
LABORATORY OF BABEL
Explorations of Emergent Virtual Structures

Thesis submitted for the degree of Doctor of Philosophy
Goldsmiths, University of London

Lior Ben-Gai
July 2024

1

LABORATORY OF BABEL

For supplementary materials, algorithms and software,

please visit: utomata.net/labofbabel

Direct links are also available throughout the thesis

via the icon.

http://utomata.net/phd
https://utomata.net/labofbabel

Abstract

2

Abstract
Cellular Automata (CA) are discrete, grid-based computational models where
simple local rules generate complex, emergent patterns. Despite decades of
research, the vast potential of CA remains largely unexplored, with countless
possible algorithms as yet undiscovered. This work introduces novel methods
for open-ended exploration of CA, expanding the scope of inquiry to reveal
virtual phenomena that might otherwise be overlooked.

A core contribution of this thesis is Utomata, a new computational framework
designed for exploration and study of a wide range of CA. Its versatility is
demonstrated through case studies featuring both established and novel
algorithms. Building on this foundation, the thesis presents Spatial Mapping, a
high-level exploration method, accompanied by a custom online software
implementation. This method enables systematic navigation of the
combinatorial space of variations for any given algorithm.

Central to this thesis is the introduction and in-depth study of Type-U, a newly
identified CA family. Using the frameworks and methods developed, this study
reveals distinctive properties of Type-U algorithms and their combinatorial
spaces, supported by qualitative analyses. The thesis concludes by discussing
the broader implications of this open-ended approach for the study of virtual
phenomena and outlining avenues for future research.

Keywords: Cellular Automata, Computational Arts, Artificial Life, Emergence,
Algorithmic Exploration, Computational Modelling, Structure Synthesis, Procedural
Content Generation, Abstraction, Functional Programming.

3

LABORATORY OF BABEL

Table of contents
Acknowledgements 6

Index of Algorithms 7

List of Figures 11

1.Introduction 15
1.1. A Total Library .. 15

1.2. Open-Ended Exploration ... 15

1.3. Emergent Virtual Structures .. 17

1.4. Methodology .. 18

1.5. Structure of This Thesis ... 19

2.Background 21
2.1. Computational Modelling .. 21

2.1.1 Nonlinear Problems .. 21

2.1.2 Synthetic Solutions ... 22

2.1.3 Emergence ... 23

2.1.4 Simulation vs. Realisation .. 23

2.1.5 Strong vs. Weak ... 25

2.1.6 Model vs. Structure ... 26

2.2. Cellular Automata .. 28

2.2.1 Key Terminology ... 29

2.2.2 Game of Life .. 31

2.2.3 Elementary Cellular Automata .. 32

2.2.4 Reaction-Diffusion .. 33

2.2.5 Other Notable Algorithms .. 34

2.3. CA Exploration ... 35

2.3.1 Parametric vs. Algorithmic .. 36

2.3.2 Evolutionary Algorithms ... 37

2.3.3 Custom Hardware and Machine Learning .. 37

2.4. Notable Practitioners .. 38

2.5. Notable Tools .. 40

2.6. Research Gap and Motivation .. 43

2.6.1 Generality vs. Specificity ... 44

Table of Contents

4

2.6.2 Algorithmic Exploration ... 45

2.6.3 Real-time Control ... 45

2.6.4 Artistic Objectives ... 46

2.7. Summary .. 47

3.Computational Framework 49
3.1. Problem statement .. 49

3.2. Design Goals ... 50

3.3. Definitions ... 51

3.4. Case Studies ... 56

3.4.1 Conway’s Game of Life ... 56

3.4.2 Elementary Cellular Automata .. 58

3.4.3 Reaction Diffusion .. 59

3.5. Summary ... 61

4.Low-level Exploration 63
4.1. Rationale .. 63

4.2. A study of Type-C .. 65

4.3. Field Parameterisation ... 66

4.4. Case Studies ... 68

4.5. Discussion ... 75

5.Spatial Mapping 77
5.1. Formal definition ... 77

5.1.1 Algorithmic expression .. 78

5.1.2 Enumeration ... 80

5.1.3 Spatial Arrangement ... 82

5.1.4 Implementation .. 83

5.2. Case studies ... 84

5.2.1 Game of Life .. 84

5.2.2 Elementary Automata ... 87

5.2.3 Reaction-Diffusion .. 87

5.3. Summary .. 90

6.A study of Type-U 91
6.1. Formal Definition ... 92

6.1.1 Scope ... 95

6.2. Spatial Properties ... 98

5

LABORATORY OF BABEL

6.2.1 Redundancy .. 99

6.2.2 Texture .. 101

6.2.3 Composition .. 103

6.2.4 Summary .. 106

6.3. Phenotypic Properties ... 106

6.3.1 Heterogeneity .. 106

6.3.2 Convergence .. 107

6.3.3 Levels of Organisation ... 107

6.4. Qualitative Characterisation .. 109

6.5. summary ... 112

7.Case Studies 113
7.1. TU8 ... 113

7.2. TU72 .. 117

7.3. TU70 .. 117

7.4. TU76 .. 119

7.5. TU37 .. 121

7.6. TU78 .. 125

7.7. TU79 .. 125

7.8. TU68 .. 126

7.9. Summary ... 126

8.Discussion 129
8.1. Overview .. 129

8.2. Key Contributions ... 130

8.3. Limitations ... 132

8.4. Implications .. 134

8.5. Future Research ... 136

8.6. Final Reflections .. 140

9.Bibliography 141

10. Appendix 151
10.1. Type-U Topologies .. 151

6

Aknowledgements

Acknowledgements
I am deeply grateful to my supervisor, Dr. Tim Blackwell, for his expertise,
boundless curiosity, and above all, his patience. His guidance and support have
been invaluable at every stage of this project.

I would also like to thank my former mentors and colleagues at Goldsmiths —
Dr. Mick Grierson, Dr. Theo Papatheodorou, Dr. Simon Katan, and Dr. Rebecca
Fiebrink — for generously sharing their insight and experience during the early
phases of this research. I extend my sincere appreciation to the Department of
Computing at Goldsmiths for fostering an environment where I could pursue
my passions freely and without compromise.

I am also grateful to the institutions and conferences that have provided
platforms for presenting and discussing various aspects of this work: Print
Screen Festival (2019), the University of Applied Arts Vienna (2020), the SEA
Conference at Haifa University (2021), Davidson Institute (2022), Shenkar
College of Design (2022), ISVIS – The Israeli Visualization Conference (2023),
and the IED Summer School at the Royal College of Art (2024).

Lastly, I wish to express my admiration for the pioneers and contemporary
practitioners in computer science, computational art, and artificial life. I
imagine a future where discoveries in these virtual realms will not only
complement but perhaps even surpass those made in the physical realm.

This work is dedicated to my parents, Yuval and Tehilla Ben-Gai. It is a
distillation of my unique blend of qualities and flaws as a thinker and creator.
In more ways than one, this is all your doing.

Lior Ben-Gai
July 2024

LABORATORY OF BABEL

7

Index of Algorithms

Adaptation of Conway’s Game of Life.

View in Editor Explore in Lab

Conway’s Game Of Life
3.4.1

Adaptation of Wolfram’s Elementary Cellular Automata.

View in Editor Explore in Lab

ECA Rule-30
3.4.2

Adaptation of Gray-Scott Reaction-Diffusion.

View in Editor Explore in Lab

Grey-Scott Reaction-Diffusion
3.4.3

View in Editor Explore in Lab

Type-C
6.1.1

View in Editor Explore in Lab

Digger-Dagger
6.1.1

View in Editor Explore in Lab

Red Nose Hexagliders
4.4

View in Editor Explore in Lab

TC8 (Wildfur)
4.4

View in Editor Explore in Lab

TC5
4.4

https://utomata.net/phd?edt=GOL
https://utomata.net/phd?lab=GOL
https://utomata.net/phd?edt=ECA
https://utomata.net/phd?lab=ECA
https://utomata.net/phd?edt=RD
https://utomata.net/phd?lab=RD
https://utomata.net/phd?edt=TC
https://utomata.net/phd?lab=TC
https://utomata.net/phd?edt=DD
https://utomata.net/phd?lab=DD
https://utomata.net/phd?edt=RNX
https://utomata.net/phd?lab=RNX
https://utomata.net/phd?edt=TC8
https://utomata.net/phd?lab=TC8
https://utomata.net/phd?edt=TC5
https://utomata.net/phd?lab=TC5

8

Index of Algorithms

View in Editor Explore in Lab

Fireworm
4.4

View in Editor Explore in Lab

RNX2
4.4

View in Editor Explore in Lab

RNX4
4.4

View in Editor Explore in Lab

TC15
4.4

View in Editor Explore in Lab

TC12
4.4

View in Editor Explore in Lab

TC9
4.5

View in Editor Explore in Lab

TC8B
4.5

View in Editor Explore in Lab

TC13
4.5

First-order Type-U

View in Editor Explore in Lab

TU0
6.1

https://utomata.net/phd?edt=FW
https://utomata.net/phd?lab=FW
https://utomata.net/phd?edt=RNX2
https://utomata.net/phd?lab=RNX2
https://utomata.net/phd?edt=RNX4
https://utomata.net/phd?lab=RNX4
https://utomata.net/phd?edt=TC15
https://utomata.net/phd?lab=TC15
https://utomata.net/phd?edt=TC12
https://utomata.net/phd?lab=TC12
https://utomata.net/phd?edt=TC9
https://utomata.net/phd?lab=TC9
https://utomata.net/phd?edt=TC8B
https://utomata.net/phd?lab=TC8B
https://utomata.net/phd?edt=TC13
https://utomata.net/phd?lab=TC13
https://utomata.net/phd?edt=TU0
https://utomata.net/phd?lab=TU0

9

LABORATORY OF BABEL

Third-order Type-U.

View in Editor Explore in Lab

TU81
6.1.1

View in Editor Explore in Lab

TU82
6.1.1

View in Editor Explore in Lab

TU59
6.3.2

View in Editor Explore in Lab

TU57
6.4

View in Editor Explore in Lab

TU8
7.1

View in Editor Explore in Lab

TU72
7.2

View in Editor Explore in Lab

TU70
7.3

View in Editor Explore in Lab

TU37
7.5

View in Editor Explore in Lab

TU76
7.4

https://utomata.net/phd?edt=TU81
https://utomata.net/phd?lab=TU81
https://utomata.net/phd?edt=TU82
https://utomata.net/phd?lab=TU82
https://utomata.net/phd?edt=TU59
https://utomata.net/phd?lab=TU59
https://utomata.net/phd?edt=TU57
https://utomata.net/phd?lab=TU57
https://utomata.net/phd?edt=TU8
https://utomata.net/phd?lab=TU8
https://utomata.net/phd?edt=TU72
https://utomata.net/phd?lab=TU72
https://utomata.net/phd?edt=TU70
https://utomata.net/phd?lab=TU70
https://utomata.net/phd?edt=TU37
https://utomata.net/phd?lab=TU37
https://utomata.net/phd?edt=TU76
https://utomata.net/phd?lab=TU76

Index of Algorithms

10

View in Editor Explore in Lab

TU68
7.8

View in Editor Explore in Lab

TU78
7.6

View in Editor Explore in Lab

TU79
7.7

https://utomata.net/phd?edt=TU68
https://utomata.net/phd?lab=TU68
https://utomata.net/phd?edt=TU78
https://utomata.net/phd?lab=TU78
https://utomata.net/phd?edt=TU79
https://utomata.net/phd?lab=TU79

11

LABORATORY OF BABEL

List of Figures
Fig Page Section Description

1 15 1.1. Synthesis panel in Utomata Lab, showing a 4th order Type-U algorithm.

2 16 1.2. Type-U algorithm in Utomata Editor.

3 17 1.3. Compound formations in Red Nose Hexagliders.

4 29 2.2.1. Commonly used totalistic neighbourhoods.

5 52 3.3. Neighbourhood variables in Utomata.

6 54 3.3. Examples of useful configuration patterns in Utomata.

7 55 3.3. Touchdesigner implementation of a swarm algorithm using two Utomata systems.

8 56 3.4.1. Conway’s Game of Life.

9 57 3.4.1. Utomata GOL algorithm visualised as a binary expression tree.

10 58 3.4.2. Elementary Cellular Automata - Rule 30.

11 59 3.4.3. Grey-Scott Reaction-Diffusion.

12 60 3.4.4. Grey-Scott Reaction-Diffusion as binary expression tree.

13 63 4. Novel CA algorithms in Utomata Lib, discovered through low-level exploration.

14 65 4.2. Original Type-C algorithm.

15 65 4.2. Second-order meandering patterns in Type-C.

16 66 4.2. Digger-Dagger algorithm visualised as a binary expression tree.

17 66 4.2. Digger-Dagger.

18 66 4.3. Continuous field Parameterisation of Digger-Dagger.

19 67 4.3. Tiled field parameterisation of variations to Digger-Dagger.

20 68 4.3. Tiled field parameterisation of Type-C variants with a centralised configuration pattern

21 68 4.4. Basal Glider pattern in RNX.

22 69 4.4. Difference comparison between Digger-Dagger and RNX.

23 69 4.4. Screenshot from: VITAL SIGNS - Red Nose Hexagliders.

24 69 4.4. Red Nose Hexagliders algorithm visualised as Binary expression tree.

25 70 4.4. Taxonomy of observed structural formations in Red Nose Hexagliders.

26 71 4.4. TC8 (Wildfur).

27 72 4.4. Continuous field parameterisations of Red Nose Hexagliders.

List of Figures

12

Fig Page Section Description

28 73 4.4. TC5 (Infinitron).

29 73 4.4. RNX2.

30 73 4.4. FireWorm.

31 74 4.4. RNX4.

32 74 4.4. TC15 (Forst).

33 74 4.4. TC12 (Neon Tubing).

34 75 4.5. TC9 (Citymakr).

35 75 4.5. TC8B.

36 75 4.5. TC13.

37 76 4.5. Tiled field parameterisation of Type-C variants.

38 77 5. Screenshot from Utomata Lab.

39 79 5.1. Example of a simple binary/unary tree topology.

40 83 5.1.3. Screenshot of Utomata Lab, featuring variations to GOL.

41 84 5.2.1. GOL variations in Utomata Lab.

42 85 5.2.1. Variations to GOL featured in Utomata Lib.

43 86 5.2.1. Visualisation of extended GOL algorithm.

44 86 5.2.1. A restrained 25x25 combinatorial space of GOL.

45 87 5.2.2 Algorithmic variations of ECA in Utomata Lab.

46 88 5.2.3. Grey-Scott Reaction Diffusion and its immediate siblings.

47 88 5.2.3. Algorithmic variations of RD in Utomata Lab.

48 89 5.2.3. Spatial Mapping of RD, combined with Field Parametrisation.

49 92 6.1. Regular and homogeneous motion.

50 92 6.1. Regular and heterogeneous motion.

51 93 6.1. Irregular and heterogeneous pattern using the rand() function.

52 93 6.1. TU0 - a first-Order Type-U.

53 94 6.1. Complete Spatial Mapping of first-order Type-U.

54 94 6.1. TU72 is an example of a second order Type-U algorithm.

55 95 6.1.1. Fully random configuration on a 32*32 grid using rand(1.0, 2.0, 3.0).

56 97 6.1.1. TU81. The div() operator often causes extremely volatile dynamics.

13

LABORATORY OF BABEL

Fig Page Section Description

57 97 6.1.1. TU82 does not share colour values across both axes.

58 97 6.1.1.
Alternative axial distribution where operators are plotted on the X axis and variables and
colours on the Y.

59 99 6.2.1. Diagonal Symmetry in second-order Type-U.

60 99 6.2.1. Twin algorithms along the diagonal in first-order Type-U.

61 101 6.2.2.
Smooth textured area in fifth-order space. Any single permutation typically has a
minimal effect on the output.

62 102 6.2.3. Binary tree of fourth-order Type-U.

63 104 6.2.3. Vector field (illustration).

64 105 6.2.3. Histogram of U(V8.b,V.r) after 30 steps.

65 105 6.2.3. Histogram of U(V8.g,V.r) after 30 steps.

66 105 6.2.3.
TU68 exhibits fluid-like dynamics in second order Type-U. This dynamic is most
commonly found in third order algorithms.

67 107 6.3.2. TU59 typically converges towards the same behaviours, patterns and colours.

68 107 6.3.3. Diverse colour regions in TU8.

69 108 6.3.3. First-order structures in TU37.

70 108 6.3.3. Second-order structures in TU37.

71 108 6.3.3. Third-order structure in TU37.

72 110 6.4. Glider gun in TU8.

73 111 6.4. TU57 is an example of a late stage phase transition in Type-U.

74 113 7.1. Histogram Analyses of TU8 at 10, 100, 1000 and 10,000 steps.

75 114 7.1. Specimen collection from TU8.

76 115 7.1. 16 separate runs of TU8 reveal overall convergent behaviour.

77 116 7.2. Specimen collection from TU72.

78 117 7.2. Histogram Analyses of TU72 at 10, 100, 1000 and 10,000 steps.

79 117 7.2. 16 separate runs of TU72.

80 118 7.3. Specimen collection from TU70.

81 119 7.3. 16 separate runs of TU70.

82 119 7.3. 16 separate runs of TU70.

83 120 7.4. Specimen collection from TU76.

List of Figures

14

Fig Page Section Description

84 121 7.4. 16 separate runs of TU76.

85 121 7.5. Histogram Analyses of TU37 at 10, 100, 1000 and 10,000 steps.

86 122 7.5. Specimen collection from TU37.

87 123 7.6. Specimen collection from TU78.

88 124 7.7. Specimen collection from TU79.

89 125 7.5. 16 separate runs of TU37.

90 125 7.6. 16 separate runs of TU78.

91 126 7.8. TU68.

92 126 7.8. 16 separate runs of TU68.

93 127 7.9. Selected specimens from Utomata Lib

94 135 8.4. Echosystem, An audio-visual live performance.

95 137 8.5. Interactive evolutionary algorithm using an early version of Utomata.

15

LABORATORY OF BABEL

1.Introduction

1.1. A Total Library

“The impious maintain that nonsense is normal in the library and that

the reasonable (and even humble and pure coherence) is an almost

miraculous exception.”

[1]

The Library of Babel by Jorge Luis Borges [1] describes a vast physical library
that encompasses the assortment of all possible books. This fictional short story
from 1941 is narrated by one of countless librarians who wander the library’s
endless halls in a literal search for meaning. When attempting to imagine such
a vast combinatorial space, one is immediately struck with both a sense of awe
and cosmic terror. 1 A total library would hold the complete documentation of
everything that has ever happened, told by all possible authors and in all
possible genres. It would also hold the complete documentation of everything
that did NOT happen, as well as all things that cannot happen, but can be
described. However, since this particular library is randomly sorted, all of these
stories, along with every other coherent utterance will forever be lost in a
virtually endless ocean of books containing nothing but utter nonsense. The
frightening scarcity of meaning in such a space can be experienced by visiting
Jonathan Basile’s 2015 online recreation of the Library [2], which offers a poetic
and daunting glimpse into this literary abyss [3].

The Laboratory of Babel is a thought experiment envisioning a total library of
Cellular Automata (CA) algorithms. CA are among the earliest computational
models to exhibit nonlinear dynamics [4], [5]. They typically consist of a finite
grid of cells, each assigned a numerical value. The cells continuously update
their values based on the states of their neighbouring cells, leading to complex
interactions that can give rise to higher-order forms and processes. The
inherently chaotic and nonlinear nature of CA renders their behaviour highly
unpredictable, and the range of phenomena they can produce remains largely
unknown.

Similar to Borges’ library, the Laboratory of Babel would follow strict rules for
algorithm formulation; like books, the number of possible, valid, and finite
algorithms would be unfathomable. It is therefore not unreasonable to assume
that almost all will result in utterly incoherent or vacant behaviour. Yet, within
this endless ocean of nonsensical computational processes, there must also be
countless “miraculous exceptions” taking the form of persistent, complex
structures that exhibit properties unlike any ever observed in the physical
realm. Over the past 80 years of research, many CA algorithms have already
been articulated and studied, but due to their sheer number, most will never be.
Yet crucially, unlike the Library of Babel, this laboratory need not be randomly
sorted.

1.2. Open-Ended Exploration
In 1673, Antonie Van Leeuwenhoek created a small spherical lens using a
simple, yet novel technique of his own design. This new instrument allowed him
to observe a microbial life form for the first time and, in-effect, to become the
“father of microbiology” [6]. Leeuwenhoek had not intended to discover any life

Figure 1.
Synthesis panel in Utomata Lab,
featuring a 4th order Type-U algorithm.

1 A term popularised by H.P. Lovecraft,
describing the fear of the unknown vastness
and indifferent universe, highlighting
humanity's insignificance.

16

Introduction

forms. He was a fabric tradesman and lens hobbyist who wanted to obtain a
closer look at his merchandise; his work may be regarded as exploratory rather
than scientific, especially considering that until that point in time, the scientific
study of microbial life did not exist.

Exploration and scientific enquiry are tightly coupled but they do not
necessarily overlap. If science is concerned with explaining and predicting
observable phenomena, then exploration is concerned with obtaining new
phenomena to observe. Both a scientist and an explorer employ speculative
thinking, but the former strives to minimise its scope in order to derive new
knowledge about a particular phenomenon, whereas the latter often strives to
widen it in order to discover as-yet-unknown phenomena.

The advent of computational modelling in the 20th century has brought about a
revolutionary shift in science by providing a level of insight and predictive
capability to the study of nonlinear systems that would have otherwise been
unattainable [7]. The process of explaining and predicting the behaviour of
physical systems has become so influential that it is often synonymous with the
process of implementing nonlinear systems in software. Consequently,
computational modelling is predominantly perceived as a representational
endeavour, as evidenced by its name.

For example, the utilisation of CA as instruments for scientific modelling has
been particularly fruitful in studying various natural phenomena, including
physical [8], biological [9], and chemical dynamics [10], [11]. This application has
provided valuable insights and predictions for real-world phenomena in
situations where direct observation or analytical descriptions were impossible
or impractical. While such algorithms have also been extensively incorporated
into creative media, many of them were initially devised as scientific
instruments: either as simulations of physical systems or as tools for solving
well-defined problems. Consequently, it can be argued that the exploration of CA
algorithms, like many other computational models, has been primarily guided
by their instrumental value.

The field of Artificial Life (AL), initiated by Christopher G. Langton in 1987 as the
study of “life-as-it-could-be” [12], serves as a conceptual foundation for this
research project. Langton envisioned AL as a synthetic approach to biology,
whereby living systems would be assembled rather than taken apart. As with
many interdisciplinary fields of research, AL has struggled to achieve a
sustainable balance between empowering creativity and maintaining scientific
rigour [13]. Early work in AL has largely focused on attempts to synthesise novel
phenomena, rather than to analyse observable phenomena. It thus stands out as
a notable exception to the aforementioned traditional view of computational
modelling.

Within AL there are two prominent schools of thought: proponents of strong-AL,
including Langton, contend that life is a property of form, not matter.
Consequently, they assert that living things may literally be realised within
virtual environments. On the other hand, proponents of weak-AL argue that
living things can, at best, be simulated. While this distinction has been a source
of great debate from the very first days of AL [14], both schools of thought
ultimately agree on and employ a synthetic approach to biology — a scientific
study of living systems through the use of computing technology.

While this work draws significant inspiration from AL in regards to exploration
of emergent phenomena, this project aligns with neither the strong nor weak
school of thought. Instead, it only argues that a non-instrumentalist approach
may be advantageous for open-ended exploration — a research approach that

Figure 2.
Type-U algorithm in Utomata Editor.

LABORATORY OF BABEL

17

encourages continuous and dynamic investigation of systems without
predefined goals or endpoints, enabling the discovery of novel phenomena. By
diverging from the scientific-instrumentalist approach, this thesis seeks to shed
light on potential possibilities and implications associated with the exploration
of novel virtual phenomena in the spirit of strong-AL, while acknowledging and
accepting the theoretical limitations put forward by weak-AL.

According to this approach, the principal divide between the strong and weak
schools of thought does not revolve around whether or not living systems can
literally be realised in software. Instead, it focuses on the exploratory potential
of computational modelling. This reframing also suggests a compromise:
proponents of strong-AL would only need to concede that instances of virtual
phenomena may not be fully realised as living entities, while proponents of
weak-AL would only need to acknowledge that they are nonetheless worthy of
exploration, not only as scientific models but as potentially valuable subject
matter in and of itself.

The willingness to sever the well-established bond between virtual and physical
phenomena does not negate the weak-AL position, nor does it necessarily argue
for the strong-AL position. It simply states that the act of implementing
emergent systems within virtual environments can serve both for the simulation
of some objects and the realisation of others. By adopting this perspective, one
can reclaim the notion of “life as it could be” — not as a scientific hypothesis but
as an act of creative discovery; the acquisition of new phenomena to observe and
study; a class of emergent systems that, in historical terms, has just recently
become within reach through advancements in computing technology.

1.3. Emergent Virtual Structures
Existing terms such as “model” and “simulation” have historically been rooted
in the scientific domain and inherently imply a representational function.
Consequently, the use of such terms may inadvertently perpetuate a bias that
values them primarily for their ability to imitate physical reality. Thus a study of
explicitly non-representational computational models presents a conceptual
challenge. This thesis therefore advocates for the use of alternative terminology,
referring to a broad class of software based systems of interacting components
as emergent virtual structures. This, in order to avoid characterising its subject
matter as derivative objects of representation.

It is important to emphasise that this does not constitute an argument against
representational modelling in general. Rather, it suggests that adopting this
concept may be beneficial for open-ended exploration. By shifting the focus
away from familiar constructs and functionality, this approach sets out to
explore a deliberately vast and uncharted space of plausible forms and
processes, considering these as something to be discovered rather than created.
This approach suggests that exploration can be guided by observation and
intuition, employing a methodology that shares some commonalities with
exploration and cultivation of physical natural phenomena.

The concept of emergent virtual structures is not intended to be novel, nor does
it constitute a contribution in itself. Rather, it serves as a useful framework for
referring to the subject matter this project aims to explore. By employing well-
accepted terms, this thesis aims to avoid contention and provide clarity. As such,
“emergence” refers to the concept of weak emergence, as articulated by Bedau
[15]. Weak emergence explicitly pertains to a class of nonlinear systems whose
emergent properties can only be fully understood or predicted through
simulation. By adopting a simulation-based concept of emergence, this thesis

Figure 3.
Compound glider formations in Red Nose
Hexagliders.

18

Introduction

appropriately narrows the scope of its subject matter, while avoiding any
contentious issues associated with strong-AL.

In regards to “Virtuality”, this thesis embraces a philosophical view that
considers the virtual realm as a vast, uncharted domain of potential
phenomena, and is driven by an urge to explore it without bias or preconceived
notions. Virtuality can be characterised by its opposition to the actual, rather
than the real. It denotes immaterial yet genuinely existent constructs [16, p.
208]. Virtual entities can possess concrete attributes such as topology,
persistence, and interaction, they exhibit the capacity to undergo changes and
respond to external influences. Recognising that a study of virtual phenomena
that disassociates it from physical reality may be perceived as non-scientific,
this thesis willingly relinquishes this conventional scientific stance. Instead, it
focuses on open-ended exploration as its primary research aim.

Lastly, Frigg’s concept of a “structure” [17] offers a useful framework for this
thesis’s non-representational approach. Defined by its components and their
relationships to one another, a structure does not inherently represent a real-
world system unless explicitly supplemented with intent to do so. The use of the
term structure, rather than model, emphasises its intrinsic, rather than
instrumental value, aiming to detach the act of exploration from some of the
constraints of traditional approaches to computational and scientific modelling.

The realm of possible emergent virtual structures is unfathomably large. By any
reasonable means, it can be assumed to consist almost entirely of trivial,
mundane, cacophonous, or otherwise seemingly ineffectual formations.
Nonetheless, at the heart of this thesis lies a contention that this realm must also
encompass countless forms and processes, the likes of which have never been
observed in the physical world. The sheer magnitude of this search space and
the unique attributes of this subject matter should provide more than enough
motivation for it to be further explored.

However, this approach presents a number of formidable challenges: In lack of a
predefined target system or a well-defined problem, there may be little to guide
an explorer towards well-defined outcomes. Moreover, since findings are not
necessarily meant to serve a particular purpose, there is no inherent way to
evaluate their potential value, as traditional metrics based on predictive or
explanatory power may not apply. An additional challenge lies in computational
complexity, which is typically significant in large systems of interacting
components. The inherently unpredictable nature of such systems necessitates
that they be implemented and run, potentially for sustained periods of time, in
order for observation to even take place, making classification, autonomous
evaluation or taxonomical studies largely intractable.

1.4. Methodology
A central premise of this thesis posits that open-ended explorations of virtual
phenomena can greatly benefit from the active involvement of artists, designers,
hobbyists, and multidisciplinary practitioners. These individuals are regarded
as the primary target audience: creative practitioners who may be motivated to
explore the vast and overwhelmingly barren space of emergent virtual
structures in search of miraculous exceptions.

This thesis therefore relies on qualitative evaluations of algorithms and their
outputs, considering their aesthetic merit, novelty, complexity, rarity and
capacity for human interaction. This aims to reduce reliance on established
scientific concepts, which are often driven by an instrumentalist perspective,
thus bridging the knowledge gap for artists and designers who may be

LABORATORY OF BABEL

19

unfamiliar with advanced mathematics, computer science, and natural science.
This approach aims to make this field of research more accessible to these
audiences so that they may, in turn, introduce innovation, leading to further
discovery of novel phenomena.

A scientific approach to exploration may offer appropriate theories and tools for
studying emergent structures. However, scientific methodologies are typically
concerned with describing observable physical phenomena. On the other hand,
an artistic approach may offer conceptual tools more suited for open-ended
exploration, yet these are typically under-equipped to handle the theoretical and
technical rigour involved with the study of nonlinear systems.

This project seeks to bridge the methodological gap between computational
modelling and artistic exploration in the context of the study of emergent virtual
structures. It identifies an opportunity to explore novel forms and processes not
just as instruments, descriptions or fabrications, but as cultural artefacts
imbued with intrinsic value — a characterisation more commonly associated
with works of art. The underlying contention is that such artefacts are not
inherently rare. Rather, existing concepts, tools and methods have been
primarily developed towards their utilisation as instruments and are thus not
optimised for their exploration.

Research Aims

This thesis aims to propose and validate tools and methods specifically designed
for open-ended exploration of CA, demonstrating their effectiveness through the
discovery of novel algorithms. It introduces an innovative computational
framework for navigating large combinatorial spaces of algorithmic variants,
providing insights and methods for distinguishing findings of interest from their
surrounding overwhelming noise. By adopting a non-instrumentalist approach
to exploration, this work aims to uncover significant untapped potential for new
algorithms and behaviours, showcasing how emergent forms and processes
within virtual environments can be explored and evaluated independently of
physical metaphor or function.

Research Objectives

1. Develop and demonstrate a new computational framework, called
Utomata, specifically designed for exploration of CA algorithms.

2. Introduce and employ a high-level method for navigating large
combinatorial spaces of algorithms, termed Spatial Mapping.

3. Demonstrate the effectiveness of these tools through exploratory
studies of two new families of algorithms, called Type-C and Type-U.

4. Provide qualitative evaluations of novel findings.

1.5. Structure of This Thesis
Chapter 2 reviews foundational topics and key terminology relevant to this
research. It explores the relationship between computational modelling and
scientific inquiry, focusing on implications to the study nonlinear systems. It
provides an introduction to the fields of AL and CA, reviewing notable
milestones and algorithms. The chapter also reviews the work of practitioners
who engage in exploratory programming and examines various programming
environments suited for this purpose.

20

Introduction

Chapter 3 introduces a new computational framework, Utomata, designed for
the exploration and study of a wide range of CA algorithms. Utomata includes a
custom programming syntax and a hardware-accelerated implementation,
enabling live-coding of CA algorithms as nested algebraic statements. The
chapter demonstrates Utomata’s capabilities through examples of well-
established algorithms, highlighting its ease of use for mutating algorithms and
exploring their outputs interactively.

Chapter 4 showcases the use of Utomata for open-ended exploration through
direct (low-level) algorithm manipulation. It discusses the application of
functional programming, interactive parameter tweaking, and field
parameterisation as methods for navigating the space of algorithmic variants.
The chapter presents case studies of novel CA algorithms, offering initial
qualitative characterisations of their behaviours.

Chapter 5 introduces Spatial Mapping, a novel high-level approach to CA
exploration. Spatial Mapping involves constructing a combinatorial space of
permutations of any given algorithm, and mapping them onto a large two-
dimensional field. Accompanied by an online software implementation, this
method facilitates exploration of vast landscapes of possible CA algorithms,
potentially uncovering novel phenomena. The chapter presents Spatial
Mappings of previously discussed algorithms, revealing numerous novel
variations.

Chapter 6 introduces a new family of CA algorithms, termed Type-U. It provides
a rigorous definition of Type-U algorithms and explores their variations through
Spatial Mapping. The chapter offers initial classifications and qualitative
accounts of Type-U’s combinatorial spaces, as well as their characteristic
phenotypic and genotypic properties.

Chapter 7 presents a collection of noteworthy Type-U specimens, accompanied
by qualitative characterisations of their behaviours.

Chapter 8 discusses the main contributions of this thesis and their potential
implications for open-ended exploration of CA, as well as other computational
models and algorithmic domains. It also suggests possible future studies that
could build upon or extend this work.

21

LABORATORY OF BABEL

2.Background
This chapter offers an introduction to computational modelling and Cellular
Automata (CA) in the context of artificial life (AL). Its principal aim is to establish
the necessary conceptual and technical foundations for the tools, methods and
explorations detailed in the following chapters.

Section 2.1 establishes computational models as software implementations that
can simulate the behaviour of nonlinear systems — systems featuring a large
number of interacting components. The concept of emergence is introduced
and the distinction between simulation and realisation is discussed in the
context of the strong-weak debate in artificial life. A further distinction is made
in regards to the attribution of value with which computational models are
imbued. This discussion draws the focus away from whether or not living
systems can literally be realised in software, instead arguing for the merit of
open ended exploration of emergent virtual phenomena. It refers to a broad
class of non representational computational models as emergent virtual
structures, setting the stage for the non-instrumentalist approach to exploration
advocated by this thesis.

Section 2.2 provides an introduction to CA, which includes historical context,
key terminology, as well as influential algorithms and applications. This section
highlights the use of CA as an abstract model of nonlinear dynamical systems,
making the case for exploration of CA beyond traditional, instrumentalist uses.
Section 2.3 focuses on explorations of CA and other computational models,
highlighting notable practitioners in both the sciences and the arts. This section
serves to illustrate the interdisciplinary nature of exploration of emergent
virtual phenomena. Additionally, it offers an up to date review of software tools
and frameworks which can be used for open ended exploration, thereby
bridging the gap between theory and practice.

Through this structure, the chapter aims to contextualise CA research within the
broader context of open-ended exploration of virtual phenomena, which is
closely related to the field of AL. Subsequent chapters build upon this foundation
by introducing novel methods for exploration of CA, as well as demonstrating
their effectiveness through the introduction and preliminary study of novel CA
algorithms.

2.1. Computational Modelling

2.1.1 Nonlinear Problems

Scientists of the Enlightenment saw the natural world as a great machine that
operates according to the laws of Newtonian mechanics. This approach was
driven both metaphorically and in-effect by the Industrial Revolution. However,
by the early 20th century, this mechanistic worldview was becoming difficult to
reconcile with new research involving systems featuring a large number of
interacting components [18], [19]. The problem was that, unlike a machine, such
systems tend to lose their defining characteristics when taken apart for
examination and analysis. For example, when studying the behaviour of an ant
colony, separating the ants from each other and studying them in isolation
effectively destroys the primary subject of research — the colony, along with
most of its defining characteristics.

22

Background

A fundamental property of such systems is called nonlinearity. A system is said to
be nonlinear if its behaviour does not follow the superposition principle, 1 which
states that the combined effect of two or more independent systems can be
represented by the sum of their individual effects. For instance, when
considering a parallel arrangement of springs or struts, the total forces exerted
can be computed by summing the forces acting on each element separately.
However, in nonlinear systems, the output does not exhibit a proportional
relationship with the input, and the response of each component is not
independent. Nonlinear systems often exhibit intricate interactions and
interdependencies between their components, leading to phenomena such as
feedback loops or amplification that cannot be explained by superimposing the
behaviour of individual parts.

Nonlinear systems can be precisely described by analytical methods such as
partial differential equations, providing a well-defined framework for
understanding their dynamics. However, in practical terms, these equations are
often unsolvable due to the presence of numerous open variables representing
the components of the system. Thus, while an analytical approach can
effectively capture the general properties of nonlinear systems, it falls short in
accurately predicting their behaviour. 2 Since the ability to make accurate
predictions is a fundamental objective of scientific research, the traditional
mechanistic, analytical worldview of the 19th century proved inadequate when
studying a wide range of observable phenomena. By the 1940s, it became
increasingly evident that nonlinearity is not the exception but the rule, as
famously noted by Stanislav Ulam, “Using a term like nonlinear science is like
referring to the bulk of zoology as the study of non-elephant animals”. [21]

To obtain an accurate prediction of a nonlinear system, one must employ a
numerical method that involves iteratively computing the operations of each
component in the system — step by step. Performing such computations
manually is extremely impractical, even for systems with a small number of
components. Therefore, some analytical models of nonlinear systems resort to
approximating them as linear systems. For example, Hooke’s law, which
describes a linear relationship between the force exerted by a spring and its
displacement from equilibrium, is only accurate for small displacements. By
simplifying the nonlinear relationships into linear approximations, these
models attempt to capture the essential dynamics of the system. However, such
approximations inherently introduce inaccuracies, which in turn greatly
impede the quality of the predicted behaviour.

2.1.2 Synthetic Solutions

Computers possess a distinct advantage over humans when it comes to solving
nonlinear problems: their ability to rapidly carry out large sequences of
numerical operations step by step. While computational modelling has long
been applied to linear systems — such as in missile trajectories, graphics
pipelines, and sorting algorithms — its capacity to iteratively calculate the
behaviour of each component in a nonlinear system makes it uniquely suited for
addressing the complexities of nonlinear dynamics. This approach results in a
synthetic solution that can be highly effective in predicting the behaviour of
nonlinear dynamical systems across various scales and disciplines. It is crucial
to note that this does not constitute an analytical solution, nor does it offer
analytical insight in the traditional sense.

Nevertheless, this computational approach has been employed by many of the
pioneers of computer science towards the study of nonlinear phenomena across
a wide range of disciplines. These included mathematical physics [22], self-
replication [5], biochemistry [23], intelligence [24], neuroscience [25], evolution

1 According to the superposition principle
[20], if the following equality holds true the
system is said to be linear:
 f(a x + b y) = a f(x) + b f(y)

2 Though it should be noted that physics has
achieved great success in studying nonlinear
systems by focusing on cases where the
nonlinear component is a small but
important correction to the underlying
linearity. Techniques such as perturbation
theory allow for continual refinement of
these approximations, improving the
accuracy of predictions.

23

LABORATORY OF BABEL

[26] and homeostasis [27]. Thus, it can be argued that computational modelling
emerged as a natural extension of the scientific study of nonlinear systems. The
evolution of computing technology has exhibited a close correlation with the
growing understanding of nonlinearity, with discoveries in one field often
rapidly influencing developments in the other [28].

The complexities inherent in nonlinear systems, characterised by their intricate
interdependencies and unpredictable behaviour, necessitate research practices
that transcend traditional analytical methods. Computational modelling offers a
way to leverage the power of digital computing to iteratively simulate the
behaviour of large systems of interacting components. While this method is not
perfect, as it does not offer analytical insight and remains highly dependent on
initial conditions, it provides a practical approach to understanding these
systems. It offers more precise predictions and deeper insights into phenomena
that would otherwise be unmanageable through manual calculations or linear
approximations. By enacting the dynamics of such systems, computational
models serve as vital tools in bridging the gap between theoretical
understanding and practical application, offering scientists and researchers
unprecedented means to study and comprehend nonlinear systems across a
wide range of disciplines.

2.1.3 Emergence

Emergence is intricately linked to nonlinear systems and is fundamental in
understanding how complex behaviours arise from simpler interactions. In
nonlinear systems, the global state of the system is often driven by local, lower-
level interactions between its constituent parts. This bottom-up progression,
where lower-level interactions result in higher-level behaviour, sets emergent
systems apart from broader concepts like complexity or nonlinearity.

Early references to emergence, traced to 19th century philosophy, describe
systems as being more than the sum of their parts [29]. These principles evolved
with early self-organisation theories [18], which consider the interplay between
the whole and its parts. Emergent systems exhibit properties or behaviours not
evident in individual components, making global patterns difficult to predict by
observing local interactions [30]. Darley argues that even with perfect
knowledge about an emergent system, predicting its behaviour can be
challenging, pointing to simulation as the best way to predict its behaviour [31].

Within the realm of emergent systems, Bedau’s concept of weak emergence holds
notable relevance [15]. According to Bedau, a weakly emergent system is one
whose global properties can be deduced from its underlying local dynamics,
albeit exclusively through simulation. In contrast, real and phsyical emergent
systems possess irreducible global properties and therefore are said to feature
strong emergence. Subsequent definitions include a grammar based set-theoretic
approach to formalising emergence [32], a mathematical characterisation of
strong emergence [33] and a correlation between emergence and natural
selection [34]. Thoren and Gerlee characterise artificial life as “a search for the
surprising” [35] and note that emergence is commonly used as a label for the
formation of “surprising” higher order structures.

2.1.4 Simulation vs. Realisation

“There is nothing in its charter that restricts biology to the study of

carbon-based life; it is simply that this is the only kind of life that has

been available to study.”

[12, p. 2]

24

Background

The first workshop on Artificial Life (AL) was held in Los Alamos, New Mexico in
1987. It was initiated by Christopher G. Langton and had brought together an
interdisciplinary group of researchers who shared a common interest in the
“simulation and synthesis of living systems”. The workshop’s proceedings [12,
p.2] commence with a comprehensive essay by Langton, simply titled Artificial
Life, introducing a new field of research that constitutes a synthetic approach to
biology, by which living systems would be assembled, rather than taken apart. 3

According to Langton’s vision, AL would be dedicated to the study of life-as-it-
could-be, complementing biology’s study of life-as-we-know-it by synthesising
novel instances of living systems in silico — in the form of computer programs. 4

The notion of artificial living systems was not an entirely new idea at the time.
Langton cites the much earlier work of John Von Neumann [12, p. 13] and Alan
Turing [12, p. 12] as the foundations of this newly established discipline.
Moreover, computational modelling has, by then, been used extensively as a
scientific instrument for simulating biological systems. Even the attribution of
“life-ness” had been previously ascribed to computer programs [36].
Nonetheless, this vision had sparked overwhelming interest in the realisation of
life-like processes in silico.

By the early 1990s, AL had become an active field of research, attracting
scientists, designers, artists and engineers from across disciplines towards
dedicated international conferences and publications. Although the work of
Langton and his colleagues was tightly coupled with physics, chemistry, biology,
computer science and mathematics, early AL research was characterised by a
unique approach, whereby computational modelling was no longer regarded as
an instrument for describing and predicting observed physical phenomena —
but as a medium for realisation of novel virtual phenomena.

“There is nothing wrong with a good illusion, as long as it does not

claim it is reality.”

[14, p. 74]

The above distinction between simulation and realisation was put forward by
Pattee at the very first AL workshop in 1987, effectively foreshadowing one of the
core debates in the field. Pattee argued that a simulation is a representation of
an existing system, whereas a realisation is a “literal, substantive, functional
device” [14]. Not a derivative object or representation, but an object by its own
regard. From a scientific point of view, the purpose of a computational model is
to approximate the behaviour of a particular observable phenomenon. This, in
an effort to obtain new knowledge about a system in question in situations where
an analytical model is either impossible or impractical. Thus the assertion that
living systems can be directly implemented in software posed a substantial
conceptual challenge and has faced significant controversy.

Biology lacks a unified theory of living systems, with even the classification of
edge cases such as viruses [37] and super-organisms [38] remaining in dispute.
Moreover, widely accepted definitions of life often include physical properties,
such as maintaining metabolic processes or being composed of living cells [39].
As a result, research projects seeking to create virtual living entities tend to
focus on those rooted in consensus, rather than exploring the boundaries and
edge cases of biology. The OpenWorm project [40], which strives to simulate a
complete multicellular organism, is a notable example of this approach. While
such projects offer valuable contributions to science, they seem to fall short of
being considered by the scientific community as creating actual living systems.
According to this perspective, computational models, no matter how precise, are
necessarily derivative objects and therefor never the real thing.

4 The term “in silico” was originally coined
by Langton [12] and pertains to biological
experiments conducted exclusively through
computational means. It contrasts with “in-
vivo”, “in vitro”, and “in situ” approaches.

3 The term Artificial Life may also pertain
to work involving wetware and hardware
implementations. However, since this thesis
is strictly concerned with software, unless
otherwise stated all mentions of AL refer to
software implementations as such.

LABORATORY OF BABEL

25

Langton’s own vision of a synthetic approach to biology was seen by many in the
scientific community as reckless miss-use or even misunderstanding of what a
computational model actually is [13]. Critics of AL essentially viewed it as the act
of taking a tool for describing physical phenomena and deeming it capable of
creating it. Bullock discusses this conflict in the context of artificial worlds. He
refers to artificial life as a practice which deliberately courts insecurity by
focusing on the notion of life as it could be [41]. In a 1995 article, John Horgan
highlights Langton’s perspective:

“Langton, surprisingly, seems to accept the possibility that artificial life

might not achieve the rigour of more old-fashioned research. Science,

he suggests, may become less linear and more poetic in the future.

’Poetry is a very nonlinear use of language, where the meaning is more

than just the sum of the parts,’ Langton explains. ‘I just have the feeling

that culturally there’s going to be more of something like poetry in the

future of science.’”

[13]

Horgan refers to AL as a “fact free science”, a critique that is not unreasonable
considering Langton’s stated goals. If scientific inquiry is grounded upon
observation of physical subject matter, it should follow that the scientific
legitimacy of research that deliberately avoids this would come into question.
Langton’s body of published work is surprisingly sparse considering his
attributed stature as the father of AL [13]. He typically makes no direct attempts
to imitate, model or represent any particular life form and his language involves
cautious use of biological metaphor. Instead, he studies the general properties of
processes associated with living systems such as self-organisation and self-
replication [42], as well as more abstract properties such as phase transitions
between order and chaos [43].

2.1.5 Strong vs. Weak

The question of whether or not life can indeed be realised in software took form
as the field split into two prominent schools of thought, otherwise known as the
strong-weak debate in AL. It embodies contrasting interpretations of the term
“artificial”, as well as inherent challenges in defining “life”. While proponents of
both schools of thought employ computational modelling techniques to
synthesise emergent phenomena, it is the attribution of life-like qualities to
these synthetic objects that necessitates a departure from the traditional
scientific framework, whereby a model cannot be regarded as creating the very
thing it aims to model.

The weak position accepts the role of computational modelling as a scientific
instrument, which means it must categorically deny any instance of virtual
phenomena from being considered truly alive, on the basis that it is merely a
model or simulation. On the other hand, the strong position contends that
virtual phenomena may exhibit life-like behaviours. Therefore, it follows that a
computational model can indeed become more than a scientific instrument.
This dichotomy can be exemplified through the approaches of Langton, the
founding editor of MIT’s Artificial Life Journal, and Mark A. Bedau, a prominent
critic of strong-AL, who assumed Langton’s editorial position in 1998.

As a proponent of strong-AL, Langton considers artificial entities as “human-
made” creations. This view does not impose a clear separation between natural
and artificial, therefore permitting the possibility of living systems to be created
by artificial means. He further asserts that life is a property of form — not matter
— and can therefore exist within artificial, virtual environments. At least in

26

Background

theory. Langton’s published body of work typically downplays any discussion on
practical applications; he posits open questions about his subject matter and
hypothesises over potential future applications, but the underlying motivation
seems grounded upon the contention that virtual living systems are indeed
possible and that this alone is reason enough to study and explore them.

Bedau, a vocal proponent of weak-AL, considers an artificial construct to mean
a derivative object. He asserts that such objects cannot capture the complexity
and essential qualities of natural life forms, or rather that life emerges from
specific arrangements of matter and processes that cannot be reproduced
through artificial means. Bedau argues that while computational models may
offer valuable insights by simulating various aspects of living systems, they
ultimately fall short in regards to creating the phenomena itself. Bedau even
goes as far as to consider physicality as one of the innate properties of living
systems [44], suggesting that the notion of virtual life may not be feasible to
begin with.

Bedau is motivated by the urge to understand what life is [45]. He contends that
software is and would continue to be an invaluable tool in obtaining an
increasingly better understanding of living systems through simulation, as well
as in offering novel solutions to some of humanity’s current and future problems
[46]. In other words, He explicitly ascribes instrumental value to software
implementations of AL, considering them as tools in the service of scientific
inquiry; he formulates questions and employs various modelling techniques to
derive answers. Whereas for Langton, software implementations of AL are
themselves the answer — they extend the natural world by the sheer virtue of
their existence.

While both Langton and Bedau argue for the potential of a synthetic approach to
biology in uncovering truths about living systems, their goals and interests
diverge. Bedau’s listing of open problems in artificial life [46] demonstrate a
quest to define life, explore its limits, understand its innate properties, and
examine its relationship with machines, culture and the human mind. Bedau’s
philosophical and methodological approach, as exemplified in the desire to
simulate a complete life cycle of a unicellular organism [46, p. 367], reveals a
strong motivation to fully comprehend what life is, but ultimately demonstrates
no interest in exploring what it could be.

The paradigm shift from strong to weak AL as the dominant school of thought in
the field towards the end of the 20th century emerged as a response to criticisms
regarding its scientific legitimacy. It marked a return to the traditional view of
computational modelling as a tool for describing phenomena rather than
creating it. Subsequently, the exploratory and open-ended nature of early
research in AL gradually gave way to more focused efforts for understanding the
inherent properties of observable living systems.

2.1.6 Model vs. Structure

An object is said to possess instrumental, or extrinsic value if its purpose lies in
serving a function. For example, a chair may be imbued with instrumental value
because it was created for the purpose of sitting on. In contrast, an object may be
said to possess intrinsic value if its purpose lies in its own existence. For
example, a mountain can be regarded as serving no particular function, or
alternatively, that its value is self-evident. The attribution of value is often a
moral position and a highly subjective one; a carnivore might argue that a cow
possesses instrumental value because it was brought into existence for the
purpose of human consumption, whereas a vegan would likely argue that cows,
as do all living creatures, possess intrinsic value.

LABORATORY OF BABEL

27

It should be emphasised that the distinction between intrinsic and instrumental
value is rarely clear cut. While the typical function of many chairs may be
obvious, some chairs may have been created with other functions in mind, or
none at all. Moreover, the decorative or aesthetic features of a chair, which, by
definition, are not functional, or may even hinder its functionality, do not
automatically imbue it with intrinsic value.

Computer programs are frequently designed as instruments, with word
processors, web browsers, code editors, and digital audio workstations serving
as clear examples. These applications are typically valued based on their
effectiveness in performing specific functions within their respective domains.
In contrast, computational art, experimental software, generative compositions,
theoretical constructs, and, to some extent, computer games, are less commonly
regarded as instruments.

As for computational models, their extensive use as scientific instruments for
the study and prediction of observable phenomena has been so impactful that it
often overshadows alternative perspectives. The term “computational model”
itself suggests a representation or derivation of something pre-existing, rather
than an independent subject of research. This is true even in the field of AL
which, in many ways, was founded with the explicit intention of studying un-
observable phenomena. Grüne-Yanoff encapsulates this idea by stating, “Models
are representations; they are good models to the extent that they are good
representations” [47].

This perspective highlights an often overlooked aspect of computational
modelling: it is inherently goal-directed, designed to imitate rather than enact.
This predisposition toward representation necessarily constrains how models
are conceived and valued, potentially making them ill-suited for studies
concerned with open-ended exploration. It thus follows that suspending this
instrumentalist view — ceasing to evaluate computational models based on their
ability to achieve predefined goals or represent external phenomena — could
open new avenues of inquiry. Such a shift may allow the discovery of novel, non-
representational systems that are neither derived from nor tied to pre-existing
phenomena.

Given that the primary aim of this thesis is to conduct open-ended explorations
of emergent virtual phenomena, the term ‘model’ itself becomes problematic
when restricted by its traditional representational connotations. What, then,
constitutes a non-representational model?

Frigg [17] defines a “structure” as a composite entity comprising the following
components:

1. A non-empty set U of individuals called the domain of the structure

2. A set O of operations on U (which may be empty)

3. A non- empty set R of relations on U

According to Frigg, structures, in and of themselves, do not inherently represent
elements of the real world. To serve a representational role, structures must be
supplemented with a specification of their relationship to the target system.
Only with this relational aspect do they acquire representational capability and
become “about” something. Furthermore, establishing this relationship does
not automatically render a structure an isomorphic model of a target system.
Frigg emphasises the significance of intentionality in this process: a structure
can only be considered a model when it is explicitly intended for

28

Background

representational use. This intended use is not merely an external facet
appended to the model but forms an essential part of the model itself.

The distinction between a “model” and a “structure” provides a highly suitable
framework for the subject matter of this thesis. By employing a subtractive
approach, any computational model can be dissociated from its connection to a
target system and any intent to represent it. What remains is a structure — a
well-defined, autonomous entity that transcends derivative and instrumental
categorisation. While this distinction may seem semantic, it reflects a pivotal
conceptual shift: exploring structures, rather than models, can significantly
broaden the scope of inquiry. As the following chapters demonstrate, this
approach can indeed enable the discovery of novel virtual phenomena that may
otherwise be overlooked within the narrower confines of a model-based
perspective.

2.2. Cellular Automata
The following section provides an introductory review of Cellular Automata (CA),
which form the central focus of this thesis. It aims to achieve two primary
objectives: first, to introduce key terminology and discuss the historical
significance of CA as one of the pioneering computational models, and second,
to review three notable algorithms that illustrate the practical application and
effectiveness of the proposed computational frameworks introduced in
Chapters 4 and 5.

CA are regarded as one of the first computational models, originating as early as
the 1940s. Their development is attributed to Stanislav Ulam and John von
Neumann, who pioneered early research on crystal formation [4] and self-
replication [5], respectively. Von Neumann’s groundbreaking work introduced
the Universal Constructor — an intricate theoretical machine capable of self-
replication. This research, preceding the development of digital computers and
thus devised largely on graph paper, was originally envisioned as the basis for
physical self-replicating machines. However, Von Neumann later settled on a
purely virtual implementation [48, p. 879]. Since then, the topic of autonomous
self-replication has inspired numerous researchers [49], leading to simpler and
more elegant solutions using CA and related computational models [42], [50].

At their core, CA consist of a regular grid of discrete entities, or cells, each
associated with a numerical value or symbol — its state — that evolves over time
according to a global set of rules called the transition function. The transition
determines how each cell’s state changes based on the states of its neighbouring
cells, collectively referred to as its neighbourhood. The evolution of the grid
typically occurs synchronously at discrete time steps, with the same transition
applied uniformly across all cells. Despite their often simple rules, CA are
capable of generating remarkable complexity. Local variations in cell states can
produce intricate patterns and dynamic behaviours, ranging from simple,
localised periodic structures to large-scale emergent patterns.

CA have a long and rich history, closely intertwined with the development of
digital technology in the 20th century. The following section covers the
fundamentals of CA within the narrow scope of this thesis, which focuses on
exploration and emergent behaviour. For readers seeking a broader
introduction to CA, Wolfram [48] provides a comprehensive exploration of their
potential to model complexity across diverse domains. Toffoli and Margolus [51]
offer a practical perspective on CA implementation, effectively bridging
theoretical concepts with computational applications. For a more rigorous and
extensive treatment, Ilachinski [52] covers both foundational theory and real-
world applications.

LABORATORY OF BABEL

29

2.2.1 Key Terminology

State

In the context of CA, the state of a cell represents its current condition and can
take on a variety of values. Two well-known CA models, which are discussed in
the next section, are Conway’s Game of Life [53], [54] and Wolfram’s Elementary
Automata [55]. Both models use binary states, where each cell’s state may only
be either 0 or 1, sometimes regarded as “off” or “on”, or rather “dead” or “alive”.
However, many CA models go beyond binary states to allow multiple discrete
values. For example, the Abelian Sandpile [11] and Wireworld [56] each use four
discrete states, while von Neumann’s Universal Constructor used twenty-nine.

In addition to discrete states, some CA models use continuous values to better
simulate physical and chemical processes. For instance, reaction-diffusion [57],
also discussed in the next section, represent each cell’s state using two real
numbers between 0 and 1, corresponding to the concentrations of two
interacting chemical substances.

Neighbourhood

The concept of the neighbourhood is central to CA, as it defines how cells
interact with their surroundings, forming a critical component in emergence of
complex patterns. Different CA models adopt varying approaches to
neighbourhood definitions, which influence how cell states throughout the
system evolve over time.

In a totalistic CA, the transition function depends solely on the sum of the states
of neighbouring cells, without considering their individual values. Conway’s
Game of Life is a well-known example of this approach, which provides a
simplified yet powerful model capable of producing intricate emergent patterns.
Figure 4 visualises three commonly used totalistic CA neighbourhoods: Von-
Neumann, Moore and Extended Moore. In contrast, outer-totalistic CA employ a
more fine-grained approach by considering the individual states of
neighbouring cells. This allows for a broader range of possible transitions and
nuanced control over local interactions. Models such as Elementary Automata
and the Abelian Sandpile utilise this approach, forming behaviours that may not
emerge in totalistic models.

Transition

The transition function is the central mechanism that drives the evolution of CA
over time. It determines how each cell’s state changes based on its current state
and the states of its neighbours. While the same transition is typically applied to
all cells in the grid, results vary due to varying local state and neighbourhood
values.

Transition functions can be expressed in various ways, depending on the
complexity and purpose of the model. In simpler cases, such as Conway’s Game
of Life, the transition function is typically implemented using straightforward
conditional statements — checking the number of “live” neighbouring cells and
applying simple if-else rules to determine the next state. In contrast, Wolfram’s
Elementary Automata utilise rule tables, which resemble truth tables, where
each possible neighbourhood configuration corresponds to a predefined output
state for the transitioning cell. More advanced CA models, such as reaction-
diffusion systems, define transition functions using algebraic equations that
describe continuous changes over time, often drawing from differential
equations to simulate physical and chemical processes.

Figure 4.
Commonly used totalistic neighbourhoods.

Von Neumann

Moore

Extended Moore

30

Background

Configuration

The initial state of all cells in a CA is known as the configuration, and it plays a key
role in shaping the system’s evolution. Since the transition function determines
how each cell updates based on its current state and the states of its neighbours,
the configuration serves as the foundation from which all subsequent patterns
and behaviours emerge.

Configurations can be categorised into different types depending on their
structure and origin. Predefined configurations, such as a specific pattern or
arrangement, are often used to study well-known behaviours, such as gliders or
oscillators in Conway’s Game of Life. In contrast, random configurations, where
cell states are initialised randomly, are commonly used to explore statistical
properties and emergent phenomena within the system. Some models may also
use structured configurations, derived from real-world data or external inputs,
to simulate physical or biological processes.

Determinism

While many known transition functions in CA are often relatively simple, they
have a remarkable ability to produce highly intricate and emergent patterns [48]
[53]. In many cases, this complexity does not typically arise from randomness
but rather from the inherent feedback mechanisms between neighbouring cells.
In deterministic CA, a given initial configuration, transition function, and number
of steps will always yield the same outcome, ensuring consistency across
multiple independent runs.

Some CA models do introduce elements of randomness by incorporating
random or pseudorandom numbers into their transition functions. These
models, known as stochastic CA, are often used to simulate real-world
phenomena that involve varying levels of uncertainty, such as in epidemics [58]
and ecological systems [59]. Notably, deterministic CA can still exhibit chaotic
behaviour, where any change to the configuration, or slight perturbation, can
result in vastly different outcomes over time. This sensitivity to initial conditions
is closely tied to CA’s potential to develop complex, unpredictable patterns from
simple rules.

Dimension

CA grids may span any number of dimensions 5. In one-dimensional (1D) CA,
cells are arranged in a linear sequence. A classic example is Wolfram’s
Elementary Automata, where neighbourhoods consist of only two adjacent cells.
More common are two-dimensional (2D) systems, such as Conway’s Game of
Life. 2D CA feature cells arranged orthogonally along an the x and y axes, with
neighbourhoods typically consisting of the four or eight adjacent cells.

Less commonly studied, three-dimensional (3D) CA extend this concept into
volumetric space, enabling the formation of intricate 3D structures. In a 3D
lattice, each cell has twenty-six adjacent neighbours. 3D CA have been used in a
variety of applications, including physical modelling [60], simulation [61] and
urban planning [62]. Higher-dimensional CA (4D and beyond) have also been
explored to study Complex systems [63] and theoretical constructs [64]. 6

Bounds

CA systems operate within finite grids, as all cell states must be computed within
a well defined space and time. Handling grid boundaries is crucial, as they
potentially introduce changes to behaviour along the edges, which can rapidly
percolate into the entire system. In 2D systems, two common approaches are
widely used:

5 This should not be confused with state
dimensionality, which refers to representing
the state of a cell using a vector of values
rather than a single numerical value.

6 See [65] for an extended discussion on
dimensionality and alternative CA
topologies.

LABORATORY OF BABEL

31

Clamped boundaries impose strict confinement, preventing interactions beyond
the grid’s edges. Cells at the boundary assume a predefined state, typically zero.
Toroidal boundaries create a seamless, wrap-around effect, where the neighbours
of cells along one side are the cells along the opposite side. Topologically, this
creates a torus shaped space, effectively simulating an unbounded space,
thereby preventing foreign effects along the edges. Unless otherwise stated, this
approach is used throughout the studies presented in this thesis. It is
particularly useful for studying systems with periodic or cyclic behaviour over
extended periods of time.

Computational Complexity

CA are considered highly computationally efficient due to their reliance on local
interactions, where each cell remains stationary and interacts only with a fixed
set of neighbours. This ensures that the cost of updating a single cell remains
constant, leading to an overall computational complexity that scales linearly —
O(n) — with the number of cells in the grid. In contrast, many particle systems
involve moving entities that require pairwise interaction calculations, where
each particle interacts with every other particle at each step. Without
optimisation, this results in a significantly higher computational complexity of
O(n²), making such systems computationally expensive as they scale.

The efficiency of CA was particularly valuable during the early days of
computing when processing power was limited, and it remains advantageous
today, especially in large-scale simulations where local interactions are
sufficient to capture the system’s dynamics.

The next section introduces three notable CA algorithms that have gained
considerable popularity and continued research interest. Their widespread
adoption extends beyond scientific domains, towards the realms of arts and
design as well. Moreover, these algorithms vary in a number of aspects, such as
their state type, dimension, and their algorithmic expression. This makes them
ideal case studies for illustrating the use and effectiveness of the computational
framework outlined in Chapter 4, as well as ideal starting points for the
exploration methods presented in Chapter 5.

2.2.2 Game of Life

The popularisation of CA can be traced back to the publication of Conway’s
Game of Life (GOL) in 1970. In a Scientific American article [53], Martin Gardner
described a “zero-player game” created for recreational purposes by
mathematician John Conway. Despite its name, GOL does not simulate any
particular living system, nor was it designed to. Nonetheless, its metaphor and
incredibly simple rule system attracted immediate interest in CA from outside
the academic ranks for the first time. Gardner detailed the rules of GOL as
follows: 7

› Survivals: Every counter with two or three neighbouring counters
survives for the next generation.

› Deaths: Each counter with four or more neighbours dies (is removed)
from overpopulation. Every counter with one neighbour or none dies
from isolation.

› Births: Each empty cell adjacent to exactly three neighbours--no
more, no fewer--is a birth cell. A counter is placed on it at the next move.

7 Gardner refers to cell state as counters and
the game uses the totalistic Moore
neighborhood.

32

Background

The deceptively simple rules of this algorithm 8 result in a particular dynamic
between cell states, from which instances of stable higher-order patterns
emerge. These are formed by distinct local arrangements of neighbouring cells
that preserve their structure over time. They may take different forms, most
notable of which are oscillators — formations that cycle through a particular
arrangement in place, and gliders — formations that traverse the grid diagonally.

GOL has enjoyed an abundance of further explorations of its possible
behaviours, mathematical and statistical properties, as well as possible
outcomes from different configurations. These include a demonstration of its
universality by Randell [66] and Stephen Silver’s compiled Lexicon, which
features over 1,350 terms relating to GOL [67]. Johnston and Greene recently
provided an in-depth investigation of GOL rules, variations, configurations and
underlying maths [68]. Smoothlife [69] is an extension of GOL into a continuous
domain. Eppstein’s custom abbreviated notation, “Life-Like” [70], allow
parametric explorations of GOL variants [71]. More recently, a numerical
analysis by Peña and Sayama [72] quantified the complexity of Life-like cellular
automata, providing a systematic evaluation of their dynamic behaviors and
identifying patterns that exhibit life-like characteristics beyond Conway’s
original formulation.

2.2.3 Elementary Cellular Automata

In his book: A New Kind of Science [48] Stephen Wolfram provides an in-depth
discussion on how complex patterns may emerge from the simplest possible
rules and configurations. His method differs from traditional scientific
experimentation in that, rather than observing a system and making a
hypothesis regarding its behaviour, Wolfram defines a space consisting of all
possible permutations of a given behaviour, in this case: one dimensional,
binary state, outer-totalistic CA. These, so called Elementary Automata (ECA)
have exactly 256 possible transition functions, making a rigorous examination
of all of them a tractable task. According to Wolfram:

“In a traditional scientific experiment, one sets up a system in nature

and then watches to see how it behaves. And in much the same way, one

can set up a program on a computer and then watch how it behaves.

And the great advantage of such an experimental approach is that it

does not require one to know in advance exactly what kinds of

behaviour can occur. And this is what makes it possible to discover

genuinely new phenomena that one did not expect.”

[48, p. 108]

Wolfram’s research considers CA as a way to implement abstract structures in
which behaviour can be explored without any need for an equivalent physical
system to be observed, measured or compared against. Acknowledging the
innumerable size of the space of all possible CA programs, his solution is to
methodically comb the smallest well-defined subspace of these algorithms and
then evaluate findings visually. Wolfram defined ECA transition functions using
a rule table that enumerates all possible states for a given neighbourhood and
subsequent transition state. In a 1D outer-totalistic CA, there are exactly 8
possible neighbourhoods. 9

Since any given neighbourhood in a binray state CA results in the transition
function returning either 0 or 1, a simple algorithm can be defined by explicitly
specifying the output for all eight possible neighbourhood configurations.
Consequently, there are exactly 256 unique algorithms, each corresponding to a
different combination of outputs for these neighbourhoods. These algorithms

8 The rules of GOL can be formally expressed
using the following pseudocode (using V to
denote the state of the cell and N to denote
its Moore neighborhood total):

For each cell :
if V == 1 :

if N == 2 OR N == 3 : V = 1
if N >= 4 OR N <= 1 : V = 0

if V == 0 :
if N == 3 : V = 1

9 The eight Possible neighborhoods,
including the transitioning cell, in a binary
state 1D CA are :

 000 | 001 | 010 | 011
 100 | 101 | 110 | 111

LABORATORY OF BABEL

33

are all accounted for by a rule table that enumerates the results of the transition
function. For instance, Rule 30 10, represented here in binary notation, denotes
the output of the transition function for each of the eight neighbourhood
configurations.

Rule tables constitute a different form of algorithmic expression compared to
the more common if-then rules used for defining GOL. Rule tables provide an
explicit result for every possible scenario. ECA can be also defined using logical
notation [73]. This form is covered in depth in Chapter 4.

In 1984 Wolfram and Packard [74] proposed four distinct classes of CA
behvaiour, offering examples in ECA for each one. This classification method,
listed below, is still widely referred to in literature to date.

1. Evolution leads to a homogeneous state.

2. Evolution leads to a set of separated simple stable or periodic
structures.

3. Evolution leads to a chaotic pattern.

4. Evolution leads to complex localised structures, sometimes long-
lived.

It is important to emphasise that these classes do not ascribe well-defined
properties to CA, nor provide analytical insights per se. Descriptive terms such
as “simple”, “stable”, “chaotic pattern”, and “complex localised structures” are
not formally defined. Wolfram refers to this classification as a “qualitative
characterisation of elementary automata.” He later extends his investigations to
include empirical, statistical, and combinatorial analyses, as well as studies of
CA behaviour in higher dimensions [75]. However, these investigations focus
exclusively on binary-state CA.

Subsequent efforts have been made to classify CA, including notable
contributions by Martinez et al. [76], Sutner [77], [78], Adamatzky [79], and Braga
et al. [80]. However, despite these efforts, a universally accepted, general-
purpose classification framework for CA algorithms and the diverse phenomena
they exhibit has yet to be established.

2.2.4 Reaction-Diffusion

Reaction-diffusion (RD) systems are a fundamental concept in the study of
pattern formation and self-organisation. These systems describe the interplay
between chemical reactions and the diffusion of substances within a medium,
leading to the emergence of intricate spatial structures. RD models have broad
significance across multiple scientific disciplines, including chemistry, biology,
physics, and computer science.

The origins of RD modelling can be traced back to Alan Turing’s seminal 1952
paper, The Chemical Basis of Morphogenesis [23], in which he demonstrated
how simple chemical interactions could give rise to complex patterns observed
in nature. Turing’s mathematical framework provided insights into various
natural phenomena, such as embryonic development, animal coat patterns, and
plant morphology. This foundational work established a theoretical basis for
morphogenesis — the process by which biological structures develop — paving
the way for advancements in computational biology and the study of self-
organising systems.

10 Rule 30 in binary notation

0 | 0 | 0 | 1 | 1 | 1 | 0

34

Background

Building on Turing’s foundational work, the Gray-Scott model [81], provides a
canonical implementation of RD systems. This model simplifies Turing’s
original equations, making them more computationally tractable. The Gray-
Scott model involves two chemical substances, U and V, that react and diffuse on
a two-dimensional grid, leading to the emergence of various organic-like
patterns. The equations driving the model describe the rates of change of U and
V based on reaction kinetics and diffusion.

John E. Pearson further popularised this model through his 1993 study [10],
which demonstrated the rich diversity of patterns it could generate. Pearson
explored the simulation and study of “chemically reacting and diffusing
systems” in silico, showcasing a remarkable diversity of patterns through the
use of phase diagrams that depicted varying concentrations of two simulated
chemical substances along the x and y axes. This work is referred to as
“Pearson’s parameterisation” and was later implemented as interactive software
by Munafo [82] and Sims [83]. This method is central to the practice-based
research presented in this thesis. It represents an early example of a study
involving exploration of continuous state CA and serves as the foundation for
one of the proposed exploration methods detailed in Chapter 5.

RD systems continue to be studied and applied in diverse scientific domains. As
effective models of chemical dynamics, they contribute to the development of
new materials and catalysts. In biology, RD mechanisms are crucial in
elucidating the dynamics of cellular processes, such as cell signalling,
morphogenesis, and tissue patterning. They provide insights into the formation
of biological structures and contribute to fields like developmental biology and
regenerative medicine [84]. Moreover, RD has been highly influential in
computer graphics, texture synthesis, and generative design. An
implementation by Witkin and Kass [85] served as a significant milestone in the
field of artificial chemistry [86], [50]. Subsequently, it laid the foundation for
other algorithms that generate novel virtual phenomena such as Lenia [87] and
Smooth-Life [88].

RD models are often regarded as a distinct computational paradigm from CA due
to their use of continuous states, which allow for more precise modelling of
organic and diffusive processes. In contrast, many CA models are explicitly
designed to represent interactions between discrete entities. However, despite
these differences, both models share fundamental characteristics, as they
operate within discrete space and time. Given that the primary focus of this
thesis is exploration of novel CA algorithms, it is logical to adopt a broad
definition of CA that attempts to encompass a broad range of algorithms,
including RD.

2.2.5 Other Notable Algorithms

The three algorithms discussed in the previous section are among the most
extensively studied and widely recognised CA models, commanding significant
research and academic attention. Their prominence is particularly evident in
artistic contexts, where the most well-known algorithms often gain widespread
recognition and visibility. However, these algorithms represent only a fraction of
the broader landscape of CA. Numerous other algorithms with diverse
characteristics and applications exist, as highlighted in a survey by
Bhattacharjee et al. [89].

The Abelian Sandpile model, introduced by Bak, Tang, and Wiesenfeld in 1987
[11] is of particular significance to this thesis. Embodying the concept of a self-
organised criticality (SOC), the model consists of a finite grid where each cell can
accumulate a certain number of “sand grains”. When a cell exceeds its maximal

LABORATORY OF BABEL

35

capacity (typically four grains), it topples, distributing its grains to its four
adjacent neighbours. What makes this model model particularly intriguing is its
inherent ability to reach a critical state without the need for fine-tuning or
external parameters. As sand grains are continuously added and redistributed,
large-scale avalanches occur, ultimately restoring the system toward a balanced
state. SOC dynamics are studied in various scientific disciplines, capturing how
complex systems naturally settle into equilibrium. The Abelian Sandpile model
has been extensively studied for its applicability to a wide range of phenomena,
including earthquakes, forest fires, and stock market crashes [90]

Langton’s Ant [91], originally proposed by Christopher Langton, is a moving
cellular automaton — a special type of CA where the transition function is only
applied to one cell at a time, determining both the next state of the transitioning
cell, and the cell to be transitioned on the next time step. Despite its remarkably
simple rule set, Langton’s Ant has been recognised for its ability to demonstrate
universal computation, making it capable of simulating any Turing machine.
Further studies, including the work by Gajardo et al. [92], have explored the
computational properties, patterns, and behaviour of Langton’s Ant.

Langton’s Loop [42] is a model of self-replication, originally proposed by Langton
and later extended by Tempesti [93]. The model provides a simplified framework
for exploring the dynamics of autonomous self-replication. It made use of a
significantly simpler algorithm, instruction set and number of states, compared
to von Nuemann’s Universal Constructor.

WireWorld, initially developed by Brian Silverman, is a CA model that gained
popularity through a Scientific American article by Dewdney [56]. The
introduction of new rules and modifications by Gladkikh et al. [94] turned it into
effective tool for simulating and studying computational systems and digital
circuitry. In WireWorld, cells can have one of four states: empty, wire, electron
head, or electron tail. The behaviour of the system revolves around the
movement of electrons through the wires, which allows for the emulation of
logical gates and complex electrical circuitry. This is best exemplified by the
WireWorld computer [95], a Turing complete and fully programmable computer
by David Moore and Mark Owen.

From the 1970s to the mid-1990s, CA and similar lattice-based or discrete
methods experienced peak popularity in the simulation of physical phenomena
[8]. This widespread adoption was largely due to the relatively low computational
complexity of CA, making it well-suited to the hardware limitations of the time.
However, with advances in computing power, alternative models such as swarm-
based [96] and physics-based simulations [97] gained traction, offering
enhanced capabilities for representing complex physical systems that feature
interactions between moving agents.

Despite the rise of these alternative approaches, CA continues to be applied in
various domains where its discrete, grid-based nature provides unique
advantages. For example, CA remains an optimal approach for texture synthesis,
where is it still widely used [98]. Additionally, CA is still relevant in disciplines
where it can effectively model systems characterised by discrete, localised
interactions, such as physical simulations [99] and architectural analysis or
synthesis [100], [101].

2.3. CA Exploration
Although numerous CA algorithms have been developed and rigorously studied
since the model’s inception in the 1940s, exploration of CA rule systems and
dynamics has largely been conducted manually. Some algorithms, such as RD

36

Background

systems, were devised, refined, and studied as models of observed natural
phenomena. Others, like Wireworld, were created as simulation tools for
computational processes. Still, others, such as GOL, were designed as purely
theoretical or mathematical models.

However, there have also been direct attempts at large-scale exploration of CA,
several of which were discussed in the previous section. Among the most
prominent examples are the works of Langton, Pearson, Eppstein, Wolfram and
Sims. Each of these investigations explicitly set out to explore CA dynamics but
employed distinct strategies and pursued slightly different goals.

2.3.1 Parametric vs. Algorithmic

Some approaches focus on parametric exploration, where the algorithmic
structure remains fixed, and exploration targets the space of numerical
parameters. In systems with continuous state parameters, this space becomes
effectively infinite 11, potentially offering vast possibilities for dynamic
behaviours.

Langton’s parametric exploration of CA [43] aimed to identify a phase transition
between ordered and chaotic behaviour, a region he termed the “edge of chaos.”
This concept became pivotal in demonstrating how simple rule-based systems,
like CA, could exhibit behaviours analogous to those found in complex natural
systems. By quantifying the balance between order and apparent randomness,
this study provided a framework for understanding how complexity arises in
both natural and computational contexts.

Similarly, Pearson’s parametric strategy [10] enabled simultaneous visual
examination of two key parameters within a continuous RD system. Each unique
parameter combination produces distinct patterns, forming an instant
comprehensive mapping of a wide variety of complex, self-organising structures
spanning the entire grid.

Eppstein’s Life-like CA notation [70], [71] represents another parametric
approach. Retaining the rigid algorithmic structure of GOL, this notation
simplifies the process of exploring discrete variations in neighbourhood
configurations, as well as birth, death, and survival parameters. Through this
framework, a broad set of diverse, GOL-like behaviours can be easily explored
and studied.

In contrast to purely parametric methods, other explorations have spanned
entire algorithmic spaces. Perhaps the most notable of these is Wolfram’s work
on ECA [48], [55], which involved a complete enumeration of all one-
dimensional, binary-state, two-neighbourhood CA rules. It should be
emphasised that conducting such a comprehensive exploration across a
complete algorithmic space is only feasible when the subset of CA being studied
is extremely small and well-defined. In this case, arguably the smallest possible
non-trivial class of CA, featuring only 256 unique algorithms.

Expanding the grid dimensionality, increasing the number of states, or
considering larger neighbourhoods would necessarily lead to an exponential
growth of the rule space, rendering complete enumerations computationally
infeasible, or when considering continuous state — technically impossible.
Wolfram’s ECA study, therefore, stands as a unique case where the entire
algorithmic landscape could be systematically explored and rigorously studied.

11 Though, due to the inherent constraints
of digital media, this space is ultimately still
discrete.

LABORATORY OF BABEL

37

2.3.2 Evolutionary Algorithms

In order to explore larger CA rule spaces, researchers have turned to automated
computational techniques, such as evolutionary algorithms. These methods
enable exploration of vast algorithmic landscapes, uncovering emergent
behaviours that would be infeasible to come across through manual exploration.
Sims described a method for evolving two-dimensional CA [102]. This involved
creating a random population of CA transition rules, defined as lookup tables. He
allowed users to observe their execution and select those exhibiting interesting
or complex patterns. Those selected were then subjected to reproduction with
variation, forming a progressive process of evolution towards more aesthetically
pleasing and increasingly intricate behaviours over successive generations. 12

Other studies demonstrate how evolutionary algorithms, guided by aesthetic
fitness criteria, can effectively explore complex, emergent behaviours across
scientific and artistic domains. Ashlock [103] applied evolutionary algorithms to
steer CA toward visually compelling patterns, while Forbes [104] developed
interactive CA systems that emphasise user-driven manipulation of rules to
generate novel artistic outputs. Heaton [105] further showcased how continuous
CA can be fine-tuned to create dynamic, flowing visuals that transcend the rigid,
grid-based structures typical of traditional CA.

Evolutionary algorithms offer a powerful strategy for navigating vast algorithmic
spaces, however their efficacy largely depends on the definition of a fitness
function — a process that inherently excludes almost all potential variants. In
interactive evolutionary algorithms, fitness is determined through aesthetic
preference, allowing human intuition to guide the selection process in an
effectively open-ended manner. Conversely, automated evolutionary
approaches are employed in cases where fitness can be quantified and tested,
using metrics such as pattern recognition, stability, or entropy. While these
methods are significantly faster, as they eliminate the need for manual
evaluation, the reliance on quantifiable fitness criteria often directs exploration
towards more goal-oriented research.

For example, Mitchell et al. [106] and Das et al. [107] evolved CA to perform
computational tasks like density classification and global synchronisation, with
fitness functions measuring task accuracy and stability. Similarly, Sipper [108]
introduced cellular programming, where localised fitness assessments evolved
CA for parallel computation. Packard [109] and Juillé & Pollack [110] employed
entropy measures and coevolutionary dynamics to evolve CA exhibiting
complex behaviours. While these studies uncovered novel computational
properties and, in some cases, emergent behaviours, their fitness-driven focus
inherently constrained exploration to specific, predefined objectives, limiting
their potential for broader, open-ended discovery.

2.3.3 Custom Hardware and Machine Learning

Parallel to the development of algorithmic exploration techniques, hardware-
specific solutions like CAM-6 facilitated real-time CA experimentation.
Developed by Tommaso Toffoli and Norman Margolus at MIT in the mid-1980s
[111], CAM-6 was a plug-in board for IBM PCs designed to accelerate two-
dimensional CA simulations. This ad-hoc hardware enabled rapid, interactive
exploration of CA dynamics, providing a computational environment far more
efficient than the general-purpose computers of the time.

CAM-6 allowed users to manipulate CA parameters and observe emergent
behaviours in real-time, offering a hands-on approach to studying complex
systems. While this was primarily a scientific tool, its emphasis on real-time,

12 Sims also applied this evolutionary
approach to continuous dynamical systems,
using hierarchical Lisp expressions to define
differential equations. This method serves as
a notable precursor to the framework
presented in this thesis, which similarly
employs nested Lisp notation — though
applied to defining CA transition functions
rather than continuous dynamical systems.

38

Background

visual interaction opened new pathways for artistic explorations of CA, blurring
the lines between scientific modelling and creative experimentation.

More recently, explorations of CA have expanded through hybrid frameworks
that incorporate CA with machine learning techniques. A novel class of CA
known as Neural Cellular Automata (NCA) has emerged, utilising neural
networks to generate complex, previously unseen behaviours within CA
systems. For instance, Mordvintsev et al. [112] demonstrated NCA’s ability to
autonomously regenerate intricate, predefined multicellular patterns in two
dimensions. Niklasson et al. [113] applied NCA to texture synthesis, successfully
replicating the general appearance of various predefined textures. Furthermore,
Earle et al. [114] utilised NCA for procedural level generation in video games,
showcasing the generative potential of CA in commercial and creative contexts.
These advancements represent new frontiers for CA research, where the
exploration of novel CA algorithms — regardless of their original scientific
purpose — gains relevance in fields ranging from artificial life to digital art and
game design.

Summary

Exploration of CA has evolved from manual study of simple rule-based models
to the use of sophisticated computational techniques for navigating vast
algorithmic spaces. Parametric approaches demonstrate how slight variations
in numerical parameters can yield a wide range of behaviours within a fixed
algorithmic structure. In contrast, exhaustive algorithmic explorations are
possible but inherently limited to very small, well-defined rule spaces.
Evolutionary algorithms provide a powerful means of traversing larger rule
spaces, yet their outcomes remain constrained by either aesthetic preferences,
in the case of interactive systems, or predefined objectives in the case of
automated evaluation. Emerging techniques, such as NCA, show great promise
in uncovering novel CA dynamics that generate complex, previously unseen
behaviours. However, it remains to be seen whether these methods will be
applied to truly open-ended exploration.

This section has reviewed a range of strategies for exploring CA dynamics and
rule systems over time. While not exhaustive, it offers a broad perspective on the
diverse methodologies employed in CA research. The following section widens
the scope to examine the work of notable practitioners who engage in
algorithmic exploration across various disciplines, demonstrating algorithmic
explorations that extend beyond CA into the broader realms of science, art, and
design.

2.4. Notable Practitioners
The following section presents the work of a number of creative practitioners
and researchers who employ the use of CA and related algorithmic approaches
towards exploration of emergent systems. Their work often ventures beyond the
realms of scientific research to encompass artistic, educational, or theoretical
practices. Many of these individuals have developed their own custom software
tools and have made these publicly accessible, affording others the same
freedom of expression. Particular attention is given to projects that are most
relevant to this thesis, namely, those that prioritise novelty and aesthetic
experience over practical applications.

This review representes a curated body of work that is speculative, non-
representational, abstract or otherwise detached from physical reality. It is
important to note that the selection criteria is highly subjective. Featured here
are works whose approach and methodology towards the study of emergent

LABORATORY OF BABEL

39

phenomena have substantially influenced and inspired this thesis. The bulk of
literature on CA and AL may appear to lack sufficient emphasis on artistic
expression and exploration, as noted by Aguilar et. al. [115] 13. Nonetheless, the
compilation of works presented here is meant to indicate at least a partial
fulfilment of Langton’s vision for “something more like poetry” in the future of
artificial life.

Karl Sims is widely regarded as one of the early pioneers of AL, with influential
contributions spanning both artistic and scientific domains. Beyond his
previously discussed projects on CA, Sims’ diverse body of work includes
advancements in particle systems [116], genetic algorithms [117], [118], image
processing [119], fractal geometry and fluid dynamics [120], as well as
interactive installations [121], [122]. He also developed an online tool for
interactive exploration of RD, based on Pearson’s parameterisation [123], which
is particularly relevant to this thesis.

Andy Lomas’ work explores abstract generative forms, morphogenesis and
emergent processes, often featuring large scale 3D systems with millions of
interacting components. His 2005 aggregation series [124] featured
explorations of Diffusion Limited Aggregation (DLA) applied at a significantly
larger scale than previous implementations of this approach [125]. In Cellular
Forms [126] Lomas developed a novel approach for cell replication and
organisation at a local level. This methodology was further developed and
perfected in Hybrid Forms [127]. A more recent collaboration with Jon
McCormack features methods for exploration of emergent forms and processes
using evolutionary algorithms and machine learning [128], [129]. The emergent
structures typically featured in Lomas’ work seem to strike a careful balance
between biomorphic and abstract.

Tim Hutton’s work on self-replication and artificial chemistry rely heavily on
exploration of novel CA algorithms and feature a high degree of analytical
accounting of his findings [130], [131]. Hutton is also a co-author of the Golly
[132] and Ready [133] software packages, which allow exploration of Cellular
Automata and Reaction Diffusion algorithms respectively (see next section).
Hutton’s body of work is situated at a unique junction of exploration, problem
solving and tool making. His interests span multiple disciplines related to
exploring, utilising and rendering emergent behaviour within virtual
environments.

Sage Jensen explores speculative forms of Physarum Polycephalum (slime
mould) patterns in virtual environments [134]. They use a hybrid technique
based on a method developed by Jones [135]. This approach combines two
separate systems: one layer featuring a swarm of freely moving agents in
continuous space and a second layer featuring an orthogonal discrete grid of
cells. This approach is also reminiscent of the multi-agent programmable
modelling environment netLOGO by Uri Wilensky [136]. Jensen develops
custom software using C++/Openframeworks/GLSL, utilising hardware
acceleration and parallel processing where possible. The output often bears
striking visual resemblance to the behaviour and appearance of its physical
subject matter. However it can also be seen as abstract and removed from any
particular physical process. Taking this creative liberty in representation allows
Jensen to focus on the aesthetic aspects of the phenomenon while pushing
forward its creative, visual and aesthetic potential.

Casey Reas is a co-creator of the Processing programming environment which
originated at the MIT Media Lab in 1999. As such he has become a prominent
figure in the modern creative coding movement of the 2000’s. He is a published
author on both tools [137] and their potential output [138]. In his artistic

13 The Authors classify AL research into
14 themes and rate their popularity
according to publications in MIT’s
“Artificial Life” journal between 1993
and 2014. They note that “Some themes
are poorly represented, such as art,
because artists usually choose different
venues to publicise their work”

40

Background

practice, Reas explores abstract forms driven by simple dynamical, multi-agent
systems for large scale installations [139], [140] and print work [141].

Other notable explorations of CA include Ben Kraakman’s collection of CA
experiments featuring Multiple neighbourhood CA (MNCA) [142] [143] (also
refer to VulcanAutomata in the subsequent section); experiments by YouTube
user CellularAutomataUploader [144]; Simon Alexander-Adams’ 3D cellular
automata experiments and tutorial [145], [146]; Artificial Life software
experiments and shader programming workshops by Arsiliath [147];
experimental video documentations, software engines and algorithmic
expressions by Luke Wilson [148]; and generative landscapes and
mathematically evolving structures by multimedia artist and composer Jazer
Giles [149], [150].

Other notable artworks which explore emergent phenomena (not necessarily
using CA) include glitch and ASCII art by Kermi Safa [151], Kim Asendorf [152]
and Julian Hespenheide [153]. Andreas Gysin’s pattern and ASCII formations for
installation and net-art [154]; algorithmic playgrounds by Alex Miller & Alex
Nagy [155]; Clusters - a particle micro world with ambiguous entities by Jeffery
Ventrella [156]; Particle and fluid based installations by Josef Pelz [157];
generative designs of Sander Sturing [158]; LED wall installations by
@codeofconquer [159]; Andreas Hoff’s generative web experiments and tutorial
series [160]; generative jewellery by Nervous System [161];

On a broader spectrum of generative systems, notable exploratory works
include interactive software experiments by digital artist LIA, which often
feature multi agent systems and emergent patterns [162]; The minimalist and
organic Flash applets of Laurie and Jared Tarbell [163]; genealogical studies,
data driven virtual sculptures and artificial life experiments by Norman Leto in
his feature length film SAILOR [164], [165]; speculative biomorphic wearable
objects by Neri Oxman [166] and Filippo Nassetti [167] and generative
sculptures by Driessens and Verstappen [168]; compound fractal geometry
explorations and software tools by Tom Beddard [169]; and the art-science
documentary films by Ruth Jarman and Joe Gerhardt which often employ a
hybrid of data driven and generative methods [170].

2.5. Notable Tools
The following section reviews a range of software packages, frameworks, and
code libraries that can be used to implement CA, as well as other computational
models such as particles, swarms, and networks. These tools span a broad
spectrum of functionality, generality, and scope, catering to different target
audiences and use cases. While all of the tools discussed can be applied to CA
exploration, not all were explicitly designed with this purpose in mind.

Arranged from the most general-purpose frameworks to the most specialised
CA tools, each comes with a distinct trade-off between generality and
specialisation. This trade-off, while common in software development, appears
to be particularly pronounced in the context of CA research, which has come to
encompass multiple distinct models without a clear mainstream software or
unified paradigm. The following review examines how different tools navigate
this balance, highlighting their strengths and limitations. The next section
identifies the research gap, building on the insights gathered from this review.

General Purpose Frameworks

A creative coding library can be thought of as a collection of functions that
abstract many common, often cumbersome tasks related to computer graphics,

41

LABORATORY OF BABEL

such as plotting, vector and matrix operations, trigonometry, image processing,
and 3D rendering. The use of such libraries typically requires literacy in their
underlying programming languages, which may present a notable barrier for
some creative practitioners.

Processing [171], a Java-based programming environment developed at MIT in
2001, was originally designed as a teaching tool and software sketchbook. It has
since evolved into a reliable, open-source framework for interactive applications
and installations. Beyond its core components, Processing features an extensive
library of add-ons that significantly extend its functionality. More recently, it has
been adapted into the web-based JavaScript library P5.js, significantly
broadening its accessibility for web development. [172], [173]

OpenFrameworks [174] brings Processing’s design principles to C++, offering a
more robust, expandable, and production-oriented programming environment.
Similarly, Three.js [175], initiated by Ricardo Cabello, is a powerful JavaScript 3D
graphics library that provides advanced tools for web-based graphics and
interaction.

Some applications and authoring tools provide alternatives to text-based
programming, offering more intuitive interfaces for artists and designers. For
example, Cycling ’74’s Max/MSP [176] and its open-source counterpart PureData
[177], [178] have opened new avenues for algorithmic exploration in digital
music and multimedia art. Both environments utilise a node-based visual
programming paradigm, commonly referred to as data-flow programming. In this
paradigm, patch cords are used to connect algorithmic operators, creating a
visual representation of the flow of data through a system. Over time, data-flow
programming has gained widespread popularity and has been extended beyond
music into visual art, interactive installations, and real-time graphics.

TouchDesigner [179], developed by Derivative, is a node-based visual
programming environment designed for real-time interactive multimedia
content. Initially popular in live performances and projection mapping, it has
become a versatile platform for generative art, data visualisation, and
interactive installations. TouchDesigner leverages a highly modular UI, allowing
users to design complex visual systems without traditional coding. While it is not
explicitly designed for CA, its ability to manipulate real-time graphics, shader
programming, and procedural logic makes it suitable for creating custom CA
models, particularly in artistic contexts, though it may not be as user-friendly for
large-scale algorithmic exploration compared to more specialised tools.

3D Applications

Another class of software that supports algorithmic exploration is game engines,
such as Unreal Engine [180], Unity [181], and Godot [182]. While primarily
designed for game development, their support for procedural content
generation, real-time interaction, and programmable shaders makes them
applicable for broader computational art and design contexts. However, due to
their heavy footprint, game engines are not the most efficient platforms for
large-scale CA simulations. CA-specific use cases in game engines would
typically be applied to terrain or biome generation, visual effects, and texture
synthesis, rather than conducting research.

A number of 3D design and animation packages have integrated data-flow
programming interfaces to support procedural generation and algorithmic
modelling. These tools provide powerful environments for exploring complex
geometries and dynamical systems, which can be applied to visualising and
experimenting with CA, particularly in three-dimensional contexts. While their
focus on procedural workflows aligns well with CA principles, these tools are

Background

42

primarily designed for visual effects, simulation, or CAD design, rather than
dedicated CA research.

Grasshopper [183], a longstanding tool in this category, is integrated with
Rhinoceros 3D [184]. Focused on architectural design and parametric
modelling, it allows designers to create algorithmically-driven structures.
Houdini [185] is renowned for its procedural generation capabilities and is
widely used in visual effects and 3D animation. It excels in creating complex
simulations, including fractals, particle systems, and fluid dynamics. More
recently, Blender’s Geometry Nodes [186] has emerged as a popular, extensible
tool, offering a rich node-based programming interface for procedural
modelling, simulation, and parametric design. Its flexibility makes it a suitable
platform for conducting CA experiments in 3D space.

Multi Paradigm tools

Wolfram Mathematica [187] occupies a unique position between general-
purpose computational frameworks and specialised CA tools. Primarily
designed for symbolic computation and mathematical modelling, Mathematica
offers built-in capabilities for CA exploration, reflecting Stephen Wolfram’s
foundational contributions to the field. Mathematica’s strengths in numerical
analysis and data visualisation make it an effective tool for both theoretical
research and visual exploration of CA dynamics. However, its general-purpose
design introduces certain trade-offs: performance can be limited in large-scale
CA simulations, and it lacks real-time interactivity, which can constrain
exploratory workflows.

NetLogo [136] is an agent-based modelling environment originally developed by
Uri Wilensky in 1994. It features a hybrid model that combines a fixed cellular
grid with a system of moving agents. These two layers can operate
independently or interact dynamically, enabling implementation of a wide
range of computational models, including CA, swarm intelligence, and neural
networks. NetLogo comes with an extensive library of pre-built scientific models
and a user-friendly interface, making it accessible to both researchers and
educators. While its primary focus is on agent-based modelling, its flexibility
allows for meaningful CA experimentation. More recently, NetLogo has been
ported to the web [188], broadening its accessibility and facilitating online
simulation sharing.

Visions of Chaos by Jason Rampe [189] is a comprehensive application for
exploring chaotic systems and complex dynamics. It supports an unusually
broad spectrum of models, including CA, agent-based models, fractals,
diffusion-limited aggregation (DLA), fluid dynamics, particle simulations, and
even machine learning algorithms. Visions of Chaos features a graphical UI,
hardware-accelerated rendering, and a vast library of pre-configured examples
for each model type. While it excels as a visualisation tool with extensive
configurability, it is best suited for exploring existing models rather than deep
algorithmic customisation, positioning it as an educational and exploratory
platform rather than a dedicated CA research tool.

Specialised Software

There are a number of software packages explicitly designed for CA research,
offering dedicated tools for exploration, study and analysis. These packages are
often optimised for performance and come bundled with an extensive set of
relevant examples. However, their specialised nature may impose limitations on
the range of algorithms they can effectively handle, constraining them to
specific use cases, and their output to specific families of algorithms.

43

LABORATORY OF BABEL

Golly [132] is a desktop software application designed for executing and
interacting with various cellular automata algorithms. It features a graphical
interface which makes it highly suited for individuals with no programming
experience. However, it is important to note that the algorithms implemented
within Golly are optimised for performance through hashing techniques. While
this optimisation enhances computational efficiency, it also poses practical
challenges when it comes to developing or modifying algorithms within the
software. Consequently, the process of algorithm development or customisation
within Golly may prove to be impractical for users seeking extensive
modifications or novel algorithmic implementations. 14

Ready [133] follows a similar approach to Golly and applies it to continuous state
CA. The software is explicitly designed for conducting experiments with
reaction-diffusion systems in both two-dimensional and three-dimensional
spaces. Similarly to Golly, Ready is bundled with a collection of pre-existing
algorithms, providing users with a solid foundation from which to conduct
further explorations. Algorithms within Ready are written as OpenCL kernels.
This means modifying or developing algorithms necessitates advanced
programming skills and familiarity with the programmable shader pipeline.

DDLab by Andy Wuensche [190], [191] is an interactive graphics software for
researching discrete dynamical networks. Aimed towards the field of
experimental mathematics. The package can construct, visualise, manipulate
and analyse a broad class of discrete systems, including CA, random boolean
networks, discrete dynamical networks and random maps.

VulkanAutomata by Ben Kraakman [192] is designed for exploring Multiple
Neighbourhood Cellular Automata (MNCA): a class of CA that uses large custom
neighbourhoods in parallel to produce robust emergent structures [193]. The
application allows exploration of a wide range of algorithms created by the
author, as well as randomly generated algorithms of this class. MNCA appears
capable of yielding exceptionally complex and resilient high order structures,
reminiscent of algorithms such as Lenia [87] and Smoothlife [69].

Neural patterns by Max Robinson [194] is a web toy for exploring Neural Cellular
Automata (NCA). It uses convolution and activation functions for cell transitions.
It comes with a number of examples and allows simple live coding of rules. The
Life Engine [195], also created by Robinson, is an online virtual ecosystem that
allows organisms to reproduce, compete, and evolve.

Other notable specialised software packages include CA Lab [196], a legacy
software originally released for DOS in 1989 by Rudy Rucker and John Walker. It
was rewritten for Windows in 1996 by Walker and again in Javascript in 2017.
Life Viewer by Chris Rowett [197], a browser based scriptable pattern viewer for
GOL and a number of other 1D and 2D CA. Lastly, CellPyLib by Luis M. Antunes
[198], a python library for defining and analysing 1D and 2D CA.

2.6. Research Gap and Motivation
The author’s 2015 MA thesis project, Semicolony [199], consisted of an ontology
of software experiments, developed over the course of a year and assembled as
a “laboratory for the study of fictional organisms.” Strongly influenced by early
research in AL, the project employed a diverse range of algorithmic approaches,
including swarm dynamics, Superformulae, L-systems, evolutionary algorithms,
and CA. Contextualised as a computational arts project, Semicolony made
significant attempts to detach these algorithms from their real-world
counterparts, exploring their aesthetic, formal and interactive potential rather
than their traditional scientific interpretations.

14 See [147] for a comprehensive online list
of algorithms bundled with Golly

Background

44

While the project successfully showcased the creative and interactive potential
of the algorithmic systems it studied, it also faced significant limitations in
terms of algorithmic exploration, real-time interaction, and the inherent trade-
off between generality and specificity in available tools. These challenges not
only revealed constraints within the project itself but also pointed to broader
gaps, as they relate to the integration of emergent systems within creative
media.

2.6.1 Generality vs. Specificity

During the initial CA experiments featured in Semicolony — from which this
thesis ultimately derives 15 — many of the software tools reviewed in the previous
section were considered. This process revealed a notable trade-off between
generality and specificity in existing tools for CA research.

The review covers a spectrum from general-purpose frameworks to highly
specialised tools, each offering distinct advantages and presenting distinct
limitations. General-purpose frameworks like Processing, OpenFrameworks,
and Three.js offer broad flexibility, enabling users to build custom CA models
from the ground up. However, this flexibility comes with inherent limitations.
Adapting these tools for CA exploration requires significant technical effort,
including expertise in software engineering, user interface design, and graphics
programming. This represents resources that may be unavailable for
researchers focused on the theoretical, artistic, or experimental aspects of CA
rather than technical development.

Another limitation of general-purpose frameworks is the scarcity of advanced
examples and starting templates. For instance, many CA implementations in
Processing are designed primarily for teaching programming concepts rather
than facilitating CA exploration, resulting in basic and often sluggish
functionalities. 16 Furthermore, most available examples are typically limited to
the most popular models like GOL and ECA, leaving limited opportunities to
explore more complex or novel CA.

Conversely, specialised software tools like Golly and Ready provide robust,
feature-rich environments tailored for CA exploration. However, their focus on
specific use cases and algorithmic structures limits their broader applicability.
For example, Golly excels in exploring configuration patterns and includes an
extensive library of CA algorithms. Yet, it lacks support for continuous-state
systems, is poorly suited for real-time parametric or algorithmic exploration,
and does not allow for the concurrent execution of multiple algorithms.
Similarly, while Ready offers powerful tools for analysing continuous-state CA,
its reliance on OpenCL kernels for defining transition functions makes it
cumbersome to prototype new rule systems or explore algorithmic variations.

3D applications, especially those with integrated parametric design tools like
Blender’s Geometry Nodes, offer promising environments for experimenting
with CA. However, these platforms are primarily designed for CAD or 3D
animation, and adapting them for CA exploration often requires substantial
workarounds, especially in terms of algorithmic expression. Additionally, their
feature-rich environments come with a steep learning curve, posing barriers for
researchers and artists focused on algorithmic exploration rather than 3D
modelling.

Multi-paradigm tools such as NetLogo and Visions of Chaos offer a wide array of
models but are not optimised for deep algorithmic exploration or customisation.
These tools excel in providing ready-made models and flexible environments for

15 This experiment is discussed in
detail in Section 4.2

16 Exceptions, like the Conway shader
example included in the Processing IDE, are
rare.

45

LABORATORY OF BABEL

simulation, but fall short as platforms for building or modifying algorithms from
scratch.

2.6.2 Algorithmic Exploration

A central challenge in Semicolony was the difficulty of engaging in true
algorithmic exploration. The project’s focus on novel emergent phenomena
required extensive investigation of algorithmic behaviours. To facilitate this,
most experiments were implemented using OpenFrameworks, necessitating the
development of custom software from scratch. Despite these efforts, exploration
remained largely confined to adjusting numerical parameters and
reconsidering visual representations of well-established algorithms, rather than
modifying the underlying algorithms themselves or creating entirely new ones.

This limitation reflects a broader trend in the use of computational modelling
within creative media, where exploration often relies on superficial adjustments
rather than deep algorithmic modification. For instance, many creative
implementations of the Boids algorithm [96] primarily experiment with diverse
visual representations, or explore variations in numerical parameters, such as
tweaking the model’s separation, cohesion, and alignment behaviours. However,
the core structure of the algorithm typically remains untouched. 17

This reliance on parametric and aesthetic exploration often stems not from a
lack of interest in alternative boid-like dynamics, but from technical barriers.
Modifying the underlying algorithmic structure of a model requires not only
significant programming expertise but also a solid understanding of the
dynamical system it represents. Moreover, traditional programming tools and
syntax are generally structured with the assumption that the programmer has a
clear goal in mind. While highly effective for precise, goal-oriented
development, this assumption can pose challenges for open-ended algorithmic
exploration, where flexibility and iterative discovery are key.

The absence of tools designed for true algorithmic exploration — beyond
aesthetic or parametric adjustments — highlights a key challenge in both
computational arts and CA research. Existing tools often demand extensive
technical expertise or confine users to surface-level modifications, creating
barriers to both scientific inquiry and artistic experimentation. Addressing this
gap is a core objective of this thesis, which aims to develop novel frameworks
and methods for CA exploration that enable flexible, open-ended engagement
with algorithms across both domains.

2.6.3 Real-time Control

Another significant challenge encountered in Semicolony was managing the
sensitivity of real-time control in emergent systems. The project required
interactivity on multiple levels: as a means for exploration through immediate
visual feedback, as part of interactive installations, and within live performance
contexts. 18 Each of these scenarios introduced unique challenges in negotiating
between meaningful user influence and the inherent unpredictability of
emergent behaviours.

In the exploratory phase, interactivity is crucial for rapidly iterating on
algorithmic behaviours. Immediate visual feedback allows for quick assessment
of system dynamics, but this process is often hampered by tools that require
compilation or otherwise lack real-time modification capabilities.19 This
limitation forces practitioners to work within relatively narrow constraints, as it
imposes a strict separation between devising new behaviours and observing
them in action.

17 This echoes the discussion in section 2.3.2
regarding the Life-Like notation, which
makes it easy to explore a large number of
parametric variations of GOL but leaves the
core algorithm as-is.

18 A software experiment from Semicolony,
Colony Type-A, was featured in The Infinite
Bridge, a multidisciplinary live performance
in 2015. [200]

19 While some tools offer parametric
flexibility, many fail to support live coding
for algorithmic adjustments. A few
exceptions — such as Visions of Chaos,
Neural Patterns, VulkanAutomata, and
scripting environments like Golly — allow for
real-time parameter tweaking and limited

Background

46

In the context of live performance, emergent systems often require a delicate
balance of control. A performer needs enough influence to steer the system
toward desired behaviours, while maintaining the inherent unpredictability that
makes these systems compelling. Too much control can render the system rigid
and predictable, while too little can lead to chaotic behaviours that would easily
veer into undesirable or irrecoverable states.

Similarly, in interactive installations, user interaction often drives system
behaviour. However, unlike in live performances — where a trained performer
can adapt to unexpected outcomes — installations engage a general audience
unfamiliar with the system’s intricacies. In this context, it becomes even more
critical to maintain behaviours within reasonable bounds, ensuring that user
interactions lead to engaging, but manageable, outcomes. Failure to control
emergent behaviours in the context of interactive installations risks confusing,
frustrating or even harming participants.

This teeter-totter dynamic — the constant push and pull between control and
emergence — is a fundamental challenge in developing software for exploration
of emergent systems, including CA. It underscores the need for tools and
frameworks that support nuanced, real-time interaction with emergent
behaviours, allowing users to guide outcomes without overpowering the
system’s intrinsic dynamics. Addressing this challenge directly informs the
practical objectives of this work, as elaborated Chapter 3.

Summary

The limitations encountered in Semicolony, along with broader constraints in
existing CA tools, indicate a clear research gap: the lack of software designed for
open-ended, real-time CA exploration. General-purpose frameworks offer
flexibility but lack features tailored for CA synthesis and analysis, while
specialised CA software provides robust tools but remains restricted to specific
algorithms and use cases. This gap affects both scientific inquiry and creative
experimentation, underscoring the need for a framework that bridges the
adaptability of general platforms with the specialised capabilities of CA-focused
tools. Such a framework would enable researchers and artists to explore
parametric and algorithmic variations, work with both continuous and discrete
systems, and engage in real-time interaction without requiring extensive
programming expertise.

2.6.4 Artistic Objectives

Despite extraordinary increases in computing power, few systematic efforts —
beyond Wolfram’s early study of ECA — have attempted to systematically explore
combinatorial spaces of CA algorithms. Existing approaches barely scratch the
surface, offering no real reference point for their diversity or sheer scale. At the
heart of this thesis lies a fundamental drive: exploration. The act of exploring
emergent systems is not merely a methodological pursuit but an artistic vision
in itself. The vastness of combinatorial algorithmic spaces both forms and
informs the conceptual foundation of this work, while simultaneously
presenting a profound technical and creative challenge.

While the technical contributions of this thesis, which include the development
of tools and frameworks specifically designed for CA exploration, fill a critical
research gap, they also serve a deeper artistic purpose. The success of this work,
therefore, should not be measured solely by the utility of the tools or the novelty
of the algorithms discovered. It should also be evaluated in terms of its ability to
offer a new perspective on the vastness of algorithmic spaces and their endless

rule modifications. However, these tools are
either constrained in scope or require
significant setup to facilitate open-ended
algorithmic exploration, particularly when
it comes to modifying core system dynamics
without interrupting execution.

47

LABORATORY OF BABEL

potential. An aesthetic engagement with the abyss of possible emergent
phenomena is central to the artistic objectives of this work. It reflects a
deliberate attempt to confront the unknowable, evoking a sense of wonder while
coping with the cosmic terror that these infinite landscapes can induce.

This thesis aligns with a broader discourse in Arts and Computing Technology
by regarding algorithmic exploration as both a scientific and artistic act. The
tools, frameworks, and methods introduced in the following chapters are
designed not just for structured inquiry, but for wholesale discovery — setting
out to explore inherently unexplorable domains. Moreover, this work
consciously avoids grounding itself in practical applications. In doing so, it
aspires to minimise the temptation to explore with predefined goals or
utilitarian outcomes. This is a deliberate artistic choice, intended to encourage
a consideration of the larger space of potential outcomes.

Looking forward, the tools and strategies developed here are part of a long-term
artistic pursuit. The aim is to build a foundation that maximises the diversity of
artistic outcomes, both in form and process. This diversity would ideally serve as
a benchmark for the success of these tools, reflecting their capacity to facilitate
genuine, unbounded exploration of virtual phenomena. The specific aesthetics
and properties of future outcomes, naturally, remain to be seen. But the
aspiration is clear: to create a space where the author — and, hopefully, others to
come — can continuously discover novel emergent phenomena.

In this way, the artistic objectives of this thesis transcend individual discoveries.
They seek to evoke an aesthetic experience rooted in confrontation with the
unknown.

2.7. Summary
This chapter provides a comprehensive introduction to key concepts, themes
and methodologies related to computational modelling and CA within the
context of AL. It begins by establishing the role of computational models as tools
for simulating the behaviour of nonlinear systems, characterised as systems of
interacting components. The chapter discusses the concept of emergence, a key
feature of such systems, and distinguishes between simulation and realisation
within the strong-weak debate in AL. This discussion aims to reframe the role of
computational models, emphasising the potential value of open-ended
exploration of emergent virtual phenomena over traditional representational
approaches.

The chapter also provides an in-depth introduction to CA, providing historical
context, key terminology, and a review of influential algorithms and
applications. This highlights the potential of CA as abstract models for studying
nonlinear dynamical systems, advocating for their use beyond conventional
scientific modelling. Further, the work of notable practitioners and researchers
who explore emergent virtual phenomena as part of their scientific or creative
practice is examined. This review illustrates the interdisciplinary appeal of CA
and lays out the research gap, setting the stage for the novel computational
frameworks and methods proposed in this thesis.

The introduction to CA, its contextualisation within the context of AL, and the
reviews of notable explorers and tools, all serve as the conceptual and technical
foundations for the chapters to come. Chapter 3 details the development of a
new computational framework for CA exploration. Its effectiveness in
supporting a wide range of CA algorithms is demonstrated by implementing
three notable algorithms reviewed in this chapter: Conway’s Game of Life,

Background

48

Elementary CA and Gray-Scott Reaction Diffusion. These algorithms are also
used to showcase the Spatial Mapping method presented in Chapter 5.

Chapters 4, 6 and 7 present, discuss and evaluate algorithms, uncovered using
the above computational frameworks. These cahpters constitute exploratory
studies that demonstrate this project’s non-instrumentalist approach, which is
largely inspired by strong-AL. Chapter 8 contextualises and discusses these
findings in regards to the philosophical views discussed in this chapter and
evaluates them in light of the project’s research aims. Lastly, a number of
avenues for future research are suggested, encompassing both focused
continuations of this work, as well as broader studies of CA and other
computational models.

LABORATORY OF BABEL

49

3.Computational Framework
This chapter introduces Utomata, a novel computational framework, designed
for open-ended exploration of CA algorithms. Utomata aims to bridge the gap
between artistic exploration and computational modelling by enabling
implementation of a wide range of CA algorithms and allowing real-time
manipulation of their behaviour. The framework is readily accessible online as
an open-source Javascript library [201]. It employs a custom functional syntax
that encourages a non-analytical approach to CA programming, which is
suggested to enhance its expressive power and effectiveness for open-ended
exploration of novel algorithms. This approach can reduce the reliance on
prerequisite knowledge in computer and natural sciences, potentially making
CA exploration more accessible to creative practitioners.

Sections 3.1 and 3.2 discuss the rationale and design principles upon which
Utomata was developed. Section 3.3 offers a formal definition of its components
and syntax, and details a number of unique software design decisions. Section
3.4 demonstrates how Utomata can be effectively utilised to implement and
study three well-established algorithms, discussed in the previous chapter:
Conway’s Game of Life (GOL), Wolfram’s Elementary CA (ECA), and Gray-Scott
reaction-diffusion (RD).

3.1. Problem statement
The previous chapter reviews various software tools that can be used for
exploration and study of CA. These can be categorised into three primary
groups: General-purpose frameworks, multi-paradigm tools, and specialised
software. The first category encompasses creative coding libraries such as
Processing, Openframeworks, and P5js. These libraries, coded in different
programming languages (Java, C++ and JavaScript, respectively), provide
extensive code bases that abstract and consolidate common operations for
graphics, sound, and user interaction. While their versatility makes them highly
suitable for open-ended creative tasks, they typically lack optimisation and
examples specifically related to implementation or exploration of CA dynamics.
CA related examples for these frameworks typically involve implementations of
either GOL or ECA.

Moreover, these examples often prioritise the educational aspects of
programming a CA system through the use of variables, conditionals, arrays, and
loops, rather than promoting exploration or examination of CA dynamics. For
instance, Daniel Shiffman’s P5js GOL implementation [202] comprises 88 lines
of code, only 5 of which are dedicated to describing the transition function of
GOL. Additionally, as these examples typically run on the CPU rather than the
GPU, they are suitable for systems of limited size, often around 100 by 100 cells,
which is not sufficient for supporting the emergence of complex structures in
many cases.

The second category, represented by tools such as NetLogo [136] are general-
purpose computational modelling environments with a strong educational
orientation. They provide an extensive set of built-in CA models, making them
accessible to both novices and educators. However, their primary focus is on
facilitating learning and conceptual understanding of complex systems rather
than fostering open-ended, creative exploration.

50

Computational Framework

The third category encompasses software packages explicitly designed for CA,
such as Golly [132], Ready [133], Life Engine [195], and VulcanAutomata [192].
These tools, unlike general-purpose frameworks, prioritise the efficient
operation of large systems and are equipped with an extensive set of examples.
However, these are tailored to specific domains or subsets of CA algorithms and,
consequently, may not be well-suited for creative applications or exploration
beyond these domains. For example, as its name suggests, Golly places a heavy
focus on GOL and its many variants. Similarly, Ready focuses on RD-like systems
and VulcanAutomata is specifically designed for exploration of Multiple
Neighborhood Cellular Automata (MNCA), a unique class of algorithms formulated
and explored by the software’s author.

It is therefore suggested that creative practitioners and researchers aiming to
embark on open-ended explorations of CA within creative or non-analytical
contexts are faced with a dilemma. They must currently choose between a
general-purpose approach, which offers versatility, but demands substantial
preparatory work and prerequisite knowledge, or a specialised approach, which
would streamline much of the process, buy may introduce significant
constraints into creative or exploratory work.

3.2. Design Goals
This section outlines a set of design principles for a software framework
designed explicitly for open-ended exploration of CA. These principles have
been formulated alongside practical explorations and studies conducted
throughout the practice based portion of this thesis. The next chapter describes
such an exploratory study in detail and presents key findings.

General

Support a wide range of CA algorithms.
CA algorithms exhibit significant variation in state types, dimensionality,
neighbourhoods, algorithmic expressions, and morphologies. Despite these
differences, a large number of CA models share common properties. A
substantial number of models consist of a 1D or 2D grid of non-moving cells,
each associated with one or more numerical values. The proposed framework
should encompass as many of these shared properties to enable the
implementation of a wide range of CA algorithms.

Consistent

Utilise a unified form of algorithmic expression.
A robust and unified programming syntax would facilitate comparison,
combination, analysis, allow systematic archival of CA algorithms, as well as
enable large collections of algorithms to be formulated. This unification should
transcend particular programming environments, offering a language agnostic
representation of algorithmic expressions. A low-level mathematical approach
would facilitate the above, and may also enable meta-programming techniques
such as genetic programming and procedural generation of CA algorithms.

Useful

Empower exploration and examination of novel algorithms.
A framework designed for open-ended exploration should prioritise synthesis
over analysis, supporting playful, expressive, and improvisational modes of
programming. It should encourage accidental discovery and real-time
mutability by allowing fast examination of multiple variations through visual,
interactive or automated methods. A prioritisation of synthesis over analysis
also has the potential to extend the outreach of CA exploration. Increased

LABORATORY OF BABEL

51

engagement by creative practitioners may, in turn, promote a mass
diversification of CA algorithms, similar to how music programming tools such
as Max/MSP [176] helped to promote a mass diversification in sound design and
electronic music.

Cross-Disciplinary

Accommodate a wide range of use cases.
The framework should accommodate, as much as possible, users with varying
backgrounds and levels of expertise. It should constitute a foundational
framework upon which a range of custom software tools can be developed for
different contexts and use cases. Some of these tools would accommodate
improvisation and intuition based studies that are grounded in subjective
judgement and are aimed towards artists, designers, hobbyists and students.
Other tools may allow precise examination, repetition and focused studies,
allowing engagement by scientists, researchers and educators. Accommodating
a diverse community of practitioners may be crucial for the adoption and long
term success of the framework.

Accessible

Easy to access, share and extend.
The framework should be open-source, lightweight, highly extensible and allow
implementation in multiple programming languages and environments.
Additionally, emphasis should be placed on a web-based implementation, so
that algorithms and derivative software could be freely and easily embedded and
shared online. A language agnostic programming syntax is crucial for creating a
standard form of algorithmic expression that can be easily transferred between
environments.

3.3. Definitions
Utomata is a software framework for interactive explorations of CA, designed for
creative media, education and procedural content generation. It features a set of
unique variables, functions and and operators, as well as a custom programming
syntax for succinct representation of CA configuration and transition functions.
This section presents a technical clarification of how Utomata handles
fundamental components of CA, including the grid, state, configuration,
transition function, operators, and neighbourhoods. It is complemented by a
javascript/WebGL implementation which has been made freely accessible
online by the author in 2019, and has been steadily maintained by the author
since then.

Topology

In Utomata, a finite, two-dimensional, orthogonal grid forms the foundational
structure of any system. This grid consists of discrete entities, referred to as
cells. Each cell’s position is denoted by a normalised 2D coordinate, with the top-
left cell positioned at [0.0, 0.0], and the bottom-right cell at [1.0, 1.0]. 1 The
boundaries of the grid are configurable in one of two modes: toroidal or
clamped. Under toroidal bounds, the spatial domain wraps along both the
horizontal and vertical axes. For example, the cell immediately below [1.0, 1.0] is
situated at [1.0, 0.0], and the cell to its right resides at [0.0, 1.0]. Conversely, when
clamped bounds are used, any cell with an x or y coordinate that falls below 0.0
or exceeds 1.0 is considered inactive and set to a constant state of (0.0).

In addition, Utomata’s grid can be divided into any number of self-contained
horizontal and vertical tiles. In this case, each cell’s x and y coordinates are
determined relative to its normalised position within its containing tile.

1 This section uses square braces to denote
the [x, y] position of cells, and parentheses to
denote their (r, g, b, a) state.

52

Computational Framework

State

Each individual cell in the system is assigned a numerical value, referred to as
the cell’s state. In Utomata, all state values are represented by a 4D vector where
each component is normalised to be within the range of 0.0 to 1.0 (inclusive).
State vectors are mapped to RGBA colour, such that any state is defined as (r, g,
b, a). Values lower than 0.0 and higher than 1.0 are clamped to these limits. One-
dimensional states can still be used in Utomata, yet these are defined and
treated as vectors with identical components. Likewise, algorithms that feature
discrete states are defined using fractional values. For instance, a binary state
would feature values of either (0.0) or (1.0), and a 4-state CA may feature the
states: (0.25), (0.5), (0.75), and (1.0).

Transition function

At regular intervals, all cells in the grid engage in a collective transition process.
This transition function is expressed as a nested series of mathematical
operations on 4D vectors. The result of this function is a new 4D vector that
represents the updated state of each transitioning cell. During this transition, a
given cell can access various input parameters, including its current state, the
cumulative states of its neighbouring cells, and the individual state of any given
cell. Utomata strictly operates in discrete time steps, such that every cell can
only access the states of itself and other cells — as they were in the previous step.
This precludes the possibility for old and new values to be mixed.2 Additionally,
Utomata does not inherently keep track of old state values, though long term
memory can easily be emulated by using one of the vector channels. It is
important to note that while Utomata’s transition function enforces clamping on
all returned state values, the transition function itself permits the used of any
real-valued numerical constant.

Neighbourhood

A fundamental aspect of CA is the ability of a cell to “observe” the states of other
cells, typically those adjacent to it, and incorporate these values into its
transition function. Other state values are commonly referred to as a
neighbourhood. These can be categorised as follows:

Utomata is designed to accommodate all the above neighbourhood types,
making it easy to implement commonly used neighbourhoods, thereby
simplifying the creation of custom neighbourhoods, as well as allowing various
mixed use cases. Figure 5 showcases built-in neighbourhood variables in
Utomata, consisting of commonly used CA neighbourhoods. Note that there is no
inherent difference between the state of the transitioning cell and any of its
neighbours.

2 formally, the transition process can be
represented as follows:

V(t) = f(V(t-1))

Null The transition function includes no references to cell states.

Self
The transition includes only the state of the transitioning cell
itself.

Totalistic

(single)

The transition includes a single parameter whose value is the
sum of specific neighbouring cell states, typically those in
close proximity to the transitioning cell.

Totalistic

(multiple)

The transition includes more than one parameter, whose
value is the sum of specific neighbouring cell states.

Outer-

Totalistic

The state of any individual cell in the grid may be taken into
account during the transition.

Figure 5.
Neighbourhood variables in Utomata.

V V4 V5V3

V8 V9 V24 V25

U1 U3 U4U2

U6 U7 U8 U9

LABORATORY OF BABEL

53

For custom and outer-totalistic neighbourhoods, Utomata offers convenient
access to any cell in the grid through the U(x, y) operator. This operator
returns the current state of any cell, based on relative discrete coordinates to the
transitioning cell. These are referred to as deltaX and deltaY. The U function can
be seamlessly integrated into any transition function either directly, or as a
custom variable. This enables creation of outer-totalistic CA rules and the
construction of custom neighbourhoods. For example:

vec4 N_vertical = U(0,-2) + U(0,-1) + U(0,1) + U(0,2);
vec4 N_horizontal = U(-2,0) + U(-1,0) + U(1,0) + U(2,0);
vec4 N_crosshair = N_vertical + N_horizontal + V;

The ability to combine different neighbourhoods and allow for custom ones is a
key aspect of Utomata’s broad expressive range. For instance, in the example on
the right 3, a transition process involves taking the Moore Neighborhood,
dividing it by the Von Neumann neighbourhood, and then multiplying the result
by the state of the cell directly above the transitioning cell. This may seem
unconventional, however, such expressive freedom aligns with Utomata’s stated
goal of empowering exploration, improvisation and experimental thinking in CA
research.

Operators

Utomata incorporates a set of custom operators, designed for use as nested
functional expressions between vectors of different dimensions. This flexibility
is meant to enhance the framework’s expressive power, as well as to simplify and
reduce potential errors in procedural generation of algorithms. Regardless of
the dimensions of their input parameters, all Utomata operators consistently
return a 4D vector as their output.

Binary Operators

Unary Operators

The particular way in which Utomata operators can mix and match parameters
of different dimensions follows the same convention that is used to denote
colour values in other creative coding libraries such as processing, P5js and
Openframeworks. This is done using Utomata’s vec() function, which accepts
inputs of any dimension and returns a 4D vector.

3 Example of a custom neighbourhood,
which combines totalistic and outer-
totalistic neighbourhoods:

vec4 N = V8 / V4 * U(0,-1)

add(a, b) addition sub(a, b) Subtraction

mlt(a, b) Multiplication div(a, b) Division

pow(a, b) Power mod(a, b) Modulo

min(a, b) Minimum value max(a, b) Maximum value

lrg(a, b) Larger than sml(a, b) Smaller than

eql(a, b) Equals not(a, b) Not equals

dot(a, b) Dot product dst(a, b) Distance between

flr(a) Floor cil(a) Ceiling

rnd(a) Round nrm(a) Normalise

frc(a) Fractional part sgn(a) Sign

sin(a) Sine asn(a) Arc sine

cos(a) Cosine acs(a) Arc cosine

tan(a) Tangent atn(a) Arc tangent

54

Computational Framework

Following the above convention, Utomata contains multiple variations of each
operator in order to ensure that a combination of any two values never yields an
error. This presents an unconventional approach to per-component vector
operations. It stems from the framework’s philosophy, whereby intuitive
improvisation and operator interchangeability are prioritised in order to
empower open-ended exploration. Thus, all Utomata operators must first
convert their input parameters using the vec() function before performing
their own operation on a per-component basis. Consider the following
examples:

Boolean Logic

The use of conditional statements is discouraged in Utomata. Instead, boolean
logic is implemented through custom operators. Specifically, the “equal”,
“smaller” and “larger than” operators function on a per-component basis,
producing outputs of either 0.0 or 1.0 for each vector component. Furthermore,
the “addition” and “multiplication” operators can be employed to combine these
results, effectively serving as OR and AND operators, respectively.

Configuration

A CA configuration function (config) determines the initial state of all cells in the
grid before the transition function is first applied. As Many CA algorithms
feature high sensitivity to initial conditions, the configuration often has a
profound impact on the subsequent evolution of a system. The sole purpose of
this function is to establish the initial states of all cells before the primary
transition comes into play. In Utomata, the configuration is best regarded as a
null-neighbourhood transition function. Utomata can accommodate a number
of commonly used (as well as less common) configuration patterns via the
following built-in functions and variables:

Input Output

F(float x, float y) F(vec(x), vec(y))

F(float x, vec2 v) F(vec(x), vec(v))

F(float x, vec3 v) F(vec(x), vec(v))

F(vec2 v, vec4 u) F(vec(v), u)

Operator Symbol Description

eql(a, b) == return 1.0 if A equals B, otherwise 0.

lrg(a, b) > return 1.0 if A is larger than B.

sml(a, b) < return 1.0 if A is smaller than B.

add(a, b) || logical OR

mlt(a, b) && logical AND

Input Output

vec(x) vec4(x, x, x, x)

vec(x, y) vec4(x, x, x, y)

vec(r, g, b) vec4(r, g, b, 1.0)

vec(r, g, b, a) vec4(r, g, b, a)

Figure 6.
Examples of useful configuration
patterns in Utomata.

vec(sml(rand(), 0.2))

vec(sml(rand(), 0.01))sml(rand(1.,2.,3.), 0.01)

rand(1.,2.,3.)

vec(sml(rand(), 0.1))vec(sml(dst(cell.xy,vec2(0.5)),0.03))

vec(sml(rand(),0.1) * sml(

dst(cell.xy,vec2(0.5)),0.2))

vec(nois(cell.xy * 0.2))

LABORATORY OF BABEL

55

The configuration function can also utilise constant vectors or engage in
compound operations with the above functions and variables. Importantly,
these functions and variables can also be applied within the transition function
to allow interaction, position dependent dynamics and non-deterministic CA
algorithms which employ random values. Utomata.js also allows additional
custom variables (uniforms) to be set via its JavaScript API. These features not
only allow interactive configuration and transition functions, but also allow
Utomata to be used in a wider range of creative applications and interactive
software experiments beyond CA research.

Input

Utomata offers the capability of interconnecting multiple systems, allowing cells
from one system to observe the current state of cells in another. This interaction
is facilitated through input variables denoted as I. Variables I to I25 return the
local neighbourhood of a transitioning cell of the input system in the same way
that V to V25 do. Similarly, the operator I(x, y) can sample any cell in the
input system in the same way that U(x, y) does.

This ability allows implementation of exceedingly intricate systems with any
dimensionality, effectively creating a network of interconnected CA systems.
Notably, an input system can either be static or operate at a different rate
compared to its observer. Given that discrete time steps are employed, queries
consistently reflect the current state of all interconnected grids in the chain.
Furthermore, in such a network, systems are even not required to use the same
grid size since cell coordinates are either normalised or relative. This capability
potentially unlocks a range of novel possibilities which are not typically
associated with CA. These may involve simple setups where two systems
observe each other in a feedback loop to describe particle or swarm dynamics
(as shown in Figure 7), or more intricate interconnected networks of CA grids,
forming arbitrarily complex dynamics in higher dimensions.

Figure 7.
Touchdesigner implementation of a
swarm algorithm using two Utomata
systems, each using the other as input.

cell.xy
A 2D vector that holds the absolute normalised
coordinates of the transitioning cell.

crsr.xyz
A 3D vector containing the absolute normalised
coordinates of the cursor position. If the mouse is
currently pressed, z equals 1.0; otherwise 0.

grid.xy
A 2D vector representing the number of columns
and rows in the grid as integer values.

time

The current time step, expressed as an integer. This
is particularly useful for implementing
configurations or transitions that require more than
one step to construct.

rand(a, b, c, d)
A function that returns a pseudorandom number,
available in one, two, three, or four dimensions. The
parameters act as seeds per colour channel.

nois(x, y)
A function for generating two-dimensional Perlin
noise.

set(x, y)
A function that returns 1.0 if the transitioning cell is
located at the absolute coordinates x and y. This can
be multiplied by any vector to set it as the new state.

56

Computational Framework

3.4. Case Studies
The following section walks through the process of implementing three different
CA algorithms in Utomata. These are: Conway’s Game of Life (GOL), Wolfram’s
Elementary Automata (ECA) and Gray-Scott Reaction-Diffusion (RD). These
particular algorithms have been selected primarily because they are among the
most widely known and heavily researched CA algorithms to date, as discussed
in their respective reviews in Chapter 2. This aims to benefit readers already
familiar with implementations of these algorithms using a traditional
programming approach.

An additional reason these particular algorithms were selected stems from their
notable differences. GOL is a 2D binary state, totalistic CA which is often
represented and implemented as a set of conditional statements. ECA is a 1D
outer-totalistic CA, commonly represented as a rule table in which individual
algorithms are encoded as an 8-bit binary value. RD is a 2D totalistic CA whose
state values are continuous state vectors and is commonly expressed as an
algebraic formula. The following case studies thus serve to demonstrate
Utomata’s unusual expressive range, as all three algorithms are implemented
using the same programming syntax and settings.

3.4.1 Conway’s Game of Life

Conway’s Game of Life (GOL) is undeniably one of the most well-known CA
algorithm, in large part due to its highly approachable rules and metaphor. State
values in GOL are Binary, such that they can either be 0 or 1. The algorithm uses
the totalistic Moore neighbourhood. As showcased in Section 2.2.2, GOL is
commonly expressed through conditional statements that reference the binary
state of the transitioning cell and its neighbourhood. Below is a reiteration of
Conway’s original rules for GOL [53]:

The above rule system can also be expressed by the following pseudocode:

For each cell:
if N == 2 OR N == 3 : V = 1
if N < 2 OR N < 3 : V = 0
if N == 3 AND V == 0 : V = 1

As mentioned in the previous section, since the use of conditional statements is
discouraged in Utomata, boolean logic can instead be applied through the use of
nested functional statements consisting of the built-in boolean operators (which
return either 0.0 or 1.0). In this context, a functional statement refers to a nested
series of mathematical operations, carried out on numerical values and
variables. Notably, Utomata employs only unary and binary operators, which
means that algorithms can effectively be represented as binary expression

Figure 8.
Conway’s Game of Life.

Survivals
Every counter with two or three neighbouring counters
survives for the next generation.

Deaths
Each counter with four or more neighbours dies (is
removed) from overpopulation. Every counter with one
neighbour or none dies from isolation.

Births

Each empty cell adjacent to exactly three neighbours — no
more, no fewer — is a birth cell. A counter is placed on it at
the next move.

https://utomata.net/phd?edt=GOL

LABORATORY OF BABEL

57

trees. This results in overall more concise and minimalist algorithmic
expressions. Below is the complete transition function of GOL in Utomata:

update = add(eql(V9, 3), eql(V8, 3))

First, note that this implementation uses a mixed neighbourhood by referring to
two built-in neighbourhood variables: V9 and V8, which signify the Moore
neighbourhood with — and without — the state of the transitioning cell. The
eql() function acts as a boolean operator, returning the value vec(1.0) if its
two parameters are equal and otherwise vec(0.0). Moreover, as noted in the
previous section, Utomata operators cast all values to 4D vectors so the use of the
constant value 3 is actually interpreted by Utomata as vec(3.0), or more
accurately: vec(3.0,3.0,3.0,3.0). Making sense of nested functional
statements can be challenging. It is often useful to break them apart from the
bottom-up as follows:

eql(V9, 3) // Expression A

eql(V8, 3) // Expression B

add(A, B) // OR operation

Expression A tests whether or not the inclusive Moore neighbourhood is equal to
3.0. This covers two scenarios: a “live” cell (with a state of 1.0) with two live
neighbours, and a “dead” cell (with a state of 0.0) with three. According to GOL’s
rules, if the equality holds true, the transitioning cell should be alive in the next
time step. Expression B tests whether or not the non-inclusive Moore
neighbourhood is equal to 3.0. This also covers two scenarios: a live cell with
three live neighbours and a dead cell with three live neighbours. Again, both
cases should result in a live cell in the next step. Note that the second scenario
for expression B is actually already covered by expression A. Overall, these three
scenarios cover exactly all cases that result in a live cell in the next step.

Since the eql() operator can only return either vec(0.0) or vec(1.0), the
sum of both expressions can have three possible outcomes: vec(0.0) if both
expressions are false, vec(1.0) if only one is true, and vec(2.0) if both are
true. Since all state values in Utomata are clamped to 1.0, the two latter scenarios
simply return vec(1.0) and otherwise vec(0.0), corresponding exactly to the
cell’s desired state in the next time step.

Configuration

In order for any patterns to arise in GOL in the first place, an initial configuration
must be applied, which consists of some mixture of ‘living’ and ‘dead’ cells.
Otherwise the system will consist of only dead cells. The simplest way to create
a non-uniform configuration is to use Utomata’s built-in rand() function,
which returns a random number between zero and one for each cell in the
system.

rand() // return a pseudorandom value between 0 and 1.0

However, since GOL is a binary state CA, it is up to the configuration function to
round this value up or down.

rnd(rand()) // a random value rounded to either 0.0 or 1.0

While the above configuration is indeed valid, it generates an even distribution
of roughly half living and half dead cells across the grid. This ratio can be

Figure 9.
Utomata GOL algorithm visualised as a
binary expression tree.

58

Computational Framework

adjusted to offer more control over the distribution of living vs. dead cells by
comparing the value of rand() to some static value. Because boolean operators
in Utomata, such as lrg() and eql() return vec(1.0) for true and vec(0.0)
for false, the even distribution of rand() will result in values larger than 0.9 in
approximately 10% of cells. This particular distribution appears to provide an
optimal configuration for persistent structures to emerge in GOL. Of course, this
constant value can be further adjusted as need be.

lrg(rand(), 0.9) // return 1.0 if value is larger than 0.9,
 // otherwise return 0.0

3.4.2 Elementary Cellular Automata

Elementary Cellular Automata (ECA) are a class of 1D, outer totalistic, binary
state CA, originally devised by Stephan Wolfram [48]. ECA are most commonly
represented as rule tables where each of the 256 possible algorithms is
identified by an 8 digit binary number which corresponds to the possible
configurations of a cell’s neighbourhood. These binary numbers determine the
cell’s state in the next time step, based on its current state and the states of its
two adjacent cells. Each cell has access to exactly three values: the state of the
cell on its left, itself and the one on its right. Thus, there are exactly 8 ways to
position these 3 values, which correspond to counting from 0 to 7 in binary:

000 | 001 | 010 | 011 | 100 | 101 | 110 | 111

For each of these configurations, a single binary digit can be assigned to signify
the new state of the transitioning cell in the next time step. Overall this results in
a binary number with 8 digits that capture how a given cell may react to any
possible (outer totalistic) neighbourhood configuration. Since there are exactly
256 possible values for an 8 digit binary number, this is also the number of
unique ECA algorithms.

Alongside this numbering system Wolfram also provided a set of alternative
notations of ECA [73], which include all 256 rules expressed as formulae. This
notation happens to be highly suitable for implementing ECA as algebraic
statements in Utomata as they feature only addition and multiplication of cell
states. As noted, these expressions are outer totalistic, so each cell can access
three neighbouring states: it own and the states of its two adjacent neighbours.
In addition, these expressions make use of the inverse of each state. Which can
be expressed as (1.0 - V).

While it is possible to implement 1D CA in Utomata simply by creating a grid
whose height is equal to 1, it is highly preferable to create a 2D grid that iterates
one row at a time. This can be done by having each cell address the three
adjacent cells above it instead of itself and its left and right neighbours. For this
exact purpose, Utomata features the built-in variables: U1, U2 and U3 and NU1,
NU2, and NU3. These provide convenient access points to expressing 1D outer-
totalistic CA. Consider the following the following Utomata implementation of
Rule 30 ECA: 4

update = set(0.5, 0.0) +

vec((U1 * NU2 * NU3) + (NU1 * U2) + (NU1 * U3))

The above notation, though longer than an 8-digit binary number, provides two
notable benefits over the more widely accepted use of rule tables. First, it is not
an encoding but an explicit implementation that can be easily adjusted,
explored or combined with other algorithms to produce different outputs

Figure 10.
Elementary Cellular Automata - Rule 30.

4 This implementation uses infix rather
than prefix notation in order to simplify and
shorten the expression. However,
implementing ternary operators such as
those used here are nonetheless possible via
a composition of two binary operators as
follows: add(a, add(b, c))

https://utomata.net/phd?edt=ECA

LABORATORY OF BABEL

59

without altering the underlying framework. Second, this form of expression
adheres to the same structure and rules as other CA algorithms in Utomata, thus
enabling potential comparisons between algorithms that are commonly seen as
too dissimilar to evaluate side by side.

3.4.3 Reaction Diffusion

As discussed in Chapter 2, reaction-diffusion (RD) is a highly influential
algorithm, largely inspired by Alan Turing’s seminal work on morphogenesis
[23]. RD is sometimes regarded as a separate computational model from CA due
to its use of a real-valued 2D state. Implementations of RD often require
specialised software [133], as many CA frameworks only handle discrete states.
However, Utomata’s ability to support up to 4D real-valued vector states makes it
well-suited for implementing RD and RD-like algorithms. Below is a complete RD
implementation in Utomata:

 vec4 N = sub(V4, mlt(V, 4.0)); // weighted sum
 float NR = mlt(0.22, N.r); // weighted diffusion for R
 float NG = mlt(0.05, N.g); // weighted diffusion for G

 float RGG = V.r*V.g*V.g;

 float K = 0.062;
 float F = 0.036;

 update = add(
 frc(V),
 vec(
 add(sub(NR, RGG), mlt(F, sub(1.0, V.r))),
 sub(add(NG, RGG), mlt(V.g, add(F, K))),
 0.0,
 0.0
)
);

 update += set(crsr.xy) * crsr.z; // Cursor interaction

This implementation builds upon Karl Sims’ online RD tutorial5 [57] and
incorporates advanced strategies in Utomata, such as custom neighbourhoods,
kernel approximations, swizzling, vector operations, and real-time interaction.
The algorithm simulates interactions between two chemical substances,
represented by the red and green channels, denoted here as R and G. The
simulation evolves by iteratively updating each cell in the grid with a compound
vector that expresses the local reaction and diffusion dynamics.

Laplacian approximation

Custom variables N, NR, and NG calculate the Laplacian approximation, which
measures how the value of a cell differs from the average value of its neighbours.
This operator, commonly used in RD systems, models the diffusion of
substances from areas of high to low concentration. Here, the Laplacian is
approximated using a convolution kernel 6 with weighted contributions from
adjacent neighbours (0.22) and diagonal neighbours (0.05).

Figure 11.
Grey-Scott Reaction-Diffusion.

5 The tutorial presumably relates
specifically to Grey-Scott Reaction-
Diffusion, though this is not explicitly
stated.

6 This setup reflects a Laplacian kernel
optimized for the Gray-Scott reaction-
diffusion model:
 0.05 0.22 0.05

Kernel = 0.22 -4.0 0.22

 0.05 0.22 0.05

https://utomata.net/phd?edt=RD

60

These variables are computed as follows:

› N calculates the weighted sum of the Von Neumann neighbourhood
by subtracting the weighted value of the current cell from its
neighbours, effectively applying the kernel’s central weight (-4).

› NR represents the weighted diffusion contribution for substance R
from the neighbourhood.

› NG represents the weighted diffusion contribution for substance G
from the diagonal neighbours.

› RGG drives the interaction between the two substances, where R is
consumed to produce G . The quadratic dependence on G ensures
non-linear behaviour, forming the foundation for emergent patterns.

Reaction and Diffusion

The term RGG = R * G^2 drives the reaction where R is consumed to produce
G. The quadratic dependence on G introduces nonlinear behaviour, enabling
emergent patterns. The parameters F (feed rate) and K (kill rate) regulate these
dynamics:

› F controls the replenishment of R . Higher values increase R
availability, potentially overwhelming G , while lower values can
starve the reaction.

› K controls the decay of G . Higher values lead to faster decay and less
persistent patterns, while lower values support more stable formations.

Update Rule

The term add(frc(V), vec(R’, G’, 0, 0)), computes the transition from
the current state of the cell to its new state.

› frc(V) caps state values between 0.0 and 1.0 , ensuring stability.

› vec(R’, G’, 0, 0) embeds the equations for R and G in the red
and green channels. The blue and alpha channels remain unused and
are set to 0.

The formulas for R’ and G’ operate as follows:

› R’ = (NR - RGG) + (F* (1 - R)) : R decreases through
reaction with G^2 and increases via diffusion and feeding.

› G’= (NG + RGG) - (G * (F + K)) : G increases through
reactions and diffusion but decreases due to decay, which combines
the feed and kill rates.

Real-time Interaction

Real-time user interaction is enabled through a cursor-based perturbation
mechanism added to the update rule. The function set(crsr.xy) returns
vec(1.0) for the cell at the cursor’s current position. This value is multiplied by
crsr.z, which is 1.0 only when the mouse button is pressed and 0.0 otherwise.
This allows users to dynamically inject substance concentrations into the
system in order to trigger new patterns or disturb existing ones.

Figure 12.
Grey-Scott Reaction-Diffusion as binary
expression tree. Note that this expression
uses explicit values, effectively
unraveling the custom variables.

Computational Framework

61

LABORATORY OF BABEL

3.5. Summary
This chapter introduces Utomata: a novel computational framework for open-
ended exploration and study of CA algorithms. Utomata aims to fill the
methodological gap between general purpose graphics programming
frameworks, which do not offer specific support for CA, and specialised
frameworks, which may introduce significant constraints on open-ended
exploration or creative applications.

Through its custom operators, variables and functional syntax, Utomata breaks
away from traditional approaches to CA programming and allows
implementation of an exceptionally wide range of CA. It aims to make CA
research more accessible to creative practitioners who may not possess
extensive backgrounds in computer or natural sciences. Practical use of
Utomata is demonstrated through the implementation of three well-established
CA algorithms. These case studies showcase Utomata’s versatility and its ability
to adapt traditional and distinctly different CA models into a single unified
framework.

The next chapter demonstrates how Utomata can be used to conduct an
exploratory study of a new family of CA algorithms, called Type-C. The chapter
employs direct (low-level) manipulation of algorithmic expressions in Utomata,
as well as introduces a number of tools and methods for interacting with CA
algorithms. These practices facilitate the discovery of a number of novel
algorithms and behaviours, which are presented and discussed. Chapter 5
introduces a high-level exploration method, based on Utomata’s functional
syntax. Along with its accompanying software implementation, this method
allows real-time exploration and visual examination of large combinatorial
spaces of CA algorithms.

Computational Framework

62

LABORATORY OF BABEL

63

4.Low-level Exploration

This chapter details an exploratory study of novel CA algorithms using Utomata.
Its findings, which include a number of novel algorithms and qualitative
accounts of their behaviour, demonstrate the framework’s effectiveness in open-
ended exploration of CA. From a computational arts perspective, these studies
also represent novel emergent structures which stand on their own merit as
contributions offered by this thesis.

Exploration of CA can be understood through two interconnected properties:
genotypic and phenotypic. The former pertains to a algorithm’s structure — its
“genomic” design — while the latter refers to the range of observable behaviours
exhibited by its instances. These terms are further clarified in the following
sections, and expanded upon in Chapters 5 and 6.

Low-level exploration of CA algorithms, in this context, refers to direct
manipulation of their genotypic properties — their code — in order to induce
changes to their phenotypic properties — their behaviour — in real time. By
manually changing parameters, operators, or the structure of an algorithm, one
can essentially navigate the high-dimensional space of its variations to reveal its
immediate neighbours, or “sibling” algorithms. This approach is especially
useful for uncovering close variants of a given algorithm, combining two
different algorithms, or for isolating behaviours of interest through a process of
visual examination, combined with vigorous trial and error.

4.1. Rationale
The primary goal of Utomata is to contribute to the diversification of known
emergent structures in creative media, artistic experimentation and procedural
content generation. As such, it is designed to favour synthesis over analysis and
to emphasise a process of improvisation over goal directed research. In its pure
functional form, Utomata’s syntax does not easily lend itself to analytical
comprehension, especially in longer algorithmic expressions. This chapter
contends that this is not merely an acceptable trade-off, but rather a useful tool
towards achieving the above goal.

Figure 13.
Novel CA algorithms in Utomata Lib,
discovered through low-level
exploration.

https://utomata.net/lib

64

Low-level Exploration

The intricate mechanics of nonlinear dynamical systems, including CA, are
notoriously hard to fully comprehend, even when using tools specifically
designed towards analysis. A notable example is a neural network, where the
weights of the underlying graph are not explicitly programmed, nor are their
nuanced dynamics ever fully captured by the programmer. Moreover, In creative
media it is often the case that once a behaviour is implemented, a tedious
process of parameter tweaking starts. 1 This process is not always driven by
analytical reasoning but rather by intuition, aesthetic preference and, most
importantly, trial and error.

While the notion of relinquishing any or all analytical comprehension of an
algorithm, as proposed in this chapter, can be criticised for taking this approach
too far, this comes with a noteworthy benefit. A non-analytical approach can
empower programmers to apply their intuition onto more than just an
algorithm’s numerical parameters — but also to its logical operators and even its
structure. By relinquishing efforts to understand every single element of the
code, one is rewarded with creative freedom that would otherwise be difficult to
obtain using a traditional programming approach. In this sense, an analytical
understanding of CA transition functions may not only be unnecessary for some
modes of exploration, but may sometimes hinder the creative process by
strengthening the programmer’s bias towards behaviours they are already
familiar with or can more easily comprehend.

Of course, it is still possible to make sense of any Utomata algorithm. The GOL
implementation described in the previous chapter is not only easy to
understand but is arguably clearer and more concise, compared to traditional
implementations. Finally, a non-analytical programming paradigm can
effectively make exploration of emergent structures more accessible to creative
practitioners who do not possess a background in computer or natural sciences.
By shifting the focus away from established knowledge to acquired intuition,
exploration of novel CA algorithms and dynamics could potentially consist of
extremely simple workflows, which rely on minimal prerequisite knowledge.
Consider the following Scheme:

1. Run a valid Utomata algorithm

2. Modify any aspect of it:

› Parameter

› Operator

› Algorithmic structure

3. Visually examine the changes caused to the system

4. Undo or repeat

The underlying idea behind this scheme is that any change to an algorithm is
akin to invoking a different one. A useful metaphor for this process is to consider
these two algorithms as genetic siblings, where a functional algorithmic
expression is thought of as the genotype and its resulting output is the
phenotype. Minor genetic changes, such as tweaking a numerical constant, a
neighbourhood type, or a single operator typically result in slightly varied
phenotypic behaviour. Such variations often perserve a surpiring amount of
phenotypic similarity. However, as more genotypic variations are compounded,
phenotypic differences will typically stagger. In that sense, making pronounced
changes to the structure of the algorithm can be thought of as invoking
increasingly distant cousins, which feature widely different phenotypic
characteristics.

1 During a 2016 talk at Goldsmiths College,
Memo Akten, a prominent creative
technologist, referred to himself as a
“professional number tweaker”, stating that
roughly 80% of his time developing software
is spent on finding the “right” parameters
for an algorithm.

LABORATORY OF BABEL

65

4.2. A study of Type-C
One of most pivotal precursors for this research project is a software experiment
conducted as part of the author’s MA thesis project in Computational Arts [199].
The experiment featured a hardware accelerated implementation of the Abelian
Sandpile algorithm [11] — a simulation in which virtual “grains of sand” are
continuously dropped upon a lattice to form “piles” . Once a stack of four grains
is formed in any cell, it would “collapse” and disperse among the cell’s four
adjacent neighbours. In turn, this may result in further collapses and ultimately
form large scale avalanches and intricate structures.

This experiment had originally set out to implement the Sandpile algorithm as a
continuous state CA, whereby instead of consisting of discrete entities (sand
grains), continuous quantities would be added to the system in real time using
the cursor. While this was initially made as a technical decision, allowing the use
of openGL fragment shaders, the experiment ultimately introduced what would
later become core attributes of Utomata: the use of normalised state vectors to
describe CA dynamics, the use of real-time interaction as a means for CA
exploration, and an explicit departure from physical metaphor.

Adapting the sandpile algorithm to use a continuous normalised state can be
done by dividing all states values by four. According to the original algorithm,
which consisted of a discrete four state CA, a grain would be a value of 1 and thus
each cell’s state may be either 0, 1, 2 or 3. 2 In a continuous normalised state
implementation, grains would have a value of 0.25 and thus cells could have a
value of 0.0, 0.25, 0.5 and 0.75. However, as this new algorithm now featured
continuous state values, it immediately became apparent that these quantities
can be arbitrarily changed to be any numerical value since they no longer
represent discrete grains of sand. Similarly, the quantity which disperses
between a cell’s neighbours upon its collapse is also arbitrary. In fact, as physical
modelling was not the goal, this quantity can even be different from the current
value of the collapsing cell. In other words, the notion of conservation of matter,
which is hard coded into the original Sandpile algorithm, could now be
relinquished. The resulting new algorithm was named Type-C (shown in Figure
14). It featured the following two open variables, which could now be tweaked in
real-time to induce a range of emergent behaviours and structures.

› a: The quantity inserted to the system by the mouse cursor.

› b: The quantity dispersed between a cell’s four adjacent neighbours
upon its collapse.

This new variation was implemented as a fragment shader in the processing
programming environment and was able to produce surprisingly complex
structural patterns which appeared to emerge from extremely minimal input.
This algorithm was later converted to use a totalistic neighbourhood, as well as
significantly reduced to a single functional algebraic expression:

update = add(frc(V), mlt(stp(0.1, mod(V4, 0.6)), 0.6))

In a later experiment, a variation of this algorithm had yielded distinct
meandering patterns that, under certain conditions, were able to produce
second-order structures — distinct organisations of meandering patterns
towards a self-similar, larger scale meandering pattern — shown in Figure 15.
This variation was derived through a process of trial and error, whereby various
changes to the algorithm were induced in an effort to expose novel features. Due
to the experimental and intuitive nature of this process, by that point any
analytical understanding by the author of the inner workings of the algorithm
had significantly eroded.

Figure 15.
Second-order meandering patterns in
Type-C.

Figure 14.
Original Type-C algorithm.

2 Once a value of 4 is reached, the cell
“collapses” and its state returns to 0. Each
adjacent neighbour is supplemented by 1,
and so on.

https://utomata.net/phd?edt=TC

66

Subsequent attempts at simplifying this particular version in order to regain
some level of analytical insight over its underlying process had rendered it
sterile. Thus the only remaining course of action was to reduce it to a more
concise form and attempt to isolate the self-similar patterns via a somewhat
tedious process of elimination. This yielded an entirely new algorithm, albeit
one in which the meandering patterns were indeed isolated.

Digger-Dagger

update = mlt(add(frc(V.r), mlt(sgn(stp(0.1, mod(V4.r,
vec(0.875)))), sub(add(vec(0.89), mlt(sub(V4.r, V4.g),
vec(9.0, 8.0, 10.0))), frc(V.r)))), vec(1.0, 0.99, 1.0))

This new algorithm features a highly resilient worm-like pattern that, once
invoked using the cursor, progressively consumes most available black regions
of the grid. This algorithm is quite robust to parameter changes, with minor
tweaks giving rise to “sibling” behaviours that present similar phenotypic traits.
It is important to emphasise that the above expression was not obtained by
gaining any analytical understanding of the algorithm’s behaviour, but through
a process of reducing its logical statements to a single functional algebraic
expression, combined with careful real-time tweaking of its numerical
parameters. This approach takes advantage of the real-time capabilities of
working with openGL fragment shaders, which require no compilation. Any
change to the algorithm is immediately apparent and can thus be quickly built
upon or undone. Likewise, any new algorithm can, once again, be used as a
starting point for the discovery of even more algorithms.

4.3. Field Parameterisation
The non-analytical programming method detailed in the previous section
describes a low-level approach to CA exploration, coupled with a computational
framework that allows real-time programming and interactivity. While this
methodology can indeed yield novel and unique findings, it is admittedly
tedious. Most notably, while this low-level approach to exploration makes it easy
to meander around the space of variations of any given algorithm, it can only
account for just one algorithm at a time. To address this limitation, a higher-
level tool can be applied to facilitate the concurrent observation of numerous
parametric variations of a given CA algorithm. This tool can empower
examination of a spectrum of algorithmic behaviours, continuous or discrete,
allowing one to explore specific areas of interest. This can be done by integrating
the x and y coordinates of each cell in the grid into the algorithmic expression,
thereby allowing every cell to potentially execute a slightly distinct transition.

This concept is referred to as field parameterisation. It was initially applied in
the context of CA by Pearson [10], [82] to map a varying field of Reaction-
Diffusion systems, wherein the constants k and f of the algorithm were varied
along the x and y axes respectively. This method yields a two dimensional field
of diverse phenotypic expressions of an algorithm, as each cell is computed
using a unique pair of constants. This method has been incorporated into
Utomata and generalised so that it can be applied to any algorithm. By exposing
the cell’s position as a normalised 2D vector: cell.xy, an algorithm can be
modulated to allow concurrent observation a wide range of behavioural
variations. This not only makes it easier to locate behaviours of interest, but also
allows for a more detailed investigation of specific areas by making it possible to
“zoom in” to regions of particular interest. 3 This can be done by scaling the
cell.x or cell.y variables, thus spanning larger or smaller regions of the
parameter space. For example, the expression (0.4 + cell.x * 0.2) yields

Figure 18.
Continuous field Parameterisation of
Digger-Dagger. The highlighted region
marks the selected parameters of 0.875
and 0.89.

0.8

0.85

0.9

0.95

1.0

0.8 0.85 0.9 0.95 1.0

Figure 17.
Digger-Dagger.

Figure 16.
Digger-Dagger algorithm visualised as a
binary expression tree.

3 Additionally, the cursor position may be
used, as well as any number of external
inputs such as range sliders or sensors,
potentially allowing higher level software
development for more targeted explorations
or applications.

Low-level Exploration

https://utomata.net/phd?edt=DD

67

LABORATORY OF BABEL

Figure 19.
Tiled field parameterisation of variations to Digger-Dagger.
Utomata supports a built-in tiling system that allows any number of rows and columns.
Each tile is isolated to have its own toroidal bounds. A tiled field parameterisation
addresses the problem of continuous field parameterisations, whereby the transition
function differs between each and every cell, potentially resulting in inconsistent
behaviour. Utomata’a built-in tile variable, which returns a 2D vector signifying the tile
of the transitioning cell, can be used to map various parameters on a discrete field,
allowing each tile to run a consistent and unique algorithm.

68

Low-level Exploration

a 5X magnification towards the centre of a field. This generalisation of the field
parameterisation technique can be leveraged to widen the scope of exploration
of the multidimensional parameter space of any given algorithm in Utomata. By
varying parameters across the grid. This higher-level view can provide a better
understanding of the interplay between different parameters and their
collective impact on the dynamics of an algorithm. In the next chapter, this
approach is extended significantly, forming vast fields that span not only
parameters, but also operators and structural variations of algorithms.

4.4. Case Studies
This section presents a curated collection of novel algorithms, obtained through
a process of low-level exploration and field parameterisation in Utomata. The
genotypic differences between this particular set of algorithms are quite
minimal, yet they present a surprising range of phenotypic patterns, while
retaining a noticeable familial resemblance. As with the original Type-C
algorithm, from which they all essentially stem from, all variants use a black —
vec(0.0) — configuration and are typically invoked by setting small local
regions of cells to vec(1.0) using a a configuration pattern or the cursor.

Red Nose Hexagliders

update = mlt(add(frc(V), mlt(sgn(stp(vec(0.1), mod(V4.rrrr,
vec(0.352,0.94,1.0)))), sub(add(vec(0.72,0.129,0.0),
mlt((sub(V4.rrgg, V4.ggrg)), vec(7.,2.0,1.0))), frc(V.
rrbr)))), vec(1.0,0.988,1.0))

Red Nose Hexagliders (RNX) is a continuous state, full RGB, Type-C variant
which features the emergence of an unusually diverse range of stable, higher-
order moving formations. These appear to be various compounds of a basal,
rhombus shaped, glider-like pattern, spearheaded by a single red cell. Basal
gliders span four by four cells diagonally, and traverse the grid along the x or y
axes at a constant rate of one cell per time step. This traversal is a result of a two-
step oscillation, visualised in Figure 21.

While relatively simple on their own, basal gliders appear to be resilient to
overlapping with other gliders moving in the same direction. This resilience
allows higher-order structures of a surprising variety to emerge and persist, as
different compounds of gliders travel alongside each other. Figure 25 showcases
a taxonomic study of observable formations in RNX.

Basal gliders can be triggered relatively easily by setting small, uneven groups of
cells to random or white values. This typically results in the formation of stable
globular structures (shown in Figure 25 [49, 50, 57]) which, if triggered again,
can spawn one or more basal gliders. Once a glider is formed, it will retain
consistent form and constant movement, unless interrupted by other patterns.
In most cases, collisions between patterns traveling in opposite or
perpendicular directions result in a termination of both. This often leaves a
residual pattern, which may be static or feature simple oscillation. However, in
some cases collisions may themselves spawn new gliders.

Many types of gliders and higher-order moving formations in RNX leave a
unique residual linear pattern behind them as they traverse the grid. Residual
patterns from basal and lower-order formations typically consist of simple,
static and stable arrangements of cells (Figure 25 [62 - 67]), while higher-order
formations may leave behind more compound oscillating patterns (Figure 25 [62
- 67]). The residual patterns of higher-order formations may themselves feature
more complex activity, which are sometimes potent enough to continuously

Figure 21.
Basal Glider pattern in RNX. The two-
step oscillating pattern between [1] and
[2] results in traversal of the grid along
either of its axes at a constant rate of one
cell per time step.

[1]

[2]

Figure 20.
Tiled field parameterisation of Type-C
variants with a centralised configuration
pattern, which yields radially symmetric
and unique pattern in each tile.

https://utomata.net/phd?edt=RNX

LABORATORY OF BABEL

69

spawn new gliders and glider formations (Figure 25 [39 - 48]) which are typically
perpendicular to the direction of their spawning formation. Such active residual
formations often result in exponential growth that rapidly fills up most dark
regions of the grid within just a few minutes. However, Since the majority of
residual patterns are static, the result of this exponential growth is an
unavoidable end of activity due to a lack of space. This dynamic, where black
regions constitute a depletable resource, is shared by a number of Type-C
variants, including Digger-Dagger.

The algorithmic expression of RNX (visualised in Figure 24) includes references
to the transitioning cell (V) and the Von Neumann neighbourhood (V4). It also
features five numerical constant vectors. The expression bares close genotypic
resemblance to Digger-Dagger, as shown in Figure 22. This resemblance is quite
surprising considering the two’s highly distinct phenotypic dissimilarities.

Overall, RNX presents a notable and clear example of spontaneous emergence of
higher-order structures in a continuous state CA. Figure 25 [1 - 48] showcases a
collection of diverse formations of increasingly higher-order, observed and
captured in RNX throughout this study. It is important to emphasise that this
merely constitutes a preliminary study of this algorithm and the range of
phenomena it can support. It is difficult to ascertain at this time exactly what
other kinds of formations are possible in RNX. This is largely due to the resilient
nature of glider patterns and their sensitivity to initial conditions.

Vital Signs (2021)

Following the discovery of RNX in 2020, a short video essay titled: “Vital Signs -
Red Nose Hexagliders”, was produced and released online [203], as part of the
practice based portion of this thesis. The film consists entirely of screen
recordings, captured during initial explorations of the algorithm. Narrated and
scored by the author, the film adopts the stylistic and narrative framework of the
nature documentary genre. This is a deliberate creative and didactic choice,
aimed towards broadening the appeal of CA exploration towards a general
audience. By taking on familiar cues from this popular genre, the film evokes a
sense that the type of phenomena it features constitutes instances of real living
creatures, yet without having to explicitly state this as fact. It presents a carefully
crafted narrative around captured materials in order to make it accessible to its
audience. This, too, in accordance with the nature documentary genre.

Field Parameterisations of RNX

There are, in fact, numerous algorithmic variations of RNX. Minor changes to
many of the numerical parameters in the algorithm appear to have little to no
effect. However, a deeper investigation of parametric siblings reveals a wide
range of highly potent dynamics. Figure 27 features four different examples of
field parameterisations of a succinct version of RNX. In each one, the parameter
configuration of the original algorithm is highlighted and the parameterisation
is listed below. This emphasises a key concept regarding the methodology
presented in this chapter, and in this thesis overall:

Every conceivable CA algorithm can be seen as representing a given dynamical
system that is embedded within a vast space of other — similar — systems. The
ability to assemble and traverse this high dimensional space in order to explore
such systems can benefit from the development of tools and methods that allow
observation of such systems within the continuum in which they can be made to
exist.

The fields plotted in figure 27 are akin to “zooming out” from RNX to reveal some
of its parametric siblings. In each instance, exactly two parameters are plotted

Figure 23.
Screenshot from: VITAL SIGNS - Red Nose

Hexagliders.

Figure 22.
Difference comparison between Digger-
Dagger (top) and RNX (bottom).

Figure 24.
Red Nose Hexagliders algorithm
visualised as Binary expression tree.

https://youtu.be/Nk3TiIMtFSs?si=w7tkUCFsDmxYUTAY
https://youtu.be/Nk3TiIMtFSs?si=w7tkUCFsDmxYUTAY

70

Low-level Exploration

[1 - 2] Basal glider states (2X magnification)
[3 - 5] Basal glider with appendage
[6 - 8] Wide nose variants
[9 - 12] Basal twin formations
[13 - 16] Asymmetric basal twin formations

[17 - 24] 2nd order symmetric twin formations
[25 - 32] 2nd order asymmetric twin formations
[33 - 37] Quadruplets with passive residual patterns
[38 - 40] Compound gliders with active residuals
[41 - 48] High-order formations with active residuals

[49 - 57] Sterile radial activation pattens
[58 - 61] Fertile radial activation patterns
[62 - 67] 1st order residual pattern formations
[68 - 81] Higher order residual pattern formations

Figure 25.
Taxonomy of observed structural formations in Red Nose Hexagliders.

LABORATORY OF BABEL

71

along the x and y axes to reveal a unique set of surrounding behaviours. Due to
the high dimensional nature of these expressions, there are numerous fields
which can be plotted from a single algorithm, each plotting a range of
combinations of two of its parameters at a time. While these examples constitute
a continuous parameterisation, they nonetheless reveal distinct regions of
coherent behaviour. This aligns with the previous observation about RNX’s
apparent robustness to minor parametric variations. This property is
surprisingly common among other Type-C variants and continuous state CA
overall. Phenotypic changes along a parametric field may often result from a
“collapse” of a single floating point parameter towards a different value in the
overall calculation of the expression. Less common though, is the fact that some
algorithms, including RNX, appear to span multiple and separate regions of a
field parameterisation. This may indicate that some types of phenomena, such
as RNX basal gliders, are more resilient to parameter changes than others.

From a technical standpoint, field parameterisations in Utomata merely involve
replacing one or more numerical parameters with an expression that contains
cell.x or cell.y (or both). While these values can be scaled up or down to
zoom in or out of a given behaviour, this approach can only be considered
comprehensive for up to two parameters at a time. This is not the case for
algorithmic expressions such as RNX, which feature at least 12 numerical
parameters, as they represent a staggering number of different possible
parametric combinations. Obtaining a field parameterisation that yields
meaningful variants is thus more of an acquired skill. It involves trial and error,
intuition and applying aesthetic judgement towards subject matter. This
practice is inherently subjective and difficult to reproduce, for which it is firmly
situated by this thesis within the domain of computational arts, rather than
scientific research. Nonetheless, it is important to reiterate that a lack of precise
analytical understanding of algorithmic behaviour does not appear to be a
barrier for this form of exploration to yield meaningful novel findings.

TC8 (Wildfur)

update = mlt(add(frc(V), mlt(stp(vec(0.1,0.1,1.0), mod(V4.
rrrr, vec(0.352, 0.94,0.0))), sub(add(vec(0.72, 0.129, 1.),
mlt(sub(V4.rrgg, V4.ggrg),vec(10.0,0.1,1.0))), frc(V.
rrbr)))), vec(1.0,0.988,1.0))

This variant is a noteworthy sibling of RNX. It differs from it by only two
numerical parameters while featuring a fundamentally different behaviour.
Though both share a number of properties such as colour and overall pattern
velocity, this algorithm features a much more volatile and continuous dynamical
process. Invoking a single cell typically forms a gradient pattern that traverses
the grid in four directions as a continuous rhombus shaped pattern. Slightly
larger local invocation patterns can lead to the emergence of textured
formations of unusual complexity. When invoked by a symmetric pattern and as
long as it is uninterrupted, this algorithm appears to retain global symmetry
indefinitely. This potentially means that the algorithm is resilient to floating
point error, unlike many other continuous state CA. However, any subsequent
perturbation rapidly compounds to introduce chaotic formations that take over
the entire system.

A notable feature of TC8 is that, unlike RNX and Digger-Dagger, it appears to be
capable of replenishing its non-black regions, allowing it to retain a potent
dynamical process over a potentially indefinite number of steps. The yellow-
orange waves that traverse the grid diagonally seem to be resilient to impact
with other formations. A region that has been traversed by such a wave will
become washed by a continuous bright green value that gradually diminishes,

Figure 26.
TC8 (Wildfur).

https://utomata.net/phd?edt=TC8

72

Low-level Exploration

0.0

2.5

5.0

7.5

10.0

0.0 2.5 5.0 7.5 10.0

0.0

0.075

0.15

0.225

0.3

0.0 0.075 0.15 0.225 0.3

0.0

0.25

0.5

0.75

1.0

0.0 0.25 0.5 0.75 1.0

0.0

0.25

0.5

0.75

1.0

0.0 0.25 0.5 0.75 1.0

mlt(add(frc(V),mlt(sgn(stp(vec(0.1,0.1,1.0),mod(V4.rrrr,vec(0.352, 0.94,0.0)))),sub(add(vec(0.72,0.129,1.0),mlt(sub(V4.

rrgr,V4.ggrg), vec(cell.x*10.0, cell.y*10.0,1.0))),frc(V.rrbr)))),vec(1.0,0.988,1.0))

mlt(add(frc(V),mlt(sgn(stp(vec(cell.x*0.3, cell.y*0.3,1.0),mod(V4.rrrr,vec(0.352, 0.94,0.0)))),

sub(add(vec(0.72,0.129,1.0),mlt(sub(V4.rrgg,V4.ggrg), vec(7.0,2.0,1.0))),frc(V.rrbr)))),vec(1.0,0.988,1.0))

mlt(add(frc(V),mlt(sgn(stp(vec(0.1,0.1,1.0),mod(V4.rrrr,vec(cell.x, cell.y,0.0)))),sub(add(vec(0.72,0.129,1.0),

mlt(sub(V4.rrgg,V4.ggrg), vec(7.0,2.0,1.0))),frc(V.rrbr)))),vec(1.0,0.988,1.0))

mlt(add(frc(V),mlt(sgn(stp(vec(0.1,0.1,1.0),mod(V4.rrrr,vec(0.352, 0.94,0.0)))),sub(add(vec(cell.x, cell.y, 1.0)

,mlt(sub(V4.rrgg,V4.ggrg), vec(7.0,2.0,1.0))),frc(V.rrbr)))),vec(1.0,0.988,1.0))

Figure 27.
Continuous field parameterisations of Red Nose Hexagliders.
The parameters of an algorithm can be explored in various ways. In these examples, four
different numerical parameter pairs are selected and spread along the x an y axes using
the cell.x and cell.y variables. Note that in some cases, the full normalised range can be
scaled up or down, as well as appended with a constant value. This allows focusing on
particular regions of interest. In many of these fields, the original RNX algorithm can be
found in one or more region, among a continuous range of its sibling algorithms.

LABORATORY OF BABEL

73

leaving a local arrangement of small, oscillating cell regions. These oscillators
appear to “spontaneously combust” in sparse intervals, forming other wave
patterns. The question of whether or not this process is indeed perpetual is, of
course, undecidable. However this property makes it stand out among other
Type-C variants, constituting a delicate and potentially perpetual equilibrium
between volatile and stagnant dynamics.

TC5 (Infinitron)

This variant was discovered as part of an attempt to locate a middle ground
between the discrete and robust dynamics of RNX, and the seemingly perpetual
ability for regeneration apparent in TC8. While it is neither as diverse as the
former, nor as regenerative as the latter, it demonstrates that particular
behaviours of interest can indeed be cultivated through intuition based
manipulation of algorithms. In this case, the ability to yield discrete formations,
as well as replenish non-zero regions was located through a careful process of
exploring field parameterisations, consisting of various combinations of its two
sibling algorithms.

RNX2

Another notable variation of RNX is a subsequent attempt to find an algorithm
that supports the emergence of discrete formations, while still having the
capacity for replenishing the non-zero regions of the space. This variant features
distinct glider patterns that bare a familial resemblance to RNX basal gliders,
while also presenting notable differences. Here, basal gliders consist of an
orthogonal 3 by 3 formation. While it does support a number of glider types, they
present much less diversity compared to RNX. The residual patterns left by
gliders are also more uniform, with most patterns appearing as a smooth
gradient green line. Perhaps most notably, the two step oscillation, which drives
all RNX basal gliders is not present here, hinting that this oscillation may not be
the prime instigator of motion in this lineage, but rather a by-product of it.

FireWorm

The distinct worm-like patterns of Digger-dagger are visually reminiscent of a
number of existing algorithms, including neural worms [194], a number of
MNCA algorithms [192], as well as certain variants of RD. This apparent
similarity is particularly curious considering none of these algorithms share any
of their code. Subsequent attempts to isolate the worm-like formations featured
in Digger-Dagger yield a highly robust and surprisingly succinct algorithm. This
variation stems from an iterative process of combining field parameterisations
with a gradual reduction and simplification of the algorithmic expression. With
each iteration some part of the expression is removed, new variations are
plotted across a 2D field and noteworthy variants are selected for their
phenotypic traits.

update = vec(sub(div(V.g, V24.r),0.01), frc(V24.r), 0.0)

Unlike Digger-Dagger, this variant does not leave a residual pattern and thus
appears capable of retaining activity indefinitely. Its single numerical parameter
can be assigned values between 0.01 and 0.2, allowing some attenuation of the
pattern’s scale and stability. These worm-like formations feature a 2 step
oscillation in which the red edges alternate sides. They also demonstrate a
remarkable robustness to collisions. In perpendicular impacts the open edge
cam perform a full U-turn and continue uninterrupted. More shallow angle
impacts can often disrupt the other side to form a new connection.

Figure 29.
RNX2.

Figure 30.
FireWorm.

Figure 28.
TC5 (Infinitron).

https://utomata.net/phd?edt=RNX2
https://utomata.net/phd?edt=FW
https://utomata.net/phd?edt=TC5

74

Low-level Exploration

RNX4

Another RNX variant exhibits a two phase dynamic. In the initial phase, a
stepped random configuration invokes a small population of simple glider
patterns with short gradient residual formations that follow them but do not
appear to subside. The second phase arises as a result of glider collisions which
invoke localised rectangular regions on a 45 degree angle. These rectangular
regions possess a feedback mechanism that causes them to grow exponentially
in distinct pulses. As they rapidly fill the entire grid, they form a medium that
acts as a perfect conduit for the pulsating patterns to persist in. The result is a
highly dynamic pattern that constantly traverses through the stagnant, fractal-
like formations of the now overlapping rectangular regions.

TC15 (Forst)

This variant features unusual higher-order formations which present as two
primary region types. The brighter one consists of high contrast, diverse
arrangements of colours. When viewed up close, these regions appear highly
chaotic, however, zooming out exposes a strict, repetitive structure which spans
hundreds of cells across. This region type appears to emerge as a bi-product of
an underlying, more rigid fractal formation in the form of a faint dark green,
overall less diverse, and slightly faster process. This dynamic exhibits
formations of varying scales and types but typically all are formed as symmetric
trails that advance at a 45 degree angle.

The symbiotic relationship between the two region types enables a linear growth
process which, like Digger-Dagger and RNX, eventually engulfs most available
regions of the grid. However, the residual patterns appear to feature a more
intricate oscillating dynamic compared to other Type-C variants, appearing as
large scale invocations of blinking cells. It is unclear whether or not these
invocations are a result of high order interactions that somehow manage to
traverse the grid through the static residual patterns or a result of local cell
interactions that statistically happen to induce blinking patterns in different
regions at a time.

TC12 (Neon Tubing)

This variant features resilient tube-like formations that traverse the grid in
unusual angle increments of 22.5 degrees. The resulting diagonals are highly
prone to produce oblong Sierpinski-like triangle patterns. The resilience of the
tube formations allows them to easily “bounce” off of each other upon impact,
thus often closing off large triangular regions across the grid. Though Sierpinski
triangle fractal formations are apparent in many CA, they are typically very
fragile, with any protuberance typically destroying further development.
However, here the resilience of these patterns induces a “healing” dynamic in
which they quickly regroup and move in alternate directions or even create
tangent fractal formations.

TC9 (Citymakr)

This variant features a relatively diverse range of gliders and semi stable
residual patterns. In this case, the residual patterns left behind by gliders appear
to be an exact imprint of their values. This makes them appear as “borrows” of
various sizes and compositions. This algorithmic expression is closely related to
Digger-Dagger, as evident by the worm-like formations that form inside active
regions. Since they are essentially enclosed, they cannot develop and retain a
stagnant, yet potent form. However, when they do manage to break out of these
regions, they can cause further invocations of a range of patterns.

Figure 32.
TC15 (Forst).

Figure 31.
RNX4.

Figure 33.
TC12 (Neon Tubing).

https://utomata.net/phd?edt=TC15
https://utomata.net/phd?edt=RNX4
https://utomata.net/phd?edt=TC12

75

LABORATORY OF BABEL

4.5. Discussion
Low-level exploration of CA algorithms in Utomata essentially consists of
applying a functional programming approach to CA transition functions. While
this, in itself, is not necessarily a novel concept, this chapter demonstrates the
effectiveness of this approach towards exploration of novel algorithms. The
proposed methodology involves relinquishing an analytical understanding of CA
dynamics, and instead relying on intuition, visual examination, and trial and
error. It is important to emphasise that the case studies showcased in this
chapter constitute only a single investigation of a handful of variants to a
particular algorithm that, while showing initial promise, is merely one of
countless others.

The hidden potential of as-yet-undiscovered CA algorithms that present
emergent properties is extremely difficult to assess. Regardless of its potential
applications, this form of non-analytical programming is not without flaws. It is
innately less suited for closed-ended tasks such as simulation, physical
modelling or goal directed pattern generation. Moreover, the process of
converting an algorithm from a general purpose language to a functional
Utomata expression and vice versa, can require a moderate to high level of
programming proficiency. Another notable drawback of this approach is the fact
that it is unavoidably time consuming. Despite its real-time capabilities and
tools for parallelisation, this kind of exploration in Utomata can only ever
account for a single algorithm at a time. While clever use of the field
parameterisation method is shown to offer a somewhat extended view of larger
parametric spaces, effective as it may be, it simply cannot capture the vast
landscape of algorithmic variations.

Utomata expressions of a moderate length, such as the case studies presented
here feature up to 20 numerical parameters. It is reasonable to assume that
scattered across these 20 dimensional spaces are pockets of remarkable
emergent behaviours, waiting to be discovered. Non-automated efforts to
uncover, cultivate, isolate and study these particular behaviours of interest
involve a tedious process that is perhaps more akin to farming than
programming; a methodical craft that involves mutation, observation, selection
and cross breeding.

While undeniably tedious, this process can also be incredibly satisfying. It is an
acquired skill that is more of an art than a science. As such, its appeal to a wider
target audience may represent an untapped potential. An intuition-based
method for CA exploration could offer more than just allowing artists to
incorporate CA into their creative practice. Extending CA research’s appeal to
new audiences and contexts can potentially introduce entirely new paradigms
to the study of CA, contributing to a mass diversification of known emergent
phenomena. The next chapter introduces a higher-level approach to CA
exploration. While notably more complex, this approach enables exploration of
exponentially larger spaces of algorithmic variants and does not rely on any
programming skills.

Both the low-level method presented in this chapter and the high-level method
presented in the next chapter should best be regarded as different tools through
which to observe and experiment with CA. These methods are not
interchangeable, nor do they necessarily rely on each other. However, they may
indeed complement one another in certain contexts. For example, a low-level
study can be conducted initially to locate a particular algorithm of interest,
which can then be investigated further using a high-level approach to uncover
novel variations of it. A low-level approach can then, once again, be used to
conduct more in-depth studies of these variants, and so on.

Figure 36.
TC13.

Figure 34.
TC9 (Citymakr).

Figure 35.
TC8B.

https://utomata.net/phd?edt=TC13
https://utomata.net/phd?edt=TC9
https://utomata.net/phd?edt=TC8B

76

Low-level Exploration

Figure 37.
Tiled field parameterisation of Type-C variants.
While this method can only account for two parameters at a time, mindful use of it can
help expose the hidden range of behaviours that lies between them.

LABORATORY OF BABEL

77

5.Spatial Mapping

This chapter introduces a novel method for high-level exploration of CA
algorithms. It involves procedural generation of nested Utomata expressions
and a technique for mapping them onto a two-dimensional field. This effectively
yields a map consisting of all possible variations of a given algorithm, allowing
simultaneous interactive visual examination of an exceptionally large range of
phenomena. What sets this method apart is its ability to produce a somewhat
continuous space of phenotypic behaviour, whereby algorithms that share
similar traits can be situated in geographic proximity to each other within the
vast combinatorial space they occupy. There are, however, a number of notable
limitations to this method, which are discussed throughout this chapter and in
Chapter 8.

Spatial Mapping can be considered as a meta-programming approach to CA
exploration. It enables one to literally scroll through a space of possible
algorithms, as if browsing a vast online map. This has a potentially profound
effect on the act of exploration; it can strengthen the notion that novel emergent
structures are not created arbitrarily, but occupy their own unique domain,
waiting to be discovered. In that sense, the method described in this chapter and
its accompanying software implementation [204] constitute a literal
embodiment of a “Laboratory of Babel”: they account for how a space of all
possible CA algorithms of a given format may be constructed and explored.

Sections 5.1 introduces this concept and provides a step by step description on
how this method is implemented. Section 5.2 offers a selection of case studies
for utilising this method towards exploring combinatorial spaces around
previously discussed algorithms. The next chapter demonstrates how this
method can be used as a basis for a comprehensive study of a novel family of CA
algorithms, called Type-U. Future expansions and implications of this method for
the study of CA, as well as other types of virtual structures are outlined in
Chapter 8.

5.1. Formal definition
The previous chapter demonstrated how low-level manipulation of algorithmic
expressions in Utomata can be used to explore and study novel CA algorithms. It
was suggested that this form of non-analytical programming is akin to
navigating a combinatorial space of algorithms, such that any valid algorithmic
expression constitutes a unique coordinate in that space. In that regard, any

Figure 38.
Screenshot from Utomata Lab [204]

https://utomata.net/lab

78

modification, such as changing one of its numerical constants, is akin to
traversing this high dimensional space, namely, along the dimension that
corresponds to the parameter that was modified.

This way of thinking about CA algorithms evokes a sense that they are not just
abstract entities that are generated from scratch in a computer program, but
pointers to instances of unique dynamical systems. From a low-level coding
perspective, this merely signifies a conceptual framework which aims to
stimulate free-form thinking about open-ended exploration. However, this
chapter goes beyond the conceptual by proposing a practical method for the
construction of such spaces in software, allowing interactive exploration of all
conceivable variations to any given CA algorithm.

This method involves several formidable challenges, such as uncovering the
precise dimensionality and domain of these vast combinatorial spaces, as well
as making sure they are consistent, complete and distinct. Furthermore, a mere
enumeration of algorithms is insufficient; an organised and consistent
framework for their placement is crucial for effective exploration. The proposed
methodology includes the following steps:

1. Articulate an algorithmic expression and compile a set of symbols.

2. Define the domain and dimension of the algorithmic space.

3. Devise an isomorphic mapping onto every algorithm in the space.

4. Establish a method for spatially distributing algorithms.

A successful implementation of this method necessitates the development of a
specialised software framework designed to facilitate not only the generation of
large algorithmic spaces, but also seamless navigation of the various spaces it
can make accessible. This software implementation, called Utomata Lab [204], is
a key contribution made by this thesis. It acts as both a proof of concept for the
method presented in this chapter, as well as a key instrument for the discovery
and study of many of the algorithms documented in this thesis.

5.1.1 Algorithmic expression

The first step is to define and limit the scope of algorithmic expressions to be
included in the combinatorial space in question. To illustrate the concepts of
dimension and domain, it may be useful to first consider the following simple —
yet flawed — approach for their definition:

› Dimension: Consider algorithmic expressions as sequences of
characters up to a given maximum length. This length is defined as
the dimension of the combinatorial space.

› Domain: The domain refers to a set of unique symbols available for
constructing an expression. In this example, this refers to the total
number of ASCII characters which may appear in a valid Utomata
expression, which happens to be 41. 1

For example, consider any Utomata expression consisting of up to 100
characters. This expression exists as a single point in a 100-dimensional space.
This space contains precisely 41^100 unique expressions. While this method
appears straightforward and is indeed capable of generating a space that
contains all Utomata expressions of to 100 characters in length, this method is
critically flawed. It describes a space that consists almost entirely of expressions
that are decidedly NOT valid Utomata algorithms. Not only is the astronomical
size of this space far too large to even suggest it can be explored in practice, it is
so full of irrelevant combinations that it would be highly improbable to come

1 This includes letters a-z, digits 0-9, and
the following characters: “(“, “)”, “ ,”, “.” and
“ “. Note that while the whitespace character
is not strictly a part of an algorithm, it
allows inclusion of algorithms that are
shorter than the maximal length.

Spatial Mapping

LABORATORY OF BABEL

79

across a single valid Utomata algorithm, let alone one of interest. Hence, it is
evident that merely creating a comprehensive set of expressions is insufficient.
A viable candidate set must also possess properties of completeness, exclusivity
and distinctiveness. 2 In simpler terms, this space must posses the following
properties:

1. Completeness: It must encompass a complete set of finite Utomata
expressions.

2. Exclusivity: It must consist of only of valid Utomata expressions.

3. Distinctiveness: It must contain exactly one of each.

In order to construct such a specific and exclusive set, certain restrictions must
be placed on the algorithmic expressions to be considered. The previous chapter
demonstrated the advantages of utilising nested functional expressions for low-
level manipulation of algorithms in Utomata. This format allows modification or
substitution of any operator, variable or numerical constant, all while retaining
the validity of the algorithm. Since Utomata exclusively uses unary and binary
operators, algorithms adhering to this structure can be represented as binary
expression trees. 3 This approach differs from the flawed approach of the
previous example, which imposed no restrictions on symbol selection. A
method for generating expressions, which relies on binary expression trees can
indeed yield a complete, exclusive, and distinct set of algorithms. To this aim, a
nested Utomata algorithm can be characterised by the following sets:

› Topology (T): A labelled binary/unary tree with a finite number of
nodes, denoted as T.

› Unary operators (U): A set of operators used to label all nodes in the
tree which have exactly one child. (two edges)

› Binary operators (B): A set of operators used to label nodes in the tree
which have exactly two children. (three edges).

› Variables (V): Variables used within the algorithm (ie: V4, U9). These
can only label leafs in the tree. (one edge)

› Numerical Constants (N): A collection of numerical constants used in
the algorithm. These can also only label leafs in the tree.

The dimension and domain of the algorithm can thus be defined as follows:

› Dimension: For a given tree topology T, the dimension of the
combinatorial space, encompassing all algorithmic expressions
equivalent in topology to T, equals the number of nodes in T.

› Domain: Unlike in the earlier example, where all symbols were drawn
from a single set of 41 characters, this combinatorial space features a
heterogeneous domain. This arises from the varying sizes of the different
sets containing variables, constants, unary operators and binary
operators.

For example, consider the combinatorial space of the following expression:

add(frc(U2), 0.01)

This expression represents a valid Utomata algorithm, showcasing a
combination of binary and unary operators, a variable, and a numerical
constant. As such, it aligns with the structure of a binary expression tree, shown
on the right, where each node falls into a distinct domain. This algorithm can be
abstracted as follows:

B(U(V), N)

Figure 39.
Example of a simple binary/unary tree
topology.

3 This discussion uses the term binary tree
to include topologies that consist of both
unary and binary operators.

2 The requirement of distinctiveness only
pertains to the genotype. There may be any
number of algorithms that describe the
exact same phenotypic behaviour. This
property is discussed at length in the next
chapter.

80

Any alteration of a symbol in this expression, that is, replacing it with a different
symbol from its designated domain, yields an equally valid Utomata expression.
The collection of all such substitutions defines a combinatorial space
encompassing every conceivable permutation of expressions that adhere to the
given topology T. It is important to emphasise that for this given topology, this
set is both complete and exclusive: it encompasses all potential permutations of
the algorithm, while containing nothing but valid algorithms. Crucially, this only
holds true provided that all substitutions are drawn from their respective
symbol domains.

The sheer magnitude of the combinatorial space described above should be
considered with respect to the use of real-valued numerical constants. While
this method can technically be applied to any finite set of symbols, the use of
anything more than a handful of numerical constants would quickly stagger to
form unreasonably large result spaces. For many algorithms, this would, in turn,
result in flooding the space with overwhelming redundancy in the form of
expressions that differ only by minute decimal fractions, producing large
amounts of virtually indistinguishable outcomes. Therefore, the goal of
achieving a complete space is hereby relaxed in order for a reasonably
distinctive space to be formulated. This can be regarded as fine-tuning the
resolution of the combinatorial space; a process that can be adjusted by adding
or removing symbols from their respective domains. In this way, a dramatic
reduction of the result space can be achieved, simply by restricting the domains
to small subsets of symbols.

5.1.2 Enumeration

Continuing the example expression from the previous subsection, a finite
combinatorial space of a manageable size can be constructed by defining the
domain for each symbol set, as listed below. The number of unique algorithms
in the space can then be calculated by multiplying the domain size for each
symbol in the expression. Note that in this example, the set of topologies and the
set of unary operators each consists of just one symbol. 4

› T: B(U(V), N)

› B: add, sub, mlt, div

› U: frc

› V: U1, U2, U3

› N: -0.02, -0.01, 0.0, 0.01, 0.02

With the domains, dimension, and the total number of algorithms in the space
now established, the next step involves defining a function capable of
formulating every possible algorithmic expression. This is achieved by
enumerating all potential configurations of available symbols. The number of
possible expressions that conform to the above set can easily be calculated by
multiplying all domain sizes together. However, enumerating all configurations
in order to generate these algorithms is not as trivial.

Each unique configuration of symbols can be mapped to a series of numbers,
which conform to a selection of the algorithm‘s symbols from their respective
domains in order. For example, The series [1, 0, 0, 2] can be mapped to the
expression sub(frc(U2),0.0). Since each of these domains is of a different
size, the enumeration must takes this into account. For example, the series [1,
1, 0, 2] cannot be mapped to any configuration because the U domain contains
only one symbol. This problem can be solved by using a mixed radix system for

4 In this example there are 4 binary
operators, 1 unary operator, 3 variables and
5 numerical constants. Thus amounting to
exactly 60 permutations as follows:

B(U(V), N)
4 1 3 5
4 * 1 * 3 * 5 = 60

Spatial Mapping

LABORATORY OF BABEL

81

enumeration. Unlike in many conventional number systems, where all digits
conform to the same base, the digits of a mixed radix system can each be
counted using a different base. This provides a consistent method to enumerate
all possible expressions where each symbol is selected from a domain of a
different size.

For example, in a decimal numbering system, all digits are in base-10.
Incrementing from 0 involves advancing each digit up to 9, then resetting to 0
and advancing the next digit. Other base systems operate similarly, only with
more or fewer digits available. For instance, base-2 systems can only use 0 or 1,
while base-16 systems typically employ symbols from 0-9 and then A-F. In
contrast, mixed radix systems employ a heterogeneous base so that each digit can
count up to a value that may differ from other digits. Though less common and
less intuitive, mixed radix systems are useful in specific contexts, such as time
notation (hh:mm:ss and dd:mm:yyyy) and the imperial unit system.

As stated above, this mapping must be defined so that every valid input number
is mapped to exactly one unique Utomata expression. This is known as an
isomorphic mapping. Where it not isomorphic, the one-to-one relationship
between input numbers and expressions would not be kept, resulting in the
combinatorial space containing invalid expressions, missing expressions or
duplicate expressions.

X = 0000
b = 4135

The input number for the mapping, denoted as X, can now be defined. The
number of digits in X corresponds to the number of nodes in the algorithm’s tree
topology, which also conforms to the dimension of the combinatorial space.
Additionally, a string of digits, denoted as b, is defined to indicate the base for
each digit of X. These bases directly correspond to the domain sizes for each of
the symbols in the expression in order. To establish a connection between an
input number and a Utomata expression, each digit effectively acts as an index
within its respective symbol domain. Consequently, when a digit assumes the
value of 0, it selects the first symbol. Similarly, subsequent increments, in turn,
access subsequent symbols.

0000: add(frc(U1),-0.02) 0001: add(frc(U1),-0.01) 0002: add(frc(U1),0.0)

0003: add(frc(U1),0.01) 0004: add(frc(U1),0.02) 0010: add(frc(U2),-0.02)

0011: add(frc(U2),-0.01) 0012: add(frc(U2),0.0) 0013: add(frc(U2),0.01)

0014: add(frc(U2),0.02) 0020: add(frc(U3),-0.02) 0021: add(frc(U3),-0.01)

0022: add(frc(U3),0.0) 0023: add(frc(U3),0.01) 0024: add(frc(U3),0.02)

1000: sub(frc(U1),-0.02) 1001: sub(frc(U1),-0.01) 1002: sub(frc(U1),0.0)

1003: sub(frc(U1),0.01) 1004: sub(frc(U1),0.02) 1010: sub(frc(U2),-0.02)

1011: sub(frc(U2),-0.01) 1012: sub(frc(U2),0.0) 1013: sub(frc(U2),0.01)

1014: sub(frc(U2),0.02) 1020: sub(frc(U3),-0.02) 1021: sub(frc(U3),-0.01)

1022: sub(frc(U3),0.0) 1023: sub(frc(U3),0.01) 1024: sub(frc(U3),0.02)

2000: mlt(frc(U1),-0.02) 2001: mlt(frc(U1),-0.01) 2002: mlt(frc(U1),0.0)

2003: mlt(frc(U1),0.01) 2004: mlt(frc(U1),0.02) 2010: mlt(frc(U2),-0.02)

2011: mlt(frc(U2),-0.01) 2012: mlt(frc(U2),0.0) 2013: mlt(frc(U2),0.01)

2014: mlt(frc(U2),0.02) 2020: mlt(frc(U3),-0.02) 2021: mlt(frc(U3),-0.01)

2022: mlt(frc(U3),0.0) 2023: mlt(frc(U3),0.01) 2024: mlt(frc(U3),0.02)

3000: div(frc(U1),-0.02) 3001: div(frc(U1),-0.01) 3002: div(frc(U1),0.0)

3003: div(frc(U1),0.01) 3004: div(frc(U1),0.02) 3010: div(frc(U2),-0.02)

3011: div(frc(U2),-0.01) 3012: div(frc(U2),0.0) 3013: div(frc(U2),0.01)

3014: div(frc(U2),0.02) 3020: div(frc(U3),-0.02) 3021: div(frc(U3),-0.01)

3022: div(frc(U3),0.0) 3023: div(frc(U3),0.01) 3024: div(frc(U3),0.02)

A comprehensive list of all variations of the example algorithm: add(frc(U2), 0.01)

82

Upon reaching its maximum base value (which is its corresponding digit in b),
every digit cycles back to 0, and the next digit in X is advanced, just as it would
in a homogeneous base system. This iterative process ensures enumeration of
all possible symbol combinations, as X is iteratively incremented — one digit at
a time. Once X has reached a value of 3024, the process will have generated a set
of algorithms that is guaranteed to consist of exactly one instance of every
possible combination from the given set of symbols.

5.1.3 Spatial Arrangement

The previous subsection detailed the process of obtaining a complete set of
permutations of a given algorithm. This process is based on a topology T and
four distinct symbol sets: B, U, V and N. It relies on an isomorphic mapping that
establishes a correlation between algorithms and a mixed radix system, denoted
as X. The numerical assignment generates an ordered list of algorithms, ready
for implementation in Utomata. However, as it may be common to explore
relatively longer algorithms, as well as larger symbol sets, the number of
possible permutations increases exponentially. Combinatorial spaces of this
kind can easily encompass trillions of algorithms, making it impractical for a
software implementation to run, or even attempt to store all of them.

It should also be emphasised that this method constitutes an isomorphic
mapping from a high-dimensional space to a one-dimensional list. This step is
crucial so that all permutations can be enumerated. However, extending this
mapping to two (or possibly more) dimensions can provide significant benefits
to exploration by allowing various spatial arrangements to be formed. Having
some level of control in positioning algorithms along a two dimensional field is
almost like applying a sorting mechanism that can significantly increase the
continuity of the space by positioning similar algorithms in proximity to each
other. If carefully applied, this may even result in some clustering of similar
phenotypic behaviour, where algorithms of particular interest may end up
situated in pockets of similar, perhaps equally interesting, variants.

If the mixed radix number X can be used to generate an ordered one-
dimensional list of algorithms, then in order to generate a 2D space of
algorithms, the same approach can be applied by creating a second mixed radix
number, denoted as Y. By explicitly assigning each symbol in the expression to
either X or Y, every algorithm would now be mapped to two numbers instead of
one. This assignment can be denoted by an additional string d. The number of
characters in d conform to the number of symbols in the expression. For a 2D
distribution, each character in d would either be x or y. While there are 2^4
unique configurations of d, most of these configurations will result in equivalent
spatial distributions. For example, “xxxx” and “yyyy” both result in the same
distributions along a horizontal or vertical layout.

Note that this process can be extended to any number of dimensions,, up to the
number of symbols in the expression, which, again, is the dimension of the
combinatorial space itself. In practice, this process involves supplementing
each symbol in the abstracted version of the algorithm with a corresponding
indicator of its designated axis in the mapping as follows: 5

Bx(Ux(Vy), Ny) // d = xxyy

Different 2D mappings can yield significantly different spatial arrangements.
One of the primary goals of this method is to maximise the continuity of Spatial
Mappings so that similar algorithmic expressions are situated in proximity to
each other in their encompassing result space. The example above features a 2D
mapping where all operators are assigned to the x axis and all variables and

5 In the context of this study, only 2D
mappings are considered. However, the
prospects of using higher dimensions for
spatial arrangements, as well as
enumerating binary tree topologies are
discussed in Chapter 8.

Spatial Mapping

LABORATORY OF BABEL

83

numerical constants to the y axis. The resulting space might therefore feature a
gradient of behaviours along each of its axes. This is because each two horizontal
neighbouring algorithms would differ by exactly one operator, and each two
vertical neighbours by a single parameter. This approach may be appropriate for
certain algorithms, but not others. For example, some algorithms, such as the
one presented in the next chapter, feature distinct axial symmetry. In that case,
assigning axes in accordance to the unique structure of the algorithm is shown
to be highly preferable. It should also be emphasised that while this method does
achieve a high level of genotypic continuity, this does not necessarily ensure
phenotypic continuity.

While a noticeable correlation between genotypic and phenotypic similarity has
been observed for some of the algorithms discussed here, this is by no means
assumed to be consistent or universal to CA in general. However, as
demonstrated in the next chapter, it does seem apparent that larger
combinatorial spaces feature greater phenotypic continuity than smaller ones.
This is presumably due to the fact that the relative impact of some permutations
is diminished in proportion to the length of the expression. The final step
involves translating the mixed radix number systems, X and Y, to decimal
coordinates. While not strictly necessary, this step allows for significantly more
intuitive navigation of the result space.

5.1.4 Implementation

Utomata Lab [204] is hereby presented as an integral part of the practice based
portion of this research. It features a robust online implementation of the Spatial
Mapping method described in this chapter, and has been used extensively for
the study presented in the next chapter. This software implementation uses
Utomata’s built-in tiling feature, which allows up to 64 unique algorithms to run
on a single HTML canvas node. This feature is supplemented with a bespoke
rendering and layout engine, allowing it to run up to 16 HTML canvases
simultaneously. Hence, running on sufficiently powerful hardware, Utomata Lab
currently supports the simultaneous execution of 1024 unique algorithms.

Further, as users navigate through a space of algorithmic variations, new canvas
instances are generated on the fly and hot-swapped to allow a seamless scrolling
experience. Hidden Utomata instances are paused and their canvas object is
replaced with a static png image of their updated state. Once an area is returned
to, it automatically resumes running from its previous last step. The software
can also be used to perform batch runs of any size in order to systematically
cover larger regions of a given space. In this mode, each tile is set to run up to a

Figure 40.
Screenshot of Utomata Lab, featuring
variations to GOL. (source algorithm is
highlighted)

https://utomata.net/phd?lab=GOL

84

given number of steps, optionally performing a custom image analysis before
halting to allow new tiles to be rendered. Moreover, It features the ability to
export each individual tile, allowing entire regions to be graphed for subsequent
offline study and further analysis.

5.2. Case studies
The example algorithm presented in the previous section was deliberately
selected for clarity and simplicity, even though it does not yield particularly
interesting behaviour. In this section, a series of case studies is presented,
applying Spatial Mapping to the algorithms discussed in previous chapters.
These case studies serve two primary objectives. Firstly, they provide practical
demonstrations, showcasing how Spatial Mappings can be applied to existing
algorithms. This serves to further clarify the process of symbol selection, spatial
arrangement, and to demonstrate interactive exploration. Secondly, these case
studies function as a proof of concept for the method itself by showcasing
numerous variations of well-established algorithms.

5.2.1 Game of Life

As discussed in Section 2.2.2 and in Chapter 3, Conway’s Game of Life stands as
one of the most widely recognised CA algorithms, particularly beyond the realm
of academic research. Its popularity has spurred the development of numerous
derivative algorithms over the years [67], [69]. Many of these derivations have
emerged from the creative endeavours of practitioners and enthusiasts who
have conducted low-level explorations, employing methods akin to those
described in Chapter 4.

Efforts to discover novel variants of GOL have also included the creation of the
“Life-Like” set of algorithms [71], which employs a specialised notation to
describe algorithmic behaviour. In the Life-Like notation, the fundamental
concept of GOL is hard-wired. Thus, while there are numerous possible Life-Like
variants, they only differ in the number of live neighbours it takes for a birth,
death or survival to occur. In contrast, Utomata offers a much more flexible
approach to GOL variant exploration. Its use of functional expressions can
transcend beyond the above restrictions to also include algorithms that,
explicitly or implicitly, do not adhere to this life-death metaphor.

Through the use of Utomata Lab, the act of obtaining novel variations to GOL has
been surprisingly straightforward. Recall the following implementation of GOL
from Chapter 3. This expression consists of three binary operators (add, eql,
eql), two variables (V8, V9) and two numerical constants (3.0, 3.0). A Spatial
Mapping of GOL can be generated by the method described in the previous
section. This involves defining a set of symbols [B, V, N], and assigning x and y
coordinates to each symbol in the expression. Consider the following mapping
parameters:

Source: add(eql(V8, 3.0), eql(V9, 3.0))
Abstraction: Bx (Bx (Vy, Ny), Bx (Vy, Ny))

B: [add, mlt, eql, lrg, sml]
V: [V, V4, V8, V9, V24, V25]
N: [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]

These mapping parameters result in the creation of a relatively large
combinatorial space of variations to GOL. This particular axial distribution
assigns all three binary operators (B) to the x axis and all variables and numbers

Figure 41.
GOL variations in Utomata Lab.

Spatial Mapping

LABORATORY OF BABEL

85

to the y axis. The set of binary operators include the add and eql operators,
which are present in the source expression, as well as three additional
operators: mlt, lrg and sml. These were selected for their compatibility with
boolean operations in Utomata, thereby ensuring all transition functions still
return integer values so that the result space would, in turn, feature only binary
state algorithms. The set of variables (V) includes five totalistic neighbourhood
variables, as well as the value of the transitioning cell. Numbers (N) include
whole numbers 0.0 through 9.0. 6

The resulting space consists of 450,000 unique variations, spanning 125
columns and 3600 rows. In this particular configuration, the source algorithm is
positioned at (x:12, y:2023). While the order of the symbols in their respective
domain sets does not change the composition of algorithms in the space, it can
significantly impact the order in which they appear. For instance, switching the
mlt and eql operators would position the source algorithm at (x:6, y:2023)
instead. Along with adjusting the axial distribution, adjusting the order of
symbols in their symbol domain sets can be a useful strategy for organising and
clustering certain phenotypic behaviours in a result space.

This particular mapping is advantageous because it ensures that every two
neighbouring cells differ from each other by only one symbol. Moreover, it
makes navigating the space slightly more intuitive, as travelling along the x axis
means changing operators and travelling along the y axis means changing
parameters and variables. This is evident in space’s tendency to feature similar
behaviours along its columns, more so than along its rows. There are, of course
numerous other ways to create a combinatorial space of GOL variants. Different
Spatial Mappings and distributions may offer more or less continuous spaces,
which feature more or less interesting variations.

For example, a different axial distribution may involve plotting all operators and
variables on the x axis and all numerical constants on the y axis. This approach
yields a space with 4500 columns and 100 rows. The immediate surroundings of
the source expression, now situated at (x:280, y:33), consists of numerous other
algorithms which feature the use of the same numerical values [3.0, 3.0]. This is
because one would have to travel a significant distance along the y axis before

6 Of course, these choices can be easily
adjusted later on. For example, by adding
the div and mod operators to the domain,
some algorithms are likely to return
fractions, resulting in the incorporation of
continuous state CA in the result space.

Figure 42.
Variations to GOL featured in Utomata
Lib. Most of these algorithm were
discovered by browsing through Spatial
Mappings of GOL.

86

reaching variants that involve other constants. This may be beneficial for certain
types of algorithms, as it may help to uncover particular variants of interest.

The presence of perfect duplicate phenotypic behaviour within a combinatorial
space appears to be quite common. In this case, this can occur by flipping
between the V8 and V9 variables. Two algorithms which feature identical
behaviour — but not an identical algorithm — can be referred to as phenotypic
twins. In this case, a number of such twins may exist in the space due the fact that
both the eql and add operators are symmetric. Some level of phenotypic
redundancy in Spatial Mappings is often unavoidable. This topic is elaborated
upon in the next case study, as well as further discussed in the next chapter.

Though it can appear to make exploration somewhat harder by unnecessarily
increasing the size of the combinatorial space, some level of redundancy also
entails a noteworthy benefit. Since there are many different ways to articulate
the behaviour of GOL in Utomata, there are many different combinatorial spaces
that can be created that encompass it.

update = add(add(mlt(eql(V8, 2.0),eql(V, 1.0)),mlt(eql(V8,
3.0),eql(V, 1.0))),mlt(eql(V8, 3.0), eql(V, 0.0)))

The above expression (also visualised in Figure 43) is an implementation of GOL
which features a more explicit translation of its original rules. While it is
noticeably less elegant, compared to the previous example, it presents an
opportunity to explore a much larger combinatorial space of GOL variants due
its sizeable length. Using the same symbol domain sets as before, a Spatial
Mapping of this algorithm would consists of 48,828,125 columns and
46,656,000,000 rows. The source algorithm, residing at (x:882056,
x:25551473630) is now surrounded by a surprising number of phenotypic
twins. This aligns with the previously mentioned hypothesis that larger
combinatorial spaces may inherently feature greater phenotypic continuity
because the impact of any single permutation in an expression is inverse to its
length.

Source: add(eql(V8, 3.0), eql(V9, 3.0))
Abstraction: add(eql(Vx, Ny), eql(Vx, Ny))

V: [V, V4, V8, V9, V24]
N: [0.0, 1.0, 2.0, 3.0, 4.0]

Similarly, the size of a space can be significantly decreased by either using
smaller symbol sets, or only selecting certain symbols to permeate. With the
above mapping parameters, all algorithms in the space retain the add and eql
operators in place. The axial distribution alternates 5 variables along the x axis
and 5 numbers along the y axis. This creates a highly explorable space
consisting of 25 columns and 25 rows, shown in its entirety in figure 44. The
source algorithm is positioned at (x:18, y:7) and it appears to have exactly one
phenotypic twin at (x:18, y:11). Though significantly smaller than in previous
examples, this space still features at least 8 other variants that, just like GOL,
have been observed to enable the emergence of persistent higher order
structures. Figure 42 showcases a number of GOL variants, discovered through
various Spatial Mappings.

5.2.2 Elementary Automata

Elementary Cellular Automata (ECA) have been discussed and implemented in
previous chapters. The methodical approach applied by Wolfram to define their
combinatorial spaces makes it a noteworthy precursor for this research project.

Figure 44.
A restrained 25x25 combinatorial space
of GOL. (source algorithm is highlighted)

Figure 43.
Visualisation of extended GOL
algorithm.

Spatial Mapping

LABORATORY OF BABEL

87

However, due to their innate properties, the combinatorial space of ECA is
comparatively very small, consisting of exactly 256 unique algorithms. A Spatial
Mapping of ECA can use the formulaic expression devised by Wolfram [73],
which was shown to be highly suitable for Utomata in Chapter 4. This approach
yields expressions that can easily be adapted for Spatial Mapping as follows:

Source:
set(0.5, 0.0) +
vec((U1*NU2*NU3)+(NU1*U2*1.0)+(NU1*U3*1.0))

V: [0.0, 1.0, U1, U2, U3, NU1, NU2, NU3]

The above set results in a space that spans 32,768 columns and 4,096 rows. The
source algorithm, rule 30 ,is situated at (x: 22294, y:697). Non-exhaustive
excursions of this result space indicate it does contain any novel phenotypic
behaviour beyond the known 256 variants. This is due to the overwhelming
amount of genotypic redundancy, which is partly attributed to operator
symmetry. For this particular algorithmic structure, which relies on just
addition and multiplication, the number of mathematically identical transition
functions is indeed staggering.

However, a crucial component of redundancy stems from the inclusion of the
numeral constants 0.0 and 1.0 in the variables domain. This mixed use is
necessary for expressing the variability of the source algorithms, which feature
multiplications of zero, one, two or three symbols at a time. While the inclusion
of numerical constants in the variables domain is technically possible in
Utomata Lab, it should be used with caution. In this case, 0.0 and 1.0 serve as
null and identity operators respectively. For instance, according to Wolfram’s
formula, Rule-128 is denoted simply as vec(U2*U3). Therefore the only way for
it to be included in the Spatial Mapping is through an expression such as the one
below, of which there are numerous variations which are mathematically
equivalent.

 (U2*U3*1.0) + (0.0*0.0*0.0) + (0.0*0.0*0.0)

Figure 45.
Algorithmic variations of ECA in
Utomata Lab.

https://utomata.net/phd?lab=ECA

88

5.2.3 Reaction-Diffusion

The effectiveness of any Spatial Mapping depends, in large part, on the structure
and composition of the base algorithm in question. Longer algorithms which
contain more and deeper nested symbols potentially result in gargantuan
combinatorial spaces, which are generally far too vast to explore manually.
Notably, this is not to say that they are too large for exhaustive searches — which
is the case for almost all Spatial Mappings — but that they are, in fact, so large
that coming across anything resembling coherent behaviour becomes highly
improbable. Moreover, as algorithms become longer there are many more ways
in which their combinatorial spaces may be formed. Thus, a careful
consideration of which symbols should be up for substitution and which ones
should remain constant can have a significant impact by reducing the size of the
result space. This may require considerable trial and error, which involves
selecting, isolating and exploring small sets of symbols at a time, as well as
experimenting with different symbol domain sets.

Reaction-Diffusion (RD) represents a significantly more complicated algorithm,
compared to GOL and ECA. It features many more numerical constants, as well
as a deeper nested expression. As such it potentially corresponds to much a
larger space, which may be formed in numerous different ways, some more
effective than others. For example, a maximalist approach may involve selecting
every single operator and numerical constant in an RD expression. This, in
conjunction with comprehensive parameter domain sets, comprising of all
Utomata operators, as well as a large list of numerical constants. Such an
approach would create a result space of an unfathomable size. While it is very
likely to contain instances of remarkable behaviours, the sheer magnitude of
such a space makes it terrible candidate for exploration.

On the other hand, a minimalist approach may involve selecting just one or two
operators for substitution, combined with symbol domain sets consisting of one
or two parameters. This would yield very small result spaces, which can more
easily be explored and examined. However, such minimal spaces are also highly
unlikely to feature sufficiently diverse or significant findings. A moderate
approach would, for example, involve selecting a handful of operators and
constants for substitution or, alternatively, to leave all operators intact and
explore only substitutions of neighbourhood variables. It is also worth noting
that substitutions and symbol domain sets are not strictly limited to single
symbols. For example, one could select the custom neighbourhood expression
of RD in its entirety: sub(V4, mlt(V, 4.0) and explore any number of
variations of this subexpression, or parts of it.

As previously noted, real-valued numerical constants represent an additional
layer of complexity to Spatial Mapping since they cannot be enumerated. Here,
too, there are a number of ways to address this complication, each with notable
trade-offs. One approach would be to avoid substitutions of numerical constants
altogether. While this would indeed help in reducing the size of the space, it is
also very likely to impose arbitrary limitations on supported behaviour; it seems
unreasonable to expect that a given set of numerical constants would result in
noteworthy behaviour across numerous permutations of an algorithm.

A different approach may involve testing different numerical constants, one at a
time, along with a stepped set of values (for instance, at increments of 0.25). This
approach may be suitable for more targeted studies of a very particular variants.
Lastly, a more effective approach involves combining the field parameterisation
method with Spatial Mapping by incorporating the cell.x and cell.y values into
the source expression, thus allowing each tile in the space to span a continuous
range of behaviours in and of itself.

Figure 47.
Algorithmic variations of RD in Utomata
Lab.

Figure 46.
Grey-Scott Reaction Diffusion and its
immediate siblings. (Source algorithm is
highlighted)

Spatial Mapping

LABORATORY OF BABEL

89

Source:
add(
 frc(V),
 vec(
 add(
 sub(
 mlt(0.22,sub(V4, mlt(V, 4.0)).r),
 mlt(V.r,mlt(V.g, V.g))
),
 mlt(0.036, sub(1.0, V.r))
),
 sub(
 add(
 mlt(0.05,sub(V4, mlt(V, 4.0)).g),
 mlt(V.r,mlt(V.g, V.g))
),
 mlt(0.097, V.g)
),
 0.0
)
)

Configuration: vec(sml(dst(cell.xy, vec2(0.5)),0.02));
Operators: add, sub, mlt
Variables: V, V4, V8

As for the axial distribution, while there are a number of approaches to choose
from, note that the RD transition function consists of two closely related
expressions, situated in the red and the green channels of a single vector. The
distinct symmetry between the two stems from the algorithm’s original goal of
modelling the process of diffusion between two chemical substances. Therefore,
it would make sense to map symbols of the the red channel onto the on one axis
and symbols of the green channel to the other. When applied, this approach
appears to position the source algorithm in an environment that consists of
many similar looking variants, which may suggest that, with this axial
distribution, other behaviours of interest might also be embedded in pockets of
similar behaviours.

Figure 48.
Spatial Mapping of RD, combined with
Field Parametrisation exhibits a
continuous range of behaviours for each
variant.

https://utomata.net/phd?lab=RD

90

5.3. Summary
This chapter introduces Spatial Mapping, a novel method for high-level
exploration of CA algorithms. It uses a sophisticated mapping technique that
accepts a Utomata algorithm and a set of symbols for substitution, and creates a
space consisting of all possible variations of the algorithm. This space is
demonstrated to be complete, exclusive and distinctive. Utomata Lab is a
software implementation of this technique, allowing real-time exploration of
any Spatial Mapping. The chapter details the theoretical foundations of this
method, discusses its implementation, and demonstrates its use through a
series of case studies.

Spatial Mapping is unique in its ability to allow real-time interactive navigation
of the combinatorial spaces of any CA algorithm, potentially offering new
insights into their behaviour. However, this method also has significant
limitations, which this chapter also discusses at length. This method has
profound implications for exploring emergent virtual structures, providing a
unique lens on CA dynamics that traditional approaches may overlook. The next
chapter details the use of this method towards formulation, exploration and
examination of a newly identified family of CA algorithms, called Type-U. Chapter
8 offers further discussion on the limitations of this approach, as well as its
implications for the broader study of emergent virtual phenomena.

A study of Type-U

LABORATORY OF BABEL

91

6.A study of Type-U
This chapter demonstrates the use of the Spatial Mapping method detailed in the
previous chapter towards an exploratory study of a novel family of CA
algorithms, called Type-U. While this marks the first formal introduction of this
algorithm and the first methodical exploration of its countless variations, there
have been instances of similar algorithms used in non-academic work, most
notably in the work of Jazer Giles [150]. A similar aesthetic is also apparent in the
works of Kermi Safa [151], Kim Asendorf [152], Julian Hespenheide [153] and
Andreas Gysin [154]. However, these practitioners arrive from live performance,
generative, Glitch, and ASCII art disciplines, rather than CA research, and no
formal account of their work has been made available at the time of writing.

Section 6.1 provides a formal definition of Type-U, which can technically be
classified as continuous-state, outer-totalistic CA. Type-U expressions are
characterised by a rigid, recursively defined genotypic structure. Their
transition functions are constructed as symmetric binary trees of varying
depths, with the root node always being Utomata’s U() function. Given two
parameters, X and Y, this function returns the unaltered state of a single
neighbouring cell in relative coordinates. This rigidly defined structure makes
Type-U algorithms particularly suited for exploration through Spatial Mapping.
Their explicit and symmetric X and Y components allow for an intuitive axial
distribution, wherein variations to the left-hand and right-hand expressions
correspond directly to traversals of the combinatorial space along the X and Y
axes, respectively.

Moreover, Type-U combinatorial spaces exhibit an unusually high ratio of
“fruitful” to “sterile” variations. In many other CA algorithms, including those
explored in the previous chapter, the vast majority of variants tend to either be
sterile — exhibiting no discernible behaviour — or overly chaotic, where
excessive activity prevents the formation of emergent structures. In contrast,
the rigid structure of Type-U algorithms ensures that a majority of variants
generate discernible patterns of behaviour, as demonstrated throughout this
chapter.

Sections 6.2 and 6.3 evaluate the unique genotypic and phenotypic
characteristics of Type-U algorithms and their encompassing combinatorial
spaces. Section 6.4 proposes a qualitative metric for categorising Type-U
algorithms, aimed at facilitating further exploration of Type-U spaces. Together,
these sections offer an initial investigation into the spatial, genotypic, and
phenotypic properties of Type-U algorithms: Spatial properties pertain to the
arrangement and composition of algorithms within a given combinatorial space,
genotypic properties relate to the structural attributes of Type-U algorithmic
expressions, and phenotypic properties describe the observable structural and
behavioural qualities of individual algorithmic instances.

It is important to note that the observations presented here are derived from
interactive exploration and visual examination, offering only an initial glimpse
into this vast family of algorithms and their properties. Nonetheless, it is
suggested that this exploratory approach constitutes a valuable tool for gaining
insights, developing informed intuition, and establishing expectations about the
properties and behavioural boundaries of a given CA algorithmic space.

92

6.1. Formal Definition
As discussed in Chapter 3, Utomata features a number of built-in variables and
functions for accessing common totalistic neighbourhoods:

V // self - the transitioning cell
V3 // three upper adjacent cells (for totalistic 1D CA)
V4 // Von Neumann neighbourhood
V8 // Moore neighbourhood
V9 // Moore neighbourhood and self

These built-in variables are themselves defined by directly accessing individual
neighbour states using Utomata’s built-in U(dx, dy) function and adding these
values together as follows:

V = U(0, 0)
V3 = U(-1, -1) + U(-1, 0) +U(-1, 1)
V4 = U(0, -1) + U(1, 0) + U(0, 1) + U(-1, 0)
V8 = V4 + U(-1, -1) + U(1, -1) + U(1, 1) + U(-1, 1.)
V9 = V8 + V

The U function returns the current state of any cell by accepting two integer
parameters: deltaX and deltaY, which signify the target cell’s position relative to
the transitioning cell. 1

setup = vec(cell.x);
update = U(1., 0.);

Since the U function returns the current state of a particular neighbouring cell,
it can be used to induce continuous motion in a system that features toroidal
bounds. In the example above, the configured horizontal gradient pattern moves
to the left at a rate of one cell per step. This global motion happens as each cell
in the system selects the state of its adjacent right side neighbour as its new state
at each time step. The system’s toroidal bounds ensure that this motion
continues indefinitely, since there are effectively no edges on either axis.

Higher local delta values generally result in higher velocity and the ratio
between deltaX and deltaY determines the angle of motion. Any deltaX and
deltaY parameters can be used, including negative values or even values larger
than the size of the grid. For example, U(1.0, 0.0) and U(1.0 + grid.x,
0.0) both point to the same coordinate because of the grid’s toroidal bounds.
However, since the grid is discrete, this motion is always stepped. Any variation
of this transition function that just uses numerical constants will necessarily
result in homogeneous and regular motion. Homogeneity stems from the fact
that every cell in the system is given the same two parameters and regularity
stems from the fact that these parameters never change.

// configuration as a red-green gradient
setup = vec(cell.x, cell.y, 0.0);

update =
// regular and homogeneous
U(1., 2.) * tile(0., 0.) +
// regular and heterogeneous
U(cell.x*32., cell.y*32.) * tile(0., 1.) +
// irregular and homogeneous
U(time, time) * tile(0., 2.) +

Figure 49.
Regular and homogeneous motion. Here
the configuration pattern is preserved
but shifted.

Figure 50.
Regular and heterogeneous motion.
Different cells point to different
neighbours

1 Despite being represented as floating point
values, these parameters are, in effect,
treated as integers, as they signify relative
coordinates on a discrete grid. Therefore,
any decimal value provided to the U function
is rounded.

A study of Type-U

LABORATORY OF BABEL

93

// irregular and heterogeneous
U(rand(1.)*2. -1., rand(2.)*2. -1.) * tile(0., 3.);

In order to achieve other types of motion in the system, different x and y
parameters can be used. For example, heterogeneous, but regular motion can be
invoked using the cell.xy variable, so that it calculates a slightly different
result for each cell. Similarly, irregular and homogeneous motion can be
achieved using the current time step, which is shared by all cells — but itself is
different at each step. This results in a cyclic velocity, as the current time step
cycles through multiples of the grid size. Lastly, irregular and heterogeneous
motion can also be achieved using the rand() function to generate a unique
value for each cell at each time step. 2

The gradual disruption of the configured gradient pattern through irregular and
heterogeneous motion, using the rand() function, reveals intriguing patterns,
as seen in Figure 51. Yet, it is important to note that this behaviour’s reliance on
pseudorandom values categorises it as a stochastic, null-neighbourhood CA.
Though it initially appears capable of intriguing behaviour, this algorithm is a
poor candidate for exploration for a number of reasons. Firstly, it is extremely
unlikely for higher-order structures to emerge because this process is ultimately
very uniform. Even if this would occur by chance, it would be virtually
impossible to recreate. More importantly, this algorithm effectively has no
meaningful variations to explore because it contains no operators, variables or
constants; instead, it “outsources” its entire decision tree to the rand()
function. Lastly, this algorithm uses pseudo-randomness, which sooner or later
is bound to yield repetitive patterns. Luckily, irregular and heterogeneous
motion can indeed be achieved through other means.

First order Type-U

setup = rand(1.,2.,3.);
update = U(V8.g, V4.b);

In the above Utomata program, the configuration consists of assigning a random
value to each cell and the transition uses every cell’s current value to determine
its next state. It should be emphasised that the final result of this transition
function can only ever be the current — unmodified — state value of some cell in
the system (possibly the transitioning cell itself). Hence all possible state values
in this, and in all Type-U algorithms discussed in this study, are confined to
those created by the configuration function. This is partly the reason for
employing a “fully random” configuration in this study, which is further
discussed in the next section.

This algorithm is deceptively simple — signifying a notable strategy for
heterogeneity and irregularity: the incorporation of state into the deltaX and
deltaY parameters of the U function acts as the sole driver of behaviour. This
strategy turns out to be a surprisingly powerful generator of emergent
structures, due to its innate capacity for feedback loops. It constitutes a strong
interdependence between state, neighbourhood and transition. While the use of
state in determining the result of the transition function is one of the defining
characteristics of CA algorithms, what sets this method apart is the fact that the
states of the cell and its neighbourhood(s) are used to define a unique
neighbourhood, comprising of exactly one cell — for each cell.

In its basic form, this Type-U algorithm does not seem to induce particularly
interesting behaviour. However, this strategy for harnessing state towards
determining the neighbourhood can easily be extended to create arbitrarily

Figure 52.
TU0 - a first-Order Type-U.

Figure 51.
Irregular and heterogeneous pattern
using the rand() function

2 Here the range includes negative numbers
in order to prevent a bias towards only the
positive direction.

https://utomata.net/phd?edt=TU0

94

more compound variations of this expression. By applying the Spatial Mapping
method introduced in the previous chapter, these variations can now be
explored in-mass. Consider the following mapping parameter sets:

Source: U(V8.g, V4.b)
Abstraction: U(Vx.Cx, Vy.Cy)
Variables: V24, V8, V4, V
Colours: r, g, b

These mapping parameters include four variables and three colours. The axial
distribution is set in accordance with the structure of the U function, so that
values that determine deltaX are mapped along the X axis and values that
determine deltaY are mapped along the Y axis. The result space thus consists of
144 unique algorithms, organised as a 12 by 12 grid. Figure 53 shows a complete
Spatial mapping of first-order Type-U in Utomata Lab.

Second-Order Type-U

A much larger space of Type-U algorithms can be constructed by adding a layer
of arithmetic operations for each axis, in the form of binary operators. This
allows incorporation of more neighbourhoods and colour variations into the
expression and, most importantly, many more combinations of them.

Source: U(sub(V4.r, V8.g), sub(V4.b, V.b))
Abstraction: U(Fx(Vx.Cx, Vx.Cx), Fy(Vy.Cy, Vy.Cy))
Operators: add, sub, mlt, div
Variables: V, V4, V8
Colours: r, g, b

The above mapping parameters denote a second-order Type-U Spatial Mapping.
For this mapping, four basic arithmetic operators are used: addition,
subtraction, multiplication, and division. Together, they introduce novel ways in
which the totalistic neighbourhoods and colour channels can be combined to
produce a range of more intricate results for any given expression.

U(Fx(Vx.Cx, Vx.Cx), Fy(Vy.Cy, Vy.Cy)) // expression
 4 4 3 4 3 4 4 3 4 3 // combinations
deltaX: 4 * 4 * 3 * 4 * 3 = 576
deltaY: 4 * 4 * 3 * 4 * 3 = 576
deltaX * deltaX = 331776 // unique expressions

Figure 54.
TU72 is an example of a second order
Type-U algorithm. This algorithm is
documented in the next chapter.

Figure 53.
Complete Spatial Mapping of first-order
Type-U.

A study of Type-U

https://utomata.net/phd?edt=TU72

LABORATORY OF BABEL

95

The number of unique second-order Type-U algorithms is higher by an order of
magnitude. While the first-order space consists of four operators and three
colours, giving 144 unique algorithmic expressions in total, with the
introduction of two binary operators for each axis, the second-order space
consists of 331,776 unique expressions. Notably, because this new space
consists of exponentially more types of local interactions between cells, it
features a plethora of CA behaviours which are potentially not present in the
lower-order space. Unlike the first-order space, which is captured in its entirety
in figure 53, this space is much harder to capture and explore — though it is still
possible. Extended exploration of second-order Type-U in Utomata Lab can offer
a reasonably comprehensive view of the range of behaviour it encompasses.

Higher-Orders

The transition from first-order to second-order Type-U described above
essentially involved replacing the variable and colour symbol (V.C) with a binary
operator that includes two variables (with their symbols) for both parameters of
the U function. This substitution rule can be abstracted to form a recursive
definition of higher-order Type-U spaces, not unlike performing iterations on an
L-System string. The substitution can be defined as replacing every occurrence
of a symbol with a binary operator as follows:

V.C >> F(V.C, V.C)

As such, an Nth order Type-U expression can be constructed by applying this
rule on a first order Type-U expression — N times. Beyond differing significantly
in size, each order also features several unique properties, which may or may
not be present in other orders — lower or higher. These are discussed in the
following sections. Appendix A denotes Type-U orders one through six.

6.1.1 Scope

There can be numerous ways to define Type-U algorithms, as well as to
construct their combinatorial spaces. However, in the context of this chapter,
which aims to serve as an introductory exploratory study of Type-U, the scope of
algorithms considered has been limited to include the use of a particular
configuration, mapping parameters and axial distribution method. It is
important to note that these particular choices are not put forth as a definitive or
even an optimal form of neither Type-U algorithms or their mappings. Rather,
their selection serves to facilitate a robust examination and demonstration of
the capabilities which may be inherent to these algorithms. While they are
beyond the scope of this thesis, alternative Type-U mappings and comparative
studies of different symbol domain sets may very well present more interesting
outcomes and should be considered worthy candidates for future studies,
examples of which are suggested in Chapter 8.

Configuration

The configuration in CA determines the system’s initial conditions and thus
plays a significant role in determining its behaviour, which is typically highly
chaotic. In Spatial Mapping, the use of an appropriate configuration function is
crucial, as the advantages of observing large numbers of algorithmic variations
can easily be nullified by a configuration that fails to induce noteworthy
dynamics to the system. This type of exploration leans heavily on an ability to
visually discern structures of interest among a large set of similar, but not
identical, patterns.

Figure 55.
Fully random configuration on a 32*32
grid using rand(1.0, 2.0, 3.0).

This study relies on Utomata’s built-in
GLSL approximation of a random
number generator. However, a
comparative study showed no significant
differences from a configuration based
on pseudorandom or true random
numbers.

96

In Type-U algorithms the configuration has an even more dramatic effect. This
is due to the inherently reductive nature of Type-U dynamics, whereby the
transition function is strictly incapable of introducing new state values to the
system. It is therefore up to the configuration function to include as many
different state values as possible in order to maximise the number of possible
structures that may subsequently emerge.

It may sometimes be useful to consider Type-U algorithms as “unguided sorting
algorithms”, where the behaviour of the sorting mechanism is determined by
the data (state values) in real-time, acting differently on different parts of it. This
process of sorting and a-sorting constantly adapts as the system evolves and
changes its composition. This feedback mechanism relates to the
aforementioned web of interdependencies between state, neighbourhood and
transition. Through this process, the rapid elimination of state values, often
shortly after configuration, can easily render a system sterile. Therefore, a
configuration that is insufficiently diverse can profoundly constrain the range of
phenomena in a Type-U algorithm. For this reason, a fully random, maximally
inclusive configuration function has been deemed optimal for this initial,
exploratory study. That said, the use of more constrained configurations may be
still useful in certain cases. For example, different configuration patterns can be
tested in order to evaluate the limits of behaviours which can emerge in a
particular algorithm of interest.

Mapping parameters

The symbol domain sets from which a Spatial Mapping is formed also have a
significant impact. Apart from determining the size of a space, they directly
affect its composition, organisation, as well as the range of possible supported
phenotypic behaviour. These are regarded here as the mapping parameters. For
example, adding a single operator to the operators set will result in an
exponentially larger space, as it is now supplemented with all of its existing
combinations with this new operator. Unless otherwise stated, the studies and
experiments presented in this chapter refer to the following minimal mapping
parameters:

Operators: add, sub, mlt, div
Variables: V24, V8, V4, V
Colours: r, g, b

These have been selected in an effort to achieve a balance between minimising
the size of the combinatorial spaces explored, while maximising the range of
phenomena they encompass. The set of variables includes the state of the
transitioning cell, as well as three well-established totalistic neighbourhood
types. This allows a range of cell interactions to be driven by both low and high
state values. The incorporation of V24 in particular, results in a significant
increase of dynamic behaviour in a space. This is presumably because it allows
algorithms to include references to neighbours that are further away, in turn,
potentially increasing the density and variability of the networks of local cell
interactions.

Likewise, utilising just four fundamental arithmetic operators appears to strike
a careful balance between facilitating a diverse range of behaviours and
maintaining mappings of a tractable size, particularly in the context of lower-
order spaces. From this minimal set, other operators can be assumed to reside
somewhere in the space through compounding. For Example, exponentiation
can be excluded from the mapping parameters under the assertion that it can be
achieved through multiplication. Likewise, scaling by large numbers can be
achieved through division over small fractions.

A study of Type-U

LABORATORY OF BABEL

97

The div() operator introduces the most distinct dynamics of all four. Its
inclusion in some cases presents extremely volatile behaviour, whereby large
regions of the grid may suddenly flip to a uniform colour. This is presumably
because division has the capacity to return arbitrarily high values, though
further testing is required. Unlike in many other CA transition functions in
Utomata, high values are not strictly clamped by Type-U transition functions
because the calculation is always used to produce the deltaX and deltaY
coordinates of the U function. As previously mentioned, the use of toroidal
bounds in Type-U also means that all possible values return a valid coordinate.

Initial tests suggest that the use of Utomata’s boolean operators — sml(), lrg()
and eql() — offer no substantial contribution to the percieved phenotypic
diversity in a space. This likely stems from the boolean (0.0 or 1.0) return value
of these operators, which often drives the U function to return the state of the
transitioning cell itself, thereby creating a strong bias towards static behaviours.

The incorporation of RGB colour channels is essential in Type-U because the U
function expects two integer values, rather than 4D vectors. However, beyond
this structural requirement, the incorporation of colour channels also acts as an
important feedback mechanism between horizontal and vertical dynamics.

update = U(sub(V9.b,V9.g),div(V4.g,V9.g))

For example, in the above algorithm, depicted in Figure 54, the deltaX
component refers to the blue and green values of the Moore neighbourhood,
while the deltaY component refers to the green values of the Von Neumann and
Moore neighbourhoods. The fact the the green channel is shared by both axes
means that there is necessarily some level of interaction and feedback in the
process of determining the horizontal and vertical transposition of cells. The
importance of this property is often evident in algorithms where this is not the
case, such as the one below (seen in Figure 57). In these cases, the values of the
deltaX and deltaY components are determined independently of each other,
subsequently presenting a more limited range of state interactions. This could
suggest a further explanation as to why higher-order spaces appear to contain
much richer phenomena: longer expressions feature a higher probability for the
same colour channel to be used, at least somewhere, on both axes.

update = U(sub(V.r,V4.r),add(V.g,V4.g))

Axial distribution

Selecting an appropriate Spatial Mapping method ideally involves a careful
consideration of the type of investigation (i.e: exploratory, analytical, result
oriented), as well as properties of the algorithms in question. In the case of Type-
U, the fact that the U function is ultimately driven by explicit X and Y parameters
are best taken into account. This innate property of the algorithm, whereby each
cell selects some other cell using a 2D coordinate, strongly suggests that an XY
based mapping, such as the one described in Section 5.1.1, shown below, is
indeed appropriate. As such, it potentially makes traversal of the space more
intuitive, since moving along each axis corresponds with a permutation of the
algorithm on that same axis.

U(Fx(Vx.Cx, Vx.Cx), Fy(Vy.Cy, Vy.Cy)) // XY distribution

A number of alternative axial distributions have also been considered. For
instance, plotting operators on the X axis and variables and colours on the Y axis
(shown below) would yield a space consisting of the exact same set of algorithms,
yet distributed very differently. This arrangement highlights different

Figure 57.
TU82 does not share colour values across
both axes and therefor displays
monotonous behaviour.

Figure 56.
TU81. The div() operator often causes
extremely volatile dynamics.

Figure 58.
Alternative axial distribution where
operators are plotted on the X axis and
variables and colours on the Y.

https://utomata.net/phd?edt=TU82
https://utomata.net/phd?edt=TU81

98

relationships between neighbouring algorithms in a space, which may or may
not be beneficial, depending on context. Notably, unlike the symmetric axial
distribution method above, which creates spaces consisting of an equal number
of rows and columns, this mapping method results in spaces that are highly
skewed. For example, the mapping below conforms to a space with 16 columns
and 20,736 rows. Notably, traversing columns and rows in such a space no
longer represents permeating the X and Y parameters of the U function, but
rather its operators and variables.

U(Fx(Vy.Cy, Vy.Cy), Fx(Vy.Cy, Vy.Cy))

There are many other ways in which permutations can be plotted along a two
dimensional field. Different mappings result in a different arrangement of
algorithms along that field, thereby having a direct effect on exploration. For
example, a mapping created by randomly generating a Type-U algorithm for
each cell in the field would result in a highly irregular space in terms of its
genotype, where proximity or adjacency of algorithms have no meaning
whatsoever. Such a mapping would therefore serve as a very poor candidate for
a study that aims to explore direct siblings — close permutations of a given
algorithm. Moreover, unlike the mappings described in the previous section,
such a mapping is not guaranteed to contain all possible permutations of the
algorithm in question and may also feature high levels of redundancy in the
form of algorithms that happened to have been randomly created more than
once.

One may therefor assume that a random mapping would also yield a highly
irregular space in terms of its phenotype for this same reason. However, this
actually depends on the algorithm in question and the size of the space plotted.
For example, almost all permutations of sixth-order Type-U algorithms rarely
yield any discernible structures whatsoever. Therefore a random mapping of
sixth-order Type-U is actually more likely to feature regularity in terms of
phenotypic properties, with occasional isolated instances of discernible
structures, scattered randomly across the entire space. However, while they are
indeed poor candidates for exploratory studies, random mappings are by no
means useless. They can serve as a reliable tool for statistical analysis of a given
combinatorial space and for quantitative evaluation of the range of behaviours
apparent in the algorithms it encompasses.

6.2. Spatial Properties
The study presented in this chapter serves a dual purpose: it aims to exemplify
the effectiveness of the Spatial Mapping method in regards to open-ended
exploration of novel CA, while also serving as a formal introduction to Type-U
algorithms. This creates a potential clash between the need to discuss general
properties which may be inherent to Spatial Mappings and the need to exposit
specific properties of the family of Type-U CA. While the following two sections
discuss spatial and phenotypic properties of Type-U respectively, it should be
noted that these two properties are fundamentally linked. Nonetheless, an
exploratory and qualitative approach to CA research, such as the one presented
in this chapter firmly aligns with both stated goals.

Type-U algorithms feature a number of distinctive traits that make them
exceptionally suitable for exploration through Spatial Mapping. As previously
noted, their consistent algorithmic structure is characterised by explicit X and Y
components, which enhances the effectiveness of exploring them in a 2D space.
Type-U algorithms also lack numerical constants, ensuring that their
combinatorial spaces can be comprehensively plotted. Their scalability allows
for the comparison of algorithms across different orders while preserving most

A study of Type-U

LABORATORY OF BABEL

99

of their shared characteristics. Lastly, the (deceptive) simplicity of their
transition function, essentially culminating in the selection of a single cell,
results in the majority of Type-U algorithms yielding at least some discernible
behaviour. These properties stand in contrast to many other CA families which
have been examined in previous chapters; most of the algorithms discussed so
far appear to be “an almost miraculous exception” in a space consisting almost
entirely of chaotic or uniform behaviour.

This section identifies a number of properties and characteristics of Type-U
spaces, while the next section deals with phenotypic properties of the
algorithms themselves. Together, they offer a broad view of Type-U dynamics,
attempting to characterise their behaviour and limits, laying out a foundation for
more targeted future explorations of Type-U and their countless variations.

6.2.1 Redundancy

Any comprehensive enumeration of CA algorithms necessarily contains
redundancy — the presence of identical, or nearly identical behaviours. This
may stem from a number of reasons, which may be highly codependent and may
vary significantly between different algorithms. Generally, they can be divided
into two categories: genotypic redundancy, which stems from apparent
similarities between algorithmic expressions and the properties of their
operators, and phenotypic redundancy, in which dissimilar algorithmic
expressions result in similar behaviour. Assessing the level of genotypic
redundancy may be complex, but can be achieved with a relatively high degree
of accuracy through analytical methods. However, phenotypic redundancy is far
more difficult to ascertain.

Characterising the various types and levels of redundancy in a Spatial Mapping
can be crucial in facilitating effective exploration. This is true even in cases
where redundancy is never actually mitigated, but instead simply taken into
account. It is also important to note that redundancy, in and of itself, is not
necessarily detrimental to exploration. In a reasonably well-understood spatial
arrangement, the presence of multiple identical variations may even assist in
locating particular nuanced behaviours of interest. Likewise, obtaining a better
understanding of redundancy may assist in identifying regions of a space that
are of no consequence in order to isolate and expose regions of interest.

Diagonal Symmetry

The first-order Type-U space described in section 6.1.1. consists of 144
algorithms, arranged as a 12 by 12 grid. Upon visual examination, phenotypic
behaviour in the space appears to feature a distinct diagonal line from top left to
bottom right. The algorithms along this diagonal feature highly constrained
structures and motion, all going in parallel to it. In every such instance, the
deltaX and deltaY parameters are identical, which explains why they exclusively
feature such limited capability: whatever value is returned by their totalistic
neighbourhood variables, any cell can only ever select the state of a cell situated
along its own diagonal.

The deltaX and deltaY parameters of all first-order Type-U algorithms both
consist of a single variable symbol, followed by a colour channel symbol; they
exhibit perfect symmetry and are therefore treated in the same way by the
mapping, each along their corresponding axis. This means that for every single
algorithm in this space — U(v1.c1,v2.c2) — there exists a twin-algorithm —
U(v2.c2,v1.c1). The phenotypic properties of these two algorithms are thus
identical — but rotated by 90 degrees. For example, the algorithms located at
(5, 7) and (7, 5), which correspond to U(V4.b,V8.g) and U(V8.g,V4.b)

Figure 59.
Diagonal Symmetry in second-order
Type-U.

Figure 60.
Twin algorithms along the diagonal in
first-order Type-U.

100

respectively, can be regarded as twin algorithms because they effectively induce
the exact same behaviour. This symmetry holds true for every Type-U space
created using this axial distribution, regardless of its order.

One of the distinct advantages of using this axial distribution method is that it
neatly divides the space into two distinct regions — above and below the
diagonal. Algorithms along the diagonal itself still conform to this pattern,
however, since their x and y components are identical they have no twins. Thus,
due to this inherent symmetry, the number of unique phenotypic behaviours in
any Type-U space is actually only about half of its total number of algorithms,
consisting of all algorithms above or below the diagonal, as well as those along it.
For example, out of the 144 algorithms in the first order space, there are actually
no more than 78 unique phenotypic behaviours. 3

Operator Symmetry

Another apparent example of genotypic redundancy relates to operator
symmetry. For example, addition and multiplication, which together are
featured in exactly half of all algorithms in the space, are effectively symmetric,
such that (A*B == B*A) and (A+B == B+A). This means that any mapping that
features symmetric operators in its domain will necessarily contain multiple
copies of identical phenotypic behaviours for every single occurrence of a
symmetric operator. This, of course, is not unique to Type-U algorithms and
likely affects many other mappings. 4

Assessing the level of redundancy due to operator symmetry requires taking
into account the number of occurrences of operators in the expression and the
composition of operators in the domain. For example, in the second-order
mapping, each expression contains two operators and the operator domain set
consists of two symmetric (add, mlt) and two asymmetric (sub, div) operators.
Therefor it can be deduced that exactly half of all algorithms in the space feature
two symmetric operators and another 0.25 contain exactly one. Thus each
algorithm in the former group would have three twin algorithms and each one in
the latter group would have one.

Unlike diagonal symmetry, which can simply be taken into account in the
process of exploration, redundancy due to operator symmetry is slightly harder
to locate using the mapping method in its current form. While a more
sophisticated mapping function can indeed be devised to avoid operator
symmetry altogether, this may come at the cost of compromising the structural
integrity and continuity of the spatial arrangement by forming irregular gaps
between neighbouring algorithms.

Phenotypic Similarity

Through a combination of diagonal and operator symmetry alone, it can roughly
be estimated that no more than 15%-20% of Type-U algorithms in their
respective spaces are actually unique. However, while this kind of redundancy
can be precisely calculated and, to an extent, even mitigated for a given space,
there exists a far more illusive form of redundancy which may effectively be
unknowable. This can be regarded as phenotypic redundancy, as it stems from
the possibility of two distinctly dissimilar algorithmic expressions yielding
indistinguishable phenotypic behaviours. As is the case with genotypic
redundancy, this form of redundancy is not strictly unique to Type-U
algorithms, yet they do appear to be particularly vulnerable to its effects.

Since all Type-U transition functions ultimately select a single neighbour, they
feature a relatively limited set of outcomes, compared to other continuous state
CA. Moreover, phenotypic redundancy also appears to be highly dependent on

4 The Spatial Mapping of ECA algorithms, as
presented in the previous chapter is a good
example of staggering levels of redundancy
due to operator symmetry. The mapping
results in a space consisting of 262144
unique algorithms, while the number of
unique phenotypes is known to be exactly
256. Moreover, when accounting for
black&white symmetry the number is
actually 128.

3 The exact number of unique algorithms, k,
in a symmetric space with n rows and n
columns can be expressed as the following
arithmetic progression:

k = ((n * n) - n) / 2 + n

A study of Type-U

LABORATORY OF BABEL

101

the order of the space. Since higher-order spaces, by definition, consist of more
deeply nested expressions, it is safe to assume that they feature far more
phenotypic redundancy than lower order ones. In an expression which consists
of several nested operators, the impact of any given change to the expression
diminishes in proportion to its depth — its distance from the root operator. For
example, changing the operator at the first level (above the U function) from
addition to division is likely to have a dramatic effect on the outcome. In
contrast, the impact of the same substitution at the fifth layer of a sixth order
algorithm may have very little or even no effect on phenotypic behaviour.

The fact that deeper nested differences (closer to the leafs in the expression tree)
between algorithms have a diminished effect on their phenotypic differences
suggests that higher-order spaces feature increasingly more phenotypic
redundancy as they contain exponentially more instances of increasingly
minute differences between behaviours. Still, as previously noted, this kind of
redundancy should not necessarily be considered as a side effect or obstacle for
exploration. High levels of phenotypic redundancy in a space also mean that
particular desired behaviours of interest may be recovered at an arbitrary level
of precision. A more robust assessment of phenotypic redundancy requires a
more robust classification method of Type-U phenotypic behaviours, which is
beyond the scope of this thesis.

6.2.2 Texture

The exact method by which algorithms are distributed in a Spatial Mapping can
have a significant impact on its exploration and study. Ideally, algorithms would
be organised in a way that expresses the relationships between them. Continuity
refers to the level of difference between neighbouring algorithms in a space and
contiguity refers to the tendency for similar behaviours to be grouped together.
Generally, spaces that feature a continuous and contiguous texture offer
significant advantages.

Continuity

A space can be said to possess a smooth, or continuous texture if the difference
between adjacent algorithms is minimal. For example, a spatial arrangement
where each algorithm is randomly positioned would typically present a rough
texture. This can be likened to a geographical terrain, where a height map of the
entire space can be plotted by evaluating the difference between adjacent
algorithms. Rough textures indicate a weak correlation between adjacency and
similarity, while smooth textures indicate a strong correlation.

An evaluation of the texture of a space may relate to any measurable property of
its algorithms. Hence, a space can be evaluated as having any number of
textures. For example, a measurement of the overall level of brightness in an
algorithm can be evaluated to give a unique score for each algorithm in a space
(or a subspace). This score can then be plotted to reveal the texture of the space
in regards to that particular heuristic function. A continuous space would be
said to feature a smooth gradient of brightness values and a non-continuous
space would feature roughness in the form of adjacent algorithms in which
measured levels of brightness differed substantially. A space can thus be
characterised as continuous in one respect and non-continuous in another.

The correlations between different properties of algorithms in a space, and
therefore between their evaluated textures, can be complex and hard to
evaluate. Some properties, such as average velocity and colour diversity, may be
linearly and positively correlated, while other properties may feature inverse
correlations, non-linear correlations or none at all. Preliminary visual

Figure 61.
Smooth textured area in fifth-order
space. Any single permutation typically
has a minimal effect on the output.

102

examinations suggest that Type-U algorithms generally possess a relatively
strong correlation between their genotype and phenotype. Since genotypic
texture can be considered smooth in Type-U mappings, due to their effective
distribution method, they can generally be considered as also possessing
smooth phenotypic textures as well. Phenotypic continuity is also strongly
related to phenotypic redundancy. In high-order Type-U mappings (third-order
and above), the massive increase in nearly identical phenotypic behaviour also
results in a significant increase in the overall levels of continuity in the space.

Of course, there are bound to be notable and, most likely, unavoidable ridges and
sharp features in any space. For example, a substitution from multiplication to
division is typically more likely to have a dramatic effect, compared to a
substitution from addition to subtraction. Moreover, as noted in the previous
section, the depth of a given change is also of great significance, whereby deeper
nested changes are more likely to have a diminished effect.

Distinct behaviours may often cluster along rows and columns, as observed in
the GOL Spatial Mapping in the previous chapter. Clustering of phenotypic
behaviours may take various forms. For example, the first-order Type-U
mapping appears to be divided into distinct sets of triplets. This stems from the
relatively coarse granularity of the space, where progressing along each axis
translates to cycling through the colour channels of a single variable at a time.
This clustering is rather unique to the first-order mapping. Higher-order spaces
refer to more than just one colour per axis, thereby diminishing the impact of
any single colour channel permutation.

Contiguity

A closely related spatial property refers to the concentration of similar
algorithms within self-contained regions. A Spatial Mapping can be said to be
contiguous if it features a correlation between spatial proximity and phenotypic
similarity. This can manifest as the tendency of a space to group related
behaviours together. Having distinct spatial arrangements, or “pockets” of
similar behaviours is generally advantageous for exploration as it means that in
order to discover permutations of a given algorithm, one only needs to locate it
in a space and observe its immediate surroundings.

A contiguous space is also likely to feature a correlation between genotypic and
phenotypic texture, assuming an ordered mapping method was used. This
indeed appears to be the case in Type-U spaces. This property is by no means
trivial and is an example of what makes certain Spatial Mappings more useful
than others. Contiguous spaces that feature correlation between genotypic and
phenotypic regularity are easier to explore because they are organised in a way
which can be better made sense of, making manual explorations more intuitive,
as well as making higher-level evaluations of a space, such as sparse sampling,
more viable.

The contiguity of Type-U mappings is also closely related to their order. First-
order and second-order Type-U spaces seem to have less distinct regions. This
is presumably because of their relatively shallow depth, in which substitutions
between symbols of adjacent algorithms have more impact. Third and fourth
order Type-U spaces appear to be more contiguous, perhaps striking a better
balance between algorithmic depth and spatial regularity. Fifth and higher order
spaces feature increasingly smoother terrain in the form of large regions of
similarity sometimes spanning thousands or even millions of algorithms. These
spaces are so large that they effectively become too smooth to feature what may
be considered distinct pockets of behaviour.

Figure 62.
Binary tree of fourth-order Type-U.

A study of Type-U

LABORATORY OF BABEL

103

6.2.3 Composition

As a general rule, the larger a combinatorial space becomes, the more likely it is
to contain a wide range of behaviours. This, of course, comes with the heavy cost
of unique behaviours being scattered across exponentially larger fields. Thus,
one of the biggest challenges involved in exploration via Spatial Mapping is
minimising the size of the space while maximising the diversity of the
algorithms it encompasses.

Along with assessing the redundancy and texture of a given space, assessing its
composition, and specifically its range of behaviours, plays a key role. Striking a
good balance between having a tractable space to explore and making sure it
contains sufficiently diverse phenomena is, in large part, determined when
formulating the source algorithm and mapping parameters.

For example, an exhaustive exploration of the space of Reaction-diffusion (RD)
algorithms, as demonstrated in the previous chapter, is by all accounts a non-
tractable task. This is due to a number of properties of the algorithm, including
its reliance on real-valued numerical constants, as well as its sizeable length.
Hence, while it is reasonable to assume that RD spaces do indeed contain novel
and potentially noteworthy RD-like phenomena, it is highly unlikely for manual
exploratory studies to uncover any of it. However, larger spaces do not
necessarily feature larger phenotypic diversity. For example, The Spatial
Mapping of ECA, also presented in the previous chapter, is said to contain more
than a quarter million unique algorithms, yet presenting only 256 unique
behaviours.

Type-U algorithms feature a relatively narrow range of phenotypic behaviour,
which appears to have distinct characteristics and limits. 5 This is a result of
several unique properties, including their rigidly defined algorithmic structure,
limited set of symbols, lack of numerical parameters and the fact that their root
operator is always the U function. While a limited range is not typically ideal for
open-ended exploration, it offers two distinct advantages. Type-U combinatorial
spaces are relatively small, compared to many other CA families, and they
feature unusually high occurances of uinque discernible behaviours.

The recursive definition of Type-U algorithms in ascending orders, presented in
Section 6.1 is an explicit attempt to gain some level of control over the
composition of Type-U spaces. It allows for adjusting the algorithm itself
towards the type of exploration to be conducted. Lower-order spaces, which
contain fewer algorithms and, accordingly, notably less diversity, are more
suitable for targeted, analytical or general studies of the characteristic
behaviours of Type-U phenomena. Higher-orders, on the other hand, are more
suitable for broad stroke moonshot expeditions to discover novel Type-U
phenomena.

Higher-order Type-U spaces contain profoundly more algorithmic
permutations and thus are generally more likely to support behaviours not
present in lower-order ones. However, the exact relationship between the order
of a Type-U Spatial Mapping and its level of diversity is currently unknown.
While it is apparent that third and fourth order mappings do contain behaviours
that are not present in the first order, this does not necessarily indicate a general
rule.

The relationship between the order of a Type-U space and its level of diversity is
also not necessarily linear. Initial excursions of fifth order spaces have, thus far,
not yielded findings that are fundamentally different from those which can be
found in fourth-order spaces, even though the former contains vastly more
permutations. This implies that there may be a sweet spot between the size of a

5 For example, structures that exhibit
radial symmetry, which are quite common in
other CA models, are highly unlikely to
emerge in Type-U due to their distinct use of
outer-totalistic neighbourhoods.

104

Type-U space and the range of phenomena it encompasses. Of course, this
implication is by no means conclusive, nor can it be assumed to hold true for
other CA algorithms. Further comprehensive studies of Type-U spaces and the
Spatial Mapping method itself are needed. A quantitative analysis of the
phenotypic composition of Type-U spaces is beyond the scope of this thesis.
However, as discussed in Chapter 8, such a study can indeed make use of its
accompanying software implementation, Utomata Lab, even in its current form.

Initial excursions of Type-U spaces, performed as part of this research
nonetheless offer a number of qualitative accounts of characteristic behaviours
of Type-U algorithms. Below are a number of properties that are correlated with
the order or the size of the space in which the algorithm in question resides. The
next section discusses characteristic Type-U behaviours in general.

Directional Bias

Heterogeneous and irregular motion are presented in section 6.1 as a core
aspect of Type-U transition functions. The various ways in which different cells
in the grid select their new state can be likened to a vector field (illustrated in
Figure 64). As such, the angle and length of each arrow in the field are
determined by the transition function for each cell. This can be a helpful
framework for visualising the overall levels of directional bias in an algorithm.
For example, as discussed in Section 6.2, algorithms situated along the diagonal
of a space feature identical deltaX and deltaY components. Therefore, the angle
of all resulting vectors will necessarily be 45 degrees, limiting all calls to only
access cells along their own diagonal.

Moreover, due to their simplicity and lack of operators, first-order Type-U
algorithms feature distinct directional and colour biases, not just along the
diagonal. The general angle and overall velocity of a first order algorithm can be
predicted regardless of its configuration, demonstrating a bias towards the axis
in which the larger neighbourhood value lies. For example, the algorithm
U(V24.r, V4.g) can be predicted to feature overall distinct horizontal motion.
Notably, this does not necessarily affect every single cell in the grid, as some
cells may have low red values in their extended-Moore neighbourhood and high
green values in their Von Neumann neighbourhood.

Moreover, all algorithms in the first-order space move towards the negative
direction on both the X and Y axes. This is a result of the fact that deltaX and
deltaY are always greater than or equal to zero. Thus, under the stated mapping
parameters, it is impossible for the transition function to return the value of any
cell above or to the left. A resolution of this bias, in the form of positively directed
motion, is only introduced in second-order Type-U with the inclusion of the
sub() operator. However, this is also not to say that all second order (or above)
algorithms are unbiased. In fact, every single Type-U algorithm which does not
contain the sub() operator necessarily is. By extension, this holds true for any
Type-U space in which the sub() operator is not included in the domain. 6

Neighbourhood and Velocity

The amount of motion in first-order algorithms, while generally heterogeneous,
is still dependent on the composition of variables in their respective
expressions. For example, the 12 algorithms that exclusively use the V variable
feature noticeably more static behaviour compared to the rest. This stems from
the limited mobility of state transitions that can select, at most, the adjacent
neighbour to their right or bottom. In contrast, algorithms that incorporate the
V24 variable can support a velocity of up to 24 cells per step. This property can
therefore also predict the general direction of movement. The axis containing
the larger neighbourhood value will typically feature overall higher velocity.

Figure 63.
Vector field (illustration).

6 There are, of course, other ways to resolve
directional bias without using the sub()
operator. For example, one could include
negative variables such as (-V4) in the
domain.

A study of Type-U

LABORATORY OF BABEL

105

Colour Bias

In all first-order algorithms, a histogram analysis shows a distinct tendency
towards one or two of the primary colour channels. Since any first-order
expression can, at most, feature two colour symbols, it appears that the value of
colours which aren’t present in the expression typically follow an even
distribution, while the value of colours that are featured tend to gradually be
reduced as the system evolves. This is likely the result of an implicit selective
process, whereby higher values are more likely to cause the transition function
to return the state of a cell that is not the transitioning cell.

For example, consider the transition function: U(V8.b,V.r). Histogram
analyses over several runs consistently show an even distribution of values
along the green channel, a tendency for lower than 0.5 values along the red
channel and distinctly low values along the blue channel. These readings align
with how the U function operates: in areas that are rich with blue values, the
transition function is very likely to change the state of cells to those up to 8 cells
to their right. Likewise, cells whose red channel is higher than 0.5 will select the
state of a cell below them. In contrast, the presence of green values does not
appear to directly affect the transition process. It can therefore be predicted that
the system will retain its green colours (with low reds and low blues) through a
gradual process of selection.

Second order algorithms appear to feature a significant increase in overall
colour diversity. This can be attributed to the fact that expressions can now refer
to all three colour channels, as well as perform rudimentary calculations in
mixing them together. While distinct tendencies towards basal RGB colours are
still apparent in second-order Type-U, the increase in algorithmic variations
introduces visibly novel colour schemes. In third-order mappings and above,
colour bias is dramatically reduced. Generally, this can be attributed to the fact
that longer expressions are both more likely to include all three colour channels,
as well as more nuanced mixtures through more deeply nested operations.

Idiosyncrasy

Some Spatial Mappings may feature characteristic phenotypic behaviour. For
example, First and Second order spaces seem to consist of a relatively uniform
set of possible behaviours, compared to higher-order spaces. This property is, of
course, directly related to diversity. However, idiosyncratic behaviour in a space
may indicate more than just a lack of diversity; certain mappings may feature a
distinct overall behaviour of their algorithms that may be considered unique.
Third and fourth order spaces contain numerous instances of a dynamic that is
distinctly “fluid”, featuring semi-stable structures (shown in Figure 66). These
behaviours do not appear to be present at all in first or second-order spaces, and
quite hard to locate in fifth and higher orders.

Containment

The recursive definition for different orders of Type-U raises a question
regarding the extent to which low-order mappings are contained within high-
order ones. The notion of containment can be referred to as the degree of overlap
between different orders, and more generally, between different CA
combinatorial spaces. While containment may be easy to assess in regards to the
genotype, this does not necessarily translate to the phenotype. Not one of the
144 algorithms in the first-order space can be found in the second order. For
instance, the behaviour U(V4.r,V.b) simply cannot be formulated as a second-
order algorithm since there are no operations of type F(V.C, V.C) that return
neither V4.r nor V.b. In fact, the recursive introduction of operators for all
subsequent higher-orders precludes explicit genotypic containment. This,
however, does not mean that the phenotypic behaviour invoked by U(V4.r,

Figure 65.
Histogram of U(V8.g,V.r) after 30
steps.

Figure 64.
Histogram of U(V8.b,V.r) after 30
steps.

Figure 66.
TU68 exhibits fluid-like dynamics in
second order Type-U. This dynamic is
most commonly found in third order
algorithms.

https://utomata.net/phd?edt=TU68

106

V.b) cannot be approximated to an arbitrary degree by a higher-order
algorithm.

In any case, lower order containment in Type-U mappings can easily be
achieved by simply incorporating two values — 0.0 and 1.0 — into the variables
domain. This would result in numerous permutations that contain addition of
0.0 and multiplication by 1.0, which would ensure the presence of all lower-
order expressions in all higher-order mappings. Moreover, these algorithms are
likely to be featured many times over due to operator symmetry. However, this
would also result in the unavoidable inclusion of algorithms that feature
addition of 1.0 and multiplication by 0.0, which may or may not be desired.
Referring to the example above, the operation of type F(V.C, V.C), which
represents a single delta component of a second-order algorithm, would now be
able to return V4.r in four different ways: add(V4.r,0.0), add(0.0,V4.r),
mlt(V4.r,1.0) and mlt(1.0,V4.r). While this would indeed ensure
containment, this redundancy would quickly stagger, flooding higher-order
mappings with numerous instances of redundant behaviour. For this reason,
these values were excluded from the mapping parameters explored in this
study.

6.2.4 Summary

This section offers an examination of the characteristics of Type-U spaces. It
discusses number of unique properties which make them highly suitable for
exploration via Spatial Mapping. The section also discusses some of the
limitations, complexities and open questions regarding Spatial Mapping of
Type-U, as well as CA algorithms in general. It serves a dual function, both as a
broad introductory review of Type-U algorithms, as well as a case study for CA
exploration through Spatial Mapping.

6.3. Phenotypic Properties
Type-U algorithms present a number of unique characteristics and notable
differences from many established CA algorithms. Perhaps the most notable of
which is the fact that new state values cannot be created by the transition
function. Instead, particular colour values can only persist by shifting between
cells as they get selected, or otherwise become removed from the system. The
following section offers an initial review of Type-U phenotypic properties,
derived from preliminary observations and explorations of various spaces.
These are mostly qualitative characterisations and are meant to reflect general
properties of Type-U, in line with the scope of this expository study, and more
broadly, with the aims of this thesis. Once again, significant further research is
needed in order to obtain a more comprehensive understanding of Type-U
phenotypic behaviour.

6.3.1 Heterogeneity

The previous section discussed the composition and diversity of various
distinctive behaviours of Type-U algorithms, as they arise in their respective
combinatorial spaces. However, composition and diversity can also be discussed
in the context of individual algorithms. The range of phenomena which can arise
from the dynamics of a given algorithm represents an important aspect of its
potential value. In Type-U, this can be measured in terms of structural and
colour diversity.

The strong correlation between structural formations and colour in Type-U
makes it exceedingly difficult to consider them separately. While the

A study of Type-U

LABORATORY OF BABEL

107

composition of colour in a currently running system can be evaluated via a
histogram analysis, there are no precise equivalent heuristics to measure
structural patterns. Moreover, the temporal aspect is of key significance, both in
terms of evaluating patterns, and comparing between them. In some algorithms,
discernible patterns may develop (and dissolve) in only a few dozen steps, while
in others this process may take thousands of steps, or may never arise in the first
place.

There are some genotypic markers which could help predict whether or not an
algorithm will develop certain discernible behaviours. For example, the
presence of the div() operator and the Extended Moore neighbourhood both
appear to induce more erratic overall behaviour. While their presence may
sometimes be correlated to volatility, presumably due to the presence of larger
delta values, the degree to which this is the case requires further targeted
studies.

6.3.2 Convergence

Convergence relates to the range of possible outcomes an algorithm may exhibit
from different random configurations. More specifically, its tendency to
converge towards a particular outcome. Highly convergent Type-U algorithms
can be characterised as being prone to being taken over by the same particular
pattern on multiple separate runs, while divergent algorithms are typically
characterised by a more balanced dynamic between the various phenomena
they exhibit, either throughout their evolution or towards their possible terminal
states.

This tendency towards particular outcomes in Type-U algorithms can also be
regarded as a bias that favours certain emergent patterns or behaviours over
others. This should not be confused with deterministic behaviour in regards to
configuration, as discussed in relation to the use of pseudorandom values earlier
in this chapter. In that regard, all Type-U algorithms are explicitly deterministic
in the sense that a given configuration will always evolve towards the exact same
output on multiple different runs. Some convergent Type-U algorithms feature
such a strong bias towards particular dynamics that certain patterns predictably
“take over” the entire system in all, or almost all runs. Universally common
properties of such patterns have not been identified at this time. However, this
dynamic is speculated to be akin to a process of natural selection, whereby
patterns which best fit their environment — the particular dynamic imposed by
the algorithm — are the ones who ultimately get to persist.

While there is, of course, some degree of co-dependence between heterogeneity
and convergence, they are not necessarily coupled. A Type-U algorithm may,
throughout its evolution, feature a relatively diverse set of structures and still
present a tendency towards a particular terminal state. Likewise, an algorithm
may only be capable of supporting a small set of discernible structures overall,
yet still feature a balanced dynamic that does not demonstrate a clear tendency
towards any particular terminal outcome.

6.3.3 Levels of Organisation

Structural patterns in Type-U algorithms can be thought of as embodying a
symbiotic relationship between different colours within localised regions. The
particular composition and arrangement of any given group of colours,
combined with the unique dynamics of the underlying transition function is
what allows them to maintain their relationships to one another and persist over
time. This may involve either moving or static regions of varying sizes and
complexities, as well as fluctuating patterns that periodically change their own

Figure 67.
TU59 typically converges towards the
same behaviours, patterns and colours.

Figure 68.
Diverse colour regions in TU8.

https://utomata.net/phd?edt=TU59

108

structure. It is important to emphasise that all such structures are strictly self-
assembled; they emerge through a process of natural selection, whereby
structures that cannot maintain a stable internal structure or a sustainable
relationship with their environment are forced to make room for ones that can.

Type-U dynamics generally appear to favour arrangements of high contrast;
smooth and gradient patterns are uncommon, though this may be, at least in
part, a result of the fully random configuration used throughout this study.
Structural patterns themselves may feature varying degrees of diversity, with
some clearly consisting of only two colours, while others may be formed as a
collaboration of five or even more. Distinct structures may form almost
instantaneously upon configuration, often as a swift reaction to the initial
configuration of random colour values. Alternatively, some structures may arise
at a much later stage, either as a result of a clash between previously unrelated
formations, or as a result of the demise of a pattern which was holding them
back.

Obtaining a clear definition of what a structure actually is in Type-U is not a
trivial task. While distinct patterns such as gliders may sometimes emerge (see
Figure 72), in most cases Type-U patterns exist along a continuum, mixing into
one another, often forming non-distinct boundaries between them. Many
patterns in Type-U emerge from highly complex interactions in their
surrounding environment and simply cannot be isolated or even considered
apart from it. Even when distinct boundaries do appear, this may or may not
indicate a symbiotic relationship between patterns at a higher level of
organisation.

Type-U algorithms have a distinct dynamic which differs from many other types
of CA. This may necessitate a different way of thinking around structure
formation and emergence in Type-U. For example, a glider in GOL consists of a
persistent, moving arrangement of white cell states within a uniform, static
black environment. However, in Type-U it may be the glider which is standing
still within a moving environment, which itself is often far from uniform.
Moreover, it may very well be that this glider actually emerged as a result of
distant minor fluctuations which somehow staggered and permeated across the
grid in a manner which cannot be recreated when attempting to isolate it, even
within its immediate environment.

To that extent, adopting a holistic, qualitative approach, whereby all Type-U
structures are considered as co-evolving alongside each other, may be
preferable to a strict classification or taxonomic approach. This also aligns with
how many other nonlinear systems are generally viewed, namely, not only as
large sets of interacting components but as parts of a larger ecosystem that
exhibits multiple levels of organisation and co-dependance. The self-assembled
nature of Type-U structures and the reductive nature of their transition
functions effectively force an implicit process of natural selection. This process
differs from explicit evolutionary algorithms, such as those created by Sims
[102], [118], [120], where selection is made by an external, uniform fitness
function. Here, a structure’s ability to both assemble and persist depends
entirely on its ability to maintain stable internal and external interactions.

Nevertheless, Type-U structures do consist of distinct patterns that exhibit
distinct behaviours, which can be captured qualitatively. In regards to levels of
organisation, they can be categorised as follows. If an individual cell in a CA is
regarded as an indivisible universal module, then a first-order structure
(exemplified in Figure 69) can be defined as a persistent local arrangement
consisting of more than one cell. Notably, such structures may still span large
regions of the grid, as it is not their overall size that defines them but the level of

Figure 69.
First order structures in TU37.

Figure 70.
Second order structures in TU37.

Figure 71.
Third-order structure in TU37.

A study of Type-U

https://utomata.net/phd?edt=TU37

LABORATORY OF BABEL

109

intricacy of their underlying dynamic. A second-order structure (Figure 70) can
be defined as a persistent local arrangement consisting of more than one first-
order structure. These can be characterised by embodying a do-dependancy
between their underlying structures. Second-order structures may exhibit a
cyclic or shifting dynamic, stemming from interactions between their
constituent parts. Likewise, a third-order structure (Figure 71) can be defined as
a persistent arrangement of second-order structures, and so on.

6.4. Qualitative Characterisation
Stephen Wolfram’s seminal work on Elementary Cellular Automata (ECA) [48],
[73] stands as one of the few existing examples of a comprehensive study of a
combinatorial space of CA algorithms. Another notable example is Christopher
Langton’s paper: Computation at the edge of Chaos [43]. Though the two studies
are hard to compare in scope, both represent key precedences for this thesis.
Among Wolfram’s earlier studies of ECA, he provides the following classification
of their phenotypic behaviour:

1. Evolution leads to a homogeneous state
2. Evolution leads to a set of separated simple stable or periodic structures
3. Evolution leads to a chaotic pattern
4. Evolution leads to complex localised structures, sometimes long-lived
[43]

As noted in Chapter 2, the above classes were originally presented as a
“qualitative characterisation of cellular automaton behaviour”. In the lack of
subsequent well-established research on classification of CA, this
characterisation has since obtained an unofficial status as a commonly accepted
general classification of CA algorithms, yet it appears it was not originally
formulated as such. Wolfram’s characterisation can serve as a useful litmus test
for examining preliminary observations of novel CA behaviour and is therefore
suitable to serve as a foundational framework for characterising the findings of
some of the exploratory studies presented in this chapter. It is both general
enough to account for phenomena that can be observed in CA, yet still useful in
defining principle differences between its four classes. These may even be used
as a system for assigning value to CA algorithms, with class 4 attributed to
algorithms of high potential value.

However, it may be useful to devise a qualitative characterisation that is better
suited for Type-U phenotypic behaviour, which takes into account the
preliminary findings presented in the previous sections. Such an adaptation
would attempt to resolve a number of issues and inconsistencies that arise when
applying Wolfram’s characterisation to Type-U algorithms, which present
notably different phenotypic properties from ECA. These are hereby presented,
followed by a proposed adaptation of Wolfram’s characterisation specifically
tailored to Type-U.

Maximalist configuration

The fully random configuration of Type-U, used throughout this chapter, is an
explicit attempt to maximise the range of observable emergent phenomena. As
previously discussed, this approach addresses the highly subtractive nature of
the algorithm. Once configured, the majority of Type-U systems progressively
resolve towards a relatively ordered state. This contrasts with many well-
established CA algorithms, where configurations are often minimal, such as
altering the value of a single cell, most notably in ECA. In many cases, CA
practitioners may avoid using random configurations to reduce the system’s
reliance on pseudorandom values. By doing so, the reliability of emergent

110

structures generated by consistent rules may be less influenced by randomness,
potentially allowing their underlying emergent properties to be observed more
clearly. However, it is important to note that the reasoning behind these choices
is often context-dependent and may vary between different implementations
and studies.

The assumption of a minimalist configuration function appears to be baked into
Wolfram’s class 3, as evolution towards chaotic behaviour is ranked relatively
high. Commonly, CA that develop chaotic patterns from a minimalist
configuration are indeed noteworthy, as pointed out by Wolfram. However, in a
maximally configured CA such as Type-U, the presence of persistent chaotic
patterns more likely indicates an inability to generate any discernible emergent
patterns from the original random configuration. If anything, this property
should therefore grant it a relatively low rank in the context of Type-U.

Homogeneity

A “homogeneous state” is characterised by class 1 as the lowest-value CA
behaviour, as it signifies the evolution of a system towards trivial or “sterile”
formations. While this characterisation is appropriate for additive algorithms
such as ECA, RD and Abelian Sandpile, a homogeneous global state is not a trivial
case in Type-U. It indicates that a single colour has taken over the entire system,
a dynamic which may or may not constitute a behaviour of interest. In any case
it should be noted that this constitutes the furthest possible state from the
system’s initial random configuration.

Continuous state

Class 2 characterises CA systems that settle to “a set of separated simple stable
or periodic structures”. This description does find some equivalence in Type-U.
Stable periodic structures do often arise and are especially common in first and
second order spaces. However, in regards to non-oscillating patterns, stable
structures that traverse the grid at a constant rate should not be considered
different from stable structures that are standing still. Constant motion in Type-
U is often a result of a directional bias that is inherent in many algorithms. It is
thus highly common for algorithms to feature homogeneous, constant motion
towards a particular direction. In these cases, the emergence of meaningful
patterns can only occur when some regions go against their environment’s
overall direction.

Type-U algorithms are, in-effect, continuous state CA. They feature fuzzy
borders and sensitive symbiotic relationships between structures and colours.
Thus “separated” is also not an ideal descriptor of their behaviour, as it again
assumes the development of discrete patterns in a uniform environment and
likely assumes a discrete state. For example, gliders and distinct moving
patterns are comparatively rare in Type-U, though they do sometimes exist.
More common are aggregated structures that develop into stable distinct
formations, which then traverse the grid at a constant rate. As previously noted,
it is typically the internal formation of structures that is of particular interest,
rather than their traversal, which can be cancelled out in relation to their local
environment.

Between stability and chaos

Wolfram’s classification effectively outlines a spectrum of CA behaviour, starting
from uniform — to simple — to chaotic, and lastly — complex. While this is not
explicitly stated, this characterisation implies that class 4 algorithms are of
potentially higher value, as it is often assigned to well-established and notable
algorithms such as GOL. However, it is clear that Wolfram’s implicit assumption

Figure 72.
Glider gun in TU8.

A study of Type-U

LABORATORY OF BABEL

111

of a minimal configuration and additive dynamics are incongruent with the
inherent properties of Type-U. Not only do the configurations and dynamics of
Type-U algorithms operate in opposition to this assumption, but the ranking of
chaotic behaviour residing between simplicity and complexity simply does not
align with observations of Type-U thus far.

The presence of ordered and chaotic patterns in Type-U is directly correlated
with the length of the vectors created by the transition function. Algorithms that
feature heavy use of division and high-value variables such as V24, appear to
feature more chaotic behaviour overall. Similarly, algorithms that distinctly
feature low-value variables and lower-impact operators, such as addition and
subtraction, tend to exhibit simple, uniform, and static formations.

In any case, the emergence of complex structures does not appear to be
correlated with either low or high-impact variables or operators. Instead, it more
likely results from a delicate balance between chaotic and stable dynamics.
Complex patterns seem to arise when the interplay between cells and cell states
is potent enough to allow for the reorganisation of novel structures.
Simultaneously, these interactions must be stable enough to prevent these
structures from dissipating. Highly reactive, chaotic, and volatile interactions
appear incapable of sustaining complex high-order structures, as these likely
require some degree of aggregation in order to form and persist. On the other
hand, highly rigid, sterile, and stagnant interactions appear to hinder the
development of complex structures in the first place. Consequently, complexity
in Type-U can more appropriately be characterised as arising from a delicate
balance between simplicity and chaos.

The idea of class 4 residing between class 2 and class 3 has been previously put
forward by Langton et al. [43, p. 32]. The concept of “edge of chaos” describes a
delicate balance whereby emergent behaviour is neither too orderly nor too
chaotic, but positioned on the brink of criticality. It proposes that solid and fluid
are phases of matter that constitute “two fundamental universality classes of
dynamical behaviour”, separated by a phase transition. According to Langton, it
is within that transition region that the basic mechanisms for emergent
behaviour resides.

While the initial alignment of Langton’s ideas with Type-U dynamics seems
promising, it is important to note that applying Langton’s proposition to this
study remains speculative at this stage. Moreover, it should be emphasised that
this thesis does not engage with the profound implications that Langton’s and
Wolfram’s research have for universal aspects of CA, computation, and the
origins of life and the universe. Instead, it only advocates for open-ended
exploration of CA and offers novel tools for doing so.

1. Evolution leads to simple stable or periodic structures
2. Evolution leads to complex localised structures, sometimes long-lived
3. Evolution retains a chaotic pattern

A proposed adaptation of Wolfram’s classification for Type-U is thus presented
above, incorporating the following adjustments: removing the term “set of
separated” due to its implicit assumption of additivity and discreteness;
replacing “leads to a chaotic pattern” with “retains a chaotic pattern,” as the
latter more accurately represents a trivial case in Type-U; eliminating Class 1, as
it does not constitute a trivial case; and swapping the ranks of “chaotic” and
“complex” to better reflect the observed characteristics of complexity in Type-U.
These modifications refine the classification to align more closely with the
emergent properties observed in Type-U systems.

112

Temporal Undecidability

The temporal dimension plays an important role in CA and it is worth noting that
the characterisations discussed above leave certain temporal aspects
unaddressed. Specifically, the number of time steps required for a system to run
before it can be classified is never stated. Wolfram’s terminology, particularly
the phrase “leads to”, keeps this temporal aspect somewhat vague, leaving it up
to researchers to determine when exactly in its evolution a system is to be
classified. In Type-U this is amplified by the fact that a single algorithm’s
behaviour can exhibit a dynamic process encompassing all three classes. For
instance, it may start with a highly chaotic pattern, gradually evolve to form
complex structures, which may then subside and dissipate, giving way to a
simple or even uniform state.

A further challenge lies in the fact that some Type-U algorithms may remain in
their initial chaotic state for a significant duration before undergoing a global
phase transition to one of the other classes. Consequently, classifying these
algorithms becomes a potentially undecidable task. The temporal evolution of
Type-U systems therefor introduces an additional layer of complexity and
variability, which should be taken into account when classifying their behaviour.
More generally, the temporal aspect is particularly impactful in exploratory
studies that are based on direct visual examination such as this one, in which
late stage phenotypic behaviours are very likely to be missed.

This section discusses qualitative characterisations of Type-U phenotypic
behaviour, drawing on the foundational classifications established by Stephen
Wolfram. It discusses the relevance and limitations of Wolfram’s four classes of
CA behaviour when applied to Type-U algorithms, which differ significantly
from ECA. The section proposes an adapted classification scheme that is better
suited to capture the unique properties of Type-U. Based on Langton’s work, this
adaptation suggests that the emergence of complex structures in Type-U may
arise as a phase transition between chaotic and ordered dynamics.

6.5. summary
This chapter introduces a new family of CA algorithms, called Type-U. It offers
an examination of a range of Type-U algorithms, as well as the combinatorial
spaces they occupy. The chapter discusses a number of their distinct genotypic
and phenotypic properties and provides metrics for qualitative evaluation and
categorisation. It demonstrates how the Spatial Mapping method can be used to
conduct an in-depth exploratory study of novel algorithms and dynamics. Type-
U algorithms posses a number of unique characteristics which make them
particularly well suited for exploration using this method. These include their
recursive formal definition, strong correlation between genotype and phenotype
and their strong tendency to yield discernible behaviour.

This study primarily relies on manual explorations and visual examinations in
Utomata Lab, suggesting that such an interactive approach can be useful for
gaining insights into the properties and behaviours of novel CA algorithms. This
preliminary study can thus serve as a foundation for more targeted future
studies of Type-U algorithms, or as a framework for future exploratory studies of
other CA algorithms.

The next chapter presents a curated collection of Type-U algorithms which
feature noteworthy phenotypic properties. While these, of course, represent
only a minuscule fraction of possible Type-U dynamics, they represent the
unusually wide range of Type-U patterns and behaviours that have been
observed over the course of this study.

Figure 73.
TU57 is an example of a late stage phase
transition in Type-U. It typically takes
around 450 steps for it to resolve into its
characteristic behaviour

Case Studies

https://utomata.net/phd?edt=tu57

LABORATORY OF BABEL

113

7.Case Studies
This chapter presents a curated collection of Type-U algorithms and provides
qualitative characterisations of their phenotypic properties. These algorithms
were largely discovered through excursions into various Spatial Mappings, and
were each selected for their unique properties. Together, they constitute a
representative group of the range of Type-U behaviours observed in this study.

7.1. TU8

U(
 div(add(V8.g, V4.g),sub(V.r, V24.b)),
 sub(sub(V4.g, V.b),div(V24.g, V24.g))
)

TU8 is a third-order, class 2 Type-U. The expression features two layers of
operators, which include two additions, three subtractions and two divisions. It
contains references to all four neighbourhood symbols (V, V4, V8 and V24),
five of which refer to the green channel. Notably, the last operator in the
algorithm, div(V24.g,V24.g) , always returns a value of 1.0. The algorithm’s
dynamics feature a rapid initial tendency to form isolated chambers, allowing an
unusually diverse range of structures to develop in each one. Its observed types
of phenomena include highly stagnant regions, compound moving imprinted
formations, shape shifting formations and highly turbulent dynamics. Its
tendency for encapsulation also allows sustained activity over large periods of
time.

Dynamics in TU8 consist of a pronounced east-bound directional bias,
combined with a strong tendency for resilient, stagnant formations. Upon
configuration, the initial reaction is rapid and consistent throughout the grid,
with most of its characteristic structures emerging within a few dozen steps.
This initial reaction also produces the vertical columns which, combined with
its directional bias, divides the grid into distinct rectangular regions, with some
forming rough, yet distinct borders. Since this subdivision occurs shortly after
configuration, these chambers act as “incubators” that contain a high amount of
colour diversity, still remaining from the initial random configuration. This
results in unusual overall structural diversity, as unique dynamics develop in
relative isolation inside each chamber. Likewise, colour diversity is relatively
high, with an initial bias towards low green and blue values, which typically
tapers off after a few hundred steps, eventually settling in to a more balanced
spectrum on all three channels.

Some isolated chambers feature highly volatile and turbulent dynamics, with
single cell sized strands of as many as ten distinct colours. Other chambers may
feature much more stagnant and uniform behaviour, even to the extent of
forming large, single colour, stagnant regions. Overall, there appears to be a
positive correlation between local colour diversity and the east-bound
directional bias. Stagnant and uniform colour regions also appear to be much
more resilient than moving, turbulent and diverse structures. This applies to the
vertical columns that initially divide the grid, thus accounting for encapsulation
that persists over sustained periods of time.

Given enough time, some capsule walls do eventually give in to corrosion,
allowing active and volatile patterns to seep out of their incubators. This

Figure 74.
Histogram Analyses of TU8 at 10, 100,
1000 and 10,000 steps.

114

Case Studies

TU8
Figure 75.
Specimen collection from TU8.

https://utomata.net/phd?edt=TU8

LABORATORY OF BABEL

115

introduces late stage novel formations into the system, as fully developed,
previously unrelated patterns suddenly come into contact and form new, often
surprisingly potent reactions. Late stage reactions can become highly corrosive,
resulting in major shifts and secondary collapses, in turn, introducing high
levels of activity into otherwise stagnant systems at very late stages of their
development (upwards of 20,000 steps).

As a notable class 2 algorithm, it features a significant capacity for the
emergence of higher-order structures. However, this does not appear to be an
overwhelming tendency. Most characteristic active behaviours typically feature
bounded, localised cell arrangements of 10-20 cells in two or three distinct
colours. These often feature short cyclic behaviours in the form of elongated
structures, comb-like formations, various grid formations and thick diagonal
columns. Simple repetitive structures can often merge with each other to form
chaotic rhythms that overlap, forming second and third-order structures. The
directional bias can sometimes take form as a range of local velocities, resulting
in higher-order formations and unique symbiotic relationships within the same
encapsulated region.

In some cases, small regions appear capable of spawning unusually diverse
colours, not present anywhere in their immediate environment. Since new
colour values cannot be introduced in Type-U — only moved around — this
implies that in particular circumstances the transition function may return
unusually high X and Y delta values, pulling in colours from remote regions. This
is presumably a result of the presence of the div() operator and the V24
neighbourhood, both of which can potentially return arbitrarily high values.
However, this is assumed to be a rare occurrence, since such a dynamic would
not allow the apparent encapsulation, that is characteristic to this algorithm, to
take place.

Intricate formations sometimes appear to be extruded from “nozzles”. These are
small, centralised, high velocity regions that culminate in one or two static cells,
thorough which heavy colour variations are rapidly expelled. Combined with the
east-bound directional bias, this creates imprints of distinct repetitive
formations, reminiscent of objects moving along an assembly line. In more rare
cases, more than one such nozzle may be present, which may significantly
compound the complexity of the resulting imprints.

Other types of generative and extruding formations have also been observed.
“Water fall” formations have a similar capacity for imprinting formations,
however these typically span a larger area than nozzles and tend to feature
slower dynamics. Other generators are reminiscent of “glider guns” in GOL,
extruding small and simple preconfigured arrangements of colours at regular
intervals (see Figure 72). The various ways in which generative patters in TU8
may compound are staggering. In some instances, higher-order generators may
form. They act as valves that open and close periodically, intertwining their
output to produce exceedingly complex patterns.

Despite its high structural and colour diversity, behaviour in TU8 is relatively
convergent, with a strong tendency for the same colour distribution and overall
measure of directional bias on multiple separate runs (seen in figure 76). The
algorithm’s stages of development are also quite predictable. The initial
encapsulation occurs within the first 50-100 steps, structural variation usually
peaks at around 600-800 steps, followed by a sustained gradual decay, caused by
occasional erosions of capsule walls. Unless perturbed by leakage from
collapsed neighbouring chambers, regions that have settled into a stable
dynamic will persist indefinitely. This allows the algorithm to retain diverse,
complex and potent activity over an indefinite timespan.

Figure 76.
64 separate runs of TU8 reveal overall
convergent behaviour.
(128*128, 2000 steps)

116

Case Studies

Figure 77.
Specimen collection from TU72.

https://utomata.net/phd?edt=TU72

LABORATORY OF BABEL

117

7.2. TU72

U(
 sub(V9.b,V9.g),
 div(V4.g,V9.g)
)

TU72 is a second-order algorithm featuring overall uniform, yet highly distinct
characteristic meandering patterns. While similar pattern types have been
observed in other Type-U algorithms, an overwhelming presence of such types
appears to be extremely rare. The algorithmic expression features subtraction
and division, and a combination of V9 and V4 neighbourhoods, consisting of the
green and blue channels.

Overall dynamics are uniform and stagnant, with a north-north-west directional
bias, reminiscent of a “bubbling up” process. After configuration, the system
settles into semi-stable formations within a few hundred steps, but continues to
percolate indefinitely. The slow and steady flow of north-bound corrosive
patterns appears to form at the edges of thin vertical lines, typically manifesting
as dotted lines of single-cell formations. They travel through a substrate of
mostly stagnant, less resilient formations, thus keeping the system in constant
flux. The slow and sustained dynamic eventually reduces the overall range of
unique formations, potentially leaving only one or two “triumphant” patterns.
Exceptionally turbulent local dynamics are sometimes evident, though their
corrosive properties are not necessarily proportional to their level of activity.

This algorithm is highly heterogeneous, with all types of formations ultimately
sharing a high degree of similarity in their dynamics, complexity, velocity and
appearance. Emergent structures differ mostly in terms of their unique colour
combinations, slight variations in scale, as well as their level of activity and
corrosiveness. However, its many colour formations are separated by distinct
boundaries and differentiation patterns. The vast majority of regions appear to
consist of just two primary colours, with some instances featuring no more than
five. However, there appear to be instances where a given colour pattern spans
multiple neighbouring backdrop colours, indicating that there may be several
layers of symbiotic relationships between colour patterns, allowing them to span
multiple regions.

Limited by its homogeneous nature, this algorithm is also relatively convergent,
with some distinct variations across separate runs, likely stemming from
compounded variations of the random configuration pattern. Unlike TU8, which
features significant encapsulation, the neighbouring relationships between
different regions in TU72 can play a key role in pattern development. Any two
patterns may react differently to one another when coming into direct contact.
In some cases, a strict, rough boundary will form between them, allowing both
to persist. In other cases, a third pattern may emerge as a potent reaction
between the two. Alternatively, it may be that one pattern will simply absorb the
other, while possibly enduring some level of mutation in doing so.

7.3. TU70

U(
 div(V.b, V.r),
 div(V24.r, V24.b)
)

Figure 78.
Histogram Analyses of TU72 at 10, 100,
1000 and 10,000 steps.

Figure 79.
64 separate runs of TU72.
(128*128, 5000 steps)

118

Case Studies

Figure 80.
Specimen collection from TU70.

https://utomata.net/phd?edt=TU70

LABORATORY OF BABEL

119

TU70 features highly unusual phenotypic behaviour for a second-order Type-U
algorithm. Its transition function features two division operators which dictate a
particular dynamic between the red and blue channels: deltaX is the result of the
blue over the red cell value (V.b/V.r) and the deltaY is the result of the
Extended Moore neighbourhood reds over blues (V24.r/V24.b). This creates
a pronounced, uniform presence of green values and a narrow, yet distinct,
range of cyclic linear formations.

Dynamics consist of two distinct types of patterns which move along different
directions. The first is a stagnant, stable arrangement of colours with rough,
nondescript edges. It features a steady west-bound directional bias and seems to
preserve much of its initially configured random colour values. As these
patterns move horizontally, their top edges appear to “evaporate”, thus forming
a second pattern type. It consists of highly corrosive, sparse vertical formations
that move along a strong, non-uniform, north-bound directional bias. The colour
diversity of these regions can be significant, apparently stemming from the
retained randomness of their substrate. These pattern types appear to feature a
range of turbulent dynamics that traverse the grid at various velocities. However,
the development of complex interactions within these regions appears to be
inhibited by their pronounced directional bias. Instead, they feature a
considerable diversity of vertical, first-order cyclic formations. This includes
triangular formations of various sizes and orientations, dashed and dotted lines,
thin horizontal stripes, as well as thick diagonal patterns.

Vertical formations are highly corrosive. They destroy everything in their path
almost immediately upon contact. As a result, the stagnant, west-bound
formations are relatively short lived, typically taking around 500-700 steps to
completely disappear. At that point, all north-bound regions which feature
different velocities begin to erode each other. Their reactions sometimes form
static residual patterns that are more resilient to erosion. The system typically
reaches a state of equilibrium within 2000-4000 steps, as all opposing vertical
dynamics are resolved. This usually leaves a very limited set of simple, cyclic
formations that traverse the grid along a uniform vertical velocity, marking a
relatively early end to all potent activity in the system.

7.4. TU76

U(
 sub(
 sub(div(V.r, V.g),mlt(V.b, V8.g)),
 div(sub(V4.g, V4.b),add(V9.g, V8.b))
),
 sub(
 div(div(V8.g, V4.b),sub(V9.g, V4.a)),
 div(mlt(V.r, V9.r),add(V.r, V24.r))
)
)

TU76 is a fourth-order algorithm consisting of two distinct, competing pattern
types. Initial configuration triggers an immediate, strong differentiation
between colour values. In only a few dozen steps, blue values are concentrated at
the low end of the spectrum, while red and green values are concentrated at the
high end. At this stage, the system is completely washed by a heterogeneous and
turbulent, class 3, yellow-pink substrate with a mild east-bound directional bias.
This pattern gradually gives rise to more ordered pink formations that may form
large triangular regions and some second-order structures.

Figure 82.
16 separate runs of TU70.
(128*128, 1000 steps)

Figure 81.
Histogram Analyses of TU70 at 10, 100,
1000 and 10,000 steps.

120

Case Studies

Figure 83.
Specimen collection from TU76.

https://utomata.net/phd?edt=TU76

LABORATORY OF BABEL

121

The second pattern type consists of class 1, dark blue regions that emerge as a
late stage phase transition which seems to occur in approximately 10% - 20% of
runs (depicted in figure 84). They initially break out as small separate pockets
within the uniform yellow-pink substrate. When they manage to persist through
their initial window of opportunity at around 100 steps, these blue regions
typically take over the entire system within the first two thousand steps.

Late stage phase transitions such as this one are relatively rare among the many
algorithms observed in this study. However, as previously noted, such patterns
are very likely to have been overlooked in this exploratory study. Since it
involves sifting through thousands of algorithms and selecting noteworthy
behaviours based on visual differentiation, this methodology is heavily biased
towards algorithms that instantly present unique behaviours.

Discounting its unique phase transition, this algorithm is highly convergent.
Both of its dominant pattern types are relatively uniform, with some notable
structural diversity apparent in each one. However, the particular interaction
between the two types is nonetheless noteworthy. The manner in which yellow
patterns ultimately dissolve to form sparse linear formations within the blue
regions is highly reminiscent of sedimentary dynamics. Other exceptional
distinct reactions can also occur, including pronounced vertical and diagonal
regions, as well as distinct fluctuating patterns of sparse yellow formations,
which manage to survive the initial phase transition. These fluctuating patterns
may be linked to the presence of the div operator, though this has not been
verified.

While TU76 exhibits relatively convergent and homogenous dynamics, It
indicates a wider potential for unusual and surprising phenotypic behaviour in
fourth-order Type-U. While fifth and higher order Spatial Mappings are
exceedingly difficult to sift through, they are also likely to feature many unique
behaviours that are not present in lower order mappings.

7.5. TU37

U(
 sub(mlt(V8.b, V8.b),sub(V8.g, V.b)),
 add(add(V4.r, V.r),sub(V.r, V24.b))
)

TU37 is a third-order Type-U which features a range of highly turbulent
dynamic patterns, some of which resolve to form stable, organised structures at
unusually late stages of development. The transition function refers to a range of
neighbourhood types from the red and blue colour channels and features
addition, subtraction and multiplication. The algorithm sustains high activity
over long periods but, given enough time, is eventually overtaken by its most
turbulent patterns.

Initial configuration becomes resolved within approximately 100 steps,
consistently resulting in mostly low blue and green values, and high red values.
This forms the algorithm’s characteristically narrow colour palette. Directional
bias is omnidirectional, as patterns propogate in all four primary directions. In
addition, a number of distinct static formations are evident, as well as large
regions of solid colour, though these are typically the first pattern types to be
eradicated in sufficiently large grids.

Prominent vertical formations sometimes also emerge, going against the
algorithm’s typical turbulent dynamics. This unusual combination of

Figure 85.
Histogram Analyses of TU37 at 10, 100,
1000 and 10,000 steps.

Figure 84.
16 separate runs of TU76.
(256*256, 2000 steps)

122

Case Studies

Figure 86.
Specimen collection from TU37.

https://utomata.net/phd?edt=TU37

LABORATORY OF BABEL

123

Figure 87.
Specimen collection from TU78.

https://utomata.net/phd?edt=TU78

124

Case Studies

Figure 88.
Specimen collection from TU79.

https://utomata.net/phd?edt=TU79

LABORATORY OF BABEL

125

omnidirectional movement, static formations and vertical towers sets it apart
from other similar third-order algorithms. These three pattern types exhibit
nearly equal corrosive power. Their constant clashes sustain the system’s high
potency over extended periods. This balanced power dynamic also makes this
algorithm quite divergent, as almost any pattern may ultimately become
“triumphant” on multiple separate runs (as seen in Figure 89).

Some collaborative patterns and symbiotic relationships have been observed to
form higher-order class 2 structures, consisting of both turbulent and stable
dynamics. These may take form as two equally powered formation types, with
opposing directional biases that maintain a stable relationship with one another
(see figure 71). Considering its highly constrained colour palette, TU37 supports
a surprising variety of patterns and behaviours. All distinct formations appear to
consist of just two colours, indicating that a wide range of strategies for self-
organisation and persistence in Type-U may be possible with much more
constrained configuration patterns than the fully random configuration used.

7.6. TU78

U(
 sub(sub(V8.r, V4.r), div(V24.r, V24.r)),
 add(sub(V.b, V8.b), div(V8.g, V.b))
)

TU78 is a third-order algorithm that features a unique combination of turbulent
dynamics, periodic static formations and large regions of solid colour. Similar to
TU37, its directional biases are relatively balanced. Cyclic and solid regions are
typically static and most active patterns are typically north-west bound. Some
linear formations feature a unique “trickle-down” effect, akin to dropping sand
dynamics. Colour diversity is overall quite minimal, with most distinct patterns
consisting of just two colours.

TU78 features unusual support for very large solid masses, intricate diagonal
dotted patterning and long vertical formations. Unique branching formations
and second-order grid textures are also sometimes evident, as well as distinctly
unique triangular patterns with rounded corners. Distinct fractal patterns are
also evident in the form of Sierpinski triangles. Considering its constrained
colour palette, TU78 can be considered highly heterogeneous and divergent. Its
numerous pattern types present a surprisingly balanced power dynamic, in
which any one pattern may suddenly begin to thrive. This also contributes to
sustained long term activity.

7.7. TU79

U(
 add(div(V8.g, V4.b),sub(V.g, V.r)),
 mlt(div(V24.g, V4.r),sub(V.r, V.g))
)

TU79 presents distinct similarity to structures found in TU78, though it is
notably less temperamental. It features a strong west-bound directional bias,
whereby almost everything traverses the grid at a constant rate. Localised north-
bound regions of turbulent and solid colour formations act as the prime
instigators of change in this algorithm. Upon configuration, the grid rapidly
forms most of its stagnant patterns. These are characterised by long horizontal

Figure 89.
16 separate runs of TU37.
(128*128, 2000 steps)

Figure 90.
16 separate runs of TU78.
(128*128, 5000 steps)

126

Case Studies

white strips, forming over a dominant blue backdrop. Some colour diversity is
retained in distinct localised “pockets”, alongside a range of textured grid
patterns and diagonal solid regions, which sometimes contain vertical columns.
Sparse Sierpinski-like fractal formations, as well as a range of imperfect semi-
fractal triangular formations are also sometimes evident.

7.8. TU68

U(
 sub(V24.b,V24.g),
 sub(V24.b,V24.r)
)

TU68 is an extremely turbulent second-order algorithm that features a
monolithic algorithmic expression that simply subtracts Extended Moore
neighbourhoods of red, green and blue channels. As previously noted, there are
strong indications for a correlation between the Extended Moore neighbourhood
and the presence of turbulent dynamics such as those present here. Higher delta
X and Y values can result in a larger range of state values that are less likely to be
resolved. Such patterns are mostly common in third and fourth-order Type-U,
but are extremely rare in second-order algorithms. The fact that this algorithm
consists of only V24 variables may support the above claim, though further
testing is needed before this can be determined with confidence. While it is
extremely homogeneous, this algorithm appears quite divergent; its numerous,
yet almost identical, turbulent patterns present a balanced power dynamic, with
no clear victor on multiple separate runs (as seen in Figure 92).

7.9. Summary
This chapter offers initial qualitative characterisations of a small set of Type-U
algorithms which present notable phenotypic traits. Figure 93 showcases a
wider selection of algorithms which have also been examined and considered
for this study. The selection criteria for these algorithms and characterisations
of their properties are highly subjective, representing the author’s aesthetic
preferences and interests. However, this inherent subjectivity should not be
regarded as a drawback; it firmly aligns with this project’s aim to explore and
study algorithms which may be overlooked by more analytical methodologies.

These case studies aim to showcase prominent behaviours that have been
observed in Type-U systems over the course of this study. While each algorithm
presents a unique blend of phenotypic traits, each such trait is likely also
apparent in countless other algorithms, especially ones of the same order.
Nevertheless, the unique balance of traits embedded in each specimen is what
allows some of them to present highly rare and distinct dynamics. The most
minute genotypic variation may result in the most minute change to an
algorithm’s underlying dynamics. In turn, this could mean the difference
between a thriving ecosystem and a barren wasteland.

Figure 91.
TU68.

Figure 92.
16 separate runs of TU68.
(128*128, 2000 steps)

https://utomata.net/phd?edt=TU68

127

LABORATORY OF BABEL

Figure 93.
Selected specimens from Utomata Lib.

NU1 TU1 TU2 TU3

NU4 TU6 TU9 TU12

TU12A TU13 TU16 TU18

TU20 TU23 TU25 TU26

TU31 TU33 TU35 TU38

http://utomata.net/lib

Case Studies

128

TU40 TU41 TU42 TU44

TU45 TU46 TU47 TU48

TU49 TU52 TU53 TU55

TU58 TU61 TU62 TU63

TU64 TU66 TU69 TU71

LABORATORY OF BABEL

129

8.Discussion

8.1. Overview
This thesis presented a set of frameworks, tools and methods specifically
designed for open-ended exploration of CA algorithms, employing a non-
instrumentalist approach to exploration in order to expand the scope of inquiry.
The effectiveness of the tools presented has been demonstrated through case
studies involving both established and novel algorithms. Qualitative evaluations
of novel findings demonstrated how this approach can also be used to interpret
findings, while minimising reliance on representational and scientific concepts.

Utomata serves as a foundational framework which allows implementation of an
exceptionally wide range of algorithms, as demonstrated through
implementations of three well-established algorithms: GOL, ECA and RD.
Further, it was used to conduct a low-level exploratory study of a new family of
algorithms, called Type-C. The conception of the first Type-C algorithm, as well
as the iterative process of extracting its unique algorithmic variants were made
possible by Utomata’s non-analytical approach to programming. This study
demonstrated how direct manipulation of algorithmic expressions can facilitate
the discovery of novel CA. This study also demonstrated a method for effective
cultivation and examination of novel emergent structures, which did not rely on
obtaining an analytical understanding of their underlying dynamics and
avoided casing them as instruments or derivative objects.

Utomata can also be used as a foundational framework for high-level exploration
methods. This was demonstrated through the introduction of the Spatial
Mapping method, accompanied by its online software implementation —
Utomata Lab. This method effectively formulates a mapping from a high
dimensional algorithmic expression, written in Utomata’s functional syntax,
onto a large two-dimensional field. Spatial Mapping not only makes it possible to
visualise and interact with an exceptionally wide range of algorithmic variations
in real-time, but also aids in identifying patterns and relationships within the
combinatorial spaces they occupy. The Spatial Mappings of GOL, ECA and RD
showcased this method’s ability to situate existing algorithms among their
numerous possible variants. The notable limitations of this method were
discussed through some of the unique properties of each of these three case
studies, as well as the prospect of fine tuning the mapping parameters as a way
to isolate potential findings of interest.

Lastly, a comprehensive exploratory study of a new CA family, called Type-U,
was conducted. The unique genotypic and phenotypic properties of Type-U
algorithms were examined, as well as some of the properties of their
encompassing combinatorial spaces. These properties were further explored by
examining a curated collection of Type-U algorithms which presented
noteworthy phenotypic behaviour.

This chapter interprets and contextualises key findings from this research
project, highlighting their contributions and discussing their limitations. It
offers reflections on the project’s underlying philosophical view and evaluates
the tools and methods presented in this thesis towards accomplishing its
research aim. The chapter also evaluates the implications of these results in
regards to open-ended exploration of the broader class of emergent virtual
structures, and suggests avenues for future research.

130

Discussion

8.2. Key Contributions

Utomata Framework

As a novel computational framework for CA exploration, Utomata offers unique
features that streamline the process of implementing and running CA
algorithms. These differentiate it from general purpose graphics programming
environments, such as P5js or Openframeworks. They include built-in
neighbourhood variables, absolute and relative cell state retrieval, dedicated
configuration and transition functions, support for high dimensional state,
bounds management, custom operators, specialised randomisation features,
parallelisation of multiple concurrent algorithms, real-time input, interaction
and import-export functionality. Utomata also features built-in functionality
which generalises the field parameterisation technique, allowing concurrent
observation of numerous parametric variations of any algorithm.

Utomata’s demonstrated ability to implement a wide range of real-valued CA
also differentiates it from specialised CA environments such as Ready, Golly or
VulcanAutomata, each of which specialises in a subdomain of CA. The open
source, hardware accelerated Javascript implementation of Utomata is also
unique in the landscape of CA software, providing a robust environment for
running, storing and sharing CA online. The utomata.js library [201] is uniquely
suited for embedding CA into interactive web applications, thus supporting a
range of creative applications. Moreover, It can serve as an underlying rendering
engine and procedural content generator for more advanced web based
applications such as Utomata Lab.

Utomata’s custom functional syntax constitutes a standardised method for
implementing a wide range of CA algorithms. Its particular use of normalised
state vectors and custom unary and binary operators, including boolean
operators, provides a unified approach for implementing widely different CA
algorithms. Moreover, unlike a general purpose programming language, it
allows interchangeability of parameters, operators, subsections of algorithms,
as well as entire algorithms. This makes it highly suitable for exploratory studies
of CA that are guided by intuition, improvisation and aesthetics. As such it
embodies the non-analytical approach to programming, advocated by this
thesis.

This syntax also constitutes a highly minimalist form of algorithmic expression.
This is most notable in The GOL algorithm, which consists of only a few
characters. This algorithm differs substantially from other succinct expressions
of GOL such as the Life-Like notation [70], [71] in which the underlying
assumption of its structure — the number of live neighbours for births, spawns
and deaths — is hard coded. In contrast, Utomata’s GOL implementation
constitutes a complete algorithm, which can easily be adapted to use continuous
and vector states, be appended with any additional functionality, or be
incorporated in its entirety as a sub branch of any other algorithm.

Lastly, a significant advantage of using a functional syntax lies in its
compatibility with high-level, or meta-programming techniques, such as
genetic programming and Spatial Mapping. The minimal design, recursive
nature and strict topology of functional expressions all offer benefits for
procedural generation of algorithms. The robust adaptation of a functional
programming paradigm to CA exploration and research thus stands as a novel
contribution made by this thesis.

LABORATORY OF BABEL

131

Spatial Mapping

Spatial Mapping is a new, high-level exploration method that builds upon
Utomata to produce a space consisting of all possible variations of any given
algorithm, using a highly customisable set of parameters. Along with its
accompanying software implementation, Utomata Lab, this meta-programming
technique allows interactive exploration of numerous algorithmic variations of
CA algorithms.

This method is based on a unique isomorphic mapping between a high-
dimensional Utomata functional expression and a large two-dimensional field.
The mapping defines a mixed radix system that encodes the input algorithm and
a set of input symbols onto a coordinate system, allowing every unique
permutation of the algorithm to be assigned a unique X and Y coordinate.
Special care has been taken to enhance the intuitiveness of this method by
converting these coordinates back into a decimal system, as well as to creating
an inverse mapping, which is used to locate the input algorithm within its
encompassing space. Different mapping parameters and spatial distribution
methods can be applied to fine tune Spatial Mappings in order to accommodate
different scopes of exploration, different algorithms and different research
requirements.

Study of Type-C

An exploratory study of a new family of algorithms, called Type-C, demonstrates
the use of a non-analytical programming approach in Utomata. The first Type-C
algorithm was devised as an adaptation of a well-established algorithm, Abelian
Sandpile, to feature a continuous state. Subsequent experiments yielded a range
of unique behaviours through an iterative process, involving algebraic
reduction, field parameterisation and real-time interaction. This study yielded a
number of novel CA algorithms which feature a surprising range of unique
phenotypic properties, alluding to the prospect of highly potent lineages of
algorithms, concentrated as “pockets” of noteworthy behaviours within larger,
more barren, spaces.

In particular, the variant Red Nose Hexagliders features persistent and stable
glider formations which are semi-resilient to collisions. This unique feature
brings rise to higher-order structures which form a diverse “ecosystem” of
emergent phenomena. These were categorised in a preliminary taxonomical
study, shown in figure 25, as well as documented in the short nature
documentary film Vital Signs [203]. This study further demonstrates the
effectiveness of Utomata as a tool for open-ended exploration and examination
of CA, as well as that of the underlying approach to exploration, advocated by
this thesis.

This approach considers emergent virtual structures, such as those found in
Red Nose Hexagliders, as instances of observable phenomena, which can be
cultivated and studied — irrespective of function or metaphor. Notably, these
studies demonstrate how exploratory CA research can be conducted without
obtaining a firm analytical understanding of the exact dynamics of the
underlying algorithms — just as a firm understanding of biogenetics is not
strictly required for farming. In that sense, an algorithmic expression that
defines any given CA behaviour can be likened to its genotype, and any change
to that algorithm can be likened to a mutation, which may or may not give rise to
other behaviours of interest.

Study of Type-U

This study introduced a new family of CA algorithms that are characterised by a
particular transition dynamic: the new state of each cell is set to be the current

132

Discussion

state of any cell in the grid. Algorithmic expressions belonging to this family can
be formulated in Utomata as functional expressions whose root is the U(dx,
dy) function. Using the dx and dy parameters, the U function retrieves the
current state of any cell in relative (discrete) coordinates. Spatial Mapping was
then used to construct a complete combinatorial space of all such expressions.
These were expanded recursively to form higher-order Type-U space which
consist of exponentially more algorithms.

Type-U can technically be categorised as continuous, vector state, outer-
totalistic CA. However, they feature a number of unique properties and
characteristics. The use of multiple totalistic neighbourhoods in conjunction
with the U function leads to a particular dynamic, whereby new cell states may
be drawn from anywhere in the grid. This embodies a unique and novel
relationship between transition, neighbourhood and state. Since Type-U
transition functions are strictly incapable of introducing new state values into
the system, this dynamic is inherently reductive. The result can be
characterised as a cross between a CA and a sorting algorithm.

The use of Spatial Mapping to facilitate exploration of the vast space of possible
Type-U algorithms across different orders constitutes a novel methodology for
an exploratory study of this kind. Perhaps the closest well-known example is
Wolfram’s study of ECA [48], which also involves formulating and exploring a
combinatorial space of permutations of CA algorithms. However, the significant
size difference between these respective spaces is staggering. While all 256
variants of ECA can be implemented and rigorously studied using brute force
techniques, the combinatorial spaces of Type-U algorithms would literally take
centuries to compute exhaustively.

Therefore, this study adopted a more cautious approach, akin to naturalism in
the sciences, where phenomena were studied with the understanding that only
a minuscule part is directly observable. This approach focused on general
properties of algorithms, their similarities, differences, and their unique
phenotypic traits that differentiate them from other well-established CA.
Observations of Type-U dynamics indeed revealed overwhelming diversity of
emergent behaviours, with a surprising number of algorithms supporting
persistent, higher-order structures. Examinations of these algorithms,
according to their specific properties and characteristic behaviours potentially
constitute a framework for qualitative evaluation of phenotypic behaviour in CA,
which can be adapted to other algorithms and models.

8.3. Limitations

Computational Framework

While Utomata’s non-analytical approach to programming potentially makes it
more accessible to creative practitioners, it is nonetheless a programming
environment. As such, creative practitioners who wish to conduct low-level
explorations of CA may face a steep learning curve in mastering its use. The
framework’s custom functional syntax is a high-level concept which may
present a challenge, even for experienced programmers who are unfamiliar with
functional programming. This minimalist form of expression can also make
algorithms potentially less legible in analytical terms, compared to a general
purpose language. 1 Moreover, this syntax is not standardised across other CA
frameworks and environments, nor is there currently an open collection of
established CA algorithms written for Utomata.

This points to a need for comprehensive documentation, tutorials, examples
and implementations of Utomata in other graphics programming environments.

1 Though it should be emphasised that this
feature is by design. It aims to encourage
open-ended exploration and
experimentation by minimising potential
biases involved in efforts to make sense of a
given algorithm.

LABORATORY OF BABEL

133

At the time of writing, efforts to create a library of Utomata algorithms and
examples, as well as official documentation and tutorials are still in progress.
Additionally, alternative implementations of Utomata have also been created for
Processing, Openframeworks, TouchDesigner and Blender3D, yet these have not
yet been made public.

Utomata’s explicit focus on CA also makes it considerably limited for other, more
general tasks, such as data processing or drawing and interacting with shapes
and splines. That said, since Utomata’s transition function is effectively a
fragment shader program, it can still be used for many applications beyond CA.

Another notable aspect of Utomata is its reliance on GPU computing. While this
provides exceptional computing power it can make algorithms more difficult to
debug. The framework lacks robust debugging tools commonly found in
conventional programming environments, such as console logs and break
points. While the Utomata IDE and Utomata Lab do feature rudimentary tools for
debugging and analysis, such as error messages and histogram analyses,
significant untapped potential for such features remains. Additionally, the use of
continuous normalised state values may introduce floating point error, which
has been observed in some Type-C variants. This can often manifest as a
breaking of symmetry when configured with a symmetric pattern. While floating
point errors are not unique to GPU computation, they can be harder to identify
and mitigate, compared to a CPU based implementation.

Non-Instrumentalist approach

This thesis is founded upon an unconventional approach to exploration of
virtual phenomena. It seeks to uncover novel findings by employing a non-
instrumentalist approach to computational modelling. This serves as the
underlying foundation for the development of all software tools, methodologies
and studies presented. However, this approach can easily overshadow efforts to
obtain an analytical understanding of CA dynamics. It introduces significant
subjectivity which may limit its appeal in educational and traditional research
contexts, especially in contexts where analytical insight, precision and
reproducibility are prioritised.

Many of the proposed research methodologies primarily rely on aesthetic
evaluation and acquired intuition. It may therefore be challenging to establish
objective criteria for evaluating certain CA algorithms. Moreover, generalising
these findings to other algorithms, models or domains may not necessarily be
applicable. Lastly, these techniques typically require extensive trial and error
which can be exceedingly time-consuming and tedious, further limiting the
effectiveness of this approach in time-sensitive and production contexts.

Spatial Mapping

Spatial Mapping is a meta-programming technique that envisions Utomata
algorithms as pre-existing within vast combinatorial spaces. Utomata Lab is an
implementation of this technique which allows real-time interactive browsing of
these spaces, akin to exploring a vast online map. While Utomata Lab does
technically achieve this stated goal, it should be acknowledged that Spatial
Mapping possesses significant limitations. Anything resembling an exhaustive
search using this method is strictly impractical, and any form of selective
exploration is likely to overlook significant findings. Even targeted excursions
which seek to study well-defined subregions of any given space would likely
involve generating and processing vast amounts of data. Its interpretation may
further require the development of novel techniques, expertise and intuition.

134

Discussion

The continuity of a Spatial Mapping was defined as its overall tendency to group
similar algorithms and behaviours together. Highly continuous Spatial
Mappings are ideal targets for exploratory and taxonomical studies because
such spaces can be sampled by region, rather than exhaustively searched. While
the mappings presented in this thesis do exhibit continuity, compared to
randomly distributed spaces, this crucial aspect has not been optimised.

Adapting a Spatial Mapping for more efficient exploration is a multi-faceted
challenge which involves a combination of advanced techniques that are beyond
the scope of this thesis. For example, a precise characterisation of genotypic
redundancy in a given space, and subsequent elimination of genotypic twins can
significantly reduce the size of a space. However, this involves careful analysis
and optimisations that may not even be transferable between different types of
algorithmic expressions. This is even more pronounced in the case of
phenotypic redundancy, which is drastically more difficult to assess and
mitigate.

While Spatial Mappings technically consist of all encompassing spaces of
behaviour, a significant amount of possible phenomena in any given mapping
can easily be made inaccessible due to a range of factors. For example,
algorithms that feature real-valued numerical constants cannot be effectively
explored using this method. While field parameterisation can be incorporated to
address this, most possible behaviours will necessarily remain well beyond
reach. Likewise, the configuration function can have a profound effect on the
range of phenomena that may emerge in a mapping. Choosing an appropriate
configuration may require preparatory experiments to ensure sufficient
understanding of the subject matter in order to select an appropriate
configuration function for use in the mapping.

While this method was never intended to be exhaustive and is likely ineffective
for most research contexts, it may nonetheless have significant conceptual
merit, which should not be underestimated. Overcoming conceptual barriers
may be crucial for gaining a deeper understanding of nonlinear systems, their
edge cases or their limits. Spatial Mapping can offer a glimpse into a universe of
potential emergent phenomena. Despite the overwhelming presence of vacant
or incoherent findings in this universe, the mere act of observing it can have a
profound impact on one’s perspective.

8.4. Implications

CA Research

Both Utomata and the Spatial Mapping method have the potential to broaden the
scope of CA research. These tools enhance existing methodologies by enabling
systematic exploration of algorithmic spaces that were previously inaccessible.
The identification and exploration of new CA families, Type-C and Type-U, not
only demonstrate the effectiveness of these tools but also indicate an enormous
untapped potential for discovering novel emergent phenomena in CA.

The project’s non-instrumentalist approach to exploration and its emphasis on
qualitative assessment of findings shifts the focus towards a more holistic view
of CA. It offers a conceptual framework that seeks to revive the experimental,
exploratory, and interdisciplinary spirit of early work in AL, while
acknowledging the theoretical limitations that have since been established in
regards to emergent phenomena. This revision of the strong-AL approach has
the capacity to contribute to the overall diversification of CA algorithms, whose
properties, limits and implications are still largely unknown.

LABORATORY OF BABEL

135

Computational Arts

This work could potentially empower and inspire artists and designers to
engage with exploration and study of CA by framing this practice as a medium
for creative expression, rather than a scientific tool. It proposes and
demonstrates new ways of exploration and real-time interaction with CA
systems, potentially offering new avenues for artistic experimentation with
emergent virtual phenomena. These may include performative, collaborative,
and improvisational work. For example, “Echosystem” is a live audiovisual
performance, presented at Printscreen Festival in 2019 [205]. A collaborative
project between the author and composer Maayan Tsadka, this experimental
live performance incorporates a custom, sound-reactive implementation of
Utomata with real-time examination of microscopic samples and musical
improvisation with found objects.

CA can also be incorporated into a wider range of real-time art forms, such as
digital installations and net-art, as well as towards forming physical artefacts
through digital fabrication, print, and sculpture. Moreover, in an artistic context,
the act of CA exploration itself could be valued for its creative potential. This
approach could lead to novel research paradigms, derived from artistic rather
than scientific motivations, contributing to further diversification of known
emergent phenomena.

Procedural content generation

The tools and methods presented in this thesis can also be applied to procedural
content generation in computer games, simulations, and interactive media.
Utomata can serve as a foundational engine for generating complex virtual
content, including structure and texture synthesis, and as an alternative to
random number and noise generators, especially in web based applications.
Spatial Mapping techniques can facilitate automatic generation of vast amounts
of diverse, adaptive virtual content, potentially serving as a basis for more
advanced procedural generation techniques. Furthermore, this approach is not
limited to CA; Spatial Mappings of other models and parametric spaces may
prove valuable in other research contexts, such as numerical analysis and
optimisation, physics simulation, combinatorial mathematics and data
visualisation.

Virtual Worlds

It is important to emphasise the notable difference between nonlinear
approaches such as CA and procedural approaches such as Perlin Noise.
Procedural approaches are widely used for texture synthesis and terrain
generation due to their predictability, reliability and consistency. However, these
advantages also impose strict limitations on their output. For instance, Perlin
Noise is a reliable and efficient technique for generating vast landscapes of
continuous values, but it ultimately yields an extremely narrow range of
phenomena that are essentially uniform throughout. In contrast, the expressive
range of nonlinear approaches, such as CA and swarm dynamics, remains
largely unknown. While these methods are considerably more difficult to predict
and thus harder to incorporate in production environments, crucially, they can
give rise to genuinely novel emergent virtual phenomena.

This can have significant implications for the prospect of virtual worlds. A mass
diversification of algorithms capable of generating emergent systems can
reduce the reliance on established procedural approaches, which are widely
used in open-world games and virtual reality environments, or so-called
metaverses. Novel approaches for exploring and implementing nonlinear
systems may play a crucial role in facilitating the future creation of virtually
infinite open worlds that are capable of supporting the emergence of complex

Figure 94.
Echosystem, An audio-visual live
performance, in collaboration with
Maayan Tsadka and Ensemble Nova
(2019)

136

Discussion

higher-order virtual phenomena. This untapped potential extends far beyond
simulated physical environments. It evokes endless virtual environments which
feature real-time, complex, intricate and unpredictable forms and processes.

In accordance with the concept of weak emergence, such instances of virtual
phenomena can be detached from physical reality and explored as such. Spatial
Mapping offers a glimpse into the immense size and potential of virtual worlds,
strengthening the notion that algorithms and their outputs are not created but
rather discovered. The exploration and study of these novel realms may indeed
extend beyond conventional science, necessitating new paradigms for
generative research and forming new bridges between scientific and artistic
exploration. Ultimately, these would someday fulfil Langton’s vision of
“something more poetic in the future of Science” [13].

8.5. Future Research

A Model of Natural Selection

Type-U transition functions have a unique property, whereby new state values
cannot be introduced into the system. This reductive property creates a highly
competitive environment which forces the emergence of symbiotic
relationships between neighbouring state values, thus forming self-assembling
structures. These employ a range of strategies for maintaining internal stability,
as well as equilibrium with their surrounding environment — both of which are
crucial for persistence. Some algorithms, such as TU8, exhibit dozens of unique
formations, all collaborating and competing with each other in a dynamic that
can be likened to a delicate ecosystem.

This points to the potential of Type-U systems as abstract models of
symbiogenesis and evolutionary dynamics. The unique and innately digital
aesthetic of Type-U potentially distances these types of phenomena from other
evolutionary models, which often rely on simulating physical properties such as
harsh environments or limited food resources for creating competition. Type-U
dynamics can be regarded as an implicit process of natural selection, whereby
the genotype and phenotype are fused together as structural patterns that self-
assemble within the program itself. Natural selection then emerges as an open-
ended process in which emergent structures interact and adapt. Those who
manage to persist, given the constraints of the algorithm and the conditions of
their local environment, are those deemed the fittest. This stands in contrast to
genetic algorithms, in which the genotype is explicitly defined as code or
numerical data, and in which fitness is evaluated by an external function.

Type-U algorithms which have been observed to feature sufficient “fluidity” for
supporting complex structures typically appear to converge towards one or two
“victorious” patterns, constituting “dead-end” evolution. However, the prospect
of sustained higher-order activity at a systematic level remains plausible. Future
studies which aim at avoiding dead-end evolution may include exploring
higher-order Type-U spaces, utilisation of asymmetric or more compound
algorithmic expressions, combinations with other CA algorithms or careful
introduction of random state values to explicitly induce mutations.

The “Goldilocks” Zone

The Goldilocks Zone in astronomy refers to the habitable zone around a star where
conditions are just right for liquid water to exist. This hypothesis suggests that
complex life forms are more likely to emerge in fluid environments due to their
inherent chemical instability. Unlike solid environments, which inhibit
chemical interactions, or gaseous environments, where interactions occur too

LABORATORY OF BABEL

137

rapidly, fluid environments provide an optimal balance for the complex
biochemical reactions necessary for life.

As discussed in Section 6.4, there are indications that complex higher-order
structures in Type-U are more likely to emerge within phase transitions
between chaotic and ordered dynamics. Future studies of Type-U algorithms
can explore this hypothesis through both qualitative and quantitative means. To
this end, quantitative measures of the phase of a system can be used as a ranking
system for Type-U algorithms to explore a hypothetical narrow band where
conditions are optimal for the emergence of higher-order structures.

For example, image compression can be used as a heuristic function for
classifying the level of complexity in a static image. According to this approach,
images of class 1 Type-U algorithms, which feature “simple stable or periodic
structures”, would result in very small file sizes, as repetitive structures are
highly compressible as JPEG images. On the other hand, class 3 algorithms,
which “retain a chaotic pattern”, would result in large file sizes, due to their
inherent randomness. It thus follows that class 2 algorithms may be identified
along a particular band of image compression size. A normalised measure of
entropy through JPEG compression has already been incorporated into Utomata
Lab and Utomata Editor. This measure can be used to classify, sort, and filter
Type-U algorithms in a future study.

Another example of a heuristic function examines the transition function over a
single step. This method measures the polar vector between each transitioning
cell and its target cell, as sampled by the U function. With the distance and angle
represented by the red and green channels, a new image can then be generated
by normalising and visualising the vector at each cell. The average gradient
distance of this image can then be generated. Initial testing indicates a possible
correlation between Type-U dynamics and such analyses, whereby lower
average values may predict class 1 dynamics, high values predict class 3
dynamics, and mid-range values predict class 2 dynamics.

Exploratory studies of the Goldilocks zone in Type-U algorithms can help
identify and collect class 2 algorithms, which can form the basis for deeper
studies of Type-U dynamics. These may assist in identifying other unique
signatures of class 2 algorithms, perhaps even at a genotypic level. This, in turn,
would potentially allow for significantly more efficient Spatial Mappings by
filtering out most of the incoherent phenomena in Type-U spaces.

Perfecting quantitative measures of emergent structures in Type-U may also
prove useful towards other exploration methods, such as genetic programming.
Using them as fitness functions, automatic evolutionary processes can be
optimised for searching larger and more diverse combinatorial spaces of Type-
U expressions, such as asymmetric, hybrid or exceptionally large expressions. In
this context, Spatial Mapping can still be used as an effective complementary
tool for gaining instant and unmediated access into any given combinatorial
space.

Evolutionary Programming

As previously stated, Utomata’s functional syntax is highly suited for
evolutionary programming techniques. An interactive software experiment,
which used an early version of Utomata in Openframeworks, demonstrates this
capacity. The experiment consisted of an interactive evolutionary algorithm,
where a user can visually examine a small set of Utomata algorithms and select
a subset, from which a new generation is created. The use of aesthetic evaluation
as the fitness function yielded mixed results; interactive evolutionary
approaches are inherently slow and results are difficult to recreate. While this

Figure 95.
Interactive evolutionary algorithm using
an early version of Utomata in
Openframeworks.

138

Discussion

approach was ultimately not pursued for this thesis, the prospect of evolving CA
algorithms remains promising.

In Silico Experimental software

The interactive features of Utomata are currently limited to simple probes and
interventions using the cursor, direct programming or the use of global
variables. This is largely due to this work’s focus on open-ended exploration.
Extending Utomata to support analytical studies can be an important next step
towards conducting deeper studies of CA behaviours. Such studies could
emulate certain methodologies from microbial interaction studies through a set
of tools for sampling and manipulating both genotypic and phenotypic
specimens. Taking in-vitro studies as a metaphor, various software tools for
analytical studies of CA can be developed:

› Specimen collection: a robust, streamlined and standardised method
for sampling a specific region of interest within an active CA system,
including its algorithm.

› Culture Preparation: a standard method for storing samples and basic
tools for maintaining or recreating a nurturing environment.

› Co-culturing: a method for combining several different samples
together to study their interactions. This may involve phenotypic
samples of the same algorithm or combining multiple algorithms
within the same culture.

› Advanced field parameterisations: this technique, discussed in
Chapter 4, can be significantly improved through automatic symbol
substitution and advanced UI features to allow freely moving between
parametric variations.

› Time-Lapse Imaging: a reliable tool for running and periodically
sampling algorithms over sustained periods of time.

› Automated Testing: scripting tools for automating precise repetitive
perturbations and unit tests on large sets of CA samples.

A Study of Genotypic Redundancy

Redundancy was discussed in section 6.2.1 as the overall level of identical or
nearly identical algorithms in a given Spatial Mapping. While some redundancy
is unavoidable in Spatial Mappings, it can be mitigated to make exploration far
more effective. The two main culprits of genotypic redundancy in Type-U are
diagonal symmetry, which creates a perpendicular genotypic twin for every
algorithm, and operator symmetry, which results from the use of symmetric
operators such as addition and multiplication. While a precise determination of
genotypic redundancy in Type-U algorithms is beyond the scope of this thesis, it
represents an intriguing prospect for future cross-disciplinary research.

Future studies of genotypic redundancy in Type-U algorithms and other
algorithms can be conducted by forming a bridge between CA research and the
domains of combinatorial mathematics and set theory. These studies could
involve exploring and analysing countable permutations of well-defined
expressions to characterise their underlying properties. Such cross-disciplinary
efforts could be mutually beneficial: they can introduce challenging problems
for mathematicians to solve, contribute to a deeper understanding of CA
algorithms and dynamics, and offer practical, testable results by reducing the
size of Spatial Mappings.

LABORATORY OF BABEL

139

Towards Other Domains

The Spatial Mapping method stems from a philosophical perspective that
considers virtual phenomena as pre-existing entities which reside in a vast
combinatorial space of potentialities. It employs custom algorithms and
techniques to organise such spaces in order to make them accessible. While this
method was specifically developed for CA algorithms, there is nothing about it
that limits it to this particular domain. The prospect of extending Utomata and
Spatial Mapping towards other computational models or analytical domains was
indeed considered in various stages of this project and remains a prominent
candidate for subsequent research. Initial efforts to adapt Utomata’s functional
syntax to three dimensional CA, L-systems, particle swarms and networks have
been attempted but not yet perfected.

As noted in Chapter 3, Utomata’s exceptionally wide expressive range provides
a standardised method for implementing algorithms that are commonly
considered too different to compare, such as GOL, ECA and RD. In the same
sense, generalising Utomata to accommodate other models may offer a similar
advantage, potentially offering novel ways for comparing different models of
nonlinear systems.

For example, Craig Reynolds’ seminal work on swarm dynamics [96], applies
three local behaviours to each component in a system: separation, cohesion and
align. While this model was adapted and implemented in various contexts
beyond its initial purpose, such as in Swarm chemistry [86], Many such
adaptations, particularly in the arts, primarily focus on parametric exploration.
In contrast, exploring this model through Spatial Mapping techniques could
offer significant diversification by effectively forming a space consisting of all
possible ways in which a particle may react to those around it.

The Laboratory of Babel

As evident by its title, this thesis entertains the notion of a combinatorial space
consisting of all possible CA algorithms. The Spatial Mapping method presented
in Chapter 5 embodies a partial fulfilment of this idea as a tool for open-ended
exploration. However, this method also constitutes a robust conceptual and
practical foundation for a literal realisation of this idea.

Much of the effectiveness of Spatial Mapping stems directly from its ability to use
minimalist symbol domain sets in order to constrain the resulting space to an
(arguably) explorable size. In other words, very large Spatial Mappings are
simply too big for manual exploration to yield meaningful findings. Nonetheless,
setting out to create a literal implementation of a Laboratory of Babel stands as
a future project which may hold considerable theoretical, conceptual and
artistic merit.

In order to accomplish this, the Spatial Mapping method would need to be
extended to three dimensions rather than two. The third dimension — algorithm
topology — would replace the source algorithm, which it currently accepts as one
of its mapping parameters. Besides the X and Y coordinates, which are mapped
to symbol domains, a third coordinate, T, would be mapped to algorithm
topology using a custom function that enumerates binary/unary tree topologies.
This mapping would also need to use maximalist symbol domain sets in order to
maximise coverage. Such a “total laboratory” would include, at the very least, all
of Utomata’s binary and unary operators, all of Utomata’s totalistic and outer-
totalistic neighbourhood variables, all colour channel combinations (.rrr,
.grg, .bbr), as well as a comprehensive set of numerical constants.

140

Discussion

While theoretically possible, this endeavour presents several significant
challenges. Enumerating binary tree topologies is a well-known combinatorial
problem with various algorithmic trade-offs. Moreover, even the largest possible
Spatial Mapping can never contain all CA algorithms, if only due to the presence
of real-valued numerical constants. However, most importantly, the sheer
magnitude of such a combinatorial space is quite simply beyond
comprehension. This last statement, in itself, may be regarded as either the
strongest argument for pursuing this endeavour — or the strongest argument
not to.

8.6. Final Reflections
This thesis presents an experimental computational arts practice spanning nine
years of research. The tools, methods and studies featured here have been
carefully selected from numerous experiments, artworks, trials and errors. In
retrospect, this Sisyphean path may have been the only viable route towards
cultivating the philosophical view that underlies this thesis. While this view is
not a formal contribution, it is regarded by the author as this project's greatest
achievement.

The development of this research project has coincided with a time of historical
leaps in artificial intelligence. Its revolutionary potential notwithstanding,
generative AI is rooted in the human experience; it is designed to model and
enact human thinking, interaction, intuition, knowledge, and creativity. In
contrast, this work aims to draw attention away from these inherent familiarities
towards the abyss of the inherently unfamiliar, where true novelty may reside.
This should not be regarded as a critique of anthropocentric or instrumentalist
views of computing technology but an acknowledgment of its boundless
potential. It serves as a humbling reminder that human intelligence is merely a
special case of intelligent behaviour, itself, a property of only a small subset of
living systems, which, in turn, constitute only a minuscule fraction of possible
emergent phenomena.

Through its focus on open-ended exploration, this project aspires to join the
canon of works that expand human horizons by looking in the most unlikely of
places. Such works must often exert significant energy on breaking free from
conceptual bias. Future explorers of emergent virtual structures may find this to
be an exceedingly confusing and lonely endeavour. If nothing else, this thesis
hopes to serve as a compass to help them navigate this vast, unstructured
domain. To these future explorers, the author extends one last piece of advice,
which he has often failed to follow: open-ended research is best thought of as a
bottomless pit. While it is tempting to insist on reaching the bottom, this takes a
lifetime to achieve. Instead, simply describe the fall.

141

LABORATORY OF BABEL

9.Bibliography

[1] J. L. Borges, “The Library of Babel,” in Collected Fictions, Penguin, 1999.

[2] J. Basile, “The Library of Babel,” Library of Babel [website], 2015. [Online]. Available: https://libraryofbabel.info.

(Accessed: Jan. 12, 2025).

[3] J. Basile, Tar for Mortar: “The Library of Babel” and the Dream of Totality. punctum books, 2018.

[4] S. Ulam, “On some mathematical problems connected with patterns of growth of figures,” in Proceedings of Symposia

in Applied Mathematics, vol. 14, Providence, RI, USA: Am. Math. Soc., 1962, pp. 215–224.

[5] J. von Neumann, A. W. Burks, Theory of Self-Reproducing Automata, vol. 1102024. Urbana, IL, USA: University of

Illinois Press, 1966.

[6] U. Lagerkvist, Pioneers of Microbiology and the Nobel Prize. World Scientific, 2003, pp. 51–55.

[7] B. Skuse, “The third pillar,” Physics World, vol. 32, no. 3, p. 40, 2019.

[8] P. Manneville, N. Boccara, G. Y. Vichniac, and R. Bidaux, Cellular Automata and Modeling of Complex Physical Systems:

Proceedings of the Winter School, Les Houches, France, February 21–28, 1989. Springer Science & Business Media,

2012.

[9] D. Eppstein, “Growth and decay in life-like cellular automata,” in Game of Life Cellular Automata, A. Adamatzky, Ed.

London, UK: Springer London, 2010, pp. 71–97.

[10] J. E. Pearson, “Complex patterns in a simple system,” Science, vol. 261, no. 5118, pp. 189–192, Jul. 1993.

[11] P. Bak, C. Tang, and K. Wiesenfeld, “Self-organized criticality: An explanation of the 1/f noise,” Physical Review

Letters, vol. 59, no. 4, pp. 381–384, Jul. 1987.

[12] C. Langton, Artificial Life: Proceedings of an Interdisciplinary Workshop on the Synthesis and Simulation of Living Systems.

Routledge, 2019.

[13] J. Horgan, “From complexity to perplexity,” Scientific American, vol. 272, no. 6, pp. 104–109, 1995.

[14] H. H. Pattee, “Simulations, realizations, and theories of life,” in Artificial Life (ALIFE), 1987, pp. 63–78.

[15] M. A. Bedau, “Weak emergence,” Philosophical Perspectives, vol. 11, pp. 375–399, 1997.

[16] G. Deleuze, Difference and Repetition. [Online]. Available: https://www.academia.edu/download/

18052021/20110414150123784.pdf. (Accessed: Sep. 27, 2022), p. 208.

[17] R. Frigg, “Models and representation: Why structures are not enough,” Measurement, 2002.

[18] W. R. Ashby, “Principles of the self-organizing system,” in Modern Systems Research for the Behavioral Scientist, pp.

108–118, 1968.

[19] L. von Bertalanffy, “General system theory,” General Systems, vol. 1, no. 1, pp. 11–17, 1956.

[20] V. Illingworth, Ed., The Penguin Dictionary of Physics. London, U.K.: Penguin Books, 1991.

[21] D. Campbell, D. Farmer, J. Crutchfield, and E. Jen, “Experimental mathematics: The role of computation in

nonlinear science,” Communications of the ACM, vol. 28, no. 4, pp. 374–384, 1985.

[22] E. Fermi, J. Pasta, S. Ulam, and M. Tsingou, Studies of Nonlinear Problems, Los Alamos Scientific Laboratory, LA-

1940, May 1955.

[23] A. M. Turing, “The chemical basis of morphogenesis,” Bulletin of Mathematical Biology, vol. 52, no. 1–2, pp. 153–197,

1990.

[24] A. M. Turing, “I.—Computing machinery and intelligence,” Mind, vol. LIX, no. 236, pp. 433–460, Oct. 1950.

[25] F. Rosenblatt, “The perceptron: A probabilistic model for information storage and organization in the brain,”

Psychological Review, vol. 65, no. 6, p. 386, 1958.

142

Bibliography

[26] N. A. Baricelli, “Numerical testing of evolution theories, part II preliminary tests of performance,” Symbiogenesis and

Terrestrial Life, Acta Biotheoretica, vol. 16, pp. 99–126, 1962.

[27] W. R. Ashby, An Introduction to Cybernetics. London, UK: Chapman & Hall Ltd, 1961.

[28] R. Melnik, Mathematical and Computational Modeling. Wiley Online Library, 2015.

[29] J. S. Mill, A System of Logic, Ratiocinative and Inductive. London, UK: John W. Parker, 1843.

[30] W. Banzhaf, “Self-organizing systems,” in Encyclopedia of Complexity and Systems Science, vol. 14, pp. 589, 2009.

[31] V. Darley, “Emergent phenomena and complexity,” Artificial Life, vol. 4, pp. 411–416, 1994.

[32] . M. Teo, B. L. Luong, and C. Szabo, “Formalization of emergence in multi-agent systems,” in Proceedings of the 1st

ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, 2013, pp. 231–240.

[33] Y. Bar-Yam, “A mathematical theory of strong emergence using multiscale variety,” Complexity, vol. 9, no. 6, pp. 15–

24, 2004.

[34] P. Huneman, “Emergence and adaptation,” Minds and Machines, vol. 18, no. 4, pp. 493–520, 2008.

[35] H. Thorén and P. Gerlee, “Weak emergence and complexity,” in Artificial Life XII: Proceedings of the Twelfth

International Conference on the Synthesis and Simulation of Living Systems, H. Fellerman et al., Eds. Cambridge, MA: MIT

Press, 2010, pp. 879–886.

[36] T. S. Ray, “Evolution and optimization of digital organisms,” in Scientific Excellence in Supercomputing: The IBM 1990

Contest Prize Papers, K. R. Billingsley, E. Derohanes, and H. Brown III, Eds. Athens, GA: The Baldwin Press, The

University of Georgia, 1991, pp. 489–531.

[37] E. P. Rybicki, “The classification of organisms at the edge of life, or problems with virus systematics,” South African

Journal of Science, vol. 86, no. 4, pp. 182–186, 1990.

[38] E. Salvucci, “Microbiome, holobiont and the net of life,” Critical Reviews in Microbiology, vol. 42, no. 3, pp. 485–494,

2016.

[39] D. E. Koshland, “The seven pillars of life,” Science, vol. 295, no. 5563, pp. 2215–2216, 2002.

[40] B. Szigeti et al., “OpenWorm: An open-science approach to modeling Caenorhabditis elegans,” Frontiers in

Computational Neuroscience, vol. 8, p. 137, 2014.

[41] S. Bullock, “Levins and the lure of artificial worlds,” The Monist, vol. 97, no. 3, pp. 301–320, 2014.

[42] C. G. Langton, “Self-reproduction in cellular automata,” Physica D: Nonlinear Phenomena, vol. 10, no. 1–2, pp. 135–

144, 1984.

[43] C. Langton, “Computation at the edge of chaos: Phase transitions and emergent computation,” Physica D: Nonlinear

Phenomena, vol. 42, no. 1–3, pp. 12–37, Jun. 1990.

[44] M. A. Bedau, “A functional account of degrees of minimal chemical life,” Synthese, vol. 185, no. 1, pp. 73–88, 2012.

[45] M. A. Bedau, “What is life?,” in A Companion to the Philosophy of Biology, S. Sarkar and A. Plutynski, Eds. Oxford, UK:

Blackwell Publishing Ltd, 2008, pp. 455–471.

[46] M. A. Bedau et al., “Open problems in artificial life,” Artificial Life, vol. 6, no. 4, pp. 363–376, 2000.

[47] T. Grüne-Yanoff, “Appraising non-representational models,” Philosophy of Science, 2013. [Online]. Available: https://

philsci-archive.pitt.edu/9420/1/ApprNonRepModels120227.pdf. (Accessed: Jan. 12, 2025).

[48] S. Wolfram, A New Kind of Science. Champaign, IL, USA: Wolfram Media, 2002.

[49] M. Sipper, “Fifty years of research on self-replication: An overview,” Artificial Life, vol. 4, no. 3, pp. 237–257, 1998.

[50] T. J. Hutton, “Evolvable self-reproducing cells in a two-dimensional artificial chemistry,” Artificial Life, vol. 13, no. 1,

pp. 11–30, 2007.

[51] T. Toffoli and N. Margolus, Cellular Automata Machines: A New Environment for Modeling. Cambridge, MA, USA: MIT

Press, 1987.

[52] A. Ilachinski, Cellular Automata: A Discrete Universe. Singapore: World Scientific, 2001.

147

LABORATORY OF BABEL

[136] U. Wilensky, “NetLogo,” Center for Connected Learning and Computer-Based Modeling, Northwestern University,

Evanston, IL, 1999. [Online]. Available: https://ccl.northwestern.edu/netlogo/. Accessed: Sep. 17, 2020.

[137] C. Reas and B. Fry, Processing: A Programming Handbook for Visual Designers and Artists, 2nd ed. Cambridge, MA:

MIT Press, 2014.

[138] C. Reas, A Mathematical Theory of Communication. Paris, France: RRose Editions, 2018.

[139] C. Reas, “Process 10 (Installation 1),” 2004. [Online]. Available: https://reas.com/ti_s/. Accessed: Sep. 17, 2020.

[140] C. Reas, “Textile Room,” 2013. [Online]. Available: https://reas.com/textile_room/. Accessed: Sep. 17, 2020.

[141] C. Reas, “Compendium Series,” 2004–2010. [Online]. Available: https://reas.com/compendium_b_p/. Accessed: Sep.

17, 2020.

[142] Slackermanz, YouTube Channel. [Online Video]. Available: https://www.youtube.com/channel/

UCmoNsNuM0M9VsIXfm2cHPiA. Accessed: Oct. 4, 2022.

[143] Beautypi, “SlackermanzCA - Shadertoy BETA.” [Online]. Available: https://www.shadertoy.com/user/

SlackermanzCA. Accessed: Oct. 4, 2022.

[144] CellularAutomationUploader, YouTube Channel. [Online Video]. Available: https://www.youtube.com/channel/

UCZD4RoffXIDoEARW5aGkEbg. Accessed: Oct. 4, 2022.

[145] S. Alexander-Adams, Simon Alexander-Adams. [Online]. Available: https://www.simonaa.media/. Accessed: Oct. 4,

2022.

[146] Simon Alexander-Adams, “Creating Generative Visuals with Complex Systems”, Sep. 8, 2020. [Online Video].

Available: https://www.youtube.com/watch?v=VBzIPLh-ECg. Accessed: Oct. 4, 2022.

[147] Arsiliath, “psychobiotik.” [Online]. Available: https://twitter.com/psychobiotik?lang=en. Accessed: July 27, 2020.

[148] L. Wilson, “TodePond - Overview” [Online]. Available: https://github.com/TodePond. Accessed: Oct. 4, 2022.

[149] J. Giles, “Jazer Giles on Instagram.” [Online]. Available: https://www.instagram.com/jazergiles/. Accessed: May 28,

2021.

[150] J. Giles (@jazergiles). Instagram. [Online]. Available: https://jazergiles.com. Accessed: Oct. 4, 2022.

[151] Kerim Safa (@kerimsafa). Instagram. [Online]. Available: https://www.instagram.com/kerimsafa/. Accessed: Sep.

25, 2022.

[152] KiM ASENDORF (@kimasendorf). Instagram. [Online]. Available: https://www.instagram.com/kimasendorf/.

Accessed: Sep. 25, 2022.

[153] Julian Hespenheide (@julian_hespenheide). Instagram. [Online]. Available: https://www.instagram.com/julian_

hespenheide/. Accessed: Sep. 25, 2022.

[154] A. Gysin, Andreas Gysin Portfolio. [Online]. Available: https://ertdfgcvb.xyz/. Accessed: Sep. 17, 2020.

[155] SPACEFILLER (@space.filler.art). Instagram. [Online]. Available: https://www.instagram.com/space.filler.art/.

Accessed: Oct. 4, 2022.

[156] Clusters. [Online]. Available: https://www.ventrella.com/Clusters/. Accessed: Oct. 4, 2022.

[157] Josef Pelz. [Online]. Available: https://www.josefpelz.com. Accessed: Oct. 4, 2022.

[158] Sander Sturing (@sandersturing). Instagram. [Online]. Available: https://www.instagram.com/sandersturing/.

Accessed: Oct. 4, 2022.

[159] CoC (@codeofconquer). Instagram. [Online]. Available: https://www.instagram.com/codeofconquer/. Accessed: Oct.

4, 2022.

[160] A. Hoff, Inconvergent. [Online]. Available: https://inconvergent.net/. Accessed: Sep. 17, 2020.

[161] J. Rosenkrantz and J. Louis-Rosenberg, Nervous System Studio. [Online]. Available: https://n-e-r-v-o-u-s.com/.

Accessed: Oct. 3, 2020.

[162] Lia, liaworks. [Online]. Available: https://www.liaworks.com/. Accessed: Sep. 17, 2020.

[163] J. T. Laurie Tarbell, Levitated. [Online]. Available: http://levitated.net/. Accessed: Sep. 17, 2020.

Bibliography

148

[164] N. Leto, SAILOR, 2010. [Online]. Available: https://www.imdb.com/title/tt2007453/. Accessed: Jul. 28, 2020.

[165] N. Leto, Lifeshapes/Bryły życiorysów, 2010. [Online Video]. Available: https://www.youtube.com/watch?

v=DDF5uPNBuSk. Accessed: Jul. 28, 2020.

[166] N. Oxman, Mushtari, Jupiter’s Wanderer. [Online]. Available: https://neri.media.mit.edu/projects/details/mushtari.

html. Accessed: Oct. 3, 2020.

[167] F. Nassetti, Filippo Nassetti Design. [Online]. Available: http://mhoxdesign.com/design-en.html. Accessed: Oct. 3,

2020.

[168] E. Driessens and M. Verstappen, Breed. [Online]. Available: https://notnot.home.xs4all.nl/breed/Breed.html.

Accessed: Oct. 3, 2020.

[169] T. Beddard, sub.blue - Artworks. [Online]. Available: http://sub.blue/. Accessed: Oct. 3, 2020.

[170] R. Jarman and J. Gerhardt, Semiconductor Films - Artworks. [Online]. Available: https://semiconductorfilms.com/art/.

Accessed: Oct. 3, 2020.

[171] Processing. [Online]. Available: https://processing.org/. Accessed: Feb. 1, 2025.

[172] p5.js. [Online]. Available: https://p5js.org/. Accessed: Feb. 1, 2025.

[173] L. McCarthy, C. Reas, and B. Fry, Getting Started with p5.js: Making Interactive Graphics in JavaScript and

Processing. Sebastopol, CA, USA: Maker Media, Inc., 2015.

[174] OpenFrameworks – Creative Coding Framework. [Online]. Available: https://openframeworks.cc/. Accessed: Oct. 29,

2022.

[175] Three.js – JavaScript 3D Library. [Online]. Available: https://threejs.org/. Accessed: Oct. 29, 2022.

[176] Cycling ’74, Max/MSP [Computer software], Version 8.3.3, San Francisco, CA: Cycling ’74, 2023. [Online]. Available:

https://cycling74.com/products/max. Accessed: Feb. 1, 2025.

[177] M. S. Puckette, “Pure Data,” in Proceedings of the International Computer Music Conference (ICMC), 1997. [Online].

Available: https://www.researchgate.net/profile/Miller-Puckette/publication/230554908_Pure_Data/links/

577c1cca08aec3b743366f5c/Pure-Data.pdf. Accessed: Oct. 29, 2022.

[178] Pure Data. [Online]. Available: https://puredata.info/. Accessed: Oct. 29, 2022.

[179] Derivative, TouchDesigner [Computer software]. Toronto, Canada. [Online]. Available: https://derivative.ca/.

Accessed: Feb. 1, 2025.

[180] Epic Games, Unreal Engine [Computer software]. [Online]. Available: https://www.unrealengine.com/. Accessed: Feb.

2, 2025.

[181] Unity Technologies, Unity [Computer software]. San Francisco. [Online]. Available: https://unity.com/. Accessed:

Feb. 2, 2025.

[182] Godot Engine Community, Godot Engine [Computer software]. MIT License. [Online]. Available: https://godotengine.

org/. Accessed: Feb. 2, 2025.

[183] McNeel & Associates, Grasshopper [Computer software]. Integrated with Rhinoceros 3D. Seattle. [Online]. Available:

https://www.grasshopper3d.com/. Accessed: Feb. 2, 2025.

[184] Robert McNeel & Associates, Rhinoceros 3D [Computer software]. Seattle. [Online]. Available: https://www.rhino3d.

com/. Accessed: Feb. 2, 2025.

[185] SideFX, Houdini [Computer software]. Toronto. [Online]. Available: https://www.sidefx.com/. Accessed: Feb. 2, 2025.

[186] Blender Foundation, Blender [Computer software]. Amsterdam, Netherlands. [Online]. Available: https://www.

blender.org/. Accessed: Feb. 2, 2025.

[187] Wolfram Research, Mathematica [Computer software]. [Online]. Available: https://www.wolfram.com/mathematica/.

Accessed: Feb. 2, 2025.

[188] Northwestern University, NetLogo Web [Computer software]. [Online]. Available: https://www.netlogoweb.org/.

Accessed: Oct. 29, 2022.

149

LABORATORY OF BABEL

[189] J. Rampe, Softology - Visions of Chaos [Computer software]. [Online]. Available: https://softology.pro/voc.htm.

Accessed: Oct. 29, 2022.

[190] A. Wuensche, DDLab: Discrete Dynamics Lab [Computer software]. [Online]. Available: https://www.ddlab.org/.

Accessed: Oct. 29, 2022.

[191] A. Wuensche, “Discrete dynamics lab: tools for investigating cellular automata and discrete dynamical networks,”

Kybernetes, vol. 32, no. 1/2, pp. 77–104, Jan. 2003.

[192] Slackermanz, VulkanAutomata: Cellular Automata GPU Renderer using the Vulkan API. [Online]. Available: https://

github.com/Slackermanz/VulkanAutomata. Accessed: Oct. 4, 2022.

[193] W. B. Slackermanz, “Understanding Multiple Neighborhood Cellular Automata,” Slackermanz - Exploring complexity

through code, May 23, 2021. [Online]. Available: https://slackermanz.com/understanding-multiple-neighborhood-

cellular-automata/. Accessed: Oct. 4, 2022.

[194] Neuralpatterns. [Online]. Available: https://neuralpatterns.io/. Accessed: Oct. 29, 2022.

[195] The life engine. [Online]. Available: https://thelifeengine.net/. Accessed: Oct. 29, 2022.

[196] R. Rucker and J. Walker, CelLab. [Online]. Available: https://www.fourmilab.ch/cellab/. Accessed: Oct. 05, 2022.

[197] LifeViewer. [Online]. Available: https://lazyslug.com/lifeviewer/. Accessed: Oct. 29, 2022.

[198] L. M. Antunes, “CellPyLib: A Python Library for working with Cellular Automata,” Journal of Open Source Software,

vol. 6, no. 62, p. 3608, 2021. [Online]. Available: https://joss.theoj.org/papers/10.21105/joss.03608. Accessed: Oct.

29, 2022.

[199] L. Ben-Gai, SEMICOLONY, 2015. [Online]. Available: https://soog.bet/semicolony. Accessed: Feb. 2, 2025.

[200] Obsolete Studio, The Infinite Bridge, live performance, Royal College of Music, Britten Theatre, London, May 5, 2015.

[Online]. Available: https://obsolete.studio/portfolio/the-infinite-bridge/. Accessed: Feb. 2, 2025.

[201] L. Ben-Gai, “utomata.js,” GitHub, Feb. 12, 2019. [Online]. Available: https://github.com/soogbet/utomata. Accessed:

Feb. 2, 2025.

[202] The Coding Train, “Coding Challenge #85: The Game of Life,” YouTube, Dec. 11, 2017. [Online Video]. Available:

https://www.youtube.com/watch?v=FWSR_7kZuYg Accessed Oct. 07, 2022.

[203] L. Ben-Gai, Vital Signs - Red Nose Hexagliders [Online Video], May 30, 2021. Available: https://www.youtube.com/

watch?v=Nk3TiIMtFSs. Accessed Feb. 15, 2024.

[204] L. Ben-Gai, Utomata Lab, 2022. [Online]. Available: https://utomata.net/lab/ Accessed May 2, 2024.

[205] L. Ben-Gai and M. Tsadka, Echosystem, Apr. 2019. [Online]. Available: https://soog.bet/echosystem/ Accessed Jun.

29, 2024.

Bibliography

150

151

LABORATORY OF BABEL

10. Appendix

10.1. Type-U Topologies

 U(Vx.Cx, Vy.Cy)
First Order Type-U

 U(
 Fx(Vx.Cx, Vx.Cx),
 Fy(Vy.Cy, Vy.Cy)
)
Second Order Type-U

 U(
 Fx(
 Fx(Vx.Cx, Vx.Cx),
 Fx(Vx.Cx, Vx.Cx)
),
 Fy(
 Fy(Vy.Cy, Vy.Cy),
 Fy(Vy.Cy, Vy.Cy)
)
)

Third Order Type-U

 U(
 Fx(
 Fx(
 Fx(Vx.Cx, Vx.Cx),
 Fx(Vx.Cx, Vx.Cx)
),
 Fx(
 Fx(Vx.Cx, Vx.Cx),
 Fx(Vx.Cx, Vx.Cx)
)
),
 Fy(
 Fy(
 Fy(Vy.Cy, Vy.Cy),
 Fy(Vy.Cy, Vy.Cy)
),
 Fy(
 Fy(Vy.Cy, Vy.Cy),
 Fy(Vy.Cy, Vy.Cy)
)
)
)

Fourth Order Type-U

Appendix

152

 U(
 Fx(
 Fx(
 Fx(
 Fx(Vx.Cx, Vx.Cx),
 Fx(Vx.Cx, Vx.Cx)
),
 Fx(
 Fx(Vx.Cx, Vx.Cx),
 Fx(Vx.Cx, Vx.Cx)
)
),
 Fx(
 Fx(
 Fx(Vx.Cx, Vx.Cx),
 Fx(Vx.Cx, Vx.Cx)
),
 Fx(
 Fx(Vx.Cx, Vx.Cx),
 Fx(Vx.Cx, Vx.Cx)
)
)
),
 Fy(
 Fy(
 Fy(
 Fy(Vy.Cy, Vy.Cy),
 Fy(Vy.Cy, Vy.Cy)
),
 Fy(
 Fy(Vy.Cy, Vy.Cy),
 Fy(Vy.Cy, Vy.Cy)
)
),
 Fy(
 Fy(
 Fy(Vy.Cy, Vy.Cy),
 Fy(Vy.Cy, Vy.Cy)
),
 Fy(
 Fy(Vy.Cy, Vy.Cy),
 Fy(Vy.Cy, Vy.Cy)
)
)
)
)

Fifth Order Type-U

153

LABORATORY OF BABEL

LABORATORY OF BABEL

Lior Ben-Gai
February 2025

