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Abstract: This article presents a custom system combining hardware and software that senses physiological signals of
the performer’s body resulting from muscle contraction and translates them to computer-synthesized sound. Our goal
was to build upon the history of research in the field to develop a complete, integrated system that could be used by
nonspecialist musicians. We describe the Embodied AudioVisual Interaction Electromyogram, an end-to-end system
spanning wearable sensing on the musician’s body, custom microcontroller-based biosignal acquisition hardware,
machine learning–based gesture-to-sound mapping middleware, and software-based granular synthesis sound output.
A novel hardware design digitizes the electromyogram signals from the muscle with minimal analog preprocessing
and treats it in an audio signal-processing chain as a class-compliant audio and wireless MIDI interface. The mapping
layer implements an interactive machine learning workflow in a reinforcement learning configuration and can map
gesture features to auditory metadata in a multidimensional information space. The system adapts existing machine
learning and synthesis modules to work with the hardware, resulting in an integrated, end-to-end system. We explore
its potential as a digital musical instrument through a series of public presentations and concert performances by a
range of musical practitioners.

Introduction

Bioelectrical signals from the human body have 
been used in electronic and computer music for 
over 50 years. The late Alvin Lucier’s “Music for 
Solo Performer” (1966; cf. Straebel and Thoben 
2014) is the most famous early work using brain 
signals in concert performance. In the early digital 
era, Knapp and Lusted (1990; see also Lusted and 
Knapp 1996) created the BioMuse, a device that 
digitized brain encephalogram (EEG) and muscle
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electromyogram (EMG) data for MIDI synthesizer
control. This foreshadowed broader developments
in human–computer interaction (HCI) by means of
brain–computer interfaces (Tan and Nijholt 2010)
and physiological computing (da Silva et al. 2014b).
The advent of microelectronics has made low-cost
biosignal interfaces available to wider artistic and
musical communities who repurpose generic human
interface devices (HIDs) for creative applications.

This article presents the Embodied AudioVisual
Interaction Electromyogram (EAVI-EMG, see Figure
1), a complete, end-to-end system that uses physio-
logical signals of the body as inputs to information
analysis, signal processing, and sound synthe-
sis. It consists of wireless, microcontroller-based
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Figure 1. The EAVI-EMG
system, with a
two-channel electrode
system on the forearm
muscles, connected to the
main circuit board.

hardware, physiological and signal-processing
firmware, and host software for feature extrac-
tion, mapping, and sound synthesis. A machine
learning module maps biosignal features to auditory
metadata in the synthesis output. The system has
been used in concert performance by a range of
different musicians.

This article is organized as follows: We first
retrace the history of research and musical prac-
tice using biosignals. We then the introduce the
hardware and discuss design decisions to make a
device specific for musical applications. We next
describe characteristics of the muscle EMG sig-
nal and its signal features, and we present various
sonification and mapping techniques to transform
user input to sound output. We outline the system
architecture, present several interaction paradigms,
then propose a multidimensional gesture–sound
mapping technique based on regression modeling

feeding content-based concatenative sound synthe-
sis. We describe a series of public presentations in
workshops and concerts, and finish by providing
perspectives for future work.

Physiological Interfaces for Music

Although music using brain electroencephalography
began in the 1960s with Alvin Lucier and continued
in the 1970s with composers like David Rosen-
boom, music made with the muscle EMG is more
recent. Performance artists Laurie Anderson and
Pamela Z used the BodySynth system in the 1990s
to integrate EMG interaction into their multime-
dia stage performances (Kalvos and Damian 2005;
Mason 2016). The BioMuse Trio was a chamber
music ensemble formed by Ben Knapp, Eric Lyon,
and Gascia Ouzounian using multiple modes of
physiological interaction in musical performance
(Lyon, Knapp, and Ouzounian 2014). Yoichi Na-
gashima (2016) created the Mini BioMuse to extend
the performance of Japanese traditional music and
interactive media art. The performance artist Marco
Donnarumma (2011) created a system, Xth Sense, to
measure gross muscle deformation acoustically via
the mechanomyogram for musical performance.

The Myo Gesture Control Armband was a
general-purpose consumer EMG interface mar-
keted between 2015 and 2018 that has been adopted
by the music research community (Visconti et al.
2018). Nymoen, Haugen, and Jensenius (2015) car-
ried out an early evaluation of the device, and Erdem,
Lan, and Jensenius (2020) conducted an analysis of
effort qualities in performance. We used the Myo
for gesture design (Ward et al. 2016) and for multi-
modal gesture–sound interaction design approaches
(Visi et al. 2017). The interest in the Myo was
supported by the development of middleware facili-
tating musical use (Di Donato, Bullock, and Tanaka
2018; Caramiaux et al. 2022; see also the software
repositories at https://github.com/cpmpercussion/
myo-to-osc, https://github.com/benkuper/MyOSC,
and https://github.com/benkuper/MyOSC). The
Myo was discontinued in 2018, and Thalmic Labs’s
EMG-related patents were sold to the startup CTRL-
Labs, which went on to be acquired by Meta.
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There are several platforms in the do-it-yourself
(DIY) electronics space that allow creative hackers
to work with physiological signals, including EMG.
The SpikerShield by Backyard Brains is a “shield,”
or daughterboard, for a standard Arduino microcon-
troller board. It consists of an analog preamplifier
that brings the EMG into the 0- to 5-V range for
digitization by the Arduino’s analog-to-digital con-
verters (ADCs). The company publishes a series of
tutorials (called “experiments”), including one on
emulating a piano keyboard with muscle tension.
The Myoware is a suite of components for low-cost
EMG acquisition that include electrode triplet sup-
ports, analog circuitry to rectify the signal and carry
out envelope following, a power supply, a display,
and an Arduino shield. The Plux Bitalino (da Silva
et al. 2014a) is a complete microcontroller system
for the DIY community that offers a novel modular
circuit that can be snapped apart and recombined.
Modules include EEG, electrocardiogram (ECG), and
EMG amplifiers.

EMG in HCI

In HCI research, the use of muscle-based interfaces
has been motivated by the need to interact with
a nonphysical interfaces. Applications have been
proposed for users with disabilities (Barreto, Scargle,
and Adjouadi 2000), or in wearable contexts where
devices are too small to embed traditional physical
interfaces (Wheeler and Jorgensen 2003). Costanza
et al. (2007) set EMG in a mobile interaction context
in which discretion allowed subtle interaction.
Saponas et al. (2009, 2010) look at the practical
benefits of EMG interaction in which the hands
may be busy in other tasks. Chen et al. (2007)
recognized 24 hand gestures, consisting of wrist
motions and finger extensions.

Multimodal interaction strategies are common in
gesture recognition, where kinematic sensors pro-
vide information complementary to physiological
data (Georgi, Amma, and Schultz 2015). We explored
the musical potential of a bimodal combination of
EMG and relative position sensing, introducing
the concept of “bidirectional complementarity,”
where similar gestures in one mode may take on

different musical meaning depending on informa-
tion on a second sensing mode (Tanaka and Knapp
2017).

Electromyography in HCI is not limited to hand
gestures. Manabe explored unvoiced speech recog-
nition using EMG from facial muscles (cf. He et al.
2020). Richard Hazlett (2003) measured facial EMG
to detect frowning and smiling as ways to detect
user frustration during interactions with website
interfaces.

Outside of European and North American re-
search, interaction research using the EMG has
looked at the relation to muscle force (Kuriki et al.
2012), arm strength training (Ho et al. 2015), use of
support vector machines for gesture classification
(Naik, Kumar, and Jayadeva 2010), finger move-
ment discrimination (Gupta and Ryait 2012), and
sustainable aid applications (Majid, Al-Sharify, and
Al-Sharify 2020).

Research Context

The EAVI-EMG system is the outcome of a series
of research projects in the period 2012–2019. In
the Meta Gesture Music project (Tanaka 2018),
we identified EMG energy as a signal feature that
represented the user sensation of gesture power
(Caramiaux, Donnarumma, and Tanaka 2015). In
the BioMusical Instruments project, we took re-
search insights from the previous projects to create
an end-to-end musical instrument prototype as
described here. Our objective was to integrate the
considerable scientific and musical knowledge in
the field to exploit EMG for music and to combine
it with interactive machine learning and sound syn-
thesis to produce a complete, combined hardware-
and-software system for musical instruments. We
sought to exploit recent advances and lowered costs
in electronic design, notably the burgeoning mod-
ular synthesizer sector, to propose a new hardware
design that was designed not as a general-purpose in-
terface but conceived from the ground up as an audio
and MIDI device. We use high-precision components
to minimize analog processing, resulting in a design
that is reprogrammable and integrates the EMG in
the audio signal-processing pipeline. By proposing
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a complete, affordable system and publishing the
hardware designs and software implementations as
open source, we hoped to fill a gap left by the disap-
pearance of the Thalmic Labs Myo and to support
the music research community and nonspecialist
musicians who may have been left orphaned by its
disappearance.

Rather than make a general-purpose HID, we
sought to craft an instrument-like system specifi-
cally designed for musical performance. This meant
arriving at a hardware design that unified treatment
of biosignal and audio in a single digital signal
processing (DSP) chain. This also meant creating
gesture analysis and sound synthesis functional-
ity as part of the hardware-plus-software package.
We sought to exploit recent advances in the use
of EMG in HCI for musical applications. Unlike
general-purpose devices like the Myo, our system
was designed from the ground up to be specifically
for music.

Digital Musical Instruments

We draw upon the literature on digital musical
instruments (DMIs) to inform the design and devel-
opment of the EAVI-EMG. After analyzing the work
of Michael Waisvisz (1949–2008) with the Hands,
Torre, Andersen, and Baldé (2016) conclude that
experimentation and refinement with a system in
cycles of artistic research can be a model to evolve
a controller into an instrument. The definition of a
musical instrument as an extended system has been
proposed by Tanaka (2011), using the electric guitar
as an example to include effects pedals and amplifier
within the scope of the instrument system. As a
further example, Tanaka cites the DJ setup with
two turntables and mixer as an extended system
instrument requiring external content in the form
of the vinyl record.

Borrowing from the HCI literature (Gaver, Dunne,
and Pacenti 1999), DMIs can be considered as “cul-
tural probes” (Tahıroğlu et al. 2020) where our
experience and dialogue on musical performance
are vital to defining an instrument. Performance
becomes an act of questioning the device or instru-

ment and the musical practice developed around
it. Establishing a clear relationship with the in-
strument and building an instrumental practice
is fundamental to recognizing a device as a DMI.
Exposing the instrument hardware and software to
the performer, as well as the live “redesign” of the
mapping from action to audio feedback, can become
part of instrumental design practice. In the context
of a musical performance, enabling instrument
modification opens up sonic and performative pos-
sibilities (McPherson and Zappi 2015). This fosters
inventiveness and scope for creativity in playing
a new instrument (Arfib, Couturier, and Kessous
2005).

3DMIN was a project (2013–2016) that looked at
the “design, development, and dissemination” of
new musical instruments (cf. Bovermann et al. 2017,
p. 2). In her contribution to Bovermann’s book, Sarah
Hardjowirogo (2017) discusses the concept of instru-
mentality in establishing the musical instrument
potential of any sound-producing object or system.
Forms of instrumentality may arise from use, in-
tention, cultural negotiation, distribution. In the
case of technological musical instruments, techno-
cultural processes of electrification, digitization,
and virtualization mean that instrumental qualities
are transitional and in constant flux. Hardjowirogo
proposes an inventory of criteria that includes sound
production, intention, learnability, playability, ex-
pressivity, cultural embeddedness, and audience
perception. Instrumentality was a working concept
for us in the development of the EAVI-EMG.

The Electromyogram

The EMG is an electrical signal representing muscle
contraction. It is generated by the firing of motor
neurons (De Luca and van Dyk 1975) where the
magnitude and density of the measured signal are
the recruitment and firing rate of motor neuron
action potentials (MUAPs) in the microvolt range
(see Figure 2). The EMG signal is stochastic in
nature, reflecting the fact that the motor units re-
cruited in any muscular activity have an amplitude
range of ±5 mV before further amplification, with
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Figure 2. Clinical EMG
trace showing time series
for two channels (wrist
and elbow) and signal
amplitude range.

a frequency between 0 and 500 Hz, and a dominant
energy concentration in the 50–150 Hz range. Accu-
rate measurement of the EMG signal can be affected
by tissue characteristics, physiological crosstalk,
changes in the geometry between muscle belly and
electrode site, EMG amplifiers, and external noise.
Figure 2 shows EMG measurement during isometric
contraction of the forearm of a participant.

Signal Features

The EMG is not a continuous signal, but the sum
of discrete neuron impulses. This results in an
aperiodic signal that poses challenges in information
processing. For interactive applications to track a
participant’s state or gesture, some kind of signal
analysis and feature extraction needs to take place.
EMG features of the signal can be grouped into time-
domain (TD) and frequency-domain (FD) features.
Given the aperiodic nature of the EMG, there is
no harmonic content for FD algorithms to extract,
making such algorithms less useful for EMG analysis
(Phinyomark et al. 2013).

The most straightforward TD feature is amplitude
estimation, which reflects the level of muscle ten-
sion. Simple amplitude estimation can be achieved
as envelope-following by smoothing, or low-pass fil-
tering, of the raw EMG data—for example, by taking
the median of the signal over a time window. But
this introduces latency and a lag having the length
of the median window. Root mean square (RMS, the
square root of the mean of the squares of samples
in a time series) is a calculation of electrical power,
and it relates to constant force and nonfatiguing
muscle contraction. Recursive Bayesian estimation,
or a Bayes filter, is a probabilistic approach for
estimating an unknown function over time using
incoming measurements. The algorithm is a non-
linear estimator of amplitude that achieves a better
signal-to-noise ratio than RMS and stabilizes the
signal, all while remaining reactive to transients
(Hofmann et al. 2016).

Other TD features that show good performance
(Phinyomark et al. 2010; Phinyomark and Scheme
2018) are: mean absolute value, providing energy
information of the signal; waveform length, the
cumulative length of the waveform over time,
which is related to the signal complexity; and
Willison amplitude (cf. Scheme and Englehart
2014) as a measure of frequency information of
the signal, similar in nature to the number of zero
crossings.

Frequency-domain features are based on statisti-
cal properties of the EMG signal’s power spectrum
density. These features are used to detect neural ab-
normalities and muscle fatigue. The most common
FD features are: median frequency, the frequency
at which the spectrum is divided into two regions
of equal amplitude; peak frequency, the frequency
at which the maximum power occurs; and spectral
centroid, the center-of-gravity line of the spectrum
(Phinyomark et al. 2017).

We have developed a new compound TD feature
called vector sum that reports amplitude and di-
rection (Zbyszyński et al. 2021; see also Figure 3).
Vector sum exploits limb physiology where muscles
can oppose or reinforce the action of other muscles
isometrically. To calculate the vector sum with
multiple EMG sensors, we model each sensor as
representing a vector pointing away from the center
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Figure 3. Vector sum
feature across eight EMG
channels.

of a circle. The direction for each vector is constant
and the magnitude is proportional to the ampli-
tude. The vectors are summed, giving the overall
direction of force. When compared to the sum of all
electrodes, the vector sum can distinguish gestures
where muscles oppose one another isometrically.
This is useful in cases where joint movement might
be minimal, but the subjective perception of effort
is quite high. In the EAVI-EMG system, we use
amplitude estimation by RMS and Bayes filter as
well as vector sum.

EMG Signal Acquisition

The EMG signal is measured by electrodes making
electrical contact with muscle tissue. This can
be done in an invasive or noninvasive manner.
Invasive electrodes consist of needles inserted
directly into the muscle. This provides a direct
reading of the electrical potential of the muscle and
can focus on a single muscle cell. It requires near-
clinical conditions, however, and brings discomfort
that would not be tenable for physical musical
performance.

Noninvasive EMG is captured by surface-
mounted electrodes. Surface EMG (sEMG) makes
electrical contact with the surface of the skin, using
conductivity of human tissue to transmit muscle-
cell electrical potential through the skin to the
electrode. The best contact can be made with wet
gel electrodes made from silver and silver chloride.
This requires some preparation of the skin, and such
electrodes have a limited lifespan. Dry electrodes
have the advantage in ease of application and reuse,
although their conductivity is not equal to that of
gel electrodes. In all cases, sEMG is a coarser mea-
sure of EMG activity than invasive techniques, and
it reports on muscle tension of a number of muscles
under the skin at the location of the electrode. This
allows monitoring the activity of a muscle or a
muscle group.

We can measure MUAPs by the difference be-
tween two electrodes placed at different sites on
the same muscle. The signals are subtracted, and
the result is amplified; any signal at both electrodes
is therefore eliminated. This circuitry is familiar
to musicians from balanced XLR audio cables used
for microphones. The third electrode is used in an
unrelated area, often joints or bony areas, to act as a
reference ground that filters out ambient electrical
noise.

Electrode Placement

Electrodes are typically placed near the middle,
“meaty” part of the muscle to be sensed (Hermens
et al. 2000). Any muscle group controls the limbs
below it—so when flexing the wrists or moving
the fingers, the muscles of the lower arm are
incited. Muscles in the forearm are a common
place to put sensors, as these muscles control the
hand and fingers (see Figure 4). Placing electrodes
on the forearm allows focus on specific muscle
groups from flexor to extensor, the carpi ulnaris,
brachioradialis, to palmaris longus. This reports on
voluntary muscle activity causing wrist rotation
and finger movement. (Placing electrodes on other
muscles or limbs would capture muscle exertion in
different parts of the body and would offer different
musical affordances.) This allows a wide range of
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Figure 4. Wet gel electrode
placement on two forearm
muscle groups and ground,
connected to an early
prototype of the
EAVI-EMG board.

applications beyond music, including performance
and dance sensing, gaming, or designing interfaces
for users with diverse abilities.

System Architecture

Recent advances in electronics hardware, signal
processing, and information analysis have made
physiological computing applications practical and
feasible, taking it out of the biomedical domain to
find applications in HCI. There is a gap in the market
between the two extremes, however. Although high-
end medical grade hardware offers excellent signal
quality, it remains expensive and difficult to use
outside of clinical settings. On the other hand, DIY
alternatives are often built upon low-grade, general-
purpose amplifiers and ADCs not specifically tuned
to the noisy and delicate nature of the physiological
signal.

The hardware design we present here combines a
specialized biosignal acquisition chip mated with a
general-purpose microcontroller (see Figure 5). It is
based on the Texas Instruments ADS1298 biosignal
chip for amplification and digitization, and the de-
sign provides an analog front end via programmable
gain amplifiers feeding a 24-bit delta-sigma ADC.
The microcontroller is the STMicroelectronics (ST)
STM32F427, a Cortex-M4 family microcontroller

with floating-point unit. In addition to EMG acqui-
sition, the board includes a Kionix KX122 three-axis
accelerometer (see Figure 6). The TI and Kionix sens-
ing chips communicate with the ST microcontroller
over an I2C serial bus. The board communicates
with the rest of the music system wirelessly over
Bluetooth LE 4.2 using an ST SPBTLE-1S transceiver.
The board also communicates over USB as a class-
compliant audio and MIDI device with no specific
drivers needed (see Figure 7).

Signal Acquisition

The characteristics of EMG signals present several
challenges in signal acquisition. The combination
of low signal level, large baseline drift, and relative
proximity of noise frequencies to the signals of
interest requires compromises to be made, notably
between noise removal and signal fidelity. At one
end of the design spectrum, the acquired signal is
too noisy to be useful, while at the other, filtering
may significantly alter or remove salient features.

Traditionally, these compromises must be care-
fully designed into analog filters that precede dig-
itization. Getting these filters right is critical to
successful signal acquisition, particularly since
they are fixed and cannot be adjusted to different
use cases. Modern ADCs can support a very wide
dynamic range, however, which makes it feasible
to digitize the signal directly with minimal analog
filtering, taking care primarily to prevent aliasing
of higher-frequency noise components. This means
that the acquired signal includes both baseline drift
and noise. These must then be removed in the digital
domain, through signal processing. The advantage of
this approach is that digital filters are not designed
into the hardware and can be adjusted and adapted
to specific use cases. Furthermore, specialized filter-
ing techniques may be applied in the preprocessing
stage to optimize certain signal features. The high-
resolution ADC allows for use of less overall gain,
meaning that the signal can be accurately tracked
across relatively wide changes in electrode offset
(baseline drift). Previously the drift had to be com-
pensated for in the analog domain to ensure that
the ADC received a less volatile, highly amplified
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Figure 5. System diagram
of the EAVI-EMG.

Figure 6. EAVI-EMG board
schematic.

Figure 5.

Figure 6.

signal. With 24-bit resolution, the dynamic range is
large enough to capture even extremely low-level
signals with detail. A programmable gain stage al-
lows the device to be tuned to different signal ranges.

We therefore chose to exploit the high-resolution
ADC to digitize raw EMG with no preamplification
and no analog filtering. Any noise reduction and
filtering are done after acquisition in the digital
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Figure 7. EAVI-EMG Rev
02 with four-channel input
on UC-E6 connectors, TI
chip (U2), and ST
microcontroller (U1) and
wireless chip (U5).

domain. Although this was a gamble, it had the
benefit of simplifying the hardware design, leading
to lower production costs, and it left us free to
change noise reduction and filtering strategies. This
brought signal conditioning closer in the DSP chain
to the feature extraction stage; it also leaves open
the possibility in the future to explore new tech-
niques, such as noise reduction based on machine
learning.

The ADS129x, with its 24-bit sigma-delta ADCs,
is capable of operating with an extremely low noise
floor, down to less than 5 μV RMS. The decimation
filters down-sample the input signal from over
200 kHz and provide efficient antialiasing. The
cutoff frequency, and hence signal bandwidth, is
programmable from 5 Hz to 1,280 Hz. The output
signal of the ADS129x is low-pass filtered and

antialiased, but it includes baseline drift and some
amount of power-line noise. In addition, the TI chip
has flexible signal routing and can improve common
mode rejection (to reduce noise) with its integrated
Right Leg Drive features.

Preprocessing

The sensor front end is combined with a micro-
controller unit (MCU) capable of signal processing
at the output signal rate (four channels at up to
6 kHz) to remove baseline drift and noise. The MCU
is responsible for configuring and communicating
with the front end and connecting over a standard
serial interface with a data transceiver. Preprocess-
ing on the MCU consists of sample rate conversion,
a high-pass or DC filter to remove baseline drift,
data conversion, a notch filter to remove powerline
hum, and a low-pass filter to remove noise from
electromagnetic interference (EMI).

Sample rate conversion is used to align the ac-
celerometer data with the sampled EMG signal and
to downsample before wireless transmission. High-
pass filtering is required to remove or drastically
reduce the baseline drift. After this stage, data con-
version can be applied to reduce the bit depth, and
thereby the dynamic range, without saturation or
clipping. All signal preprocessing is reprogrammable
in the MCU firmware.

Transmission

The preprocessed data can be transmitted to a host
computer in one of two ways, USB or Bluetooth
LE (BLE). When transmitting over USB, the device
implements a class-compliant USB audio interface,
which allows high-rate, high-resolution, low-jitter,
multichannel data transmission without requiring
device drivers.

With wireless BLE transmission, the bandwidth is
restricted, which requires sample rate and bit-depth
reduction in the preprocessing. To allow real-time
data transfers to a host device, we establish a
connection using the BLE MIDI standard profile.
This allows interoperability with a wide range of
devices. Data is transmitted as MIDI pitch bend
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Figure 8. EMG
postprocessing on the host
in Max, showing raw
signal (left) and three
channels after DC offset
and normalization.

messages using one MIDI channel per electrode.
This supports up to 16 channels of data, either EMG
or from the inertial measurement unit (IMU), each
with 14-bit resolution.

Our default configuration was based on four EMG
channels plus three channels of accelerometer data
at a sample rate of 8 kHz. When connected by USB,
all seven channels could be transmitted at 8 kHz
with 24-bit resolution. Using BLE, the data was
downsampled 64-fold to 125 Hz and truncated to
14 bits (after preprocessing).

OWL Microcontroller Framework

The onboard signal processing is implemented using
the OWL (Open Ware Laboratory) framework (Web-
ster, LeNost, and Klang 2014). We take advantage of
the audio DSP capabilities of this framework, which
has been used in a range of modular synthesizers and
guitar effects pedals, as the core signal-processing

engine of the EAVI-EMG. The digitized EMG signal
is injected into this DSP chain, combining biosignal
and audio into a single signal-processing pipeline.
The OWL platform offers tools to develop patches
in any of the languages C++, Faust, Pure Data,
Max gen∼, Soul, and Maximilian. Patches can be
compiled offline, and the patch binary is packaged
as MIDI system exclusive messages, sent by USB
to the device, and dynamically loaded. This al-
lows for fast prototyping, development, and test
cycles, with no dependency on specific hardware
features.

Host System

The host software is written in the Max environment
and is compatible with a large variety of EMG
input devices (see Figure 8). It is the continuation
of the host system originally developed for use
with the BioControl Systems BioMuse (Knapp
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and Lusted 1990; Lusted and Knapp 1996) where
EMG amplitude was captured over MIDI or an
RS-422 serial connection. It had subsequently
been updated to work with the Myo armband,
using Jules Françoise’s Myo for Max external. With
the EAVI-EMG board, the device registers with
the host operating system as a Bluetooth MIDI
device.

Sound Synthesis

Sound synthesis is implemented in a modular
manner in Max. We implemented two paradigms
for sound production from EMG—sonification and
parametric synthesis control. In the former, the body
was considered a sound source to be subsequently
processed; in the latter, performer gesture was
used as a controller, articulating synthesis unit
generators. We used three different libraries in the
Max environment to implement these paradigms at
increasing levels of complexity: (1) a “plain vanilla”
use of standard objects in the Max package; (2)
SCP for Max by Manuel Poletti; and (3) IRCAM’s
MuBu.

Sonification

Sonification of muscle activity allows us to hear
the neuron impulses of muscle exertion as data. A
direct audification of MUAPs is heard as a stochas-
tic pulse train reflecting performer limb activity.
The raw EMG signal is heard directly as an audio
signal, upsampled to audio rate where the stochas-
tic pulse train is heard as an inharmonic series
of spike pulses. Muscle exertion invokes groups
of muscle cells, increasing the density of spikes
heard.

This signal then feeds a series of audio processing
units, including modulators, resonators, and filters.
The raw EMG pulse train becomes the excitation
stimulus for the subsequent audio processing.
Resonant filters allow the high-frequency content
to excite tones at the resonance frequency of the
filter. This is then duplicated into a resonant filter
bank of multiple tunable frequencies that begins to
simulate acoustic resonance by a noisy source. Ring

modulators also enable the spiking content of the
raw EMG data to excite sonic material at various
musical tunings relative to a carrier signal.

Parametric Synthesis

In the controller paradigm, the goal was to enable
a range of different strategies that map performer
gesture to musical output. This goal includes ac-
commodating classical mapping strategies from the
literature in the field of new interfaces for musical
expression, one-to-many and many-to-one (Hunt
and Kirk 2000), as well as more recent approaches
using neural networks to create regression mod-
els as a means for automatic mapping (Visi and
Tanaka 2021). We present a system for creating such
mappings associating extracted gesture features to
auditory metadata. Sample- and wavetable-buffer
playback arranged in various granular-synthesis
architectures allowed the broadest support for
different sound-synthesis and audio-processing ap-
proaches, from oscillator-style synthesis, to time
stretching, to corpus-based concatenative synthe-
sis. The granular audio generator is subsequently
processed in a user-definable set of filters and
modulators.

Feature Mapping

To associate features extracted from gesture di-
rectly to auditory features, we used CaTART, a
concatenative synthesis system driven by music
information retrieval. Content-based concatenative
synthesis (CBCS) is an extension of granular syn-
thesis in which grains, or units, are automatically
generated and are catalogued by auditory features
through the use of music information retrieval and
the timbral descriptors it generates (Schwarz 2007).
Longer sounds are created with CBCS by combin-
ing shorter sounds, where units can be recalled by
a query that uses a vector of those features. The
actual grain to be played is specified by a target
and features associated with that target. The tar-
get may be of the same modality as the corpus
or a different modality. In our case, the target is
sensor data or some representation from the EMG
of performer gesture, and it may have the same
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feature dimensionality as the corpus, or a different
dimensionality.

Gesture-to-Sound Translation

In this section we will describe the mapping strate-
gies that we adopted for the purpose of coupling
bodily gestures with sound dynamics. Van Nort
(2009) proposed moving away from looking at map-
ping as an isolated process—he aimed to go from
a “connective tissue between control and sound
parameters” towards a process of structuring an
interplay between human actions and musical dy-
namics. This calls for design principles that take
into account criteria of instrumentality beyond
sound production (Hardjowirogo 2017) and view
the interaction design workflow as an “affordance”
(Altavilla, Caramiaux, and Tanaka 2013) of the
instrument itself.

From Direct Mapping to Feature Mapping

Hunt, Wanderley, and Kirk (2000) identify ex-
plicit mapping strategies to define the relationship
between performer actions and sound-synthesis pa-
rameters. They distinguish this category of mapping
strategies from those that involve generative mech-
anisms and training procedures, such as artificial
neural networks. Arfib et al. (2002) consider explicit
mappings to be those in which one can clearly
describe how input and output are related. They
describe such approaches as being more mathemat-
ically transparent than implicit mapping. In the
context of our work, we see explicit mapping as a
way of designing direct relationships between signal
features derived from the performer’s action and
features of the synthesized sound. We have used an
EMG feature we have previously reported as gesture
power (Caramiaux, Donnarumma, and Tanaka 2015;
Zbyszyński et al. 2021). Carmiaux’s team noted that
the muscular activation associated with the gestures
of the performer has a direct, explicit relationship;
Cadoz et al. (1984) also found that gestures transfer
energy into the instrument.

As the dimensionality of input signals and sound
synthesis increases, it can become an increasingly
complex task to associate parameters across the two
domains in ways that are intuitive and consistent
and that allow for a wide range of musical expression.
To address this increasing complexity, we have
abstracted both gesture input and sound output into
higher-level features, or metadata. We refer to the
process of explicitly mapping gesture features to
sound features as feature mapping. This approach to
the design of gesture–sound relationships allows one
to make use of the semantic and perceptual qualities
of the features extracted from raw signals. The
method has some limitations, however, as not all
signal features carry higher-level meanings or have
obvious perceptual qualities. Moreover, just like
any other explicit mapping approach, the method
becomes impractical as the number of features and
parameters increases and their correlations become
more complex.

Implicit Mappings and Machine Learning

The complexity of feature mapping makes explicit
mapping difficult. Here, regression modeling by
means of machine learning enables forms of implicit
mapping through a paradigm called “mapping
by demonstration” (Françoise 2013). Complex
mappings between sets of parameters can be defined
concurrently, in a holistic design procedure, with
mappings between individual parameters defined
implicitly in the process as opposed to the explicit
mappings between features and sound parameters.
We adopt an interactive machine learning (IML)
workflow (Fiebrink and Cook 2010) for creating
implicit mappings by way of linear regression (Visi
and Tanaka 2021).

Regression is the task of estimating the relation-
ship between an independent variable (or a feature)
and a dependent variable, or outcome. This is done
by building a statistical model that explains how
the variables are related. Regression is a typical
supervised learning task, meaning that the model
describing the continuous function is trained using a
set of examples describing the relationship between
input data and output data in a few specific cases.
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Figure 9. Assisted
Interactive Machine
Learning (AIML) workflow,
with gesture-to-sound
mappings generated by an
artificial agent (parts 2
and 3) and a reward via
user feedback (part 4).

Regression is a powerful method in the context of
gesture–sound interaction, since it allows one to
easily define complex, continuous mapping func-
tions between gesture features and sound-synthesis
parameters. This can be done by providing examples
consisting of sample input data—such as EMG signal
features—paired with sound-synthesis parameters.
Thereby, designing interactions between gesture
and sound for interactive music performance is an
interactive procedure mediated by machine learn-
ing in which mappings are created implicitly by
providing example gesture–sound pairs. In a typical
IML workflow, examples in the gesture domain are
provided as static poses.

We refer to this approach as static regression
(Tanaka et al. 2019). Within the project, we extended
this paradigm and proposed an automated technique
for training a neural network with a windowed
set of anchor points captured on the fly from a
dynamic gesture made in response to a sound-
tracing auditory stimulus; we called this technique
“windowed regression.”

We explored the use of IML and regression models
for mapping multichannel EMG represented by an
18-dimension feature space to a high-dimensional
timbre space (Zbyszyński et al. 2021). Sound is pro-
duced using corpus-based concatenative synthesis
with sound units located in a timbre space defined
by 19 audio features. Finally, we have made use
of reinforcement learning algorithms to generate
training data in response to user feedback. We refer
to this extension of the IML paradigm as assisted in-
teractive machine learning (AIML; Visi and Tanaka
2020). An AIML system is designed to let a performer
interactively explore the motion–sound mappings
proposed by an artificial agent (see Figure 9). The
performer can then give feedback to the agent and
obtain another mapping to play with. After receiving
feedback from the performer, the agent generates a
set of training examples that are then fed to a neural
network to train a regression model. Performers can
give positive or negative feedback to the agent. After
each feedback, the agent progressively adjusts the
training data sent to the neural network, resulting
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in a different mapping. A third feedback option
called “explore” results in the agent moving to a
distant area of its environment, thus resulting in
a mapping that “breaks away” from the previous
one.

Dissemination

The EAVI-EMG system has been used by a range
of musicians in three distinct public presentation
settings. Even if they do not constitute a formal
study, the EAVI-EMG system was deployed in a
range of performance situations “in the wild.” We
describe three settings: (1) repertory, where the EAVI-
EMG hardware was used to perform musical work
composed for other EMG systems, (2) dance, where
the BMI was used in interactive dance performance,
and (3) new work, where the system was used in the
conception of new work.

Repertory

The first check of the hardware was to substi-
tute it for the BioControl Systems Biomuse and
Thalmic Labs Myo in the performance of two
works originally composed and performed on
older hardware. First, we tried the EAVI-EMG
device alongside a Myo in two simple composi-
tions by Tanaka for EMG: “Lifting” and “Le Loup”
(https://youtu.be/p8CKjmE7zys). Both used four
channels of EMG: two on opposing muscles of the
left lower arm, and the other two on the correspond-
ing muscles of the right forearm.

Both “Lifting” and “Le Loup” track oppositional
flexing of the wrist. They were written originally
for the BioMuse and were later performed on the
Myo. (They did not make use of all eight channels
of each Myo’s EMG, nor its motion sensing.) In this
sense, the two pieces are musical works for EMG
that are device-independent. “Lifting” is a simple
oscillator piece, inspired by the Theremin, in which
a basic mapping allows one arm to control oscillator
pitch and the other the overall amplitude. The
opposing muscles on each arm were used in sum
and difference to extract a single glissando value

based on wrist flexion. “Le Loup” is performed with
a single sound sample (of a wolf growling), on a
four-voice granular synthesizer. Two EMG channels
are used on each arm, with the left arm tracking the
sum of EMG amplitude against a Schmitt trigger to
articulate the sample. Once triggered, the sound is
looped and granulated by sustained muscle exertion,
with amplitude modulation. The right arm controls
a resonant low-pass filter, with one EMG channel
controlling the cutoff frequency, and the other,
resonance.

In both “Lifting” and “Le Loup,” the EAVI-EMG
was first used to replace the Myo on one arm, and
the Myo was retained on the other. The arms were
then swapped, to enable checking the EAVI-EMG
with the musical interaction of the other arm.
Finally, the four channels of the EAVI-EMG were
used to replace both Myos on both arms. The pieces
were performed then in four variations: (1) two
Myos, (2) EAVI-EMG left and Myo right, (3) Myo
left and EAVI-EMG right, and (4) EAVI-EMG only.
The performer (Tanaka) reported confidence when
performing the works on the EAVI-EMG, with the
compositions retaining their musical identity and
“feel.” This demonstration was made publicly in a
research workshop setting.

Dance

A second example of device substitution was carried
out with artists not involved in the development
of the system. We worked with the composer
Anne Sèdes and the researcher David Fierro, both of
whom had contributed to the interactive dance work
Écoute/Expansion for the French dance company
Kitsou Dubois. The original performance of that
piece involved two dancers, each wearing one
Myo on a forearm. The choreography involved
movements of one dancer working on the floor and
the other on a pole. Continuous muscle exertion is
picked up by the EMG, whereas gross arm gesture is
picked up by the IMU in the Myo. The two modes
of interaction work in conjunction to create a form
of multimodal interaction with which the dancers
explore a timbre space in surround sound.

We worked with Sèdes and Fierro to extract
several isolated moments from the choreography as
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Figure 10. Chicks on Speed
performer wearing
EAVI-EMG board with two
channels of EMG on the
leg for performance of
“Noise Bodies.”

excerpts we could consider “interaction modules.”
We then asked Fierro to demonstrate each for us
using the Myo, then try them with the EAVI-
EMG, using its EMG and accelerometer. This was
presented in the research workshop mentioned
above.

In a second workshop, Sèdes and Fierro presented
an adaptation of excerpts from the piece using the
EAVI-EMG. Whereas “Lifting” and “Le Loup” were
compositions for generic EMG, Écoute/Expansion
was composed specifically for the Myo, with its eight
channels of EMG and three-dimensional movement
sensing. The goal in the new version, according to
Sèdes, was not to reproduce the original verbatim,
but instead to realize the original musical intent of
the project using the feature set of the proposed sys-
tem. Fierro used a one-to-many mapping approach
from the two EMG channels of the EAVI-EMG as
well as a sum of the two channels to control a series
of synthesis and spatialization parameters. Sèdes
ultimately noted that with fewer EMG channels,
she somehow found her original musical intent of
exertion mapped to timbre and space in a way that
was more direct than using the multiple modalities
and multiple channels of the Myo.

New Work

The feminist music and fine art ensemble Chicks
on Speed premiered the performance piece “Noise
Bodies” at Muzeum Susch, Switzerland, in De-
cember 2019. In their performance, they used four
prototypes of the EAVI-EMG in an experimental
multimedia performance. “Noise Bodies” was in-
spired by the 1965 work of the same name by artist
Carolee Schneemann, in which vernacular objects
such as pots, metal cans, and car license plates were
mounted on the bodies of Schneemann and her part-
ner, the American computer music composer James
Tenney. “Noise Bodies” by Chicks on Speed retained
the theme of wearing sound objects, pushing it in
the direction of electrified and electronic sound. The
piece featured five performers: Alexandra Murray-
Leslie on E-Shoe (Murray-Leslie and Johnston 2017)
augmented with the EAVI-EMG; Melissa Logan, who
interfaced the EAVI-EMG with a wearable analog

synthesizer and laptop computer; Krõõt Juurak on
the EAVI-EMG; and Visi on electronic stethoscope
and Myo armbands.

The performers wore the EAVI-EMG on different
parts of the body, combining them with other
elements of their outfits. Murray-Leslie wore the
board and the battery pack on her hair using a
hairpin and placed the EMG electrodes on her face;
Logan placed the board on the back of her bodysuit
and the electrodes on her neck; while Juurak wore
the board inside her tights with the electrodes placed
on her left thigh and calf (see Figure 10). The signals
from the EAVI-EMG were mapped directly to the
oscillator frequencies and the amplifier gain, fitting
the aesthetic and existing performance setup of the
ensemble and of Schneeman and Tenney’s original
work.

This was the first public performance involving
multiple EAVI-EMG. Reflecting on this experience,
we appreciate how the EAVI-EMG afforded experi-
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mentation in ways that more normative devices like
the Myo would have not. On the other hand, using
the board without an enclosure near the performers’
skin increased the risk of short circuits when some
components of the board came in contact with
skin surface moisture, and wet electrodes are more
difficult to clean and reuse compared with the dry
electrodes of the Myo. These technical and design
aspects are the subject of current development work
and will be addressed in a future iteration of the
device.

Having the EAVI-EMG recognized as a class-
compliant Bluetooth MIDI device made it easier
to use the device in a sound design and music
production software environment. This allowed
us to quickly design and test interactions during
rehearsals, showing how a dedicated device can
make such experimental practices more accessible
to practitioners working outside of niche research
circles.

Discussion

We have presented an extended system combining
both hardware and software for physiological sens-
ing, gesture–sound mapping, and sound synthesis.
We have described several preliminary examples
where the system has been used in musical per-
formance, sometimes alongside existing systems.
The EAVI-EMG is not the first system to enable
use of muscle EMG in musical applications. Here
we discuss in what ways the proposed system may
advance the state of the field, and we explore its
potential as a digital musical instrument.

System Design

As a class-compliant audio and MIDI device, the
EAVI-EMG hardware is designed from the ground up
to be used for music. Of the systems described in the
Physiological Interfaces for Music section, it is the
older systems—the BioMuse and BodySynth—that,
by being MIDI devices, share this musical specificity.
Products like the Thalmic Labs Myo were general
purpose HIDs that needed to be adapted for musical

use. The musical research community responded
to this need by producing utilities like Françoise’s
Myo for Max object and Di Donato’s Myo Mapper,
but the core Myo software development kit and
drivers are no longer maintained and do not run on
new CPU architectures. Being class-compliant, the
EAVI-EMG requires no device drivers for it to be
used as an audio or MIDI device.

Do-it-yourself systems like the MyoWare offer
flexibility, allowing the artist or musician to choose
the interface board to which the EMG sensor should
be connected, but they require artists to build
their own systems. Artists like Hollie Miller and
Craig Scott have used the MyoWare coupled with
a Teensy microcontroller as input to digital audio
workstation software (in their case, Ableton Live).
This combination was specific to the project. The
EMG and MyoWare were used in just one piece in
Miller and Scott’s repertoire, have not been adopted
by other artists, and have not been used by them
in their subsequent projects. The dissemination
examples we described in the previous section are
a first indication that the EAVI-EMG system has
potential both to perform repertoire and for musical
uptake across a range of musical styles.

Incorporating the mapping and sound synthesis
contributes to making an integrated system that can
then be adopted by musicians as a complete system
without requiring them to build or invent their
own. The software components of the EAVI-EMG
system have been developed through a series of
user-centered design actions (Tanaka et al. 2019;
Zbyszyński et al. 2021). The integrated system
allows musicians with no prior experience with
biomedical technologies to get started using the
EMG in musical applications. We have presented
examples of use of the EAVI-EMG system by artists
who were not part of the core research team. As
we describe in the following section, we continue
to work on simplification of the end user software
experience to make its use more accessible. The
production run of 20 EAVI-EMG boards is being
rolled out to a range of students and independent
musicians.

Conceiving of the hardware component as a com-
bined MIDI-and-audio device, and designing it in
conjunction with the host software, leaves open
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opportunities for improvement and optimization in
the future. The OWL firmware on the microcon-
troller treats the EMG signal and audio together. To
our knowledge, this is the first time that physiolog-
ical signal and audio are treated in a single-signal
processing chain. The increasing computational
power of future microcontrollers leaves open the
possibility to take signal-processing tasks currently
running in the host software and shift them to run
directly in the microcontroller. We are currently ex-
perimenting with implementing more of the EMG
feature extraction in the microcontroller, and we
have an experimental system where the granular
synthesizer has been implemented in Pure Data
compiled to run in the OWL framework. We are
studying the possibility of digital-to-audio conver-
sion and analog audio output in the next revision
of the hardware, pointing to the possibility that
a future version of the EAVI-EMG could one day
run as a standalone musical device without a host
computer.

Our device hardware does not match the indus-
trial design elegance of commercial products like
the Myo. This brings with it disadvantages as well
as newfound freedom. The snap electrode system we
have adopted is standard in biomedical practice and
allows use of both wet and dry electrodes, but it re-
quires three electrodes for one channel of EMG. For
the connector between the electrode cable and the
main circuit board, we have chosen to use the same
multipin (UC-E6) connector as the Plux Bitalino.
This provides a certain degree of interoperability
with DIY solutions like the Bitalino. The cables
can be cumbersome, however, and the straps we
have made for use with dry electrodes (as shown in
Figure 1) do not provide the same stability and elec-
trical contact as the Myo steel-plate dry electrode
system. Although the Myo provides excellent fit on
the lower arm, it is limited to this limb, some artists
have used the Myo on the leg (Candau et al. 2017).
While the snap electrode system is more ungainly,
it enabled Juraak in “Noise Bodies” to use the EAVI-
EMG to detect thigh muscle activity (Figure 10).
In current work with guitarists and violinists, we
are exploring electrodes placed behind the shoulder
and on the neck. This gives us a freedom we would
not have with the Myo and opens up possibilities

for use of the EAVI-EMG with nonnormative bod-
ies. The freer use of the EAVI-EMG on different
body parts and on different body types bring with
it new design challenges we will need to confront
in the future. Murray-Leslie and Logan reported
mild electric shocks from the 5-V battery, resulting
from perspiration in performance and the use of
a raw circuit board without a case. This points to
health and safety considerations that need to be
addressed before a generalized rollout of the system.
Meanwhile, the wireless data transmission means
that the user of the wearable system is protected
from ground problems or electrical current from the
rest of the computer, audio, or mainline electrical
systems.

Conclusion and Future Work

We have presented a digital musical instrument
system that is based on the electromyogram muscle
signal as input. It is an integrated system combining
both hardware and software that represents the con-
vergence of several strands of research and builds
upon prior work by others in the field. It benefits
from advances in the technology landscape, includ-
ing the democratization of hardware development
and advances in signal processing and machine
learning.

The notion of instrument as extended system and
the concept of instrumentality led us to present not
just the development of a hardware interface but
the associated software around it that facilitates the
composition and performance of a diverse body of
musical work. It has been used by the authors in
concert, and also by a range of different composers
and performers in public performance settings. By
making the instrument design and code available as
open source to the musical community, we hope that
it will be of use to other musicians and researchers
who had been orphaned by discontinued commercial
devices. Beyond avoiding transience, we feel that
the design of the EAVI-EMG from the ground up as
a class-compliant system, working with both audio
and MIDI, will imbue it with musical qualities and
lead to richer musical use than would the hacking
of otherwise general-purpose devices.
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Development of the system continues with sev-
eral perspectives for future work. The research con-
tinues in a new project, Brain Body Digital Musical
Instrument (BBDMI, see https://bbdmi.nakala.fr),
where we use the EAVI-EMG to explore multimodal
musical interaction combining EMG and brain EEG.
Feature extraction and sound synthesis are being
implemented in Faust (https://faust.grame.fr) on the
OWL framework as a way to embed those compo-
nents in microcontroller firmware to create a truly
standalone instrument. We continue our work with
users, and we are preparing a separate publication
on user studies conducted with the EAVI-EMG.
The BBDMI project will expand the user base for
the instrument, including conservatory instrument
students, and it will explore neurodiversity in tri-
als with autistic musicians. Finally, we are working
with industrial designers on electrode harnesses, and
we will produce a simplified version of the hardware
that can interface with modular synthesizers.
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