opened the application from the HL2
application menu, signed in with their credentials, and adjusted the blue table to ensure there was
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enough local space around it (the rest of the group appeared around this table). One group member
created a meeting and added the others. The rest of the group joined the meeting as they were
invited and changed their avatar to the corresponding one for that week (either Cartoon or Realistic).
They then held their meeting as usual, after which they left the meeting and closed the HL2
application. Following the meeting, the researcher reminded them to complete the questionnaires
for that session. This process was repeated until the final session.

5.4 Data Analysis

5.4.1 Reverse Coding

After each meeting session, participants filled out two questionnaires, one on communication and one
on emotional states. For the emotional states questionnaire, participants had to rate their emotional
state on a scale from 1: Strongly Disagree to 7: Strongly Agree. They rated four emotional states:
Optimistic, Focused, Annoyed and Stressed. Two of these had a positive connotation (Optimistic
and Focused), while the other two had a negative connotation (Annoyed and Stressed). To calculate
the overall self-reported rating of their emotional states, we utilised a reverse-coding technique for
the negative emotional states (Annoyed and Stressed). This involved subtracting the ratings of these
negative states from the maximum value (7: Strongly Agree) plus one (7 + 1 = 8). For instance, a
rating of 5 for the emotional state Stressed would be transformed into a rating of 3 (8− 5). These
reverse-coded ratings were then utilised in our data analysis to answer RQ4, as detailed in Section
5.5.2.

5.4.2 Accuracy of perceived emotional states

We calculated the accuracy of the perceived emotional state by computing the error that participants
had when perceiving the emotional states of their colleagues. We determined the error by mapping
the absolute value of the difference between the self-reported emotional state and the perceived
rating of the emotional state onto a scale of [0, 1]. With a maximum rating of 7 and a minimum
rating of 1, the largest possible error was 6 (7− 1), which was mapped to a value of 1. The smallest
error, which occurred when the self-reported rating was the same as the perceived rating of the
emotional state, was mapped to a value of 0. For example, if the self-reported rating was 6 and the
perceived rating was 2, then the error was 4 (6− 2); this was then mapped between [0, 1], gaining
the value of 0.667.

We calculated this error for each pair of participants in a group. In dyads, we considered the error
for each participant in perceiving the emotional state of their colleague: P1’s error in perceiving P2’s
emotional state (P1_to_P2) and P2’s error in perceiving P1’s emotional state (P2_to_P1). In
triads, we considered each participant’s error in perceiving the emotional states of all other partici-
pants in the triad. For example, in a group with participants P1, P2, and P3, we took into account
all six possible combinations: P1_to_P2, P1_to_P3, P2_to_P1, P2_to_P3, P3_to_P1, and
P3_to_P2.
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We used this error to compare the overall error for Realistic and Cartoon avatars in RQ5a (Sec-
tion 5.5.2). We also used it to address RQ5b on participants’ ability to accurately perceive their
colleagues’ emotional states over time (Section 5.5.2). Finally, we used it to test RQ6 and the re-
lationship between negative self-reported emotions and higher errors in perceived emotional states
(Section 5.5.2).

5.4.3 Avatar Order

We took into account the order in which the avatar styles were used since this might influence
the participant’s behaviour [Ma and Pan, 2022]. Half of the participants used the Cartoon avatar
in Week 1 (W1) and then used the Realistic avatar in Week 2 (W2). The other half used the
Realistic avatar in W1 and then used the Cartoon avatar in W2. To avoid confusion about the
starting avatar style and the avatar style used, we use the following naming convention for each
condition. We call the data from participants who used the Cartoon avatar in W1 followed by the
Realistic avatar in W2 the Cartoon—Realistic condition (abbreviated as CR in figures). The data
from participants who used the Realistic avatar in W1 and then used the Cartoon avatar in W2

was called the Realistic—Cartoon condition (abbreviated as RC in figures).

5.5 Results

5.5.1 Part One: Communication, Tasks and Presence

# RQ Questionnaire Item Cartoon Realistic
m sd m sd

1 2c I felt engaged in the meeting. 5.46 0.87 5.63 0.92
2 2c I felt that my colleagues were engaged in the meeting. 5.41 0.95 5.55 1.04
3 1b The avatars communicated like my colleagues. 3.6 1.57 3.9 1.41
4 2a The appearance of the avatars affected the meeting tasks. 3.86 1.56 3.77 1.19
5* 2b The appearance of the avatars affected how comfortable I felt in the meeting. 4.05 1.6 3.86 1.55
6* 3b The appearance of the avatars mattered to me. 4.73 1.88 4.66 1.7
7 3a I felt that I was in the presence of my colleagues. 4.67 1.49 5.18 1.6
8* 1a I could identify my colleagues. 5.12 1.54 5.78 0.98
9 3b I perceive my colleagues’ avatars as being only computerized images, not real people. 6.17 1.11 5.78 1.2
10* 3b There were obvious unnatural nonverbal behaviours from my colleagues’ avatars. 5.34 1.27 5.48 1.23
11* 1b,c The avatars’ nonverbal behaviour was appropriate for the context. 3.08 1.36 3.79 1.04
12* 1c The avatars’ nonverbal behaviour was useful for understanding my colleagues. 2.72 1.15 3.55 1.26

Table 5.2: The items in the daily questionnaire

Participants answered this questionnaire on a 1 − 7 Likert scale. The star(*) items
showed significance. RQ stands for Research Question. m and sd stand for mean and

standard deviation, showing the descriptive statistics for each question.

We first analysed the data from our within-group study by comparing the averaged scores for each
participant using Cartoon and Realistic avatars. Next, we explored the effect of the passage of time
on these scores by running regression models for each dependent variable and accounting for the
temporal feature.
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Overview of the Effect of Realism

For each participant and for each question, we calculated two averages: one for all sessions (up
to five) with the Cartoon avatar, and one for all sessions with the Realistic avatar. We then used
Repeated Measures ANOVA to assess the effect of realism on the data. The descriptive statistics
for this analysis can be found in Table 5.2, and a boxplot representation of the results for each
question can be found in Figure 5.3A.

RQ1 Functional communicative value. On average, for realistic avatars, participants reported
higher scores for all four functional communicative value questions (Q3, 8, 11, 12). A Repeated
Measure One-Way ANOVA found a significant difference for Q11 (F (1, 13) = 7.14,p=.019, η2 =

.355) and Q12 (F (1, 13) = 5.5,p=.036, η2 = .296), but not for Q8 (F (1, 13) = 3.53, p = .08, η2 =

.217) or Q3 (F (1, 13) = .718, p = .41, η2 = .52), Figure 5.3A RQ1.

There was a significant interaction effect between avatar style and order of use on participants’
ratings of nonverbal behaviour appropriateness in Q11 (F = 13.01, p=.004, η2 = .52). This
suggests that participants rated the Realistic avatars as more appropriate in terms of nonverbal
behaviour, but only when they used the Realistic avatar first (Realistic W1: 3.9, Realistic W2:
3.7). On the other hand, the lower rating for Cartoon avatars was driven by those who used the
Cartoon avatars first (Cartoon W1: 2.5, Cartoon W2: 3.6). These findings can be seen in Figure
5.3A, as well as in RQ11 and RQ12. This result indicates that participants found their colleagues’
nonverbal behaviour to be more appropriate for the context (Q11) and more useful for understanding
their colleagues (Q12) when using the Realistic avatar rather than the Cartoon avatar.

RQ2 Task satisfaction: For task satisfaction, there were no significant differences between the
two avatars in terms of the participants’ level of engagement (Q1: F (1, 13) = .51, p = .49, η2 = .04),
the perceived level of engagement of their colleagues (Q2: F (1, 13) = .44, p = .52, η2 = .03), the
impact of appearance on the task (Q4: F (1, 13) = .08, p = .79, η2 = .01), or the reported level of
comfort (Q5: F (1, 13) = .50, p = .50, η2 = .04).

RQ3 Presence: Once again, there were no significant differences between the two avatars in terms
of the extent to which the avatar mattered to the participants (Q6: F (1, 13) = .07, p = .80, η2 = .01),
the level of co-presence they felt (Q7: F (1, 13) = 2.1, p = .17, η2 = .14), or their perception of their
colleagues’ avatar as either digital images (Q9: F (1, 13) = 2.1, p = .17, η2 = .14) or unnatural (Q10:
F (1, 13) = .44, p = .52, η2 = .03).

Overview of Temporal Effects

To account for the temporal aspect, we calculated the regression statistics for each dependent
variable, with respect to which avatar type the participants embodied. To do this, we computed
the data for each avatar type, combining W1 and W2 (shown in Figure 5.3B). We then present the
data based on the avatar usage order (either Cartoon—Realistic (CR) or Realistic—Cartoon (RC))
in Figure 5.3C and 5.3D.

RQ1: Functional communicative value. We found a significant positive correlation over time
for being able to recognise their colleagues when participants embodied the Cartoon avatars, but
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not the Realistic avatars (shown in Figure 5.3B for Q8). When separating the data by the order in
which the avatars were used, the significance does not hold. The remaining questions for RQ1 (Q3,
11, and 12) did not show significance.

RQ2: Task satisfaction. When the order is not taken into account, there is no significance
over time for task satisfaction (Q1, 2, 4, and 5; shown in Figure 5.3B for RQ2). However, when
considering the order, we see a significant decrease in participants’ responses for the Cartoon avatars
in the Cartoon—Realistic order (R2 = .13, F (1, 29) = 4.18, p=.05, shown in Figure 5.3C for Q5).
This means that when embodying the Cartoon avatars first, their reported level of comfort was less
influenced by the avatar’s appearance over time. No other significant effects were found for Q5 or
the other questions for RQ2 (Q1, 2, and 4).

RQ3: Presence. In terms of presence, it was found that the appearance of the avatar mattered
less over time for participants using Cartoon avatars (R2 = .1, F (1, 59) = 6.67, p=.01, Figure 5.3B
Q6). Additionally, participants using Realistic avatars reported fewer obvious unnatural nonverbal
behaviours over time (R2 = .1, F (1, 61) = 6.22, p=.01, Figure 5.3B Q10). No other significant
findings were discovered when examining data from both weeks (W1 and W2).

When examining the order in which avatar styles were used, we found that the significance of Car-
toon avatars in Q6 only remained for the Cartoon—Realistic order group when Cartoon avatars
were used in the first week (W1: R2 = .27, F (1, 29) = 11.06, p=.002, Figure 5.3C Q6). When
Cartoon avatars were used in the second week (Realistic—Cartoon order), there was a decrease
but it was not significant (W2: R2 = .03, F (1, 28) = .74, p = .39, Figure 5.3D Q6). For
the Cartoon—Realistic order group, there was also a significant drop for Realistic avatars in
the second week (W2: R2 = .23, F (1, 29) = 9.1, p=.005, Figure 5.3C Q6), with the opposite
trend observed for the Realistic—Cartoon order group in the first week, but it was not signif-
icant (W1: R2 = .04, F (1, 30) = 1.38, p = .24 (Fig 5.3D Q6). Similarly, ratings of obvious
unnatural nonverbal behaviours in the avatars showed that participants using Realistic avatars
reported fewer of these over time during the Realistic—Cartoon order group in the first week
(W1:R2 = .25, F (1, 30) = 10.06, p=.003, Figure 5.3D, Q10), but not during the Cartoon—Realistic
order group (W2 R2 = .07, F (1, 29) = 2.09, p = .16, Figure 5.3C, Q10). No other significant find-
ings were discovered for RQ3 on the other questions.

In this subsection, we investigated how the avatar appearance interacts with the way participants
communicate with each other, perceived task satisfaction and perceived sense of presence (RQ1-3).
Co-workers used Cartoon and Realistic avatars for 2 − 3 weeks and based on their questionnaire
responses, we found important outcomes. First, the participants perceived the realistic avatar’s
nonverbal behaviour as more appropriate for the interaction and more useful for understanding
their co-workers compared to the cartoon avatar. Second, when looking at these responses over
time, there were different insights for each avatar appearance based on which type the participants
embodied first. Over time, participants reported an improvement in identifying their colleagues
while embodying Cartoon avatars (Q8 Figure 5.3B). When participants used Cartoon avatars first,
they reported that the avatar’s appearance mattered less to them over time. This trend appeared
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for Cartoon and Realistic avatars during the Order Cartoon—Realistic, but not for the Order
Realistic—Cartoon (Q6 Figure 5.3C). At the same time, when participants embodied first the
Cartoon style avatars, they reported that their appearance affected less their comfort over time (Q5
Figure 5.3C). When participants used the Realistic avatars for the first time, they reported less
unnatural nonverbal behaviours over time (Q10 Figure 5.3D); this trend is not significant for Order
Cartoon—Realistic, not for when participants embodied Cartoon avatars.

Figure 5.3: Responses to the questionnaire from Table 5.2 overall and over time

Panel A: Boxplots for each question separated by the avatar style; Panel B-D:
Scatter plots showing each question score over time separated by the avatar style.
The X-axis represents the weekly sessions in chronological order. In Panel C-D, the
question score is separated by the order (Cartoon—Realistic and Realistic—Cartoon).
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5.5.2 Part Two: Perceived and Self-Reported Emotional State

RQ4: Self-Reported Emotions Overall and Over Time

Participants self-reported their emotional states daily after each meeting. We are interested to
investigate the self-reported emotional state while participants embodied different avatar styles and
how this changes over time.

To compare the effects of Cartoon and Realistic avatars on emotional states, we first reversed
the ratings for Annoyed and Stressed for all participants (as explained in Section 5.4). We then
calculated the self-reported score for each avatar for each participant, averaging the data from Week
1 and Week 2. A paired t-test was conducted to compare the scores from Cartoon and Realistic
avatars, regardless of the Order or Emotional State, and no significant difference was found (p= 0.98;
Cartoon: mean= 4.27, variance= 1.13; Realistic: mean= 4.26, variance= 1.12).

Previous research has suggested that the order in which participants experience an avatar can
influence their subjective experience, so we also conducted separate paired t-tests between Realistic
and Cartoon avatars for each order. Using the same data where the self-reported ratings were
reversed for Annoyed and Stressed, we found no significant difference in the self-reported emotional
state for the Cartoon—Realistic order (t(27) = .45, p= .65 Cartoon W1: mean= 4.75, variance=
2.07; Realistic W2: mean= 4.69, variance= 1.83). However, for the Realistic—Cartoon order,
participants reported more positive emotions when using Realistic avatars in Week 1 compared
to Cartoon avatars in Week 2 (t(27) = 2.81,p=.009, Realistic W1: mean= 4.9, variance= 1.29;
Cartoon W2: mean= 4.23, variance= 1.81; see Figure 5.4A). We also conducted paired t-tests
for each Emotional State and for each Order, comparing Cartoon and Realistic avatars, but no
significant results were found (see Appendix D for detailed statistics).

Next, for each participant, we calculated the average self-reported score for each avatar and each
Emotional State. Because we took into account the Emotional State, we did not reverse the ratings
for Annoyed and Stressed. A paired t-test was conducted to compare the self-reported Emotional
State ratings for Cartoon and Realistic avatars, regardless of Order. The results showed that
participants self-reported feeling more Optimistic in meetings using Realistic avatars compared to
Cartoon avatars (t(13) = 2.53,p=.025; Cartoon: mean= 4.6, variance= 1.3; Realistic: mean=
5.06, variance= 1.68; see Figure 5.4A). There was no significant difference for the other emotions
(Focused t(13) = −.11, p=.92, Annoyed t(13) = −.57, p=.58, or Stressed t(13) = −.37, p=.71).

We also analysed the participants’ self-reported emotional states over time while using either Car-
toon or Realistic avatars. The data was split by avatar style and Weekly Session of avatar use,
and regression analyses were conducted on the self-reported emotional states over time for Order
Cartoon—Realistic (CW1, RW2) and Order Realistic—Cartoon (RW1, CW2). A significant result
was only found for Realistic avatars used in the first week (Order Realistic—Cartoon). Specifi-
cally, while using Realistic avatars for the first time, participants self-reported feeling less Opti-
mistic over time (R2 = .14, F (1, 30) = 4.93, p=.034, Figure 5.4C) and more Stressed over time
(R2 = .16, F (1, 30) = 5.66, p=.024), Figure 5.4C). There were no significant results for the Focused
and Annoyed emotional states or for the Cartoon avatars (see Appendix D for detailed statistics).
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Figure 5.4: Self-reported emotional state ratings, overall, over time, by emotional
state and by Order

Panel A: Box plots showing the average self-reported emotional state ratings, with
reverse coding for Stressed and Annoyed. The data is split by the order of Cartoon—
Realistic and Realistic—Cartoon, and by the avatar style. On the Y-axis, the range
is from 1 (representing Strongly Disagreeing) to 7 (representing Strongly Agreeing) of
having a certain emotional state. The X-axis shows the order (Cartoon—Realistic and
Realistic—Cartoon). Panel B: Box plots showing the average self-reported ratings
from each participant by emotional state and avatar style. On the Y-axis, the aver-
age self-reported ratings range from 1 (representing Strongly Disagreeing) to 7 (rep-
resenting Strongly Agreeing) of having a certain emotional state. The self-reported
ratings are separated by the avatar style (Cartoon or Realistic) that participants
were embodying, as shown in the box plots. Panel C: Scatter plots showing the
self-reported ratings from each participant by order (Cartoon—Realistic in the top
row and Realistic—Cartoon in the bottom row) and emotional state. The avatar style
is further represented by a fitted line. On the Y-axis, the self-reported ratings are
shown, and on the X-axis, the weekly sessions are shown chronologically from 1 to 5.



Chapter 5. AVATARS: The Appearance Impact in Real-World Meetings 101

RQ5a: Accuracy of perceived emotional states overall

Next, we were interested in the effect of avatar type on the accuracy of people’s perception of their
co-workers’ emotional states.

We conducted a repeated measure 2x4 ANOVA on the Mapped Error using avatar style (Realistic,
Cartoon) and emotional state (Optimistic, Focused, Annoyed, Stressed) as within-subjects factors,
and order (Cartoon—Realistic and Realistic—Cartoon) as between-subjects factor. Our results
showed a significant difference in the error of perceived emotional states when using Cartoon versus
Realistic avatars (F(1, 18) = 5.13, p=.036, η2 = .22). Specifically, participants perceived their
colleagues’ emotional states with fewer errors when using Cartoon avatars (M=.222) compared to
Realistic avatars (M=.248).

We found that there was a significant interaction effect between the order in which the avatars were
used and the type of avatar (F(1, 18) = 5.91, p=.026, η2 = .247). This is evident in the higher
error rate for Realistic avatars when they are used in the Realistic—Cartoon order compared to the
Cartoon—Realistic order. Specifically, when participants used Realistic avatars in the first week,
their mean error rate was .270, while it was .226 when Realistic avatars were used in the second
week (see Figure 5.5A).

There was also an interaction effect between the order, the style of the avatar, and the emotional
state of the participant (F(3, 18) = 3.71, p=.017, η2 = .171), as shown in Figure 5.5B. When
examining the data by emotional state, we found that the error rates varied depending on the
order and style of avatar used. For Cartoon avatars, the error rate was generally higher for the
positive emotional states (Optimistic and Focused) in the Realistic—Cartoon order compared to
the Cartoon—Realistic order. However, for the negative emotional states (Annoyed and Stressed),
the pattern was reversed, with the error rate being higher for the Cartoon—Realistic order. For
Realistic avatars, the error rate was higher for all emotional states except for the Optimistic state.

To investigate the interaction effect between avatar style and order, we conducted a post-hoc anal-
ysis using a paired t-test to compare errors made by participants in the Cartoon—Realistic and
Realistic—Cartoon orders. The results showed that there was no significant difference in the
Cartoon—Realistic order (t(9) = .11, p= .91; Cartoon W1: mean= .228, variance= .006; Real-
istic W2: mean= .226, variance= .003). However, in the Realistic—Cartoon order, participants
made more errors in perceiving their colleagues’ emotional states while using the Realistic avatar
in the first week and then the Cartoon avatar in the second week (t(9) = 3.79, p=.004; Realistic
W1: mean= .27, variance= .004; Cartoon W2: mean= .21, variance= .001).

We also conducted a two-factor ANOVA with avatar style (Cartoon and Realistic) as the dependent
variable and order as the between-subjects factor to further explore the interaction effect between
avatar, order, and emotional state. The results revealed significant differences between Cartoon
and Realistic avatars for the Annoyed (F=4.41, p=.05) and Stressed (F=5.32, p=.033) emotional
states, but no significant differences were found for the Optimistic (F=2.77, p= .11) or Focused
(F=.11, p= .74) emotional states.
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Figure 5.5: Averaged error of the perceived emotional state by Order

Boxplots showing the averaged mapping error of the perceived emotional state of
each participant to that of their colleagues. The averaged mapping error on the Y-
axis ranges from 0 (no error) to 1 (maximum error possible). Panel A: The error
values are separated by order (Cartoon—Realistic or Realistic—Cartoon), and the
data from each order is further separated by avatar style (Cartoon or Realistic). The
shape of each data point indicates the week (W1 or W2) in which the data was
collected. Panel B: The data from each avatar style is separated by order and by
emotional state, with each boxplot showing the error of perceiving a specific emotional

state (Optimistic, Focused, Annoyed, or Stressed), separated by avatar style.

RQ5b: Accuracy of perceived emotional states over time

We were interested in checking whether people got better at perceiving their colleagues’ emotional
states over time. To test this, we used the normalised error of the perceived emotional state
as presented in Section 5.5.2. As we also considered the time variable, in this case, we did not
average the error over time as in RQ5a. First, we considered all data regardless of which avatar
the participants were using, then we separated this data based on the Order (Cartoon—Realistic
or Realistic—Cartoon), and finally, we presented the results for Cartoon and Realistic avatars.

We calculated the regression over time for each emotional state for all 10 sessions over the two
weeks, maintaining chronological order. There was no significant trend for any of the emotional
states (Optimistic: R2 = .007, F (1, 178) = 1.21, p= .27, Focused: R2 = .002, F (1, 178) = 0.44,
p= .51, Annoyed: R2 = .007, F (1, 178) = 1.29, p= .26, Stressed: R2 = .007, F (1, 178) = 1.2, p=
.27). We calculated the regression overall 10 sessions separated by order. There was no significant
result for the Cartoon—Realistic order (Optimistic: R2 = .004, F (1, 90) = .37, p= .54, Focused:
R2 = .01, F (1, 90) = 1.23, p= .27, Annoyed: R2 = .008, F (1, 90) = .7, p= .40, Stressed: R2 =

.01, F (1, 90) = 1.18, p= .28). However, for the Realistic—Cartoon order, there was a significant
increase in error over time for Annoyed (R2 = .06, F (1, 86) = 5.46, p=.022) and Stressed (R2 =

.05, F (1, 86) = 4.88, p=.029). There was no significance for Optimistic (R2 = .001, F (1, 86) = .86,
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p= .36) or Focused (R2 < .00, F (1, 86) = .01, p= .92). Figure 5.6A shows the trends for the
Cartoon—Realistic and Realistic—Cartoon orders.

Figure 5.6: Error of the perceived emotional state over time

Scatter plots of the average mapping error of perceived emotional state from each
participant to each of their colleagues. The mapping error on Y-axis ranges from
0 (no error) to 1 (maximum error). Panel A: The X-axis shows the sessions in
chronologically order (W1 followed by W2), in Cartoon—Realistic order or Realistic—
Cartoon order. The grey dotted lines separate the plots W1 and W2. They are further
separated by the emotional states. B: The X-axis represents the sessions each group
had during one week (1 to 5). The data is separated into CR and RC order and then
into the emotional states. Trend lines are fitted for each order and emotional state to

show the errors for each avatar style.
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Next, we separated the data by avatar style. We calculated the regression for each avatar style
considering the order they were used in the weekly meetings, each of which had data from 5

meetings (see Figure 5.6B). We found significant results for the Realistic avatar only. For those
who started using Realistic avatars in their first week (W1), there was an increase in the error
over time of perceiving others as Optimistic (R2 = .086, F (1, 42) = 3.96, p=.05) and Annoyed
(R2 = .11, F (1, 42) = 5.48, p=.02). However, for those participants who did not use Realistic
avatars until their second week (W2) (after using Cartoon avatars in W1), there was a decrease in
the error for Annoyed (R2 = .13, F (1, 44) = 6.43, p=.01) and Focused (R2 = .3, F (1, 44) = 19.91,
p<.001). Results with non-significant p-values can be found in the Appendix D.

RQ6: Self-rated emotional states and co-workers’ perception errors

Figure 5.7: Error of the perceived emotional state by self-rated emotional states

Scatter plots of mapped error of perceived emotional state from each participant to
each of their colleagues. The mapped error on the Y-axis ranges from 0 (no error) to
1 (maximum error possible). The X-axis represents the self-reported emotional state,
1 representing Strongly Disagree and 7 representing Strongly Agree with having a
certain emotional state. The data is separated first by the order (Cartoon—Realistic
(top row) and Realistic—Cartoon (bottom row)) and then split by each emotional
state (Optimistic, Focused, Annoyed, Stressed), and the data points are fitted for

each avatar style (Cartoon and Realistic).

Khojasteh and Won demonstrated a link between high levels of self-reported positive emotions and
increased accuracy in perceiving those emotions by others [Khojasteh and Won, 2021]. They also
found an opposite trend for negative emotions, with high levels of self-reported negative emotions
leading to decreased accuracy in perceiving those emotions. We sought to replicate these results
and found similar outcomes. We observed similar correlations for Focused, Stressed, and Annoyed,
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but no correlation for Optimistic. To compute these results, we used the error of the perceived emo-
tional state and the self-reported ratings of participants’ emotional states. We conducted regression
analyses for each avatar and for each week (Figure 5.7).

When participants self-reported high ratings of Focused, their colleagues had fewer errors in per-
ceiving it. Conversely, when participants self-reported low ratings of Focus, their colleagues showed
more errors in perceiving it. This trend was only significant for Realistic avatars in the second week
(R2 = .15, F (1, 44) = 7.99, p=.007). No significance was found for Cartoon avatars.

The trend was the opposite for Annoyed, and it was significant for both Cartoon and Realistic
avatars during the first and second week. Specifically, when participants self-reported high ratings of
Annoyance, their colleagues showed more errors in perceiving it. When the self-reported ratings were
low, their colleagues’ perceptions of that emotion had fewer errors. This result was significant for
Cartoon avatars (W1: R2 = .15, F (1, 44) = 8.11, p=.006, W2: R2 = .09, F (1, 42) = 4.6, p=.03)
and Realistic avatars (W1: R2 = .24, F (1, 42) = 13.53, p<.001, W2: R2 = .39, F (1, 44) = 28.8,
p<.001).

Stressed had the same trend as Annoyed, but the results were only significant for the Realistic—
Cartoon order (Realistic W1: R2 = .12, F (1, 42) = 5.84, p=.02, Cartoon W2: R2 = .14, F (1, 42) =

7.02, p=.01).

RQ7: Most useful emotional cues

Participants were asked to rank the usefulness of various cues in perceiving the emotional states of
their colleagues. On average, the cue of choice of words was rated the highest, followed by tone of
voice and movements/gesticulations, for both Realistic and Cartoon avatars, and in both orders.
The cues of gaze and facial expression were rated the lowest. In the Cartoon—Realistic order, both
gaze and facial expression had a similar average score (both were equally the least useful). However,
in the Realistic—Cartoon order, gaze was rated more useful than facial expression (see Figure 5.8).

We compared the data from the first and second weeks for both Cartoon and Realistic avatars
based on the Order. We found a significant difference for the cue of facial expression. For Cartoon
avatars in the first week, participants rated facial expression as more useful than in the second
week (t(18) = −3.8, p = .001; Cartoon W1: mean=4.37, variance=0.27; Cartoon W2: mean=5,
variance=0). Using Realistic avatars in the first week, the rating of facial expressions was lower
than in the second week (t(18) = 4.11, p < .001; Realistic W1: mean=4.9, variance=.01; Realistic
W2: mean=4.3, variance=.2).
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Figure 5.8: Ranking of the most useful emotional cues

Box plots of the ranked cues used to perceive the other’s emotional states. On the
Y-axis, there is a 1− 5 ranking, with 1 meaning the most useful cue and 5 the least

useful.

5.6 Discussion and Limitations

The appearance of avatars in social interactions appears to have various complex implications,
some of which depend on the order in which the two avatars are used (i.e. Cartoon—Realistic or
Realistic—Cartoon). In the remainder of this section, we discuss three topics: the impact of high
expectations when using Realistic avatars first; the process of becoming accustomed to the Cartoon
style appearance of the avatars; and finally, the greater occurrence of errors in perceiving colleagues’
negative emotions. We then comment on the implications that these findings might have for the
design and deployment of avatars for MR meetings.

Realistic avatars may lead to high expectations

When participants embodied Realistic avatars, they perceived their colleagues’ nonverbal behaviours
as being more useful and appropriate for the interaction compared to when they used Cartoon
avatars (RQ1b p = .019, RQ1c p = .036). There was also an order effect for appropriateness,
showing that the high scores primarily came from when participants used Realistic avatars in Week
1, rather than in Week 2 (p = .004). This result suggests that participants may have had higher
expectations when using Realistic avatars in meetings with their colleagues. While there was no
difference in the nonverbal behaviour of Cartoon and Realistic avatars, participants still rated the
nonverbal behaviour of Realistic avatars as having more functional communicative value (RQ1).

On average, participants rated their feelings of being in the presence of their colleagues higher for
Realistic than for Cartoon avatars, although this difference was not significant (p = .17).

Participants self-reported feeling more Optimistic when using Realistic compared to Cartoon avatars
(RQ4 p = .025). However, participants self-reported feeling more Stressed and less Optimistic over
time when they used Realistic avatars in Week 1 of the Realistic—Cartoon order (RQ4 more Stressed
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p = .024, less Optimistic p = .034). Work meetings have their own stresses, so it may be that the
Realistic avatar conveyed those stresses, or it may be the case that as participants found Realistic
avatars not to live up to initial expectations, stress increased and optimism decreased. Further
research is needed to separate the emotional effects of avatar appearance from the emotional effects
of the work/task being done.

The potential higher expectations of realistic avatars may have led participants to rate gaze cues
as being more useful than facial expressions for perceiving their colleagues’ emotional states (RQ7
p = .001). The avatars had neither true gaze cues from eye-tracking nor facial expressions from
face-tracking or audio visemes, but they did have a head pose relative to body pose and a blink
animation. Participants in the Realistic—Cartoon order condition considered gaze to be more useful
than facial expression, which may be due to their higher expectations when using Realistic avatars
first, especially since heads could turn and eyes blinked, which may have conveyed an illusion of
gaze.

Finally, participants embodying Realistic avatars first (in the Realistic—Cartoon order) had more
errors when perceiving their colleagues’ emotional states (RQ5a). There was an increase in errors
over time for the Realistic—Cartoon order for perceiving Annoyed and Stressed emotions (RQ5b
p = .022 and p = .029), as well as increased errors in perceiving Optimism and Annoyed emotions
(RQ5b p = .05 and p = .02) for those who used Realistic avatars in Week 1. Nonverbal behaviour
was implemented in the same way for both Cartoon and Realistic avatars. However, the higher
expectations of avatars resembling their colleagues in a Realistic manner may have led to an as-
sumption that they provided authentic and more useful expression and movement (RQ1 (b) and
(c)). Given that those participants in the Realistic—Cartoon order also reported gaze behaviour
as more useful than those in the Cartoon—Realistic order (RQ7), the combination of effects could
have led to more errors in the perception of emotional states.

Participants may become accustomed to Cartoon avatars over time

When using Realistic avatars, participants consistently rated their ability to identify colleagues as a
5.8 on a scale from 1 to 7. However, when using Cartoon avatars, participants showed an improved
ability to identify their colleagues over time (RQ1a, p = .04). These results held even though
both the Cartoon and Realistic avatars were personalised for each participant using a picture of
themselves (see Section 5.3).

At the same time, participants reported that the appearance of the avatar mattered less to them over
time, when taking part in the Cartoon—Realistic order condition. When using Cartoon avatars in
their first week, their score on the question "The appearance of the avatars mattered to me" dropped
from 5.7 (agree) to 3.2 (slightly disagree) (RQ3b, p = .002). A similar trend was observed when they
then switched to using Realistic avatars. On the first day using the Realistic avatars in their second
week, the average score to Q6 was 5.6 (agree), falling to 3.2 (slightly disagree) by the fifth day (RQ3b
p = .005). Additionally, participants reported feeling more comfortable using Cartoon avatars over
time in the first week (RQ2b, p = .005). These trends were not observed when participants used
Realistic avatars before Cartoon avatars (Realistic—Cartoon order) or for Realistic avatars alone.
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It is possible that using Cartoon avatars first allowed participants to become more accustomed to
the appearance of the avatars, leading to increased comfort and a reduced focus on appearance.
This may also have contributed to the improved ability to identify colleagues and the decreased
reliance on facial expression and gaze as cues for perceiving emotional states (RQ7, p < .001).

Overall, participants using Cartoon avatars made fewer errors in perceiving the emotional states
of their colleagues compared to those using Realistic avatars (RQ5a, p = .036). This trend was
particularly pronounced in the first week of the study when using Realistic avatars (RQ5a). In
contrast, errors decreased over time for both Focused and Annoyed emotional states when using
Realistic avatars in the second week (RQ5a, p < .001 and p = .01, respectively). However, the use of
Realistic avatars in the first week was associated with an increase in errors for both Optimistic and
Annoyed emotional states (RQ5a, p = .02 and p = .05, respectively). These findings might imply
that using the Cartoon avatars first did not lead to as high expectations as might have happened
in Realistic—Cartoon order, with a subsequent sense that appearance mattered less over time,
and leading them to rank facial expression and gaze as equally not useful for perceiving emotional
states (RQ7). Further, a decreased emphasis on visual appearance may have led participants in the
Cartoon—Realistic order condition to focus more on the less-mediated auditory cues for emotional
states, potentially leading to greater accuracy.

Use of avatars may lead to more errors perceiving negative emotions

Participants made more errors when trying to perceive their colleagues’ negative emotional states.
This finding is consistent with the result of Khojasteh and Won [Khojasteh and Won, 2021]. How-
ever, this trend was not observed for all emotional states. For Annoyed, this trend was observed
for both the Cartoon and Realistic avatars, regardless of the order condition (Cartoon—Realistic or
Realistic—Cartoon). For Stressed, participants made more errors in perceiving negative emotions
only when in the Realistic—Cartoon order. The opposite applied to Focused, in which there were
more errors during the Cartoon—Realistic order. Finally, there was no trend for errors in perceiving
the Optimistic emotional state.

This result might explain some of the outcomes of errors on different avatar styles, for instance, the
higher error when perceiving colleagues’ emotions when they were using Realistic avatars. These
errors might come from participants self-reporting more negative emotions, hence colleagues making
more errors when trying to perceive those emotions. However, while participants self-reported as
more optimistic in Realistic avatars compared to Cartoon avatars (see Section 5.5.2), this did not
result in colleagues making more errors in perceiving optimism, as they did for negative emotions.
There was no significant difference between self-reported emotional states when using Realistic and
Cartoon avatars overall which would explain the higher error rate for perceiving negative emotions
in Realistic avatars.

Most of the errors in perceiving emotional states occurred in Realistic W1, so we also compared
the self-reported emotional state for each avatar and week. As shown in Section 5.5.2, there was
no significant difference between Realistic W1 and Cartoon W1, regardless of the emotional state
or when each emotional state was considered separately. There was a difference in the self-reported
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emotional states between avatar styles in the Realistic—Cartoon order. Participants in Realistic
avatars in their first week self-reported their emotional states more positively than they did when
using Cartoon avatars in their second week (RQ4 p= .009). This contradicts the implication that
the higher error when perceiving emotions while embodying Realistic avatars (RQ5a) might be a
result of more negative emotional states.

Implications

The key issue from the findings above is that, at this stage of reasonable novelty in mixed reality
meetings in the workplace, first impressions set expectations but these expectations change over
several sessions–for good and for ill. Both realistic and cartoon avatars are useful for establishing
co-presence, but cartoon avatars seem to lead to people treating the avatar’s embodiment of presence
as more important than its ability to visually convey much nuance of communication or emotion.
The communicative value of realism is currently more fragile than that of cartoon avatars, and it
leads people to errors around belief in gaze and emotional perception.

At this point in history, these findings are probably indicative of an immature system of realistic
avatar production and their relative novelty to users. While there will be occasional potholes on the
way up the recovery curve of the uncanny valley, realistic avatars will achieve acceptability within
a few years at most, given current advancements in methods for creating and animating realism
[Khakhulin et al., 2022, Zhang et al., 2022, Ma et al., 2021]. The question for commercial systems will
be how to set users’ expectations for avatar use. One way could be to deliberately separate avatar
styles by context (e.g. cartoon for casual and realistic for business, as Mark Zuckerberg believes
[Lex Fridman, 2022]). The results of this study suggest that having clear evaluations of how well
avatars enable the identification of a unique individual, communicative functionality, and emotional
trustworthiness, may matter more than thresholds of accuracy in realistic depiction. In particular,
our participants made a range of errors in perceiving positive and negative emotional states, and
these errors were different for cartoon versus realistic avatars. These results show that it will be
important to disentangle issues of the accuracy of likeness from issues of emotional trustworthiness
of likeness.

This brings us to a related point about what it is that participants were basing their perceptions
on. Although the object of primary comparison in this study is differences in visual representation,
it is also crucial to note how important verbal cues were to participants. In the cartoon version,
participants were highly attentive to verbal cues. In traditional video meetings voice is often the
communicative stream of primary value, especially for some of the most common business needs
[Standaert et al., 2021]. This has two implications. First, in the short term, improving audio quality
(e.g. designing even better spatial audio, which is already quite good in VR and MR systems) may
provide more impact than improving visual realism. Second, designing better cartoon and realistic
avatars should involve detailed consideration of the interaction between the visual and the verbal.
Specifically, new avatars must not be evaluated as still images only or silent videos. Their value
will come as a holistic system, and it is in that holism that useful trade-offs in visual realism will
be found.
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Finally, in terms of holistic understanding, time also matters. Our results suggest that even fairly
short longitudinal studies, e.g. daily use for around two weeks, produce important results about
changes in how people perceive avatars, especially when those people know one another. More
research will be needed to determine how many instances of multiple exposures to different styles
might be needed, over what time period, and to what extent of acquaintance, will provide the
strongest results. We hasten to add that we are not claiming that all short-duration research
between strangers is problematic or has no ecological validity. There are many situations of short-
duration communication between strangers in work contexts, ranging from fleeting transactional
encounters [Félix-Brasdefer, 2015] to v-teams who come together under conditions of swift trust
[Meyerson et al., 1996, Blomqvist and Cook, 2018]. Our point is that we would urge that future
research on avatars features multiple encounters over time, lest we over-index on first impressions
instead of allowing that time will tell.

Limitations

Although we balanced the participant’s gender, group size and avatar order, we did not take into
account the participant’s prior experience with MR devices. Six out of 14 of them never used an MR
device before, whereas the rest had some experience with it in the past six months (two participants-
more than two times a week, two participants- once a week, four participants- 1−3 times a month).
Given that this study has a relatively small number of participants, we could not test if the prior
MR experience influenced participants’ responses.

All participants were part of a technology company. Hence, there might be a possibility that they
were more accepting of innovations in IVEs. Further studies are needed to control for the likelihood
that participants might be more open to novel technology systems.

Due to limited time, we did not implement into the avatars nonverbal behaviour gaze or facial
expressions. In particular, the results on RQ7 (What are the most valuable cues available for
identifying emotional states and are these different depending on the avatar style) might have been
different if more detailed gaze and facial cues had been implemented.

5.7 Conclusion

We presented the results from a longitudinal study on avatars’ appearance during work-related
meetings between co-workers. We investigated how the avatar appearance interacts with: the way
participants communicate with each other, perceived task satisfaction, perceived sense of presence,
emotional state perception, and useful cues in MR meetings. Over two-three weeks, 14 participants
in dyads and triads (6 groups) had their usual work meetings in MR while embodying two different
avatar styles. After each meeting, they answered a set of questionnaires.

In comparing the experiences of knowledge workers’ using personalised realistic or cartoon avatars
over multiple real-world meetings, we found that the avatar style that they started with had an effect
on their experiences, as did the time using the avatars. Overall, the study suggests that people have
high expectations for the communicative and emotional value of realistic avatars, perhaps because
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they enable trust in the form of identification of the other, but that wanes quickly if avatars don’t
live up to expectations for other cues. A crucial finding was that avatars may be less effective in
conveying negative emotions, especially realistic avatars. On the other hand, participants reported
feeling more comfortable using cartoon avatars over time. A key message for future research and
commercial usage, then, is to prioritise features and deployment plans around communicative value
for the situations in which avatars will be used over accuracy (or perceived lack of accuracy) in
likeness.
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6
Conclusion & Future Work

In this chapter we revisit the main research questions detailed in Chapter 1, we summarise the
contributions from Chapters 3, 4 and 5. Then we discuss the limitations of these works and their
impact, and finally, we cover some areas of promising further research in this field of nonverbal
behaviours for VCs during social interactions in IVEs.

6.1 Summarised contributions

In this thesis, we introduced work on the nonverbal cues during social interactions in immersive
virtual environments covering three areas of interest: People, Agents, and Avatars. Our aim was to
move the field forward toward building autonomous agents. Given the circumstances of a doctorate
thesis, building a fully autonomous agent was not feasible. Instead, we investigated three main
areas regarding virtual characters and their non-verbal cues during social interactions in IVEs. At
the same time, we motivated our work based on the industry demands. We worked with different
stakeholders to learn their needs and how we can perform research focused on their requirements.

First, in our study on People from Chapter 3, we collaborated with the Institute of Cognitive
Neuroscience at the University College London (UCL) to understand the dynamics of conversational
cues during social interactions in dyads. In this work, we were interested in understanding the
dynamics of social interactions between people. Our RQ1 was What are the dynamics of low-
level non-verbal behaviours, in particular gaze and turn-taking, in face-to-face social
interactions between two people?. We developed this further and broke it down into a few
hypotheses. First, we wanted to check if a well-established outcome from the literature stands
in our dataset: listeners perform more direct gaze than speakers. This was our first hypothesis.
Further, we were interested in the conversational dynamics and the approach/avoidance conflict
introduced by Argyle and Dean [Argyle and Dean, 1965]. Hence our second hypothesis that we
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split two parts was: when someone is being looked at (receiving direct gaze), they would switch back
and forth between performing direct gaze and avert gaze with a higher frequency compared to when
they are not being looked at ; and the second part is related to when people are not being looked at:
when someone is not being looked at (receiving avert gaze), they would look more at the other person’s
face (performing direct gaze) than somewhere else- performing avert gaze. To test these hypotheses,
we made use of a multimodal dataset from dyads performing unstructured tasks. This dataset was
recorded by the Institute of Cognitive Neuroscience at UCL. We developed the hypothesis, analysed
the data, and built a model to automatically annotate speech and gaze targets in dyads. Given that
we used an automatic way of annotating the dataset, we used the first hypothesis as a validation
of our method of automatically annotating the dataset. In terms of conversational dynamics, we
found out that people have a higher frequency of gaze change (from advert to direct and vice versa)
when they are being looked at compared to when they are not. When a participant is not being
looked at, they also tend to look more at their conversation partner compared to when they are
being looked at.

After gaining more insights into conversational dynamics and how complex the social interactions
between people are, we decided to focus on higher-level nonverbal behaviours. These tend to be
harder to describe using rules and even to explain in detail. They are playing an important role when
it comes to building the behaviour of a virtual agent, especially in IVEs, as the plausibility illusion
affects greatly the user’s experience in this medium (see Section 2.2). Hence, for our second study
on Agents, we collaborated with two game studios (Dream Reality Interaction and Maze Theory)
and we focused on higher-level nonverbal behaviours. For this, we developed the RQ2: How can
an agent be trained to recognise implicit social attitudes during social interactions in
virtual reality? Our industry collaborators were interested in how to recognise implicit social
attitudes as this ability would allow for more engaging and inclusive game mechanics in VR games,
especially in narrative VR games. To do this, we took into account the gamers’ behaviour in
a game, and the game creators’ creative process and we made use of the technology available
to increase/fulfil the market reach need for the game production. We build an immersive ML
pipeline to recognise implicit social attitudes in interactions. This pipeline was designed to be
used by game designers/creators to annotate abstract behaviours in immersive environments (VR)
and eventually to design new interactions in this medium by having an agent recognise implicit
non-verbal behaviours. We focused on recognising social engagement and worked on agents (or
non-player characters) for the Peaky Blinders narrative VR game developed by Maze Theory. The
pipeline built allowed game creators to record and annotate social interactions between an agent
and a player, in the same medium that the game will be in (VR). This allowed creators to design
more engaging experiences in IVEs. The technical contribution of this work lays in designing the
architecture of the ML model. We train a reinforcement machine learning algorithm with imitation
learning rewards using raw data (e.g. head position) and socially meaningful derived data (e.g.
proxemics); we compared different ML configurations including pre-training and a temporal memory
(long-short term memory model - LSTM). The pre-training and LSTM configuration using derived
data performed the best (84% F1-score, 83% accuracy) whereas the model using raw data did not
generalise.
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Hence, addressing our research question, we trained an ML model to recognise implicit social at-
titudes during social interaction in VR. Although we run our analysis on a specific social attitude
(social engagement), we argue that the pipeline can be generalised (see Section 4.6) and it was
implemented by the Dream Reality Interactions (one of the industry partners) in a VR karaoke
prototype. Our pipeline relies on immersive data annotation without the need to formally define
the social attitude. Further, the ML model configuration includes the synchronised data from all
participants in an interaction (in this case, the user and the virtual character), a pre-trained rein-
forcement ML model with imitation learning rewards, a temporal component (to account for past
events in the interaction) and socially meaningful derived data to train the model on.

For our final work, we collaborated with a different industry covering another area of virtual char-
acters’ social interaction in IVEs. Collaborative remote work has gained more attention, especially
during the pandemic years and the IVEs facilitate and enhance remote interactions. Usually, in
IVEs users are represented by their avatars and it is not well understood how their appearance
influences their interactions. Given this, we worked closely with the Future of Work department
from Microsoft Research Cambridge to study this. The main research question on this work was
RQ3: what is the influence and response to the others’ personalised avatars appearance
during repeated social interactions between co-workers in mixed reality? In detail, we
were interested in understanding the impact the avatars’ appearances have on the functional com-
municative value, task satisfaction, presence, emotional state perception, and the usefulness of cues
during real work meetings in MR. We considered two avatar styles: realistic and cartoon. We asked
groups of volunteers to run their usual work meetings in MR for 2− 3 weeks while embodying full-
body personalised realistic or cartoon avatars. Based on daily questionnaire responses, we identified
that participants who used realistic avatars first may have had higher expectations and more errors
in perceiving their colleagues’ emotional states. Those using cartoon avatars first reported that
the avatars’ appearance mattered less over time and experienced increased comfort and improved
identification of their colleagues. Participants rated words, tone of voice, and movement as the most
useful cues for perceiving colleagues’ emotions, regardless of avatar style. Results from this work
also suggested that participants had more errors when perceiving negative emotional states in their
colleagues, with this trend appearing for most emotional states (in line with previous research) but
it depended on the avatar style order. This work had shown that the users’ appearance in MR
meetings matters, in particular, if we look at the order the participants are using the avatar styles.
Further, the novelty of an MR device wanes off and the overall impressions change after several
sessions.

6.2 Collaborative work

All three projects in this thesis are driven from collaborative work with different bodies and different
stakeholders for each. For the first project on people, the contributions of the Institute of Cognitive
Neuroscience at UCL were on the data collection and study design. The main contribution presented
in this thesis is the data analysis and the automatic cues annotation (gaze and speech). This project
helped us better understand the complexity of human-human interactions and the interdisciplinary
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work enriched our view on building virtual characters for IVEs that are able to perform verbally and
non-verbally as it is expected by the user. When we started the work on agents, we collaborated
closely with two game studios (Dream Reality Interaction and Maze Theory) and the project was
funded by the InnovateUK grand. The direction of the project was motivated by Maze Theory’s
new game, Peaky Blinders and the way the characters in the game (NPCs or non-player characters)
should be created in a VR narrative game (see more details in Section 2.4.1). From the very
beginning, we met regularly to design the project in a way that would be the most beneficial for
both game companies. Finally, for the third project presented here, we worked together with the
Microsoft Research lab in Cambridge under the Future of Work team and with the Mixed Reality
team. As remote meetings have become more and more part of our routines, we researched the
implications of different avatar styles in remote meetings in VR. The appearance of VCs influences
the overall social interactions and the users’ expectations. The study design and data collection
took place at the Microsoft Research lab during a summer internship, the participants being from
different teams within the Microsoft corporation. This allowed using real data in our study to
strengthen the ecological validity. The data analysis was performed in close collaboration with the
Microsoft Research team ensuring that the outcomes would have a direct impact on the remote
meetings strategies. The study was also included in the Microsoft New Future of Work Report 2022
[Teevan et al., 2022].

All of these projects were designed such that the outcomes would be directly applied to the stake-
holder’s game and application. This ensured the decisions in the work were very well-motivated
and relevant to the overall outcome in the bigger picture in the industry.

6.3 Limitations and future work

Although the thesis offers valuable insights on VC for social interactions in IVEs, there are still a
number of aspects outside the scope of this thesis. Therefore, a few limitations should be noted in
this work. These limitations could act as the motivation for further research that could add to the
area of VCs in IVEs alongside the work presented here.

To begin, our first study from Chapter 3 has a number of limitations worth mentioning. The
multimodal data collected by the Institute of Cognitive Neuroscience at UCL included dyads of
people who didn’t know each other. The social dynamics cues between people can differ based on
the familiarity of the conversation partners. Given this, our result might not generalise to different
groups of people knowing each other. Further work is needed here to test whether these results
stand. The data used in this study is multimodal including upper-body motion capture and rich
eye data. Our work focused on speech turns and direct/averted gaze direction (looking at the other
person or not looking at the other person). More complex data could have been used, however, it
was outside of the scope of this work. We believe that future work examining other social dynamics
in free-flow conversation could bring important contributions to the field and could add to the
insights presented in this thesis. Finally, although we proposed and used a novel automatic data
annotation method for this data, this might be seen as a limitation. Our first hypothesis validated
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the automatically annotated data, however, a replication of this study using manual annotations
could strengthen our results.

The results replication of the second study from Chapter 4 might pose a difficulty without the same
annotator. This might seem like a limitation of our work, however, the aim was not to develop a
generalisable model for engagement detection (or any other social attitudes). We argue that these
abstract social attitudes are hard to define and there are many definitions for engagement [Glas and
Pelachaud, 2015]. Thus, our method allows the annotator (in our case the creative game designer)
to decide which behaviour can be categorised as social engagement by watching a playback of the
interaction in the same medium as it was recorded. This data is then used to train the ML model and
when real-life players exhibited the annotated behaviours during gameplay, certain events (agent
behaviours, or change of game environment) could be then triggered. Our study presented a way to
allow a VC to sense and recognise the events that happen in social interactions in order to respond
accordingly. However, the responding part was out of the scope of our work. A potentially fruitful
future work would be to implement a response mechanism based on the sensing and recognising
described in this thesis. This could create the basis of an autonomous virtual agent that is able to
recognise abstract implicit cues in social interactions in IVEs, allowing for novel input interactions,
game mechanics or behaviours based on the user-VC rapport.

Our final study on Avatars from Chapter 5 brought valuable insights into how the avatars’ ap-
pearance impacts social interactions. Aspects such as the longitudinal data collection, the use of
personalised full-body avatars or the nature of the task (real-world meetings between co-workers who
know each other) strengthen the ecological validity of the study. However, there are some limitations
that should be taken into account in future works. First, our results are based on the participants’
self-report by filling in questionnaires after each work session in MR. Other data could have also
been considered, such as gaze targets, speech or body movements. Furthermore, the avatars used
did not have implemented facial expressions nor user-synchronised blinks and lips movement (the
blinks were generated and for the lips, we used a general lip-flapping algorithm based on the voice
amplitude). Due to time limitations, we could not implement these. Further research is needed to
confirm and move our work forward in this fast-moving field.

The participants from all three studies in this thesis come mostly from the western part of the world.
In the first two studies (People and Agents) all participants were volunteers from London, UK; in
the last Avatars study, the participants were Microsoft Corporation employees from the UK, US,
and Africa. Although there are more participants diversity in the final study, it is likely that the
ones who volunteer might have had an interest in VR/MR. This is a limitation of all three studies
and further work based on people from different cultures could enrich the data collection and would
make a valuable contribution to the field.
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6.4 Outlook

In this section, I reflect on the work presented in this thesis and on the course of these research
areas in the past half a decade.

This thesis contributes to the area of virtual characters in IVEs in three different fields. The initial
PhD proposal was more technical covering mostly algorithms’ improvements, whilst still focusing
on interdisciplinary topics. I thought that I would specialise in certain types of algorithms to create
nonverbal behaviours for (autonomous) virtual agents. Right from the first years, I spent most of
the time getting up to date with the literature and foundations of social interactions and non-verbal
cues. This was very beneficial as it helped me see my work as part of a larger picture. A big part of
my PhD work was not coding-heavy as I thought it would be. But rather I focused on the literature
from many research fields, which let me understand and reflect on how my technical skills could fit
in and help advance the area.

I did not expect my work to be as interdisciplinary, or with such direct applicability in the industry.
Working with different stakeholders made me realise that the research needs to be adapted to the
final product/application. Working with another academic body led to important contributions
to knowledge in form of validating current results and discovering other cues’ dynamics in social
interactions. These are not necessarily directly applicable to a product but they represent building
blocks towards developing virtual agents.

The collaboration with the two industries shaped differently. Firstly, working with two game com-
panies meant opening to adapting usual research practices to fit the project’s aim. For instance,
there are many virtual characters that are mostly listeners in interactions (e.g., in public speak-
ing, interviewing or direction/information-seeking applications). However, in games it is unusual to
have players actively speak to virtual characters (NPCs), hence the virtual characters are the active
speakers and the players take mainly the listening role. Thus, the project had different constraints
from the technologies used, to the study design. Though, this allowed accommodating a direct
application of our results and practices into the game studios’ workflows.

The experience was different when working with another industry more focused on research and
within a big corporation (Microsoft Research). The project’s outcomes were planned to be applied
to existing products, tackling fast-moving fields. The remote/hybrid working sector had a large
shift and interest in the last years. The primary goals were researching cutting-edge technologies
and planning to contribute and advance an existing product.

Looking back, the research projects from this thesis and throughout the PhD have contributed to
advances in an interdisciplinary field of autonomous agents in IVEs, but at the same time, have
made an impact in two industries covering entertainment and remote work. Looking forward, I
am optimistic I will come across more projects with applied research contributions in the areas of
nonverbal behaviours for socially interactive autonomous agents.
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6.5 Conclusion

This manuscript explored the field of Virtual Characters in Immersive Virtual Environments fo-
cusing on nonverbal behaviours in social interactions. We were motivated to build an autonomous
virtual character that would be able to socially interact with users in immersive virtual environments
without weakening the user’s plausibility illusion.

Throughout the PhD, we have collaborated with different institutions and companies to gather
insights from different related fields (as this work is interdisciplinary), and to ensure that the
research outcomes are directly applicable in the real world. This allowed designing studies with
strong ecological validity that can be replicated and expanded through future research.

Thus, this thesis is centred on three main studies. First, we collaborated with the Institute of
Cognitive Neuroscience from University College London and using multimodal data between two
people, we gathered insights into the dynamics of low-level non-verbal behaviours, particularly on
gaze targets and turn-taking.

We then considered higher-level nonverbal behaviours. We collaborated with two game studios,
Dream Reality Interaction and Maze Theory to research how can an agent be trained to recognise
implicit social attitudes. We build an ML model that could be embedded in agents to sense and
recognise implicit social attitudes when interacting with players with an accuracy of 83%. This was
motivated by the need for virtual agents (non-player characters) in Maze Theory’s narrative VR
game Peaky Blinders.

Lastly, we collaborated with the Future of Work lab and the Mixed Reality lab from Microsoft
Research Cambridge to research on avatars in remote meetings. We were interested in what is
the influence and response that people would have to the others’ personalised avatars’ appearance
during repeated meetings between co-workers in MR. We created full-body personalised avatars
for all participants in two styles: cartoon and realistic. We compared their experience of using
these avatars for 2 − 3 weeks during their usual work meeting in MR. The results imply the use
of realistic avatars first, increases the participants’ expectations and they make more errors in
perceiving their colleagues’ emotional states. When it comes to cartoon avatars, they may also
become more accustomed as time passes.

This thesis offers a number of findings relevant to creating autonomous agents for immersive virtual
environments, with a focus on nonverbal behaviour during social interactions with a user. Moreover,
the contributions are tangible to relevant fields through our collaboration with the games and work
industries.
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A
Questionnaires

This appendix chapter contains the questionnaires used for Chapter 4 and Chapter 5.

First, we start with the ones from Chapter 4. It includes the questionnaire after the first VR stage,
after the second VR stage and after the third VR stage. After this, there is the Demographic
questionnaire.

Next, we present the questionnaires from Chapter 5. It includes the onboarding questionnaire
followed by the daily questionnaire titled Daily post-meeting questionnaire.

All the questionnaires in this appendix are recreations of the questionnaires in the Microsoft Forms
online tool. Participants used the more user-friendly web version of Microsoft Forms to answer the
questions.



Questionnaire after the first stage 
 

Please complete this questionnaire after the first stage.  
 

1. Li was in the room with you. What do you think about Li? 

 Yes No 

I liked Li.   

I would like to spend more time with Li.   

I feel Li is reliable.   

I feel Li is honest.   

I feel Li is sociable.   

I feel Li is friendly.   

I feel Li is sympathetic.   

I feel Li is trustworthy.   

 

2. Did Li mention any member of her family in her monologue? If so, list the family members 

you remember. 

 

3. What kind of relationship do you think Li has with her family? 

 

4. How do you think Li was feeling like? 

 

5. What do you think about this session? Please add any comments you might have below. 

 

 

 

 

Please answer the following keeping in mind the most recent experience. 

6. Please rate your sense of being in the room with Li, on the following scale from 1 to 7, 

where 7 represents your normal experience of being in a place.  

I had a sense of "being there" in the room with Li: 

1 - Not at all 2 3 4 5 6 7 - Very much 

       

 

7. To what extent were there times during the experience when the virtual room became the 

"reality" for you, and you almost forgot about the "real world" of the office/lab in which 

the whole experience was really taking place?  

There were times during the experience when the virtual room became more real for me 

compared to the "real world"... 

1 – At no time 2 3 4 5 6 7 – Almost all the time 

       



 

8. When you think back about your experience, do you think of the virtual room/virtual 

character more as images that you saw, or more as somewhere that you visited? Please 

answer on the following 1 to 7 scale: 

The virtual room seems to me to be more like… 

1 - Images that I saw 2 3 4 5 6 7 - Somewhere that I 
visited 

       

 

9. During the time of the experience, which was strongest on the whole, your sense of being 

in the virtual room, or of being in the real world of the lab/office? 

I had a stronger sense of being in… 

1 - The real world of 
the lab/office 

2 3 4 5 6 7 - The virtual reality of 
the room with Li 

       

 

10. Consider your memory of being in the virtual room. How similar in terms of the structure 

of the memory is this to the structure of the memory of other places you have been 

today? By ‘structure of the memory’ consider things like the extent to which you have a 

visual memory of the room, whether that memory is in colour, the extent to which the 

memory seems vivid or realistic, its size, location in your imagination, the extent to which 

it is panoramic in your imagination, and other such structural elements. 

I think of the virtual room as a place in a way similar to other places that I've been 

today.... 

1 - not at all 2 3 4 5 6 7 – very much so 

       

 

11.  During the time of the experience, did you often think to yourself that you were actually 

just standing in an office wearing a helmet or did the virtual room and Li overwhelm you? 

During the experience I often thought that I was really standing in the lab/office wearing a 

helmet.... 

1 - most of the time I 
realised I was in the 
lab 

2 3 4 5 6 7 - never because the 
virtual room 
overwhelmed me 

       

 

 

 

 

 

 

 

 

 



 

 

 

Please answer the following keeping in mind the most recent experience. 

 

 1-Not 
at all 

2 3 4 5 6 7-Very 
much so 

How much did you behave within 
the experience as if the situation 
was real? 

       

How much was your emotional 
response in the experience as if the 
situation was real? 

       

How much were you thinking things 
like 'I know this isn't real' but then 
surprisingly finding yourself 
behaving as if it was real? 

       

To what extend were your physical 
responses within the experience 
(e.g. heart rate, blushing sweating, 
etc) the same as if it had been a real 
situation? 

       

How much did you behave as if Li 
was real? 

       

How much was your emotional 
response to Li as if she was real? 

       

How much were your thoughts in 
relation to Li as if she was real? 

       

How much were you thinking things 
like 'I know this person isn't real' but 
then surprisingly finding yourself 
behaving as if Li was real? 

       

How much did you have physical 
responses (such as change in heart 
rate, blushing sweating, etc) towards 
Li as if she was real? 

       

 



Questionnaire after the second stage 
1. Please answer the following keeping in mind the most recent experience. 

 

 1-Not 
at all 

2 3 4 5 6 7-Very 
much so 

How much did you behave within 
the experience as if the situation 
was real? 

       

How much was your emotional 
response in the experience as if the 
situation was real? 

       

How much were you thinking things 
like 'I know this isn't real' but then 
surprisingly finding yourself 
behaving as if it was real? 

       

To what extend were your physical 
responses within the experience 
(e.g. heart rate, blushing sweating, 
etc) the same as if it had been a real 
situation? 

       

How much did you behave as if Li 
was real? 

       

How much was your emotional 
response to Li as if she was real? 

       

How much were your thoughts in 
relation to Li as if she was real? 

       

How much were you thinking things 
like 'I know this person isn't real' but 
then surprisingly finding yourself 
behaving as if Li was real? 

       

How much did you have physical 
responses (such as change in heart 
rate, blushing sweating, etc) towards 
Li as if she was real? 

       

 

2. How well would you say you performed at gaining Li's trust? 

 

3. How would you rate the following statement:  

Would you say that Li trusts you with delivering an important piece of 

information to another person? 

1 – Definitely no 2 3 4 5 6 7 – Definitely yes 

       

 

4. What do you think about this, most recent session? Please add any comments 

you might have below. 



 

Questionnaire after the third stage 
 

1. Please answer the following keeping in mind the most recent experience. 

 

 1-Not 
at all 

2 3 4 5 6 7-Very 
much so 

How much did you behave within 
the experience as if the situation 
was real? 

       

How much was your emotional 
response in the experience as if the 
situation was real? 

       

How much were you thinking things 
like 'I know this isn't real' but then 
surprisingly finding yourself 
behaving as if it was real? 

       

To what extend were your physical 
responses within the experience 
(e.g. heart rate, blushing sweating, 
etc) the same as if it had been a real 
situation? 

       

How much did you behave as if Li 
was real? 

       

How much was your emotional 
response to Li as if she was real? 

       

How much were your thoughts in 
relation to Li as if she was real? 

       

How much were you thinking things 
like 'I know this person isn't real' but 
then surprisingly finding yourself 
behaving as if Li was real? 

       

How much did you have physical 
responses (such as change in heart 
rate, blushing sweating, etc) towards 
Li as if she was real? 

       

 

2. Please list as many objects in the room and items of clothing on the character 

as you can remember. 

 

 

3. Please add below any comments you might have related to the most recent 

experience. 



Demographic Questionnaire  
 

1. Please insert your name: 

2. Please insert your age: 

3. Tick or write your gender: 

Male Female Prefer not to say Other: 

    

 

4. How many times have you used Virtual Reality (VR) before? 

0 1 2-10 11-50 50+ 

     

 

5. On average, in the past year, how many hours did you play games *per week*? 

less than 1h 1h-5h 6h-10h 11h-30h more than 30h 

     

 

6. What type of video games do you play the most? Please order the following genres based on which ones 

you play the most: 

Please order the following by drag and drop using the mouse 

Strategy, Action/Shooter games, Platformers,  Adventure, Esport games, Role-Playing, Simulation, 

Action/Fighting games, Puzzle games, Indie games 

 

7. If you have any notes about the question above (order of games genre) please mention it here. If not, 

please add "-" 

 

8. Please list the games you played the most in the last year. 

 

9. What do you play videogames on primarily? Please select maximum 3 platforms: 

Browser/Facebook (other social media) Gaming; Mobile (Phone/Tablet) Gaming; Games Consoles; PC; VR; Other: 

10. Is this scenario/experience reminding you of any games you've already play/know of? If so, can you 

provide a few details? 

 

11. Please add below any final comments you might have related to the whole experience. 

I see myself as someone who... 

 Disagree 
strongly 

Disagree 
a little 

Neither Agree 
nor Disagree 

Agree 
a little 

Agree 
strongly 
 

is reserved      

is generally trusting      

tends to be lazy      

is relaxed, handles stress well      

has few artistic interests      

is outgoing, sociable      

tends to find fault with others      

does a thorough job      

gets nervous easily      

has an active imagination      

 



 

 

Onboarding questionnaire 
• Occupation: 

 

• Average usage of mixed reality devices (e.g., HoloLens) in the past 6 

months: 
[ ] Never used it; [ ] <1 per month; [ ]1-3 times a month; [ ] 1 per week; [ ] 2+ times 

per week; 

 

• Please select the gender you most identify with:  
o [ ] Woman; [ ]Man; [ ] Prefer not to say; [ ] Non-binary/gender diverse; [  ] 

Self-Described; 

 

• Please select you age group:  
o [ ] 18-25; [ ] 26-35; [ ] 36-45; [ ] 46- 55; [ ] 56-65; [ ] >66; 

 

• In this study you will be embodying two different styles of avatars. Have you ever 

embodied an avatar in VR or MR? If so, what was the experience like? 

 
• In this study you will be embodying two different styles of avatars. Could you say in a 

few words how do you feel about having avatars represent you? 

 

• In this study you and your colleagues will be embodying avatars in a work meeting. 

How do you think the dynamics of the meeting will be like? 

 

• Are you nervous or hesitant about having work meetings in MR while being 

embodied by avatars? 

 

• How would you feel about having the following types of meetings in MR while being 

embodied by avatars? 

o a meeting with your peers 

o a meeting with your manager/superior  

o a meeting with clients/customer 

 

• What do you think are the advantages of having an avatar representation in MR 

meetings?  

 

• What do you think are the disadvantages of having an avatar representation in MR 

meetings? 
 



Daily post-meeting questionnaire 
After each meeting, the participants will fill in the following questionnaire:  

1. Please answer the questionnaire with the most recent meeting in mind:  

 

- I felt engaged in the meeting. 

Strongly 
disagree  

Disagree Somewhat 
disagree 

Neither agree 
nor disagree 

Somewhat 
agree 

Agree Strongly 
agree 

       

 

- I felt that MY COLLEAGUES were engaged in the meeting. 

Strongly 
disagree  

Disagree Somewhat 
disagree 

Neither agree 
nor disagree 

Somewhat 
agree 

Agree Strongly 
agree 

       

 

- The avatars communicated like my colleagues. 

Strongly 
disagree  

Disagree Somewhat 
disagree 

Neither agree 
nor disagree 

Somewhat 
agree 

Agree Strongly 
agree 

       

 

- The appearance of the avatars affected THE MEETING TASKS. 

Strongly 
disagree  

Disagree Somewhat 
disagree 

Neither agree 
nor disagree 

Somewhat 
agree 

Agree Strongly 
agree 

       

 

- The appearance of the avatars affected HOW COMFORTABLE I FELT in the meeting. 

Strongly 
disagree  

Disagree Somewhat 
disagree 

Neither agree 
nor disagree 

Somewhat 
agree 

Agree Strongly 
agree 

       

 

 

- The appearance of the avatars mattered to me 

Strongly 
disagree  

Disagree Somewhat 
disagree 

Neither agree 
nor disagree 

Somewhat 
agree 

Agree Strongly 
agree 

       

 

 

- I felt that I was in the presence of my colleagues. 

Strongly 
disagree  

Disagree Somewhat 
disagree 

Neither agree 
nor disagree 

Somewhat 
agree 

Agree Strongly 
agree 

       

 

- I could identify my colleagues. 

Strongly 
disagree  

Disagree Somewhat 
disagree 

Neither agree 
nor disagree 

Somewhat 
agree 

Agree Strongly 
agree 

       

 

 



- I perceive my colleagues’ avatars as being only computerized images, not real people. 

Strongly 
disagree  

Disagree Somewhat 
disagree 

Neither agree 
nor disagree 

Somewhat 
agree 

Agree Strongly 
agree 

       

 

- There were obvious unnatural nonverbal behaviours from my colleagues’ avatars. 

Strongly 
disagree  

Disagree Somewhat 
disagree 

Neither agree 
nor disagree 

Somewhat 
agree 

Agree Strongly 
agree 

       

 

- The avatars’ nonverbal behaviour was APPROPRIATE for the context. 

Strongly 
disagree  

Disagree Somewhat 
disagree 

Neither agree 
nor disagree 

Somewhat 
agree 

Agree Strongly 
agree 

       

 

- The avatars’ nonverbal behaviour was USEFUL for understanding my colleagues. 

Strongly 
disagree  

Disagree Somewhat 
disagree 

Neither agree 
nor disagree 

Somewhat 
agree 

Agree Strongly 
agree 

       

 

- Please include any comments you might have: 

  



 

2. Questionnaire on perceived mood, own mood and on the level of information each 

cue had on understanding the partner’s mood. 

If there are going to be groups of two, only the questions about COLLEAGUE1 will be asked 

(the questions about COLLEAGUE2 will be removed): 

- Please rank the following items based on the level of information each gave you in 

understanding your colleague COLLEAGUE1 mood/state of mind (from most to least useful): 

1. C1’s choice of words 

2. C1’s tone of voice 

3. C1’s movement/gesticulations  

4. C1’s gaze 

5. C1’s facial expressions 

- Please rank the following items based on the level of information each gave you in 

understanding your colleague COLLEAGUE2 mood/state of mind (from most to least useful): 

1. C2’s choice of words 

2. C2’s tone of voice 

3. C2’s movement/gesticulations  

4. C2’s gaze 

5. C2’s facial expressions 

- Select how much you agree that your colleague COLLEAGUE1 had the following perceived 

moods: 

 Strongly 
disagree  

Disagree Somewhat 
disagree 

Neither agree 
nor disagree 

Somewhat 
agree 

Agree Strongly 
agree 

optimistic        

focused        

annoyed        

stressed        

- Select how much you agree that your colleague COLLEAGUE2 had the following perceived 

moods: 

 Strongly 
disagree  

Disagree Somewhat 
disagree 

Neither agree 
nor disagree 

Somewhat 
agree 

Agree Strongly 
agree 

optimistic        

focused        

annoyed        

stressed        

 

- Select how much you agree that YOU had the following moods: 

 Strongly 
disagree  

Disagree Somewhat 
disagree 

Neither 
agree nor 
disagree 

Somewhat 
agree 

Agree Strongly 
agree 

self-
optimistic 

       

self-focused        

self-annoyed        

self-stressed        
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B
Study Information Sheets & Ethics Forms

Below are the ethics documents and the participants’ information forms for Chapter 4. The doc-
uments for Chapter 5 could not be made public as the documents were internal and the project
handled employees’ data.

We present the documents for the Study analysing the participants’ engagement with a Non-Player
Agent (NPA) in Virtual Reality (VR) Environment represents the project proposal document for
the Ethics board. Following that, the Postgraduate Research Ethics Declaration Form shows the
signed ethics declaration to run the study. Following that, there is the Participant Information
Sheet, that volunteers received before signing the consent form. Finally, the is the Informed consent
form that all volunteers signed before taking part in the study.



 

   

 

 

   

 

Georgiana Cristina Dobre 

Student ID: 33346662 

Study analysing the participants engagement with a Non-Player Agent 

(NPA) in Virtual Reality (VR) Environment 

 

Attachment for Computing Department PGR Ethics Declaration Form 

Q1 Human Participants 

This study will look at detecting different ways people engage with Non-Player Agent (NPA) in social 

interactions. In this case, the NPA will be programmed to give a monologue about a past experience. 

The participant will be wearing a head-mounted display (HMD) and hold in each hand a controller. 

They will be able to move in the virtual space using a thumbstick (joystick) from the controller. Their 

physical movements are also mapped in the virtual space.  The experiment is expected to take 45 

minutes to one hour, including introduction, position synchronization, data recording, questionnaires 

and debriefing.  

Experimental Conditions 

Four experimental conditions will be administered in this specific order for each participant: 

1. Interaction with no instructions (baseline) 

2. Interaction with instructions to gain the Non-Player Agent’s trust 

3. Interaction with instructions to violate social norms 

4. Interaction with instructions to explore the room and try to interact with objects in the room.  

 

In the baseline condition, the participant will be put into the virtual space without being told how to act 

or whether to behave with an end goal in mind.  

In the second condition, the user will be asked to engage in the same scenario such that at the end, they 

will gain the NPA’s trust. 

In the next condition the participant will be told to imagine that there is a camera in the scene that will 

record the overall interaction. They will be asked to engage in such a way that the interaction will be 

very entertaining for someone watching it on a video streaming platform such as YouTube or Twitch. 

In the final condition the user will be asked to explore the room and try to interact with objects in the 

room.  

During each condition the NPA will be giving a monologue about a past experience with both animation 

and audio. Each condition will take approximative 5 minutes and at the start of each, the participant 

will be asked to make different poses (such as T-pose) for synchronizing the head and hands data 

Questionnaire 

The participants will be asked to fill in short questionnaires about their experience. The questionnaires 

include questions about the overall impressions on the task, the monologue the NPA is providing, 



 

   

 

 

   

 

participant’s general feelings toward the character, regarding the participant's feeling of presence within 

the Virtual Environment [1] and about their personality using the Big Five Questionnaire [2] based on 

the Five-Factor Model (FFM). At the end of all four conditions, the participant will be asked to fill in a 

demographic questionnaire.  

Participants 

Participants will be recruited from among the working professionals within the ‘Dream Reality 

Interactive’ studio, the Goldsmiths students as well as other professionals who volunteer to take part in 

the experiment. Given the rich data captured and the application nature, a minimum 10-15 participants 

will be needed. 

Risk factors 

Participants engage in fairly trivial, passive activity in VR. They can move about using the controller 

thumbstick or physical movement. Issues around VR sickness are not expected, however, if these arise, 

participants are free to withdraw at any time. 

Q2 Information relating to identifiable, living individuals 

The experiment will take place in VR thus the participants will be using a Head Mounted Display 

(HMD) and hand controllers; the recorded data will consist of 6 Degree of Freedom (6Dof) information 

about the HMD and hand controllers. Thus, the participants will not be identifiable through these data. 

Apart from this, the experiment will be video recorded, and a screen capture recording made, to allow 

for analysis of any unexpected circumstances. this will not be directly used in the machine learning 

training.  

Debriefing will be given. Personal data records will be stored separately and will not be published or 

made available outside the research team. Personal data, recordings and questionnaires will be 

destroyed after 5 years.  

References: 

[1] Slater, M., John MC., and Francesco M. "The influence of body movement on subjective presence 

in virtual environments." Human Factors 40.3 (1998): 469-477.   

[2] Rammstedt, B. John, O. P. (2007). Measuring personality in one minute or less: A 10-item short 

version of the Big Five Inventory in English and German. Journal of Research in Personality, 41, 203-

212. 







Study analysing the participants engagement with a Non-Player Agent 

(NPA) in Virtual Reality (VR) Environment 

Participant Information Sheet 

 

Thank you for thinking about taking part in this research study. This information sheet should tell you 

all you need to know before deciding whether to take part or not. If you have any further questions, 

please ask the researcher, who will be pleased to answer them. 

Taking part in the study is entirely voluntary; there is no disadvantage to you if you decide not to. 

 

Study Overview 

The purpose of this study is to analyse how users engage with a Non-Player Agent (NPA) during a 

monologue-based scenario. If you take part, you will be presented with a VR experience played in four 

different conditions. You will be given different instructions for each condition. Each of them lasts for 

about five minutes. After the first condition, you will be asked to fill in a short questionnaire about the 

experience. Additionally, there is a short demographic questionnaire to be filled in at the end of these 

four conditions. Afterwards, in debriefing, you will have the chance to learn more about the project and 

you will be given the opportunity to give any impressions or feedback. The whole procedure will take 

45 minutes to one hour. 

The four conditions will be recorded with a video camera and by screen-capture. This will allow us to 

check back on any unexpected circumstances, including any points raised in debriefing. 

 

Risks 

There are no major risks associated with taking part in this study. Some people experience nausea in 

VR: if this does happen to you, close your eyes and remove the headset; you may wish to withdraw 

from the study in this case. 

 

Data 

Data from this study will be used for the creation of framework for an NPA behaviour, for the 

researcher’s PhD thesis, and may also be reported in published journal papers or conference 

proceedings. Questionnaire responses will be linked through a unique ID number, so that this data can 

be analysed anonymously. Any publication will present only the analysis of this anonymised data. Your 

personal data and video recordings are confidential, and only the research team will have access to 

them. If any of your comments are quoted in any publication, this will be in an anonymous form that 

cannot be linked back to you. 

Personal data will be stored securely on Goldsmiths’ OneDrive. Anonymised questionnaire data and 

video and screen-capture recordings will be uploaded to Goldsmiths secure One Drive, and any local 

copies destroyed immediately. All data will be stored for 5 years.  

 

Withdrawal 

You are free to withdraw from the study at any time, without giving a reason. If you do, then your 

personal details and any questionnaire responses collected up to that point will be removed from the 

study and destroyed. 



 

Research Team 

Principle Researcher: Georgiana Cristina Dobre (c.dobre@gold.ac.uk) 

Supervisory Team: Dr Sylvia Pan, Dr Marco Gillies, Dream Reality Interactive, Maze Theory 

This research is funded by an Innovate UK grant for a project in collaboration between Goldsmiths 

University of London, Dream Reality Interactive and Maze Theory.   
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Participant Number  

Informed consent form 
Informed consent for a study analysing the participants engagement with a Non-Player Agent (NPA) in 

Virtual Reality (VR) environment 
Please tick the appropriate boxes 

 

Yes 

 

No 

 

 

1. Taking part in the study 

 

 

 

 

 

I have read and understood the study information dated …………………………. . I have been able to ask 
questions about the study and my questions have been answered to my satisfaction. 

  

 

 

 

 

 

I consent voluntarily to be a participant in this study and understand that I can refuse to answer 
questions and I can withdraw from the study at any time, without having to give a reason.  

 

I understand that if I do decide to withdraw, anonymised data can no longer be removed from the 
study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

I consent voluntarily to the video recording of my participation and to the screen-capture 
recording of my interaction in the Virtual Reality Environment. 

 

I understand that taking part in the study involves a series of short VR experiences, with brief 
questionnaires, my responses being recorded in digital form. 

 

I understand that, in taking part in the study, there is a slight potential risk of VR induced nausea. If 
this becomes a problem, then I understand that I am free to stop immediately and withdraw from 
the study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Use of the information in the study 

 

 

 

 

 

I understand that the data collected during the experiment will be used in the creation of 
framework for an NPA behaviour, as part of the researcher’s PhD thesis, and may also be included 
in published journal papers or conference proceedings. 

 

 

 

 

 

 

 

I understand that personal information collected about me that can identify me, such as my name 
or any video recordings made, will not be shared beyond the study team.  

 

 

 

 

 

 

3. Signatures 

 

 

 

 

 

_______________________                              ____________________                ___________ 
Name of participant [IN CAPITALS]      Signature                                Date 
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_______________________                        ___________________      _    ________               __    
Name of researcher [IN CAPITALS]      Signature                                  Date 

 

 

 

 

 

 

4. Study contact details for further information  

Georgiana Cristina Dobre, email: c.dobre@gold.ac.uk 

Sylvia Pan, email: x.pan@gold.ac.uk 

Marco Gillies, email:  m.gillies@gold.ac.uk  
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C
Monologue Script for Chapter 4



PEAKY BLINDERS - KING’S RANSOM | LI DIALOGUE FOR ML TEST 
 

1 INT. BOUDOIR  

Li is sat on the edge of the bed, staring directly at the player. She follows the players gaze up to the 

musical bird cage hanging from the ceiling. 

LI 

It is a thing of beauty, isn’t it? 

 

Li lowers her eyes and rests them back on the player.  

Warmth monologue​ spoken with a warm, gentle tone. 

 

LI (CONT’D) 

When I was small, my mother would wind it up for me 

before bed. I’d listen to it’s sweet melody until the twirling 

rose tinted finch cast a dreamy blanket over me. 

Whenever I turn it on now, it’s as if she’s still here with 

me.  

Do you know that feeling? When someone loves you 

unconditionally, and their warmth cradles you, even when 

they can’t be with you 

 

Li stares into the distance. Complentative. 

Happy monologue​ spoken with a smile. 

 

LI (CONT’D) 

She would take me to the park, the one where tens of 

those finches would gather in the trees, tweeting.  

 

Li lets a small laugh. 

 

LI (CONT’D) 

She’d wave her arms in despair when I’d run at the trees, 

scattering the little things. 

 

Li stares directly at the player and a smile breaks out across her face. 

 

LI (CONT’D) 

But she never told me off. Instead, she’d pat the grass and 

we’d sit snuggled up waiting quietly for the birds to 

resettle. They always did and then she’d say, “See, no 

harm done.” And she was always right.  

Their darting black eyes as they tweeted unknowable 

messages to each other amused us. We’d make up stories 

for them, where they came from, what their dinner plans 

were, and we’d laugh at our own ridiculousness.  
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PEAKY BLINDERS - KING’S RANSOM | LI DIALOGUE FOR ML TEST 
 

Li shifts uncomfortably and her eyes narrow a moment as a thought crosses her mind. She goes back 

to staring off into the distance.  

Wistful monologue​ spoken with a sombre tone. 

 

LI (CONT’D) 

That’s the only place we could laugh freely. The park with 

the rose finches. They’ve built apartments on it now. No 

longer can I ever go there. I wonder what happened to all 

the finches? Maybe they found a new home.  

 

Li stares directly at the player again, her brow slightly crumpled. 

 

LI (CONT’D) 

Do you think they would have found a new home? 

 

Li shakes her head briefly and her shoulders slump over a little bit. 

 

LI (CONT’D) 

No, they’re like me, still looking for somewhere else to call 

home. I often imagine them happy in some other park. But 

the image doesn’t come naturally to my mind, so it can’t 

be true. I feel sorry for the finches, don’t you? 

 

Li sighs and pulls her back up straight. 

Sad monologue​ spoken with a tone that’s about to crack into tears. 

 

LI (CONT’D) 

It’s as if no one cared about them. I know that feeling. My 

father...  

 

(pause) 

 

… he didn’t seem to care about us much. I used to think I 

could make him, if I loved him enough for both of us. But 

guess what? It didn’t work. It didn’t change a thing and.... 

 

Li ‘s voice cracks. 

 

LI (CONT’D) 

… and when she died, he still didn’t seem to care then 

either. How can that be? How can a man not love such a 

beautiful woman.  

 

Li wipes her eye and stands up. 

Angry  monologue​ spoken with an increasingly harsh tone. 
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LI (CONT’D) 

I hated him the day he didn’t come to the funeral. Would 

it have hurt him to pay his respects?  

No! 

I asked him why afterwards and he said it was because of 

him. My uncle. “What it’s got to do with my uncle? I 

shouted. 

 

(Li’s tone quietens for a moment) 

 

I didn’t understand at first. Of course my uncle loved my 

mother, who wouldn’t. 

 

(A brief smile fleets across Li’s face) 

 

She had a special soul. 

 

(Anger returns to Li’s tone) 

 

I didn’t want to believe his words at first, it wasn’t possible 

to think that all those times me and her sat huddled 

waiting for the finches, she was thinking of him, my uncle. 

Dreaming of the day they would be together.  

But it wasn’t her fault! It was his!  

My uncle destroyed my life, he took it away from me. 

 

Li gestures to herself with her hands. 

 

LI (CONT’D) 

He’s got me trapped here you know. He doesn’t care 

about me either. She’s the only one who ever did and 

she’s gone! 

 

(pause) 

 

What are you staring at? Don’t pretend to care about me. 

I know you don’t. 

Get out!  

 

(pause)  

 

I said get out! 

© Copyright Maze Theory 2019 
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D
Additional Stats for Chapter 5

Order Optimistic Focused Annoyed Stressed
CR 0.239 0.168 0.867 0.658
RC 0.060 0.117 0.134 0.440

Table D.1: P-values from the paired two-tailed t-test on the self-reported emotional
state rating while embodying C or R avatars in order CR and RC (Cw1 vs Rw2; Rw1

vs Cw2)

Order Week Avatar Optimistic Focused Annoyed Stressed
CR W1 C 0.584 0.975 0.638 0.170
RC W1 R 0.034 0.337 0.071 0.023
CR W2 C 0.274 0.102 0.701 0.629
RC W2 R 0.999 0.223 0.430 0.556

Table D.2: P-values from regressions on the self-reported emotional states rating
over time

Order Week Avatar Optimistic Focused Annoyed Stressed
CR W1 C 0.829 0.550 0.776 0.626
RC W1 R 0.053 0.916 0.024 0.133
CR W2 C 0.477 0.666 0.250 0.569
RC W2 R 0.175 0.000 0.014 0.418

Table D.3: P-values from regressions on the mapped error of the perceived emotional
state over time
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