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Abstract—Mental health classification is inherently challeng-
ing, requiring models to capture complex emotional and linguis-
tic patterns. Although large language models (LLMs) such as
ChatGPT, Mental-Alpaca, and MentaLLaMA show promise, they
are not trained on clinically grounded data and often overlook
subtle psychological cues. Their predictions tend to overempha-
size emotional intensity, while failing to capture contextually
relevant indicators that are critical for accurate mental health
assessment. This paper introduces DynaMentA (Dynamic Prompt
Engineering and Weighted Transformer Architecture), a novel
dual-layer transformer framework that integrates the strengths
of BioGPT and DeBERTa to address these challenges. BioGPT
captures fine-grained biomedical indicators, while DeBERTa
provides context-aware disambiguation. The ensemble mecha-
nism dynamically weights their outputs, guided by a simulated
feedback loop that refines the predictions during training. Unlike
previous studies that treat classification statically, DynaMentA
incorporates dynamic prompt engineering to better align with
evolving linguistic and emotional signals. Evaluated on three
benchmark datasets, DepSeverity, SDCNL, and Dreaddit, Dy-
naMentA achieves precision of 92.6%, 91.9% F1-score and 0.94
AUC-ROC, consistently outperforming the existing benchmark,
including general-purpose LLMs and domain-specific mental
health models. This scalable and interpretable framework estab-
lishes a state-of-the-art methodology for computational mental
health analysis in high-stakes applications, such as suicide risk
assessment and crisis intervention and early detection of severe
depressive episodes.

Index Terms—Mental Health Classification, Weighted Trans-
former Models, Social Media Data Analysis, Deep Learning for
Social Systems, AI in Mental Health

I. INTRODUCTION

Mental health disorders, including depression, anxiety, and

stress, are critical global challenges, impacting millions of

people annually and contributing significantly to the global

burden of diseases [1]. According to the World Health Or-

ganization (WHO), depression alone is the leading cause of

disability worldwide. Despite the prevalence of these con-

ditions, early diagnosis and intervention remain inadequate

due to the subjective nature of mental health assessments and

the lack of scalable diagnostic solutions. The emergence of
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natural language processing (NLP) and artificial intelligence

(AI) presents an unprecedented opportunity to bridge this

gap. By analyzing textual data from online platforms such as

social media posts, NLP models can uncover subtle linguistic

cues indicative of mental health states [2]. Although AI-based

mental health classification offers scalable solutions, it must

be balanced with ethical considerations, including privacy, in-

formed consent, and the risk of algorithmic bias in vulnerable

populations. Moreover, existing approaches still struggle to

capture the linguistic, cultural, and emotional diversity present

in real-world mental health discourse.
Traditional methods, including rule-based systems and con-

ventional machine learning approaches, face significant limi-

tations. Rule-based systems often lack flexibility and do not

account for linguistic variability, while traditional machine

learning models rely heavily on extensive feature engineering

and lack interpretability. Recent advances in large language

models (LLMs), such as GPT- and BERT-based architectures,

have shown great promise in mental health classification [3]

[4]. However, these models are typically deployed in static

configurations, relying on predefined prompts and isolated

components, which hinder their ability to dynamically adapt to

the evolving context of user input. This limitation affects their

performance in nuanced tasks such as distinguishing between

stress and depression or identifying suicidal ideation.
To address these challenges, this paper introduces Dyna-

MentA (Dynamic Prompt Engineering and Weighted Trans-

former Architecture), a novel dual-layer transformer frame-

work for mental health classification. The framework leverages

two advanced transformer models: BioGPT [5], optimized

to extract domain-specific cues from biomedical text, and

DeBERTa [6], designed for context-aware classification using

disentangled attention mechanisms and enhanced positional

embeddings. Other transformer-based architectures, such as

XLNet and T5, were considered but did not provide the same

level of domain grounding or contextual precision required

for mental health classification. DynaMentA’s design uniquely

fuses biomedical and contextual reasoning into a unified,

interpretable framework tailored for emotionally complex text.

Key innovations of DynaMentA include:

• Dynamic Prompt Engineering: A mechanism to gen-

erate adaptive prompts tailored to the linguistic and

emotional context of the user, enhancing the extraction

of relevant cues.

• Weighted Ensemble Mechanism: A task-specific en-

semble that integrates the BioGPT and DeBERTa outputs,
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ensuring robust performance on binary and multiclass

classification tasks.

• Iterative Feedback Loop: A simulated refinement mech-

anism that improves classification accuracy by itera-

tively adjusting the weighted ensemble outputs based on

ground-truth labels.

This framework is rigorously evaluated on publicly available

datasets, DepSeverity, SDCNL, and Dreaddit, demonstrating

significant performance improvements with an accuracy of

92.6%, an F1-score of 91.9%, and an AUC-ROC of 0.94,

outperforming state-of-the-art models.

The contributions of this paper are as follows:

• Novel Framework Design: A dual-layer transformer ar-

chitecture combining BioGPT and DeBERTa for context-

sensitive mental health classification.

• Dynamic Prompt Engineering: Implementation of user-

specific adaptive prompts to improve linguistic cue ex-

traction.

• Weighted Ensemble Model: Integration of a task-

specific model that balances the contributions of the

BioGPT and DeBERTa outputs to ensure optimal clas-

sification performance.

• Comprehensive Evaluation: Demonstration of signifi-

cant performance gains in multiple datasets using rigor-

ous evaluation metrics.

By addressing the critical limitations of existing methodolo-

gies, DynaMentA establishes a new benchmark in computa-

tional mental health analysis, offering a scalable, interpretable

and ethically sound solution for real-world applications. The

remainder of this paper is organized as follows. Section II

discusses previous work on mental health classification using

NLP and LLMs. Section III presents the formal problem

statement and the learning objective. Section IV details the

proposed DynaMentA framework, including its architectural

components: BioGPT, DeBERTa, dynamic prompt engineer-

ing, a weighted ensemble mechanism, and a simulated feed-

back loop. Section V presents the experimental setup, includ-

ing the datasets, baseline configurations, evaluation metrics,

and the incorporation of specialized mental health models for

comparative analysis. Section VI reports the results of these

experiments, encompassing comparative performance analysis

with standard and domain-specific models, error analysis, in-

terpretability through attention heatmaps, and ablation studies

evaluating the contributions of core components. Section VII

addresses the ethical considerations of deploying AI systems

in mental health contexts. Finally, Section VIII concludes the

paper and outlines directions for future work.

II. RELATED WORK

Over the last decade, social media has emerged as a

valuable resource for understanding mental states and health

trends [7] [8]. Studies have used linguistic patterns and social

interactions on these platforms to identify risks such as anxiety,

depression, and suicidal ideation [9] [10] [11]. Initially, predic-

tion models used techniques such as SVMs using handcrafted

features [12], but the rise of deep learning [13] has shifted the

focus to pre-trained language models such as BERT, which

have demonstrated effectiveness in mental health-related NLP

tasks [14].

Transformer-based models have revolutionized NLP, with

their highly parallel self-attention mechanisms [15]. Notable

advances include BERT, GPT, and hybrid models like BART,

each optimizing the pre-training and fine-tuning paradigm for

diverse tasks [16] [17]. Larger models, such as GPT-3, have

outperformed their predecessors, enabling capabilities such as

few-shot learning [18]. Recently, ChatGPT and GPT-4 have

gained significant attention for their human-like conversational

abilities, while open-source models such as LLaMA have

provided accessible alternatives for academic and industrial

use [19].

In the health domain, LLMs have achieved remarkable

results, particularly when fine-tuned in medical datasets [20].

MentalLLM [21] proposes a suite of instruction-tuned mental

health models (for example, Mental-Alpaca, Mental-FLAN-

T5), which outperform general-purpose LLMs like GPT-3.5 in

task-specific evaluations using Dreaddit and SDCNL datasets.

Some studies have used LLMs for sentiment analysis, emotion

reasoning, and mental health classification tasks, but gaps in

accuracy and performance persist [22]. Emerging models such

as Mental-LLaMA [23] and initiatives such as the SMILE

method [24] aim to address these challenges by expanding

mental health datasets and improving LLM capabilities. Sim-

ilarly, in addition, frameworks such as Psy-LLM [25] and

Psycollm [26] integrate LLMs into mental health practice,

offering real-time feedback to practitioners and advancing the

role of AI in mental health support.

In this paper, we employ a weighted ensemble to combine

BioGPT and DeBERTa with dynamic prompt engineering and

iterative feedback to improve mental health classification.

III. PROBLEM STATEMENT

To formalize the problem, let X = {x1, x2, . . . , xn} rep-

resent the set of user inputs, where xi is an individual text

sample (for example, a social media post). The goal is to

assign to each input xi a label yi ∈ Y , where Y represents

the set of mental health classes, such as {Depression, Stress,

Suicidal Ideation}. The task can be framed as a supervised

learning problem, where the objective is to learn a mapping

function f : X → Y that minimizes the classification error.

Mathematically, this can be expressed as:

minimize
θ

1

N

N∑

i=1

L(fθ(xi), yi) (1)

where:

• L denotes the loss function (cross-entropy loss) for mul-

ticlass classification.

• fθ is the parameterized model consisting of the BioGPT

and DeBERTa components.

• θ represents the model parameters optimized during train-

ing.

The challenge lies in ensuring that fθ generalizes well

across diverse linguistic patterns and contexts. To achieve this,

the proposed framework employs dynamic prompt engineering

to enrich input representations xi, with contextual cues Ci.
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Here, Ci includes auxiliary features such as temporal patterns
(e.g., posting frequency and timing relevant in DepSeverity),

syntactic structures (for example, fragmented or telegraphic

writing seen in SDCNL), and lexical markers of emotional
intensity or metaphorical language (for example, “drowning,”

“trapped,” frequently observed in Dreaddit). These cues are

incorporated implicitly through dynamic prompt templates

and guide both BioGPT and DeBERTa in adapting their

embeddings to reflect task-relevant emotional and linguistic

patterns.The final classification is performed using an ensem-

ble method that combines predictions from BioGPT (fBioGPT)

and DeBERTa (fDeBERTa):

ŷi = αfBioGPT(xi, Ci) + βfDeBERTa(xi, Ci) (2)

where α and β are task-specific weights satisfying α+β = 1.

In practice, α and β are derived by performing a grid search on

combinations (for example, α from 0.1 to 0.9 in increments of

0.1, with β = 1−α, selecting the pair that produces the highest

F1-score in the validation set. Furthermore, the weighted

sum approach was chosen over majority voting or stacking

to preserve differentiability and allow task-specific emphasis

during inference, facilitating adaptability across datasets with

varying linguistic profiles. This innovative architecture sets a

new benchmark in computational mental health analysis by

ensuring that the system not only performs efficiently, but also

adapts to the diverse and context-sensitive nature of mental

health expressions.

IV. MODEL ARCHITECTURE

The proposed DynaMentA, Dynamic Prompt Engineering

and Weighted Transformer Architecture, integrates two ad-

vanced transformer models, BioGPT and DeBERTa, to achieve

high accuracy and robustness in mental health classification

tasks. This architecture is designed to leverage the domain-

specific capabilities of BioGPT for contextual cue extraction

and the advanced classification abilities of DeBERTa for

adaptive prediction. The two models work in tandem, their

output being combined through a weighted ensemble mecha-

nism to ensure optimal performance in binary and multiclass

classification tasks.The high-level architecture of the proposed

framework is illustrated in Figure 1.

A. BioGPT

The first component of the architecture, BioGPT, is a

transformer-based language model pretrained on biomedi-

cal corpora, including PubMed abstracts, PMC-OA articles,

and other publicly available biomedical datasets. The model

utilizes self-attention mechanisms to extract domain-specific

contextual cues from textual input, making it particularly

effective in identifying linguistic patterns associated with

mental health conditions. BioGPT processes an input se-

quence X = {x1, x2, . . . , xn}, where each xi represents a

tokenized segment of the input text. The output of BioGPT,

V = {v1,v2, . . . ,vn}, is a set of contextual cue vectors, each

capturing semantic and syntactic information about the input

text.

Fig. 1. The proposed DynaMentA Architecture

The processing involves a series of transformer layers,

each consisting of multi-head self-attention and position-wise

feedforward networks, ensuring that the model captures long-

range dependencies and contextual nuances. For example,

given an input such as ”I feel hopeless and can’t see a way
out”, BioGPT extracts primary indicators like suicidal ideation
and secondary indicators such as hopelessness and entrapment.
These cues provide a structured representation of the user’s

mental state, which is crucial for downstream classification.

Dynamic prompts guide BioGPT in focusing on relevant lin-

guistic patterns during contextual cue extraction. Unlike static

prompts, which remain fixed irrespective of the input, dynamic

prompts are generated adaptively based on the input context

and historical interactions. The dynamic prompt mechanism is

modeled as a function Pt = f(Ct, Ht, θ), where Ct represents

the current context derived from the input, Ht are the historical

interaction data and θ denote the learnable parameters of

the prompt generation model. This mechanism ensures that

BioGPT focuses on extracting the most relevant cues for

the classification task at hand. For example, if a user input

indicates work-related stress, the prompt dynamically adjusts

to query stress-related details, such as ”Is this stress affecting
your sleep or mood?”. The ability to generate task-specific

prompts significantly enhances the flexibility and contextual

adaptability of the model.
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B. DeBERTa (Decoding-enhanced BERT with disentangled
attention)

The second component of the architecture, DeBERTa, serves

as the classification layer of the framework. DeBERTa im-

proves on traditional transformer architectures by incorporat-

ing disentangled attention mechanisms and enhanced relative

positional embeddings. These features enable the model to

capture fine-grained relationships between words and phrases,

making it highly effective for understanding complex linguistic

structures in mental health-related texts. DeBERTa processes

the enriched input xfinal, which combines the original input

sequence X with the contextual cues V extracted by BioGPT.

The classification token h[CLS] from the final transformer

layer is passed through a task-specific feed-forward network

to compute the probabilities of the class:

ŷ = softmax(W · h[CLS] + b), (3)

where W and b are trainable weights and biases, respectively,

and ŷ represents the probability distribution over the output

classes. For example, given an input such as ”I feel like
nothing I do is ever good enough”, the enriched input includes

cues such as low self-esteem and persistent doubt. DeBERTa

predicts a probability distribution that indicates the most likely

mental health condition, such as Depression with a probability

of 0.85.

C. Dynamic Prompt Engineering

To enhance adaptability across heterogeneous input distri-

butions, we implement a dynamic prompt engineering module

that conditions model behaviour on instance-specific linguistic

and contextual variations. Rather than appending static task

instructions, we introduce lightweight, input-aware prompt

templates Pi that are programmatically constructed for each

input xi using derived auxiliary signals Ci.

Let xi be a user-generated text sample, and Ci the set

of contextual features extracted during preprocessing (e.g.,

part-of-speech patterns, negation cues, lexical affect, or time

metadata). The prompt Pi is generated as:

Pi = template(Ci)⊕ xi, (4)

where template(Ci) denotes a slot-filled prompt prefix con-

structed by mapping contextual features to semantic indicators

(e.g., markers of temporal urgency, syntactic disfluency, or

affect polarity), and ⊕ denotes prompt concatenation.

The prompts are injected into the tokenization layer for

both BioGPT and DeBERTa and aligned with each model’s

tokenizer vocabulary to ensure embedding consistency. During

training, templates are selected from a predefined pool and

dynamically adjusted via rules or heuristics based on dataset-

specific traits. No prompt tuning is performed at the embed-

ding level; instead, the design leverages natural language scaf-

folds to condition attention flow and guide encoder behaviour

implicitly.

This mechanism introduces inductive bias without intro-

ducing additional trainable parameters, supporting better gen-

eralization to edge-case inputs and reducing overfitting to

lexical artifacts common in mental health corpora. Empirically,

we observed improved performance on samples exhibiting

metaphorical ambiguity or low-frequency constructs when

dynamic prompts were used.

D. Weighted ensemble mechanism

The BioGPT and DeBERTa outputs are combined using a

weighted ensemble mechanism, which balances the strengths

of both models. The ensemble output is computed as:

yensemble = α · yBioGPT + β · yDeBERTa (5)

where α and β are task-specific weights satisfying α+β =
1. These weights α and β are optimized during training using

a grid search approach, ensuring that the contributions of

BioGPT and DeBERTa align with the characteristics of the

dataset and maximize the classification performance. These

weights determine the ensemble output by appropriately bal-

ancing the predictions from both models, as demonstrated

in the example. For example, if BioGPT predicts Stress
with a probability of 0.7 and DeBERTa predicts Stress with

a probability of 0.8, and the weights are α = 0.4 and

β = 0.6, the ensemble output is calculated as yensemble =
0.4 · 0.7 + 0.6 · 0.8 = 0.76, resulting in a final prediction

of Stress. The fixed weighting strategy was chosen to bal-

ance the complementary strengths of BioGPT and DeBERTa

while maintaining interpretability and reproducibility, which

are critical in mental health applications. Although dynamic

weighting strategies (for example, attention-based ensembling)

may offer additional flexibility, we prioritized transparency and

deterministic behaviour in this work.

E. Simulated Feedback Mechanism

The framework incorporates a simulated feedback mecha-

nism to refine predictions and improve classification accuracy

during training. In this study, the feedback is simulated using

ground-truth labels from the datasets, as real-time user inter-

actions are not available. If the model’s prediction deviates

from the ground truth, the feedback mechanism adjusts the

ensemble weights to prioritize relevant cues extracted by

BioGPT and DeBERTa. The iterative feedback loop updates

weights only during training, refining model parameters based

on misclassified instances to improve generalization to unseen

test data. Therefore, the feedback mechanism is not deployed

in real time but operates offline during training to adjust model

behaviour based on known ground-truth labels. For example,

if an input such as ”I feel exhausted and unable to focus”
is incorrectly classified as Stress instead of Depression, the

feedback mechanism adjusts the ensemble weights to prioritize

the depressive cues extracted by BioGPT and DeBERTa. While

effective for controlled evaluations, this feedback mechanism

currently does not incorporate user input in real time. In fu-

ture iterations, the integration of human-in-the-loop feedback,

such as clinician corrections or user-flagged misclassifications,

could enhance the adaptability of the model and allow dynamic

adjustment of ensemble weights or prompt construction based

on real-world interactions.
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Algorithm 1: DynaMentA: Dynamic Prompt Engi-

neering and Weighted Transformer Architecture for

Mental Health Classification
Require: Input text samples X = {x1, x2, . . . , xn}, model parameters

θBioGPT, θDeBERTa

Ensure: Final predicted labels Ŷ = {ŷ1, ŷ2, . . . , ŷn}
1: Preprocess X and split into training and test sets
2: for each training sample xi do
3: Extract contextual cues Ci

4: Construct dynamic prompt Pi ← template(Ci)⊕ xi

5: Encode with BioGPT: Vi ← BioGPT(Pi; θBioGPT)
6: Compute prediction: yiBioGPT ← softmax(W1 ·Vi + b1)
7: end for
8: for each training sample xi do
9: Concatenate input: xfinal ← [xi;Vi]

10: Encode with DeBERTa: hi ← DeBERTa(xfinal; θDeBERTa)
11: Compute prediction: yiDeBERTa ← softmax(W2 · hi + b2)
12: end for
13: for each sample i do
14: Combine predictions: yiensemble ← α · yiBioGPT + β · yiDeBERTa
15: Final label: ŷi ← argmax(yiensemble)
16: end for
17: return Final predictions Ŷ

This dual-layer architecture ensures that the framework

utilizes the domain-specific knowledge of BioGPT and the

advanced classification capabilities of DeBERTa, achieving

superior accuracy, robustness, and interpretability. The inte-

gration of dynamic prompts, weighted ensemble modelling,

and simulated feedback further enhances the adaptability of

the system, making it well suited for complex and context-

sensitive tasks in mental health classification. The algorithm 1

summarizes the proposed dual-layer transformer framework

for contextual mental health classification.

V. EXPERIMENTS

To evaluate the performance of the proposed dual-layer

transformer framework, we performed extensive experiments

using publicly available datasets relevant to mental health

classification. These datasets included annotated text samples

containing user-generated content from social media plat-

forms, forums, and clinical notes, categorized into binary

and multiclass labels such as Stress, Depression, and Anxiety.

Data were preprocessed by tokenization, lowercasing, and

removal of stop words to ensure uniformity and reduce noise.

The dataset was divided into training (80%), and test (20%)

sets, maintaining class distribution across all subsets. The

training dataset was further divided into a 70:10 ratio in the

training and validation set. Computational experiments were

conducted using NVIDIA Tesla V100 GPU with 32 GB of

VRAM. The weighted ensemble mechanism and the simulated

feedback loop were evaluated in ablation studies to measure

their contribution to the overall framework.

A. Datasets

To ensure a robust and generalizable mental health classi-

fication, three publicly available datasets are utilized: Dep-
Severity, SDCNL, and Dreaddit. These datasets, sourced

from Reddit, provide rich textual data that reflect real-world

linguistic patterns and emotional tones, covering depression

severity, suicidal ideation, and stress detection.

DepSeverity consists of 3,553 Reddit posts annotated into

four levels of depression severity: minimal, mild, moderate,

and severe. In accordance with the DSM-5 guidelines, it sup-

ports binary and multiclass classification tasks. For example,

”I feel like I can’t do anything right anymore. Nothing makes
me happy.” is labeled as Moderate Depression.

SDCNL (Suicide vs. Depression Classification Natural
Language Dataset) contains 1,895 posts annotated as either

Suicidal Ideation or General Depression. For instance, the post

”I don’t think I can go on anymore. Life feels pointless.” is

labeled as Suicidal Ideation.

Dreaddit comprises 1,191 posts focusing on stress detection

in domains such as social and financial stress. The posts are

labeled as stress or no stress, with additional metadata. For

example, ”I’m behind on rent, and I don’t know how I’ll make
ends meet.” is labeled as Stress (Financial).

These datasets expose the framework to diverse linguistic

patterns and emotional expressions, which enhances its robust-

ness in handling mental health classification tasks. The prepro-

cessing challenges included informal language, misspellings,

and contextually ambiguous expressions, all of which could

affect the accuracy of the classification. To mitigate these

issues, we applied data normalization techniques such as slang

replacement, spelling correction, stemming, and context-aware

tokenization. These steps helped reduce noise and effectively

structure the raw text for input into transformer-based models,

improving overall input quality and model performance.

B. Baseline Models

To comprehensively evaluate the performance of the pro-

posed DynaMentA framework, we compared it against three

categories of baseline models: traditional classifiers, neural

architectures, and state-of-the-art transformer-based language

models.

Traditional Machine Learning Models. We implemented

Support Vector Machines (SVM) with RBF kernel and Ran-

dom Forests (RF) with 100 estimators as representative non-

neural baselines. These models were trained on TF-IDF vector

representations of the input text and serve to establish lower

bounds on performance.

Neural Models. We included Long Short-Term Mem-

ory (LSTM) networks and Convolutional Neural Networks

(CNNs) to capture sequential and local features in the text,

respectively. These models were initialized with pre-trained

GloVe embeddings (300d) and trained using cross-entropy loss

with Adam optimizer. Dropout and early stopping were used

to prevent overfitting.

Transformer-Based Models. To benchmark against strong

pretrained baselines, we fine-tuned BERT, RoBERTa, and

XLNet using the Hugging Face Transformers library. All

models were fine-tuned for 3–5 epochs using the same learning

rate and batch size, with the final checkpoint selected based

on the validation F1-score.

To ensure a fair comparison, all baselines were trained

and evaluated on the same dataset splits and preprocessing

pipeline.
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C. Evaluation Metrics

Accuracy, precision, recall, F1-score, and AUC-ROC were

selected as evaluation metrics to provide a balanced assess-

ment of both the overall classification performance and the

model’s ability to handle class imbalances in mental health

data. These metrics were chosen to reflect both general per-

formance and sensitivity to misclassifications, which is critical

in mental health prediction. Specifically, F1-score balances

precision and recall, making it ideal for detecting underrepre-

sented or overlapping classes. AUC-ROC provides a threshold-

independent view of the model’s discriminative power, es-

pecially important for high-stakes decisions involving stress,

depression, or suicidal ideation. All metrics were computed on

held-out test sets using standard scikit-learn implementations.

Model performance was additionally validated with cross-

validation to reduce evaluation bias.

D. Hyperparameter Settings

The training process used the AdamW optimizer with

a cosine learning rate scheduler to dynamically adjust the

learning rate throughout the training. A batch size of 16 was

used and early stopping with a patience of 3 epochs was

applied based on validation loss to prevent overfitting. Both

BioGPT and DeBERTa were initialized with their respective

pre-trained weights and fine-tuned on each mental health

dataset. Hyperparameters, including learning rate, ensemble

weights (α and β), dropout rate, and prompt construction

parameters—were optimized using grid search. The learning

rate was varied in the range 1 × 10−5 to 5 × 10−4, and

batch sizes of {8, 16, 32} were explored. Prompt parameters

included rule-based switches for template variation based on

input metadata and emotional cues, rather than any learnable

prompt embeddings. Ensemble weights were selected by max-

imizing F1-score on the validation set across pairs satisfying

α+β = 1. Hyperparameter combinations were evaluated on a

held-out validation split consisting of 10% of the training data,

and the configuration that generates the highest macro F1-

score was selected for the final training. To ensure statistical

robustness, all experiments were repeated five times with

different random seeds, and mean and standard deviation of

performance metrics were reported.

E. Experimental Inclusion of Specialized LLMs

To enhance the rigor of our experimental design, we fur-

ther benchmarked DynaMentA against specialized large lan-

guage models (LLMs) developed specifically for mental health

prediction tasks. These include Mental-Alpaca and Mental-

FLAN-T5 [21], as well as MentaLLaMA-chat-13B [23], which

incorporate instruction tuning and psychological context to

improve their relevance in mental health applications.

For fairness, the specialized models were evaluated on

common benchmark datasets, Dreaddit, SDCNL, and De-

pression Reddit (DR) using consistent preprocessing, dataset

splits, and evaluation metrics, including Balanced Accuracy

and Weighted F1-score. Publicly released model checkpoints

and tokenizers were used in inference mode to ensure re-

producibility. Default settings were applied where specific

hyperparameters were not available. The comparative perfor-

mance outcomes of these models, alongside DynaMentA, are

discussed in detail in the next section.

VI. RESULTS AND DISCUSSION

The results demonstrate the significant advances achieved

by the proposed DynaMentA in mental health classification.

This section elaborates on performance metrics, dataset-wise

results, ablation studies, error analysis, attention heatmaps, and

training efficiency.

A. Comparative Performance Analysis

The proposed DynaMentA is compared with the baseline

models, including SVM, LSTM, BERT, RoBERTa, BioBERT,

and ChatGPT-4.0. Table I highlights the improvements in

accuracy, F1-score, and AUC-ROC across all datasets.

TABLE I
OVERALL PERFORMANCE METRICS

Model Acc (%) Prec (%) Rec (%) F1 (%) AUC-ROC MCC
SVM 79.6 78.9 78.1 78.5 0.81 0.56

LSTM 81.3 80.8 80.2 80.5 0.83 0.60

BERT 87.4 86.9 86.3 86.6 0.89 0.72

RoBERTa 88.1 87.6 87.1 87.3 0.90 0.74

BioBERT 86.2 85.8 85.0 85.4 0.88 0.70

ChatGPT 89.7 89.0 88.5 88.8 0.91 0.76

Proposed 92.6 92.1 91.7 91.9 0.94 0.81

DynaMentA consistently outperforms all baseline models

across all metrics. While ChatGPT achieves high accuracy

(89.7%) and F1-score (88.8%), DynaMentA surpasses it with a

3.2% higher accuracy and a 3.1% better F1-score. Compared to

BioBERT, which specializes in biomedical text, DynaMentA

demonstrates a 6.4% improvement in F1-score, demonstrating

its ability to integrate domain-specific and contextual informa-

tion effectively.

B. Dataset-Specific Comparison

The performance of DynaMentA was evaluated against

several baseline models, including SVM, LSTM, BERT,

RoBERTa, BioBERT, and ChatGPT-4.0, across three datasets:

DepSeverity, SDCNL, and Dreaddit. Table II presents a de-

tailed comparison of accuracy, F1-score, and AUC-ROC for

each model on these datasets.

The results demonstrate that DynaMentA consistently

achieves the highest performance in all datasets. For the

SDCNL dataset, which focuses on the binary classification of

suicidal ideation, DynaMentA achieves an F1-score of 92.5%,

significantly outperforming ChatGPT by 3.2% and BioBERT

by 6.7%. Similarly, in the DepSeverity dataset, which involves

multi-class classification, DynaMentA achieves an F1-score of

90.7%, outperforming RoBERTa by 3.4% and BioBERT by

6.2%.

For the Dreaddit dataset, DynaMentA achieves an accuracy

of 92.9% and an F1-score of 92.3%, highlighting its ability

to handle nuanced sentiments and stress-related classifications

better than ChatGPT, which achieves an F1-score of 90.6%.
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TABLE II
DATASET-SPECIFIC PERFORMANCE COMPARISON ACROSS MODELS

Dataset Model Accuracy (%) F1 (%) AUC-ROC
DepSeverity SVM 79.6 78.5 0.81

LSTM 81.3 80.5 0.83

BERT 87.4 86.6 0.89

RoBERTa 88.1 87.3 0.90

BioBERT 85.2 84.5 0.87

ChatGPT 89.1 88.5 0.91

DynaMentA 91.3 90.7 0.93
SDCNL SVM 79.2 78.8 0.80

LSTM 81.5 80.9 0.84

BERT 87.7 86.8 0.89

RoBERTa 88.7 87.9 0.91

BioBERT 86.5 85.8 0.88

ChatGPT 90.0 89.3 0.92

DynaMentA 93.1 92.5 0.95
Dreaddit SVM 79.5 78.7 0.81

LSTM 81.8 80.7 0.84

BERT 87.9 86.5 0.90

RoBERTa 89.0 88.3 0.92

BioBERT 87.0 86.4 0.89

ChatGPT 91.2 90.6 0.93

DynaMentA 92.9 92.3 0.94

C. Statistical Significance

To validate the observed improvements, a paired t-test was

conducted between DynaMentA and the second-best per-

forming model, ChatGPT-4.0, across all datasets. The results

are summarized in Table III, where the p-values confirm the

statistical significance of the improvement in DynaMentA

performance (p < 0.01).

TABLE III
STATISTICAL SIGNIFICANCE OF DYNAMENTA’S IMPROVEMENTS

Dataset Metric Mean Difference p-value
DepSeverity F1-Score 2.2% p < 0.01

SDCNL F1-Score 3.2% p < 0.01

Dreaddit F1-Score 1.7% p < 0.01

The improvements achieved by DynaMentA are not only

statistically significant, but also practically relevant, as they

consistently demonstrate the superior ability of the framework

to handle both binary and multiclass mental health classifica-

tion tasks in diverse datasets.

D. Comparison with Specialized Mental Health Models

Table IV summarizes the performance of DynaMentA com-

pared to the specialized large language models on Dreaddit,

SDCNL, and Depression Reddit (DR). The evaluation includes

Mental-Alpaca, Mental-FLAN-T5 [21], and MentaLLaMA-

chat-13B [23], which incorporate mental health–specific in-

struction tuning or domain adaptation, reflecting recent ad-

vances in task-specific language modelling.

DynaMentA consistently achieves higher scores in all

datasets, outperforming specialized models by up to 15%

in both accuracy and F1-score. These findings highlight the

effectiveness of our dual-layer architecture in capturing both

TABLE IV
PERFORMANCE COMPARISON OF DYNAMENTA AND SPECIALIZED LLMS

ON OVERLAPPING DATASETS

Model Dataset Metric Type Score (%)
Mental-Alpaca Dreaddit Balanced Accuracy 81.6

SDCNL Balanced Accuracy 72.4

Mental-FLAN-T5 Dreaddit Balanced Accuracy 80.2

SDCNL Balanced Accuracy 67.7

MentaLLaMA-chat-13B Dreaddit Weighted F1 75.79

DR Weighted F1 85.68

DynaMentA Dreaddit Accuracy / F1-score 92.9 / 92.3
SDCNL Accuracy / F1-score 93.1 / 92.5

DR Accuracy / F1-score 91.3 / 90.7

clinical semantics (via BioGPT) and contextual depth (via De-

BERTa), making it better suited for cross-task generalization

in mental health classification.

E. Interpretability via Attention Maps

To enhance the interpretability of the proposed frame-

work, attention heatmaps were generated for both BioGPT

and DeBERTa. The heatmap represents the average attention

weights across all heads for each layer. Figure 2 visualizes the

BioGPT attention weights, highlighting words and phrases that

contribute the most significantly to the prediction of the model.

Similarly, Figure 3 illustrates the attention distribution for

DeBERTa, providing information on how the model processes

relational and contextual cues.

The attention heatmaps reveal the following patterns:

• BioGPT attends to biomedical and emotionally charged

terms, such as ”hopeless,” ”exhausted,” and ”trapped.”
This focus enables the model to extract domain-specific

cues highly relevant to mental health classification.

• DeBERTa emphasizes syntactic structure and relational

context, attending to phrases such as ”can’t see a way
out” or ”life feels pointless.” This enhances its capacity

to refine predictions through contextual understanding.

This layered attention approach allows DynaMentA to

capture both semantic and syntactic features, contributing to

more explainable predictions. For example, in the sentence ”I
feel hopeless and can’t see a way out,” BioGPT focuses on

indicators such as ”hopeless” and ”trapped” while DeBERTa

refines the classification by analyzing the broader relational

context, particularly ”can’t see a way out.”
Importantly, this example illustrates how attention heatmaps

can enhance model transparency, allowing human observers,

such as clinicians and system developers, to verify whether the

model focus aligns with psychologically meaningful features.

Interpretability is particularly critical in mental health appli-

cations, where understanding the rationale behind predictions

can directly influence trust, adoption, and ethical deployment.

Table V provides examples of misclassified cases, helping

to understand the challenges in nuanced classifications.

Errors often occur in overlapping linguistic patterns, such

as between stress and depression, the model faces the ambi-

guity. For instance, ”hopeless” is associated with both classes,

leading to confusion. Incorporating additional features, such as
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Fig. 2. BioGPT Attention Heatmap: Highlights critical biomedical terms
contributing to predictions.

Fig. 3. DeBERTa Attention Heatmap: Emphasizes sentence structure and
relational cues for refined classification.

TABLE V
ERROR ANALYSIS AND LIKELY CAUSES

Input Text True Label Predicted Label
”I feel tired and hopeless about work.” Depression Stress

”Life feels pointless; I don’t want to
continue.”

Suicidal Ideation Depression

”I can’t focus on tasks due to anxiety.” Stress Anxiety

temporal data or multimodal inputs, could reduce such errors.

To illustrate the limitations of attention-based interpretability,

consider the following misclassified example:

”I just want a break from everything. My head feels like it’s
going to explode.”

In this case, the ground truth label is Stress, but the model

incorrectly classifies it as Anxiety. The attention heatmap

in Figure 4 presents the BioGPT attention heatmap for a

misclassified input. It shows that BioGPT focuses on emo-

tionally intense tokens such as ”explode” and ”everything”,

while underemphasizing the broader situational context that

suggests external overload and burnout rather than internal

fear or worry.

This misalignment suggests that the model can associate

high-intensity emotional language with anxiety-like patterns,

even when the underlying cause reflects acute situational

stress. In addition, the absence of longitudinal or situational

cues makes it difficult for the model to distinguish between

transient stress and clinically significant anxiety. Such cases

Fig. 4. BioGPT attention heatmap for a misclassified input.

underscore both the value and the limitations of attention

heatmaps.

F. Performance by Dataset and Task Type

Table VI presents the framework performance in individual

datasets for binary and multiclass classification tasks.

TABLE VI
PERFORMANCE BY DATASET AND TASK TYPE

Dataset Task Acc (%) F1 (%) AUC-ROC
DepSeverity Multi-Class 91.3 90.7 0.93

SDCNL Binary 93.1 92.5 0.95

Dreaddit Binary 92.9 92.3 0.94

The framework performs consistently across datasets, with

the highest accuracy of 93.1% on the SDCNL dataset, high-

lighting its effectiveness in distinguishing between suicidal

ideation and depression. In the multiclass DepSeverity dataset,

the framework achieves a high F1-score of 90.7%, demon-

strating its ability to handle complex tasks involving multiple

severity levels.

G. Ablation Study

To assess the importance of individual components in

Dynamic Prompts and Weighted Ensemble Model Table VII

presents results from the ablation study.

TABLE VII
ABLATION STUDY RESULTS

Configuration Acc (%) F1 (%) AUC-ROC MCC
Without Dynamic Prompts 89.2 88.7 0.91 0.76

Without Ensemble 90.4 89.8 0.92 0.78

Full Framework 92.6 91.9 0.94 0.81

Removing dynamic prompts reduced accuracy by 3.4%,

indicating their critical role in extracting context-specific cues.

The ensemble mechanism contributes an additional 2.2%

improvement in accuracy, showcasing the synergy between

BioGPT and DeBERTa.

H. Training Efficiency

The framework with 18 epochs converges within 12 epochs

after reaching the threshold condition, demonstrating compu-

tational efficiency. Early stopping ensures that the model is not

overfitting while maintaining high generalization performance.

Figure 5 shows the training and validation loss curves, illus-

trating the convergence of the framework.
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Fig. 5. Training and Validation Loss Curves.

VII. ETHICAL CONSIDERATIONS

The use of AI models for mental health classification raises

several ethical concerns that must be carefully addressed:

• Privacy and Data Security: Mental health data is

inherently sensitive. Ensuring robust mechanisms for

data anonymization, encryption, and secure storage is

paramount to prevent misuse or breaches.

• Bias and Fairness: Training data can contain inherent

biases related to language, demographics, or cultural con-

texts. These biases could lead to skewed predictions, dis-

proportionately affecting underrepresented groups. Rigor-

ous testing and bias mitigation strategies are essential.

• Informed Consent: Collecting and using data for train-

ing purposes must be accompanied by explicit, informed

consent of the individuals, ensuring transparency about

how their data will be used.

• Misuse and Overreliance: AI models should not be used

as standalone diagnostic tools. They must complement,

not replace, professional mental health practitioners to

avoid the risks of misdiagnosis or inappropriate interven-

tions.

• Transparency and Accountability: Providing explana-

tions for predictions is critical to building trust with users

and practitioners. Models must include mechanisms for

error reporting and accountability in case of inaccuracies

or harm.

• Ethical Deployment: Deployment in real-world scenar-

ios must align with ethical guidelines and regulatory

standards, particularly in regions with stringent data pro-

tection laws such as GDPR or HIPAA.

By proactively addressing these ethical considerations, the

framework can ensure its responsible development and deploy-

ment while prioritizing the well-being and trust of its users.

VIII. CONCLUSION

This paper proposes DynaMentA, a dual-layer transformer

framework that combines BioGPT’s biomedical expertise with

DeBERTa’s contextual modelling to address the complexities

of mental health classification. Through dynamic prompt en-

gineering and a weighted ensemble mechanism, DynaMentA

adapts to diverse emotional and linguistic contexts, delivering

robust predictions for both binary and multiclass tasks. An

iterative feedback loop further enhances adaptability and reli-

ability. Evaluations in the DepSeverity, SDCNL, and Dreaddit

datasets demonstrate significant improvements in accuracy,

recall, and F1-score, outperforming state-of-the-art baselines.

While DynaMentA has shown considerable advancements,

it also has limitations. Its reliance on textual data restricts

applicability to individuals who express mental health states

through written language, excluding those who communicate

verbally or non-verbally. Additionally, the use of Reddit-

based datasets, although selected for their linguistic openness

and relevance may limit generalizability between cultures

and platforms. The simulated feedback mechanism, while

effective during training, does not incorporate real-time user

input, which is crucial for adaptive systems. Future work

will address these challenges by extending the evaluation

to other platforms (e.g., Twitter, Facebook, clinical data)

and integrating multimodal inputs, such as audio, video and

physiological signals for a more holistic understanding of

mental health. Incorporating real-time human feedback and

collaborating with mental health professionals will enhance

clinical relevance, personalization, and trust. In particular,

future development will explore human-in-the-loop mecha-

nisms, where clinical input could refine predictions, guide

prompt adaptation, and dynamically adjust ensemble weights.

Furthermore, integrating user-specific language modelling in

secure, consent-based environments (e.g., therapeutic chatbots)

could enable more personalized and context-aware mental

health support. These enhancements would bring DynaMentA

closer to real-world deployment, ensuring greater inclusivity,

adaptability, and societal impact.
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