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Abstract
Cellular Automata (CA) are discrete, grid-based computational models where 
simple local rules generate complex, emergent patterns. Despite decades of 
research, the vast potential of CA remains largely unexplored, with countless 
possible algorithms as yet undiscovered. This work introduces novel methods 
for open-ended exploration of CA, expanding the scope of inquiry to reveal 
virtual phenomena that might otherwise be overlooked.

A core contribution of this thesis is Utomata, a new computational framework 
designed for exploration and study of a wide range of CA. Its versatility is 
demonstrated through case studies featuring both established and novel 
algorithms. Building on this foundation, the thesis presents Spatial Mapping, a 
high-level exploration method, accompanied by a custom online software 
implementation. This method enables systematic navigation of the 
combinatorial space of variations for any given algorithm.

Central to this thesis is the introduction and in-depth study of Type-U, a newly 
identified CA family. Using the frameworks and methods developed, this study 
reveals distinctive properties of Type-U algorithms and their combinatorial 
spaces, supported by qualitative analyses. The thesis concludes by discussing 
the broader implications of this open-ended approach for the study of virtual 
phenomena and outlining avenues for future research.

Keywords: Cellular Automata, Computational Arts, Artificial Life, Emergence, 
Algorithmic Exploration, Computational Modelling, Structure Synthesis, Procedural 
Content Generation, Abstraction, Functional Programming.
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1.Introduction

1.1. A Total Library

“The impious maintain that nonsense is normal in the library and that 

the reasonable (and even humble and pure coherence) is an almost 

miraculous exception.” 

[1] 

The Library of Babel by Jorge Luis Borges [1] describes a vast physical library 
that encompasses the assortment of all possible books. This fictional short story 
from 1941 is narrated by one of countless librarians who wander the library’s 
endless halls in a literal search for meaning. When attempting to imagine such 
a vast combinatorial space, one is immediately struck with both a sense of awe 
and cosmic terror. 1 A total library would hold the complete documentation of 
everything that has ever happened, told by all possible authors and in all 
possible genres. It would also hold the complete documentation of everything 
that did NOT happen, as well as all things that cannot happen, but can be 
described. However, since this particular library is randomly sorted, all of these 
stories, along with every other coherent utterance will forever be lost in a 
virtually endless ocean of books containing nothing but utter nonsense. The 
frightening scarcity of meaning in such a space can be experienced by visiting 
Jonathan Basile’s 2015 online recreation of the Library [2], which offers a poetic 
and daunting glimpse into this literary abyss [3].

The Laboratory of Babel is a thought experiment envisioning a total library of 
Cellular Automata (CA) algorithms. CA are among the earliest computational 
models to exhibit nonlinear dynamics [4], [5]. They typically consist of a finite 
grid of cells, each assigned a numerical value. The cells continuously update 
their values based on the states of their neighbouring cells, leading to complex 
interactions that can give rise to higher-order forms and processes. The 
inherently chaotic and nonlinear nature of CA renders their behaviour highly 
unpredictable, and the range of phenomena they can produce remains largely 
unknown.

Similar to Borges’ library, the Laboratory of Babel would follow strict rules for 
algorithm formulation; like books, the number of possible, valid, and finite 
algorithms would be unfathomable. It is therefore not unreasonable to assume 
that almost all will result in utterly incoherent or vacant behaviour. Yet, within 
this endless ocean of nonsensical computational processes, there must also be 
countless “miraculous exceptions” taking the form of persistent, complex 
structures that exhibit properties unlike any ever observed in the physical 
realm. Over the past 80 years of research, many CA algorithms have already 
been articulated and studied, but due to their sheer number, most will never be. 
Yet crucially, unlike the Library of Babel, this laboratory need not be randomly 
sorted.

1.2. Open-Ended Exploration
In 1673, Antonie Van Leeuwenhoek created a small spherical lens using a 
simple, yet novel technique of his own design. This new instrument allowed him 
to observe a microbial life form for the first time and, in-effect, to become the 
“father of microbiology” [6]. Leeuwenhoek had not intended to discover any life 

Figure 1. 
Synthesis panel in Utomata Lab, 
featuring a  4th order Type-U algorithm.

1 A term popularised by H.P. Lovecraft, 
describing the fear of the unknown vastness 
and indifferent universe, highlighting 
humanity's insignificance.
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forms. He was a fabric tradesman and lens hobbyist who wanted to obtain a 
closer look at his merchandise; his work may be regarded as exploratory rather 
than scientific, especially considering that until that point in time, the scientific 
study of microbial life did not exist. 

Exploration and scientific enquiry are tightly coupled but they do not 
necessarily overlap. If science is concerned with explaining and predicting 
observable phenomena, then exploration is concerned with obtaining new 
phenomena to observe. Both a scientist and an explorer employ speculative 
thinking, but the former strives to minimise its scope in order to derive new 
knowledge about a particular phenomenon, whereas the latter often strives to 
widen it in order to discover as-yet-unknown phenomena.

The advent of computational modelling in the 20th century has brought about a 
revolutionary shift in science by providing a level of insight and predictive 
capability to the study of nonlinear systems that would have otherwise been 
unattainable [7]. The process of explaining and predicting the behaviour of 
physical systems has become so influential that it is often synonymous with the 
process of implementing nonlinear systems in software. Consequently, 
computational modelling is predominantly perceived as a representational 
endeavour, as evidenced by its name. 

For example, the utilisation of CA as instruments for scientific modelling has 
been particularly fruitful in studying various natural phenomena, including 
physical [8], biological [9], and chemical dynamics [10], [11]. This application has 
provided valuable insights and predictions for real-world phenomena in 
situations where direct observation or analytical descriptions were impossible 
or impractical. While such algorithms have also been extensively incorporated 
into creative media, many of them were initially devised as scientific 
instruments: either as simulations of physical systems or as tools for solving 
well-defined problems. Consequently, it can be argued that the exploration of CA 
algorithms, like many other computational models, has been primarily guided 
by their instrumental value.

The field of Artificial Life (AL), initiated by Christopher G. Langton in 1987 as the 
study of “life-as-it-could-be” [12], serves as a conceptual foundation for this 
research project. Langton envisioned AL as a synthetic approach to biology, 
whereby living systems would be assembled rather than taken apart. As with 
many interdisciplinary fields of research, AL has struggled to achieve a 
sustainable balance between empowering creativity and maintaining scientific 
rigour [13]. Early work in AL has largely focused on attempts to synthesise novel 
phenomena, rather than to analyse observable phenomena. It thus stands out as 
a notable exception to the aforementioned traditional view of computational 
modelling.

Within AL there are two prominent schools of thought: proponents of strong-AL, 
including Langton, contend that life is a property of form, not matter. 
Consequently, they assert that living things may literally be realised within 
virtual environments. On the other hand, proponents of weak-AL argue that 
living things can, at best, be simulated. While this distinction has been a source 
of great debate from the very first days of AL [14], both schools of thought 
ultimately agree on and employ a synthetic approach to biology — a scientific 
study of living systems through the use of computing technology.

While this work draws significant inspiration from AL in regards to exploration 
of emergent phenomena, this project aligns with neither the strong nor weak 
school of thought. Instead, it only argues that a non-instrumentalist approach 
may be advantageous for open-ended exploration — a research approach that 

Figure 2. 
Type-U algorithm in Utomata Editor.



LABORATORY OF BABEL

17

encourages continuous and dynamic investigation of systems without 
predefined goals or endpoints, enabling the discovery of novel phenomena. By 
diverging from the scientific-instrumentalist approach, this thesis seeks to shed 
light on potential possibilities and implications associated with the exploration 
of novel virtual phenomena in the spirit of strong-AL, while acknowledging and 
accepting the theoretical limitations put forward by weak-AL.

According to this approach, the principal divide between the strong and weak 
schools of thought does not revolve around whether or not living systems can 
literally be realised in software. Instead, it focuses on the exploratory potential 
of computational modelling. This reframing also suggests a compromise: 
proponents of strong-AL would only need to concede that instances of virtual 
phenomena may not be fully realised as living entities, while proponents of 
weak-AL would only need to acknowledge that they are nonetheless worthy of 
exploration, not only as scientific models but as potentially valuable subject 
matter in and of itself.

The willingness to sever the well-established bond between virtual and physical 
phenomena does not negate the weak-AL position, nor does it necessarily argue 
for the strong-AL position. It simply states that the act of implementing 
emergent systems within virtual environments can serve both for the simulation 
of some objects and the realisation of others. By adopting this perspective, one 
can reclaim the notion of “life as it could be” — not as a scientific hypothesis but 
as an act of creative discovery; the acquisition of new phenomena to observe and 
study; a class of emergent systems that, in historical terms, has just recently 
become within reach through advancements in computing technology.

1.3. Emergent Virtual Structures
Existing terms such as “model” and “simulation” have historically been rooted 
in the scientific domain and inherently imply a representational function. 
Consequently, the use of such terms may inadvertently perpetuate a bias that 
values them primarily for their ability to imitate physical reality. Thus a study of 
explicitly non-representational computational models presents a conceptual 
challenge. This thesis therefore advocates for the use of alternative terminology, 
referring to a broad class of software based systems of interacting components 
as emergent virtual structures. This, in order to avoid characterising its subject 
matter as derivative objects of representation.

It is important to emphasise that this does not constitute an argument against 
representational modelling in general. Rather, it suggests that adopting this 
concept may be beneficial for open-ended exploration. By shifting the focus 
away from familiar constructs and functionality, this approach sets out to 
explore a deliberately vast and uncharted space of plausible forms and 
processes, considering these as something to be discovered rather than created. 
This approach suggests that exploration can be guided by observation and 
intuition, employing a methodology that shares some commonalities with 
exploration and cultivation of physical natural phenomena.

The concept of emergent virtual structures is not intended to be novel, nor does 
it constitute a contribution in itself. Rather, it serves as a useful framework for 
referring to the subject matter this project aims to explore. By employing well-
accepted terms, this thesis aims to avoid contention and provide clarity. As such, 
“emergence” refers to the concept of weak emergence, as articulated by Bedau 
[15]. Weak emergence explicitly pertains to a class of nonlinear systems whose 
emergent properties can only be fully understood or predicted through 
simulation. By adopting a simulation-based concept of emergence, this thesis 

Figure 3. 
Compound glider formations in Red Nose 
Hexagliders.
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appropriately narrows the scope of its subject matter, while avoiding any 
contentious issues associated with strong-AL.

In regards to “Virtuality”, this thesis embraces a philosophical view that 
considers the virtual realm as a vast, uncharted domain of potential 
phenomena, and is driven by an urge to explore it without bias or preconceived 
notions. Virtuality can be characterised by its opposition to the actual, rather 
than the real. It denotes immaterial yet genuinely existent constructs [16, p. 
208]. Virtual entities can possess concrete attributes such as topology, 
persistence, and interaction, they exhibit the capacity to undergo changes and 
respond to external influences. Recognising that a study of virtual phenomena 
that disassociates it from physical reality may be perceived as non-scientific, 
this thesis willingly relinquishes this conventional scientific stance. Instead, it 
focuses on open-ended exploration as its primary research aim.

Lastly, Frigg’s concept of a “structure” [17] offers a useful framework for this 
thesis’s non-representational approach. Defined by its components and their 
relationships to one another, a structure does not inherently represent a real-
world system unless explicitly supplemented with intent to do so. The use of the 
term structure, rather than model, emphasises its intrinsic, rather than 
instrumental value, aiming to detach the act of exploration from some of the 
constraints of traditional approaches to computational and scientific modelling.

The realm of possible emergent virtual structures is unfathomably large. By any 
reasonable means, it can be assumed to consist almost entirely of trivial, 
mundane, cacophonous, or otherwise seemingly ineffectual formations. 
Nonetheless, at the heart of this thesis lies a contention that this realm must also 
encompass countless forms and processes, the likes of which have never been 
observed in the physical world. The sheer magnitude of this search space and 
the unique attributes of this subject matter should provide more than enough 
motivation for it to be further explored.

However, this approach presents a number of formidable challenges: In lack of a 
predefined target system or a well-defined problem, there may be little to guide 
an explorer towards well-defined outcomes. Moreover, since findings are not 
necessarily meant to serve a particular purpose, there is no inherent way to 
evaluate their potential value, as traditional metrics based on predictive or 
explanatory power may not apply.  An additional challenge lies in computational 
complexity, which is typically significant in large systems of interacting 
components. The inherently unpredictable nature of such systems necessitates 
that they be implemented and run, potentially for sustained periods of time, in 
order for observation to even take place, making classification, autonomous 
evaluation or taxonomical studies largely intractable.

1.4. Methodology
A central premise of this thesis posits that open-ended explorations of virtual 
phenomena can greatly benefit from the active involvement of artists, designers, 
hobbyists, and multidisciplinary practitioners. These individuals are regarded 
as the primary target audience: creative practitioners who may be motivated to 
explore the vast and overwhelmingly barren space of emergent virtual 
structures in search of miraculous exceptions.

This thesis therefore relies on qualitative evaluations of algorithms and their 
outputs, considering their aesthetic merit, novelty, complexity, rarity and 
capacity for human interaction. This aims to reduce reliance on established 
scientific concepts, which are often driven by an instrumentalist perspective, 
thus bridging the knowledge gap for artists and designers who may be 
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unfamiliar with advanced mathematics, computer science, and natural science. 
This approach aims to make this field of research more accessible to these 
audiences so that they may, in turn, introduce innovation, leading to further 
discovery of novel phenomena. 

A scientific approach to exploration may offer appropriate theories and tools for 
studying emergent structures. However, scientific methodologies are typically 
concerned with describing observable physical phenomena. On the other hand, 
an artistic approach may offer conceptual tools more suited for open-ended 
exploration, yet these are typically under-equipped to handle the theoretical and 
technical rigour involved with the study of nonlinear systems.

This project seeks to bridge the methodological gap between computational 
modelling and artistic exploration in the context of the study of emergent virtual 
structures. It identifies an opportunity to explore novel forms and processes not 
just as instruments, descriptions or fabrications, but as cultural artefacts 
imbued with intrinsic value — a characterisation more commonly associated 
with works of art. The underlying contention is that such artefacts are not 
inherently rare. Rather, existing concepts, tools and methods have been 
primarily developed towards their utilisation as instruments and are thus not 
optimised for their exploration. 

Research Aims

This thesis aims to propose and validate tools and methods specifically designed 
for open-ended exploration of CA, demonstrating their effectiveness through the 
discovery of novel algorithms. It introduces an innovative computational 
framework for navigating large combinatorial spaces of algorithmic variants, 
providing insights and methods for distinguishing findings of interest from their 
surrounding overwhelming noise. By adopting a non-instrumentalist approach 
to exploration, this work aims to uncover significant untapped potential for new 
algorithms and behaviours, showcasing how emergent forms and processes 
within virtual environments can be explored and evaluated independently of 
physical metaphor or function.

Research Objectives

1. Develop and demonstrate a new computational framework, called 
Utomata, specifically designed for exploration of CA algorithms.

2. Introduce and employ a high-level method for navigating large 
combinatorial spaces of algorithms, termed Spatial Mapping.

3. Demonstrate the effectiveness of these tools through exploratory 
studies of two new families of algorithms, called Type-C and  Type-U.

4. Provide qualitative evaluations of novel findings.

1.5. Structure of This Thesis
Chapter 2 reviews foundational topics and key terminology relevant to this 
research. It explores the relationship between computational modelling and 
scientific inquiry, focusing on implications to the study nonlinear systems. It 
provides an introduction to the fields of AL and CA, reviewing notable 
milestones and algorithms. The chapter also reviews the work of practitioners 
who engage in exploratory programming and examines various programming 
environments suited for this purpose.
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Chapter 3 introduces a new computational framework, Utomata, designed for 
the exploration and study of a wide range of CA algorithms. Utomata includes a 
custom programming syntax and a hardware-accelerated implementation, 
enabling live-coding of CA algorithms as nested algebraic statements. The 
chapter demonstrates Utomata’s capabilities through examples of well-
established algorithms, highlighting its ease of use for mutating algorithms and 
exploring their outputs interactively.

Chapter 4 showcases the use of Utomata for open-ended exploration through 
direct (low-level) algorithm manipulation. It discusses the application of 
functional programming, interactive parameter tweaking, and field 
parameterisation as methods for navigating the space of algorithmic  variants. 
The chapter presents case studies of novel CA algorithms, offering initial 
qualitative characterisations of their behaviours.

Chapter 5 introduces Spatial Mapping, a novel high-level approach to CA 
exploration. Spatial Mapping involves constructing a combinatorial space of 
permutations of any given algorithm, and mapping them onto a large two-
dimensional field. Accompanied by an online software implementation, this 
method facilitates exploration of vast landscapes of possible CA algorithms, 
potentially uncovering novel phenomena. The chapter presents Spatial 
Mappings of previously discussed algorithms, revealing numerous novel 
variations.

Chapter 6 introduces a new family of CA algorithms, termed Type-U. It provides 
a rigorous definition of Type-U algorithms and explores their variations through 
Spatial Mapping. The chapter offers initial classifications and qualitative 
accounts of Type-U’s combinatorial spaces, as well as their characteristic 
phenotypic and genotypic properties. 

Chapter 7 presents a collection of noteworthy Type-U specimens, accompanied 
by qualitative characterisations of their behaviours.

Chapter 8 discusses the main contributions of this thesis and their potential 
implications for open-ended exploration of CA, as well as other computational 
models and algorithmic domains. It also suggests possible future studies that 
could build upon or extend this work.
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2.Background
This chapter offers an introduction to computational modelling and Cellular 
Automata (CA) in the context of artificial life (AL). Its principal aim is to establish 
the necessary conceptual and technical foundations for the tools, methods and 
explorations detailed in the following chapters.

Section 2.1 establishes computational models as software implementations that 
can simulate the behaviour of nonlinear systems — systems featuring a large 
number of interacting components. The concept of emergence is introduced 
and the distinction between simulation and realisation is discussed in the 
context of the strong-weak debate in artificial life. A further distinction is made 
in regards to the attribution of value with which computational models are 
imbued. This discussion draws the focus away from whether or not living 
systems can literally be realised in software, instead arguing for the merit of 
open ended exploration of emergent virtual phenomena. It refers to a broad 
class of non representational computational models as emergent virtual 
structures, setting the stage for the non-instrumentalist approach to exploration 
advocated by this thesis. 

Section 2.2 provides an introduction to CA, which includes historical context, 
key terminology, as well as influential algorithms and applications. This section 
highlights the use of CA as an abstract model of nonlinear dynamical systems, 
making the case for exploration of CA beyond traditional, instrumentalist uses.
Section 2.3 focuses on explorations of CA and other computational models, 
highlighting notable practitioners in both the sciences and the arts. This section 
serves to illustrate the interdisciplinary nature of exploration of emergent 
virtual phenomena. Additionally, it offers an up to date review of software tools 
and frameworks which can be used for open ended exploration, thereby 
bridging the gap between theory and practice.

Through this structure, the chapter aims to contextualise CA research within the 
broader context of open-ended exploration of virtual phenomena, which is 
closely related to the field of AL. Subsequent chapters build upon this foundation 
by introducing novel methods for exploration of CA, as well as demonstrating 
their effectiveness through the introduction and preliminary study of novel CA 
algorithms. 

2.1. Computational Modelling

2.1.1 Nonlinear Problems

Scientists of the Enlightenment saw the natural world as a great machine that 
operates according to the laws of Newtonian mechanics. This approach was 
driven both metaphorically and in-effect by the Industrial Revolution. However, 
by the early 20th century, this mechanistic worldview was becoming difficult to 
reconcile with new research involving systems featuring a large number of 
interacting components [18], [19]. The problem was that, unlike a machine, such 
systems tend to lose their defining characteristics when taken apart for 
examination and analysis. For example, when studying the behaviour of an ant 
colony, separating the ants from each other and studying them in isolation 
effectively destroys the primary subject of research — the colony, along with 
most of its defining characteristics.
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A fundamental property of such systems is called nonlinearity. A system is said to 
be nonlinear if its behaviour does not follow the superposition principle, 1 which 
states that the combined effect of two or more independent systems can be 
represented by the sum of their individual effects. For instance, when 
considering a parallel arrangement of springs or struts, the total forces exerted 
can be computed by summing the forces acting on each element separately. 
However, in nonlinear systems, the output does not exhibit a proportional 
relationship with the input, and the response of each component is not 
independent. Nonlinear systems often exhibit intricate interactions and 
interdependencies between their components, leading to phenomena such as 
feedback loops or amplification that cannot be explained by superimposing the 
behaviour of individual parts.

Nonlinear systems can be precisely described by analytical methods such as 
partial differential equations, providing a well-defined framework for 
understanding their dynamics. However, in practical terms, these equations are 
often unsolvable due to the presence of numerous open variables representing 
the components of the system. Thus, while an analytical approach can 
effectively capture the general properties of nonlinear systems, it falls short in 
accurately predicting their behaviour. 2 Since the ability to make accurate 
predictions is a fundamental objective of scientific research, the traditional 
mechanistic, analytical worldview of the 19th century proved inadequate when 
studying a wide range of observable phenomena. By the 1940s, it became 
increasingly evident that nonlinearity is not the exception but the rule, as 
famously noted by Stanislav Ulam, “Using a term like nonlinear science is like 
referring to the bulk of zoology as the study of non-elephant animals”. [21]

To obtain an accurate prediction of a nonlinear system, one must employ a 
numerical method that involves iteratively computing the operations of each 
component in the system — step by step. Performing such computations 
manually is extremely impractical, even for systems with a small number of 
components. Therefore, some analytical models of nonlinear systems resort to 
approximating them as linear systems. For example, Hooke’s law, which 
describes a linear relationship between the force exerted by a spring and its 
displacement from equilibrium, is only accurate for small displacements. By 
simplifying the nonlinear relationships into linear approximations, these 
models attempt to capture the essential dynamics of the system. However, such 
approximations inherently introduce inaccuracies, which in turn greatly 
impede the quality of the predicted behaviour.

2.1.2 Synthetic Solutions

Computers possess a distinct advantage over humans when it comes to solving 
nonlinear problems: their ability to rapidly carry out large sequences of 
numerical operations step by step. While computational modelling has long 
been applied to linear systems — such as in missile trajectories, graphics 
pipelines, and sorting algorithms — its capacity to iteratively calculate the 
behaviour of each component in a nonlinear system makes it uniquely suited for 
addressing the complexities of nonlinear dynamics. This approach results in a 
synthetic solution that can be highly effective in predicting the behaviour of 
nonlinear dynamical systems across various scales and disciplines. It is crucial 
to note that this does not constitute an analytical solution, nor does it offer 
analytical insight in the traditional sense.

Nevertheless, this computational approach has been employed by many of the 
pioneers of computer science towards the study of nonlinear phenomena across 
a wide range of disciplines. These included mathematical physics [22], self-
replication [5], biochemistry [23], intelligence  [24], neuroscience [25], evolution 

1 According to the superposition principle 
[20], if the following equality holds true the 
system is said to be linear: 
 f(a x + b y) = a f(x) + b f(y) 

2 Though it should be noted that physics has 
achieved great success in studying nonlinear 
systems by focusing on cases where the 
nonlinear component is a small but 
important correction to the underlying 
linearity. Techniques such as perturbation 
theory allow for continual refinement of 
these approximations, improving the 
accuracy of predictions. 
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[26]  and homeostasis [27].  Thus, it can be argued that computational modelling 
emerged as a natural extension of the scientific study of nonlinear systems. The 
evolution of computing technology has exhibited a close correlation with the 
growing understanding of nonlinearity, with discoveries in one field often 
rapidly influencing developments in the other [28].

The complexities inherent in nonlinear systems, characterised by their intricate 
interdependencies and unpredictable behaviour, necessitate research practices 
that transcend traditional analytical methods. Computational modelling offers a 
way to leverage the power of digital computing to iteratively simulate the 
behaviour of large systems of interacting components. While this method is not 
perfect, as it does not offer analytical insight and remains highly dependent on 
initial conditions, it provides a practical approach to understanding these 
systems. It offers more precise predictions and deeper insights into phenomena 
that would otherwise be unmanageable through manual calculations or linear 
approximations. By enacting the dynamics of such systems, computational 
models serve as vital tools in bridging the gap between theoretical 
understanding and practical application, offering scientists and researchers 
unprecedented means to study and comprehend nonlinear systems across a 
wide range of disciplines.

2.1.3 Emergence

Emergence is intricately linked to nonlinear systems and is fundamental in 
understanding how complex behaviours arise from simpler interactions. In 
nonlinear systems, the global state of the system is often driven by local, lower-
level interactions between its constituent parts. This bottom-up progression, 
where lower-level interactions result in higher-level behaviour, sets emergent 
systems apart from broader concepts like complexity or nonlinearity.

Early references to emergence, traced to 19th century philosophy, describe 
systems as being more than the sum of their parts [29]. These principles evolved 
with early self-organisation theories [18], which consider the interplay between 
the whole and its parts. Emergent systems exhibit properties or behaviours not 
evident in individual components, making global patterns difficult to predict by 
observing local interactions [30]. Darley argues that even with perfect 
knowledge about an emergent system, predicting its behaviour can be 
challenging, pointing to simulation as the best way to predict its behaviour [31].

Within the realm of emergent systems, Bedau’s concept of weak emergence holds 
notable relevance [15]. According to Bedau, a weakly emergent system is one 
whose global properties can be deduced from its underlying local dynamics, 
albeit exclusively through simulation. In contrast, real and phsyical emergent 
systems possess irreducible global properties and therefore are said to feature 
strong emergence. Subsequent definitions include a grammar based set-theoretic 
approach to formalising emergence [32], a mathematical characterisation of 
strong emergence [33] and a correlation between emergence and natural 
selection [34]. Thoren and Gerlee characterise artificial life as “a search for the 
surprising” [35] and note that emergence is commonly used as a label for the 
formation of “surprising” higher order structures. 

2.1.4 Simulation vs. Realisation

“There is nothing in its charter that restricts biology to the study of 

carbon-based life; it is simply that this is the only kind of life that has 

been available to study.” 

[12, p. 2]



24

Background

The first workshop on Artificial Life (AL) was held in Los Alamos, New Mexico in 
1987. It was initiated by Christopher G. Langton and had brought together an 
interdisciplinary group of researchers who shared a common interest in the 
“simulation and synthesis of living systems”. The workshop’s proceedings [12, 
p.2] commence with a comprehensive essay by Langton, simply titled Artificial 
Life, introducing a new field of research that constitutes a synthetic approach to 
biology, by which living systems would be assembled, rather than taken apart. 3

According to Langton’s vision, AL would be dedicated to the study of life-as-it-
could-be, complementing biology’s study of life-as-we-know-it by synthesising 
novel instances of living systems in silico — in the form of computer programs. 4

The notion of artificial living systems was not an entirely new idea at the time. 
Langton cites the much earlier work of John Von Neumann [12, p. 13] and Alan 
Turing [12, p. 12] as the foundations of this newly established discipline. 
Moreover, computational modelling has, by then, been used extensively as a 
scientific instrument for simulating biological systems. Even the attribution of 
“life-ness” had been previously ascribed to computer programs [36]. 
Nonetheless, this vision had sparked overwhelming interest in the realisation of 
life-like processes in silico. 

By the early 1990s, AL had become an active field of research, attracting 
scientists, designers, artists and engineers from across disciplines towards 
dedicated international conferences and publications. Although the work of 
Langton and his colleagues was tightly coupled with physics, chemistry, biology, 
computer science and mathematics, early AL research was characterised by a 
unique approach, whereby computational modelling was no longer regarded as 
an instrument for describing and predicting observed physical phenomena — 
but as a medium for realisation of novel virtual phenomena. 

“There is nothing wrong with a good illusion, as long as it does not 

claim it is reality.”   

[14, p. 74]

The above distinction between simulation and realisation was put forward by 
Pattee at the very first AL workshop in 1987, effectively foreshadowing one of the 
core debates in the field. Pattee argued that a simulation is a representation of 
an existing system, whereas a realisation is a “literal, substantive, functional 
device” [14]. Not a derivative object or representation, but an object by its own 
regard. From a scientific point of view, the purpose of a computational model is 
to approximate the behaviour of a particular observable phenomenon. This, in 
an effort to obtain new knowledge about a system in question in situations where 
an analytical model is either impossible or impractical. Thus the assertion that 
living systems can be directly implemented in software posed a substantial 
conceptual challenge and has faced significant controversy.

Biology lacks a unified theory of living systems, with even the classification of 
edge cases such as viruses [37] and super-organisms [38] remaining in dispute. 
Moreover, widely accepted definitions of life often include physical properties, 
such as maintaining metabolic processes or being composed of living cells [39]. 
As a result, research projects seeking to create virtual living entities tend to 
focus on those rooted in consensus, rather than exploring the boundaries and 
edge cases of biology. The OpenWorm project [40], which strives to simulate a 
complete multicellular organism, is a notable example of this approach. While 
such projects offer valuable contributions to science, they seem to fall short of 
being considered by the scientific community as creating actual living systems. 
According to this perspective, computational models, no matter how precise, are 
necessarily derivative objects and therefor never the real thing.

4 The term “in silico” was originally coined 
by Langton [12] and pertains to biological 
experiments conducted exclusively through 
computational means. It contrasts with “in-
vivo”, “in vitro”, and “in situ” approaches. 

3 The term Artificial Life may also pertain 
to work involving wetware and hardware 
implementations. However, since this thesis 
is strictly concerned with software, unless 
otherwise stated  all mentions of AL refer to 
software implementations as such.
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Langton’s own vision of a synthetic approach to biology was seen by many in the 
scientific community as reckless miss-use or even misunderstanding of what a 
computational model actually is [13]. Critics of AL essentially viewed it as the act 
of taking a tool for describing physical phenomena and deeming it capable of 
creating it. Bullock discusses this conflict in the context of artificial worlds. He 
refers to artificial life as a practice which deliberately courts insecurity by 
focusing on the notion of life as it could be [41]. In a 1995 article, John Horgan 
highlights Langton’s perspective:

“Langton, surprisingly, seems to accept the possibility that artificial life 

might not achieve the rigour of more old-fashioned research. Science, 

he suggests, may become less linear and more poetic in the future. 

’Poetry is a very nonlinear use of language, where the meaning is more 

than just the sum of the parts,’ Langton explains. ‘I just have the feeling 

that culturally there’s going to be more of something like poetry in the 

future of science.’” 

[13]

Horgan refers to AL as a “fact free science”, a critique that is not unreasonable 
considering Langton’s stated goals. If scientific inquiry is grounded upon 
observation of physical subject matter, it should follow that the scientific 
legitimacy of research that deliberately avoids this would come into question. 
Langton’s body of published work is surprisingly sparse considering his 
attributed stature as the father of AL [13]. He typically makes no direct attempts 
to imitate, model or represent any particular life form and his language involves 
cautious use of biological metaphor. Instead, he studies the general properties of 
processes associated with living systems such as self-organisation and self-
replication [42], as well as more abstract properties such as phase transitions 
between order and chaos [43]. 

2.1.5 Strong vs. Weak

The question of whether or not life can indeed be realised in software took form 
as the field split into two prominent schools of thought, otherwise known as the  
strong-weak debate in AL. It embodies contrasting interpretations of the term 
“artificial”, as well as inherent challenges in defining “life”. While proponents of 
both schools of thought employ computational modelling techniques to 
synthesise emergent phenomena, it is the attribution of life-like qualities to 
these synthetic objects that necessitates a departure from the traditional 
scientific framework, whereby a model cannot be regarded as creating the very 
thing it aims to model.

The weak position accepts the role of computational modelling as a scientific 
instrument, which means it must categorically deny any instance of virtual 
phenomena from being considered truly alive, on the basis that it is merely a 
model or simulation. On the other hand, the strong position contends that 
virtual phenomena may exhibit life-like behaviours. Therefore, it follows that a 
computational model can indeed become more than a scientific instrument. 
This dichotomy can be exemplified through the approaches of Langton, the 
founding editor of MIT’s Artificial Life Journal, and Mark A. Bedau, a prominent 
critic of strong-AL, who assumed Langton’s editorial position in 1998.

As a proponent of strong-AL, Langton considers artificial entities as “human-
made” creations. This view does not impose a clear separation between natural 
and artificial, therefore permitting the possibility of living systems to be created 
by artificial means. He further asserts that life is a property of form — not matter 
— and can therefore exist within artificial, virtual  environments. At least in 
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theory. Langton’s published body of work typically downplays any discussion on 
practical applications; he posits open questions about his subject matter and 
hypothesises over potential future applications, but the underlying motivation 
seems grounded upon the contention that virtual living systems are indeed 
possible and that this alone is reason enough to study and explore them. 

Bedau, a vocal proponent of weak-AL, considers an artificial construct to mean 
a derivative object. He asserts that such objects cannot capture the complexity 
and essential qualities of natural life forms, or rather that life emerges from 
specific arrangements of matter and processes that cannot be reproduced 
through artificial means. Bedau argues that while computational models may 
offer valuable insights by simulating various aspects of living systems, they 
ultimately fall short in regards to creating the phenomena itself. Bedau even 
goes as far as to consider physicality as one of the innate properties of living 
systems [44], suggesting that the notion of virtual life may not be feasible to 
begin with.

Bedau is motivated by the urge to understand what life is [45]. He contends that 
software is and would continue to be an invaluable tool in obtaining an 
increasingly better understanding of living systems through simulation, as well 
as in offering novel solutions to some of humanity’s current and future problems 
[46]. In other words, He explicitly ascribes instrumental value to software 
implementations of AL, considering them as tools in the service of scientific 
inquiry; he formulates questions and employs various modelling techniques to 
derive answers. Whereas for Langton, software implementations of AL are 
themselves the answer — they extend the natural world by the sheer virtue of 
their existence. 

While both Langton and Bedau argue for the potential of a synthetic approach to 
biology in uncovering truths about living systems, their goals and interests 
diverge. Bedau’s listing of open problems in artificial life [46] demonstrate a 
quest to define life, explore its limits, understand its innate properties, and 
examine its relationship with machines, culture and the human mind. Bedau’s 
philosophical and methodological approach, as exemplified in the desire to 
simulate a complete life cycle of a unicellular organism [46, p. 367], reveals a 
strong motivation to fully comprehend what life is, but ultimately demonstrates 
no interest in exploring what it could be.

The paradigm shift from strong to weak AL as the dominant school of thought in 
the field towards the end of the 20th century emerged as a response to criticisms 
regarding its scientific legitimacy. It marked a return to the traditional view of 
computational modelling as a tool for describing phenomena rather than 
creating it. Subsequently, the exploratory and open-ended nature of early 
research in AL gradually gave way to more focused efforts for understanding the 
inherent properties of observable living systems. 

2.1.6 Model vs. Structure

An object is said to possess instrumental, or extrinsic value if its purpose lies in 
serving a function. For example, a chair may be imbued with instrumental value 
because it was created for the purpose of sitting on. In contrast, an object may be 
said to possess intrinsic value if its purpose lies in its own existence. For 
example, a mountain can be regarded as serving no particular function, or 
alternatively, that its value is self-evident. The attribution of value is often a 
moral position and a highly subjective one; a carnivore might argue that a cow 
possesses instrumental value because it was brought into existence for the 
purpose of human consumption, whereas a vegan would likely argue that cows, 
as do all  living creatures, possess intrinsic value. 
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It should be emphasised that the distinction between intrinsic and instrumental 
value is rarely clear cut. While the typical function of many chairs may be 
obvious, some chairs may have been created with other functions in mind, or 
none at all. Moreover, the decorative or aesthetic features of a chair, which, by 
definition, are not functional, or may even hinder its functionality, do not 
automatically imbue it with intrinsic value.

Computer programs are frequently designed as instruments, with word 
processors, web browsers, code editors, and digital audio workstations serving 
as clear examples. These applications are typically valued based on their 
effectiveness in performing specific functions within their respective domains. 
In contrast, computational art, experimental software, generative compositions, 
theoretical constructs, and, to some extent, computer games, are less commonly 
regarded as instruments.

As for computational models, their extensive use as scientific instruments for 
the study and prediction of observable phenomena has been so impactful that it 
often overshadows alternative perspectives. The term “computational model” 
itself suggests a representation or derivation of something pre-existing, rather 
than an independent subject of research. This is true even in the field of AL 
which, in many ways, was founded with the explicit intention of studying un-
observable phenomena. Grüne-Yanoff encapsulates this idea by stating, “Models 
are representations; they are good models to the extent that they are good 
representations” [47].

This perspective highlights an often overlooked aspect of computational 
modelling: it is inherently goal-directed, designed to imitate rather than enact. 
This predisposition toward representation necessarily constrains how models 
are conceived and valued, potentially making them ill-suited for studies 
concerned with open-ended exploration. It thus follows that suspending this 
instrumentalist view — ceasing to evaluate computational models based on their 
ability to achieve predefined goals or represent external phenomena — could 
open new avenues of inquiry. Such a shift may allow the discovery of novel, non-
representational systems that are neither derived from nor tied to pre-existing 
phenomena.

Given that the primary aim of this thesis is to conduct open-ended explorations 
of emergent virtual phenomena, the term ‘model’ itself becomes problematic 
when restricted by its traditional representational connotations. What, then, 
constitutes a non-representational model? 

Frigg [17] defines a “structure” as a composite entity comprising the following 
components:

1. A non-empty set U of individuals called the domain of the structure

2. A set O of operations on U (which may be empty)

3. A non- empty set R of relations on U

According to Frigg, structures, in and of themselves, do not inherently represent 
elements of the real world. To serve a representational role, structures must be 
supplemented with a specification of their relationship to the target system. 
Only with this relational aspect do they acquire representational capability and 
become “about” something. Furthermore, establishing this relationship does 
not automatically render a structure an isomorphic model of a target system. 
Frigg emphasises the significance of intentionality in this process: a structure 
can only be considered a model when it is explicitly intended for 
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representational use. This intended use is not merely an external facet 
appended to the model but forms an essential part of the model itself. 

The distinction between a “model” and a “structure” provides a highly suitable 
framework for the subject matter of this thesis. By employing a subtractive 
approach, any computational model can be dissociated from its connection to a 
target system and any intent to represent it. What remains is a structure — a 
well-defined, autonomous entity that transcends derivative and instrumental 
categorisation. While this distinction may seem semantic, it reflects a pivotal 
conceptual shift: exploring structures, rather than models, can significantly 
broaden the scope of inquiry. As the following chapters demonstrate, this 
approach can indeed enable the discovery of novel virtual phenomena that may 
otherwise be overlooked within the narrower confines of a model-based 
perspective.

2.2. Cellular Automata
The following section provides an introductory review of Cellular Automata (CA), 
which form the central focus of this thesis. It aims to achieve two primary 
objectives: first, to introduce key terminology and discuss the historical 
significance of CA as one of the pioneering computational models, and second, 
to review three notable algorithms that illustrate the practical application and 
effectiveness of the proposed computational frameworks introduced in 
Chapters 4 and 5. 

CA are regarded as one of the first computational models, originating as early as 
the 1940s. Their development is attributed to Stanislav Ulam and John von 
Neumann, who pioneered early research on crystal formation [4] and self-
replication [5], respectively. Von Neumann’s groundbreaking work introduced 
the Universal Constructor — an intricate theoretical machine capable of self-
replication. This research, preceding the development of digital computers  and 
thus devised largely on graph paper, was originally envisioned as the basis for 
physical self-replicating machines. However, Von Neumann later settled on a 
purely virtual implementation [48, p. 879]. Since then, the topic of autonomous 
self-replication has inspired numerous researchers [49], leading to simpler and 
more elegant solutions using CA and related computational models [42], [50].

At their core, CA consist of a regular grid of discrete entities, or cells, each 
associated with a numerical value or symbol — its state — that evolves over time 
according to a global set of rules called the transition function. The transition 
determines how each cell’s state changes based on the states of its neighbouring 
cells, collectively referred to as its neighbourhood. The evolution of the grid 
typically occurs synchronously at discrete time steps, with the same transition 
applied uniformly across all cells. Despite their often simple rules, CA are 
capable of generating remarkable complexity. Local variations in cell states can 
produce intricate patterns and dynamic behaviours, ranging from simple, 
localised periodic structures to large-scale emergent patterns.

CA have a long and rich history, closely intertwined with the development of 
digital technology in the 20th century. The following section covers the 
fundamentals of CA within the narrow scope of this thesis, which focuses on 
exploration and emergent behaviour. For readers seeking a broader 
introduction to CA, Wolfram [48] provides a comprehensive exploration of their 
potential to model complexity across diverse domains. Toffoli and Margolus [51] 
offer a practical perspective on CA implementation, effectively bridging 
theoretical concepts with computational applications. For a more rigorous and 
extensive treatment, Ilachinski [52] covers both foundational theory and real-
world applications.
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2.2.1 Key Terminology

State

In the context of CA, the state of a cell represents its current condition and can 
take on a variety of values. Two well-known CA models, which are discussed in 
the next section, are Conway’s Game of Life [53], [54] and Wolfram’s Elementary 
Automata [55]. Both models use binary states, where each cell’s state may only 
be either 0 or 1, sometimes regarded as “off” or “on”, or rather “dead” or “alive”. 
However, many CA models go beyond binary states to allow multiple discrete 
values. For example, the Abelian Sandpile [11] and Wireworld [56] each use four 
discrete states, while von Neumann’s Universal Constructor used twenty-nine. 

In addition to discrete states, some CA models use continuous values to better 
simulate physical and chemical processes. For instance, reaction-diffusion [57], 
also discussed in the next section, represent each cell’s state using two real 
numbers between 0 and 1, corresponding to the concentrations of two 
interacting chemical substances.

Neighbourhood

The concept of the neighbourhood is central to CA, as it defines how cells 
interact with their surroundings, forming a critical component in emergence of 
complex patterns. Different CA models adopt varying approaches to 
neighbourhood definitions, which influence how cell states throughout the 
system evolve over time. 

In a totalistic CA, the transition function depends solely on the sum of the states 
of neighbouring cells, without considering their individual values. Conway’s 
Game of Life is a well-known example of this approach, which provides a 
simplified yet powerful model capable of producing intricate emergent patterns. 
Figure 4 visualises three commonly used totalistic CA neighbourhoods: Von-
Neumann, Moore and Extended Moore. In contrast, outer-totalistic CA employ a 
more fine-grained approach by considering the individual states of 
neighbouring cells. This allows for a broader range of possible transitions and 
nuanced control over local interactions. Models such as Elementary Automata 
and the Abelian Sandpile utilise this approach, forming behaviours that may not 
emerge in totalistic models.

Transition

The transition function is the central mechanism that drives the evolution of CA 
over time. It determines how each cell’s state changes based on its current state 
and the states of its neighbours. While the same transition is typically applied to 
all cells in the grid, results vary due to varying local state and neighbourhood 
values. 

Transition functions can be expressed in various ways, depending on the 
complexity and purpose of the model. In simpler cases, such as Conway’s Game 
of Life, the transition function is typically implemented using straightforward 
conditional statements — checking the number of “live” neighbouring cells and 
applying simple if-else rules to determine the next state. In contrast, Wolfram’s 
Elementary Automata utilise rule tables, which resemble truth tables, where 
each possible neighbourhood configuration corresponds to a predefined output 
state for the transitioning cell. More advanced CA models, such as reaction-
diffusion systems, define transition functions using algebraic equations that 
describe continuous changes over time, often drawing from differential 
equations to simulate physical and chemical processes.

Figure 4. 
Commonly used totalistic neighbourhoods.

Von Neumann

Moore

Extended Moore



30

Background

Configuration

The initial state of all cells in a CA is known as the configuration, and it plays a key 
role in shaping the system’s evolution. Since the transition function determines 
how each cell updates based on its current state and the states of its neighbours, 
the configuration serves as the foundation from which all subsequent patterns 
and behaviours emerge.

Configurations can be categorised into different types depending on their 
structure and origin. Predefined configurations, such as a specific pattern or 
arrangement, are often used to study well-known behaviours, such as gliders or 
oscillators in Conway’s Game of Life. In contrast, random configurations, where 
cell states are initialised randomly, are commonly used to explore statistical 
properties and emergent phenomena within the system. Some models may also 
use structured configurations, derived from real-world data or external inputs, 
to simulate physical or biological processes.

Determinism

While many known transition functions in CA are often relatively simple, they 
have a remarkable ability to produce highly intricate and emergent patterns [48]  
[53]. In many cases, this complexity does not typically arise from randomness 
but rather from the inherent feedback mechanisms between neighbouring cells. 
In deterministic CA, a given initial configuration, transition function, and number 
of steps will always yield the same outcome, ensuring consistency across 
multiple independent runs. 

Some CA models do introduce elements of randomness by incorporating 
random or pseudorandom numbers into their transition functions. These 
models, known as stochastic CA, are often used to simulate real-world 
phenomena that involve varying levels of uncertainty, such as in epidemics [58] 
and ecological systems [59]. Notably, deterministic CA can still exhibit chaotic
behaviour, where any change to the configuration, or slight perturbation, can 
result in vastly different outcomes over time. This sensitivity to initial conditions 
is closely tied to CA’s potential to develop complex, unpredictable patterns from 
simple rules.

Dimension

CA grids may span any number of dimensions 5. In one-dimensional (1D) CA, 
cells are arranged in a linear sequence. A classic example is Wolfram’s 
Elementary Automata, where neighbourhoods consist of only two adjacent cells. 
More common are two-dimensional (2D) systems, such as Conway’s Game of 
Life. 2D CA feature cells arranged orthogonally along an the x and y axes, with 
neighbourhoods typically consisting of the four or eight adjacent cells. 

Less commonly studied, three-dimensional (3D) CA extend this concept into 
volumetric space, enabling the formation of intricate 3D structures. In a 3D 
lattice, each cell has twenty-six adjacent neighbours. 3D CA have been used in a 
variety of applications, including physical modelling [60], simulation [61] and 
urban planning [62]. Higher-dimensional CA (4D and beyond) have also been 
explored to study Complex systems [63] and theoretical constructs [64]. 6

Bounds

CA systems operate within finite grids, as all cell states must be computed within 
a well defined space and time. Handling grid boundaries is crucial, as they 
potentially introduce changes to behaviour along the edges, which can rapidly 
percolate into the entire system. In 2D systems, two common approaches are 
widely used:

5 This should not be confused with state 
dimensionality, which refers to representing 
the state of a cell using a vector of values 
rather than a single numerical value.

6 See [65] for an extended discussion on 
dimensionality and alternative CA 
topologies. 
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Clamped boundaries impose strict confinement, preventing interactions beyond 
the grid’s edges. Cells at the boundary assume a predefined state, typically zero.
Toroidal boundaries create a seamless, wrap-around effect, where the neighbours 
of cells along one side are the cells along the opposite side. Topologically, this 
creates a torus shaped space, effectively simulating an unbounded space, 
thereby preventing foreign effects along the edges. Unless otherwise stated, this 
approach is used throughout the studies presented in this thesis. It is 
particularly useful for studying systems with periodic or cyclic behaviour over 
extended periods of time. 

Computational Complexity

CA are considered highly computationally efficient due to their reliance on local 
interactions, where each cell remains stationary and interacts only with a fixed 
set of neighbours. This ensures that the cost of updating a single cell remains 
constant, leading to an overall computational complexity that scales linearly —
O(n) — with the number of cells in the grid. In contrast, many particle systems 
involve moving entities that require pairwise interaction calculations, where 
each particle interacts with every other particle at each step. Without 
optimisation, this results in a significantly higher computational complexity of 
O(n²), making such systems computationally expensive as they scale.

The efficiency of CA was particularly valuable during the early days of 
computing when processing power was limited, and it remains advantageous 
today, especially in large-scale simulations where local interactions are 
sufficient to capture the system’s dynamics.

The next section introduces three notable CA algorithms that have gained 
considerable popularity and continued research interest. Their widespread 
adoption extends beyond scientific domains, towards the realms of arts and 
design as well. Moreover, these algorithms vary in a number of aspects, such as 
their state type, dimension, and their algorithmic expression. This makes them 
ideal case studies for illustrating the use and effectiveness of the computational 
framework outlined in Chapter 4, as well as ideal starting points for the 
exploration methods presented in Chapter 5.

2.2.2 Game of Life

The popularisation of CA can be traced back to the publication of Conway’s 
Game of Life (GOL) in 1970. In a Scientific American article [53], Martin Gardner 
described a “zero-player game” created for recreational purposes by 
mathematician John Conway. Despite its name, GOL does not simulate any 
particular living system, nor was it designed to. Nonetheless, its metaphor and 
incredibly simple rule system attracted immediate interest in CA from outside 
the academic ranks for the first time. Gardner detailed the rules of GOL as 
follows: 7

› Survivals: Every counter with two or three neighbouring counters 
survives for the next generation.

› Deaths: Each counter with four or more neighbours dies (is removed) 
from overpopulation. Every counter with one neighbour or none dies 
from isolation.

› Births: Each empty cell adjacent to exactly three neighbours--no 
more, no fewer--is a birth cell. A counter is placed on it at the next move.

7 Gardner refers to cell state as counters and 
the game uses the totalistic Moore 
neighborhood. 
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The deceptively simple rules of this algorithm 8 result in a particular dynamic 
between cell states, from which instances of stable higher-order patterns 
emerge. These are formed by distinct local arrangements of neighbouring cells 
that preserve their structure over time. They may take different forms, most 
notable of which are oscillators — formations that cycle through a particular 
arrangement in place, and gliders — formations that traverse the grid diagonally. 

GOL has enjoyed an abundance of further explorations of its possible 
behaviours, mathematical and statistical properties, as well as possible 
outcomes from different configurations. These include a demonstration of its 
universality by Randell [66] and Stephen Silver’s compiled Lexicon, which 
features over 1,350 terms relating to GOL [67]. Johnston and Greene recently 
provided an in-depth investigation of GOL rules, variations, configurations and 
underlying maths [68]. Smoothlife [69] is an extension of GOL into a continuous 
domain. Eppstein’s custom abbreviated notation, “Life-Like” [70], allow 
parametric explorations of GOL variants [71]. More recently, a numerical 
analysis by Peña and Sayama [72] quantified the complexity of Life-like cellular 
automata, providing a systematic evaluation of their dynamic behaviors and 
identifying patterns that exhibit life-like characteristics beyond Conway’s 
original formulation.

2.2.3 Elementary Cellular Automata

In his book: A New Kind of Science [48] Stephen Wolfram provides an in-depth 
discussion on how complex patterns may emerge from the simplest possible 
rules and configurations. His method differs from traditional scientific 
experimentation in that, rather than observing a system and making a 
hypothesis regarding its behaviour, Wolfram defines a space consisting of all 
possible permutations of a given behaviour, in this case: one dimensional, 
binary state, outer-totalistic CA. These, so called Elementary Automata (ECA) 
have exactly 256 possible transition functions, making a rigorous examination 
of all of them a tractable task. According to Wolfram: 

“In a traditional scientific experiment, one sets up a system in nature 

and then watches to see how it behaves. And in much the same way, one 

can set up a program on a computer and then watch how it behaves. 

And the great advantage of such an experimental approach is that it 

does not require one to know in advance exactly what kinds of 

behaviour can occur. And this is what makes it possible to discover 

genuinely new phenomena that one did not expect.” 

[48, p. 108]

Wolfram’s research considers CA as a way to implement abstract structures in 
which behaviour can be explored without any need for an equivalent physical 
system to be observed, measured or compared against. Acknowledging the 
innumerable size of the space of all possible CA programs, his solution is to 
methodically comb the smallest well-defined subspace of these algorithms and 
then evaluate findings visually. Wolfram defined ECA transition functions using 
a rule table that enumerates all possible states for a given neighbourhood and 
subsequent transition state. In a 1D outer-totalistic CA, there are exactly 8 
possible neighbourhoods. 9

Since any given neighbourhood in a binray state CA results in the transition 
function returning either 0 or 1, a simple algorithm can be defined by explicitly 
specifying the output for all eight possible neighbourhood configurations. 
Consequently, there are exactly 256 unique algorithms, each corresponding to a 
different combination of outputs for these neighbourhoods. These algorithms 

8 The rules of GOL can be formally expressed 
using the following pseudocode (using V to 
denote the state of the cell and N to denote 
its Moore neighborhood total):

For each cell :
if V == 1 :

if N == 2 OR N == 3 : V = 1
if N >= 4 OR N <= 1 : V = 0

if V == 0 : 
if N == 3 : V = 1

9 The eight Possible neighborhoods, 
including the transitioning cell, in a binary 
state 1D CA are :

 000 | 001 | 010 | 011 
 100 | 101 | 110 | 111 



LABORATORY OF BABEL

33

are all accounted for by a rule table that enumerates the results of the transition 
function. For instance, Rule 30 10, represented here in binary notation, denotes 
the output of the transition function for each of the eight neighbourhood 
configurations.

Rule tables constitute a different form of algorithmic expression compared to 
the more common if-then rules used for defining GOL. Rule tables provide an 
explicit result for every possible scenario. ECA can be also defined using logical 
notation [73]. This form is covered in depth in Chapter 4.

In 1984 Wolfram and Packard [74] proposed four distinct classes of CA 
behvaiour, offering examples in ECA for each one. This classification method, 
listed below, is still widely referred to in literature to date.

1. Evolution leads to a homogeneous state.

2. Evolution leads to a set of separated simple stable or periodic 
structures.

3. Evolution leads to a chaotic pattern.

4. Evolution leads to complex localised structures, sometimes long-
lived.

It is important to emphasise that these classes do not ascribe well-defined 
properties to CA, nor provide analytical insights per se. Descriptive terms such 
as “simple”, “stable”, “chaotic pattern”, and “complex localised structures” are 
not formally defined. Wolfram refers to this classification as a “qualitative 
characterisation of elementary automata.” He later extends his investigations to 
include empirical, statistical, and combinatorial analyses, as well as studies of 
CA behaviour in higher dimensions [75]. However, these investigations focus 
exclusively on binary-state CA. 

Subsequent efforts have been made to classify CA, including notable 
contributions by Martinez et al. [76], Sutner [77], [78], Adamatzky [79], and Braga 
et al. [80]. However, despite these efforts, a universally accepted, general-
purpose classification framework for CA algorithms and the diverse phenomena 
they exhibit has yet to be established.

2.2.4 Reaction-Diffusion

Reaction-diffusion (RD) systems are a fundamental concept in the study of 
pattern formation and self-organisation. These systems describe the interplay 
between chemical reactions and the diffusion of substances within a medium, 
leading to the emergence of intricate spatial structures. RD models have broad 
significance across multiple scientific disciplines, including chemistry, biology, 
physics, and computer science.

The origins of RD modelling can be traced back to Alan Turing’s seminal 1952 
paper, The Chemical Basis of Morphogenesis [23], in which he demonstrated 
how simple chemical interactions could give rise to complex patterns observed 
in nature. Turing’s mathematical framework provided insights into various 
natural phenomena, such as embryonic development, animal coat patterns, and 
plant morphology. This foundational work established a theoretical basis for 
morphogenesis — the process by which biological structures develop — paving 
the way for advancements in computational biology and the study of self-
organising systems.

10 Rule 30 in binary notation

0 | 0 | 0 | 1 | 1 | 1 | 0 
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Building on Turing’s foundational work, the Gray-Scott model [81], provides a 
canonical implementation of RD systems. This model simplifies Turing’s 
original equations, making them more computationally tractable. The Gray-
Scott model involves two chemical substances, U and V, that react and diffuse on 
a two-dimensional grid, leading to the emergence of various organic-like 
patterns. The equations driving the model describe the rates of change of U and 
V based on reaction kinetics and diffusion. 

John E. Pearson further popularised this model through his 1993 study [10], 
which demonstrated the rich diversity of patterns it could generate. Pearson 
explored the simulation and study of “chemically reacting and diffusing 
systems” in silico, showcasing a remarkable diversity of patterns through the 
use of phase diagrams that depicted varying concentrations of two simulated 
chemical substances along the x and y axes. This work is referred to as 
“Pearson’s parameterisation” and was later implemented as interactive software 
by Munafo [82] and Sims [83]. This method is central to the practice-based 
research presented in this thesis. It represents an early example of a study 
involving exploration of continuous state CA and serves as the foundation for 
one of the proposed exploration methods detailed in Chapter 5.

RD systems continue to be studied and applied in diverse scientific domains. As 
effective models of chemical dynamics, they contribute to the development of 
new materials and catalysts. In biology, RD mechanisms are crucial in 
elucidating the dynamics of cellular processes, such as cell signalling, 
morphogenesis, and tissue patterning. They provide insights into the formation 
of biological structures and contribute to fields like developmental biology and 
regenerative medicine [84]. Moreover, RD has been highly influential in 
computer graphics, texture synthesis, and generative design. An 
implementation by Witkin and Kass [85] served as a significant milestone in the 
field of artificial chemistry [86], [50]. Subsequently, it laid the foundation for 
other algorithms that generate novel virtual phenomena such as Lenia [87] and 
Smooth-Life [88]. 

RD models are often regarded as a distinct computational paradigm from CA due 
to their use of continuous states, which allow for more precise modelling of 
organic and diffusive processes. In contrast, many CA models are explicitly 
designed to represent interactions between discrete entities. However, despite 
these differences, both models share fundamental characteristics, as they 
operate within discrete space and time. Given that the primary focus of this 
thesis is exploration of novel CA algorithms, it is logical to adopt a broad 
definition of CA that attempts to encompass a broad range of algorithms, 
including RD. 

2.2.5 Other Notable Algorithms

The three algorithms discussed in the previous section are among the most 
extensively studied and widely recognised CA models, commanding significant 
research and academic attention. Their prominence is particularly evident in 
artistic contexts, where the most well-known algorithms often gain widespread 
recognition and visibility. However, these algorithms represent only a fraction of 
the broader landscape of CA. Numerous other algorithms with diverse 
characteristics and applications exist, as highlighted in a survey by 
Bhattacharjee et al. [89].

The Abelian Sandpile model, introduced by Bak, Tang, and Wiesenfeld in 1987 
[11] is of particular significance to this thesis. Embodying the concept of a self-
organised criticality (SOC), the model consists of a finite grid where each cell can 
accumulate a certain number of “sand grains”. When a cell exceeds its maximal 
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capacity (typically four grains), it topples, distributing its grains to its four 
adjacent neighbours. What makes this model model particularly intriguing is its 
inherent ability to reach a critical state without the need for fine-tuning or 
external parameters. As sand grains are continuously added and redistributed, 
large-scale avalanches occur, ultimately restoring the system toward a balanced 
state. SOC dynamics are studied in various scientific disciplines, capturing how 
complex systems naturally settle into equilibrium. The Abelian Sandpile model 
has been extensively studied for its applicability to a wide range of phenomena, 
including earthquakes, forest fires, and stock market crashes [90]

Langton’s Ant [91], originally proposed by Christopher Langton, is a moving 
cellular automaton — a special type of CA where the transition function is only 
applied to one cell at a time, determining both the next state of the transitioning 
cell, and the cell to be transitioned on the next time step. Despite its remarkably 
simple rule set, Langton’s Ant has been recognised for its ability to demonstrate 
universal computation, making it capable of simulating any Turing machine. 
Further studies, including the work by Gajardo et al. [92], have explored the 
computational properties, patterns, and behaviour of Langton’s Ant. 

Langton’s Loop [42] is a model of self-replication, originally proposed by Langton 
and later extended by Tempesti [93]. The model provides a simplified framework 
for exploring the dynamics of autonomous self-replication. It made use of a 
significantly simpler algorithm, instruction set and number of states, compared 
to von Nuemann’s Universal Constructor. 

WireWorld, initially developed by Brian Silverman, is a CA model that gained 
popularity through a Scientific American article by Dewdney [56]. The 
introduction of new rules and modifications by Gladkikh et al. [94] turned it into 
effective tool for simulating and studying computational systems and digital 
circuitry. In WireWorld, cells can have one of four states: empty, wire, electron 
head, or electron tail. The behaviour of the system revolves around the 
movement of electrons through the wires, which allows for the emulation of 
logical gates and complex electrical circuitry. This is best exemplified by the 
WireWorld computer [95], a Turing complete and fully programmable computer 
by David Moore and Mark Owen. 

From the 1970s to the mid-1990s, CA and similar lattice-based or discrete 
methods experienced peak popularity in the simulation of physical phenomena 
[8]. This widespread adoption was largely due to the relatively low computational 
complexity of CA, making it well-suited to the hardware limitations of the time. 
However, with advances in computing power, alternative models such as swarm-
based [96] and physics-based simulations [97] gained traction, offering 
enhanced capabilities for representing complex physical systems that feature 
interactions between moving agents. 

Despite the rise of these alternative approaches, CA continues to be applied in 
various domains where its discrete, grid-based nature provides unique 
advantages. For example, CA remains an optimal approach for texture synthesis, 
where is it still widely used [98]. Additionally, CA is still relevant in disciplines 
where it can effectively model systems characterised by discrete, localised 
interactions, such as physical simulations [99] and architectural analysis or 
synthesis [100], [101].

2.3. CA Exploration
Although numerous CA algorithms have been developed and rigorously studied 
since the model’s inception in the 1940s, exploration of CA rule systems and 
dynamics has largely been conducted manually. Some algorithms, such as RD 
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systems, were devised, refined, and studied as models of observed natural 
phenomena. Others, like Wireworld, were created as simulation tools for 
computational processes. Still, others, such as GOL, were designed as purely 
theoretical or mathematical models. 

However, there have also been direct attempts at large-scale exploration of CA, 
several of which were discussed in the previous section. Among the most 
prominent examples are the works of Langton,  Pearson, Eppstein, Wolfram and 
Sims. Each of these investigations explicitly set out to explore CA dynamics but 
employed distinct strategies and pursued slightly different goals.

2.3.1 Parametric vs. Algorithmic

Some approaches focus on parametric exploration, where the algorithmic 
structure remains fixed, and exploration targets the space of numerical 
parameters. In systems with continuous state parameters, this space becomes 
effectively infinite 11, potentially offering vast possibilities for dynamic 
behaviours. 

Langton’s parametric exploration of CA [43] aimed to identify a phase transition 
between ordered and chaotic behaviour, a region he termed the “edge of chaos.”  
This concept became pivotal in demonstrating how simple rule-based systems, 
like CA, could exhibit behaviours analogous to those found in complex natural 
systems. By quantifying the balance between order and apparent randomness, 
this study provided a framework for understanding how complexity arises in 
both natural and computational contexts. 

Similarly, Pearson’s parametric strategy [10] enabled simultaneous visual 
examination of two key parameters within a continuous RD system. Each unique 
parameter combination produces distinct patterns, forming an instant 
comprehensive mapping of a wide variety of complex, self-organising structures 
spanning the entire grid.

Eppstein’s Life-like CA notation [70], [71] represents another parametric 
approach. Retaining the rigid algorithmic structure of GOL, this notation 
simplifies the process of exploring discrete variations in neighbourhood 
configurations, as well as birth, death, and survival parameters. Through this 
framework, a broad set of diverse, GOL-like behaviours can be easily explored 
and studied. 

In contrast to purely parametric methods, other explorations have spanned 
entire algorithmic spaces. Perhaps the most notable of these is Wolfram’s work 
on ECA [48], [55], which involved a complete enumeration of all one-
dimensional, binary-state, two-neighbourhood CA rules. It should be 
emphasised that conducting such a comprehensive exploration across a 
complete algorithmic space is only feasible when the subset of CA being studied 
is extremely small and well-defined. In this case, arguably the smallest possible 
non-trivial class of CA, featuring only 256 unique algorithms. 

Expanding the grid dimensionality, increasing the number of states, or 
considering larger neighbourhoods would necessarily lead to an exponential 
growth of the rule space, rendering complete enumerations computationally 
infeasible, or when considering continuous state — technically impossible. 
Wolfram’s ECA study, therefore, stands as a unique case where the entire 
algorithmic landscape could be systematically explored and rigorously studied.

11 Though, due to the inherent constraints 
of digital media, this space is ultimately still 
discrete.  
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2.3.2 Evolutionary Algorithms

In order to explore larger CA rule spaces, researchers have turned to automated 
computational techniques, such as evolutionary algorithms. These methods 
enable exploration of vast algorithmic landscapes, uncovering emergent 
behaviours that would be infeasible to come across through manual exploration. 
Sims described a method for evolving two-dimensional CA [102]. This involved 
creating a random population of CA transition rules, defined as lookup tables. He 
allowed users to observe their execution and select those exhibiting interesting 
or complex patterns. Those selected were then subjected to reproduction with 
variation, forming a progressive process of evolution towards more aesthetically 
pleasing and increasingly intricate behaviours over successive generations. 12

Other studies demonstrate how evolutionary algorithms, guided by aesthetic 
fitness criteria, can effectively explore complex, emergent behaviours across 
scientific and artistic domains. Ashlock [103] applied evolutionary algorithms to 
steer CA toward visually compelling patterns, while Forbes [104] developed 
interactive CA systems that emphasise user-driven manipulation of rules to 
generate novel artistic outputs. Heaton [105] further showcased how continuous 
CA can be fine-tuned to create dynamic, flowing visuals that transcend the rigid, 
grid-based structures typical of traditional CA.

Evolutionary algorithms offer a powerful strategy for navigating vast algorithmic 
spaces, however their efficacy largely depends on the definition of a fitness 
function — a process that inherently excludes almost all potential variants. In 
interactive evolutionary algorithms, fitness is determined through aesthetic 
preference, allowing human intuition to guide the selection process in an 
effectively open-ended manner. Conversely, automated evolutionary 
approaches are employed in cases where fitness can be quantified and tested, 
using metrics such as pattern recognition, stability, or entropy. While these 
methods are significantly faster, as they eliminate the need for manual 
evaluation, the reliance on quantifiable fitness criteria often directs exploration 
towards more goal-oriented research. 

For example, Mitchell et al. [106] and Das et al. [107] evolved CA to perform 
computational tasks like density classification and global synchronisation, with 
fitness functions measuring task accuracy and stability. Similarly, Sipper [108] 
introduced cellular programming, where localised fitness assessments evolved 
CA for parallel computation. Packard [109] and Juillé & Pollack [110] employed 
entropy measures and coevolutionary dynamics to evolve CA exhibiting 
complex behaviours. While these studies uncovered novel computational 
properties and, in some cases, emergent behaviours, their fitness-driven focus 
inherently constrained exploration to specific, predefined objectives, limiting 
their potential for broader, open-ended discovery.

2.3.3 Custom Hardware and Machine Learning 

Parallel to the development of algorithmic exploration techniques, hardware-
specific solutions like CAM-6 facilitated real-time CA experimentation. 
Developed by Tommaso Toffoli and Norman Margolus at MIT in the mid-1980s 
[111], CAM-6 was a plug-in board for IBM PCs designed to accelerate two-
dimensional CA simulations. This ad-hoc hardware enabled rapid, interactive 
exploration of CA dynamics, providing a computational environment far more 
efficient than the general-purpose computers of the time.

CAM-6 allowed users to manipulate CA parameters and observe emergent 
behaviours in real-time, offering a hands-on approach to studying complex 
systems. While this was primarily a scientific tool, its emphasis on real-time, 

12 Sims also applied this evolutionary 
approach to continuous dynamical systems, 
using hierarchical Lisp expressions to define 
differential equations. This method serves as 
a notable precursor to the framework 
presented in this thesis, which similarly 
employs nested Lisp notation — though 
applied to defining CA transition functions 
rather than continuous dynamical systems.
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visual interaction opened new pathways for artistic explorations of CA, blurring 
the lines between scientific modelling and creative experimentation.

More recently, explorations of CA have expanded through hybrid frameworks 
that incorporate CA with machine learning techniques. A novel class of CA 
known as Neural Cellular Automata (NCA) has emerged, utilising neural 
networks to generate complex, previously unseen behaviours within CA 
systems. For instance, Mordvintsev et al. [112] demonstrated NCA’s ability to 
autonomously regenerate intricate, predefined multicellular patterns in two 
dimensions. Niklasson et al. [113] applied NCA to texture synthesis, successfully 
replicating the general appearance of various predefined textures. Furthermore, 
Earle et al. [114] utilised NCA for procedural level generation in video games, 
showcasing the generative potential of CA in commercial and creative contexts.
These advancements represent new frontiers for CA research, where the 
exploration of novel CA algorithms — regardless of their original scientific 
purpose — gains relevance in fields ranging from artificial life to digital art and 
game design.

Summary

Exploration of CA has evolved from manual study of simple rule-based models 
to the use of sophisticated computational techniques for navigating vast 
algorithmic spaces. Parametric approaches demonstrate how slight variations 
in numerical parameters can yield a wide range of behaviours within a fixed 
algorithmic structure. In contrast, exhaustive algorithmic explorations are 
possible but inherently limited to very small, well-defined rule spaces. 
Evolutionary algorithms provide a powerful means of traversing larger rule 
spaces, yet their outcomes remain constrained by either aesthetic preferences,  
in the case of interactive systems, or predefined objectives in the case of 
automated evaluation. Emerging techniques, such as NCA, show great promise 
in uncovering novel CA dynamics that generate complex, previously unseen 
behaviours. However, it remains to be seen whether these methods will be 
applied to truly open-ended exploration.

This section has reviewed a range of strategies for exploring CA dynamics and 
rule systems over time. While not exhaustive, it offers a broad perspective on the 
diverse methodologies employed in CA research. The following section widens 
the scope to examine the work of notable practitioners who engage in 
algorithmic exploration across various disciplines, demonstrating algorithmic 
explorations  that extend beyond CA into the broader realms of science, art, and 
design.

2.4. Notable Practitioners
The following section presents the work of a number of creative practitioners 
and researchers who employ the use of CA and related algorithmic approaches 
towards exploration of emergent systems. Their work often ventures beyond the 
realms of scientific research to encompass artistic, educational, or theoretical 
practices.  Many of these individuals have developed their own custom software 
tools and have made these publicly accessible, affording others the same 
freedom of expression. Particular attention is given to projects that are most 
relevant to this thesis, namely, those that prioritise novelty and aesthetic 
experience over practical applications. 

This review representes a curated body of work that is speculative, non-
representational, abstract or otherwise detached from physical reality. It is 
important to note that the selection criteria is highly subjective. Featured here 
are works whose approach and methodology towards the study of emergent 
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phenomena have substantially influenced and inspired this thesis. The bulk of 
literature on CA and AL may appear to lack sufficient emphasis on artistic 
expression and exploration, as noted by Aguilar et. al. [115] 13. Nonetheless, the 
compilation of works presented here is meant to indicate at least a partial 
fulfilment of Langton’s vision for “something more like poetry” in the future of 
artificial life.

Karl Sims is widely regarded as one of the early pioneers of AL, with influential 
contributions spanning both artistic and scientific domains. Beyond his 
previously discussed projects on CA, Sims’ diverse body of work includes 
advancements in particle systems [116], genetic algorithms [117], [118], image 
processing [119], fractal geometry and fluid dynamics [120], as well as 
interactive installations [121], [122]. He also developed an online tool for 
interactive exploration of RD, based on Pearson’s  parameterisation [123], which 
is particularly relevant to this thesis.

Andy Lomas’ work explores abstract generative forms, morphogenesis and 
emergent processes, often featuring large scale 3D systems with millions of 
interacting components. His 2005 aggregation series [124] featured 
explorations of Diffusion Limited Aggregation (DLA) applied at a significantly 
larger scale than previous implementations of this approach [125]. In Cellular 
Forms [126] Lomas developed a novel approach for cell replication and 
organisation at a local level. This methodology was further developed and 
perfected in Hybrid Forms [127]. A more recent collaboration with Jon 
McCormack features methods for exploration of emergent forms and processes 
using evolutionary algorithms and machine learning [128], [129]. The emergent 
structures typically featured in Lomas’ work seem to strike a careful balance 
between biomorphic and abstract.

Tim Hutton’s work on self-replication and artificial chemistry rely heavily on 
exploration of novel CA algorithms and feature a high degree of analytical 
accounting of his findings [130], [131].  Hutton is also a co-author of the Golly 
[132] and Ready [133] software packages, which allow exploration of Cellular 
Automata and Reaction Diffusion algorithms respectively (see next section). 
Hutton’s body of work is situated at a unique junction of exploration, problem 
solving and tool making. His interests span multiple disciplines related to 
exploring, utilising and rendering emergent behaviour within virtual 
environments.

Sage Jensen explores speculative forms of Physarum Polycephalum (slime 
mould) patterns in virtual environments [134]. They use a hybrid technique 
based on a method developed by Jones [135]. This approach combines two 
separate systems: one layer featuring a swarm of freely moving agents in 
continuous space and a second layer featuring an orthogonal discrete grid of 
cells. This approach is also reminiscent of the multi-agent programmable 
modelling environment netLOGO by Uri Wilensky [136]. Jensen develops 
custom software using C++/Openframeworks/GLSL, utilising hardware 
acceleration and parallel processing where possible. The output often bears 
striking visual resemblance to the behaviour and appearance of its physical 
subject matter. However it can also be seen as abstract and removed from any 
particular physical process. Taking this creative liberty in representation allows 
Jensen to focus on the aesthetic aspects of the phenomenon while pushing 
forward its creative, visual and aesthetic potential.

Casey Reas is a co-creator of the Processing programming environment which 
originated at the MIT Media Lab in 1999. As such he has become a prominent 
figure in the modern creative coding movement of the 2000’s. He is a published 
author on both tools [137] and their potential output [138]. In his artistic 

13 The Authors classify AL research into 
14 themes and rate their popularity 
according to publications in MIT’s 
“Artificial Life” journal between 1993 
and 2014. They note that “Some themes 
are poorly represented, such as art, 
because artists usually choose different 
venues to publicise their work”
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practice, Reas explores abstract forms driven by simple dynamical, multi-agent 
systems for large scale installations [139], [140] and print work [141].

Other notable explorations of CA include Ben Kraakman’s collection of CA 
experiments featuring Multiple neighbourhood CA (MNCA) [142]  [143] (also 
refer to VulcanAutomata in the subsequent section); experiments by YouTube 
user CellularAutomataUploader [144]; Simon Alexander-Adams’ 3D cellular 
automata experiments and tutorial [145], [146]; Artificial Life software 
experiments and shader programming workshops by Arsiliath [147]; 
experimental video documentations, software engines and algorithmic 
expressions by Luke Wilson [148]; and generative landscapes and 
mathematically evolving structures by multimedia artist and composer Jazer 
Giles  [149], [150].

Other notable artworks which explore emergent phenomena (not necessarily 
using CA) include glitch and ASCII art by Kermi Safa [151], Kim Asendorf  [152] 
and Julian Hespenheide [153]. Andreas Gysin’s pattern and ASCII formations  for 
installation and net-art [154]; algorithmic playgrounds by Alex Miller & Alex 
Nagy [155]; Clusters - a particle micro world with ambiguous entities by Jeffery 
Ventrella [156]; Particle and fluid based installations by Josef Pelz [157]; 
generative designs of Sander Sturing  [158]; LED wall installations by 
@codeofconquer [159]; Andreas Hoff’s generative web experiments and tutorial 
series [160]; generative jewellery by Nervous System [161]; 

On a broader spectrum of generative systems, notable exploratory works 
include interactive software experiments by digital artist LIA, which often 
feature multi agent systems and emergent patterns [162]; The minimalist and 
organic Flash applets of Laurie and Jared Tarbell [163]; genealogical studies, 
data driven virtual sculptures and artificial life experiments by Norman Leto in 
his feature length film SAILOR [164], [165]; speculative biomorphic wearable 
objects by Neri Oxman [166] and Filippo Nassetti [167] and generative 
sculptures by Driessens and Verstappen [168]; compound fractal geometry 
explorations and software tools by Tom Beddard [169]; and the art-science 
documentary films by Ruth Jarman and Joe Gerhardt which often employ a 
hybrid of data driven and generative methods  [170].

2.5. Notable Tools
The following section reviews a range of software packages, frameworks, and 
code libraries that can be used to implement CA, as well as other computational 
models such as particles, swarms, and networks. These tools span a broad 
spectrum of functionality, generality, and scope, catering to different target 
audiences and use cases. While all of the tools discussed can be applied to CA 
exploration, not all were explicitly designed with this purpose in mind. 

Arranged from the most general-purpose frameworks to the most specialised 
CA tools, each comes with a distinct trade-off between generality and 
specialisation. This trade-off, while common in software development, appears 
to be particularly pronounced in the context of CA research, which has come to 
encompass multiple distinct models without a clear mainstream software or 
unified paradigm. The following review examines how different tools navigate 
this balance, highlighting their strengths and limitations. The next section 
identifies the research gap, building on the insights gathered from this review.

General Purpose Frameworks

A creative coding library can be thought of as a collection of functions that 
abstract many common, often cumbersome tasks related to computer graphics, 
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such as plotting, vector and matrix operations, trigonometry, image processing, 
and 3D rendering. The use of such libraries typically requires literacy in their 
underlying programming languages, which may present a notable barrier for 
some creative practitioners.

Processing [171], a Java-based programming environment developed at MIT in 
2001, was originally designed as a teaching tool and software sketchbook. It has 
since evolved into a reliable, open-source framework for interactive applications 
and installations. Beyond its core components, Processing features an extensive 
library of add-ons that significantly extend its functionality. More recently, it has 
been adapted into the web-based JavaScript library P5.js, significantly 
broadening its accessibility for web development.  [172], [173]

OpenFrameworks [174] brings Processing’s design principles to C++, offering a 
more robust, expandable, and production-oriented programming environment. 
Similarly, Three.js [175], initiated by Ricardo Cabello, is a powerful JavaScript 3D 
graphics library that provides advanced tools for web-based graphics and 
interaction.

Some applications and authoring tools provide alternatives to text-based 
programming, offering more intuitive interfaces for artists and designers. For 
example, Cycling ’74’s Max/MSP [176] and its open-source counterpart PureData 
[177], [178] have opened new avenues for algorithmic exploration in digital 
music and multimedia art. Both environments utilise a node-based visual 
programming paradigm, commonly referred to as data-flow programming. In this 
paradigm, patch cords are used to connect algorithmic operators, creating a 
visual representation of the flow of data through a system. Over time, data-flow 
programming has gained widespread popularity and has been extended beyond 
music into visual art, interactive installations, and real-time graphics.

TouchDesigner [179], developed by Derivative, is a node-based visual 
programming environment designed for real-time interactive multimedia 
content. Initially popular in live performances and projection mapping, it has 
become a versatile platform for generative art, data visualisation, and 
interactive installations. TouchDesigner leverages a highly modular UI, allowing 
users to design complex visual systems without traditional coding. While it is not 
explicitly designed for CA, its ability to manipulate real-time graphics, shader 
programming, and procedural logic makes it suitable for creating custom CA 
models, particularly in artistic contexts, though it may not be as user-friendly for 
large-scale algorithmic exploration compared to more specialised tools.

3D Applications

Another class of software that supports algorithmic exploration is game engines, 
such as Unreal Engine [180], Unity [181], and Godot [182]. While primarily 
designed for game development, their support for procedural content 
generation, real-time interaction, and programmable shaders makes them 
applicable for broader computational art and design contexts. However, due to 
their heavy footprint, game engines are not the most efficient platforms for 
large-scale CA simulations. CA-specific use cases in game engines would 
typically be applied to terrain or biome generation, visual effects, and texture 
synthesis, rather than conducting research.

A number of 3D design and animation packages have integrated data-flow 
programming interfaces to support procedural generation and algorithmic 
modelling. These tools provide powerful environments for exploring complex 
geometries and dynamical systems, which can be applied to visualising and 
experimenting with CA, particularly in three-dimensional contexts. While their 
focus on procedural workflows aligns well with CA principles, these tools are 
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primarily designed for visual effects, simulation, or CAD design, rather than 
dedicated CA research.

Grasshopper [183], a longstanding tool in this category, is integrated with 
Rhinoceros 3D [184]. Focused on architectural design and parametric 
modelling, it allows designers to create algorithmically-driven structures. 
Houdini [185] is renowned for its procedural generation capabilities and is 
widely used in visual effects and 3D animation. It excels in creating complex 
simulations, including fractals, particle systems, and fluid dynamics. More 
recently, Blender’s Geometry Nodes [186] has emerged as a popular, extensible 
tool, offering a rich node-based programming interface for procedural 
modelling, simulation, and parametric design. Its flexibility makes it a suitable 
platform for conducting CA experiments in 3D space.

Multi Paradigm tools

Wolfram Mathematica [187] occupies a unique position between general-
purpose computational frameworks and specialised CA tools. Primarily 
designed for symbolic computation and mathematical modelling, Mathematica 
offers built-in capabilities for CA exploration, reflecting Stephen Wolfram’s 
foundational contributions to the field. Mathematica’s strengths in numerical 
analysis and data visualisation make it an effective tool for both theoretical 
research and visual exploration of CA dynamics. However, its general-purpose 
design introduces certain trade-offs: performance can be limited in large-scale 
CA simulations, and it lacks real-time interactivity, which can constrain 
exploratory workflows.

NetLogo [136] is an agent-based modelling environment originally developed by 
Uri Wilensky in 1994. It features a hybrid model that combines a fixed cellular 
grid with a system of moving agents. These two layers can operate 
independently or interact dynamically, enabling implementation of a wide 
range of computational models, including CA, swarm intelligence, and neural 
networks. NetLogo comes with an extensive library of pre-built scientific models 
and a user-friendly interface, making it accessible to both researchers and 
educators. While its primary focus is on agent-based modelling, its flexibility 
allows for meaningful CA experimentation. More recently, NetLogo has been 
ported to the web [188], broadening its accessibility and facilitating online 
simulation sharing.

Visions of Chaos by Jason Rampe [189] is a comprehensive application for 
exploring chaotic systems and complex dynamics. It supports an unusually 
broad spectrum of models, including CA, agent-based models, fractals, 
diffusion-limited aggregation (DLA), fluid dynamics, particle simulations, and 
even machine learning algorithms. Visions of Chaos features a graphical UI, 
hardware-accelerated rendering, and a vast library of pre-configured examples 
for each model type. While it excels as a visualisation tool with extensive 
configurability, it is best suited for exploring existing models rather than deep 
algorithmic customisation, positioning it as an educational and exploratory 
platform rather than a dedicated CA research tool.

Specialised Software

There are a number of software packages explicitly designed for CA research, 
offering dedicated tools for exploration, study and analysis. These packages are 
often optimised for performance and come bundled with an extensive set of 
relevant examples. However, their specialised nature may impose limitations on 
the range of algorithms they can effectively handle, constraining them to 
specific use cases, and their output to specific families of algorithms.



43

LABORATORY OF BABEL

Golly [132] is a desktop software application designed for executing and 
interacting with various cellular automata algorithms. It features a graphical 
interface which makes it highly suited for individuals with no programming 
experience. However, it is important to note that the algorithms implemented 
within Golly are optimised for performance through hashing techniques. While 
this optimisation enhances computational efficiency, it also poses practical 
challenges when it comes to developing or modifying algorithms within the 
software. Consequently, the process of algorithm development or customisation 
within Golly may prove to be impractical for users seeking extensive 
modifications or novel algorithmic implementations. 14

Ready [133] follows a similar approach to Golly and applies it to continuous state 
CA. The software is explicitly designed for conducting experiments with 
reaction-diffusion systems in both two-dimensional and three-dimensional 
spaces. Similarly to Golly, Ready is bundled with a collection of pre-existing 
algorithms, providing users with a solid foundation from which to conduct 
further explorations. Algorithms within Ready are written as OpenCL kernels. 
This means modifying or developing algorithms necessitates advanced 
programming skills and familiarity with the programmable shader pipeline. 

DDLab by Andy Wuensche [190], [191] is an interactive graphics software for 
researching discrete dynamical networks. Aimed towards the field of 
experimental mathematics. The package can construct, visualise, manipulate 
and analyse a broad class of discrete systems, including CA, random boolean 
networks, discrete dynamical networks and random maps. 

VulkanAutomata by Ben Kraakman [192] is designed for exploring Multiple 
Neighbourhood Cellular Automata (MNCA): a class of CA that uses large custom 
neighbourhoods in parallel to produce robust emergent structures [193]. The 
application allows exploration of a wide range of algorithms created by the 
author, as well as randomly generated algorithms of this class. MNCA appears 
capable of yielding exceptionally complex and resilient high order structures, 
reminiscent of algorithms such as Lenia [87] and Smoothlife [69]. 

Neural patterns by Max Robinson [194] is a web toy for exploring Neural Cellular 
Automata (NCA). It uses convolution and activation functions for cell transitions. 
It comes with a number of examples and allows simple live coding of rules.  The 
Life Engine [195], also created by Robinson, is an online virtual ecosystem that 
allows organisms to reproduce, compete, and evolve. 

Other notable specialised software packages include CA Lab [196], a legacy 
software originally released for DOS in 1989 by Rudy Rucker and John Walker. It 
was rewritten for Windows in 1996 by Walker and again in Javascript in 2017. 
Life Viewer by Chris Rowett  [197], a browser based scriptable pattern viewer for 
GOL and a number of other 1D and 2D CA. Lastly, CellPyLib by Luis M. Antunes 
[198], a python library for defining and analysing 1D and 2D CA. 

2.6. Research Gap and Motivation
The author’s 2015 MA thesis project, Semicolony [199], consisted of an ontology 
of software experiments, developed over the course of a year and assembled as 
a “laboratory for the study of fictional organisms.” Strongly influenced by early 
research in AL, the project employed a diverse range of algorithmic approaches, 
including swarm dynamics, Superformulae, L-systems, evolutionary algorithms, 
and CA. Contextualised as a computational arts project, Semicolony made 
significant attempts to detach these algorithms from their real-world 
counterparts, exploring their aesthetic, formal and interactive potential rather 
than their traditional scientific interpretations.

14 See [147] for a comprehensive online list 
of algorithms bundled with Golly
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While the project successfully showcased the creative and interactive potential 
of the algorithmic systems it studied, it also faced significant limitations in 
terms of algorithmic exploration, real-time interaction, and the inherent trade-
off between generality and specificity in available tools. These challenges not 
only revealed constraints within the project itself but also pointed to broader 
gaps, as they relate to the integration of emergent systems within creative 
media.

2.6.1 Generality vs. Specificity

During the initial CA experiments featured in Semicolony — from which this 
thesis ultimately derives 15 — many of the software tools reviewed in the previous 
section were considered. This process revealed a notable trade-off between 
generality and specificity in existing tools for CA research.

The review covers a spectrum from general-purpose frameworks to highly 
specialised tools, each offering distinct advantages and presenting distinct  
limitations. General-purpose frameworks like Processing, OpenFrameworks, 
and Three.js offer broad flexibility, enabling users to build custom CA models 
from the ground up. However, this flexibility comes with inherent limitations. 
Adapting these tools for CA exploration requires significant technical effort, 
including expertise in software engineering, user interface design, and graphics 
programming. This represents resources that may be unavailable for 
researchers focused on the theoretical, artistic, or experimental aspects of CA 
rather than technical development.

Another limitation of general-purpose frameworks is the scarcity of advanced 
examples and starting templates. For instance, many CA implementations in 
Processing are designed primarily for teaching programming concepts rather 
than facilitating CA exploration, resulting in basic and often sluggish 
functionalities. 16 Furthermore, most available examples are typically limited to 
the most popular models like GOL and ECA, leaving limited opportunities to 
explore more complex or novel CA.

Conversely, specialised software tools like Golly and Ready provide robust, 
feature-rich environments tailored for CA exploration. However, their focus on 
specific use cases and algorithmic structures limits their broader applicability. 
For example, Golly excels in exploring configuration patterns and includes an 
extensive library of CA algorithms. Yet, it lacks support for continuous-state 
systems, is poorly suited for real-time parametric or algorithmic exploration, 
and does not allow for the concurrent execution of multiple algorithms. 
Similarly, while Ready offers powerful tools for analysing continuous-state CA, 
its reliance on OpenCL kernels for defining transition functions makes it 
cumbersome to prototype new rule systems or explore algorithmic variations.

3D applications, especially those with integrated parametric design tools like 
Blender’s Geometry Nodes, offer promising environments for experimenting 
with CA. However, these platforms are primarily designed for CAD or 3D 
animation, and adapting them for CA exploration often requires substantial 
workarounds, especially in terms of algorithmic expression. Additionally, their 
feature-rich environments come with a steep learning curve, posing barriers for 
researchers and artists focused on algorithmic exploration rather than 3D 
modelling.

Multi-paradigm tools such as NetLogo and Visions of Chaos offer a wide array of 
models but are not optimised for deep algorithmic exploration or customisation. 
These tools excel in providing ready-made models and flexible environments for 

15 This experiment is discussed in 
detail in Section 4.2

16 Exceptions, like the Conway shader 
example included in the Processing IDE, are 
rare.
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simulation, but fall short as platforms for building or modifying algorithms from 
scratch.

2.6.2 Algorithmic Exploration

A central challenge in Semicolony was the difficulty of engaging in true 
algorithmic exploration. The project’s focus on novel emergent phenomena 
required extensive investigation of algorithmic behaviours. To facilitate this, 
most experiments were implemented using OpenFrameworks, necessitating the 
development of custom software from scratch. Despite these efforts, exploration 
remained largely confined to adjusting numerical parameters and 
reconsidering visual representations of well-established algorithms, rather than 
modifying the underlying algorithms themselves or creating entirely new ones.

This limitation reflects a broader trend in the use of computational modelling 
within creative media, where exploration often relies on superficial adjustments 
rather than deep algorithmic modification. For instance, many creative 
implementations of the Boids algorithm [96] primarily experiment with diverse 
visual representations, or explore variations in numerical parameters, such as 
tweaking the model’s separation, cohesion, and alignment behaviours. However, 
the core structure of the algorithm typically remains  untouched. 17

This reliance on parametric and aesthetic exploration often stems not from a 
lack of interest in alternative boid-like dynamics, but from technical barriers. 
Modifying the underlying algorithmic structure of a model requires not only 
significant programming expertise but also a solid understanding of the 
dynamical system it represents. Moreover, traditional programming tools and 
syntax are generally structured with the assumption that the programmer has a 
clear goal in mind. While highly effective for precise, goal-oriented 
development, this assumption can pose challenges for open-ended algorithmic 
exploration, where flexibility and iterative discovery are key.

The absence of tools designed for true algorithmic exploration — beyond 
aesthetic or parametric adjustments — highlights a key challenge in both 
computational arts and CA research. Existing tools often demand extensive 
technical expertise or confine users to surface-level modifications, creating 
barriers to both scientific inquiry and artistic experimentation. Addressing this 
gap is a core objective of this thesis, which aims to develop novel frameworks 
and methods for CA exploration that enable flexible, open-ended engagement 
with algorithms across both domains.

2.6.3 Real-time Control

Another significant challenge encountered in Semicolony was managing the 
sensitivity of real-time control in emergent systems. The project required 
interactivity on multiple levels: as a means for exploration through immediate 
visual feedback, as part of interactive installations, and within live performance 
contexts. 18 Each of these scenarios introduced unique challenges in negotiating 
between meaningful user influence and the inherent unpredictability of 
emergent behaviours.

In the exploratory phase, interactivity is crucial for rapidly iterating on 
algorithmic behaviours. Immediate visual feedback allows for quick assessment 
of system dynamics, but this process is often hampered by tools that require 
compilation or otherwise lack real-time modification capabilities.19 This 
limitation forces practitioners to work within relatively narrow constraints, as it 
imposes a strict separation between devising new behaviours and observing 
them in action.

17 This echoes the discussion in section 2.3.2 
regarding the Life-Like notation, which 
makes it easy to explore a large number of 
parametric variations of GOL but leaves the 
core algorithm as-is. 

18 A software experiment from Semicolony, 
Colony Type-A, was featured in The Infinite 
Bridge, a multidisciplinary live performance 
in 2015. [200]

19 While some tools offer parametric 
flexibility, many fail to support live coding 
for algorithmic adjustments. A few 
exceptions — such as Visions of Chaos, 
Neural Patterns, VulkanAutomata, and 
scripting environments like Golly — allow for 
real-time parameter tweaking and limited 
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In the context of live performance, emergent systems often require a delicate 
balance of control. A performer needs enough influence to steer the system 
toward desired behaviours, while maintaining the inherent unpredictability that 
makes these systems compelling. Too much control can render the system rigid 
and predictable, while too little can lead to chaotic behaviours that would easily 
veer into undesirable or irrecoverable states.

Similarly, in interactive installations, user interaction often drives system 
behaviour. However, unlike in live performances — where a trained performer 
can adapt to unexpected outcomes — installations engage a general audience 
unfamiliar with the system’s intricacies. In this context, it becomes even more 
critical to maintain behaviours within reasonable bounds, ensuring that user 
interactions lead to engaging, but manageable, outcomes. Failure to control 
emergent behaviours in the context of interactive installations risks confusing,  
frustrating or even harming participants.

This teeter-totter dynamic — the constant push and pull between control and 
emergence — is a fundamental challenge in developing software for exploration 
of emergent systems, including CA. It underscores the need for tools and 
frameworks that support nuanced, real-time interaction with emergent 
behaviours, allowing users to guide outcomes without overpowering the 
system’s intrinsic dynamics. Addressing this challenge directly informs the 
practical objectives of this work, as elaborated Chapter 3.

Summary

The limitations encountered in Semicolony, along with broader constraints in 
existing CA tools, indicate a clear research gap: the lack of software designed for 
open-ended, real-time CA exploration. General-purpose frameworks offer 
flexibility but lack features tailored for CA synthesis and analysis, while 
specialised CA software provides robust tools but remains restricted to specific 
algorithms and use cases. This gap affects both scientific inquiry and creative 
experimentation, underscoring the need for a framework that bridges the 
adaptability of general platforms with the specialised capabilities of CA-focused 
tools. Such a framework would enable researchers and artists to explore 
parametric and algorithmic variations, work with both continuous and discrete 
systems, and engage in real-time interaction without requiring extensive 
programming expertise.

2.6.4 Artistic Objectives

Despite extraordinary increases in computing power, few systematic efforts — 
beyond Wolfram’s early study of ECA — have attempted to systematically explore 
combinatorial spaces of CA algorithms. Existing approaches barely scratch the 
surface, offering no real reference point for their diversity or sheer scale. At the 
heart of this thesis lies a fundamental drive: exploration. The act of exploring 
emergent systems is not merely a methodological pursuit but an artistic vision 
in itself. The vastness of combinatorial algorithmic spaces both forms and 
informs the conceptual foundation of this work, while simultaneously 
presenting a profound technical and creative challenge.

While the technical contributions of this thesis, which include the development 
of tools and frameworks specifically designed for CA exploration, fill a critical 
research gap, they also serve a deeper artistic purpose. The success of this work, 
therefore, should not be measured solely by the utility of the tools or the novelty 
of the algorithms discovered. It should also be evaluated in terms of its ability to 
offer a new perspective on the vastness of algorithmic spaces and their endless 

rule modifications. However, these tools are 
either constrained in scope or require 
significant setup to facilitate open-ended 
algorithmic exploration, particularly when 
it comes to modifying core system dynamics 
without interrupting execution.
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potential. An aesthetic engagement with the abyss of possible emergent 
phenomena is central to the artistic objectives of this work. It reflects a 
deliberate attempt to confront the unknowable, evoking a sense of wonder while 
coping with the cosmic terror that these infinite landscapes can induce.

This thesis aligns with a broader discourse in Arts and Computing Technology 
by regarding algorithmic exploration as both a scientific and artistic act. The 
tools, frameworks, and methods introduced in the following chapters are 
designed not just for structured inquiry, but for wholesale discovery — setting 
out to explore inherently unexplorable domains. Moreover, this work 
consciously avoids grounding itself in practical applications. In doing so, it 
aspires to minimise the temptation to explore with predefined goals or 
utilitarian outcomes. This is a deliberate artistic choice, intended to encourage 
a consideration of the larger space of potential outcomes.

Looking forward, the tools and strategies developed here are part of a long-term 
artistic pursuit. The aim is to build a foundation that maximises the diversity of 
artistic outcomes, both in form and process. This diversity would ideally serve as 
a benchmark for the success of these tools, reflecting their capacity to facilitate 
genuine, unbounded exploration of virtual phenomena. The specific aesthetics 
and properties of future outcomes, naturally, remain to be seen. But the 
aspiration is clear: to create a space where the author — and, hopefully, others to 
come — can continuously discover novel emergent phenomena.

In this way, the artistic objectives of this thesis transcend individual discoveries. 
They seek to evoke an aesthetic experience rooted in confrontation with the 
unknown.

2.7. Summary
This chapter provides a comprehensive introduction to key concepts, themes  
and methodologies related to computational modelling and CA within the 
context of AL. It begins by establishing the role of computational models as tools 
for simulating the behaviour of nonlinear systems, characterised as systems of 
interacting components. The chapter discusses the concept of emergence, a key 
feature of such systems, and distinguishes between simulation and realisation 
within the strong-weak debate in AL. This discussion aims to reframe the role of 
computational models, emphasising the potential value of open-ended 
exploration of emergent virtual phenomena over traditional representational 
approaches.

The chapter also provides an in-depth introduction to CA, providing historical 
context, key terminology, and a review of influential algorithms and 
applications. This highlights the potential of CA as abstract models for studying 
nonlinear dynamical systems, advocating for their use beyond conventional 
scientific modelling. Further, the work of notable practitioners and researchers 
who explore emergent virtual phenomena as part of their scientific or creative 
practice is examined. This review illustrates the interdisciplinary appeal of CA 
and lays out the research gap, setting the stage for the novel computational 
frameworks and methods proposed in this thesis.

The introduction to CA, its contextualisation within the context of AL, and the 
reviews of notable explorers and tools, all serve as the conceptual and technical 
foundations for the chapters to come. Chapter 3 details the development of a 
new computational framework for CA exploration. Its effectiveness in 
supporting a wide range of CA algorithms is demonstrated by implementing 
three notable algorithms reviewed in this chapter: Conway’s Game of Life, 
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Elementary CA and Gray-Scott Reaction Diffusion. These algorithms are also 
used to showcase the Spatial Mapping method presented in Chapter 5.  

Chapters 4, 6 and 7 present, discuss and evaluate algorithms, uncovered using 
the above computational frameworks. These cahpters constitute exploratory 
studies that demonstrate this project’s non-instrumentalist approach, which is 
largely inspired by strong-AL. Chapter 8 contextualises and discusses these 
findings in regards to the philosophical views discussed in this chapter and 
evaluates them in light of the project’s research aims. Lastly, a number of 
avenues for future research are suggested, encompassing both focused 
continuations of this work, as well as broader studies of CA and other 
computational models. 
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3.Computational Framework
This chapter introduces Utomata, a novel computational framework, designed 
for open-ended exploration of CA algorithms. Utomata aims to bridge the gap 
between artistic exploration and computational modelling by enabling 
implementation of a wide range of CA algorithms and allowing real-time 
manipulation of their behaviour. The framework is readily accessible online as 
an open-source Javascript library [201]. It employs a custom functional syntax 
that encourages a non-analytical approach to CA programming, which is 
suggested to enhance its expressive power and effectiveness for open-ended 
exploration of novel algorithms. This approach can reduce the reliance on 
prerequisite knowledge in computer and natural sciences, potentially making 
CA exploration more accessible to creative practitioners.

Sections 3.1 and 3.2 discuss the rationale and design principles upon which 
Utomata was developed. Section 3.3 offers a formal definition of its components 
and syntax, and details a number of unique software design decisions. Section 
3.4 demonstrates how Utomata can be effectively utilised to implement and 
study three well-established algorithms, discussed in the previous chapter: 
Conway’s Game of Life (GOL), Wolfram’s Elementary CA (ECA), and Gray-Scott 
reaction-diffusion (RD).

3.1. Problem statement
The previous chapter reviews various software tools that can be used for 
exploration and study of CA. These can be categorised into three primary 
groups: General-purpose frameworks, multi-paradigm tools, and specialised 
software. The first category encompasses creative coding libraries such as 
Processing, Openframeworks, and P5js. These libraries, coded in different 
programming languages (Java, C++ and JavaScript, respectively), provide 
extensive code bases that abstract and consolidate common operations for 
graphics, sound, and user interaction. While their versatility makes them highly 
suitable for open-ended creative tasks, they typically lack optimisation and 
examples specifically related to implementation or exploration of CA dynamics. 
CA related examples for these frameworks typically involve implementations of 
either GOL or ECA.

Moreover, these examples often prioritise the educational aspects of 
programming a CA system through the use of variables, conditionals, arrays, and 
loops, rather than promoting exploration or examination of CA dynamics. For 
instance, Daniel Shiffman’s P5js GOL implementation [202] comprises 88 lines 
of code, only 5 of which are dedicated to describing the transition function of 
GOL. Additionally, as these examples typically run on the CPU rather than the 
GPU, they are suitable for systems of limited size, often around 100 by 100 cells, 
which is not sufficient for supporting the emergence of complex structures in 
many cases.

The second category, represented by tools such as NetLogo [136] are general-
purpose computational modelling environments with a strong educational 
orientation. They provide an extensive set of built-in CA models, making them 
accessible to both novices and educators. However, their primary focus is on 
facilitating learning and conceptual understanding of complex systems rather 
than fostering open-ended, creative exploration. 
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The third category encompasses software packages explicitly designed for CA, 
such as Golly [132], Ready [133], Life Engine [195], and VulcanAutomata [192]. 
These tools, unlike general-purpose frameworks, prioritise the efficient 
operation of large systems and are equipped with an extensive set of examples. 
However, these are tailored to specific domains or subsets of CA algorithms and, 
consequently, may not be well-suited for creative applications or exploration 
beyond these domains. For example, as its name suggests, Golly places a heavy 
focus on GOL and its many variants. Similarly, Ready focuses on RD-like systems 
and VulcanAutomata is specifically designed for exploration of Multiple 
Neighborhood Cellular Automata (MNCA), a unique class of algorithms formulated 
and explored by the software’s author.

It is therefore suggested that creative practitioners and researchers aiming to 
embark on open-ended explorations of CA within creative or non-analytical 
contexts are faced with a dilemma. They must currently choose between a 
general-purpose approach, which offers versatility, but demands substantial 
preparatory work and prerequisite knowledge, or a specialised approach, which 
would streamline much of the process, buy may introduce significant 
constraints into creative or exploratory work.

3.2. Design Goals
This section outlines a set of design principles for a software framework 
designed explicitly for open-ended exploration of CA. These principles have 
been formulated alongside practical explorations and studies conducted 
throughout the practice based portion of this thesis. The next chapter describes  
such an exploratory study in detail and presents key findings. 

General

Support a wide range of CA algorithms.
CA algorithms exhibit significant variation in state types, dimensionality, 
neighbourhoods, algorithmic expressions, and morphologies. Despite these 
differences, a large number of CA models share common properties. A 
substantial number of models consist of a 1D or 2D grid of non-moving cells, 
each associated with one or more numerical values. The proposed framework 
should encompass as many of these shared properties to enable the 
implementation of a wide range of CA algorithms. 

Consistent

Utilise a unified form of algorithmic expression.
A robust and unified programming syntax would facilitate comparison, 
combination, analysis, allow systematic archival of CA algorithms, as well as 
enable large collections of algorithms to be formulated. This unification should 
transcend particular programming environments, offering a language agnostic 
representation of algorithmic expressions. A low-level mathematical approach 
would facilitate the above, and may also enable meta-programming techniques 
such as genetic programming and procedural generation of CA algorithms.

Useful

Empower exploration and examination of novel algorithms.
A framework designed for open-ended exploration should prioritise synthesis 
over analysis, supporting playful, expressive, and improvisational modes of 
programming. It should encourage accidental discovery and real-time 
mutability by allowing fast examination of multiple variations through visual, 
interactive or automated methods. A prioritisation of synthesis over analysis  
also has the potential to extend the outreach of CA exploration. Increased 
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engagement by creative practitioners may, in turn, promote a mass 
diversification of CA algorithms, similar to how music programming tools such 
as Max/MSP [176] helped to promote a mass diversification in sound design and 
electronic music. 

Cross-Disciplinary

Accommodate a wide range of use cases.
The framework should accommodate, as much as possible, users with varying 
backgrounds and levels of expertise. It should constitute a foundational 
framework upon which a range of custom software tools can be developed for 
different contexts and use cases. Some of these tools would accommodate 
improvisation and intuition based studies that are grounded in subjective 
judgement and are aimed towards artists, designers, hobbyists and students. 
Other tools may allow precise examination, repetition and focused studies, 
allowing engagement by scientists, researchers and educators. Accommodating 
a diverse community of practitioners may be crucial for the adoption and long 
term success of the framework.

Accessible

Easy to access, share and extend.
The framework should be open-source, lightweight, highly extensible and allow 
implementation in multiple programming languages and environments. 
Additionally, emphasis should be placed on a web-based implementation, so 
that algorithms and derivative software could be freely and easily embedded and 
shared online. A language agnostic programming syntax is crucial for creating a 
standard form of algorithmic expression that can be easily transferred between 
environments. 

3.3. Definitions
Utomata is a software framework for interactive explorations of CA, designed for 
creative media, education and procedural content generation. It features a set of 
unique variables, functions and and operators, as well as a custom programming 
syntax for succinct representation of CA configuration and transition functions. 
This section presents a technical clarification of how Utomata handles 
fundamental components of CA, including the grid, state, configuration, 
transition function, operators, and neighbourhoods. It is complemented by a 
javascript/WebGL implementation which has been made freely accessible 
online by the author in 2019, and has been steadily maintained by the author 
since then.

Topology

In Utomata, a finite, two-dimensional, orthogonal grid forms the foundational 
structure of any system. This grid consists of discrete entities, referred to as 
cells. Each cell’s position is denoted by a normalised 2D coordinate, with the top-
left cell positioned at [0.0, 0.0], and the bottom-right cell at [1.0, 1.0]. 1 The 
boundaries of the grid are configurable in one of two modes: toroidal or 
clamped. Under toroidal bounds, the spatial domain wraps along both the 
horizontal and vertical axes. For example, the cell immediately below [1.0, 1.0] is 
situated at [1.0, 0.0], and the cell to its right resides at [0.0, 1.0]. Conversely, when 
clamped bounds are used, any cell with an x or y coordinate that falls below 0.0 
or exceeds 1.0 is considered inactive and set to a constant state of (0.0).

In addition, Utomata’s grid can be divided into any number of self-contained 
horizontal and vertical tiles. In this case, each cell’s x and y coordinates are 
determined relative to its normalised position within its containing tile.

1 This section uses square braces to denote 
the [x, y] position of cells, and parentheses to 
denote their (r, g, b, a) state.
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State

Each individual cell in the system is assigned a numerical value, referred to as 
the cell’s state. In Utomata, all state values are represented by a 4D vector where 
each component is normalised to be within the range of 0.0 to 1.0 (inclusive). 
State vectors are mapped to RGBA colour, such that any state is defined as (r, g, 
b, a). Values lower than 0.0 and higher than 1.0 are clamped to these limits. One-
dimensional states can still be used in Utomata, yet these are defined and 
treated as vectors with identical components. Likewise, algorithms that feature 
discrete states are defined using fractional values. For instance, a binary state 
would feature values of either (0.0) or (1.0), and a 4-state CA may feature the 
states: (0.25), (0.5), (0.75), and (1.0).

Transition function

At regular intervals, all cells in the grid engage in a collective transition process. 
This transition function is expressed as a nested series of mathematical 
operations on 4D vectors. The result of this function is a new 4D vector that 
represents the updated state of each transitioning cell. During this transition, a 
given cell can access various input parameters, including its current state, the 
cumulative states of its neighbouring cells, and the individual state of any given 
cell. Utomata strictly operates in discrete time steps, such that every cell can 
only access the states of itself and other cells — as they were in the previous step. 
This precludes the possibility for old and new values to be mixed.2 Additionally, 
Utomata does not inherently keep track of old state values, though long term 
memory can easily be emulated by using one of the vector channels. It is 
important to note that while Utomata’s transition function enforces clamping on 
all returned state values, the transition function itself permits the used of any 
real-valued numerical constant.

Neighbourhood

A fundamental aspect of CA is the ability of a cell to “observe” the states of other 
cells, typically those adjacent to it, and incorporate these values into its 
transition function. Other state values are commonly referred to as a 
neighbourhood. These can be categorised as follows:

Utomata is designed to accommodate all the above neighbourhood types, 
making it easy to implement commonly used neighbourhoods, thereby 
simplifying the creation of custom neighbourhoods, as well as allowing various  
mixed use cases.  Figure 5 showcases built-in neighbourhood variables in 
Utomata, consisting of commonly used CA neighbourhoods. Note that there is no 
inherent difference between the state of the transitioning cell and any of its 
neighbours.  

2 formally, the transition process can be 
represented as follows:

V(t) = f( V(t-1))

Null The transition function includes no references to cell states.

Self
The transition includes only the state of the transitioning cell 
itself.

Totalistic 

(single)

The transition includes a single parameter whose value is the 
sum of specific neighbouring cell states, typically those in 
close proximity to the transitioning cell.

Totalistic 

(multiple)

The transition includes more than one parameter, whose 
value is the sum of specific neighbouring cell states.

Outer-

Totalistic

The state of any individual cell in the grid may be taken into 
account during the transition.

Figure 5. 
Neighbourhood variables in Utomata.

V V4 V5V3

V8 V9 V24 V25

U1 U3 U4U2

U6 U7 U8 U9
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For custom and outer-totalistic neighbourhoods, Utomata offers convenient  
access to any cell in the grid through the U(x, y) operator. This operator 
returns the current state of any cell, based on relative discrete coordinates to the 
transitioning cell. These are referred to as deltaX and deltaY. The U function can 
be seamlessly integrated into any transition function either directly, or as a 
custom variable. This enables creation of outer-totalistic CA rules and the 
construction of custom neighbourhoods. For example:

vec4 N_vertical   = U(0,-2) + U(0,-1) + U(0,1) + U(0,2);
vec4 N_horizontal = U(-2,0) + U(-1,0) + U(1,0) + U(2,0);
vec4 N_crosshair  = N_vertical + N_horizontal + V;

The ability to combine different neighbourhoods and allow for custom ones is a 
key aspect of Utomata’s broad expressive range. For instance, in the example on 
the right 3, a transition process involves taking the Moore Neighborhood, 
dividing it by the Von Neumann neighbourhood, and then multiplying the result 
by the state of the cell directly above the transitioning cell. This may seem 
unconventional, however, such expressive freedom aligns with Utomata’s  stated 
goal of empowering exploration, improvisation and experimental thinking in CA 
research.

Operators

Utomata incorporates a set of custom operators, designed for use as nested 
functional expressions between vectors of different dimensions. This flexibility 
is meant to enhance the framework’s expressive power, as well as to simplify and 
reduce potential errors in procedural generation of algorithms. Regardless of 
the dimensions of their input parameters, all Utomata operators consistently 
return a 4D vector as their output. 

Binary Operators

Unary Operators

The particular way in which Utomata operators can mix and match parameters 
of different dimensions follows the same convention that is used to denote 
colour values in other creative coding libraries such as processing, P5js and 
Openframeworks. This is done using Utomata’s vec() function, which accepts 
inputs of any dimension and returns a 4D vector.

3 Example of a custom neighbourhood, 
which combines totalistic and outer-
totalistic neighbourhoods:

vec4 N = V8 / V4 * U(0,-1)

add(a, b) addition sub(a, b) Subtraction

mlt(a, b) Multiplication div(a, b) Division

pow(a, b) Power mod(a, b) Modulo

min(a, b) Minimum value max(a, b) Maximum value

lrg(a, b) Larger than sml(a, b) Smaller than

eql(a, b) Equals not(a, b) Not equals

dot(a, b) Dot product dst(a, b) Distance between

flr(a) Floor cil(a) Ceiling

rnd(a) Round nrm(a) Normalise

frc(a) Fractional part sgn(a) Sign

sin(a) Sine asn(a) Arc sine

cos(a) Cosine acs(a) Arc cosine

tan(a) Tangent atn(a) Arc tangent



54

Computational Framework

Following the above convention, Utomata contains multiple variations of each 
operator in order to ensure that a combination of any two values never yields an 
error. This presents an unconventional approach to per-component vector 
operations. It stems from the framework’s philosophy, whereby intuitive 
improvisation and operator interchangeability are prioritised in order to 
empower open-ended exploration. Thus, all Utomata operators must first 
convert their input parameters using the vec() function before performing 
their own operation on a per-component basis. Consider the following 
examples: 

Boolean Logic

The use of conditional statements is discouraged in Utomata. Instead, boolean 
logic is implemented through custom operators. Specifically, the “equal”, 
“smaller” and “larger than” operators function on a per-component basis, 
producing outputs of either 0.0 or 1.0 for each vector component. Furthermore, 
the “addition” and “multiplication” operators can be employed to combine these 
results, effectively serving as OR and AND operators, respectively.

Configuration

A CA configuration function (config) determines the initial state of all cells in the 
grid before the transition function is first applied. As Many CA algorithms 
feature high sensitivity to initial conditions, the configuration often has a 
profound impact on the subsequent evolution of a system. The sole purpose of 
this function is to establish the initial states of all cells before the primary 
transition comes into play. In Utomata, the configuration is best regarded as a 
null-neighbourhood transition function. Utomata can accommodate a number 
of commonly used (as well as less common) configuration patterns via the 
following built-in functions and variables:

Input Output

F(float x, float y) F(vec(x), vec(y))

F(float x, vec2 v) F(vec(x), vec(v)) 

F(float x, vec3 v) F(vec(x), vec(v))

F(vec2 v, vec4 u) F(vec(v), u)

Operator Symbol Description

eql(a, b) == return 1.0 if A equals B, otherwise 0.

lrg(a, b) > return 1.0 if A is larger than B.

sml(a, b) < return 1.0 if A is smaller than B.

add(a, b) || logical OR

mlt(a, b) && logical AND

Input Output

vec(x) vec4(x, x, x, x)

vec(x, y) vec4(x, x, x, y)

vec(r, g, b) vec4(r, g, b, 1.0)

vec(r, g, b, a) vec4(r, g, b, a)

Figure 6. 
Examples of useful configuration 
patterns in Utomata.

vec(sml(rand(), 0.2))

vec(sml(rand(), 0.01))sml(rand(1.,2.,3.), 0.01)

rand(1.,2.,3.)

vec(sml(rand(), 0.1))vec(sml(dst(cell.xy,vec2(0.5)),0.03))

vec( sml(rand(),0.1) * sml( 

dst(cell.xy,vec2(0.5)),0.2) )

vec(nois(cell.xy * 0.2 ))
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The configuration function can also utilise constant vectors or engage in 
compound operations with the above functions and variables. Importantly, 
these functions and variables can also be applied within the transition function 
to allow interaction, position dependent dynamics and non-deterministic CA 
algorithms which employ random values. Utomata.js also allows additional 
custom variables (uniforms) to be set via its JavaScript API. These features not 
only allow interactive configuration and transition functions, but also allow 
Utomata to be used in a wider range of creative applications and interactive 
software experiments beyond CA research.

Input

Utomata offers the capability of interconnecting multiple systems, allowing cells 
from one system to observe the current state of cells in another. This interaction 
is facilitated through input variables denoted as I. Variables I to I25 return the 
local neighbourhood of a transitioning cell of the input system in the same way 
that V to V25 do. Similarly, the operator I(x, y) can sample any cell in the 
input system in the same way that U(x, y) does.

This ability allows implementation of exceedingly intricate systems with any  
dimensionality, effectively creating a network of interconnected CA systems. 
Notably, an input system can either be static or operate at a different rate 
compared to its observer. Given that discrete time steps are employed, queries 
consistently reflect the current state of all interconnected grids in the chain. 
Furthermore, in such a network, systems are even not required to use the same 
grid size since cell coordinates are either normalised or relative. This capability 
potentially unlocks a range of novel possibilities which are not typically 
associated with CA. These may involve simple setups where two systems 
observe each other in a feedback loop to describe particle or swarm dynamics 
(as shown in Figure 7), or more intricate interconnected networks of CA grids, 
forming arbitrarily complex dynamics in higher dimensions.  

Figure 7. 
Touchdesigner implementation of a 
swarm algorithm using two Utomata 
systems, each using the other as input.

cell.xy
A 2D vector that holds the absolute normalised 
coordinates of the transitioning cell.

crsr.xyz
A 3D vector containing the absolute normalised 
coordinates of the cursor position. If the mouse is 
currently pressed, z equals 1.0; otherwise 0.

grid.xy
A 2D vector representing the number of columns 
and rows in the grid as integer values.

time

The current time step, expressed as an integer. This 
is particularly useful for implementing 
configurations or transitions that require more than 
one step to construct.

rand(a, b, c, d)
A function that returns a pseudorandom number, 
available in one, two, three, or four dimensions. The 
parameters act as seeds per colour channel. 

nois(x, y)
A function for generating two-dimensional Perlin 
noise.

set(x, y)
A function that returns 1.0 if the transitioning cell is 
located at the absolute coordinates x and y. This can 
be multiplied by any vector to set it as the new state.
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3.4. Case Studies
The following section walks through the process of implementing three different 
CA algorithms in Utomata. These are: Conway’s Game of Life (GOL), Wolfram’s 
Elementary Automata (ECA) and Gray-Scott Reaction-Diffusion (RD). These 
particular algorithms have been selected primarily because they are among the 
most widely known and heavily researched CA algorithms to date, as discussed 
in their respective reviews in Chapter 2. This aims to benefit readers already 
familiar with implementations of these algorithms using a traditional 
programming approach. 

An additional reason these particular algorithms were selected stems from their 
notable differences. GOL is a 2D binary state, totalistic CA which is often 
represented and implemented as a set of conditional statements. ECA is a 1D 
outer-totalistic CA, commonly represented as a rule table in which individual 
algorithms are encoded as an 8-bit binary value. RD is a 2D totalistic CA whose 
state values are continuous state vectors and is commonly expressed as an 
algebraic formula. The following case studies thus serve to demonstrate 
Utomata’s unusual expressive range, as all three algorithms are implemented 
using the same programming syntax and settings.

3.4.1 Conway’s Game of Life

Conway’s Game of Life (GOL) is undeniably one of the most well-known CA 
algorithm, in large part due to its highly approachable rules and metaphor. State 
values in GOL are Binary, such that they can either be 0 or 1. The algorithm uses 
the totalistic Moore neighbourhood. As showcased in Section 2.2.2, GOL is 
commonly expressed through conditional statements that reference the binary 
state of the transitioning cell and its neighbourhood. Below is a reiteration of 
Conway’s original rules for GOL [53]: 

The above rule system can also be expressed by the following pseudocode: 

For each cell: 
if N == 2 OR N == 3  : V = 1
if N < 2  OR N < 3   : V = 0
if N == 3 AND V == 0 : V = 1

As mentioned in the previous section, since the use of conditional statements is 
discouraged in Utomata, boolean logic can instead be applied through the use of 
nested functional statements consisting of the built-in boolean operators (which 
return either 0.0 or 1.0). In this context, a functional statement refers to a nested 
series of mathematical operations, carried out on numerical values and 
variables. Notably, Utomata employs only unary and binary operators, which 
means that algorithms can effectively be represented as binary expression 

Figure 8. 
Conway’s Game of Life.

Survivals
Every counter with two or three neighbouring counters 
survives for the next generation.

Deaths
Each counter with four or more neighbours dies (is 
removed) from overpopulation. Every counter with one 
neighbour or none dies from isolation.

Births

Each empty cell adjacent to exactly three neighbours — no 
more, no fewer — is a birth cell. A counter is placed on it at 
the next move.

https://utomata.net/phd?edt=GOL
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trees. This results in overall more concise and minimalist algorithmic 
expressions. Below is the complete transition function of GOL in Utomata:

update = add(eql(V9, 3), eql(V8, 3))

First, note that this implementation uses a mixed neighbourhood by referring to  
two built-in neighbourhood variables: V9 and V8, which signify the Moore 
neighbourhood with — and without — the state of the transitioning cell. The 
eql() function acts as a boolean operator, returning the value vec(1.0) if its 
two parameters are equal and otherwise vec(0.0). Moreover, as noted in the 
previous section, Utomata operators cast all values to 4D vectors so the use of the 
constant value 3 is actually interpreted by Utomata as vec(3.0), or more 
accurately: vec(3.0,3.0,3.0,3.0). Making sense of nested functional 
statements can be challenging. It is often useful to break them apart from the 
bottom-up as follows:

eql(V9, 3) // Expression A

eql(V8, 3) // Expression B

add(A, B) // OR operation 

Expression A tests whether or not the inclusive Moore neighbourhood is equal to 
3.0. This covers two scenarios: a “live” cell (with a state of 1.0) with two live 
neighbours, and a “dead” cell (with a state of 0.0) with three. According to GOL’s 
rules, if the equality holds true, the transitioning cell should be alive  in the next 
time step. Expression B tests whether or not the non-inclusive Moore 
neighbourhood is equal to 3.0. This also covers two scenarios: a live cell with 
three live neighbours and a dead cell with three live neighbours. Again, both 
cases should result in a live cell in the next step. Note that the second scenario 
for expression B is actually already covered by expression A. Overall, these three 
scenarios cover exactly all cases that result in a live cell in the next step. 

Since the eql() operator can only return either vec(0.0) or vec(1.0), the 
sum of both expressions can have three possible outcomes: vec(0.0) if both 
expressions are false, vec(1.0) if only one is true, and vec(2.0) if both are 
true. Since all state values in Utomata are clamped to 1.0, the two latter scenarios 
simply return vec(1.0) and otherwise vec(0.0), corresponding exactly to the 
cell’s desired state in the next time step. 

Configuration

In order for any patterns to arise in GOL in the first place, an initial configuration 
must be applied, which consists of some mixture of ‘living’ and ‘dead’ cells. 
Otherwise the system will consist of only dead cells. The simplest way to create 
a non-uniform configuration is to use Utomata’s built-in rand() function, 
which returns a random number between zero and one for each cell in the 
system. 

rand() // return a pseudorandom value between 0 and 1.0

However, since GOL is a binary state CA, it is up to the configuration function to 
round this value up or down.  

rnd(rand()) // a random value rounded to either 0.0 or 1.0

While the above configuration is indeed valid, it generates an even distribution 
of roughly half living and half dead cells across the grid. This ratio can be 

Figure 9. 
Utomata GOL algorithm visualised as a 
binary expression tree.
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adjusted to offer more control over the distribution of living vs. dead cells by 
comparing the value of rand() to some static value.  Because boolean operators 
in Utomata, such as lrg() and eql() return vec(1.0) for true and vec(0.0)
for false, the even distribution of rand() will result in values larger than 0.9 in 
approximately 10% of cells. This particular distribution appears to provide an 
optimal configuration for persistent structures to emerge in GOL. Of course, this 
constant value can be further adjusted as need be. 

lrg(rand(), 0.9) // return 1.0 if value is larger than 0.9,  
     // otherwise return 0.0 

3.4.2 Elementary Cellular Automata

Elementary Cellular Automata (ECA) are a class of 1D, outer totalistic, binary 
state  CA, originally devised by Stephan Wolfram [48].  ECA are most commonly 
represented as rule tables where each of the 256 possible algorithms is 
identified by an 8 digit binary number which corresponds to the possible 
configurations of a cell’s neighbourhood. These binary numbers determine the 
cell’s state in the next time step, based on its current state and the states of its 
two adjacent cells. Each cell has access to exactly three values: the state of the 
cell on its left, itself and the one on its right. Thus, there are exactly 8 ways to 
position these 3 values, which correspond to counting from 0 to 7 in binary:

000 | 001 | 010 | 011 | 100 | 101 | 110 | 111

For each of these configurations, a single binary digit can be assigned to signify 
the new state of the transitioning cell in the next time step. Overall this results in 
a binary number with 8 digits that capture how a given cell may react to any 
possible (outer totalistic) neighbourhood configuration.  Since there are exactly 
256 possible values for an 8 digit binary number, this is also the number of 
unique ECA algorithms. 

Alongside this numbering system Wolfram also provided a set of alternative 
notations of ECA [73], which include all 256 rules expressed as formulae. This 
notation happens to be highly suitable for implementing ECA as algebraic 
statements in Utomata as they feature only addition and multiplication of cell 
states. As noted, these expressions are outer totalistic, so each cell can access 
three neighbouring states: it own and the states of its two adjacent neighbours. 
In addition, these expressions make use of the inverse of each state. Which can 
be expressed as (1.0 - V).

While it is possible to implement 1D CA in Utomata simply by creating a grid 
whose height is equal to 1, it is highly preferable to create a 2D grid that iterates 
one row at a time. This can be done by having each cell address the three 
adjacent cells above it instead of itself and its left and right neighbours. For this 
exact purpose, Utomata features the built-in variables: U1, U2 and U3 and NU1, 
NU2, and NU3. These provide convenient access points to expressing 1D outer-
totalistic CA. Consider the following the following Utomata implementation of 
Rule 30 ECA: 4

update = set(0.5, 0.0) + 

vec((U1 * NU2 * NU3) + (NU1 * U2) + (NU1 * U3))

The above notation, though longer than an 8-digit binary number, provides two 
notable benefits over the more widely accepted use of rule tables. First, it is not 
an encoding but an explicit implementation that can be easily adjusted, 
explored or combined with other algorithms to produce different outputs 

Figure 10. 
Elementary Cellular Automata - Rule 30.

4 This implementation uses infix rather 
than prefix notation in order to simplify and 
shorten the expression. However, 
implementing ternary operators such as 
those used here are nonetheless possible via 
a composition of two binary operators as 
follows: add(a, add(b, c))

https://utomata.net/phd?edt=ECA
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without altering the underlying framework. Second, this form of expression 
adheres to the same structure and rules as other CA algorithms in Utomata, thus 
enabling potential comparisons between algorithms that are commonly seen as 
too dissimilar to evaluate side by side.

3.4.3 Reaction Diffusion

As discussed in Chapter 2, reaction-diffusion (RD) is a highly influential 
algorithm, largely inspired by Alan Turing’s seminal work on morphogenesis 
[23]. RD is sometimes regarded as a separate computational model from CA due 
to its use of a real-valued 2D state. Implementations of RD often require 
specialised software [133], as many CA frameworks only handle discrete states. 
However, Utomata’s ability to support up to 4D real-valued vector states makes it 
well-suited for implementing RD and RD-like algorithms. Below is a complete RD 
implementation in Utomata:

 vec4 N = sub(V4, mlt(V, 4.0)); // weighted sum
 float NR = mlt(0.22, N.r); // weighted diffusion for R
 float NG = mlt(0.05, N.g); // weighted diffusion for G

 float RGG = V.r*V.g*V.g;

 float K = 0.062;  
 float F = 0.036;

 update = add(
    frc(V),
    vec(
       add(sub(NR, RGG), mlt(F, sub(1.0, V.r))),
       sub(add(NG, RGG), mlt(V.g, add(F, K))),
 0.0,
 0.0
    )
 );

 update += set(crsr.xy) * crsr.z; // Cursor interaction

This implementation builds upon Karl Sims’ online RD tutorial5 [57] and 
incorporates advanced strategies in Utomata, such as custom neighbourhoods, 
kernel approximations, swizzling, vector operations, and real-time interaction. 
The algorithm simulates interactions between two chemical substances, 
represented by the red and green channels, denoted here as R and G. The 
simulation evolves by iteratively updating each cell in the grid with a compound 
vector that expresses the local reaction and diffusion dynamics.

Laplacian approximation

Custom variables  N,  NR, and  NG  calculate the Laplacian approximation, which 
measures how the value of a cell differs from the average value of its neighbours. 
This operator, commonly used in RD systems, models the diffusion of 
substances from areas of high to low concentration. Here, the Laplacian is 
approximated using a convolution kernel 6 with weighted contributions from 
adjacent neighbours ( 0.22 ) and diagonal neighbours ( 0.05 ).

Figure 11. 
Grey-Scott Reaction-Diffusion.

5 The tutorial presumably relates 
specifically to Grey-Scott Reaction-
Diffusion, though this is not explicitly 
stated.

6 This setup reflects a Laplacian kernel 
optimized for the Gray-Scott reaction-
diffusion model:
         0.05  0.22  0.05 

Kernel = 0.22  -4.0  0.22 

         0.05  0.22  0.05  

https://utomata.net/phd?edt=RD
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These variables are computed as follows:

› N calculates the weighted sum of the Von Neumann neighbourhood 
by subtracting the weighted value of the current cell from its 
neighbours, effectively applying the kernel’s central weight (-4).

› NR represents the weighted diffusion contribution for substance  R  
from the neighbourhood.

› NG represents the weighted diffusion contribution for substance  G  
from the diagonal neighbours.

› RGG drives the interaction between the two substances, where  R  is 
consumed to produce  G . The quadratic dependence on  G  ensures 
non-linear behaviour, forming the foundation for emergent patterns.

Reaction and Diffusion

The term  RGG = R * G^2  drives the reaction where  R  is consumed to produce 
G. The quadratic dependence on G introduces nonlinear behaviour, enabling 
emergent patterns. The parameters  F  (feed rate) and  K  (kill rate) regulate these 
dynamics:

› F controls the replenishment of  R . Higher values increase  R  
availability, potentially overwhelming  G , while lower values can 
starve the reaction.

› K controls the decay of  G . Higher values lead to faster decay and less 
persistent patterns, while lower values support more stable formations.

Update Rule

The term add(frc(V), vec(R’, G’, 0, 0)), computes the transition from 
the current state of the cell to its new state.

› frc(V) caps state values between  0.0  and  1.0 , ensuring stability.

› vec(R’, G’, 0, 0) embeds the equations for  R  and  G  in the red 
and green channels. The blue and alpha channels remain unused and 
are set to  0.

The formulas for  R’ and  G’ operate as follows:

›  R’ = (NR - RGG) + (F* (1 - R)) :  R  decreases through 
reaction with G^2 and increases via diffusion and feeding.

›  G’= (NG + RGG) - (G * (F + K)) :  G  increases through 
reactions and diffusion but decreases due to decay, which combines 
the feed and kill rates.

Real-time Interaction

Real-time user interaction is enabled through a cursor-based perturbation 
mechanism added to the update rule. The function set(crsr.xy) returns  
vec(1.0)  for the cell at the cursor’s current position. This value is multiplied by 
crsr.z, which is  1.0  only when the mouse button is pressed and  0.0  otherwise. 
This allows users to dynamically inject substance concentrations into the 
system in order to trigger new patterns or disturb existing ones.

Figure 12. 
Grey-Scott Reaction-Diffusion as binary 
expression tree. Note that this expression 
uses explicit values, effectively 
unraveling the custom variables.

Computational Framework
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3.5.  Summary
This chapter introduces Utomata: a novel computational framework for open-
ended exploration and study of CA algorithms. Utomata aims to fill the 
methodological gap between general purpose graphics programming  
frameworks, which do not offer specific support for CA, and specialised 
frameworks, which may introduce significant constraints on open-ended 
exploration or creative applications.

Through its custom operators, variables and functional syntax, Utomata breaks 
away from traditional approaches to CA programming and allows 
implementation of an exceptionally wide range of CA. It aims to make CA 
research more accessible to creative practitioners who may not possess 
extensive backgrounds in computer or natural sciences. Practical use of 
Utomata is demonstrated through the implementation of three well-established 
CA algorithms. These case studies showcase Utomata’s versatility and its ability 
to adapt traditional and distinctly different CA models into a single unified 
framework.

The next chapter demonstrates how Utomata can be used to conduct an 
exploratory study of a new family of CA algorithms, called Type-C. The chapter 
employs direct (low-level) manipulation of algorithmic expressions in Utomata, 
as well as introduces a number of tools and methods for interacting with CA 
algorithms. These practices facilitate the discovery of a number of novel 
algorithms and behaviours, which are presented and discussed. Chapter 5 
introduces a high-level exploration method, based on Utomata’s functional 
syntax. Along with its accompanying software implementation, this method 
allows real-time exploration and visual examination of large combinatorial 
spaces of CA algorithms. 
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4.Low-level Exploration

This chapter details an exploratory study of novel CA algorithms using Utomata. 
Its findings, which include a number of novel algorithms and qualitative 
accounts of their behaviour, demonstrate the framework’s effectiveness in open-
ended exploration of CA. From a computational arts perspective, these studies 
also represent novel emergent structures which stand on their own merit as 
contributions offered by this thesis.

Exploration of CA can be understood through two interconnected properties: 
genotypic and phenotypic. The former pertains to a algorithm’s structure — its 
“genomic” design — while the latter refers to the range of observable behaviours 
exhibited by its instances. These terms are further clarified in the following 
sections, and expanded upon in Chapters 5 and 6.

Low-level exploration of CA algorithms, in this context, refers to direct 
manipulation of their genotypic properties — their code — in order to induce 
changes to their phenotypic properties —  their behaviour — in real time. By 
manually changing parameters, operators, or the structure of an algorithm, one 
can essentially navigate the high-dimensional space of its variations to reveal its 
immediate neighbours, or “sibling” algorithms. This approach is especially 
useful for uncovering close variants of a given algorithm, combining two 
different algorithms, or for isolating behaviours of interest through a process of 
visual examination, combined with vigorous trial and error. 

4.1. Rationale
The primary goal of Utomata is to contribute to the diversification of known 
emergent structures in creative media, artistic experimentation and procedural 
content generation. As such, it is designed to favour synthesis over analysis and 
to emphasise a process of improvisation over goal directed research. In its pure 
functional form, Utomata’s syntax does not easily lend itself to analytical 
comprehension, especially in longer algorithmic expressions. This chapter  
contends that this is not merely an acceptable trade-off, but rather a useful tool  
towards achieving the above goal.

Figure 13. 
Novel CA algorithms in Utomata Lib, 
discovered through low-level 
exploration.

https://utomata.net/lib
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The intricate mechanics of nonlinear dynamical systems, including CA, are 
notoriously hard to fully comprehend, even when using tools specifically 
designed towards analysis. A notable example is a neural network, where the 
weights of the underlying graph are not explicitly programmed, nor are their 
nuanced dynamics ever fully captured by the programmer. Moreover, In creative 
media it is often the case that once a behaviour is implemented, a tedious 
process of parameter tweaking starts. 1 This process is not always driven by 
analytical reasoning but rather by intuition, aesthetic preference and, most 
importantly, trial and error. 

While the notion of relinquishing any or all analytical comprehension of an 
algorithm, as proposed in this chapter, can be criticised for taking this approach 
too far, this comes with a noteworthy benefit. A non-analytical approach can 
empower programmers to apply their intuition onto more than just an 
algorithm’s numerical parameters — but also to its logical operators and even its 
structure. By relinquishing efforts to understand every single element of the 
code, one is rewarded with creative freedom that would otherwise be difficult to 
obtain using a traditional programming approach. In this sense, an analytical 
understanding of CA transition functions may not only be unnecessary for some 
modes of exploration, but may sometimes hinder the creative process by 
strengthening the programmer’s bias towards behaviours they are already 
familiar with or can more easily comprehend. 

Of course, it is still possible to make sense of any Utomata algorithm. The GOL 
implementation described in the previous chapter is not only easy to 
understand but is arguably clearer and more concise, compared to traditional 
implementations. Finally, a non-analytical programming paradigm can 
effectively make exploration of emergent structures more accessible to creative 
practitioners who do not possess a background in computer or natural sciences. 
By shifting the focus away from established knowledge to acquired intuition, 
exploration of novel CA algorithms and dynamics could potentially consist of 
extremely simple workflows, which rely on minimal prerequisite knowledge. 
Consider the following Scheme: 

1. Run a valid Utomata algorithm

2. Modify any aspect of it:

› Parameter

› Operator

› Algorithmic structure

3. Visually examine the changes caused to the system

4. Undo or repeat

The underlying idea behind this scheme is that any change to an algorithm is 
akin to invoking a different one. A useful metaphor for this process is to consider 
these two algorithms as genetic siblings, where a functional algorithmic 
expression is thought of as the genotype and its resulting output is the 
phenotype. Minor genetic changes, such as tweaking a numerical constant, a 
neighbourhood type, or a single operator typically result in slightly varied 
phenotypic behaviour. Such variations often perserve a surpiring amount of 
phenotypic similarity. However, as more genotypic variations are compounded, 
phenotypic differences will typically stagger. In that sense, making pronounced 
changes to the structure of the algorithm can be thought of as invoking 
increasingly distant cousins, which feature widely different phenotypic
characteristics.

1 During a  2016 talk at Goldsmiths College, 
Memo Akten, a prominent creative 
technologist, referred to himself as a 
“professional number tweaker”, stating that 
roughly 80% of his time developing software 
is spent on finding the “right” parameters 
for an algorithm.
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4.2. A study of Type-C
One of most pivotal precursors for this research project is a software experiment 
conducted as part of the author’s MA thesis project in Computational Arts [199]. 
The experiment featured a hardware accelerated implementation of the Abelian 
Sandpile algorithm [11] — a simulation in which virtual “grains of sand” are 
continuously dropped upon a lattice to form “piles” . Once a stack of four grains 
is formed in any cell, it would “collapse” and disperse among the cell’s four 
adjacent neighbours. In turn, this may result in further collapses and ultimately 
form large scale avalanches and intricate structures. 

This experiment had originally set out to implement the Sandpile algorithm as a 
continuous state CA, whereby instead of consisting of discrete entities (sand 
grains),  continuous quantities would be added to the system in real time using 
the cursor. While this was initially made as a technical decision, allowing the use
of openGL fragment shaders, the experiment ultimately introduced what would 
later become core attributes of Utomata: the use of normalised state vectors to 
describe CA dynamics, the use of real-time interaction as a means for CA 
exploration, and an explicit departure from physical metaphor.

Adapting the sandpile algorithm to use a continuous normalised state can be 
done by dividing all states values by four. According to the original algorithm, 
which consisted of a discrete four state CA, a grain would be a value of 1 and thus 
each cell’s state may be  either 0, 1, 2 or 3. 2 In a continuous normalised state 
implementation, grains would have a value of 0.25 and thus cells could have a 
value of 0.0, 0.25, 0.5 and 0.75. However, as this new algorithm now featured 
continuous state values, it immediately became apparent that these quantities 
can be arbitrarily changed to be any numerical value since they no longer 
represent discrete grains of sand. Similarly, the quantity which disperses 
between a cell’s neighbours upon its collapse is also arbitrary. In fact, as physical 
modelling was not the goal, this quantity can even be different from the current 
value of the collapsing cell. In other words, the notion of conservation of matter, 
which is hard coded into the original Sandpile algorithm, could now be 
relinquished. The resulting new algorithm was named Type-C (shown in Figure 
14). It featured the following two open variables, which could now be tweaked in 
real-time to induce a range of emergent behaviours and structures. 

› a: The quantity inserted to the system by the mouse cursor. 

› b: The quantity dispersed between a cell’s four adjacent neighbours 
upon its collapse. 

This new variation was implemented as a fragment shader in the processing 
programming environment and was able to produce surprisingly complex 
structural patterns which appeared to emerge from extremely minimal input. 
This algorithm was later converted to use a totalistic neighbourhood, as well as 
significantly reduced to a single functional algebraic expression:

update = add(frc(V), mlt(stp(0.1, mod(V4, 0.6)), 0.6))

In a later experiment, a variation of this algorithm had yielded distinct 
meandering patterns that, under certain conditions, were able to produce 
second-order structures — distinct organisations of meandering patterns 
towards a self-similar, larger scale meandering pattern — shown in Figure 15.  
This variation was derived through a process of trial and error, whereby various 
changes to the algorithm were induced in an effort to expose novel features. Due 
to the experimental and intuitive nature of this process, by that point any 
analytical understanding by the author of the inner workings of the algorithm 
had significantly eroded.

Figure 15.
Second-order meandering patterns in 
Type-C.

Figure 14. 
Original Type-C algorithm.

2 Once a value of 4 is reached, the cell 
“collapses” and its state returns to 0. Each 
adjacent neighbour is supplemented by 1, 
and so on. 

https://utomata.net/phd?edt=TC
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Subsequent attempts at simplifying this particular version in order to regain 
some level of analytical insight over its underlying process had rendered it 
sterile. Thus the only remaining course of action was to reduce it to a more 
concise form and attempt to isolate the self-similar patterns via a somewhat 
tedious process of elimination. This yielded an entirely new algorithm, albeit 
one in which the meandering patterns were indeed isolated. 

Digger-Dagger

update = mlt(add(frc(V.r), mlt(sgn(stp(0.1, mod(V4.r, 
vec(0.875)))), sub(add(vec(0.89), mlt(sub(V4.r, V4.g), 
vec(9.0, 8.0, 10.0))), frc(V.r)))), vec(1.0, 0.99, 1.0))

This new algorithm features a highly resilient worm-like pattern that, once 
invoked using the cursor, progressively consumes most available black regions 
of the grid. This algorithm is quite robust to parameter changes, with minor 
tweaks giving rise to “sibling” behaviours that present similar phenotypic traits. 
It is important to emphasise that the above expression was not obtained by 
gaining any analytical understanding of the algorithm’s behaviour, but through 
a process of reducing its logical statements to a single functional algebraic 
expression, combined with careful real-time tweaking of its numerical 
parameters. This approach takes advantage of the real-time capabilities of 
working with openGL fragment shaders, which require no compilation. Any 
change to the algorithm is immediately apparent and can thus be quickly built 
upon or undone. Likewise, any new algorithm can, once again, be used as a 
starting point for the discovery of even more algorithms. 

4.3. Field Parameterisation 
The non-analytical programming method detailed in the previous section  
describes a low-level approach to CA exploration,  coupled with a computational 
framework that allows real-time programming and interactivity. While this 
methodology can indeed yield novel and unique findings, it is admittedly 
tedious. Most notably, while this low-level approach to exploration makes it easy 
to meander around the space of  variations of any given algorithm, it can only 
account for just one algorithm at a time.  To address this limitation, a higher-
level tool can be applied to facilitate the concurrent observation of numerous 
parametric variations of a given CA algorithm. This tool can empower 
examination of a spectrum of algorithmic behaviours, continuous or discrete, 
allowing one to explore specific areas of interest. This can be done by integrating 
the x and y coordinates of each cell in the grid into the algorithmic expression, 
thereby allowing every cell to potentially execute a slightly distinct transition.

This concept is referred to as field parameterisation. It was initially applied in 
the context of CA by Pearson [10], [82] to map a varying field of Reaction-
Diffusion systems, wherein the constants k and f of the algorithm were varied 
along the x and y axes respectively. This method yields a two dimensional field 
of diverse phenotypic expressions of an algorithm, as each cell is computed 
using a unique pair of constants. This method has been incorporated into 
Utomata and generalised so that it can be applied to any algorithm. By exposing 
the cell’s position as a normalised 2D vector: cell.xy, an algorithm can be 
modulated to allow concurrent observation a wide range of behavioural 
variations. This not only makes it easier to locate behaviours of interest, but also 
allows for a more detailed investigation of specific areas by making it possible to 
“zoom in” to regions of particular interest. 3  This can be done by scaling the 
cell.x or cell.y variables, thus spanning larger or smaller regions of the 
parameter space. For example, the expression (0.4 + cell.x * 0.2) yields 

Figure 18. 
Continuous field Parameterisation of 
Digger-Dagger. The highlighted region 
marks the selected parameters of 0.875 
and 0.89.
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Figure 17.
Digger-Dagger.

Figure 16.
Digger-Dagger algorithm visualised as a 
binary expression tree.

3 Additionally, the cursor position may be 
used, as well as  any number of external 
inputs such as range sliders or sensors, 
potentially allowing higher level software 
development for more targeted explorations 
or applications. 
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https://utomata.net/phd?edt=DD
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Figure 19. 
Tiled field parameterisation of variations to Digger-Dagger. 
Utomata supports a built-in tiling system that allows any number of rows and columns. 
Each tile is isolated to have its own toroidal bounds. A tiled field parameterisation 
addresses the problem of continuous field parameterisations, whereby the transition 
function differs between each and every cell, potentially resulting in inconsistent 
behaviour. Utomata’a built-in tile variable, which returns a 2D vector signifying the tile 
of the transitioning cell, can be used to map various parameters on a discrete field, 
allowing each tile to run a consistent and unique algorithm.
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a 5X magnification towards the centre of a field. This generalisation of the field 
parameterisation technique can be leveraged to widen the scope of exploration 
of the multidimensional parameter space of any given algorithm in Utomata. By 
varying parameters across the grid. This higher-level view can provide a better 
understanding of the interplay between different parameters and their 
collective impact on the dynamics of an algorithm. In the next chapter, this 
approach is extended significantly, forming vast fields that span not only 
parameters, but also operators and structural variations of algorithms.

4.4. Case Studies
This section presents a curated collection of novel algorithms, obtained through 
a process of low-level exploration and field parameterisation in Utomata. The 
genotypic differences between this particular set of algorithms are quite 
minimal, yet they present a surprising range of phenotypic patterns, while 
retaining a noticeable familial resemblance. As with the original Type-C 
algorithm, from which they all essentially stem from, all variants use a black — 
vec(0.0) — configuration and are typically invoked by setting small local 
regions of cells to vec(1.0) using a  a configuration pattern or the cursor. 

Red Nose Hexagliders

update = mlt(add(frc(V), mlt(sgn(stp(vec(0.1), mod(V4.rrrr,
vec(0.352,0.94,1.0)))), sub(add(vec(0.72,0.129,0.0), 
mlt((sub(V4.rrgg, V4.ggrg)), vec(7.,2.0,1.0))), frc(V.
rrbr)))), vec(1.0,0.988,1.0))

Red Nose Hexagliders (RNX) is a continuous state, full RGB, Type-C variant 
which features the emergence of an unusually diverse range of stable, higher-
order moving formations. These appear to be various compounds of a basal, 
rhombus shaped, glider-like pattern, spearheaded by a single red cell. Basal 
gliders span four by four cells diagonally, and traverse the grid along the x or y 
axes at a constant rate of one cell per time step. This traversal is a result of a two-
step oscillation, visualised in Figure 21.

While relatively simple on their own, basal gliders appear to be resilient to 
overlapping with other gliders moving in the same direction. This resilience 
allows higher-order structures of a surprising variety to emerge and persist, as 
different compounds of gliders travel alongside each other. Figure 25 showcases 
a taxonomic study of observable formations in RNX. 

Basal gliders can be triggered relatively easily by setting small, uneven groups of 
cells to random or white values. This typically results in the formation of stable 
globular structures (shown in  Figure 25 [49, 50, 57])  which, if triggered again, 
can spawn one or more basal gliders. Once a glider is formed, it will retain 
consistent form and constant movement, unless interrupted by other patterns.
In most cases, collisions between patterns traveling in opposite or 
perpendicular directions result in a termination of both. This often leaves a 
residual pattern, which may be static or feature simple oscillation. However, in 
some cases collisions may themselves spawn new gliders. 

Many types of gliders and higher-order moving formations in RNX leave a 
unique residual linear pattern behind them as they traverse the grid. Residual 
patterns from basal and lower-order formations typically consist of simple, 
static and stable arrangements of cells (Figure 25 [62 - 67]), while higher-order 
formations may leave behind more compound oscillating patterns (Figure 25 [62 
- 67]). The residual patterns of higher-order formations may themselves feature 
more complex activity, which are sometimes potent enough to continuously 

Figure 21.
Basal Glider pattern in RNX. The two-
step oscillating pattern between [1] and 
[2] results in traversal of the grid along 
either of its axes at a constant rate of one 
cell per time step.

[1]

[2]

Figure 20.
Tiled field parameterisation of Type-C 
variants with a centralised configuration 
pattern, which yields radially symmetric 
and unique pattern in each tile. 

https://utomata.net/phd?edt=RNX
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spawn new gliders and glider formations (Figure 25 [39 - 48]) which are typically 
perpendicular to the direction of their spawning formation. Such active residual 
formations often result in exponential growth that rapidly fills up most dark 
regions of the grid within just a few minutes.  However, Since the majority of 
residual patterns are static, the result of this exponential growth is an 
unavoidable end of activity due to a lack of space. This dynamic, where black 
regions constitute a depletable resource, is shared by a number of Type-C 
variants, including Digger-Dagger.

The algorithmic expression of RNX (visualised in Figure 24) includes references 
to the transitioning cell (V) and the Von Neumann neighbourhood (V4). It also 
features five numerical constant vectors. The expression bares close genotypic 
resemblance to Digger-Dagger, as shown in Figure 22. This resemblance is quite 
surprising considering the two’s highly distinct phenotypic dissimilarities. 

Overall, RNX presents a notable and clear example of spontaneous emergence of 
higher-order structures in a continuous state CA. Figure 25 [1 - 48] showcases a 
collection of diverse formations of increasingly higher-order, observed and 
captured in RNX throughout this study. It is important to emphasise that this 
merely constitutes a preliminary study of this algorithm and the range of 
phenomena it can support. It is difficult to ascertain at this time exactly what 
other kinds of formations are possible in RNX. This is largely due to the resilient 
nature of glider patterns and their sensitivity to initial conditions. 

Vital Signs (2021)

Following the discovery of RNX in 2020, a short video essay titled: “Vital Signs - 
Red Nose Hexagliders”, was produced and released online [203], as part of the 
practice based portion of this thesis. The film consists entirely of screen 
recordings, captured during initial explorations of the algorithm. Narrated and 
scored by the author, the film adopts the stylistic and narrative framework of the 
nature documentary genre. This is a deliberate creative and didactic choice, 
aimed towards broadening the appeal of CA exploration towards a general 
audience. By taking  on familiar cues from this popular genre, the film  evokes a 
sense that the type of phenomena it features constitutes instances of real living 
creatures, yet without having to explicitly state this as fact. It presents a carefully 
crafted narrative around captured materials in order to make it accessible to its 
audience. This, too, in accordance with the nature documentary genre. 

Field Parameterisations of RNX

There are, in fact, numerous algorithmic variations of RNX. Minor changes to 
many of the numerical parameters in the algorithm appear to have little to no 
effect. However, a deeper investigation of parametric siblings reveals a wide  
range of highly potent dynamics. Figure 27 features four different examples of 
field parameterisations of a succinct version of RNX. In each one, the parameter 
configuration of the original algorithm is highlighted and the parameterisation 
is listed below. This emphasises a key concept regarding the methodology 
presented in this chapter, and in this thesis overall: 

Every conceivable CA algorithm can be seen as representing a given dynamical 
system that is embedded within a vast space of other — similar — systems. The 
ability to assemble and traverse this high dimensional space in order to explore 
such systems can benefit from the development of tools and methods that allow 
observation of such systems within the continuum in which they can be made to 
exist. 

The fields plotted in figure 27 are akin to “zooming out” from RNX to reveal some 
of its parametric siblings. In each instance, exactly two parameters are plotted 

Figure 23.
Screenshot from: VITAL SIGNS - Red Nose 

Hexagliders.

Figure 22.
Difference comparison between Digger-
Dagger (top)  and RNX (bottom).

Figure 24.
Red Nose Hexagliders algorithm 
visualised as Binary expression tree.

https://youtu.be/Nk3TiIMtFSs?si=w7tkUCFsDmxYUTAY
https://youtu.be/Nk3TiIMtFSs?si=w7tkUCFsDmxYUTAY
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[ 1 - 2 ]  Basal glider states (2X magnification)
[ 3 - 5 ]  Basal glider with appendage 
[ 6 - 8 ]  Wide nose variants
[ 9 - 12 ]  Basal twin formations
[ 13 - 16 ]  Asymmetric basal twin formations

[ 17 - 24 ]  2nd order symmetric twin formations
[ 25 - 32 ]  2nd order asymmetric twin formations
[ 33 - 37 ]  Quadruplets with passive residual patterns 
[ 38 - 40 ]  Compound gliders with active residuals
[ 41 - 48 ]  High-order formations with active residuals

[ 49 - 57 ]  Sterile radial activation pattens
[ 58 - 61 ]  Fertile radial activation patterns
[ 62 - 67 ] 1st order residual pattern formations
[ 68 - 81 ] Higher order residual pattern formations

Figure 25.
Taxonomy of observed structural formations in Red Nose Hexagliders.
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along the x and y axes to reveal a unique set of surrounding behaviours. Due to 
the high dimensional nature of these expressions, there are numerous fields 
which can be plotted from a single algorithm, each plotting a range of 
combinations of two of its parameters at a time. While these examples constitute 
a continuous parameterisation, they nonetheless reveal distinct regions of 
coherent behaviour. This aligns with the previous observation about RNX’s 
apparent robustness to minor parametric variations. This property is 
surprisingly common among other Type-C variants and continuous state CA 
overall. Phenotypic changes along a parametric field may often result from a 
“collapse” of a single floating point parameter towards a different value in the 
overall calculation of the expression. Less common though, is the fact that some 
algorithms, including RNX, appear to span multiple and separate regions of a 
field parameterisation. This may indicate that some types of phenomena, such 
as RNX basal gliders, are more resilient to parameter changes than others. 

From a technical standpoint, field parameterisations in Utomata merely involve 
replacing one or more numerical parameters with an expression that contains 
cell.x or cell.y (or both). While these values can be scaled up or down to 
zoom in or out of a given behaviour, this approach can only be considered 
comprehensive for up to two parameters at a time. This is not the case for 
algorithmic expressions such as RNX, which feature at least 12 numerical 
parameters, as they represent a staggering number of different possible 
parametric combinations. Obtaining a field parameterisation that yields 
meaningful variants is thus more of an acquired skill. It involves trial and error, 
intuition and applying aesthetic judgement towards subject matter. This 
practice is inherently subjective and difficult to reproduce, for which it is firmly 
situated by this thesis within the domain of computational arts, rather than 
scientific research. Nonetheless, it is important to reiterate that a lack of precise 
analytical understanding of algorithmic behaviour does not appear to be a 
barrier for this form of exploration to yield meaningful novel findings.

TC8 (Wildfur)

update = mlt(add(frc(V), mlt(stp(vec(0.1,0.1,1.0), mod(V4.
rrrr, vec(0.352, 0.94,0.0))), sub(add(vec(0.72, 0.129, 1.), 
mlt(sub(V4.rrgg, V4.ggrg),vec(10.0,0.1,1.0))), frc(V.
rrbr)))), vec(1.0,0.988,1.0))

This variant is a noteworthy sibling of RNX. It differs from it by only two 
numerical parameters while featuring a fundamentally different behaviour. 
Though both share a number of properties such as colour and overall pattern 
velocity, this algorithm features a much more volatile and continuous dynamical 
process. Invoking a single cell typically forms a gradient pattern that traverses 
the grid in four directions as a continuous rhombus shaped pattern. Slightly 
larger local invocation patterns can lead to the emergence of textured 
formations of unusual complexity. When invoked by a symmetric pattern and as 
long as it is uninterrupted, this algorithm appears to retain global symmetry 
indefinitely. This potentially means that the algorithm is resilient to floating 
point error, unlike many other continuous state CA. However, any subsequent 
perturbation rapidly compounds to introduce chaotic formations that take over 
the entire system.

A notable feature of TC8 is that, unlike RNX and Digger-Dagger, it appears to be 
capable of replenishing its non-black regions, allowing it to retain a potent 
dynamical process over a potentially indefinite number of steps. The yellow-
orange waves that traverse the grid diagonally seem to be resilient to impact 
with other formations. A region that has been traversed by such a wave will 
become washed by a continuous bright green value that gradually diminishes, 

Figure 26. 
TC8 (Wildfur).

https://utomata.net/phd?edt=TC8
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mlt(add(frc(V),mlt(sgn(stp(vec(0.1,0.1,1.0),mod(V4.rrrr,vec(0.352, 0.94,0.0)))),sub(add(vec(0.72,0.129,1.0),mlt(sub(V4.

rrgr,V4.ggrg), vec(cell.x*10.0, cell.y*10.0,1.0))),frc(V.rrbr)))),vec(1.0,0.988,1.0))

mlt(add(frc(V),mlt(sgn(stp(vec(cell.x*0.3, cell.y*0.3,1.0),mod(V4.rrrr,vec(0.352, 0.94,0.0)))),

sub(add(vec(0.72,0.129,1.0),mlt(sub(V4.rrgg,V4.ggrg), vec(7.0,2.0,1.0))),frc(V.rrbr)))),vec(1.0,0.988,1.0))

mlt(add(frc(V),mlt(sgn(stp(vec(0.1,0.1,1.0),mod(V4.rrrr,vec(cell.x, cell.y,0.0)))),sub(add(vec(0.72,0.129,1.0), 

mlt(sub(V4.rrgg,V4.ggrg), vec(7.0,2.0,1.0))),frc(V.rrbr)))),vec(1.0,0.988,1.0))

mlt(add(frc(V),mlt(sgn(stp(vec(0.1,0.1,1.0),mod(V4.rrrr,vec(0.352, 0.94,0.0)))),sub(add(vec(cell.x, cell.y, 1.0) 

,mlt(sub(V4.rrgg,V4.ggrg), vec(7.0,2.0,1.0))),frc(V.rrbr)))),vec(1.0,0.988,1.0))

Figure 27. 
Continuous field parameterisations of Red Nose Hexagliders.
The parameters of an algorithm can be explored in various ways. In these examples, four 
different numerical parameter pairs are selected and spread along the x an y axes using 
the cell.x and cell.y variables. Note that in some cases, the full normalised range can be 
scaled up or down, as well as appended with a constant value. This allows focusing on 
particular regions of interest. In many of these fields, the original RNX algorithm can be 
found in one or more region, among a continuous range of its sibling algorithms.
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leaving a local arrangement of small, oscillating cell regions. These oscillators 
appear to “spontaneously combust” in sparse intervals, forming other wave 
patterns. The question of whether or not this process is indeed perpetual is, of 
course, undecidable. However this property makes it stand out among other 
Type-C variants, constituting a delicate and potentially perpetual equilibrium 
between volatile and stagnant dynamics.  

TC5 (Infinitron)

This variant was discovered as part of an attempt to locate a middle ground 
between the discrete and robust dynamics of RNX, and the seemingly perpetual 
ability for regeneration apparent in TC8. While it is neither as diverse as the 
former, nor as regenerative as the latter, it demonstrates that particular 
behaviours of interest can indeed be cultivated through intuition based 
manipulation of algorithms. In this case, the ability to yield discrete formations, 
as well as replenish non-zero regions was located through a careful process of 
exploring field parameterisations, consisting of various combinations of its two 
sibling algorithms.

RNX2

Another notable variation of RNX is a subsequent attempt to find an algorithm 
that supports the emergence of discrete formations, while still having the 
capacity for replenishing the non-zero regions of the space. This variant features 
distinct glider patterns that bare a familial resemblance to RNX basal gliders, 
while also presenting notable differences. Here, basal gliders consist of an 
orthogonal 3 by 3 formation. While it does support a number of glider types, they 
present much less diversity compared to RNX. The residual patterns left by 
gliders are also more uniform, with most patterns appearing as a smooth 
gradient green line. Perhaps most notably, the two step oscillation, which drives 
all RNX basal gliders is not present here, hinting that this oscillation may not be 
the prime instigator of motion in this lineage,  but rather a by-product of it. 

FireWorm

The distinct worm-like patterns of Digger-dagger are visually reminiscent of a 
number of existing algorithms, including neural worms [194], a number of 
MNCA algorithms [192], as well as certain variants of RD. This apparent 
similarity is particularly curious considering none of these algorithms share any 
of their code. Subsequent attempts to isolate the worm-like formations featured 
in Digger-Dagger yield a highly robust and surprisingly succinct algorithm. This 
variation stems from an iterative process of combining field parameterisations 
with a gradual reduction and simplification of the algorithmic expression. With 
each iteration some part of the expression is removed, new variations are 
plotted across a 2D field and noteworthy variants are selected for their 
phenotypic traits. 

update = vec(sub(div(V.g, V24.r),0.01), frc(V24.r), 0.0)

Unlike Digger-Dagger, this variant does not leave a residual pattern and thus 
appears capable of retaining activity indefinitely. Its single numerical parameter 
can be assigned values between 0.01 and 0.2, allowing some attenuation of the 
pattern’s scale and stability. These worm-like formations feature a 2 step 
oscillation in which the red edges alternate sides. They also demonstrate a 
remarkable robustness to collisions. In perpendicular impacts the open edge 
cam perform a full U-turn and continue uninterrupted. More shallow  angle 
impacts can often disrupt the other side to form a new connection. 

Figure 29. 
RNX2.

Figure 30. 
FireWorm.

Figure 28.
TC5 (Infinitron).

https://utomata.net/phd?edt=RNX2
https://utomata.net/phd?edt=FW
https://utomata.net/phd?edt=TC5
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RNX4

Another RNX variant exhibits a two phase dynamic. In the initial phase, a 
stepped random configuration invokes a small population of simple glider 
patterns with short gradient residual formations that follow them but do not 
appear to subside. The second phase arises as a result of glider collisions which 
invoke localised rectangular regions on a 45 degree angle. These rectangular 
regions possess a feedback mechanism that causes them to grow exponentially 
in distinct pulses. As they rapidly fill the entire grid, they form a medium that 
acts as a perfect conduit for the pulsating patterns to persist in. The result is a 
highly dynamic pattern that constantly traverses through the stagnant, fractal-
like formations of the now overlapping rectangular regions. 

TC15 (Forst)

This variant features unusual higher-order formations which present as two 
primary region types. The brighter one consists of high contrast, diverse 
arrangements of colours. When viewed up close, these regions appear highly 
chaotic, however, zooming out exposes a strict, repetitive structure which spans 
hundreds of cells across. This region type appears to emerge as a bi-product of 
an underlying, more rigid fractal formation in the form of a faint dark green, 
overall less diverse, and slightly faster process. This dynamic exhibits 
formations of varying scales and types but typically all are formed as  symmetric 
trails that advance at a 45 degree angle. 

The symbiotic relationship between the two region types enables a linear growth 
process which, like Digger-Dagger and RNX, eventually engulfs most available 
regions of the grid. However, the residual patterns appear to feature a more 
intricate oscillating dynamic compared to other Type-C variants, appearing as 
large scale invocations of blinking cells. It is unclear whether or not these 
invocations are a result of high order interactions that somehow manage to 
traverse the grid through the static residual patterns or a result of local cell 
interactions that statistically happen to induce blinking patterns in different 
regions at a time. 

TC12 (Neon Tubing)

This variant features resilient tube-like formations that traverse the grid in 
unusual angle increments of 22.5 degrees. The resulting diagonals are highly 
prone to produce oblong Sierpinski-like triangle patterns. The resilience of the 
tube formations allows them to easily “bounce” off of each other upon impact, 
thus often closing off large triangular regions across the grid.  Though Sierpinski 
triangle fractal formations are apparent in many CA, they are typically very 
fragile, with any protuberance typically destroying further development. 
However, here the resilience of these patterns induces a “healing” dynamic in 
which they quickly regroup and move in alternate directions or even create 
tangent fractal formations.  

TC9 (Citymakr)

This variant features a relatively diverse range of gliders and semi stable 
residual patterns. In this case, the residual patterns left behind by gliders appear 
to be an exact imprint of their values. This makes them appear as “borrows” of 
various sizes and compositions. This algorithmic expression is closely related to 
Digger-Dagger, as evident by the worm-like formations that form inside active 
regions. Since they are essentially enclosed, they cannot develop and retain a 
stagnant, yet potent form. However, when they do manage to break out of these 
regions, they can cause further invocations of a range of patterns.

Figure 32. 
TC15 (Forst).

Figure 31.
RNX4.

Figure 33.
TC12 (Neon Tubing).

https://utomata.net/phd?edt=TC15
https://utomata.net/phd?edt=RNX4
https://utomata.net/phd?edt=TC12
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4.5. Discussion
Low-level exploration of CA algorithms in Utomata essentially consists of 
applying a functional programming approach to CA transition functions. While 
this, in itself, is not necessarily a novel concept, this chapter demonstrates the 
effectiveness of this approach towards exploration of novel algorithms. The 
proposed methodology involves relinquishing an analytical understanding of CA 
dynamics, and instead relying on intuition, visual examination, and trial and 
error. It is important to emphasise that the case studies showcased in this 
chapter constitute only a single investigation of a handful of variants to a 
particular algorithm that, while showing initial promise, is merely one of 
countless others. 

The hidden potential of as-yet-undiscovered CA algorithms that present 
emergent properties is extremely difficult to assess. Regardless of its potential 
applications, this form of non-analytical programming is not without flaws. It is  
innately less suited for closed-ended tasks such as simulation, physical 
modelling or goal directed pattern generation. Moreover, the process of 
converting an algorithm from a general purpose language to a functional 
Utomata expression and vice versa, can require a moderate to high level of 
programming proficiency. Another notable drawback of this approach is the fact 
that it is unavoidably time consuming. Despite its real-time capabilities and 
tools for parallelisation, this kind of exploration in Utomata can only ever 
account for a single algorithm at a time. While clever use of the field 
parameterisation method is shown to offer a somewhat extended view of larger 
parametric spaces, effective as it may be, it simply cannot capture the vast 
landscape of algorithmic variations. 

Utomata expressions of a moderate length, such as the case studies presented 
here feature up to 20 numerical parameters. It is reasonable to assume that 
scattered across these 20 dimensional spaces are pockets of remarkable 
emergent behaviours, waiting to be discovered. Non-automated efforts to 
uncover, cultivate, isolate and study these particular behaviours of interest 
involve a tedious process that is perhaps more akin to farming than 
programming; a methodical craft that involves mutation, observation, selection 
and cross breeding. 

While undeniably tedious, this process can also be incredibly satisfying. It is an 
acquired skill that is more of an art than a science. As such, its appeal to a wider 
target audience may represent an untapped potential. An intuition-based 
method for CA exploration could offer more than just allowing artists to 
incorporate CA into their creative practice. Extending CA research’s appeal to 
new audiences and contexts can potentially introduce entirely new paradigms 
to the study of CA, contributing to a mass diversification of known emergent 
phenomena. The next chapter introduces a higher-level approach to CA 
exploration. While notably more complex, this approach enables exploration of 
exponentially larger spaces of algorithmic variants and does not rely on any 
programming skills. 

Both the low-level method presented in this chapter and the high-level method 
presented in the next chapter should best be regarded as different tools through 
which to observe and experiment with CA. These methods are not 
interchangeable, nor do they necessarily rely on each other. However, they may 
indeed complement one another in certain contexts. For example, a low-level 
study can be conducted initially to locate a particular algorithm of interest, 
which can then be investigated further using a high-level approach to uncover 
novel variations of it. A low-level approach can then, once again, be used to 
conduct more in-depth studies of these variants, and so on. 

Figure 36. 
TC13.

Figure 34. 
TC9 (Citymakr).

Figure 35. 
TC8B.

https://utomata.net/phd?edt=TC13
https://utomata.net/phd?edt=TC9
https://utomata.net/phd?edt=TC8B
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Figure 37. 
Tiled field parameterisation of Type-C variants. 
While this method can only account for two parameters at a time, mindful use of it can 
help expose the hidden range of  behaviours that lies between them.  
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5.Spatial Mapping

This chapter introduces a novel method for high-level exploration of CA 
algorithms. It involves procedural generation of nested Utomata expressions 
and a technique for mapping them onto a two-dimensional field. This effectively 
yields a map consisting of all possible variations of a given algorithm, allowing 
simultaneous interactive visual examination of an exceptionally large range of 
phenomena. What sets this method apart is its ability to produce a somewhat 
continuous space of phenotypic behaviour, whereby algorithms that share 
similar traits can be situated in geographic proximity to each other within the 
vast combinatorial space they occupy. There are, however, a number of notable 
limitations to this method, which are discussed throughout this chapter and in 
Chapter 8.

Spatial Mapping can be considered as a meta-programming approach to CA 
exploration. It enables one to literally scroll through a space of possible 
algorithms, as if browsing a vast online map. This has a potentially profound 
effect on the act of exploration; it can strengthen the notion that novel emergent 
structures are not created arbitrarily, but occupy their own unique domain, 
waiting to be discovered. In that sense, the method described in this chapter and 
its accompanying software implementation [204] constitute a literal 
embodiment of a “Laboratory of Babel”: they account for how a space of all 
possible CA algorithms of a given format may be constructed and explored. 

Sections 5.1 introduces this concept and provides a step by step description on 
how this method is implemented. Section 5.2 offers a selection of case studies 
for utilising this method towards exploring combinatorial spaces around 
previously discussed algorithms. The next chapter demonstrates how this 
method can be used as a basis for a comprehensive study of a novel family of CA 
algorithms, called Type-U. Future expansions and implications of this method for 
the study of CA, as well as other types of  virtual structures are outlined in 
Chapter 8.

5.1. Formal definition
The previous chapter demonstrated how low-level manipulation of algorithmic 
expressions in Utomata can be used to explore and study novel CA algorithms. It 
was suggested that this form of non-analytical programming is akin to 
navigating a combinatorial space of algorithms, such that any valid algorithmic 
expression constitutes a unique coordinate in that space. In that regard, any 

Figure 38. 
Screenshot from Utomata Lab [204]

https://utomata.net/lab
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modification, such as changing one of its numerical constants, is akin to 
traversing this high dimensional space, namely, along the dimension that 
corresponds to the parameter that was modified. 

This way of thinking about CA algorithms evokes a sense that they are not just 
abstract entities that are generated from scratch in a computer program, but 
pointers to instances of unique dynamical systems. From a low-level coding 
perspective, this merely signifies a conceptual framework which aims to 
stimulate free-form thinking about open-ended exploration. However, this 
chapter goes beyond the conceptual by proposing a practical method for the 
construction of such spaces in software, allowing interactive exploration of all 
conceivable variations to any given CA algorithm.

This method involves several formidable challenges, such as uncovering the 
precise dimensionality and domain of these vast combinatorial spaces, as well 
as making sure they are consistent, complete and distinct. Furthermore, a mere 
enumeration of algorithms is insufficient; an organised and consistent 
framework for their placement is crucial for effective exploration. The proposed 
methodology includes the following steps:

1. Articulate an algorithmic expression and compile a set of symbols.

2. Define the domain and dimension of the algorithmic space.

3. Devise an isomorphic mapping onto every algorithm in the space.

4. Establish a method for spatially distributing algorithms.

A successful implementation of this method necessitates the development of a 
specialised software framework designed to facilitate not only the generation of 
large algorithmic spaces, but also seamless navigation of the various spaces it 
can make accessible. This software implementation, called Utomata Lab [204],  is 
a key contribution made by this thesis. It acts as both a proof of concept for the 
method presented in this chapter, as well as a key instrument for the discovery 
and study of many of the algorithms documented in this thesis. 

5.1.1 Algorithmic expression 

The first step is to define and limit the scope of algorithmic expressions to be 
included in the combinatorial space in question. To illustrate the concepts of 
dimension and domain, it may be useful to first consider the following simple  — 
yet flawed — approach for their definition: 

› Dimension: Consider algorithmic expressions as sequences of 
characters up to a given maximum length. This length is defined as 
the dimension of the combinatorial space. 

› Domain: The domain refers to a set of unique symbols available for 
constructing an expression. In this example, this refers to the total 
number of ASCII characters which may appear in a valid Utomata 
expression, which happens to be 41. 1

For example, consider any Utomata expression consisting of up to 100 
characters. This expression exists as a single point in a 100-dimensional space. 
This space contains precisely 41^100 unique expressions. While this method 
appears straightforward and is indeed capable of generating a space that 
contains all Utomata expressions of to 100 characters in length, this method is 
critically flawed. It describes a space that consists almost entirely of expressions 
that are decidedly NOT valid Utomata algorithms. Not only is the astronomical 
size of this space far too large to even suggest it can be explored in practice, it is 
so full of irrelevant combinations that it would be highly improbable to come 

1 This includes letters a-z, digits 0-9, and 
the following characters: “(“, “ )”, “ ,”, “.” and 
“ “. Note that while the whitespace character 
is not strictly a part of an algorithm, it 
allows inclusion of algorithms that are 
shorter than the maximal length.

Spatial Mapping
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across a single valid Utomata algorithm, let alone one of interest. Hence, it is 
evident that merely creating a comprehensive set of expressions is insufficient. 
A viable candidate set must also possess properties of completeness, exclusivity 
and distinctiveness. 2 In simpler terms, this space must posses the following 
properties: 

1. Completeness: It must encompass a complete set of finite Utomata 
expressions.

2. Exclusivity: It must consist of only of valid Utomata expressions.

3. Distinctiveness: It must contain exactly one of each.

In order to construct such a specific and exclusive set, certain restrictions must 
be placed on the algorithmic expressions to be considered. The previous chapter 
demonstrated the advantages of utilising nested functional expressions for low-
level manipulation of algorithms in Utomata. This format allows modification or 
substitution of any operator, variable or numerical constant, all while retaining 
the validity of the algorithm. Since Utomata exclusively uses unary and binary 
operators, algorithms adhering to this structure can be represented as binary 
expression trees. 3 This approach differs from the flawed approach of the 
previous example, which imposed no restrictions on symbol selection. A 
method for generating expressions, which relies on binary expression trees can 
indeed yield a complete, exclusive, and distinct set of algorithms. To this aim, a 
nested Utomata algorithm can be characterised by the following sets:

› Topology (T): A labelled binary/unary tree with a finite number of 
nodes, denoted as T.

› Unary operators (U): A set of operators used to label all nodes in the 
tree which have exactly one child. (two edges)

› Binary operators (B): A set of operators used to label nodes in the tree 
which have exactly two children. (three edges).

› Variables (V): Variables used within the algorithm (ie: V4, U9). These 
can only label leafs in the tree. (one edge)

› Numerical Constants (N): A collection of numerical constants used in 
the algorithm. These can also only label leafs in the tree.

The dimension and domain of the algorithm can thus be defined as follows: 

› Dimension: For a given tree topology T, the dimension of the 
combinatorial space, encompassing all algorithmic expressions 
equivalent in topology to T, equals the number of nodes in T.

› Domain: Unlike in the earlier example, where all symbols were drawn 
from a single set of 41 characters, this combinatorial space features a 
heterogeneous domain. This arises from the varying sizes of the different 
sets containing variables, constants, unary operators and binary 
operators.

For example, consider the combinatorial space of the following expression: 

add(frc(U2), 0.01)

This expression represents a valid Utomata algorithm, showcasing a 
combination of binary and unary operators, a variable, and a numerical 
constant. As such, it aligns with the structure of a binary expression tree, shown 
on the right, where each node falls into a distinct domain. This algorithm can be 
abstracted as follows: 

B(U(V), N)

Figure 39. 
Example of a simple binary/unary tree 
topology. 

3 This discussion uses the term binary tree 
to include topologies that consist of both 
unary and binary operators.

2 The requirement of distinctiveness only 
pertains to the genotype. There may be any 
number of algorithms that describe the 
exact same phenotypic behaviour. This 
property is discussed at length in the next 
chapter.
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Any alteration of a symbol in this expression, that is, replacing it with a different 
symbol from its designated domain, yields an equally valid Utomata expression. 
The collection of all such substitutions defines a combinatorial space 
encompassing every conceivable permutation of expressions that adhere to the 
given topology T. It is important to emphasise that for this given topology, this 
set is both complete and exclusive: it encompasses all potential permutations of 
the algorithm, while containing nothing but valid algorithms. Crucially, this only 
holds true provided that all substitutions are drawn from their respective 
symbol domains.

The sheer magnitude of the combinatorial space described above should be 
considered with respect to the use of real-valued numerical constants. While 
this method can technically be applied to any finite set of symbols, the use of 
anything more than a handful of numerical constants would quickly stagger to 
form unreasonably large result spaces. For many algorithms, this would, in turn, 
result in flooding the space with overwhelming redundancy in the form of 
expressions that differ only by minute decimal fractions, producing large 
amounts of virtually indistinguishable outcomes. Therefore, the goal of 
achieving a complete space is hereby relaxed in order for a reasonably 
distinctive space to be formulated. This can be regarded as fine-tuning the 
resolution of the combinatorial space; a process that can be adjusted by adding 
or removing symbols from their respective domains. In this way, a dramatic 
reduction of the result space can be achieved, simply by restricting the domains 
to small subsets of symbols.

5.1.2 Enumeration

Continuing the example expression from the previous subsection, a finite 
combinatorial space of a manageable size can be constructed by defining the 
domain for each symbol set, as listed below. The number of unique algorithms 
in the space can then be calculated by multiplying the domain size for each 
symbol in the expression. Note that in this example, the set of topologies and the 
set of unary operators each consists of just one symbol. 4

› T: B(U(V), N )

› B: add, sub, mlt, div

› U: frc

› V: U1, U2, U3

› N: -0.02, -0.01, 0.0, 0.01, 0.02 

With the domains, dimension, and the total number of algorithms in the space 
now established, the next step involves defining a function capable of 
formulating every possible algorithmic expression. This is achieved by 
enumerating all potential configurations of available symbols. The number of 
possible expressions that conform to the above set can easily be calculated by 
multiplying all domain sizes together. However, enumerating all configurations 
in order to generate these algorithms is not as trivial. 

Each unique configuration of symbols can be mapped to a series of numbers, 
which conform to a selection of the algorithm‘s symbols from their respective 
domains in order. For example, The series [ 1, 0, 0, 2 ] can be mapped to the 
expression sub(frc(U2),0.0). Since each of these domains is of a different 
size, the enumeration must takes this into account. For example, the series [ 1,  
1, 0, 2 ] cannot be mapped to any configuration because the U domain contains 
only one symbol. This problem can be solved by using a mixed radix system for 

4 In this example there are 4 binary 
operators, 1 unary operator, 3 variables and 
5 numerical constants. Thus amounting to 
exactly 60 permutations as follows: 

B( U(V), N)
4  1 3   5
4 * 1 * 3 * 5  = 60
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enumeration. Unlike in many conventional number systems, where all digits 
conform to the same base, the digits of a mixed radix system can each be 
counted using a different base. This provides a consistent method to enumerate 
all possible expressions where each symbol is selected from a domain of a 
different size.

For example, in a decimal numbering system, all digits are in base-10. 
Incrementing from 0 involves advancing each digit up to 9, then resetting to 0 
and advancing the next digit. Other base systems operate similarly, only with 
more or fewer digits available. For instance, base-2 systems can only use 0 or 1, 
while base-16 systems typically employ symbols from 0-9 and then A-F. In 
contrast, mixed radix systems employ a heterogeneous base so that each digit can 
count up to a value that may differ from other digits. Though less common and 
less intuitive, mixed radix systems are useful in specific contexts, such as time 
notation (hh:mm:ss and dd:mm:yyyy) and the imperial unit system.

As stated above, this mapping must be defined so that every valid input number 
is mapped to exactly one unique Utomata expression. This is known as an 
isomorphic mapping. Where it not isomorphic, the one-to-one relationship 
between input numbers and expressions would not be kept, resulting in the  
combinatorial space containing invalid expressions, missing expressions or 
duplicate expressions.

X = 0000
b = 4135

The input number for the mapping, denoted as X, can now be defined. The 
number of digits in X corresponds to the number of nodes in the algorithm’s tree 
topology, which also conforms to the dimension of the combinatorial space. 
Additionally, a string of digits, denoted as b, is defined to indicate the base for 
each digit of X.  These bases directly correspond to the domain sizes for each of 
the symbols in the expression in order. To establish a connection between an 
input number and a Utomata expression, each digit effectively acts as an index 
within its respective symbol domain. Consequently, when a digit assumes the 
value of 0, it selects the first symbol. Similarly, subsequent increments, in turn, 
access subsequent symbols. 

0000: add(frc(U1),-0.02)  0001: add(frc(U1),-0.01)  0002: add(frc(U1),0.0) 

0003: add(frc(U1),0.01)   0004: add(frc(U1),0.02)   0010: add(frc(U2),-0.02) 

0011: add(frc(U2),-0.01)  0012: add(frc(U2),0.0)    0013: add(frc(U2),0.01) 

0014: add(frc(U2),0.02)   0020: add(frc(U3),-0.02)  0021: add(frc(U3),-0.01) 

0022: add(frc(U3),0.0)    0023: add(frc(U3),0.01)   0024: add(frc(U3),0.02) 

1000: sub(frc(U1),-0.02)  1001: sub(frc(U1),-0.01)  1002: sub(frc(U1),0.0) 

1003: sub(frc(U1),0.01)   1004: sub(frc(U1),0.02)   1010: sub(frc(U2),-0.02) 

1011: sub(frc(U2),-0.01)  1012: sub(frc(U2),0.0)    1013: sub(frc(U2),0.01) 

1014: sub(frc(U2),0.02)   1020: sub(frc(U3),-0.02)  1021: sub(frc(U3),-0.01) 

1022: sub(frc(U3),0.0)    1023: sub(frc(U3),0.01)   1024: sub(frc(U3),0.02) 

2000: mlt(frc(U1),-0.02)  2001: mlt(frc(U1),-0.01)  2002: mlt(frc(U1),0.0) 

2003: mlt(frc(U1),0.01)   2004: mlt(frc(U1),0.02)   2010: mlt(frc(U2),-0.02) 

2011: mlt(frc(U2),-0.01)  2012: mlt(frc(U2),0.0)    2013: mlt(frc(U2),0.01) 

2014: mlt(frc(U2),0.02)   2020: mlt(frc(U3),-0.02)  2021: mlt(frc(U3),-0.01) 

2022: mlt(frc(U3),0.0)    2023: mlt(frc(U3),0.01)   2024: mlt(frc(U3),0.02) 

3000: div(frc(U1),-0.02)  3001: div(frc(U1),-0.01)  3002: div(frc(U1),0.0) 

3003: div(frc(U1),0.01)   3004: div(frc(U1),0.02)   3010: div(frc(U2),-0.02) 

3011: div(frc(U2),-0.01)  3012: div(frc(U2),0.0)    3013: div(frc(U2),0.01) 

3014: div(frc(U2),0.02)   3020: div(frc(U3),-0.02)  3021: div(frc(U3),-0.01) 

3022: div(frc(U3),0.0)    3023: div(frc(U3),0.01)   3024: div(frc(U3),0.02)

A comprehensive list of all variations of the example algorithm: add(frc(U2), 0.01)
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Upon reaching its maximum base value (which is its corresponding digit in b), 
every digit cycles back to 0, and the next digit in X is advanced, just as it would 
in a homogeneous base system. This iterative process ensures enumeration of 
all possible symbol combinations, as X is iteratively incremented — one digit at 
a time. Once X has reached a value of 3024, the process will have generated a set 
of algorithms that is guaranteed to consist of exactly one instance of every 
possible combination from the given set of symbols. 

5.1.3 Spatial Arrangement

The previous subsection detailed the process of obtaining a complete set of 
permutations of a given algorithm. This process is based on a topology T and 
four distinct symbol sets: B, U, V and N. It relies on an isomorphic mapping that 
establishes a correlation between algorithms and a mixed radix system, denoted 
as X. The numerical assignment generates an ordered list of algorithms, ready 
for implementation in Utomata. However, as it may be common to explore 
relatively longer algorithms, as well as larger symbol sets, the number of 
possible permutations increases exponentially. Combinatorial spaces of this 
kind can easily encompass trillions of algorithms, making it impractical for a 
software implementation to  run, or even attempt to store all of them.

It should also be emphasised that this method constitutes an isomorphic 
mapping from a high-dimensional space to a one-dimensional list. This step is 
crucial so that all permutations can be enumerated. However, extending this 
mapping to two (or possibly more) dimensions can provide significant benefits 
to exploration by allowing various spatial arrangements to be formed. Having 
some level of control in positioning algorithms along a two dimensional field is 
almost like applying a sorting mechanism that can significantly increase the 
continuity of the space by positioning similar algorithms in proximity to each 
other. If carefully applied, this may even result in some clustering of similar 
phenotypic behaviour, where algorithms of particular interest may end up 
situated in pockets of similar, perhaps equally interesting, variants.

If the mixed radix number X can be used to generate an ordered one-
dimensional list of algorithms, then in order to generate a 2D space of 
algorithms, the same approach can be applied by creating a second mixed radix 
number, denoted as Y. By explicitly assigning each symbol in the expression to 
either X or Y, every algorithm would now be mapped to two numbers instead of 
one. This assignment can be denoted by an additional string d. The number of 
characters in d conform to the number of symbols in the expression. For a 2D 
distribution, each character in d would either be x or y. While there are 2^4 
unique configurations of d, most of these configurations will result in equivalent 
spatial distributions. For example, “xxxx” and “yyyy” both result in the same 
distributions along a horizontal or vertical layout. 

Note that this process can be extended to any number of dimensions,, up to the 
number of symbols in the expression, which, again, is the dimension of the 
combinatorial space itself. In practice, this process involves supplementing 
each symbol in the abstracted version of the algorithm with a corresponding 
indicator of its designated axis in the mapping as follows: 5

Bx(Ux(Vy), Ny) // d = xxyy

Different 2D mappings can yield significantly different spatial arrangements. 
One of the primary goals of this method is to maximise the continuity of Spatial 
Mappings so that similar algorithmic expressions are situated in proximity to 
each other in their encompassing result space. The example above features a 2D 
mapping where all operators are assigned to the x axis and all variables and 

5 In the context of this study, only 2D 
mappings are considered. However, the 
prospects of using higher dimensions for 
spatial arrangements, as well as 
enumerating binary tree topologies are 
discussed in Chapter 8. 
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numerical constants to the y axis. The resulting space might therefore feature a 
gradient of behaviours along each of its axes. This is because each two horizontal 
neighbouring algorithms would differ by exactly one operator, and each two 
vertical neighbours by a single parameter. This approach may be appropriate for 
certain algorithms, but not others. For example, some algorithms, such as the 
one presented in the next chapter, feature distinct axial symmetry. In that case, 
assigning axes in accordance to the unique structure of the algorithm is shown 
to be highly preferable. It should also be emphasised that while this method does 
achieve a high level of  genotypic continuity, this does not necessarily ensure  
phenotypic continuity. 

While a noticeable correlation between genotypic and phenotypic similarity has 
been observed for some of the algorithms discussed here, this is by no means 
assumed to be consistent or universal to CA in general. However, as 
demonstrated in the next chapter, it does seem apparent that larger 
combinatorial spaces feature greater phenotypic continuity than smaller ones. 
This is presumably due to the fact that the relative impact of some permutations 
is diminished in proportion to the length of the expression. The final step 
involves translating the mixed radix number systems, X and Y, to decimal 
coordinates. While not strictly necessary, this step allows for significantly more 
intuitive navigation of the result space. 

5.1.4 Implementation

Utomata Lab [204] is hereby presented as an integral part of the practice based 
portion of this research. It features a robust online implementation of the Spatial 
Mapping method described in this chapter, and has been used extensively for 
the study presented in the next chapter. This software implementation uses 
Utomata’s built-in tiling feature, which allows up to 64 unique algorithms to run 
on a single HTML canvas node. This feature is supplemented with a bespoke 
rendering and layout engine, allowing it to run up to 16 HTML canvases 
simultaneously. Hence, running on sufficiently powerful hardware, Utomata Lab 
currently supports the simultaneous execution of 1024 unique algorithms. 

Further, as users navigate through a space of algorithmic variations, new canvas 
instances are generated on the fly and hot-swapped to allow a seamless scrolling 
experience. Hidden Utomata instances are paused and their canvas object is 
replaced with a static png image of their updated state. Once an area is returned 
to, it automatically resumes running from its previous last step. The software 
can also be used to perform batch runs of any size in order to systematically 
cover larger regions of a given space. In this mode, each tile is set to run up to a 

Figure 40.
Screenshot of Utomata Lab, featuring 
variations to GOL. (source algorithm is 
highlighted)

https://utomata.net/phd?lab=GOL
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given number of steps, optionally performing a custom image analysis before 
halting to allow new tiles to be rendered. Moreover, It features the ability to 
export each individual tile, allowing entire regions to be graphed for subsequent 
offline study and further analysis.

5.2. Case studies
The example algorithm presented in the previous section was deliberately 
selected for clarity and simplicity, even though it does not yield particularly 
interesting behaviour. In this section, a series of case studies is presented, 
applying Spatial Mapping to the algorithms discussed in previous chapters. 
These case studies serve two primary objectives. Firstly, they provide practical 
demonstrations, showcasing how Spatial Mappings can be applied to existing 
algorithms. This serves to further clarify the process of symbol selection, spatial 
arrangement, and to demonstrate interactive exploration. Secondly, these case 
studies function as a proof of concept for the method itself by showcasing 
numerous variations of well-established algorithms.

5.2.1 Game of Life

As discussed in Section 2.2.2 and in Chapter 3, Conway’s Game of Life stands as 
one of the most widely recognised CA algorithms, particularly beyond the realm 
of academic research. Its popularity has spurred the development of numerous 
derivative algorithms over the years [67], [69]. Many of these derivations have 
emerged from the creative endeavours of practitioners and enthusiasts who 
have conducted low-level explorations, employing methods akin to those 
described in Chapter 4.

Efforts to discover novel variants of GOL have also included the creation of the 
“Life-Like” set of algorithms [71], which employs a specialised notation to 
describe algorithmic behaviour. In the Life-Like notation, the fundamental 
concept of GOL is hard-wired. Thus, while there are numerous possible Life-Like 
variants, they only differ in the number of live neighbours it takes for a birth, 
death or survival to occur.  In contrast, Utomata offers a much more flexible 
approach to GOL variant exploration. Its use of functional expressions can 
transcend beyond the above restrictions to also include algorithms that, 
explicitly or implicitly, do not adhere to this life-death metaphor. 

Through the use of Utomata Lab, the act of obtaining novel variations to GOL has 
been surprisingly straightforward. Recall the following implementation of GOL 
from Chapter 3. This expression consists of three binary operators (add, eql, 
eql), two variables (V8, V9) and two numerical constants  (3.0, 3.0).  A Spatial 
Mapping of GOL can be generated by the method described in the previous 
section. This involves defining  a set of symbols [B, V, N], and assigning x and y 
coordinates to each symbol in the expression. Consider the following mapping 
parameters: 

Source:      add(eql(V8, 3.0), eql(V9, 3.0)) 
Abstraction: Bx (Bx (Vy, Ny ), Bx (Vy, Ny ))

B: [add, mlt, eql, lrg, sml]
V: [V, V4, V8, V9, V24, V25]
N: [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0] 

These mapping parameters result in the creation of a relatively large 
combinatorial space of variations to GOL. This particular axial distribution 
assigns all three binary operators (B) to the x axis and all variables and numbers 

Figure 41. 
GOL variations in Utomata Lab.
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to the y axis. The set of binary operators include the add and eql operators, 
which are present in the source expression, as well as three additional 
operators: mlt, lrg and sml. These were selected for their compatibility with 
boolean operations in Utomata, thereby ensuring all transition functions still 
return integer values so that the result space would, in turn, feature only binary 
state algorithms. The set of variables (V) includes five totalistic neighbourhood 
variables, as well as the value of the transitioning cell. Numbers (N) include 
whole numbers 0.0 through 9.0. 6

The resulting space consists of 450,000 unique variations, spanning 125 
columns and 3600 rows. In this particular configuration, the source algorithm is 
positioned at (x:12, y:2023). While the order of the symbols in their respective 
domain sets does not change the composition of algorithms in the space, it can 
significantly impact the order in which they appear. For instance, switching the 
mlt and eql operators would position the source algorithm at (x:6, y:2023) 
instead. Along with adjusting the axial distribution, adjusting the order of 
symbols in their symbol domain sets can be a useful strategy for organising and 
clustering certain phenotypic behaviours in a result space. 

This particular mapping is advantageous because it ensures that every two 
neighbouring cells differ from each other by only one symbol. Moreover, it 
makes navigating the space slightly more intuitive, as travelling along the x axis 
means changing operators and travelling along the y axis means changing 
parameters and variables. This is evident in space’s tendency to feature similar 
behaviours along its columns, more so than along its rows. There are, of course 
numerous other ways to create a combinatorial space of GOL variants. Different 
Spatial Mappings and distributions may offer more or less continuous spaces, 
which feature more or less interesting variations. 

For example, a different axial distribution may involve plotting all operators and 
variables on the x axis and all numerical constants on the y axis. This approach 
yields a space with 4500 columns and 100 rows. The immediate surroundings of 
the source expression, now situated at (x:280, y:33), consists of numerous other 
algorithms which feature the use of the same numerical values [ 3.0, 3.0]. This is 
because one would have to travel a significant distance along the y axis before 

6 Of course, these choices can be easily 
adjusted later on. For example, by adding 
the div and mod operators to the domain, 
some algorithms are likely to return 
fractions, resulting in the incorporation of 
continuous state CA in the result space.

Figure 42. 
Variations to GOL featured in Utomata 
Lib. Most of these algorithm were 
discovered by browsing through Spatial 
Mappings of GOL. 
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reaching variants that involve other constants. This may be beneficial for certain 
types of algorithms, as it may help to uncover particular variants of interest. 

The presence of perfect duplicate phenotypic behaviour within a combinatorial 
space appears to be quite common. In this case, this can occur by flipping 
between the V8 and V9 variables. Two algorithms which feature identical 
behaviour — but not an identical algorithm — can be referred to as phenotypic 
twins. In this case, a number of such twins may exist in the space due the fact that 
both the eql and add operators are symmetric. Some level of phenotypic 
redundancy in Spatial Mappings is often unavoidable. This topic is elaborated 
upon in the next case study, as well as further discussed in the next chapter. 

Though it can appear to make exploration somewhat harder by unnecessarily 
increasing the size of the combinatorial space, some level of redundancy also 
entails a noteworthy benefit. Since there are many different ways to articulate 
the behaviour of GOL in Utomata, there are many different combinatorial spaces 
that can be created that encompass it. 

update = add(add(mlt(eql(V8, 2.0),eql(V, 1.0)),mlt(eql(V8, 
3.0),eql(V, 1.0))),mlt( eql(V8, 3.0), eql(V, 0.0)))

The above expression (also visualised in Figure 43) is an implementation of GOL 
which features a more explicit translation of its original rules. While it is 
noticeably less elegant, compared to the previous example, it presents an 
opportunity to explore a much larger combinatorial space of GOL variants due 
its sizeable length. Using the same symbol domain sets as before, a Spatial 
Mapping of this algorithm would consists of 48,828,125 columns and 
46,656,000,000 rows. The source algorithm, residing at (x:882056, 
x:25551473630) is now surrounded by a surprising number of phenotypic 
twins. This aligns with the previously mentioned hypothesis that larger 
combinatorial spaces may inherently feature greater phenotypic continuity 
because the impact of any single permutation in an expression is inverse to its 
length.

Source: add(eql(V8, 3.0), eql(V9, 3.0)) 
Abstraction: add(eql(Vx, Ny), eql(Vx, Ny))

V: [V, V4, V8, V9, V24]
N: [0.0, 1.0, 2.0, 3.0, 4.0] 

Similarly, the size of a space can be significantly decreased by either using 
smaller symbol sets, or only selecting certain symbols to permeate. With the 
above mapping parameters,  all algorithms in the space retain the add and eql 
operators in place. The axial distribution alternates 5 variables along the x axis 
and 5 numbers along the y axis. This creates a highly explorable space 
consisting of 25 columns and 25 rows, shown in its entirety in figure 44. The 
source algorithm is positioned at (x:18,  y:7) and it appears to have exactly one 
phenotypic twin at (x:18, y:11). Though significantly smaller than in previous 
examples, this space still features at least 8 other variants that, just like GOL, 
have been observed to enable the emergence of persistent higher order 
structures. Figure 42 showcases a number of GOL variants, discovered through 
various Spatial Mappings.

5.2.2 Elementary Automata

Elementary Cellular Automata (ECA) have been discussed and implemented in 
previous chapters. The methodical approach applied by Wolfram to define their 
combinatorial spaces makes it a noteworthy precursor for this research project. 

Figure 44. 
A restrained 25x25 combinatorial space 
of GOL. (source algorithm is highlighted) 

Figure 43. 
Visualisation of extended GOL 
algorithm.

Spatial Mapping
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However, due to their innate properties, the combinatorial space of ECA is  
comparatively very small, consisting of exactly 256 unique algorithms. A Spatial 
Mapping of ECA can use the formulaic expression devised by Wolfram [73], 
which was shown to be highly suitable for Utomata in Chapter 4. This approach 
yields expressions that can easily be adapted for Spatial Mapping as follows:

Source:
set(0.5, 0.0) + 
vec((U1*NU2*NU3)+(NU1*U2*1.0)+(NU1*U3*1.0))

V: [0.0, 1.0, U1, U2, U3, NU1, NU2, NU3]

The above set results in a space that spans 32,768 columns and 4,096 rows. The 
source algorithm, rule 30 ,is situated at (x: 22294, y:697). Non-exhaustive 
excursions of this result space indicate it does contain any novel phenotypic 
behaviour beyond the known 256 variants. This is due to the overwhelming 
amount of genotypic redundancy, which is partly attributed to operator 
symmetry. For this particular algorithmic structure, which relies on just 
addition and multiplication, the number of mathematically identical transition 
functions is indeed staggering. 

However, a crucial component of redundancy stems from the inclusion of the 
numeral constants 0.0 and 1.0 in the variables domain. This mixed use is 
necessary for expressing the variability of the source algorithms, which feature 
multiplications of zero, one, two or three symbols at a time. While the inclusion 
of numerical constants in the variables domain is technically possible in 
Utomata Lab, it should be used with caution. In this case, 0.0 and 1.0 serve as 
null and identity operators respectively. For instance, according to Wolfram’s 
formula, Rule-128 is denoted simply as vec(U2*U3). Therefore the only way for 
it to be included in the Spatial Mapping is through an expression such as the one 
below, of which there are numerous variations which are mathematically 
equivalent.  

 (U2*U3*1.0) + (0.0*0.0*0.0) + (0.0*0.0*0.0)

Figure 45. 
Algorithmic variations of ECA in 
Utomata Lab.

https://utomata.net/phd?lab=ECA
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5.2.3 Reaction-Diffusion

The effectiveness of any Spatial Mapping depends, in large part, on the structure 
and composition of the base algorithm in question. Longer algorithms which 
contain more and deeper nested symbols potentially result in gargantuan 
combinatorial spaces, which are generally far too vast to explore manually. 
Notably, this is not to say that they are too large for exhaustive searches — which 
is the case for almost all Spatial Mappings — but that they are, in fact, so large 
that coming across anything resembling coherent behaviour becomes highly 
improbable. Moreover, as algorithms become longer there are many more ways 
in which their combinatorial spaces may be formed. Thus, a careful 
consideration of which symbols should be up for substitution and which ones 
should remain constant can have a significant impact by reducing the size of the 
result space. This may require considerable trial and error, which involves 
selecting, isolating and exploring small sets of symbols at a time, as well as 
experimenting with different symbol domain sets. 

Reaction-Diffusion (RD) represents a significantly more complicated  algorithm, 
compared to GOL and ECA. It features many more numerical constants, as well 
as a deeper nested expression. As such it potentially corresponds to much a 
larger space, which may be formed in numerous different ways, some more 
effective than others. For example, a maximalist approach may involve selecting 
every single operator and numerical constant in an RD expression. This, in 
conjunction with comprehensive parameter domain sets, comprising of all 
Utomata operators, as well as a large list of numerical constants. Such an 
approach would create a result space of an unfathomable size. While it is very 
likely to contain instances of remarkable behaviours, the sheer magnitude of 
such a space makes it terrible candidate for exploration.

On the other hand, a minimalist approach may involve selecting just one or two 
operators for substitution, combined with symbol domain sets consisting of one 
or two parameters. This would yield very small result spaces, which can more 
easily be explored and examined. However, such minimal spaces are also highly 
unlikely to feature sufficiently diverse or significant findings. A moderate 
approach would, for example, involve selecting a handful of operators and 
constants for substitution or, alternatively, to leave all operators intact and 
explore only substitutions of  neighbourhood variables. It is also worth noting 
that substitutions and symbol domain sets are not strictly limited to single 
symbols. For example, one could select the custom neighbourhood expression 
of RD in its entirety: sub(V4, mlt(V, 4.0) and explore any number of 
variations of this subexpression, or parts of it.    

As previously noted, real-valued numerical constants represent an additional 
layer of complexity to Spatial Mapping since they cannot be enumerated. Here, 
too, there are a number of ways to address this complication, each with notable 
trade-offs. One approach would be to avoid substitutions of numerical constants 
altogether. While this would indeed help in reducing the size of the space, it is 
also very likely to impose arbitrary limitations on supported behaviour; it seems 
unreasonable to expect that a given set of numerical constants would result in 
noteworthy behaviour across numerous permutations of an algorithm. 

A different approach may involve testing different numerical constants, one at a 
time, along with a stepped set of values (for instance, at increments of 0.25). This 
approach may be suitable for more targeted studies of a very particular variants. 
Lastly, a more effective approach involves combining the field parameterisation 
method with Spatial Mapping by incorporating the cell.x and cell.y values into 
the source expression, thus allowing each tile in the space to span a continuous 
range of behaviours in and of itself. 

Figure 47. 
Algorithmic variations of RD in Utomata 
Lab.

Figure 46. 
Grey-Scott Reaction Diffusion and its 
immediate siblings. (Source algorithm is 
highlighted)

Spatial Mapping



LABORATORY OF BABEL

89

Source: 
add(
   frc(V),
   vec(
      add(
  sub(
     mlt(0.22,sub(V4, mlt(V, 4.0)).r),
     mlt(V.r,mlt(V.g, V.g))
         ),
         mlt( 0.036, sub(1.0, V.r))
      ),
     sub(
        add(
           mlt(0.05,sub(V4, mlt(V, 4.0)).g),
           mlt(V.r,mlt(V.g, V.g))
         ),
        mlt( 0.097, V.g)
      ),
      0.0
   )
)

Configuration: vec(sml(dst(cell.xy, vec2(0.5)),0.02));
Operators: add, sub, mlt
Variables: V, V4, V8

As for the axial distribution, while there are a number of approaches to choose 
from, note that the RD transition function consists of two closely related 
expressions, situated in the red and the green channels of a single vector. The 
distinct symmetry between the two stems from the algorithm’s original goal of 
modelling  the process of diffusion between two chemical substances. Therefore,  
it would make sense to map symbols of the the red channel onto the on one axis 
and symbols of the green channel to the other. When applied, this approach 
appears to position the source algorithm in an environment that consists of 
many similar looking variants, which may suggest that, with this axial 
distribution, other behaviours of interest might also be embedded in pockets of 
similar behaviours. 

Figure 48. 
Spatial Mapping of RD, combined with 
Field Parametrisation exhibits a 
continuous range of behaviours for each 
variant. 

https://utomata.net/phd?lab=RD
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5.3. Summary
This chapter introduces Spatial Mapping, a novel method for high-level 
exploration of CA algorithms. It uses a sophisticated mapping technique that 
accepts a Utomata algorithm and a set of symbols for substitution, and creates a 
space consisting of all possible variations of the algorithm. This space is 
demonstrated to be complete, exclusive and distinctive. Utomata Lab is a 
software implementation of this technique, allowing real-time exploration of 
any Spatial Mapping. The chapter details the theoretical foundations of this 
method, discusses its implementation, and demonstrates its use through a 
series of case studies.

Spatial Mapping is unique in its ability to allow real-time interactive navigation 
of the combinatorial spaces of any CA algorithm, potentially offering new 
insights into their behaviour. However, this method also has significant 
limitations, which this chapter also discusses at length. This method has 
profound implications for exploring emergent virtual structures, providing a 
unique lens on CA dynamics that traditional approaches may overlook. The next 
chapter details the use of this method towards formulation, exploration and 
examination of a newly identified family of CA algorithms, called Type-U. Chapter 
8 offers further discussion on the limitations of this approach, as well as its 
implications for the broader study of emergent virtual phenomena.

A study of Type-U
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6.A study of Type-U
This chapter demonstrates the use of the Spatial Mapping method detailed in the 
previous chapter towards an exploratory study of a novel family of CA 
algorithms, called Type-U. While this marks the first formal introduction of this 
algorithm and the first methodical exploration of its countless variations, there 
have been instances of similar algorithms used in non-academic work, most 
notably in the work of Jazer Giles [150]. A similar aesthetic is also apparent in the 
works of Kermi Safa [151], Kim Asendorf [152], Julian Hespenheide [153] and 
Andreas Gysin [154]. However, these practitioners arrive from live performance, 
generative, Glitch, and ASCII art disciplines, rather than CA research, and no 
formal account of their work has been made available at the time of writing.

Section 6.1 provides a formal definition of Type-U, which can technically be 
classified as continuous-state, outer-totalistic CA. Type-U expressions are 
characterised by a rigid, recursively defined genotypic structure. Their 
transition functions are constructed as symmetric binary trees of varying 
depths, with the root node always being Utomata’s U() function. Given two 
parameters, X and Y, this function returns the unaltered state of a single 
neighbouring cell in relative coordinates. This rigidly defined structure makes 
Type-U algorithms particularly suited for exploration through Spatial Mapping. 
Their explicit and symmetric X and Y components allow for an intuitive axial 
distribution, wherein variations to the left-hand and right-hand expressions 
correspond directly to traversals of the combinatorial space along the X and Y 
axes, respectively.

Moreover, Type-U combinatorial spaces exhibit an unusually high ratio of 
“fruitful” to “sterile” variations. In many other CA algorithms, including those 
explored in the previous chapter, the vast majority of variants tend to either be 
sterile — exhibiting no discernible behaviour — or overly chaotic, where 
excessive activity prevents the formation of emergent structures. In contrast, 
the rigid structure of Type-U algorithms ensures that a majority of variants 
generate discernible patterns of behaviour, as demonstrated throughout this 
chapter.

Sections 6.2 and 6.3 evaluate the unique genotypic and phenotypic 
characteristics of Type-U algorithms and their encompassing combinatorial 
spaces. Section 6.4 proposes a qualitative metric for categorising Type-U 
algorithms, aimed at facilitating further exploration of Type-U spaces. Together, 
these sections offer an initial investigation into the spatial, genotypic, and 
phenotypic properties of Type-U algorithms: Spatial properties pertain to the 
arrangement and composition of algorithms within a given combinatorial space, 
genotypic properties relate to the structural attributes of Type-U algorithmic 
expressions, and phenotypic properties describe the observable structural and 
behavioural qualities of individual algorithmic instances.

It is important to note that the observations presented here are derived from 
interactive exploration and visual examination, offering only an initial glimpse 
into this vast family of algorithms and their properties. Nonetheless, it is 
suggested that this exploratory approach constitutes a valuable tool for gaining 
insights, developing informed intuition, and establishing expectations about the 
properties and behavioural boundaries of a given CA algorithmic space.
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6.1. Formal Definition
As discussed in Chapter 3, Utomata features a number of built-in variables and 
functions for accessing common totalistic neighbourhoods:

V  // self - the transitioning cell 
V3 // three upper adjacent cells (for totalistic 1D CA)
V4 // Von Neumann neighbourhood
V8 // Moore neighbourhood
V9 // Moore neighbourhood and self

These built-in variables are themselves defined by directly accessing individual 
neighbour states using Utomata’s built-in  U(dx, dy) function and adding these 
values together as follows:  

V  = U(0, 0)
V3 = U(-1, -1) + U(-1, 0) +U(-1, 1) 
V4 = U(0, -1) + U(1, 0) + U(0, 1) + U(-1, 0)
V8 = V4 + U(-1, -1) + U(1, -1) + U(1, 1) + U(-1, 1.)
V9 = V8 + V

The U function returns the current state of any cell by accepting two integer 
parameters: deltaX and deltaY, which signify the target cell’s position relative to 
the transitioning cell. 1

setup = vec(cell.x);
update = U( 1., 0.);

Since the U function returns the current state of a particular neighbouring cell, 
it can be used to induce continuous motion in a system that features toroidal 
bounds. In the example above, the configured horizontal gradient pattern moves 
to the left at a rate of one cell per step. This global motion happens as each cell 
in the system selects the state of its adjacent right side neighbour as its new state 
at each time step. The system’s toroidal bounds ensure that this motion 
continues indefinitely, since there are effectively no edges on either axis.

Higher local delta values generally result in higher velocity and the ratio 
between deltaX and deltaY determines the angle of motion. Any deltaX and 
deltaY parameters can be used, including negative values or even values larger 
than the size of the grid. For example, U(1.0, 0.0) and U(1.0 + grid.x, 
0.0) both point to the same coordinate because of the grid’s toroidal bounds. 
However, since the grid is discrete, this motion is always stepped. Any variation 
of this transition function that just uses numerical constants will necessarily 
result in homogeneous and regular motion. Homogeneity stems from the fact 
that every cell in the system is given the same two parameters and regularity 
stems from the fact that these parameters never change. 

// configuration as a red-green gradient
setup =  vec(cell.x, cell.y, 0.0); 

update = 
// regular and homogeneous
U( 1., 2.) * tile(0., 0.) + 
// regular and heterogeneous
U( cell.x*32., cell.y*32.) * tile(0., 1.) + 
// irregular and homogeneous 
U( time, time) * tile(0., 2.) + 

Figure 49.
Regular and homogeneous motion. Here 
the configuration pattern is preserved 
but shifted. 

Figure 50. 
Regular and heterogeneous motion. 
Different cells point to different 
neighbours

1 Despite being represented as floating point 
values, these parameters are, in effect, 
treated as integers, as they signify relative 
coordinates on a discrete grid. Therefore, 
any decimal value provided to the U function 
is rounded.
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// irregular and heterogeneous
U( rand(1.)*2. -1., rand(2.)*2. -1.) * tile(0., 3.); 

In order to achieve other types of motion in the system, different x and y 
parameters can be used. For example, heterogeneous, but regular motion can be 
invoked using the cell.xy variable, so that it calculates a slightly different 
result for each cell. Similarly, irregular and homogeneous motion can be 
achieved using the current time step, which is shared by all cells — but itself is 
different at each step. This results in a cyclic velocity, as the current time step 
cycles through multiples of the grid size. Lastly, irregular and heterogeneous 
motion can also be achieved using the rand() function to generate a unique 
value for each cell at each time step. 2

The gradual disruption of the configured gradient pattern through irregular and 
heterogeneous motion, using the rand() function, reveals intriguing patterns,  
as seen in Figure 51. Yet, it is important to note that this behaviour’s reliance on 
pseudorandom values categorises it as a stochastic, null-neighbourhood CA. 
Though it initially appears capable of intriguing behaviour, this algorithm is a 
poor candidate for exploration for a number of reasons. Firstly, it is extremely 
unlikely for higher-order structures to emerge because this process is ultimately 
very uniform. Even if this would occur by chance, it would be virtually 
impossible to recreate. More importantly, this algorithm effectively has no 
meaningful variations to explore because it contains no operators, variables or 
constants; instead, it “outsources” its entire decision tree to the rand()
function. Lastly, this algorithm uses pseudo-randomness, which sooner or later 
is bound to yield repetitive patterns. Luckily, irregular and heterogeneous 
motion can indeed be achieved through other means.

First order Type-U

setup = rand(1.,2.,3.);
update = U(V8.g, V4.b);

In the above Utomata program, the configuration consists of assigning a random 
value to each cell and the transition uses every cell’s current value to determine 
its next state. It should be emphasised that the final result of this transition 
function can only ever be the current — unmodified — state value of some cell in 
the system (possibly the transitioning cell itself). Hence all possible state values 
in this, and in all Type-U algorithms discussed in this study, are confined to 
those created by the configuration function. This is partly the reason for 
employing a “fully random” configuration in this study, which is further 
discussed in the next section.

This algorithm is deceptively simple — signifying a notable strategy for 
heterogeneity and irregularity: the incorporation of state into the deltaX and 
deltaY parameters of the U function acts as the sole driver of behaviour. This 
strategy turns out to be a surprisingly powerful generator of emergent 
structures, due to its innate capacity for feedback loops. It constitutes a strong 
interdependence between state, neighbourhood and transition. While the use of 
state in determining the result of the transition function is one of the defining 
characteristics of CA algorithms, what sets this method apart is the fact that the 
states of the cell and its neighbourhood(s) are used to define a unique 
neighbourhood, comprising of exactly one cell —  for each cell.

In its basic form, this Type-U algorithm does not seem to induce particularly 
interesting behaviour. However, this strategy for harnessing state towards 
determining the neighbourhood can easily be extended to create arbitrarily 

Figure 52. 
TU0 - a first-Order Type-U.

Figure 51. 
Irregular and heterogeneous pattern 
using the rand() function 

2 Here the range includes negative numbers 
in order to prevent a bias towards only the 
positive direction.

https://utomata.net/phd?edt=TU0
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more compound variations of this expression. By applying the Spatial Mapping 
method introduced in the previous chapter, these variations can now be 
explored in-mass. Consider the following mapping parameter sets: 

Source: U(V8.g, V4.b)
Abstraction: U(Vx.Cx, Vy.Cy)
Variables: V24, V8, V4, V
Colours: r, g, b

These mapping parameters include four variables and three colours. The axial 
distribution is set in accordance with the structure of the U function, so that 
values that determine deltaX are mapped along the X axis and values that 
determine deltaY are mapped along the Y axis. The result space thus consists of 
144 unique algorithms, organised as a 12 by 12 grid. Figure 53 shows a complete 
Spatial mapping of first-order Type-U in Utomata Lab. 

Second-Order Type-U

A much larger space of Type-U algorithms can be constructed by adding a layer 
of arithmetic operations for each axis, in the form of binary operators. This 
allows incorporation of more neighbourhoods and colour variations into the 
expression and, most importantly, many more combinations of them. 

Source: U(sub(V4.r, V8.g), sub(V4.b, V.b))
Abstraction: U(Fx(Vx.Cx, Vx.Cx), Fy(Vy.Cy, Vy.Cy))
Operators: add, sub, mlt, div
Variables: V, V4, V8
Colours: r, g, b

The above mapping parameters denote a second-order  Type-U Spatial Mapping.  
For this mapping, four basic arithmetic operators are used: addition, 
subtraction, multiplication, and division. Together, they introduce novel ways in 
which the totalistic neighbourhoods and colour channels can be combined to 
produce a range of more intricate results for any given expression.   

U(Fx(Vx.Cx, Vx.Cx), Fy(Vy.Cy, Vy.Cy)) // expression
  4  4  3   4  3    4  4  3   4  3    // combinations 
deltaX: 4 * 4 * 3 * 4 * 3 = 576
deltaY: 4 * 4 * 3 * 4 * 3 = 576
deltaX * deltaX = 331776              // unique expressions

Figure 54. 
TU72 is an example of a second order 
Type-U algorithm. This algorithm is 
documented in the next chapter.

Figure 53. 
Complete Spatial Mapping of first-order 
Type-U.

A study of Type-U
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The number of unique second-order Type-U algorithms is higher by an order of 
magnitude. While the first-order space consists of four operators and three 
colours, giving 144 unique algorithmic expressions in total, with the 
introduction of two binary operators for each axis, the second-order space 
consists of 331,776 unique expressions. Notably, because this new space 
consists of exponentially more types of local interactions between cells, it 
features a plethora of CA behaviours which are potentially not present in the 
lower-order space. Unlike the first-order space, which is captured in its entirety 
in figure 53, this space is much harder to capture and explore — though it is still 
possible. Extended exploration of second-order Type-U in Utomata Lab can offer 
a reasonably comprehensive view of the range of behaviour it encompasses.  

Higher-Orders

The transition from first-order to second-order Type-U described above 
essentially involved replacing the variable and colour symbol (V.C) with a binary 
operator that includes two variables (with their symbols) for both parameters of 
the U function. This substitution rule can be abstracted to form a recursive 
definition of higher-order Type-U spaces, not unlike performing iterations on an 
L-System string. The substitution can be defined as replacing every occurrence 
of a symbol with a binary operator as follows: 

V.C >> F(V.C, V.C)

As such, an Nth order Type-U expression can be constructed by applying this 
rule on a first order Type-U expression — N times. Beyond differing significantly 
in size, each order also features several unique properties, which may or may 
not be present in other orders — lower or higher. These are discussed in the 
following sections. Appendix A denotes Type-U orders one through six.   

6.1.1 Scope

There can be numerous ways to define Type-U algorithms, as well as to 
construct their combinatorial spaces. However, in the context of this chapter, 
which aims to serve as an introductory exploratory study of Type-U, the scope of  
algorithms considered has been limited to include the use of a particular 
configuration, mapping parameters and axial distribution method. It is 
important to note that these particular choices are not put forth as a definitive or 
even an optimal form of neither Type-U algorithms or their mappings. Rather, 
their selection serves to facilitate a robust examination and demonstration of 
the capabilities which may be inherent to these algorithms. While they are 
beyond the scope of this thesis, alternative Type-U mappings and comparative 
studies of different symbol domain sets may very well present more interesting 
outcomes and should be considered worthy candidates for future studies, 
examples of which are suggested in Chapter 8. 

Configuration

The configuration in CA determines the system’s initial conditions and thus 
plays a significant role in determining its behaviour, which is typically highly 
chaotic. In Spatial Mapping, the use of an appropriate configuration function is 
crucial, as the advantages of observing large numbers of algorithmic variations 
can easily be nullified by a configuration that fails to induce noteworthy 
dynamics to the system. This type of exploration leans heavily on an ability to 
visually discern structures of interest among a large set of similar, but not 
identical, patterns.

Figure 55. 
Fully random configuration on a 32*32 
grid using rand(1.0, 2.0, 3.0). 

This study relies on Utomata’s built-in 
GLSL approximation of a random 
number generator. However, a 
comparative study showed no significant 
differences from a configuration based 
on pseudorandom or true random 
numbers. 
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In Type-U algorithms the configuration has an even more dramatic effect. This 
is due to the inherently reductive nature of Type-U dynamics, whereby the 
transition function is strictly incapable of introducing new state values to the 
system. It is therefore up to the configuration function to include as many 
different state values as possible in order to maximise the number of possible 
structures that may subsequently emerge.

It may sometimes be useful to consider Type-U algorithms as “unguided sorting 
algorithms”, where the behaviour of the sorting mechanism is determined by 
the data (state values) in real-time, acting differently on different parts of it. This 
process of sorting and a-sorting constantly adapts as the system evolves and 
changes its composition. This feedback mechanism relates to the 
aforementioned web of interdependencies between state, neighbourhood and 
transition. Through this process, the rapid elimination of state values, often 
shortly after configuration, can easily render a system sterile. Therefore, a 
configuration that is insufficiently diverse can profoundly constrain the range of 
phenomena in a Type-U algorithm. For this reason, a fully random, maximally 
inclusive configuration function has been deemed optimal for this initial, 
exploratory study. That said, the use of more constrained configurations may be 
still useful in certain cases. For example, different configuration patterns can be 
tested in order to evaluate the limits of behaviours which can emerge in a 
particular algorithm of interest.  

Mapping parameters

The symbol domain sets from which a Spatial Mapping is formed also have a 
significant impact. Apart from determining the size of a space, they directly 
affect its composition, organisation, as well as the range of possible supported 
phenotypic behaviour. These are regarded here as the mapping parameters. For 
example, adding a single operator to the operators set will result in an 
exponentially larger space, as it is now supplemented with all of its existing 
combinations with this new operator. Unless otherwise stated, the studies and 
experiments presented in this chapter refer to the following minimal mapping 
parameters: 

Operators: add, sub, mlt, div
Variables: V24, V8, V4, V
Colours: r, g, b

These have been selected in an effort to achieve a balance between minimising 
the size of the combinatorial spaces explored, while maximising the range of 
phenomena they encompass. The set of variables includes the state of the 
transitioning cell, as well as three well-established totalistic neighbourhood 
types. This allows a range of cell interactions to be driven by both low and high 
state values. The incorporation of V24 in particular, results in a significant 
increase of dynamic behaviour in a space. This is presumably because it allows 
algorithms to include references to neighbours that are further away, in turn,  
potentially increasing the density and variability of the networks of local cell 
interactions.

Likewise, utilising just four fundamental arithmetic operators appears to strike 
a careful balance between facilitating a diverse range of behaviours and 
maintaining mappings of a tractable size, particularly in the context of lower-
order spaces. From this minimal set, other operators can be assumed to reside 
somewhere in the space through compounding. For Example, exponentiation 
can be excluded from the mapping parameters under the assertion that it can be 
achieved through multiplication. Likewise, scaling by large numbers can be 
achieved through division over small fractions. 

A study of Type-U
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The div() operator introduces the most distinct dynamics of all four. Its 
inclusion in some cases presents extremely volatile behaviour, whereby large 
regions of the grid may suddenly flip to a uniform colour. This is presumably 
because division has the capacity to return arbitrarily high values, though 
further testing is required. Unlike in many other CA transition functions in 
Utomata, high values are not strictly clamped by Type-U transition functions 
because the calculation is always used to produce the deltaX and deltaY 
coordinates of the U function. As previously mentioned, the use of  toroidal 
bounds in Type-U also means that all possible values return a valid coordinate.

Initial tests suggest that the use of Utomata’s boolean operators — sml(), lrg()
and eql() — offer no substantial contribution to the percieved phenotypic 
diversity in a space. This likely stems from the boolean (0.0 or 1.0) return value 
of these operators, which often drives the U function to return the state of the 
transitioning cell itself, thereby creating a strong bias towards static behaviours. 

The incorporation of RGB colour channels is essential in Type-U because the U 
function expects two integer values, rather than 4D vectors. However, beyond 
this structural requirement, the incorporation of colour channels also acts as an 
important feedback mechanism between horizontal and vertical dynamics. 

update = U(sub(V9.b,V9.g),div(V4.g,V9.g))

For example, in the above algorithm, depicted in Figure 54, the deltaX 
component refers to the blue and green values of the Moore neighbourhood, 
while the deltaY component refers to the green values of the Von Neumann and 
Moore neighbourhoods. The fact the the green channel is shared by both axes 
means that there is necessarily some level of interaction and feedback in the 
process of determining the horizontal and vertical transposition of cells. The 
importance of this property is often evident in algorithms where this is not the 
case, such as the one below (seen in Figure 57). In these cases, the values of the 
deltaX and deltaY components are determined independently of each other, 
subsequently presenting a more limited range of state interactions. This could 
suggest a further explanation as to why higher-order spaces appear to contain 
much richer phenomena: longer expressions feature a higher probability for the 
same colour channel to be used, at least somewhere, on both axes.

update = U(sub(V.r,V4.r),add(V.g,V4.g))

Axial distribution

Selecting an appropriate Spatial Mapping method ideally involves a careful  
consideration of the type of investigation (i.e: exploratory, analytical, result 
oriented), as well as properties of the algorithms in question. In the case of Type-
U, the fact that the U function is ultimately driven by explicit X and Y parameters 
are best taken into account. This innate property of the algorithm, whereby each 
cell selects some other cell using a 2D coordinate, strongly suggests that an XY 
based mapping, such as the one described in Section 5.1.1, shown below, is 
indeed appropriate. As such, it potentially makes traversal of the space more 
intuitive, since moving along each axis corresponds with a permutation of the 
algorithm on that same axis. 

U(Fx(Vx.Cx, Vx.Cx), Fy(Vy.Cy, Vy.Cy)) // XY distribution

A number of alternative axial distributions have also been considered. For 
instance, plotting operators on the X axis and variables and colours on the Y axis 
(shown below) would yield a space consisting of the exact same set of algorithms, 
yet distributed very differently. This arrangement highlights  different 

Figure 57. 
TU82 does not share colour values across 
both axes and therefor displays 
monotonous behaviour.

Figure 56. 
TU81. The div() operator  often causes 
extremely volatile dynamics.

Figure 58. 
Alternative axial distribution where 
operators are plotted on the X axis and 
variables and colours on the Y. 

https://utomata.net/phd?edt=TU82
https://utomata.net/phd?edt=TU81
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relationships between neighbouring algorithms in a space, which may or may 
not be beneficial, depending on context. Notably, unlike the symmetric axial 
distribution method above, which creates spaces consisting of an equal number 
of rows and columns, this mapping method results in spaces that are highly 
skewed. For example, the mapping below conforms to a space with 16 columns 
and 20,736 rows. Notably, traversing columns and rows in such a space no 
longer represents permeating the X and Y parameters of the U function, but 
rather its operators and variables. 

U(Fx(Vy.Cy, Vy.Cy), Fx(Vy.Cy, Vy.Cy))

There are many other ways in which permutations can be plotted along a two 
dimensional field. Different mappings result in a different arrangement of 
algorithms along that field, thereby having a direct effect on exploration. For 
example, a mapping created by randomly generating a Type-U algorithm for 
each cell in the field would result in a highly irregular space in terms of its 
genotype, where proximity or adjacency of algorithms have no meaning 
whatsoever. Such a mapping would therefore serve as a very poor candidate for 
a study that aims to explore direct siblings — close permutations of a given 
algorithm. Moreover, unlike the mappings described in the previous section, 
such a mapping is not guaranteed to contain all possible permutations of the 
algorithm in question and may also feature high levels of redundancy in the 
form of algorithms that happened to have been randomly created more than 
once. 

One may therefor assume that a random mapping would also yield a highly 
irregular space in terms of its phenotype for this same reason. However, this 
actually depends on the algorithm in question and the size of the space plotted. 
For example, almost all permutations of sixth-order Type-U algorithms rarely 
yield any discernible structures whatsoever. Therefore a random mapping of 
sixth-order Type-U is actually more likely to feature regularity in terms of 
phenotypic properties, with occasional isolated instances of discernible 
structures, scattered randomly across the entire space. However, while they are 
indeed poor candidates for exploratory studies, random mappings are by no 
means useless.  They can serve as a reliable tool for statistical analysis of a given 
combinatorial space and for quantitative evaluation of the range of behaviours 
apparent in the algorithms it encompasses.

6.2. Spatial Properties
The study presented in this chapter serves a dual purpose: it aims to exemplify 
the effectiveness of the Spatial Mapping method in regards to open-ended 
exploration of novel CA, while also serving as a formal introduction to Type-U 
algorithms. This creates a potential clash between the need to discuss general 
properties which may be inherent to Spatial Mappings and the need to exposit 
specific properties of the family of Type-U CA. While the following two sections 
discuss spatial and phenotypic properties of Type-U respectively, it should be 
noted that these two properties are fundamentally linked. Nonetheless, an 
exploratory and qualitative approach to CA research, such as the one presented 
in this chapter firmly aligns with both stated goals. 

Type-U algorithms feature a number of distinctive traits that make them 
exceptionally suitable for exploration through Spatial Mapping. As previously 
noted, their consistent algorithmic structure is characterised by explicit X and Y 
components, which enhances the effectiveness of exploring them in a 2D space.  
Type-U algorithms also lack numerical constants, ensuring that their 
combinatorial spaces can be comprehensively plotted. Their scalability allows 
for the comparison of algorithms across different orders while preserving most 
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of their shared characteristics. Lastly, the (deceptive) simplicity of their 
transition function, essentially culminating in the selection of a single cell, 
results in the majority of Type-U algorithms yielding at least some discernible 
behaviour. These properties stand in contrast to many other CA families which 
have been examined in previous chapters; most of the algorithms discussed so 
far appear to be “an almost miraculous exception” in a space consisting almost 
entirely of chaotic or uniform behaviour. 

This section identifies a number of properties and characteristics of Type-U 
spaces, while the next section deals with phenotypic properties of the 
algorithms themselves. Together, they offer a broad view of Type-U dynamics, 
attempting to characterise their behaviour and limits, laying out a foundation for 
more targeted future explorations of Type-U and their countless variations. 

6.2.1 Redundancy

Any comprehensive enumeration of CA algorithms necessarily contains 
redundancy — the presence of identical, or nearly identical behaviours. This 
may stem from a number of reasons, which may be highly codependent and may 
vary significantly between different algorithms. Generally, they can be divided 
into two categories: genotypic redundancy, which stems from apparent 
similarities between algorithmic expressions and the properties of their 
operators, and phenotypic redundancy, in which dissimilar algorithmic 
expressions result in similar behaviour. Assessing the level of genotypic 
redundancy may be complex, but can be achieved with a relatively high degree 
of accuracy through analytical methods. However, phenotypic redundancy is far 
more difficult to ascertain. 

Characterising the various types and levels of redundancy in a Spatial Mapping 
can be crucial in facilitating effective exploration. This is true even in cases 
where redundancy is never actually mitigated, but instead simply taken into 
account. It is also important to note that redundancy, in and of itself, is not 
necessarily detrimental to exploration. In a reasonably well-understood spatial 
arrangement, the presence of multiple identical variations may even assist in 
locating particular nuanced behaviours of interest. Likewise, obtaining a better 
understanding of redundancy may assist in identifying regions of a space that 
are of no consequence in order to isolate and expose regions of interest.

Diagonal Symmetry 

The first-order Type-U space described in section 6.1.1. consists of 144 
algorithms, arranged as a 12 by 12 grid.  Upon visual examination, phenotypic 
behaviour in the space appears to feature a distinct diagonal line from top left to 
bottom right. The algorithms along this diagonal feature highly constrained 
structures and motion, all going in parallel to it. In every such instance, the 
deltaX and deltaY parameters are identical, which explains why they exclusively 
feature such limited capability: whatever value is returned by their totalistic 
neighbourhood variables, any cell can only ever select the state of a cell situated 
along its own diagonal. 

The deltaX and deltaY parameters of all first-order Type-U algorithms both 
consist of a single variable symbol, followed by a colour channel symbol; they 
exhibit perfect symmetry and are therefore treated in the same way by the 
mapping, each along their corresponding axis. This means that for every single 
algorithm in this space — U(v1.c1,v2.c2) — there exists a twin-algorithm — 
U(v2.c2,v1.c1). The phenotypic properties of these two algorithms are thus 
identical — but rotated by 90 degrees. For example, the algorithms located at    
(5, 7) and (7, 5), which correspond to U(V4.b,V8.g) and U(V8.g,V4.b)

Figure 59. 
Diagonal Symmetry  in second-order 
Type-U.

Figure 60. 
Twin algorithms  along the diagonal in 
first-order Type-U.
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respectively, can be regarded as twin algorithms because they effectively induce 
the exact same behaviour. This symmetry holds true for every Type-U space 
created using this axial distribution, regardless of its order. 

One of the distinct advantages of using this axial distribution method is that it 
neatly divides the space into two distinct regions — above and below the 
diagonal. Algorithms along the diagonal itself still conform to this pattern, 
however, since their x and y components are identical they have no twins. Thus, 
due to this inherent symmetry, the number of unique phenotypic behaviours in 
any Type-U space is actually only about half of its total number of algorithms, 
consisting of all algorithms above or below the diagonal, as well as those along it.  
For example, out of the 144 algorithms in the first order space, there are actually 
no more than 78 unique phenotypic behaviours. 3

Operator Symmetry

Another apparent example of genotypic redundancy relates to operator 
symmetry. For example, addition and multiplication, which together are 
featured in exactly half of all algorithms in the space, are effectively symmetric, 
such that (A*B == B*A) and (A+B == B+A). This means that any mapping that 
features symmetric operators in its domain will necessarily contain multiple 
copies of identical phenotypic behaviours for every single occurrence of a 
symmetric operator. This, of course, is not unique to Type-U algorithms and 
likely affects many other mappings. 4

Assessing the level of redundancy due to operator symmetry requires taking 
into account the number of occurrences of operators in the expression and the 
composition of operators in the domain. For example, in the second-order 
mapping, each expression contains two operators and the operator domain set 
consists of two symmetric (add, mlt) and two asymmetric (sub, div) operators. 
Therefor it can be deduced that exactly half of all algorithms in the space feature 
two symmetric operators and another 0.25 contain exactly one. Thus each 
algorithm in the former group would have three twin algorithms and each one in 
the latter group would have one.

Unlike diagonal symmetry, which can simply be taken into account in the 
process of exploration, redundancy due to operator symmetry is slightly harder 
to locate using the mapping method in its current form. While a more 
sophisticated mapping function can indeed be devised to avoid operator 
symmetry altogether, this may come at the cost of compromising the structural 
integrity and continuity of the spatial arrangement by forming irregular gaps 
between neighbouring algorithms. 

Phenotypic Similarity 

Through a combination of diagonal and operator symmetry alone, it can roughly 
be estimated that no more than 15%-20% of Type-U algorithms in their 
respective spaces are actually unique. However, while this kind of redundancy 
can be precisely calculated and, to an extent, even mitigated for a given space, 
there exists a far more illusive form of redundancy which may effectively be 
unknowable. This can be regarded as phenotypic redundancy, as it stems from 
the possibility of two distinctly dissimilar algorithmic expressions yielding 
indistinguishable phenotypic behaviours. As is the case with genotypic 
redundancy, this form of redundancy is not strictly unique to Type-U 
algorithms, yet they do appear to be particularly vulnerable to its effects.

Since all Type-U transition functions ultimately select a single neighbour, they 
feature a relatively limited set of outcomes, compared to other continuous state 
CA. Moreover, phenotypic redundancy also appears to be highly dependent on 

4 The Spatial Mapping of ECA algorithms, as 
presented in the previous chapter is a good 
example of staggering levels of redundancy 
due to operator symmetry. The mapping 
results in  a space consisting of 262144 
unique algorithms, while the number of 
unique phenotypes is known to be exactly 
256. Moreover, when accounting for 
black&white symmetry the number is 
actually 128. 

3 The exact number of unique algorithms, k,  
in a symmetric space with n rows and n 
columns can be expressed as the following  
arithmetic progression:

k = ( ( n * n ) - n ) / 2 + n
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the order of the space. Since higher-order spaces, by definition, consist of more 
deeply nested expressions, it is safe to assume that they feature far more 
phenotypic redundancy than lower order ones. In an expression which consists 
of several nested operators, the impact of any given change to the expression 
diminishes in proportion to its depth — its distance from the root operator. For 
example, changing the operator at the first level (above the U function) from 
addition to division  is likely to have a dramatic effect on the outcome. In 
contrast, the impact of the same substitution at the fifth layer of a sixth order 
algorithm may have very little or even no effect on phenotypic behaviour. 

The fact that deeper nested differences (closer to the leafs in the expression tree) 
between algorithms have a diminished effect on their phenotypic differences 
suggests that higher-order spaces feature increasingly more phenotypic 
redundancy as they contain exponentially more instances of increasingly 
minute differences between behaviours. Still, as previously noted, this kind of 
redundancy should not necessarily be considered as a side effect or obstacle for 
exploration. High levels of phenotypic redundancy in a space also mean that 
particular desired behaviours of interest may be recovered at an arbitrary level 
of precision. A more robust assessment of phenotypic redundancy requires a 
more robust classification method of Type-U phenotypic behaviours, which is 
beyond the scope of this thesis.

6.2.2 Texture

The exact method by which algorithms are distributed in a Spatial Mapping can 
have a significant impact on its exploration and study. Ideally, algorithms would 
be organised in a way that expresses the relationships between them. Continuity  
refers to the level of difference between neighbouring algorithms in a space and  
contiguity refers to the tendency for similar behaviours to be grouped together.  
Generally, spaces that feature a continuous and contiguous texture offer 
significant advantages. 

Continuity

A space can be said to possess a smooth, or continuous texture if the difference 
between adjacent algorithms is minimal. For example, a spatial arrangement 
where each algorithm is randomly positioned would typically present a rough  
texture. This can be likened to a geographical terrain, where a height map of the 
entire space can be plotted by evaluating the difference between adjacent 
algorithms. Rough textures indicate a weak correlation between adjacency and 
similarity, while smooth textures indicate a strong correlation. 

An evaluation of the texture of a space may relate to any measurable property of 
its algorithms. Hence, a space can be evaluated as having any number of 
textures. For example, a measurement of the overall level of brightness in an 
algorithm  can be evaluated to give a unique score for each algorithm in a space 
(or a subspace). This score can then be plotted to reveal the texture of the space 
in regards to that particular heuristic function. A continuous space would be 
said to  feature a smooth gradient of brightness values and a non-continuous 
space would feature roughness in the form of adjacent algorithms in which 
measured levels of brightness differed substantially. A space can thus be 
characterised as continuous in one respect and non-continuous in another.

The correlations between different properties of algorithms in a space, and 
therefore between their evaluated textures, can be complex and hard to 
evaluate. Some properties, such as average velocity and colour diversity, may be 
linearly and positively correlated, while other properties may feature inverse  
correlations, non-linear correlations or none at all. Preliminary visual 

Figure 61.
Smooth textured area in fifth-order 
space. Any single permutation typically 
has a minimal effect on the output.
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examinations suggest that Type-U algorithms generally possess a relatively 
strong correlation between their genotype and phenotype. Since genotypic 
texture can be considered smooth in Type-U mappings, due to their effective 
distribution method, they can generally be considered as also possessing 
smooth phenotypic textures as well. Phenotypic continuity is also strongly 
related to phenotypic redundancy. In high-order Type-U mappings (third-order 
and above), the massive increase in nearly identical phenotypic behaviour also 
results in a significant increase in the overall levels of continuity in the space. 

Of course, there are bound to be notable and, most likely, unavoidable ridges and 
sharp features in any space. For example, a substitution from multiplication to 
division is typically more likely to have a dramatic effect, compared to a 
substitution from addition to subtraction. Moreover, as noted in the previous 
section, the depth of a given change is also of great significance, whereby deeper 
nested changes  are more likely to have a diminished effect. 

Distinct behaviours may often cluster along rows and columns, as observed in 
the GOL Spatial Mapping in the previous chapter. Clustering of phenotypic 
behaviours may take various forms. For example, the first-order Type-U 
mapping appears to be divided into distinct sets of triplets. This stems from the 
relatively coarse granularity of the space, where progressing along each axis 
translates to cycling through the colour channels of a single variable at a time. 
This clustering is rather unique to the first-order mapping. Higher-order spaces 
refer to more than just one colour per axis, thereby diminishing the impact of 
any single colour channel permutation. 

Contiguity

A closely related spatial property refers to the concentration of similar 
algorithms within self-contained regions. A Spatial Mapping can be said to be 
contiguous if it features a correlation between spatial proximity and phenotypic 
similarity. This can manifest as the tendency of a space to group related 
behaviours together. Having distinct spatial arrangements, or “pockets” of 
similar behaviours is generally advantageous for exploration as it means that in 
order to discover permutations of a given algorithm, one only needs to locate it 
in a space and observe its immediate surroundings. 

A contiguous space is also likely to feature a correlation between genotypic and 
phenotypic texture, assuming an ordered mapping method was used. This 
indeed appears to be the case in Type-U spaces. This property is by no means 
trivial and is an example of what makes certain Spatial Mappings more useful 
than others. Contiguous spaces that feature correlation between genotypic and 
phenotypic regularity are easier to explore because they are organised in a way 
which can be better made sense of, making manual explorations more intuitive, 
as well as making higher-level evaluations of a space, such as sparse sampling, 
more viable. 

The contiguity of Type-U mappings is also closely related to their order. First-
order and second-order Type-U spaces seem to have less distinct regions. This 
is presumably because of their relatively shallow depth, in which substitutions 
between symbols of adjacent algorithms have more impact.  Third and fourth 
order Type-U spaces appear to be more contiguous, perhaps striking a better 
balance between algorithmic depth and spatial regularity. Fifth and higher order 
spaces feature increasingly smoother terrain in the form of large regions of 
similarity sometimes spanning thousands or even millions of algorithms. These 
spaces are so large that they effectively become too smooth to feature what may 
be considered  distinct pockets of behaviour. 

Figure 62.
Binary tree of fourth-order Type-U.
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6.2.3 Composition

As a general rule, the larger a combinatorial space becomes, the more likely it is 
to contain a wide range of  behaviours. This, of course, comes with the heavy cost 
of unique behaviours being scattered across exponentially larger fields. Thus, 
one of the biggest challenges involved in exploration via Spatial Mapping is 
minimising the size of the space while maximising the diversity of the 
algorithms it encompasses.

Along with assessing the redundancy and texture of a given space, assessing its 
composition, and specifically its range of behaviours, plays a key role. Striking a 
good balance between having a tractable space to explore and making sure it 
contains sufficiently diverse phenomena is, in large part, determined when 
formulating the source algorithm and mapping parameters. 

For example, an exhaustive exploration of the space of Reaction-diffusion (RD) 
algorithms, as demonstrated in the previous chapter, is by all accounts a non-
tractable task. This is due to a number of properties of the algorithm, including 
its reliance on real-valued numerical constants, as well as its sizeable length. 
Hence, while it is reasonable to assume that RD spaces do indeed contain novel 
and potentially noteworthy RD-like phenomena, it is highly unlikely for manual 
exploratory studies to uncover any of it. However, larger spaces do not 
necessarily feature larger phenotypic diversity. For example, The Spatial 
Mapping of ECA, also presented in the previous chapter, is said to contain more 
than a quarter million unique algorithms, yet presenting only 256 unique 
behaviours.

Type-U algorithms feature a relatively narrow range of phenotypic behaviour, 
which appears to have distinct characteristics and limits. 5  This is a result of 
several unique properties, including their rigidly defined algorithmic structure, 
limited set of symbols, lack of numerical parameters and the fact that their root 
operator is always the U function. While a limited range is not typically ideal for  
open-ended exploration, it offers two distinct advantages. Type-U combinatorial 
spaces are relatively small, compared to many other CA families, and they 
feature unusually high occurances of uinque discernible behaviours. 

The recursive definition of Type-U algorithms in ascending orders, presented in 
Section 6.1 is an explicit attempt to gain some level of control over the 
composition of Type-U spaces. It allows for adjusting the algorithm itself 
towards the type of exploration to be conducted. Lower-order spaces, which 
contain fewer algorithms and, accordingly, notably less diversity, are more 
suitable for targeted, analytical or general studies of the characteristic 
behaviours of Type-U phenomena. Higher-orders, on the other hand, are more 
suitable for broad stroke moonshot expeditions to discover novel Type-U 
phenomena.  

Higher-order Type-U spaces contain profoundly more algorithmic 
permutations and thus are generally more likely to support behaviours not 
present in lower-order ones. However, the exact relationship between the order 
of a Type-U Spatial Mapping and its level of diversity is currently unknown. 
While it is apparent that third and fourth order mappings do contain behaviours 
that are not present in the first order, this does not necessarily indicate a general 
rule. 

The relationship between the order of a Type-U space and its level of diversity is 
also not necessarily linear. Initial excursions of  fifth order spaces have, thus far, 
not yielded findings that are fundamentally different from those which can be 
found in fourth-order spaces, even though the former contains vastly more 
permutations. This implies that there may be a sweet spot between the size of a 

5 For example, structures that exhibit 
radial symmetry, which are quite common in 
other CA models, are highly unlikely to 
emerge in Type-U due to their distinct use of 
outer-totalistic neighbourhoods. 
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Type-U space and the range of phenomena it encompasses. Of course, this 
implication is by no means conclusive, nor can it be assumed to hold true for 
other CA algorithms. Further comprehensive studies of Type-U spaces and the 
Spatial Mapping method itself are needed. A quantitative analysis of the 
phenotypic composition of Type-U spaces is beyond the scope of this thesis. 
However, as discussed in Chapter 8, such a study can indeed make use of its 
accompanying software implementation, Utomata Lab, even in its current form.

Initial excursions of Type-U spaces, performed as part of this research 
nonetheless offer a number of qualitative accounts of characteristic behaviours 
of Type-U algorithms. Below are a number of properties that are correlated with 
the order or the size of the space in which the algorithm in question resides. The 
next section discusses characteristic Type-U behaviours in general.  

Directional Bias

Heterogeneous and irregular motion are presented in section 6.1 as a core 
aspect of Type-U transition functions. The various ways in which different cells 
in the grid select their new state can be likened to a vector field (illustrated in 
Figure 64). As such, the angle  and length of each arrow in the field are 
determined by the transition function for each cell. This can be a helpful 
framework for visualising the overall levels of directional bias in an algorithm.  
For example, as discussed in Section 6.2, algorithms situated along the diagonal 
of a space feature identical deltaX and deltaY components. Therefore, the angle 
of all resulting vectors will necessarily be 45 degrees, limiting all calls to only 
access cells along their own diagonal.

Moreover, due to their simplicity and lack of operators, first-order Type-U 
algorithms  feature distinct directional and colour biases, not just along the 
diagonal. The general angle and overall velocity of a first order algorithm can be 
predicted regardless of its configuration, demonstrating a bias towards the axis 
in which the larger neighbourhood value lies. For example, the algorithm  
U(V24.r, V4.g) can be predicted to feature overall distinct horizontal motion. 
Notably, this does not necessarily affect every single cell in the grid, as some 
cells may have low red values in their extended-Moore neighbourhood and high 
green values in their Von Neumann neighbourhood. 

Moreover, all algorithms in the first-order space move towards the negative 
direction on both the X and Y axes. This is a result of the fact that deltaX and 
deltaY are always greater than or equal to zero.  Thus, under the stated mapping 
parameters, it is impossible for the transition function to return the value of any 
cell above or to the left. A resolution of this bias, in the form of positively directed 
motion, is only introduced in second-order Type-U with the inclusion of the 
sub() operator. However, this is also not to say that all second order (or above) 
algorithms are unbiased. In fact, every single Type-U algorithm which does not 
contain the sub() operator necessarily is. By extension, this holds true for any 
Type-U space in which the sub() operator is not included in the domain. 6

Neighbourhood and Velocity

The amount of motion in first-order algorithms, while generally heterogeneous, 
is still dependent on the composition of variables in their respective 
expressions.  For example, the 12 algorithms that exclusively use the V variable 
feature noticeably more static behaviour compared to the rest. This stems from 
the limited mobility of state transitions that can select, at most, the adjacent 
neighbour to their right or bottom. In contrast, algorithms that incorporate the 
V24 variable can support a velocity of up to 24 cells per step. This property can 
therefore also predict the general direction of movement. The axis containing 
the larger neighbourhood value will typically  feature overall higher velocity. 

Figure 63. 
Vector field (illustration).

6 There are, of course, other ways to resolve 
directional bias without using the sub()
operator. For example, one could include 
negative variables such as (-V4) in the 
domain. 
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Colour Bias 

In all first-order algorithms, a histogram analysis shows a distinct tendency 
towards one or two of the primary colour channels. Since any first-order 
expression can, at most, feature two colour symbols, it appears that the value of 
colours which aren’t present in the expression typically follow an even 
distribution, while the value of colours that are featured tend to gradually be 
reduced as the system evolves. This is likely the result of an implicit selective 
process, whereby higher values are more likely to cause the transition function 
to return the state of a cell that is not the transitioning cell. 

For example, consider the transition function: U(V8.b,V.r). Histogram 
analyses over several runs consistently show an even distribution of values 
along the green channel, a tendency for lower than 0.5 values along the red 
channel and distinctly low values along the blue channel. These readings align 
with how the U function operates: in areas that are rich with blue values, the 
transition function is very likely to change the state of cells to those up to 8 cells 
to their right. Likewise, cells whose red channel is higher than 0.5 will select the 
state of a cell below them. In contrast, the presence of green values does not 
appear to directly affect the transition process. It can therefore be predicted that 
the system will retain its green colours (with low reds and low blues) through a 
gradual process of selection. 

Second order algorithms appear to feature a significant increase in overall 
colour diversity. This can be attributed to the fact that expressions can now refer 
to all three colour channels, as well as perform rudimentary calculations in 
mixing them together. While distinct tendencies towards basal RGB colours are 
still apparent in second-order Type-U, the increase in algorithmic variations  
introduces visibly novel colour schemes. In third-order mappings and above, 
colour bias is  dramatically reduced. Generally, this can be attributed to the fact 
that longer expressions are both more likely to include all three colour channels, 
as well as more nuanced mixtures through more deeply nested operations.

Idiosyncrasy

Some Spatial Mappings may feature characteristic phenotypic behaviour. For 
example, First and Second order spaces seem to consist of  a relatively uniform 
set of possible behaviours, compared to higher-order spaces. This property is, of 
course, directly related to diversity. However, idiosyncratic behaviour in a space 
may indicate more than just a lack of diversity; certain mappings may feature a 
distinct overall behaviour of their algorithms that may be considered  unique. 
Third and fourth order spaces contain numerous instances of  a dynamic that is 
distinctly “fluid”, featuring semi-stable structures (shown in Figure 66). These 
behaviours do not appear to be present at all in first or second-order spaces, and 
quite hard to locate in fifth and higher orders.  

Containment

The recursive definition for different orders of Type-U raises a question 
regarding the extent to which low-order mappings are contained within high-
order ones. The notion of containment can be referred to as the degree of overlap 
between different orders, and more generally, between different CA 
combinatorial spaces. While containment may be easy to assess in regards to the 
genotype, this does not necessarily translate to the phenotype. Not one of the 
144 algorithms in the first-order space can be found in the second order. For 
instance, the behaviour U(V4.r,V.b) simply cannot be formulated as a second-
order algorithm since there are no operations of type F(V.C, V.C) that return 
neither V4.r nor V.b. In fact, the recursive introduction of operators for all 
subsequent higher-orders precludes explicit genotypic containment. This, 
however, does not mean that the phenotypic behaviour invoked by U(V4.r, 

Figure 65.
Histogram of  U(V8.g,V.r) after 30 
steps.

Figure 64.
Histogram of  U(V8.b,V.r) after 30 
steps.

Figure 66. 
TU68 exhibits fluid-like dynamics in 
second order Type-U. This dynamic is 
most commonly found in third order 
algorithms.

https://utomata.net/phd?edt=TU68


106

V.b) cannot be approximated to an arbitrary degree by a higher-order 
algorithm. 

In any case, lower order containment in Type-U mappings can easily be 
achieved by simply incorporating two values — 0.0 and 1.0 — into the variables 
domain. This would result in numerous permutations that contain addition of 
0.0 and multiplication by 1.0, which would ensure the presence of all lower-
order expressions in all higher-order mappings. Moreover, these algorithms are 
likely to be featured many times over due to operator symmetry. However, this 
would also result in the unavoidable inclusion of algorithms that feature 
addition of 1.0 and multiplication by 0.0, which may or may not be desired. 
Referring to the example above, the operation of type F(V.C, V.C), which 
represents a single delta component of a second-order algorithm, would now be 
able to return V4.r in four different ways: add(V4.r,0.0),  add(0.0,V4.r),  
mlt(V4.r,1.0) and mlt(1.0,V4.r). While this would indeed ensure 
containment, this redundancy would quickly stagger, flooding higher-order 
mappings with numerous instances of redundant behaviour. For this reason, 
these values were excluded from the mapping parameters explored in this 
study. 

6.2.4 Summary

This section offers an examination of the characteristics of Type-U spaces. It 
discusses number of unique properties which make them highly suitable for 
exploration via Spatial Mapping. The section also discusses some of the 
limitations, complexities and open questions regarding Spatial Mapping of 
Type-U, as well as CA algorithms in general. It serves a dual function, both as a 
broad introductory review of Type-U algorithms, as well as a case study for CA 
exploration through Spatial Mapping. 

6.3. Phenotypic Properties
Type-U algorithms present a number of unique characteristics and notable 
differences from many established CA algorithms. Perhaps the most notable of 
which is the fact that new state values cannot be created by the transition 
function. Instead, particular colour values can only persist by shifting between 
cells as they get selected, or otherwise become removed from the system. The 
following section offers an initial review of Type-U phenotypic properties, 
derived from preliminary observations and explorations of various spaces. 
These are mostly qualitative characterisations and are meant to reflect general 
properties of Type-U, in line with the scope of this expository study, and more 
broadly, with the aims of this thesis. Once again, significant further research is 
needed in order to obtain a more comprehensive understanding of Type-U 
phenotypic behaviour.

6.3.1 Heterogeneity

The previous section discussed the composition and diversity of various 
distinctive behaviours of Type-U algorithms, as they arise in their respective 
combinatorial spaces. However, composition and diversity can also be discussed 
in the context of individual algorithms. The range of phenomena which can arise 
from the dynamics of a given algorithm represents an important aspect of its 
potential value. In Type-U, this can be measured in terms of structural and 
colour diversity. 

The strong correlation between structural formations and colour in Type-U 
makes it exceedingly difficult to consider them separately. While the 
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composition of colour in a currently running system can be evaluated via a 
histogram analysis, there are no precise equivalent heuristics to measure 
structural patterns. Moreover, the temporal aspect is of key significance, both in 
terms of evaluating patterns, and comparing between them. In some algorithms, 
discernible patterns may develop (and dissolve) in only a few dozen steps, while 
in others this process may take thousands of steps, or may never arise in the first 
place. 

There are some genotypic markers which could help predict whether or not an 
algorithm will develop certain discernible behaviours. For example, the 
presence of the div() operator and the Extended Moore neighbourhood both 
appear to induce more erratic overall behaviour. While their presence may 
sometimes be correlated to volatility, presumably due to the presence of larger 
delta values, the degree to which this is the case requires further targeted 
studies. 

6.3.2 Convergence

Convergence relates to the range of possible outcomes an algorithm may exhibit 
from different random configurations. More specifically, its tendency to 
converge towards a particular outcome. Highly convergent Type-U algorithms 
can be characterised as being prone to being taken over by the same particular 
pattern on multiple separate runs, while divergent algorithms are typically  
characterised by a more balanced dynamic between the various phenomena 
they exhibit, either throughout their evolution or towards their possible terminal 
states. 

This tendency towards particular outcomes in Type-U algorithms can also be 
regarded as a bias that favours certain emergent patterns or behaviours over 
others. This  should not be confused with deterministic behaviour in regards to 
configuration, as discussed in relation to the use of pseudorandom values earlier 
in this chapter. In that regard, all Type-U algorithms are explicitly deterministic 
in the sense that a given configuration will always evolve towards the exact same 
output on multiple different runs. Some convergent Type-U algorithms feature 
such a strong bias towards particular dynamics that certain patterns predictably 
“take over” the entire system in all, or almost all runs. Universally common 
properties of such patterns have not been identified at this time. However, this 
dynamic is speculated to be akin to a process of natural selection, whereby 
patterns which best fit their environment — the particular dynamic imposed by 
the algorithm — are the ones who ultimately get to persist.

While there is, of course, some degree of co-dependence between heterogeneity 
and convergence, they are not necessarily coupled. A Type-U algorithm may, 
throughout its evolution, feature a relatively diverse set of structures and still 
present a tendency towards a particular terminal state. Likewise, an algorithm 
may only be capable of supporting a small set of discernible structures overall, 
yet still feature a balanced dynamic that does not demonstrate a clear tendency 
towards any particular terminal outcome. 

6.3.3 Levels of Organisation

Structural patterns in Type-U algorithms can be thought of as embodying a 
symbiotic relationship between different colours within localised regions. The 
particular composition and arrangement of any given group of colours, 
combined with the unique dynamics of the underlying transition function is 
what allows them to maintain their relationships to one another and persist over 
time. This may involve either moving or static regions of varying sizes and 
complexities, as well as fluctuating patterns that periodically change their own 

Figure 67.
TU59 typically converges towards  the 
same behaviours, patterns and colours.

Figure 68.
Diverse colour regions in TU8.

https://utomata.net/phd?edt=TU59
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structure. It is important to emphasise that all such structures are strictly self-
assembled; they emerge through a process of natural selection, whereby 
structures that cannot maintain a stable internal structure or a sustainable 
relationship with their environment are forced to make room for ones that can. 

Type-U dynamics generally appear to favour arrangements of high contrast; 
smooth and gradient patterns are uncommon, though this may be, at least in 
part, a result of the fully random configuration used throughout this study. 
Structural patterns themselves may feature varying degrees of diversity, with 
some clearly consisting of only two colours, while others may be formed as a 
collaboration of five or even more. Distinct structures may form almost 
instantaneously upon configuration, often as a swift reaction to the initial 
configuration of random colour values. Alternatively, some structures may arise 
at a much later stage, either as a result of a clash between previously unrelated 
formations, or as a result of the demise of a pattern which was holding them 
back.

Obtaining a clear definition of what a structure actually is in Type-U is not a 
trivial task. While distinct patterns such as gliders may sometimes emerge (see 
Figure 72),  in most cases Type-U patterns exist along a continuum, mixing into 
one another, often forming non-distinct boundaries between them. Many 
patterns in Type-U emerge from highly complex interactions in their 
surrounding environment and simply cannot be isolated or even considered 
apart from it. Even when distinct boundaries do appear, this may or may not 
indicate a symbiotic relationship between patterns at a higher level of 
organisation. 

Type-U algorithms have a distinct dynamic which differs from many other types 
of CA. This may necessitate a different way of thinking around structure 
formation and emergence in Type-U.  For example, a glider in GOL consists of a 
persistent, moving arrangement of white cell states within a uniform, static 
black environment. However, in Type-U it may be the glider which is standing 
still within a moving environment, which itself is often far from uniform. 
Moreover, it may very well be that this glider actually emerged as a result of 
distant minor fluctuations which somehow staggered and permeated across the 
grid in a manner which cannot be recreated when attempting to isolate it, even 
within its immediate environment. 

To that extent, adopting a holistic, qualitative approach, whereby all Type-U 
structures are considered as co-evolving alongside each other, may be 
preferable to a strict classification or taxonomic approach. This also aligns with 
how many other nonlinear systems are generally viewed, namely, not only as 
large sets of interacting components but as parts of a larger ecosystem that 
exhibits multiple levels of organisation and co-dependance. The self-assembled 
nature of Type-U structures and the reductive nature of their transition 
functions effectively force an implicit process of natural selection. This process 
differs from explicit evolutionary algorithms, such as those created by Sims 
[102], [118], [120], where selection is made by an external, uniform fitness 
function. Here, a structure’s ability to both assemble and persist depends 
entirely on its ability to maintain stable internal and external interactions.

Nevertheless, Type-U structures do consist of distinct patterns that exhibit 
distinct behaviours, which can be captured qualitatively. In regards to levels of 
organisation, they can be categorised as follows. If an individual cell in a CA is 
regarded as an indivisible universal module, then a first-order structure 
(exemplified in Figure 69) can be defined as a persistent local arrangement 
consisting of more than one cell. Notably, such structures may still span large 
regions of the grid, as it is not their overall size that defines them but the level of 

Figure 69.
First order structures in TU37.

Figure 70.
Second order structures in TU37.

Figure 71.
Third-order structure in TU37.
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intricacy of their underlying dynamic. A second-order structure (Figure 70) can 
be defined as a persistent local arrangement consisting of more than one first-
order structure. These can be characterised by embodying a do-dependancy 
between their underlying structures. Second-order structures may exhibit a 
cyclic or shifting dynamic, stemming from interactions between their 
constituent parts. Likewise, a third-order structure (Figure 71) can be defined as 
a persistent arrangement of second-order structures, and so on.

6.4. Qualitative Characterisation
Stephen Wolfram’s seminal work on Elementary Cellular Automata (ECA) [48], 
[73] stands as one of the few existing examples of a comprehensive study of a 
combinatorial space of CA algorithms. Another notable example is Christopher 
Langton’s paper: Computation at the edge of Chaos [43]. Though the two studies 
are hard to compare in scope, both represent key precedences for this thesis. 
Among Wolfram’s earlier studies of  ECA, he provides the following classification 
of their phenotypic behaviour:

1. Evolution leads to a homogeneous state 
2. Evolution leads to a set of separated simple stable or periodic structures
3. Evolution leads to a chaotic pattern
4. Evolution leads to complex localised structures, sometimes long-lived 
[43]

As noted in Chapter 2, the above classes were originally presented as a 
“qualitative characterisation of cellular automaton behaviour”. In the lack of 
subsequent well-established research on classification of CA, this 
characterisation has since obtained an unofficial status as a commonly accepted 
general classification of CA algorithms, yet it appears it was not originally 
formulated as such. Wolfram’s characterisation can serve as a useful litmus test 
for examining preliminary observations of novel CA behaviour and is therefore 
suitable to serve as a foundational framework for characterising the findings of 
some of the exploratory studies presented in this chapter. It is both general 
enough to account for phenomena that can be observed in CA, yet still useful in 
defining principle differences between its four classes. These may even be used 
as a system for assigning value to CA algorithms, with class 4 attributed to 
algorithms of high potential value. 

However, it may be useful to devise a qualitative characterisation that is better 
suited for Type-U phenotypic behaviour, which takes into account the 
preliminary findings presented in the previous sections. Such an adaptation 
would attempt to resolve a number of issues and inconsistencies that arise when 
applying Wolfram’s characterisation to Type-U algorithms, which present 
notably different phenotypic properties from ECA. These are hereby presented, 
followed by a proposed adaptation of Wolfram’s characterisation specifically 
tailored to Type-U. 

Maximalist configuration

The fully random configuration of Type-U, used throughout this chapter, is an 
explicit attempt to maximise the range of observable emergent phenomena. As 
previously discussed, this approach addresses the highly subtractive nature of 
the algorithm. Once configured, the majority of Type-U systems progressively 
resolve towards a relatively ordered state. This contrasts with many well-
established CA algorithms, where configurations are often minimal, such as 
altering the value of a single cell, most notably in ECA. In many cases, CA 
practitioners may avoid using random configurations to reduce the system’s 
reliance on pseudorandom values. By doing so, the reliability of emergent 
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structures generated by consistent rules may be less influenced by randomness, 
potentially allowing their underlying emergent properties to be observed more 
clearly. However, it is important to note that the reasoning behind these choices 
is often context-dependent and may vary between different implementations 
and studies.

The assumption of a minimalist configuration function appears to be baked into 
Wolfram’s class 3, as evolution towards chaotic behaviour is ranked relatively 
high. Commonly, CA that develop chaotic patterns from a minimalist 
configuration are indeed noteworthy, as pointed out by Wolfram. However, in a 
maximally configured CA such as Type-U, the presence of persistent chaotic 
patterns more likely indicates an inability to generate any discernible emergent 
patterns from the original random configuration. If anything, this property 
should therefore grant it a relatively low rank in the context of Type-U.

Homogeneity

A “homogeneous state” is characterised by class 1 as the lowest-value CA 
behaviour, as it signifies the evolution of a system towards trivial or “sterile” 
formations. While this characterisation is appropriate for additive algorithms 
such as ECA, RD and Abelian Sandpile, a homogeneous global state is not a trivial 
case in Type-U. It indicates that a single colour has taken over the entire system, 
a dynamic which may or may not constitute a behaviour of interest. In any case 
it should be noted that this constitutes the furthest possible state from the 
system’s initial random configuration. 

Continuous state

Class 2 characterises CA systems that settle to “a set of separated simple stable 
or periodic structures”. This description does find some equivalence in Type-U. 
Stable periodic structures do often arise and are especially common in first and 
second order spaces. However, in regards to non-oscillating patterns, stable 
structures that traverse the grid at a constant rate should not be considered 
different from stable structures that are standing still. Constant motion in Type-
U is often a result of a directional bias that is inherent in many algorithms. It is 
thus highly common for algorithms to feature homogeneous, constant motion 
towards a particular direction. In these cases, the emergence of meaningful 
patterns can only occur when some regions go against their environment’s 
overall direction. 

Type-U algorithms are, in-effect, continuous state CA. They feature fuzzy 
borders and sensitive symbiotic relationships between structures and colours. 
Thus “separated” is also not an ideal descriptor of their behaviour, as it again 
assumes the development of discrete patterns in a uniform environment and 
likely assumes a discrete state. For example, gliders and distinct moving 
patterns are comparatively rare in Type-U, though they do sometimes exist.  
More common are aggregated structures that develop into stable distinct 
formations, which then traverse the grid at a constant rate. As previously noted, 
it is typically the internal formation of structures that is of particular interest,  
rather than their traversal, which can be cancelled out in relation to their local 
environment.

Between stability and chaos

Wolfram’s classification effectively outlines a spectrum of CA behaviour, starting 
from uniform — to simple —  to chaotic, and lastly — complex. While this is not 
explicitly stated, this characterisation implies that class 4 algorithms are of 
potentially higher value, as it is often assigned to well-established and notable 
algorithms such as GOL. However, it is clear that Wolfram’s implicit assumption 

Figure 72. 
Glider gun in TU8.

A study of Type-U
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of a minimal configuration and additive dynamics are incongruent with the 
inherent properties of Type-U. Not only do the configurations and dynamics of 
Type-U algorithms operate in opposition to this assumption, but the ranking of 
chaotic behaviour residing between simplicity and complexity simply does not 
align with observations of Type-U thus far.

The presence of ordered and chaotic patterns in Type-U is directly correlated 
with the length of the vectors created by the transition function. Algorithms that 
feature heavy use of division and high-value variables such as V24, appear to 
feature more chaotic behaviour overall. Similarly, algorithms that distinctly 
feature low-value variables and lower-impact operators, such as addition and 
subtraction, tend to exhibit simple, uniform, and static formations.

In any case, the emergence of complex structures does not appear to be 
correlated with either low or high-impact variables or operators. Instead, it more 
likely results from a delicate balance between chaotic and stable dynamics. 
Complex patterns seem to arise when the interplay between cells and cell states 
is potent enough to allow for the reorganisation of novel structures. 
Simultaneously, these interactions must be stable enough to prevent these 
structures from dissipating. Highly reactive, chaotic, and volatile interactions 
appear incapable of sustaining complex high-order structures, as these likely 
require some degree of aggregation in order to form and persist. On the other 
hand, highly rigid, sterile, and stagnant interactions appear to hinder the 
development of complex structures in the first place. Consequently, complexity 
in Type-U can more appropriately be characterised as arising from a delicate 
balance between simplicity and chaos.

The idea of class 4 residing between class 2 and class 3 has been previously put 
forward by Langton et al. [43, p. 32]. The concept of “edge of chaos” describes a 
delicate balance whereby emergent behaviour is neither too orderly nor too 
chaotic, but positioned on the brink of criticality. It proposes that solid and fluid 
are phases of matter that constitute “two fundamental universality classes of 
dynamical behaviour”, separated by a phase transition. According to Langton, it 
is within that transition region that the basic mechanisms for emergent 
behaviour resides.  

While the initial alignment of Langton’s ideas with Type-U dynamics seems 
promising, it is important to note that applying Langton’s proposition to this 
study remains speculative at this stage. Moreover, it should be emphasised that 
this thesis does not engage with the profound implications that Langton’s and 
Wolfram’s research have for universal aspects of CA, computation, and the 
origins of life and the universe. Instead, it only advocates for open-ended 
exploration of CA and offers novel tools for doing so.

1. Evolution leads to simple stable or periodic structures
2. Evolution leads to complex localised structures, sometimes long-lived
3. Evolution retains a chaotic pattern

A proposed adaptation of Wolfram’s classification for Type-U is thus presented 
above, incorporating the following adjustments: removing the term “set of 
separated” due to its implicit assumption of additivity and discreteness; 
replacing “leads to a chaotic pattern” with “retains a chaotic pattern,” as the 
latter more accurately represents a trivial case in Type-U; eliminating Class 1, as 
it does not constitute a trivial case; and swapping the ranks of “chaotic” and 
“complex” to better reflect the observed characteristics of complexity in Type-U. 
These modifications refine the classification to align more closely with the 
emergent properties observed in Type-U systems.
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Temporal Undecidability

The temporal dimension plays an important role in CA and it is worth noting that 
the characterisations discussed above leave certain temporal aspects 
unaddressed. Specifically, the number of time steps required for a system to run 
before it can be classified is never stated. Wolfram’s terminology, particularly 
the phrase “leads to”, keeps this temporal aspect somewhat vague, leaving it up 
to researchers to determine when exactly in its evolution a system is to be 
classified. In Type-U this is amplified by the fact that a single algorithm’s 
behaviour can exhibit a dynamic process encompassing all three classes. For 
instance, it may start with a highly chaotic pattern, gradually evolve to form  
complex structures, which may then subside and dissipate, giving way to a 
simple or even uniform state. 

A further challenge lies in the fact that some Type-U algorithms may remain in 
their initial chaotic state for a significant duration before undergoing a global 
phase transition to one of the other classes. Consequently, classifying these 
algorithms becomes a potentially undecidable task. The temporal evolution of 
Type-U systems therefor introduces an additional layer of complexity and 
variability, which should be taken into account when classifying their behaviour. 
More generally, the temporal aspect is particularly impactful in exploratory 
studies that are based on direct visual examination such as this one, in which 
late stage phenotypic behaviours are very likely to be missed. 

This section discusses qualitative characterisations of Type-U phenotypic 
behaviour, drawing on the foundational classifications established by Stephen 
Wolfram. It discusses the relevance and limitations of Wolfram’s four classes of 
CA behaviour when applied to Type-U algorithms, which differ significantly 
from ECA. The section proposes an adapted classification scheme that is better 
suited to capture the unique properties of Type-U. Based on Langton’s work, this 
adaptation suggests that the emergence of complex structures in Type-U may 
arise as a phase transition between chaotic and ordered dynamics.

6.5. summary
This chapter introduces a new family of CA algorithms, called Type-U. It offers 
an examination of a range of Type-U algorithms, as well as the combinatorial 
spaces they occupy. The chapter discusses a number of their distinct genotypic 
and phenotypic properties and provides metrics for qualitative evaluation and 
categorisation. It demonstrates how the Spatial Mapping method can be used to 
conduct an in-depth exploratory study of novel algorithms and dynamics. Type-
U algorithms posses a number of unique characteristics which make them 
particularly well suited for exploration using this method. These include their 
recursive formal definition, strong correlation between genotype and phenotype  
and their strong tendency to yield discernible behaviour.

This study primarily relies on manual explorations and visual examinations in 
Utomata Lab, suggesting that such an interactive approach can be useful for 
gaining insights into the properties and behaviours of novel CA algorithms. This 
preliminary study can thus serve as a foundation for more targeted future 
studies of Type-U algorithms, or as a framework for future exploratory studies of 
other CA algorithms.

The next chapter presents a curated collection of  Type-U algorithms which 
feature noteworthy phenotypic properties. While these, of course, represent 
only a minuscule fraction of possible Type-U dynamics, they represent the 
unusually wide range of Type-U patterns and behaviours that have been 
observed over the course of this study.  

Figure 73.
TU57 is an example of a late stage phase 
transition in Type-U. It typically takes 
around 450 steps for it to resolve into its 
characteristic behaviour

Case Studies

https://utomata.net/phd?edt=tu57
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7.Case Studies
This chapter presents a curated collection of Type-U algorithms and provides 
qualitative characterisations of their phenotypic properties. These algorithms 
were largely discovered through excursions into various Spatial Mappings, and 
were each selected for their unique properties. Together, they constitute a 
representative group of the range of  Type-U behaviours observed in this study.  

7.1. TU8

U(
  div(add(V8.g, V4.g),sub(V.r, V24.b)),
  sub(sub(V4.g, V.b),div(V24.g, V24.g))
)

TU8 is a third-order, class 2 Type-U. The expression features two layers of 
operators, which include two additions, three subtractions and two divisions. It 
contains references to all four neighbourhood symbols (V, V4, V8 and V24), 
five of which refer to the green channel. Notably, the last operator in the 
algorithm, div(V24.g,V24.g) , always returns a value of  1.0. The algorithm’s 
dynamics feature a rapid initial tendency to form isolated chambers, allowing an 
unusually diverse range of structures to develop in each one. Its observed types 
of phenomena include highly stagnant regions, compound moving imprinted 
formations, shape shifting formations and highly turbulent dynamics. Its 
tendency for encapsulation also allows sustained activity over large periods of 
time.

Dynamics in TU8 consist of a pronounced east-bound directional bias, 
combined with a strong tendency for resilient, stagnant formations. Upon 
configuration, the initial reaction is rapid and consistent throughout the grid, 
with most of its characteristic structures emerging within a few dozen steps. 
This initial reaction also produces  the vertical columns which, combined with 
its directional bias, divides the grid into distinct rectangular regions, with some 
forming rough, yet distinct borders. Since this subdivision occurs shortly after 
configuration, these chambers act as “incubators” that contain a high amount of 
colour diversity, still remaining from the initial random configuration. This 
results in unusual overall structural diversity, as unique dynamics develop in 
relative isolation inside each chamber. Likewise, colour diversity is relatively 
high, with an initial bias towards low green and blue values, which typically 
tapers off after a few hundred steps, eventually settling in to a more balanced 
spectrum on all three channels.

Some isolated chambers feature highly volatile and turbulent dynamics, with 
single cell sized strands of as many as ten distinct colours. Other chambers may 
feature much more stagnant and uniform behaviour, even to the extent of 
forming large, single colour, stagnant regions. Overall, there appears to be a 
positive correlation between local colour diversity and the east-bound 
directional bias. Stagnant and uniform colour regions also appear to be much 
more resilient than moving, turbulent and diverse structures. This applies to the 
vertical columns that initially divide the grid, thus accounting for encapsulation 
that persists over sustained periods of time.

Given enough time, some capsule walls do eventually give in to corrosion, 
allowing active and volatile patterns to seep out of their incubators. This 

Figure 74.
Histogram Analyses of TU8 at 10, 100, 
1000 and 10,000 steps.
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TU8
Figure 75.
Specimen collection from TU8.

https://utomata.net/phd?edt=TU8
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introduces late stage novel formations into the system, as fully developed, 
previously unrelated patterns suddenly come into contact and form new, often 
surprisingly potent reactions. Late stage reactions can become highly corrosive, 
resulting in major shifts and secondary collapses, in turn, introducing high 
levels of activity into otherwise stagnant systems at very late stages of their 
development (upwards of 20,000 steps). 

As a notable class 2 algorithm, it features a significant capacity for the 
emergence of higher-order structures. However, this does not appear to be an 
overwhelming tendency. Most characteristic active behaviours typically feature 
bounded, localised cell arrangements of 10-20 cells in two or three distinct 
colours. These often feature short cyclic behaviours in the form of elongated 
structures, comb-like formations, various grid formations and thick diagonal 
columns. Simple repetitive structures can often merge with each other to form 
chaotic rhythms that overlap, forming second and third-order structures. The 
directional bias can sometimes take form as a range of local velocities, resulting 
in higher-order formations and unique symbiotic relationships within the same 
encapsulated region.

In some cases, small regions appear capable of spawning unusually diverse 
colours, not present anywhere in their immediate environment. Since new 
colour values cannot be introduced in Type-U — only moved around — this 
implies that in particular circumstances the transition function may return 
unusually high X and Y delta values, pulling in colours from remote regions. This 
is presumably a result of the presence of the div() operator and the V24
neighbourhood, both of which can potentially return arbitrarily high values. 
However, this is assumed to be a rare occurrence, since such a dynamic would 
not allow the apparent encapsulation, that is characteristic to this algorithm, to 
take place.  

Intricate formations sometimes appear to be extruded from “nozzles”. These are 
small, centralised, high velocity regions that culminate in one or two static cells, 
thorough which heavy colour variations are rapidly expelled. Combined with the 
east-bound directional bias, this creates imprints of distinct repetitive 
formations, reminiscent of objects moving along an assembly line. In more rare 
cases, more than one such nozzle may be present, which may significantly 
compound the complexity of the resulting imprints.

Other types of generative and extruding formations have also been observed. 
“Water fall” formations have a similar capacity for imprinting formations, 
however these typically span a larger area than nozzles and tend to feature 
slower dynamics. Other generators are reminiscent of “glider guns” in GOL, 
extruding small and simple preconfigured arrangements of colours at regular 
intervals (see Figure 72). The various ways in which generative patters in TU8 
may compound are staggering. In some instances, higher-order generators may 
form. They act as valves that open and close periodically, intertwining their 
output to produce exceedingly complex patterns. 

Despite its high structural and colour diversity, behaviour in TU8 is relatively 
convergent, with a strong tendency for the same colour distribution and overall 
measure of directional bias on multiple separate runs (seen in figure 76). The 
algorithm’s stages of development are also quite predictable. The initial 
encapsulation occurs within the first 50-100 steps, structural variation usually 
peaks at around 600-800 steps, followed by a sustained gradual decay, caused by 
occasional erosions of capsule walls. Unless perturbed by leakage from 
collapsed neighbouring chambers, regions that have settled into a stable 
dynamic will persist indefinitely. This allows the algorithm to retain diverse, 
complex and potent activity over an indefinite timespan. 

Figure 76.
64 separate runs of TU8 reveal overall 
convergent behaviour. 
(128*128, 2000 steps)
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Figure 77.
Specimen collection from TU72.

https://utomata.net/phd?edt=TU72
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7.2. TU72

U(
  sub(V9.b,V9.g),
  div(V4.g,V9.g)
)

TU72 is a second-order algorithm featuring overall uniform, yet highly distinct 
characteristic meandering patterns. While similar pattern types have been 
observed in other Type-U algorithms, an overwhelming presence of such types 
appears to be extremely rare. The algorithmic expression features subtraction 
and division, and a combination of V9 and V4 neighbourhoods, consisting of the 
green and blue channels.   

Overall dynamics are uniform and stagnant, with a north-north-west directional 
bias, reminiscent of a “bubbling up” process. After configuration, the system 
settles into semi-stable formations within a few hundred steps, but continues to 
percolate indefinitely. The slow and steady flow of north-bound corrosive 
patterns appears to form at the edges of thin vertical lines, typically manifesting 
as dotted lines of single-cell formations. They travel through a substrate of 
mostly stagnant, less resilient formations, thus keeping the system in constant 
flux. The slow and sustained dynamic eventually reduces the overall range of 
unique formations, potentially leaving only one or two “triumphant” patterns. 
Exceptionally turbulent local dynamics are sometimes evident, though their 
corrosive properties are not necessarily proportional to their level of activity.

This algorithm is highly heterogeneous, with all types of formations ultimately 
sharing a high degree of similarity in their dynamics, complexity, velocity and 
appearance. Emergent structures differ mostly in terms of their unique colour 
combinations, slight variations in scale, as well as their level of activity and 
corrosiveness. However, its many colour formations are separated by distinct 
boundaries and differentiation patterns. The vast majority of regions appear to 
consist of just two primary colours, with some instances featuring no more than 
five. However, there appear to be instances where a given colour pattern spans 
multiple neighbouring backdrop colours, indicating that there may be several 
layers of symbiotic relationships between colour patterns, allowing them to span 
multiple regions. 

Limited by its homogeneous nature, this algorithm is also relatively convergent, 
with some distinct variations across separate runs, likely stemming from 
compounded variations of the random configuration pattern. Unlike TU8, which 
features significant encapsulation, the neighbouring relationships between 
different regions in TU72 can play a key role in pattern development. Any two 
patterns may react differently to one another when coming into direct contact. 
In some cases, a strict, rough boundary will form between them, allowing both 
to persist. In other cases, a third pattern may emerge as a potent reaction 
between the two. Alternatively, it may be that one pattern will simply absorb the 
other, while possibly enduring some level of mutation in doing so.

7.3. TU70

U(
  div(V.b, V.r),
  div(V24.r, V24.b)
)

Figure 78.
Histogram Analyses of TU72 at 10, 100, 
1000 and 10,000 steps.

Figure 79.
64 separate runs of TU72. 
(128*128, 5000 steps)
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Figure 80.
Specimen collection from TU70.

https://utomata.net/phd?edt=TU70
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TU70 features highly unusual phenotypic behaviour for a second-order Type-U 
algorithm. Its transition function features two division operators which dictate a 
particular dynamic between the red and blue channels: deltaX is the result of the 
blue over the red cell value (V.b/V.r) and the deltaY is the result of the 
Extended Moore neighbourhood reds over blues (V24.r/V24.b). This creates 
a pronounced, uniform presence of green values and a narrow, yet distinct, 
range of cyclic linear formations. 

Dynamics consist of two distinct types of patterns which move along different 
directions. The first is a stagnant, stable arrangement of colours with rough, 
nondescript edges. It features a steady west-bound directional bias and seems to 
preserve much of its initially configured random colour values. As these 
patterns move horizontally, their top edges appear to “evaporate”, thus forming 
a second pattern type. It consists of highly corrosive, sparse vertical formations 
that move along a strong, non-uniform, north-bound directional bias. The colour 
diversity of these regions can be significant, apparently stemming from the 
retained randomness of their substrate. These pattern types appear to feature a 
range of turbulent dynamics that traverse the grid at various velocities. However, 
the development of complex interactions within these regions appears to be 
inhibited by their pronounced directional bias. Instead, they feature a 
considerable diversity of vertical, first-order cyclic formations. This includes 
triangular formations of various sizes and orientations, dashed and dotted lines, 
thin horizontal stripes, as well as thick diagonal patterns.

Vertical formations are highly corrosive. They destroy everything in their path 
almost immediately upon contact. As a result, the stagnant, west-bound 
formations are relatively short lived, typically taking around 500-700 steps to 
completely disappear. At that point, all north-bound regions which feature 
different velocities begin to erode each other. Their reactions sometimes form 
static residual patterns that are more resilient to erosion. The system typically 
reaches a state of equilibrium within 2000-4000 steps, as all opposing vertical 
dynamics are resolved. This usually leaves a very limited set of simple, cyclic 
formations that traverse the grid along a uniform vertical velocity, marking a 
relatively early end to all potent activity in the system. 

7.4. TU76

U(
  sub(
      sub(div(V.r, V.g),mlt(V.b, V8.g)),
      div(sub(V4.g, V4.b),add(V9.g, V8.b))
  ),
  sub(
      div(div(V8.g, V4.b),sub(V9.g, V4.a)),
      div(mlt(V.r, V9.r),add(V.r, V24.r))
  )
)

TU76 is a fourth-order algorithm consisting of two distinct, competing pattern 
types. Initial configuration triggers an immediate, strong differentiation 
between colour values. In only a few dozen steps, blue values are concentrated at 
the low end of the spectrum, while red and green values are concentrated at the 
high end. At this stage, the system is completely washed by a heterogeneous and 
turbulent, class 3, yellow-pink substrate with a mild east-bound directional bias. 
This pattern gradually gives rise to more ordered pink formations that may form 
large triangular regions and some second-order structures. 

Figure 82.
16 separate runs of TU70. 
(128*128, 1000 steps)

Figure 81.
Histogram Analyses of TU70 at 10, 100, 
1000 and 10,000 steps.
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Figure 83.
Specimen collection from TU76.

https://utomata.net/phd?edt=TU76
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The second pattern type consists of class 1, dark blue regions that emerge as a 
late stage phase transition which seems to occur in approximately 10% - 20% of 
runs (depicted in figure 84). They initially break out as small separate pockets 
within the uniform yellow-pink substrate. When they manage to persist through 
their initial window of opportunity at around 100 steps, these blue regions 
typically take over the entire system within the first two thousand steps.    

Late stage phase transitions such as this one are relatively rare among the many 
algorithms observed in this study. However, as previously noted, such patterns 
are very likely to have been overlooked in this exploratory study. Since it 
involves sifting through thousands of algorithms and selecting noteworthy 
behaviours based on visual differentiation, this methodology is heavily biased 
towards algorithms that instantly present unique behaviours.

Discounting its unique phase transition, this algorithm is highly convergent.  
Both of its dominant pattern types are relatively uniform, with some notable 
structural diversity apparent in each one. However, the particular interaction 
between the two types is nonetheless noteworthy. The manner in which yellow 
patterns ultimately dissolve to form sparse linear formations within the blue 
regions is highly reminiscent of sedimentary dynamics. Other exceptional 
distinct reactions can also occur, including pronounced vertical and diagonal 
regions, as well as distinct fluctuating patterns of sparse yellow formations, 
which manage to survive the initial phase transition. These fluctuating patterns 
may be linked to the presence of the div operator, though this has not been 
verified.     

While TU76 exhibits relatively convergent and homogenous dynamics, It 
indicates a wider potential for unusual and surprising phenotypic behaviour in 
fourth-order Type-U. While fifth and higher order Spatial Mappings are 
exceedingly difficult to sift through, they are also likely to feature many unique 
behaviours that are not present in lower order mappings.

7.5. TU37

U(
   sub(mlt(V8.b, V8.b),sub(V8.g, V.b)),
   add(add(V4.r, V.r),sub(V.r, V24.b))
 )

TU37 is a third-order Type-U which features a range of highly turbulent 
dynamic patterns, some of which resolve to form stable, organised structures at 
unusually late stages of development. The transition function refers to a range of 
neighbourhood types from the red and blue colour channels and features 
addition, subtraction and multiplication. The algorithm sustains high activity 
over long periods but, given enough time, is eventually overtaken by its most 
turbulent patterns.

Initial configuration becomes resolved within approximately 100 steps,  
consistently resulting in mostly low blue and green values, and high red values. 
This forms the algorithm’s characteristically narrow colour palette. Directional 
bias is omnidirectional, as patterns propogate in all four primary directions. In 
addition, a number of distinct static formations are evident, as well as large 
regions of solid colour, though these are typically the first pattern types to be 
eradicated in sufficiently large grids. 

Prominent vertical formations sometimes also emerge, going against the 
algorithm’s typical turbulent dynamics. This unusual combination of  

Figure 85.
Histogram Analyses of TU37 at 10, 100, 
1000 and 10,000 steps.

Figure 84.
16 separate runs of TU76.
(256*256, 2000 steps)
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Figure 86.
Specimen collection from TU37.

https://utomata.net/phd?edt=TU37
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Figure 87.
Specimen collection from TU78.

https://utomata.net/phd?edt=TU78
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Figure 88.
Specimen collection from TU79.

https://utomata.net/phd?edt=TU79
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omnidirectional movement, static formations and vertical towers sets it apart 
from other similar third-order algorithms. These three pattern types exhibit 
nearly equal corrosive power. Their constant clashes sustain the system’s high 
potency over extended periods. This balanced power dynamic also makes this 
algorithm quite divergent, as almost any pattern may ultimately become 
“triumphant” on multiple separate runs (as seen in Figure 89).

Some collaborative patterns and symbiotic relationships have been observed to 
form higher-order class 2 structures, consisting of both turbulent and stable 
dynamics. These may take form as two equally powered formation types, with 
opposing directional biases that maintain a stable relationship with one another 
(see figure 71). Considering its highly constrained colour palette, TU37 supports 
a surprising variety of patterns and behaviours. All distinct formations appear to 
consist of  just two colours, indicating that a wide range of strategies for self-
organisation and persistence in Type-U may be possible with much more 
constrained configuration patterns than the fully random configuration used. 

7.6. TU78

U(
  sub(sub(V8.r, V4.r), div(V24.r, V24.r)),
  add(sub(V.b, V8.b), div(V8.g, V.b))
)

TU78 is a third-order algorithm that features a unique combination of turbulent 
dynamics, periodic static formations and large regions of solid colour. Similar to 
TU37, its directional biases are relatively balanced. Cyclic and solid regions are 
typically static and most active patterns are typically north-west bound. Some 
linear formations feature a unique “trickle-down” effect, akin to dropping sand 
dynamics. Colour diversity is overall quite minimal, with most distinct patterns 
consisting of just two colours. 

TU78 features unusual support for very large solid masses, intricate diagonal 
dotted patterning and long vertical formations. Unique branching formations 
and second-order grid textures are also sometimes evident, as well as distinctly 
unique triangular patterns with rounded corners. Distinct fractal patterns are 
also evident in the form of Sierpinski triangles. Considering its constrained 
colour palette, TU78 can be considered highly heterogeneous and divergent. Its 
numerous pattern types present a surprisingly balanced power dynamic, in 
which any one pattern may suddenly begin to thrive. This also contributes to 
sustained long term activity.  

7.7. TU79

U(
  add(div(V8.g, V4.b),sub(V.g, V.r)),
  mlt(div(V24.g, V4.r),sub(V.r, V.g))
)

TU79 presents distinct similarity to structures found in TU78, though it is 
notably less temperamental. It features a strong west-bound directional bias, 
whereby almost everything traverses the grid at a constant rate. Localised north-
bound regions of turbulent and solid colour formations act as the prime 
instigators of change in this algorithm. Upon configuration, the grid rapidly 
forms most of its stagnant patterns. These are characterised by long horizontal 

Figure 89.
16 separate runs of TU37. 
(128*128, 2000 steps)

Figure 90.
16 separate runs of TU78. 
(128*128, 5000 steps)
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white strips, forming over a dominant blue backdrop. Some colour diversity is 
retained in distinct localised “pockets”, alongside a range of textured grid 
patterns and diagonal solid regions, which sometimes contain vertical columns. 
Sparse Sierpinski-like fractal formations, as well as a range of  imperfect semi-
fractal triangular formations are also sometimes evident.

7.8. TU68

U(
  sub(V24.b,V24.g),
  sub(V24.b,V24.r)
)

TU68 is an extremely turbulent second-order algorithm that features a 
monolithic algorithmic expression that simply subtracts Extended Moore 
neighbourhoods of red, green and blue channels. As previously noted, there are 
strong indications for a correlation between the Extended Moore neighbourhood 
and the presence of turbulent dynamics such as those present here. Higher delta 
X and Y values can result in a larger range of state values that are less likely to be 
resolved. Such patterns are mostly common in third and fourth-order Type-U, 
but are extremely rare in second-order algorithms. The fact that this algorithm 
consists of only V24 variables may support the above claim, though further 
testing is needed before this can be determined with confidence. While it is 
extremely homogeneous, this algorithm appears quite divergent; its numerous, 
yet almost identical, turbulent patterns present a balanced power dynamic, with 
no clear victor on multiple separate runs (as seen in Figure 92).   

7.9. Summary
This chapter offers initial qualitative characterisations of a small set of Type-U 
algorithms which present notable phenotypic traits. Figure 93 showcases a 
wider selection of algorithms which have also been examined and considered 
for this study. The selection criteria for these algorithms and characterisations 
of their properties are highly subjective, representing the author’s aesthetic 
preferences and interests. However, this inherent subjectivity should not be 
regarded as a drawback; it firmly aligns with this project’s aim to explore and 
study algorithms which may be overlooked by more analytical methodologies.

These case studies aim to showcase prominent behaviours that have been 
observed in Type-U systems over the course of this study. While each algorithm 
presents a unique blend of phenotypic traits, each such trait is likely also 
apparent in countless other algorithms, especially ones of the same order. 
Nevertheless, the unique balance of traits embedded in each specimen is what 
allows some of them to present highly rare and distinct dynamics. The most 
minute genotypic variation may result in the most minute change to an 
algorithm’s underlying dynamics. In turn, this could mean the difference 
between a thriving ecosystem and a barren wasteland. 

Figure 91. 
TU68.

Figure 92.
16 separate runs of TU68. 
(128*128, 2000 steps)

https://utomata.net/phd?edt=TU68
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Figure 93.
Selected specimens from Utomata Lib. 

NU1 TU1 TU2 TU3

NU4 TU6 TU9 TU12

TU12A TU13 TU16 TU18

TU20 TU23 TU25 TU26

TU31 TU33 TU35 TU38

http://utomata.net/lib
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TU40 TU41 TU42 TU44

TU45 TU46 TU47 TU48

TU49 TU52 TU53 TU55

TU58 TU61 TU62 TU63

TU64 TU66 TU69 TU71



LABORATORY OF BABEL

129

8.Discussion

8.1. Overview
This thesis presented a set of frameworks, tools and methods specifically 
designed for open-ended exploration of CA algorithms, employing a non-
instrumentalist approach to exploration in order to expand the scope of inquiry. 
The effectiveness of the tools presented has been demonstrated through case 
studies involving both established and novel algorithms. Qualitative evaluations 
of novel findings demonstrated how this approach can also be used to interpret 
findings, while minimising reliance on representational and scientific concepts.

Utomata serves as a foundational framework which allows implementation of an 
exceptionally wide range of algorithms, as demonstrated through 
implementations of three well-established algorithms: GOL, ECA and RD. 
Further, it was used to conduct a low-level exploratory study of a new family of 
algorithms, called Type-C. The conception of the first Type-C algorithm, as well 
as the iterative process of extracting its unique algorithmic variants were made 
possible by Utomata’s non-analytical approach to programming. This study 
demonstrated how  direct manipulation of algorithmic expressions can facilitate 
the discovery of novel CA. This study also demonstrated a method for effective 
cultivation and examination of novel emergent structures, which did not rely on 
obtaining an analytical understanding of their underlying dynamics and 
avoided casing them as instruments or derivative objects.

Utomata can also be used as a foundational framework for high-level exploration 
methods. This was demonstrated through the introduction of the Spatial 
Mapping method, accompanied by its online software implementation — 
Utomata Lab. This method effectively formulates a mapping from a high 
dimensional algorithmic expression, written in Utomata’s functional syntax, 
onto a large two-dimensional field. Spatial Mapping not only makes it possible to 
visualise and interact with an exceptionally wide range of algorithmic variations 
in real-time, but also aids in identifying patterns and relationships within the 
combinatorial spaces they occupy. The Spatial Mappings of GOL, ECA and RD 
showcased this method’s ability to situate existing algorithms among their 
numerous possible variants. The notable limitations of this method were 
discussed through some of the unique properties of each of these three case 
studies, as well as the prospect of fine tuning the mapping parameters as a way 
to isolate potential findings of interest.  

Lastly, a comprehensive exploratory study of a new CA family, called Type-U, 
was conducted. The unique genotypic and phenotypic properties of Type-U 
algorithms were examined, as well as some of the properties of their 
encompassing combinatorial spaces. These properties were further explored by 
examining a curated collection of Type-U algorithms which presented 
noteworthy phenotypic behaviour.

This chapter interprets and contextualises key findings from this research 
project, highlighting their contributions and discussing their limitations. It 
offers reflections on the project’s underlying philosophical view and evaluates 
the tools and methods presented in this thesis towards accomplishing its 
research aim. The chapter also evaluates the implications of these results in 
regards to open-ended exploration of the broader class of emergent virtual 
structures, and suggests avenues for future research. 
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8.2. Key Contributions

Utomata Framework

As a novel computational framework for CA exploration, Utomata offers unique 
features that streamline the process of implementing and running CA 
algorithms. These differentiate it from general purpose graphics programming 
environments, such as P5js or Openframeworks. They include built-in 
neighbourhood variables, absolute and relative cell state retrieval, dedicated 
configuration and transition functions, support for high dimensional state, 
bounds management, custom operators, specialised randomisation features, 
parallelisation of multiple concurrent algorithms, real-time input, interaction 
and import-export functionality. Utomata also features built-in functionality 
which generalises the field parameterisation technique, allowing concurrent 
observation of numerous parametric variations of any algorithm.

Utomata’s demonstrated ability to implement a wide range of real-valued CA 
also differentiates it from specialised CA environments such as Ready,  Golly or 
VulcanAutomata, each of which specialises in a subdomain of CA. The open 
source, hardware accelerated Javascript implementation of Utomata is also 
unique in the landscape of CA software, providing a robust environment for 
running, storing and sharing CA online. The utomata.js library [201] is uniquely 
suited for embedding CA into interactive web applications, thus supporting a 
range of creative applications. Moreover, It can serve as an underlying rendering 
engine and procedural content generator for more advanced web based 
applications such as Utomata Lab.

Utomata’s custom functional syntax constitutes a standardised method for 
implementing a wide range of CA algorithms. Its particular use of normalised 
state vectors and custom unary and binary operators, including boolean 
operators, provides a unified approach for implementing widely different CA 
algorithms. Moreover, unlike a general purpose programming language, it 
allows interchangeability of parameters, operators, subsections of algorithms, 
as well as entire algorithms. This makes it highly suitable for exploratory studies 
of CA that are guided by intuition, improvisation and aesthetics. As such it 
embodies the non-analytical approach to programming, advocated by this 
thesis.

This syntax also constitutes a highly minimalist form of algorithmic expression. 
This is most notable in The GOL algorithm, which consists of only a few 
characters. This algorithm differs substantially from other succinct expressions 
of GOL such as the Life-Like notation [70], [71] in which the underlying 
assumption of its structure — the number of live neighbours for births, spawns 
and deaths — is hard coded. In contrast, Utomata’s GOL implementation 
constitutes a complete algorithm, which can easily be adapted to use continuous 
and vector states, be appended with any additional functionality, or be 
incorporated in its entirety as a sub branch of any other algorithm.

Lastly, a significant advantage of using a functional syntax lies in its 
compatibility with high-level, or meta-programming techniques, such as 
genetic programming and Spatial Mapping. The minimal design, recursive 
nature and strict topology of functional expressions all offer benefits for 
procedural generation of algorithms. The robust adaptation of a functional 
programming paradigm to CA exploration and research thus stands as a novel 
contribution made by this thesis.     
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Spatial Mapping

Spatial Mapping is a new, high-level exploration method that builds upon 
Utomata to produce a space consisting of all possible variations of any given 
algorithm, using a highly customisable set of parameters. Along with its 
accompanying software implementation, Utomata Lab, this meta-programming 
technique allows interactive exploration of numerous algorithmic variations of 
CA algorithms.

This method is based on a unique isomorphic mapping between a high- 
dimensional Utomata functional expression and a large two-dimensional field. 
The mapping defines a mixed radix system that encodes the input algorithm and 
a set of input symbols onto a coordinate system, allowing every unique 
permutation of the algorithm to be assigned a unique X and Y coordinate. 
Special care has been taken to enhance the intuitiveness of this method by 
converting these coordinates back into a decimal system, as well as to creating 
an inverse mapping, which is used to locate the input algorithm within its 
encompassing space. Different mapping parameters and spatial distribution 
methods can be applied to fine tune Spatial Mappings in order to accommodate 
different scopes of exploration, different algorithms and different research 
requirements.

Study of Type-C

An exploratory study of a new family of algorithms, called Type-C, demonstrates 
the use of a non-analytical programming approach in Utomata. The first Type-C 
algorithm was devised as an adaptation of a well-established algorithm, Abelian 
Sandpile, to feature a continuous state. Subsequent experiments yielded a range 
of unique behaviours through an iterative process, involving algebraic 
reduction, field parameterisation and real-time interaction. This study yielded a 
number of novel CA algorithms which feature a surprising range of unique 
phenotypic properties, alluding to the prospect of highly potent lineages of 
algorithms, concentrated as “pockets” of noteworthy behaviours within larger, 
more barren, spaces.

In particular, the variant Red Nose Hexagliders features persistent and stable 
glider formations which are semi-resilient to collisions. This unique feature 
brings rise to higher-order structures which form a diverse “ecosystem” of 
emergent phenomena. These were categorised in a preliminary taxonomical 
study, shown in figure 25, as well as documented in the short nature 
documentary film Vital Signs [203]. This study further demonstrates the 
effectiveness of Utomata as a tool for open-ended exploration and examination 
of CA, as well as that of the underlying  approach to exploration, advocated by 
this thesis. 

This approach considers emergent virtual structures, such as those found in 
Red Nose Hexagliders, as instances of observable phenomena, which can be 
cultivated and studied — irrespective of function or metaphor. Notably, these 
studies demonstrate how exploratory CA research can be conducted without 
obtaining a firm analytical understanding of the exact dynamics of the 
underlying algorithms — just as a firm understanding of biogenetics is not 
strictly required for farming. In that sense, an algorithmic expression that 
defines any given CA behaviour can be likened to its genotype, and any change 
to that algorithm can be likened to a mutation, which may or may not give rise to 
other behaviours of interest. 

Study of Type-U

This study introduced a new family of CA algorithms that are characterised by a 
particular transition dynamic: the new state of each cell is set to be the current 
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state of any cell in the grid. Algorithmic expressions belonging to this family can 
be formulated in Utomata as functional expressions whose root is the U(dx, 
dy) function. Using the dx and dy parameters, the U function retrieves the 
current state of any cell in relative (discrete) coordinates. Spatial Mapping was 
then used to construct a complete combinatorial space of all such expressions. 
These were expanded recursively to form higher-order Type-U space which 
consist of exponentially more algorithms. 

Type-U can technically be categorised as continuous, vector state, outer-
totalistic CA. However, they feature a number of unique properties and 
characteristics. The use of multiple totalistic neighbourhoods in conjunction 
with the U function leads to a particular dynamic, whereby new cell states may 
be drawn from anywhere in the grid. This embodies a unique and novel 
relationship between transition, neighbourhood and state. Since Type-U 
transition functions are strictly incapable of introducing new state values into 
the system, this dynamic is inherently reductive. The result can be 
characterised as a cross between a CA and a sorting algorithm.

The use of Spatial Mapping to facilitate exploration of the vast space of possible 
Type-U algorithms across different orders constitutes a novel methodology for 
an exploratory study of this kind. Perhaps the closest well-known example is 
Wolfram’s study of ECA [48], which also involves formulating and exploring a 
combinatorial space of permutations of CA algorithms. However, the significant 
size difference between these respective spaces is staggering. While all 256 
variants of ECA can be implemented and rigorously studied using brute force 
techniques, the combinatorial spaces of Type-U algorithms would literally take 
centuries to compute exhaustively.

Therefore, this study adopted a more cautious approach, akin to naturalism in 
the sciences, where phenomena were studied with the understanding that only 
a minuscule part is directly observable. This approach focused on general 
properties of algorithms, their similarities, differences, and their unique 
phenotypic traits that differentiate them from other well-established CA. 
Observations of Type-U dynamics indeed revealed overwhelming diversity of 
emergent behaviours, with a surprising number of algorithms supporting 
persistent, higher-order structures. Examinations of these algorithms, 
according to their specific properties and characteristic behaviours potentially 
constitute a framework for qualitative evaluation of phenotypic behaviour in CA, 
which can be adapted to other algorithms and models.    

8.3. Limitations

Computational Framework

While Utomata’s non-analytical approach to programming potentially makes it 
more accessible to creative practitioners, it is nonetheless a programming 
environment. As such, creative practitioners who wish to conduct low-level 
explorations of CA may face a steep learning curve in mastering its use. The 
framework’s custom functional syntax is a high-level concept which may 
present a challenge, even for experienced programmers who are unfamiliar with 
functional programming. This minimalist form of expression can also make 
algorithms potentially less legible in analytical terms, compared to a general 
purpose language. 1 Moreover, this syntax is not standardised across other CA 
frameworks and environments, nor is there currently an open collection of 
established CA algorithms written for Utomata.

This points to a need for comprehensive documentation, tutorials, examples 
and implementations of Utomata in other graphics programming environments. 

1 Though it should be emphasised that this 
feature is by design. It aims to encourage 
open-ended exploration and 
experimentation by minimising potential 
biases involved in efforts to make sense of a 
given algorithm.
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At the time of writing, efforts to create a library of Utomata algorithms and 
examples, as well as official documentation and tutorials are still in progress. 
Additionally, alternative implementations of Utomata have also been created for 
Processing, Openframeworks, TouchDesigner and Blender3D, yet these have not 
yet been made public. 

Utomata’s explicit focus on CA also makes it considerably limited for other, more 
general tasks, such as data processing or drawing and interacting with shapes 
and splines. That said, since Utomata’s transition function is effectively a 
fragment shader program, it can still be used for many applications beyond CA. 

Another notable aspect of Utomata is its reliance on GPU computing. While this 
provides exceptional computing power it can make algorithms more difficult to 
debug. The framework lacks robust debugging tools commonly found in 
conventional programming environments, such as console logs and break 
points. While the Utomata IDE and Utomata Lab do feature rudimentary tools for 
debugging and analysis, such as error messages and histogram analyses, 
significant untapped potential for such features remains. Additionally, the use of 
continuous normalised state values may introduce floating point error,  which 
has been observed in some Type-C variants. This can often manifest as a 
breaking of symmetry when configured with a symmetric pattern. While floating 
point errors are not unique to GPU computation, they can be harder to identify 
and mitigate, compared to a CPU based implementation.

Non-Instrumentalist approach

This thesis is founded upon an unconventional approach to exploration of 
virtual phenomena. It seeks to uncover novel findings by employing a non-
instrumentalist approach to computational modelling. This serves as the 
underlying foundation for the development of all software tools, methodologies 
and studies presented. However, this approach can easily overshadow efforts to 
obtain an analytical understanding of CA dynamics. It introduces significant 
subjectivity which may limit its appeal in educational and traditional research 
contexts, especially in contexts where analytical insight, precision and 
reproducibility are prioritised.

Many of the proposed research methodologies primarily rely on aesthetic 
evaluation and acquired intuition. It may therefore be challenging to establish 
objective criteria for evaluating certain CA algorithms. Moreover, generalising 
these findings to other algorithms, models or domains may not necessarily be 
applicable.  Lastly, these techniques typically require extensive trial and error 
which can be exceedingly time-consuming and tedious, further limiting the  
effectiveness of this approach in time-sensitive and production contexts. 

Spatial Mapping

Spatial Mapping is a meta-programming technique that envisions Utomata 
algorithms as pre-existing within vast combinatorial spaces. Utomata Lab is an  
implementation of this technique which allows real-time interactive browsing of 
these spaces, akin to exploring a vast online map. While Utomata Lab does 
technically achieve this stated goal, it should be acknowledged that Spatial 
Mapping possesses significant limitations. Anything resembling an exhaustive 
search using this method is strictly impractical, and any form of selective 
exploration is likely to overlook significant findings. Even targeted excursions 
which seek to study well-defined subregions of any given space would likely 
involve generating and processing vast amounts of data. Its interpretation may 
further require the development of novel techniques, expertise and intuition.
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The continuity of a Spatial Mapping was defined as its overall tendency to group 
similar algorithms and behaviours together. Highly continuous Spatial 
Mappings are ideal targets for exploratory and taxonomical studies because 
such spaces can be sampled by region, rather than exhaustively searched. While 
the mappings presented in this thesis do exhibit continuity, compared to 
randomly distributed spaces, this crucial aspect has not been optimised.     

Adapting a Spatial Mapping for more efficient exploration is a multi-faceted 
challenge which involves a combination of advanced techniques that are beyond 
the scope of this thesis. For example, a precise characterisation of genotypic 
redundancy in a given space, and subsequent elimination of genotypic twins can 
significantly reduce the size of a space. However, this involves careful analysis 
and optimisations that may not even be transferable between different types of 
algorithmic expressions. This is even more pronounced in the case of 
phenotypic redundancy, which is drastically more difficult to assess and 
mitigate. 

While Spatial Mappings technically consist of all encompassing spaces of 
behaviour, a significant amount of possible phenomena in any given mapping 
can easily be made inaccessible due to a range of factors. For example, 
algorithms that feature real-valued numerical constants cannot be effectively 
explored using this method. While field parameterisation can be incorporated to 
address this, most possible behaviours will necessarily remain well beyond 
reach. Likewise, the configuration function can have a profound effect on the 
range of phenomena that may emerge in a mapping. Choosing an appropriate 
configuration may require preparatory experiments to ensure sufficient 
understanding of the subject matter in order to select an appropriate 
configuration function for use in the mapping. 

While this method was never intended to be exhaustive and is likely ineffective 
for most research contexts, it may nonetheless have significant conceptual 
merit, which should not be underestimated. Overcoming conceptual barriers 
may be crucial for gaining a deeper understanding of nonlinear systems, their 
edge cases or their limits. Spatial Mapping can offer a glimpse into a universe of 
potential emergent phenomena. Despite the overwhelming presence of vacant 
or incoherent findings in this universe, the mere act of observing it can have a 
profound impact on one’s perspective.

8.4. Implications

CA Research

Both Utomata and the Spatial Mapping method have the potential to broaden the 
scope of CA research. These tools enhance existing methodologies by enabling 
systematic exploration of algorithmic spaces that were previously inaccessible. 
The identification and exploration of new CA families, Type-C and Type-U, not 
only demonstrate the effectiveness of these tools but also indicate an enormous 
untapped potential for discovering novel emergent phenomena in CA.

The project’s non-instrumentalist approach to exploration and its emphasis on 
qualitative assessment of findings shifts the focus towards a more holistic view 
of CA. It offers a conceptual framework that seeks to revive the experimental, 
exploratory, and interdisciplinary spirit of early work in AL, while 
acknowledging the theoretical limitations that have since been established in 
regards to emergent phenomena. This revision of the strong-AL approach has 
the capacity to contribute to the overall diversification of CA algorithms, whose 
properties, limits and implications are still largely unknown.
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Computational Arts

This work could potentially empower and inspire artists and designers to 
engage with exploration and study of CA by framing this practice as a medium 
for creative expression, rather than a scientific tool. It proposes and 
demonstrates new ways of exploration and real-time interaction with CA 
systems, potentially offering new avenues for artistic experimentation with 
emergent virtual phenomena. These may include performative, collaborative, 
and improvisational work. For example, “Echosystem” is a live audiovisual 
performance, presented at Printscreen Festival in 2019 [205]. A collaborative 
project between the author and composer Maayan Tsadka, this experimental 
live performance incorporates a custom, sound-reactive implementation of 
Utomata with real-time examination of microscopic samples and musical 
improvisation with found objects. 

CA can also be incorporated into a wider range of real-time art forms, such as 
digital installations and net-art, as well as towards forming physical artefacts 
through digital fabrication, print, and sculpture. Moreover, in an artistic context, 
the act of CA exploration itself could be valued for its creative potential. This 
approach could lead to novel research paradigms, derived from artistic rather 
than scientific motivations, contributing to further diversification of known 
emergent phenomena.

Procedural content generation

The tools and methods presented in this thesis can also be applied to procedural 
content generation in computer games, simulations, and interactive media. 
Utomata can serve as a foundational engine for generating complex virtual 
content, including structure and texture synthesis, and as an alternative to 
random number and noise generators, especially in web based applications. 
Spatial Mapping techniques can facilitate automatic generation of vast amounts 
of diverse, adaptive virtual content, potentially serving as a basis for more 
advanced procedural generation techniques. Furthermore, this approach is not 
limited to CA; Spatial Mappings of other models and parametric spaces may 
prove valuable in other research contexts, such as numerical analysis and 
optimisation, physics simulation, combinatorial mathematics and data 
visualisation.

Virtual Worlds

It is important to emphasise the notable difference between nonlinear 
approaches such as CA and procedural approaches such as Perlin Noise. 
Procedural approaches are widely used for texture synthesis and terrain 
generation due to their predictability, reliability and consistency. However, these 
advantages also impose strict limitations on their output. For instance, Perlin 
Noise is a reliable and efficient technique for generating vast landscapes of 
continuous values, but it ultimately yields an extremely narrow range of 
phenomena that are essentially uniform throughout. In contrast, the expressive 
range of nonlinear approaches, such as CA and swarm dynamics, remains 
largely unknown. While these methods are considerably more difficult to predict 
and thus harder to incorporate in production environments, crucially, they can 
give rise to genuinely novel emergent virtual phenomena.

This can have significant implications for the prospect of virtual worlds. A mass 
diversification of algorithms capable of generating emergent systems can 
reduce the reliance on established procedural approaches, which are widely 
used in open-world games and virtual reality environments, or so-called 
metaverses. Novel approaches for exploring and implementing nonlinear 
systems may play a crucial role in facilitating the future creation of virtually 
infinite open worlds that are capable of supporting the emergence of complex 

Figure 94.
Echosystem, An audio-visual live 
performance, in collaboration with 
Maayan Tsadka and Ensemble Nova 
(2019)
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higher-order virtual phenomena. This untapped potential extends far beyond 
simulated physical environments. It evokes endless virtual environments which 
feature real-time, complex, intricate and unpredictable forms and processes. 

In accordance with the concept of weak emergence, such instances of virtual 
phenomena can be detached from physical reality and explored as such. Spatial 
Mapping offers a glimpse into the immense size and potential of virtual worlds, 
strengthening the notion that algorithms and their outputs are not created but 
rather discovered. The exploration and study of these novel realms may indeed 
extend beyond conventional science, necessitating new paradigms for 
generative research and forming new bridges between scientific and artistic 
exploration. Ultimately, these would someday fulfil Langton’s vision of 
“something more poetic in the future of Science” [13].

8.5. Future Research

A Model of Natural Selection 

Type-U transition functions have a unique property, whereby new state values 
cannot be introduced into the system. This reductive property creates a highly 
competitive environment which forces the emergence of symbiotic 
relationships between neighbouring state values, thus forming self-assembling 
structures. These employ a range of strategies for maintaining internal stability, 
as well as equilibrium with their surrounding environment — both of which are 
crucial for persistence. Some algorithms, such as TU8, exhibit dozens of unique 
formations, all collaborating and competing with each other in a dynamic that 
can be likened to a delicate ecosystem.

This points to the potential of Type-U systems as abstract models of 
symbiogenesis and evolutionary dynamics. The unique and innately digital 
aesthetic of Type-U potentially distances these types of phenomena from other 
evolutionary models, which often rely on simulating physical properties such as 
harsh environments or limited food resources for creating competition. Type-U 
dynamics can be regarded as an implicit process of natural selection, whereby 
the genotype and phenotype are fused together as structural patterns that self-
assemble within the program itself. Natural selection then emerges as an open-
ended process in which emergent structures interact and adapt. Those who 
manage to persist, given the constraints of the algorithm and the conditions of 
their local environment, are those deemed the fittest. This stands in contrast to 
genetic algorithms, in which the genotype is explicitly defined as code or 
numerical data, and in which fitness is evaluated by an external function. 

Type-U algorithms which have been observed to feature sufficient “fluidity” for 
supporting complex structures typically appear to converge towards one or two 
“victorious” patterns, constituting “dead-end” evolution. However, the prospect 
of sustained higher-order activity at a systematic level remains plausible. Future 
studies which aim at avoiding dead-end evolution may include exploring 
higher-order Type-U spaces, utilisation of asymmetric or more compound 
algorithmic expressions, combinations with other CA algorithms or careful 
introduction of random state values to explicitly induce mutations. 

The “Goldilocks” Zone 

The Goldilocks Zone in astronomy refers to the habitable zone around a star where 
conditions are just right for liquid water to exist. This hypothesis suggests that 
complex life forms are more likely to emerge in fluid environments due to their 
inherent chemical instability. Unlike solid environments, which inhibit 
chemical interactions, or gaseous environments, where interactions occur too 
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rapidly, fluid environments provide an optimal balance for the complex 
biochemical reactions necessary for life.

As discussed in Section 6.4, there are indications that complex higher-order 
structures in Type-U are more likely to emerge within phase transitions 
between chaotic and ordered dynamics. Future studies of Type-U algorithms 
can explore this hypothesis through both qualitative and quantitative means. To 
this end, quantitative measures of the phase of a system can be used as a ranking 
system for Type-U algorithms to explore a hypothetical narrow band where 
conditions are optimal for the emergence of higher-order structures. 

For example, image compression can be used as a heuristic function for 
classifying the level of complexity in a static image. According to this approach, 
images of class 1 Type-U algorithms, which feature “simple stable or periodic 
structures”, would result in very small file sizes, as repetitive structures are 
highly compressible as JPEG images. On the other hand, class 3 algorithms, 
which “retain a chaotic pattern”, would result in large file sizes, due to their 
inherent randomness. It thus follows that class 2 algorithms may be identified 
along a particular band of image compression size. A normalised measure of 
entropy through JPEG compression has already been incorporated into Utomata 
Lab and Utomata Editor. This measure can be used to classify, sort, and filter 
Type-U algorithms in a future study.

Another example of a heuristic function examines the transition function over a 
single step. This method measures the polar vector between each transitioning 
cell and its target cell, as sampled by the U function. With the distance and angle 
represented by the red and green channels, a new image can then be generated 
by normalising and visualising the vector at each cell. The average gradient 
distance of this image can then be generated. Initial testing indicates a possible 
correlation between Type-U dynamics and such analyses, whereby lower 
average values may predict class 1 dynamics, high values predict class 3 
dynamics, and mid-range values predict class 2 dynamics.

Exploratory studies of the Goldilocks zone in Type-U algorithms can help 
identify and collect class 2 algorithms, which can form the basis for deeper 
studies of Type-U dynamics. These may assist in identifying other unique 
signatures of class 2 algorithms, perhaps even at a genotypic level. This, in turn, 
would potentially allow for significantly more efficient Spatial Mappings by 
filtering out most of the incoherent phenomena in Type-U spaces.  

Perfecting quantitative measures of emergent structures in Type-U may also 
prove useful towards other exploration methods, such as genetic programming. 
Using them as fitness functions, automatic evolutionary processes can be 
optimised for searching larger and more diverse combinatorial spaces of Type-
U expressions, such as asymmetric, hybrid or exceptionally large expressions. In 
this context, Spatial Mapping can still be used as an effective complementary 
tool for gaining instant and unmediated access into any given combinatorial 
space.

Evolutionary Programming 

As previously stated, Utomata’s functional syntax is highly suited for 
evolutionary programming techniques. An interactive software experiment, 
which used an early version of Utomata in Openframeworks, demonstrates this 
capacity. The experiment consisted of an interactive evolutionary algorithm, 
where a user can visually examine a small set of Utomata algorithms and select 
a subset, from which a new generation is created. The use of aesthetic evaluation 
as the fitness function yielded mixed results; interactive evolutionary 
approaches are inherently slow and results are difficult to recreate. While this 

Figure 95.
Interactive evolutionary algorithm using 
an early version of Utomata in 
Openframeworks. 
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approach was ultimately not pursued for this thesis, the prospect of evolving CA 
algorithms remains promising. 

In Silico Experimental software

The interactive features of Utomata are currently limited to simple probes and 
interventions using the cursor, direct programming or the use of global 
variables. This is largely due to this work’s focus on open-ended exploration. 
Extending Utomata to support analytical studies can be an important next step 
towards conducting deeper studies of CA behaviours. Such studies could 
emulate certain methodologies from microbial interaction studies through a set 
of tools for sampling and manipulating both genotypic and phenotypic 
specimens. Taking in-vitro studies as a metaphor, various software tools for 
analytical studies of CA can be developed: 

› Specimen collection: a robust, streamlined and standardised method 
for sampling a specific region of interest within an active CA system, 
including its algorithm. 

› Culture Preparation: a standard method for storing samples and basic 
tools for maintaining or recreating a nurturing environment. 

› Co-culturing: a method for combining several different samples 
together to study their interactions. This may involve phenotypic 
samples of the same algorithm or combining multiple algorithms 
within the same culture. 

› Advanced field parameterisations: this technique, discussed in 
Chapter 4, can be significantly improved through automatic symbol 
substitution and advanced UI features to allow freely moving between 
parametric variations. 

› Time-Lapse Imaging: a reliable tool for running and periodically 
sampling algorithms over sustained periods of time.

› Automated Testing:  scripting tools for automating precise repetitive 
perturbations and unit tests on large sets of CA samples.  

A Study of Genotypic Redundancy

Redundancy was discussed in section 6.2.1 as the overall level of identical or 
nearly identical algorithms in a given Spatial Mapping. While some redundancy 
is unavoidable in Spatial Mappings, it can be mitigated to make exploration far 
more effective. The two main culprits of genotypic redundancy in Type-U are 
diagonal symmetry, which creates a perpendicular genotypic twin for every 
algorithm, and operator symmetry, which results from the use of symmetric 
operators such as addition and multiplication. While a precise determination of 
genotypic redundancy in Type-U algorithms is beyond the scope of this thesis, it 
represents an intriguing prospect for future cross-disciplinary research.

Future studies of genotypic redundancy in Type-U algorithms and other 
algorithms can be conducted by forming a bridge between CA research and the 
domains of combinatorial mathematics and set theory. These studies could 
involve exploring and analysing countable permutations of well-defined 
expressions to characterise their underlying properties. Such cross-disciplinary 
efforts could be mutually beneficial: they can introduce challenging problems 
for mathematicians to solve, contribute to a deeper understanding of CA 
algorithms and dynamics, and offer practical, testable results by reducing the 
size of Spatial Mappings.
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Towards Other Domains

The Spatial Mapping method stems from a philosophical perspective that 
considers virtual phenomena as pre-existing entities which reside in a vast 
combinatorial space of potentialities. It employs custom algorithms and 
techniques to organise such spaces in order to make them accessible. While this 
method was specifically developed for CA algorithms, there is nothing about it 
that limits it to this particular domain.  The prospect of extending Utomata and 
Spatial Mapping towards other computational models or analytical domains was 
indeed considered in various stages of this project and remains a prominent 
candidate for subsequent research. Initial efforts to adapt Utomata’s functional 
syntax to three dimensional CA, L-systems, particle swarms and networks have 
been attempted but not yet perfected.

As noted in Chapter 3, Utomata’s exceptionally wide expressive range provides 
a standardised method for implementing algorithms that are commonly 
considered too different to compare, such as GOL, ECA and RD. In the same 
sense, generalising Utomata to accommodate other models may offer a similar 
advantage, potentially offering novel ways for comparing different models of 
nonlinear systems.

For example, Craig Reynolds’ seminal work on swarm dynamics [96], applies 
three local behaviours to each component in a system: separation, cohesion and 
align. While this model was adapted and implemented in various contexts 
beyond its initial purpose, such as in Swarm chemistry [86], Many such 
adaptations, particularly in the arts, primarily focus on parametric exploration. 
In contrast, exploring this model through Spatial Mapping techniques could 
offer significant diversification by effectively forming a space consisting of all 
possible ways in which a particle may react to those around it.

The Laboratory of Babel

As evident by its title, this thesis entertains the notion of a combinatorial space 
consisting of all possible CA algorithms. The Spatial Mapping method presented 
in Chapter 5 embodies a partial fulfilment of this idea as a tool for open-ended 
exploration. However, this method also constitutes a robust conceptual and 
practical foundation for a literal realisation of this idea. 

Much of the effectiveness of Spatial Mapping stems directly from its ability to use 
minimalist symbol domain sets in order to constrain the resulting space to an 
(arguably) explorable size. In other words, very large Spatial Mappings are 
simply too big for manual exploration to yield meaningful findings. Nonetheless, 
setting out to create a literal implementation of a Laboratory of Babel stands as 
a future project which may hold considerable theoretical, conceptual and 
artistic merit. 

In order to accomplish this, the Spatial Mapping method would need to be 
extended to three dimensions rather than two. The third dimension — algorithm 
topology — would replace the source algorithm, which it currently accepts as one 
of its mapping parameters. Besides the X and Y coordinates, which are mapped 
to symbol domains, a third coordinate, T, would be mapped to algorithm 
topology using a custom function that enumerates binary/unary tree topologies. 
This mapping would also need to use maximalist symbol domain sets in order to 
maximise coverage. Such a “total laboratory” would include, at the very least, all 
of Utomata’s binary and unary operators, all of Utomata’s totalistic and outer-
totalistic neighbourhood variables, all colour channel combinations (.rrr, 
.grg, .bbr), as well as a comprehensive set of numerical constants.
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While theoretically possible, this endeavour presents several significant 
challenges. Enumerating binary tree topologies is a well-known combinatorial 
problem with various algorithmic trade-offs. Moreover, even the largest possible 
Spatial Mapping can never contain all CA algorithms, if only due to the presence 
of real-valued numerical constants. However, most importantly, the sheer 
magnitude of such a combinatorial space is quite simply beyond 
comprehension. This last statement, in itself, may be regarded as either the 
strongest argument for pursuing this endeavour — or the strongest argument 
not to.

8.6. Final Reflections
This thesis presents an experimental computational arts practice spanning nine 
years of research. The tools, methods and studies featured here have been 
carefully selected from numerous experiments, artworks, trials and errors. In 
retrospect, this Sisyphean path may have been the only viable route towards 
cultivating the philosophical view that underlies this thesis. While this view is 
not a formal contribution, it is regarded by the author as this project's greatest 
achievement.

The development of this research project has coincided with a time of historical 
leaps in artificial intelligence. Its revolutionary potential notwithstanding, 
generative AI is rooted in the human experience; it is designed to model and 
enact human thinking, interaction, intuition, knowledge, and creativity. In 
contrast, this work aims to draw attention away from these inherent familiarities 
towards the abyss of the inherently unfamiliar, where true novelty may reside. 
This should not be regarded as a critique of anthropocentric or instrumentalist 
views of computing technology but an acknowledgment of its boundless 
potential. It serves as a humbling reminder that human intelligence is merely a 
special case of intelligent behaviour, itself, a property of only a small subset of 
living systems, which, in turn, constitute only a minuscule fraction of possible 
emergent phenomena.

Through its focus on open-ended exploration, this project aspires to join the 
canon of works that expand human horizons by looking in the most unlikely of 
places. Such works must often exert significant energy on breaking free from 
conceptual bias. Future explorers of emergent virtual structures may find this to 
be an exceedingly confusing and lonely endeavour. If nothing else, this thesis 
hopes to serve as a compass to help them navigate this vast, unstructured 
domain. To these future explorers, the author extends one last piece of advice, 
which he has often failed to follow: open-ended research is best thought of as a 
bottomless pit. While it is tempting to insist on reaching the bottom, this takes a 
lifetime to achieve. Instead, simply describe the fall.
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10. Appendix

10.1. Type-U Topologies 

 U(Vx.Cx, Vy.Cy)
First Order Type-U

 U(
   Fx(Vx.Cx, Vx.Cx),
   Fy(Vy.Cy, Vy.Cy)
 )
Second Order Type-U

 U(
  Fx(
    Fx(Vx.Cx, Vx.Cx),
    Fx(Vx.Cx, Vx.Cx)
  ),
  Fy(
    Fy(Vy.Cy, Vy.Cy),
    Fy(Vy.Cy, Vy.Cy)
  )
)

Third Order Type-U

 U(
  Fx(
    Fx(
      Fx(Vx.Cx, Vx.Cx),
      Fx(Vx.Cx, Vx.Cx)
    ),
    Fx(
      Fx(Vx.Cx, Vx.Cx),
      Fx(Vx.Cx, Vx.Cx)
    )
  ),
  Fy(
    Fy(
      Fy(Vy.Cy, Vy.Cy),
      Fy(Vy.Cy, Vy.Cy)
    ),
    Fy(
      Fy(Vy.Cy, Vy.Cy),
      Fy(Vy.Cy, Vy.Cy)
    )
  )
)

Fourth Order Type-U
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 U(
  Fx(
    Fx(
      Fx(
        Fx(Vx.Cx, Vx.Cx),
        Fx(Vx.Cx, Vx.Cx)
      ),
      Fx(
        Fx(Vx.Cx, Vx.Cx),
        Fx(Vx.Cx, Vx.Cx)
      )
    ),
    Fx(
      Fx(
        Fx(Vx.Cx, Vx.Cx),
        Fx(Vx.Cx, Vx.Cx)
      ),
      Fx(
        Fx(Vx.Cx, Vx.Cx),
        Fx(Vx.Cx, Vx.Cx)
      )
    )
  ),
  Fy(
    Fy(
      Fy(
        Fy(Vy.Cy, Vy.Cy),
        Fy(Vy.Cy, Vy.Cy)
      ),
      Fy(
        Fy(Vy.Cy, Vy.Cy),
        Fy(Vy.Cy, Vy.Cy)
      )
    ),
    Fy(
      Fy(
        Fy(Vy.Cy, Vy.Cy),
        Fy(Vy.Cy, Vy.Cy)
      ),
      Fy(
        Fy(Vy.Cy, Vy.Cy),
        Fy(Vy.Cy, Vy.Cy)
      )
    )
  )
)

Fifth Order Type-U
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