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Bipolar disorder (BD) involves altered reward processing and decision-making, with inconsistencies across studies. Here, we
integrated hierarchical Bayesian modelling with magnetoencephalography (MEG) to characterise maladaptive belief updating in
this condition. First, we determined if previously reported increased learning rates in BD stem from a heightened expectation of
environmental changes. Additionally, we examined if this increased expectation speeds up belief updating in decision-making,
associated with modulation of rhythmic neural activity within the prefrontal, orbitofrontal, and anterior cingulate cortex (PFC, OFC,
ACC). Twenty-two euthymic BD and 27 healthy control (HC) participants completed a reward-based motor decision-making task in a
volatile setting. Hierarchical Bayesian modelling revealed BD participants anticipated greater environmental volatility, resulting in a
more stochastic mapping from beliefs to actions and paralleled by lower win rates and a reduced tendency to repeat rewarded
actions than HC. Despite this, BD individuals adjusted their expectations of action-outcome contingencies more slowly, but both
groups invigorated their actions similarly. On a neural level, while healthy individuals exhibited an alpha-beta suppression and
gamma increase during belief updating, BD participants showed dampened effects, extending across the PFC, OFC, and ACC
regions. This was accompanied by an abnormally increased beta-band directed information flow in BD. Overall, the results suggest
euthymic BD individuals anticipate environmental change without adequately learning from it, contributing to maladaptive belief
updating. Alterations in frequency-domain amplitude and functional connectivity within the PFC, OFC, and ACC during belief
updating underlie the computational effects and could serve as potential indicators for predicting relapse in future research.
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INTRODUCTION
Bipolar disorder (BD) is a chronic affective condition characterised
by episodes of elation, depression, and mixed states, interspersed
with periods of clinical remission [1, 2]. Alterations in reward
processing and impaired decision-making performance have been
associated with the condition [3, 4], pointing to disrupted
functional connectivity between the prefrontal cortex (PFC) and
the mesolimbic reward system [5, 6]. Yet findings across studies
are variable, even when considering euthymic periods alone [5–7].
BD research has reported both heightened sensitivity to negative
feedback and decreased learning from rewards, or the reverse
[8–12]. Recently, Ossola et al. [13] found that in euthymic BD,
attenuated belief updating from positive feedback forecasts
relapse, highlighting the importance of investigating dynamic
belief updating during euthymia.
Influential proposals advocate for the application of computa-

tional models in BD research to understand fluctuations in mood
and reward processing [14–16]. Short-lived emotional changes in
response to rewards can accumulate to generate longer-lasting
mood states, which further bias the processing of outcomes,

favouring computations congruent with the valence of the current
mood [17–19]. In BD, new frameworks, building upon previous
neurocomputational work on mood instability [20], suggest that
altered affective reactivity to reward and punishment may elevate
learning rates, even during euthymia, predisposing individuals to
form stronger expectations about rewards or punishments. Recent
empirical work supports this, revealing a tendency in BD for
reward perception to be biased by fluctuations in the momentum
of recent reward prediction errors [21].
An increased learning rate could also reflect a heightened

anticipation of environmental changes in BD [14]. Indeed, seminal
modelling studies support that agents learn faster when
anticipating more frequent transitions in the environment
[22, 23]. In BD, persistent biased expectations during mood
episodes will deviate from the true hidden state, increasing the
likelihood of unsuccessful decisions. This could promote a
perception that the environment is more volatile. However, the
extent to which individuals with BD overestimate volatility and
how this influences their belief updating and decision-making
remains unexplored. Building on the proposal that moods can
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specify the prior probabilities of different computations [20, 24],
we hypothesise that a history of experiencing mood extremes and
high mood instability in BD will set a prior on high environmental
volatility in this condition. Such inflated volatility estimates could
introduce ‘noise’ into the decision-making process [25], leading to
incorrect decisions. Alternatively, the reported shifts in decision-
making performance during euthymic BD [3, 4] could be explained
by slower belief updating, aligning with recent empirical
observations in valence-dependent learning [13].
To test these hypotheses, we investigate the computational

processes underlying altered decision-making in euthymic bipolar
patients, compared to healthy participants, as they undertake a
probabilistic reward-based learning task in a volatile environment.
We employ the Hierarchical Gaussian Filter (HGF), a validated
modelling framework based on Hierarchical Bayesian inference
that describes individual learning dynamics in uncertain and
volatile environments [26–29]. The HGF is based on influential
theories of cortical function, which propose that the brain
continuously makes and refines predictions about the states of
the world using approximate Bayesian inference [30, 31]. We used
the HGF to model how input about probabilistic reward outcomes
and their change over time is integrated with prior beliefs during
learning, resulting in posterior beliefs about the hidden states
causing the observed outcomes [26, 27]. Belief updates in the HGF
are driven by prediction errors (PE)—the discrepancy between
predictions and outcomes—and are modulated by the precision
weights, where precision is defined as the inverse variance of
belief distributions. This computational framework has already
proven useful for understanding psychiatric conditions [12, 32, 33],
aligning with proposals that understand clinical and subclinical
conditions as manifestations of aberrant belief updating and
predictive processing [34, 35]. Integrating generative models of
learning and inference, such as the HGF, with dynamic models of
mood in BD could offer insights into how extreme changes in
affective states and mood dynamically shape adaptive learning
[16, 36–39].
To gain a more mechanistic understanding of the processes

underlying the hypothesised computational alterations in euthy-
mic BD, we additionally investigated the neural correlates of
hierarchical belief updating using magnetoencephalography
(MEG). Existing research supports the role of cortical oscillations
in maintaining predictions and encoding PEs [40–43]. Specific
frequency rhythms such as alpha (8–12 Hz) and beta (13–30 Hz)
oscillations have been associated with the transmission of top-
down predictions, and encoding precision, while gamma-band
activity (>30 Hz) has been linked to the propagation of PEs and
precision-weighted PEs, pwPEs [41, 43–45]. Importantly, disrup-
tions in these rhythms are suggested to contribute to learning
deficits observed in various psychiatric conditions, including
anxiety, schizophrenia, and autism [45–47].
On a neural level, we hypothesised that biases in probabilistic

reward-based learning in BD in a volatile setting can be reflected
in alpha, beta, and gamma activity during the encoding of pwPE
and precision. We anticipated between-group differences in
gamma activity along with concomitant alpha/beta activity during
pwPE processing, and in alpha/beta activity during the encoding
of uncertainty. Faster (slower) belief updating in BD would be
reflected in increased (decreased) gamma activity, with opposite
directional modulation in alpha/beta during pwPE encoding
[45, 46]. These alterations are expected to manifest in the
orchestrated activity across decision-making brain areas, such as
the prefrontal, anterior cingulate, and orbitofrontal cortex (PFC,
ACC, OFC). These regions are involved in learning in volatile and
uncertain settings [22, 45, 48, 49], and form part of the fronto-
striatal reward circuit, which exhibits disturbed connectivity in BD
[9, 50]. We therefore additionally hypothesised that changes in
frequency-domain connectivity patterns between these regions

during belief updating would occur in BD relative to healthy
control participants.
Lastly, we aimed to determine whether the computations

underlying decision-making deficits in euthymic BD influence the
motivational aspects associated with the invigoration of move-
ments. Evidence suggests that reward expectations can speed
motor performance [51, 52], and the nigrostriatal dopamine
pathway is crucial for invigorating future movements [53]. The
‘dopamine hypothesis’ of BD [54, 55] posits that dopamine
dysregulation underlies both manic episodes and the broader
episodic features of BD. Moreover, individuals with BD have been
shown to exhibit heightened energy and effort following success,
indicating enhanced motor vigour effects [4, 56]. Consequently,
our final complementary hypothesis posits that the strength of
predictions about reward contingencies will speed decision-related
movements more in euthymic BD than in healthy individuals [57].

METHODS AND MATERIALS
Ethics declarations
The study was approved by the Institutional Review Board of National
Research University Higher School of Economics and the Local Ethical
Committee of the First Moscow State Medical University. All procedures
contributing to this work comply with the relevant ethical guidelines and
regulations for research involving human participants, including those of
the approving institutional committees and the Helsinki Declaration of
1975, including its subsequent amendments. All participants provided
written informed consent.

Participants
Participants included 22 bipolar patients (mean age: 29.1 years [SEM= 1.67],
17 females; Table 1), and 27 healthy participants (27.5 years [SEM= 1.18],
15 females). Bipolar participants were assessed by a consultant psychiatrist
who confirmed the diagnosis of BD (I or II) using the structured clinical
interview for the International Statistical Classification of Diseases and
Related Health Problems (ICD-11) [58]. Patients included in the study were
euthymic for at least 2.5 months before recruitment. Additional inclusion
criteria were: most recent episode being depression, aged 18–50 years,
absence of symptoms from other mental health conditions beyond BD,
and no history of substance abuse. We assessed residual mood symptoms
and cognitive performance using validated scales on mania, anxiety,
depression and tasks on executive and general cognitive performance. See
Table 1 for further details, and Supplementary Material for sample size
estimates.

Reward-based motor sequence learning task
Participants underwent an initial fine motor control assessment, then
completed a validated motor-based decision-making paradigm [57] (Fig.
1A), which combines probabilistic binary reward-based learning within a
volatile setting (reminiscent of reversal learning) with the execution of
motor sequences to express decisions. Participants learned two sequences
of four finger presses (matched in difficulty, Supplementary Materials),
followed by a 320-trial test phase. In each trial, they were required to
choose and perform one of the sequences to potentially earn a reward (5
points; Fig. 1A). Reward probabilities for sequences were reciprocal (p, 1-p)
and changed pseudorandomly every 26–38 trials (Fig. 1B). The aim was to
infer the reward probability associated with each sequence (‘action-
outcome’ contingencies henceforth) and adjust their choices considering
changing contingencies. Accumulated points translated to monetary
rewards. See timeline in Fig. 1C. The task, programmed in MATLAB using
Psychtoolbox, recorded participants’ keypress timings to evaluate reaction
time (RT) and performance tempo (Fig. 1D). See Supplementary Material.

General task performance
General probabilistic task performance was assessed using the win rate
(rate of rewarded trials), lose-shift and win-stay rates [45, 59], related to our
first hypothesis (Supplementary Material). Higher learning would be
associated with higher values across three variables. Separately, we
controlled for between-group differences in error rates (performance
errors and timeouts).
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Modelling decision-making behaviour using hierarchical
Gaussian filters
To assess probabilistic learning in our task we used a validated
hierarchical Bayesian model, the 3-level perceptual HGF for binary
categorical inputs [26, 27](Fig. 2A). This model described how
participants infer hidden states about the tendency of the action-
outcome contingencies on trial k, x2

(k)(level 2), and the rate of change in
that tendency (log-volatility), x3

(k). Level 1 represents the binary reward
input. Gaussian belief distributions on levels 2 and 3 are represented by
their posterior mean (μ2

(k), μ3
(k)) and posterior variance (uncertainty: σ2,

σ3), where precision is the inverse variance or uncertainty, πi (i= 2, 3).
The first-, second- and third-level variance (σ1, σ2, σ3) represent
irreducible, estimation and volatility uncertainty [26, 60, 61]. Estimation
and volatility uncertainty arise from imperfect information about the
true states x2 and x3, respectively, and can be reduced as learning
progresses. By contrast, σ1 cannot be reduced through learning, as it
embodies the probabilistic nature of response-outcome relationships.
See further details in Supplementary Materials.
Belief updating on each level i and trial k is driven by prediction

errors, and modulated by precision ratios, weighting the influence of
precision or uncertainty in the current level and the level below. This is
termed precision-weighted PE, pwPE. For level 2, belief updating

takes the simple form:

4μk2 ¼ μ
kð Þ
2 � μ

k�1ð Þ
2 ¼ σk2δ

kð Þ
1 (1)

Thus, updating beliefs about the tendency of the action-outcome
contingencies is proportional to the PE about action outcomes, δ1

(k),
weighted with the estimation uncertainty on that level, σ2

(k). Here, pwPE is
equal to σ2

(k)δ1
(k). See general equation, representing updates on level 3, in

Supplementary Material, and ref. [27].
States x2, x3 evolve as random Gaussian walks, with volatility states x3

directly influencing the time evolution of x2 through its variance
(conditional on past values):

xk2 � N xk�1
2 ; f 2 x3ð Þ� �

(2)

with (dropping k for simplicity)

f 2 x3ð Þ ¼def exp κx3 þ ω2ð Þ (3)

In (3), ω2 is the tonic portion of the log conditional variance of x2, and κ
is a coupling constant that regulates how phasic volatility, x3, alters the
magnitude of belief updates about action outcomes. The step size at level

Table 1. Group demographics and variables describing the measures of affective state, cognitive and executive function in euthymic bipolar
disorder patients (BD, N= 22) and healthy control participants (HC, N= 27).

Bipolar group
(N= 22)

Healthy control
group
(N= 27)

Statistics (Permutation test p-value and
Bayes factor)

Age (years), M (SEM) 29.1 (SEM 1.67) 27.5 (SEM 1.18) P= 0.4921, BF10= 0.3472

Sex (females), n (%) 17 (77.2%) 15 (56%) χ2= 1.6559, df= 1, P= 0.1849; BF10= 1.102

Duration of illness (years), M (SEM) 7.4 (SEM 1.04) NA NA

Last episode polarity, (%) depression (100%) NA NA

Time in euthymia (months), M (SEM) 4.9 (0.68) NA NA

Bipolar II, n (%) 17 (77.3%) NA NA

Bipolar I, n (%) 5 (22.7%) NA NA

Antidepressant, n (%) 10 (45.5%) NA NA

Antipsychotic, n (%) 14 (63.6%) NA NA

Mood stabiliser, n (%) 16 (81.8%) NA NA

Summary: Taking psychiatric medication, n (%) 19 (86.4%) NA NA

HADS anxiety, M (SEM) 5.5 (0.94) 5 (0.64) PFDR= 0.64, BF10= 0.31

HADS depression, M (SEM) 4 (0.69) 3.30 (0.57) PFDR= 0.4003, BF10= 0.3824

Beck Depression Inventory, M (SEM) 8.3 (1.75) 5 (1) PFDR= 0.1038, BF10= 0.8668

Altman’s Mania Scale, M (SEM) 1.7 (0.50) 2.6 (0.50) PFDR= 0.2040, BF10= 0.5652

State-Trait Anxiety Inventory (state subscale on
MEG day)1, M (SEM)

35.5 (1.72) 33.7 (1.90) PFDR= 0.4571, BF10= 0.3833

Trail Making Test (Part 1), M (SEM) 23.3 (1.21) 21.2 (1.22) PFDR= 0.2216, BF10= 0.5296

Trail Making Test (Part 2), M (SEM) 87.8 (8.5) 55.7 (5.6) PFDR= 0.0022*, BF10= 14.907

Wisconsin Card Sorting Test, M (SEM) 29.3 (0.92) 31.6 (0.67) PFDR= 0.0364, BF10= 1.6560

Mini-Mental State Examination, M (SEM) 29.5 (0.18) 29.5 (0.17) PFDR= 0.8678, BF10= 0.2875

For MEG analysis, data were available for 27 HCs and 21 BDs. Values are provided as mean and SEM (M, SEM) or as count and percentage (n, %). Between-group
differences in scale values were assessed using permutation tests. Our alpha significance level was set at 0.05, and we controlled the false discovery rate (FDR)
at q= 0.05 for multiple tests. Permutation test p-values were complemented with Bayes factor analysis to assess the amount of evidence in favour of H1 or H0.
Age and sex distribution were comparable across groups (Age: PFDR= 0.4921, no-significant differences; BF10= 0.3472, providing anecdotal evidence for H0;
Sex: Chi-squared statistic, χ2= 1.6559, df= 1, P= 0.1849, no significant; BF10= 1.102, no evidence for H0 or H1). There was substantial and anecdotal evidence
supporting no differences between BD and HC groups in anxiety, depression, mania, and general cognitive scores (Bayes factor, BF10, in the range 1/3–1:
anecdotal evidence; 1/10–1/3: substantial evidence). Significant between-group differences after FDR control were observed exclusively for Part 2 of the Trail
Making Test (denoted by * and bold font), assessing task switching, based on strong evidence. There was anecdotal evidence for differences in Wisconsin Card
Sorting Test scores, assessing executive functions. However, this effect was not significant after FDR control. 1State anxiety scores on the day of the
experimental session were available for 22 bipolar patients and 18 healthy participants. The type of mood stabiliser taken by bipolar participants was mainly
Lamotrigine (n= 11), but a few patients were taking Carbamazepine (n= 2), Valproic acid (n= 2), or Lithium (n= 1). See Supplementary Materials for further
details on the scales and the corresponding references. See also control analyses on the effects of medication on the main computational results
(Supplementary Table S5).
HADS hospital anxiety and depression scale.
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3 is modulated by ω3, representing high-level tonic volatility. Larger values
of ω2 and ω3 are associated to larger updates in beliefs about the
probabilistic mapping at level 2 and volatility, respectively, as demon-
strated in previous simulations [59]. See also Results. Higher κ values
increase the influence of log-volatility changes on belief updates at level 2.
See further details in Supplementary Material.
To assess how beliefs mapped to decisions, we coupled this perceptual

model to response models previously used in similar tasks [27, 45, 46]. First,
we considered a unit-square sigmoid response model where choice
probability is shaped by a free fixed (time-invariant) parameter ζ,
interpreted as inverse decision noise: the sigmoid approaches a step
function as ζ tends to infinity. This constituted our model M1. Model M2
was similar but employed a two-level HGF with constant volatility. M3
combined the 3-level HGF with a response model where the sigmoid
function depends on the trial-wise prediction of log-volatility, ζ ¼ e�μ

k�1ð Þ
3

[25](Fig. 2A). In this model, higher estimates of volatility lead to a more
stochastic mapping from beliefs to decisions. As a result, there is an
increased likelihood of choosing responses that deviate from predictions,
consistent with increased exploration (exploring whether the contingency
has changed). In models M1 and M3, parameters ω2 and ω3 were free; ω2

was also free in M2. Additionally, ζ was free in M1 and M2, while initial
values μ3

(0) and σ3
(0) were free in M3. Higher initial values in μ3

(0) indicate
that an agent expects rapid changes in the probabilistic mapping initially,
while σ3

(0) represents the initial uncertainty an agent has about μ3
(0). A

fourth model, M4, was constructed similarly to M3 but replaced the free
parameter ω2 with κ [32].
Models were fitted to individual behavioural data (series of responses

and observed outcomes) using priors described in Supplementary Table
S1. Log model evidence from random-effects Bayesian model selection
was used for model comparison (Supplementary Materials). Simulations,

similar to previous work, quantified the estimability of free model
parameters [32, 45]. Relevant belief and uncertainty trajectories were used
subsequently for our MEG analysis (Fig. 2B; and expanded figures in
Supplementary Figs. S1 and S2; see Results). The models were
implemented as a part of the TAPAS toolbox [62]. We used the HGF
release v7.1 in MATLAB R2020b, and functions ‘tapas_ehgf_binary’.

Assessing motor invigoration
Details on assessing motor vigour are included in Supplementary Materials.
Using Bayesian multilevel regression modelling, we investigated whether
trial-by-trial predictions about the action-outcome contingencies, μ̂

kð Þ
2 ,

differentially influenced the timing of motor performance in the groups,
related to our motor vigour hypothesis. As in ref. [57], we hypothesised a
negative association between the strength of predictions, jμ̂ kð Þ

2 j, and
performance timing, suggesting that stronger expectations about reward
contingencies speed performance. We also hypothesised a greater
sensitivity to these predictions (steeper slope) in BD compared to HC.
See Supplementary Tables S2, S3 and the Supplementary Material, which
also includes control analyses on baseline motor performance.

MEG recording and preprocessing
MEG was performed using a 306-channel system (Elekta Neuromag
VectorView), with head movements tracked by a head position indicator
with four coils. Concurrently, ECG and EOG were recorded for MEG artefact
rejection. Recordings were sampled at 1000 Hz and filtered between
0.1–330 Hz. MEG preprocessing involved head movement correction, noise
reduction, and channel selection using standard methods ([63]; Elekta
Maxfilter software; Supplementary Material). MEG data was further
processed using MNE-python [64] (Python version 3.11.5) and custom

Fig. 1 Experimental paradigm and motor performance overview. A The initial phase of the task involved practicing two motor sequences,
each linked to a distinct fractal image. The red fractal corresponded to sequence 1 (seq1: 1-3-2-4), and the blue fractal to sequence 2 (seq2: 4-
1-3-2), with button presses producing sounds of varying pitches (E5, F5, G5, A5). B The stimulus-outcome mapping varied per participant
across each block of 160 trials, with the win probability shifting every 26–38 trials through different phases (blue fractal: p(win|seq2)= 0.9, 0.7,
0.1, 0.3, 0.5) and the red fractal (seq1) having reciprocal probabilities (p(win|seq1)= 1-p(win|seq2)). Across both blocks participants encountered
each contingency type twice. C Each trial presented the fractals on-screen, prompting participants to perform the sequence they believed
most likely to win, aiming to maximize rewards. On average, participants performed the sequences within 1561 (SEM 40) ms, displayed as ~
1600ms. Binary feedback on reward acquisition was displayed 1000 [±200] ms after sequence performance, visible for 1900 [ ± 100] ms,
indicating either ‘You earned 5 points’ or ‘You earned 0 points’. D Trial-by-trial performance tempo (ms) for the healthy control (HC, green) and
bipolar disorder (BD, purple) groups. Tempo, calculated as the mean inter-key press interval, is shown as trial-wise averages (black dots) with
95% confidence intervals represented by bars.
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Python scripts, lowpass filtered at 125 Hz, downsampled to 250 Hz, with a
notch filter applied at 50 and 100 Hz. Independent component analysis
(FastICA) removed eye and heart artifacts (3.3. ICs on average per
participant).

Source reconstruction of MEG signals
We reconstructed MEG signals using Linearly Constrained Minimum
Variance beamforming (LCMV [65]) in MNE-Python and individual
T1-MRI images for cortical divisions with Freesurfer 6.0 [66, 67],
http://surfer.nmr.mgh.harvard.edu/). We aligned MRI and MEG coordi-
nate systems, selected the Desikan-Killiany atlas for cortical parcellation (DK
[68]), and performed forward modelling with boundary element models [45].
We focused on alpha and beta frequency bands, band-pass filtering

signals between 1–40 Hz before LCMV beamforming. Theta-band
activity was also examined given its robust association with feedback

processing [42, 69], relevant for win/lose outcomes in our task. Gamma
frequency analysis followed a similar process (30–124 Hz band-pass
filter). Time courses were extracted for regions of interest (ROIs)
associated with decision-making under uncertainty and reward proces-
sing [43, 70–75], and linked with impairments in fronto-striatal reward
circuitry in refs. [5, 9, 76, 77]. These included the (1) ACC, (2) OFC,
including the ventromedial PFC, (3) dorsomedial PFC (dmPFC), (4)
dorsolateral PFC (dlPFC). We also included the (5) primary motor cortex
(M1) and (6) premotor cortex (PMC), to assess motor activity during
decision-making [78].
Our study’s ROIs comprised 16 bilateral labels in eight areas from the

DK atlas: (1) rostral and caudal ACC, (2) lateral and medial OFC
(including vmPFC), (3) superior frontal gyrus (dmPFC, and supplemen-
tary motor area, SMA), (4) rostral middle frontal gyrus (rMFG), (5)
precentral gyrus (M1), and (6) caudal MFG. Time series extraction
utilised the PCA flip method in MNE-Python. Although the ‘flip’ operator
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was not relevant for our time-frequency analysis, it was essential for
preparing the source-reconstructed time series for subsequent con-
nectivity analysis. See anatomical label references in Supplementary
Material.

Convolution modelling of time-frequency responses during
outcome processing
We used a validated convolution-modelling approach to analyse frequency-
domain amplitude changes related to belief updating and uncertainty
following outcome presentation [44, 46, 79]. Building on previous work [45],
this frequency-domain general linear model (GLM) included as parametric
regressors the unsigned pwPE updating beliefs on level 2 (representing
precision-weighted Bayesian surprise; the absolute value is preferred for the
binary HGF where sign on level 2 is arbitrary [59, 80]), and uncertainty
measures (σ2, σ3). It also included discrete regressors for win/lose outcomes
and error trials. To avoid regressor collinearity and potential GLM
misspecification, we excluded the level 3 pwPE [45, 46], due to its high linear
correlation with the unsigned pwPE on level 2 (Supplementary Materials).
The GLM was applied to concatenated epochs of source-reconstructed

data in our ROIs, using Morlet wavelets for time-frequency (TF) analysis in
4–100 Hz and within −0.5–1.8 s (Supplementary Fig. S3). We conducted
this analysis using SPM12 software (http://www.fil.ion.ucl.ac.uk/spm/),
adapting original code by ref. [81], as used in ref. [45], with additional
details available in the Supplementary Materials.

Frequency-resolved functional connectivity
To analyse directed functional connectivity between frequency-resolved
activity in our ROIs, we employed time-reversed Granger causality (TRGC
[82]; Supplementary Materials) as a robust metric for directed information
flow [83]. Following Pellegrini et al. [83], we applied TRGC in the frequency
domain to LCMV-based source-reconstructed time series from our 16 ROIs
after the PCA flip transformation.
Our analysis focused on between-group differences in the directionality of

information flow within the 8–30Hz range during the 0.5–1 s interval of
outcome processing for trials with large unsigned pwPEs updating beliefs at
level 2. We employed a median split of unsigned pwPE values, yielding
approximately 160 high-|pwPE| trials per participant. This frequency range was
selected based on evidence that beta-band functional connectivity from the
PFC effectively differentiates levels of predictability, exhibiting reduced values
during unpredictable trials [42]. By examining TRGC in trials with high
unsigned pwPE values, we anticipated a general decrease in beta-band TRGC
in HC, in parallel with alpha/beta amplitude suppression during belief
updating. We hypothesised that this pattern would be disrupted in BD. The
TRGC analysis was conducted using the ROIconnect plugin for EEGLAB [83],
adapted for our MNE-python LCMV outputs. See Supplementary Materials.

Statistical analysis
Between-group analyses of behavioural, computational, and TRGC-
derived variables used independent-sample permutation tests (5000
permutations, two-sided test) in MATLAB®. Within-subject analyses used

paired permutation tests (two-sided). We maintained an alpha
significance level at 0.05 and controlled false discovery rates (FDR) at
q= 0.05 for multiple tests. Non-parametric effect sizes are reported as
probability of superiority [84, 85] (Δ). Non-significant effects were
further evaluated using Bayes Factors (BF10), interpreted following
Wetzels and Wagenmakers [86].
Statistical analysis of source-level time-frequency images used cluster-

based permutation testing in the FieldTrip Toolbox [87, 88] (1000
permutations). We averaged TF activity across frequency bins within each
band (theta, alpha, beta; 60–100 Hz for gamma [45]). Temporal intervals of
interest for statistical analyses were selected based on previous research
[45, 46, 69]: 0.5–1.8 s for parametric regressors, 0.2–1 s for win/lose
regressors. We controlled the family-wise error rate (FWER) at 0.05 (two-
sided tests, effects considered if PFWER < 0.025). See Supplementary
Materials.

RESULTS
Demographics
BF analysis provided anecdotal evidence for a balanced distribu-
tion of age and sex across the groups. Furthermore, substantial to
anecdotal evidence indicated similar scores in mania, anxiety,
depression, and general cognitive functioning between groups.
Significant differences were observed exclusively in executive
functioning, with the BD group demonstrating lower performance.
See Table 1.

Altered reward-based decision dynamics in bipolar disorder
during euthymia
Euthymic BD participants exhibited lower win rates compared to
HC individuals (PFDR= 0.0014; Δ= 0.79, CI= [0.60, 0.90]; Fig. 2C).
They also demonstrated lower win-stay rates (PFDR= 0.0194; Δ =
0.71, CI = [0.55, 0.85]; Fig. 2D). This indicates that, after securing a
win on a trial, BD individuals were less likely to repeat the
sequence compared to HC. Their decision to switch strategies
post-loss was similar, based on anecdotal evidence (lose-shift rate:
P= 0.0966; BF10= 0.8905; Fig. 2D), and despite an overall
increased total switch rate in BD relative to HC (See details in
Supplementary Materials, including evidence for similar perfor-
mance error rates).
To test our computational hypotheses, we used the HGF

framework [27]. Bayesian model selection identified as the best
model overall, and for each group separately, a three-level HGF
with a response model in which the decisions depend on dynamic
trial-by-trial expectations of log-volatility, μ3

(k-1), and with ω2, ω3,
μ3

(0), and σ3
(0) as free model parameters (M3; Supplementary Table

S4). Simulation analyses confirmed good parameter recovery
(Supplementary Fig. S4).

Fig. 2 Computational model and changes in learning behaviour in euthymic bipolar patients. A Overview of the winning model: 3-level
binary categorical HGF perceptual model and coupled response model. In this model, agents infer true states about the current tendency of
the action-outcome probabilistic mapping on trial k, x2

(k), and its rate change or log-volatility, x3
(k). Beliefs about these true states are Gaussian

distributions parametrised by their mean (μ2
(k), μ3

(k)) and variance (σ2
(k), σ3

(k)), representing uncertainty or the inverse of precision. These mean
and precision variables are updated using one-step equations, with updates modulated by parameters such as κ, ω2, ω3. The response model
maps these beliefs to decisions based on the expectation of log-volatility from the previous trial (μ3

(k-1)), equivalent to the prediction for the
current trial (denoted by "^", Supplementary Materials). B Trajectories used in further analyses include the strength of predictions about

action-outcome contingencies, μ̂ kð Þ
2

���
��� (top), for assessing motor vigour effects; the trajectory of unsigned precision-weighted prediction errors

updating beliefs at level 2, labelled |ε2| here (centre), serving as a parametric regressor of source-reconstructed MEG activity, alongside
uncertainty regressors σ2, σ3; and log-volatility estimates, μ3 (bottom), averaged to test the hypothesis that BD participants overestimate
volatility in this setting. See expanded Supplementary Figs. S1 and S2. C Comparative win rates show BD participants (purple) were
significantly less successful in achieving rewarding outcomes than their healthy counterparts (green; lower win rate, PFDR= 0.0014,
permutation test). D BD patients exhibited a significantly higher tendency to switch after a win compared to the HC group (reduced win-stay
behaviour, PFDR= 0.0194). Nonetheless, lose-shift behaviour was similar across groups (P= 0.0966, non-significant; BF10= 0.8905; anecdotal
evidence against group differences). Mean and SEM rates shown in black dots for panels c and d represent performance by ideal Bayesian
observers with the same input as our participants (detailed in Supplementary Material), highlighting deviations from these ideal patterns in
our actual participants, which however did not account for the observed between-group differences. E–G Between-group comparisons of HGF
computational variables revealed that BD patients consistently overestimated environmental log-volatility (E; initially, μ3

(0): PFDR= 0.0142, and
throughout the task, F; mean μ3: PFDR= 0.0428), while showing an attenuation effect on tonic volatility, ω2 (G; significant reduction compared
to HC, PFDR= 0.0174).
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Using this model, we found that BD participants had higher
expectations of log-volatility initially and on average (μ3

(0):
PFDR= 0.0142; Δ= 0.70, CI = [0.55, 0.85]; trial-average μ3:
PFDR= 0.0428; Δ= 0.66, CI= [0.52, 0.82]; Fig. 2E, F). This suggests
increased stochasticity in their responses, as also indicated by a
positive correlation between log-volatility μ3 and the response
switch rate in the total sample and within each group separately
(Supplementary Fig. S5a). Parameter μ3 also exhibited a negative
correlation with the win-stay rate (Supplementary Fig. S5b;
Supplementary Materials), consistent with the finding that BD had
overestimation of μ3 and a lower win-stay rate than HC (Fig. 2D, F).
Additionally, BD participants exhibited lower tonic volatility, ω2,
compared to HCs (PFDR= 0.0174; Δ= 0.67, CI = [0.52, 0.82]; Fig. 2G),
suggesting a slower adjustment of beliefs about action-outcome
contingencies (see simulation analysis in Supplementary Fig. S6). No
significant between-group differences were found in ω3.
We additionally assessed the association between residual

symptoms in BD participants and relevant HGF variables. Prior work
suggests a positive correlation between volatility and trait anxiety
[45]. Accordingly, we analysed the relationship between trait anxiety
levels in BD and μ3, confirming a significant positive correlation
(Spearman’s rank correlation ρ= 0.46, 95% confidence interval, CI,
[0.04, 0.75], PFDR= 0.030). For mania scores, we hypothesised a
correlation with the precision weights term, σ2 (estimation
uncertainty), which scales the influence of PEs on belief updates
about action-outcome contingencies (Eq. (1)). We posited that higher
mania levels in BD might be associated with an enhanced reactivity
to PEs [21], speeding belief updating via σ2. Non-parametric
regression analyses revealed a negative association between mania
and σ2 (ρ=−0.46 [−0.75, −0.02], PFDR= 0.037). Conversely, we
considered that depression scores might be associated with
attenuated reward-based belief updating (lower σ2) yet found a
lack of association between these variables (ρ= 0.04 [−0.34, 0.41],
P= 0.836; BF10= 0.464, anecdotal evidence). See Supplementary
Fig. S7 and Supplementary Materials.
Control analyses revealed no medication effects (antipsychotics

and dopamine-blocking/modulating drugs) on these associations
or the main between-group computational results. See Supple-
mentary Table S5.

Expectation about the tendency of the reward probability
invigorates motor performance similarly in both groups
Bayesian multilevel modelling demonstrated that greater expecta-
tions about the tendency of the action-outcome probability
speeded performance tempo, but similarly in BD and HC groups
(Supplementary Table S6, Supplementary Figs. S8, S9). RT was not
modulated by trial-wise predictions, as in ref. [57].

Attenuated neural representation of precision-weighted
prediction errors updating beliefs about the action-outcome
contingencies in bipolar disorder
During the processing of unsigned pwPEs about the tendency of
action-outcome contingencies, HC and BD participants exhibited
suppression of 8–30 Hz activity across prefrontal, orbitofrontal,
cingulate, and motor regions (negative cluster within 0.5–0.9 s, post
relative to pre-outcome baseline, PFWER= 0.001, 0.024 in each
group; Fig. 3A, B). This suppression effect was less widespread in
BD, and the between-group difference was significant across the
caudal and rostral ACC, MFG, and OFC; as well as in the SFG and M1
(BD−HC positive cluster at 0.6–0.9 s, PFWER= 0.0130; Fig. 3C, D;
Supplementary Fig. S12). Alongside these 8–30 Hz effects, the BD
group exhibited significantly attenuated high gamma activity
(60–100 Hz) compared to HC (negative cluster, PFWER= 0.0090;
Fig. 3E). The latency of the gamma effect coincided with the timing
of the alpha-beta modulations, spanning 0.5–0.82 s, and over-
lapping within the aforementioned ROIs. No significant within-
subject changes in gamma activity to the unsigned pwPE regressor
were observed in either group (Supplementary Material).

In addition, for the uncertainty regressors σ2 and σ3, despite a
significant widespread increase in 8–30 Hz activity to estimation
uncertainty σ2 in HC, no significant between-group differences
were observed (Supplementary Fig. S13). Regarding theta
modulation by win and lose events, no significant differences
were observed between groups either. However, as expected,
both groups showed significant increases in theta activity from
baseline in the ACC, extending to prefrontal and orbitofrontal ROIs
(Supplementary Fig. S14).
In a post-hoc analysis, we investigated alpha and beta raw

power during inter-trial intervals. This aimed to determine
whether the reduced suppression in the 8–30 Hz range to the
pwPE regressor in BD indicated a limited dynamic range of activity
at these frequencies. Significantly lower power was observed in
BD compared to HC, yet exclusively at 13–20 Hz. This effect
emerged in most of the ROIs where the pwPE effect was
expressed (Supplementary Fig. S15; Supplementary Material).

Frequency-domain functional connectivity patterns during
unsigned pwPE processing
We next assessed group differences in the directionality of
information flow during outcome processing for trials with large
unsigned pwPEs updating beliefs at level 2. The BD cohort
exhibited significantly larger TRGC coefficients than HC partici-
pants from the cACC to the rMFG and rACC, as well as from the
SFG to the cMFG, in the beta frequency range (PFDR= 0.0032,
0.0064, 0.0064, respectively; Fig. 4). The effect from the cACC to
the rMFG extended to the alpha range (Fig. 4A, C). These findings
indicate stronger evidence for statistical dependencies between
sources in the identified directions for BD than HC in the beta
(alpha) range. Importantly, these between-group effects were not
attributable to differences in signal-to-noise ratio (Supplementary
Fig. S16).

DISCUSSION
Completing our reward-based motor decision-making task,
euthymic BD participants demonstrated lower win rates and a
decreased tendency to repeat rewarded actions than HC, despite
similar post-loss decision-making behaviour. Furthermore,
employing the HGF to probe the computational processes
underpinning decision-making, we found that BD participants
expected more environmental volatility than HC, leading to a
more stochastic mapping from beliefs to actions and higher
switch rates, particularly after wins. These findings align with
previous reports of heightened risk-taking and inconsistent
behaviour in BD [89, 90], mirroring elevated win-switch tendencies
in BD adolescents [91] and deficits in response reversal during
remission [3, 4]. This suggests that decisions in euthymic BD are
misaligned with their beliefs about recent successes, favouring
suboptimal actions due to an overestimation of environmental
changes, potentially overriding the influence of their beliefs about
action-outcome contingencies on decisions.
Despite expecting increased volatility, BD participants were

slower to adjust their expectations of action-outcome contingen-
cies compared to HC, with a lower tonic volatility parameter ω2

indicating slower adaptation. Similar results in HGF modelling for
paranoia [32] suggest that this propensity to anticipate change
without learning from it appropriately may be a common feature
across paranoia and BD. Additionally, despite similar residual
symptom levels in BD and HC, trait anxiety in BD correlated with
volatility estimates, aligning with findings that high trait anxiety
exacerbates difficulties in adapting to environmental changes
[45, 92].
Of relevance in BD, we observed that residual mania symptoms

negatively correlated with estimation uncertainty, σ2, which scales the
influence of PEs about action-outcomes on level-2 belief updating.
Therefore, those with higher mania scores struggled more with
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updating these predictions. Given that early relapse in BD has been
associated with a reduction in an empirical measure of belief
updating in response to positive feedback [13], future work could
investigate if computational metrics of belief updating like σ2
enhance prediction of clinical progression over behavioural indicators.

Further investigations should also explore the effect of comorbid
anxiety on volatility responses and relapse.
Despite deficits in decision-making and baseline executive

function in our BD sample, motor performance invigoration was
comparable to HC, indicating preserved motivational drive in

Fig. 3 Attenuated gamma increase and alpha-beta suppression during encoding unsigned precision-weighted prediction errors about
stimulus outcomes in bipolar disorder. A Source reconstruction of MEG signals was carried out with linearly constrained minimum norm
variance (LCMV) beamforming. The statistical analysis of convolution GLM results targeted brain regions implicated in decision-making under
uncertainty and reward processing [43, 71–75], associated with impairments in the fronto-striatal reward circuitry in BD [5, 9, 76, 77]: caudal
and rostral ACC, OFC (lateral and medial portions: lOFC, mOFC), SFG, caudal and rostral MFG, M1. Panel a illustrates these regions using
anatomical labels from the neuroanatomical Desikan-Killiany atlas (DK), utilised to parcellate the cerebral cortex of each participant based on
their individual T1-weighted MRI. B Left and centre panels display within-subject effects in time-frequency (TF) images representing
oscillatory amplitude responses to unsigned precision-weighted PEs about stimulus outcomes. TF images cover the 4–100 Hz range, including
theta (4–6 Hz), alpha (8–12 Hz), beta (14–30 Hz), and gamma (32–100 Hz) activity. The TF images were normalised by subtracting the mean and
dividing by standard deviation (SD) of the activity in the [−300, −50] ms pre-outcome interval, and thus are presented in SD units. Significant
within-subject effects are outlined in black for the HC (left) and BD (centre) groups (cluster-based permutation tests, negative cluster within
0.5–0.9 s post relative to pre-outcome baseline, PFWER= 0.001, 0.024 in each group, respectively. Although no within-subject effects in BD were
observed in the illustrated SFG label, there were effects across other ROIs). The right panel shows the between-group differences, significant in
a cluster-based permutation test (positive cluster within 8–30 Hz, PFWER= 0.0130; negative cluster within 60–100 Hz, PFWER= 0.0090; N= 21 BD
and 27 HC independent samples). The time point 0 s marks the onset of outcome presentation. C, D Panels Illustrate between-group effects in
the alpha (C) and beta (D) ranges, attributed to more pronounced alpha and beta suppression in HC than in BD participants during encoding
of unsigned pwPE on level 2. Effects are depicted in ROIs including the cACC, lOFC, SFG, M1. E Similar to panels C and D but in the gamma
range, showing that unsigned pwPE were associated with increases in TF amplitude in gamma range for HC participants, yet with gamma
attenuation in BD participants, and across a similar range of ROIs. Labels denote the rostral anterior cingulate cortex, rACC; caudal ACC, cACC;
superior frontal gyrus, SFG; lateral and medial orbitofrontal cortex, lOFC and mOFC; primary motor cortex, M1; caudal and rostral middle
frontal gyrus, cMFG, rMFC.
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euthymic BD. This contrasts with previous findings that rewards
and success amplify energy and effort in BD [4, 56]. Our Bayesian
analyses revealed a similar sensitivity of performance tempo to
expectations about reward contingencies in both groups, high-
lighting that the alterations in euthymic BD were confined to
decision-making processes.
On a neural level, convolution modelling on source-

reconstructed time-frequency activity revealed BD individuals had
attenuated neural representations of encoding unsigned pwPE—
updating beliefs about action-outcome contingencies—compared

to HC. This was marked by decreased gamma and increased alpha-
beta amplitude changes 0.5–0.9 s post-outcome across multiple
PFC, OFC, ACC, and motor regions. Spatial effects in anatomical PFC
labels corresponded with functional vmPFC, dmPFC, and dlPFC,
aligning with the neural correlates of decision-making under
uncertainty [43, 72–74], and BD-specific neural alterations during
reward processing [5, 9, 76, 77].
Recent rhythm-based formulations of predictive coding suggest

distinct roles of oscillatory activity at different frequencies in
conveying predictions and PE during perception [42, 93]. Alpha

Fig. 4 Time-reversed Granger causality during outcome processing for trials with large unsigned pwPEs updating beliefs at level 2.
A Comparison of TRGC estimates in the alpha band for healthy control participants (HC, left column), bipolar disorder patients (BD, centre),
and their difference (BD-HC, right column). The direction of information flow goes from rows to columns, with positive coefficients denoting
increased predictability in that direction, while negative coefficients denote the reverse (increased predictability from column to row).
Between-group statistical analysis was conducted in the above-diagonal values. Anatomical labels represent our regions of interest, bilaterally.
Labels are displayed for one hemisphere. The coloured pixel in the right panel indicates a significant between-group difference in TRGC
metric, after FDR control, due to increased evidence for TRGC from the caudal ACC to the rostral MFG in BD (PFDR= 0.0032). B Same as A but
for the beta band, illustrating a significantly larger TRGC metric in BD than HC from the cACC to the rMFG and rACC, as well as from the SGF to
the cMFG (PFDR= 0.0032, 0.0064, 0.0064, respectively). C Left: Illustration of the TRGC metric from cACC to the rMFG between 8–30 Hz for HC
(green line: mean and SEM as shaded area) and BD (purple line: mean and SEM). The horizontal black line denotes the frequency bins of
significant differences after FDR control, shown in A. Middle: Same as the left panel but for the TRGC metric from cACC to rACC, showing beta
effects. Right: Same as left and middle panels, exhibiting larger TRGC metric values in BD than HC from SGF to the cMFG in the beta range.
Labels: rACC, rostral anterior cingulate cortex; cACC, caudal ACC; cMFG, caudal medial frontal gyrus, rMFG, rostral MFG; lOFC, lateral
orbitofrontal cortex; mOFC, medial OFC; SFG, superior frontal gyrus; M1, primary motor cortex.
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and beta oscillations in deep cortical layers are implicated in
conveying top-down predictions, while gamma oscillations in
superficial layers are associated with the representation of PE,
particularly in sensory cortices and related areas [42, 93]. This
division has received empirical validation in both human and
animal studies, supporting generative models like predictive
coding [94–96] and hierarchical Bayesian inference [44, 97],
extending across perceptual and cognitive domains [43, 98]. In
models of hierarchical Bayesian inference, like the HGF, these
oscillatory activities may underpin pwPE encoding, demonstrating
an antithetical modulation of alpha/beta and gamma activity [44].
The observed dysregulation of these rhythms in conditions like
anxiety [45, 46] suggests a neurophysiological basis for symptoms
resulting from imbalances in belief updating.
Our findings indicate that in euthymic BD, exacerbated alpha

and beta activity may inhibit gamma activity during unsigned
pwPE encoding, potentially accounting for maladaptive belief
updating. This may reflect an under-reliance on using predic-
tions about action-outcome contingencies to optimise beha-
viour, in line with the computational results. Such rhythmic
changes match electrophysiological evidence of heightened
beta and reduced gamma activity in BD during oddball
processing [99, 100]. Moreover, using the TRGC to assess
directional influences in frequency-domain activity, we
observed stronger evidence for beta-band directional flow in
BD compared to HC, from cACC to rACC and rMFG and SFG to
cMFG during trials with larger unsigned pwPEs. TRGC values
increased in BD but decreased in HC, aligning with expectations
from primate research where beta-band Granger Causality in
the PFC decreases during unpredictable trials—a pattern
suggesting normative responses [42]. Thus, our study revealed
that euthymic BD was associated both with altered frequency-
domain amplitude changes and functional connectivity during
belief updating.
Insufficient GABAergic neurotransmission and excessive glutama-

tergic activity have been linked to electrophysiological alterations in
BD [101]. Considering that mood stabilisers for BD, such as valproate
and lithium, may have opposing effects on beta activity and
potentially on beta/gamma connectivity [101, 102], a promising
avenue for future research is to assess the modulation of alpha-beta
and gamma amplitude and connectivity during pwPE encoding in
BD as potential markers for tracking treatment response and for
diagnostic purposes. A key limitation of our study is the inclusion of
patients on diverse psychiatric medications, including mood
stabilisers, antipsychotics, and antidepressants. These treatments
impact various neurotransmitter systems like dopamine and
serotonin, affecting neural and behavioural aspects of decision-
making [50, 103]. The varied effects of these medications may have
influenced the magnitudes of the effects reported, a factor future
research should consider. However, control analyses showed that
medication types did not account for differences in the main or
exploratory computational analyses. Additionally, the study was not
preregistered, yet all analyses followed established pipelines from our
recent work involving similar tasks [45, 57], except for the TRGC
analysis. This was specifically designed based on similar Granger-
causality analyses that assess rhythm-based hypotheses of predictive
processing [42]. Lastly, our study did not contrast the HGF framework
with alternatives like Bayesian change-point models [104] or those
jointly estimating volatility and stochasticity [23]. Future research
would benefit from such comparisons to validate the computational
processes underlying belief updating alterations in BD. Integrating
dynamic models of mood in BD [16, 38, 39] with the HGF framework
in longitudinal studies will also be crucial for determining how
markers identified in euthymic BD—overestimation of volatility and
lower ω2—relate to changes across BD episodes, including depres-
sion, mania/hypomania, and mixed states. We tentatively propose
that overestimation of volatility may be a trait marker of BD, with a

stronger effect on reward or punishment learning depending on the
episode.
In sum, our findings highlight significant alterations in belief

updating among BD individuals during euthymia, when learning
reward-based probabilistic mappings in volatile environments,
without affecting the motivational aspects of motor execution.
Importantly, the identification of frequency-domain amplitude
and functional connectivity alterations underpinning these
computational maladaptations provides crucial insights for
enhancing relapse prediction and monitoring treatment response
in future research.
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