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Abstract
Many individuals experience performance anxiety (PA) in high-stakes situations, from public speaking to the

performing arts. While debilitating PA is associated with physiological, cognitive, and affective alterations,

its  underlying  mechanisms  remain  unclear.  Using  behavioural  analysis,  computational  modelling,  and

electroencephalography,  we  investigated  whether  PA  predisposes  individuals  to  learn  faster  from

punishment than reward, particularly under high task uncertainty. Across three experiments with 95 skilled

pianists,  participants  learned  hidden  melody  dynamics  through  reinforcement  with  graded  reward  or

punishment feedback. Bayesian hierarchical modelling revealed that performers with greater PA levels learn

faster from punishment in low-uncertainty environments but increasingly rely on reward as uncertainty

escalates.  These  biases  were  mediated  by  reinforcement-driven  modulation  of  motor  variability—

increasing following poor outcomes—and shifts in frontal theta (4–7 Hz) activity encoding feedback changes

and signalling upcoming motor adjustments. The findings reveal that PA alters the weighting of reward and

punishment signals based on task uncertainty.

1

mailto:M.Herrojo-Ruiz@gold.ac.uk


Introduction
Performing in high-stakes, socially evaluative settings—where individuals are judged on their abilities—is a

fundamental challenge in human behaviour, spanning domains as diverse as sports, public speaking, and

the performing arts. While some individuals thrive in those settings, others experience performance anxiety

(PA)—a debilitating condition characterised by anxious apprehension towards performance1.  PA affects

between 25% and 40% of professionals and students across domains2–5, significantly impacting health and

career trajectories, yet its underlying neurocognitive mechanisms remain poorly understood. 

PA  is  characterised  by  altered  physiological,  cognitive,  and  affective  states3,4,6–9,  often  impairing

performance in critical moments. Competitions and stage performances heighten state anxiety, disrupting

cardiorespiratory  rhythms  and  motor  control6–8,10.  Laboratory  studies  show  that  PA  increases  muscle

stiffness,  impairs  memory  retrieval,  and  disrupts  the  automatic  execution  of  well-learned  actions11–13.

Despite these advances, a major gap remains in understanding how PA interacts with fundamental learning

processes.

Anxiety disorders are increasingly conceptualised as disorders of learning and decision-making, particularly

under  uncertainty14–16,  where  information  is  incomplete  or  the  environment  is  unstable.  A  prevailing

hypothesis is  that anxiety is  associated with  negative learning biases16–18,  whereby individuals exhibit a

greater  reliance on negative outcomes to update their behaviour or beliefs.  Computational studies have

shown that  clinically  anxious individuals  learn faster  from punishment  than from reward17,18,  an  effect

attributed to biased attention for threats and suppression of reward-seeking behaviour16,19,20. Variations in

these patterns associate  cognitive symptoms of  anxiety  with  faster  threat  learning,  while  physiological

symptoms  increase  safety  learning21.  Decision-making  studies  further  show  that  abnormal  learning

processes in anxiety intensify as uncertainty increases22–26. Similarly, in motor learning tasks involving large,

intrinsically uncertain continuous action spaces, state anxiety attenuates reward learning27. Based on these

findings, we hypothesise that PA promotes negative learning biases, leading affected individuals to rely

more  on  punishment  than  reward to  guide  adaptation  during  performance—an  effect  that  may  be

exacerbated under uncertainty.

In the motor domain, reward and punishment differentially modulate learning. While punishment increases

learning rates during  sensorimotor adaptation28,29,  reward improves retention of  adaptation and motor

skills28,30,31.  However,  inconsistencies  in  these  findings  indicate  task-dependent  effects32,33.  Faster

punishment learning has been explained by greater trial-by-trial motor variability and larger motor updates

following negative outcomes28,31.  After unsuccessful  actions,  increased task-related variability  promotes

exploration, enabling the sensorimotor system to more rapidly identify successful actions34–36. 

Motor variability  arises  from several  sources37,38,  including  neuromotor and planning noise,  along with

exploratory variability, which is particularly sensitive to outcomes about success and failure. By dissociating

reinforcement effects from behavioural autocorrelations, recent studies demonstrate that poor outcomes

causally  increase exploratory variability  to improve learning36,39.  Computational  modelling  complements

these findings by revealing how agents adjust  different sources of motor variability36,39.  Together, these

approaches provide a framework to test  our second hypothesis:  that,  in  the motor domain, PA biases

learning from reward and punishment through altered regulation of motor variability. 

To  identify  the  neural  mechanisms  underlying  the  hypothesised  learning  biases  and  altered  motor

variability  regulation  in  PA,  we  examined  electroencephalography  (EEG)  oscillations.  Prefrontal  and
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sensorimotor beta oscillations (13–30 Hz) are key modulators of motor learning40–43, including reward-based

learning27,44,45, with beta attenuation post-feedback contributing to updating motor plans42,45,46. In line with

this, increased beta activity in state-anxious individuals has been linked to attenuated reward processing,

impairing the updating of motor predictions27. Additionally, frontal midline theta oscillations (4–7 Hz) have

been implicated in adaptive control, adjusting behaviour under uncertainty by facilitating switching and

exploration in reinforcement learning47–50.  Theta is  also associated with a predisposition to anxiety and

heightened responses to punishment51, suggesting a role in mediating reinforcement-learning biases in PA. 

Beta and theta oscillations in these settings have been  explained by activations in the anterior cingulate

cortex (ACC), prefrontal cortex (PFC), hippocampus, and  striatum52,53—regions crucial to decision-making,

learning under uncertainty, and anxiety14,54–57. The striatum, a key structure in reinforcement-based motor

learning58,  is  part  of  the cortico-basal  ganglia-thalamo-cortical  circuits,  which are proposed to regulate

motor variability35,37,39,59. In the cortex, the PFC tracks hidden task states by predicting observations during

reward-guided  decision-making60,  complementing  the  role  of  the  basal  ganglia  in  learning  via  reward

prediction errors. Here, we tested whether beta and theta modulation reflects changes in reinforcement-

based  motor  learning  in  PA.  We  predicted  a  more  pronounced  beta  attenuation  during  punishment

learning, associated with faster avoidance learning, and enhanced medial frontal theta, encoding control

signals for greater behavioural adjustments and increased motor variability regulation under punishment.  If

confirmed,  these  EEG  dynamics  would  mark  a  neurophysiological  signature  of  learning  biases  in  PA,

reflecting maladaptive learning mechanisms that may undermine skilled performance.

Despite extensive  evidence linking  anxiety to learning  biases,  investigating these mechanisms in highly

trained individuals with a predisposition to PA has remained challenging.  This shortfall  is  partly  due to

methodological constraints in assessing skilled performance, which requires simultaneous recording of rich

performance data and neural activity.  To address this,  our study focused on skilled pianists, enabling a

quantitative  assessment  of  reinforcement  learning  and  motor  variability  in  expert  sensorimotor

performance. 

Across three experiments with 95 pianists, we examined how trait PA influences learning from reward and

punishment,  reinforcement-driven motor variability,  and their  neural  correlates.  We used performance

learning tasks requiring pianists to adapt keystroke dynamics (intensity or  loudness)  to uncover hidden

target  dynamics  in  melodies  under graded reward or  punishment  reinforcement.  Contrary  to  our  first

hypothesis, Experiments 1 and 2 revealed that increasing PA levels were associated with faster reward

learning, whereas lower PA levels corresponded to greater reliance on punishment feedback. In Experiment

3,  under  reduced  task  uncertainty,  these  learning  biases  reversed.  Across  experiments,  reinforcement

effects on motor variability regulation following poor outcomes explained learning biases. At the neural

level,  theta  activity  encoded  unsigned  differences  in  graded  reinforcement  feedback  and  predicted

upcoming motor variability regulation, accounting for learning biases.

These  findings  indicate  that  predisposition  to  PA  manifests  as  biases  in  learning  from  reward  and

punishment, causally linked to regulation of reinforcement-driven motor variability and associated with

changes in oscillatory dynamics. The reversal of learning biases as uncertainty escalates suggests a central

connection between uncertainty and PA, with implications for understanding and mitigating its debilitating

effects on skilled performance.
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Results
To evaluate the dissociable effects of reward and punishment on learning in skilled performers, we devel -

oped a performance learning task adapted from previous reward-based motor learning research27 and used

it to collect behavioural and EEG data from a cohort of highly trained pianists (N = 41). The data are avail -

able online (see Data Availability Statement).  

Participants played two piano melodies designed for the right hand on a digital piano ( Figure 1A). The task

entailed varying the dynamics (the pattern of keystroke velocity or loudness) with the aim of uncovering

the melody’s specific hidden target dynamics.  Participants were informed that the target dynamics devi-

ated from the natural flow of the melodies (Figure S1) and would not correspond with their initial expecta-

tions, requiring exploration to uncover the solution (Methods). 

After each trial, participants received graded reinforcement feedback, either as reward (scores 0-100) or

punishment (-100 to 0), over 100 trials per condition (Figure 1B). This feedback reflected their overall prox-

imity to the target dynamics pattern, calculated as a single summary score comparing the full vector of per-

formed keystroke velocities to the target dynamics vector for that melody (Figure 1C; Methods). The goal

was to infer the hidden dynamics solution and maximise the average score across trials—coupled to a mon-

etary incentive, by either increasing gains in the reward condition or minimising losses in the punishment

condition.  Concurrently,  EEG  and  MIDI  (Musical  Instrument  Digital  Interface)  performance  data  were

recorded.

Bayesian workflow of performance analysis

To assess the effects of reinforcement condition on learning and its interaction with trait performance anxi -

ety (PA), we used Bayesian multilevel modelling61. PA was evaluated using the validated Kenny music per-

formance anxiety (MPA) Inventory62. See simulations for sample size estimates in Figures S2-S3.

Following the principled Bayesian workflow61, we constructed Bayesian beta regression models of feedback

scores (rescaled to 0–1) over trials, analysing the effects of reinforcement, PA levels, and their interaction

(Methods; Table S1). Beta regressions were parametrised by the mean μ and precision ϕ of the score distri-

bution63. Prior predictive checks with simulated data confirmed that model behaviour aligned with domain

expertise (Figure S4).

The best-fit model included interactions between reinforcement condition, a monotonic function of PA cat-

egorical levels64, and trial progression, along with random intercepts and slopes for subjects (model M6, Ta-

ble S2; Leave-one-out cross-validation65, LOO-CV). This model demonstrated good convergence and robust

predictive accuracy (Figure S5, Supplementary Materials).

Scores increased across trials, with a positive effect of 0.00441 per trial on the log-odds scale (95% credible

interval, CrI: [0.00243, 0.00651]), equivalent to an increase of 10 points over 100 trials. This validates that

participants progressively approached the target dynamics (Figure 1DE; Table S2). Score consistency also

increased (greater precision parameter ϕ), and a credible three-way interaction between PA, condition and

trial on the scores was observed.

Further analysis of this interaction revealed distinct credible effects of reinforcement condition on the me -

dian trend of scores across trials (slope) as a function of PA levels (Figure 1FG; effects on the percentage
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point scale). Low-PA participants learned faster to avoid punishment (negative median slope difference, re -

ward – punishment: -4.81 x 10-4, 95% highest density interval, HDI [-6.60, -3.04] x 10 -4). Conversely, individ-

uals with medium-high to high PA learned faster to maximise reward (median slope difference: 6.83 [5.06,

8.61] x 10-4 and 8.52 [6.14, 11.42] x 10-4, respectively), with the most pronounced difference at the highest

PA level.

These results demonstrate that learning rates were distinctly modulated by reward and punishment as a

function of PA, exhibiting a monotonic shift from faster learning under punishment in low PA to faster

learning under reward in high PA. The interaction effects on learning trends did not extend to median

scores (Figure S6). These findings were replicated in a second experiment with an independent sample of

18 highly trained pianists, confirming similar interaction effects on learning slopes (Figure S7, Table S3). 

Given previous findings that cognitive (worry) and somatic (physiological) trait anxiety symptoms can influ-

ence learning biases differently21, we conducted control analyses to  determine if distinct PA components

differentially influence learning biases. Bayesian multilevel modelling revealed that the model incorporating

somatic PA subscores66,67 provided a better fit than the model including cognitive PA (negative cognitions),

replicating the interaction effects (Experiments 1 and 2: Figures S8-S9, Table S4). This suggests that learning

biases in skilled performers are better explained by the debilitating physiological dimension of PA.

Learning biases in performance anxiety are underpinned by changes in motor variability

To assess our second hypothesis, we examined trial-by-trial changes in motor variability. Our task involved

a large continuous action space, requiring participants to infer hidden melody dynamics across 16 (8 x 2)

keystroke velocities using reinforcement feedback. In such environments, learning can be effectively guided

by reinforcement-driven regulation of motor variability35–37,39:  variability increases following unsuccessful

outcomes to promote exploration, and decreases after successful outcomes to stabilise performance.

To assess variability in keystroke velocity, we first transformed the trial-wise 16-dimensional velocity vector

into a scalar variable, ΔVn. This variable represented the magnitude of change in velocity patterns between

consecutive trials (n-1 and n), computed using the normalised sum of absolute differences between Vn and

Vn-1  (Methods; Figure 1C)68. Following ref.36, variability was assessed by calculating the variance of ΔVn val-

ues within moving windows of five trials.

As expected35,36,68,  participants increased variability following poor outcomes—a pattern absent for high

outcomes (median split of scores; Figure 2A-B). Slow fluctuation trends, potentially reflecting autocorrela-

tions in performance40,69–73, were also evident in the variability function in renditions preceding and follow-

ing conditioned trials36 (relatively low or high scores; Figure 2B).

To  dissociate  performance  autocorrelations  from  reinforcement-dependent  variability  and  determine

whether trial outcomes causally influence motor variability in our task, we implemented two validated ap-

proaches: statistical matching analysis and computational generative modelling36,39 (Methods, and next sec-

tion). Statistical matching analysis indicated that poor outcomes led to a gradual increase in variability over

3-4 trials (Figure 2D). This increase was significantly greater than that following high scores (paired permu-

tation test; PFDR = 0.0038; non-parametric effect size estimator, Δdep = 0.74, CI = [0.65, 0.89]). Separately, we

observed  that larger deviations from target velocity patterns (lower scores) resulted in greater subsequent

reinforcement-related variability (Figure 2E), in line with previous work39.
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To determine whether learning biases arose from changes in the regulation of motor variability, we applied

Bayesian Gaussian linear modelling to analyse VarDiff—the difference in variability following poor versus

good outcomes—as a function of PA category, reinforcement condition, and their interaction. The model

demonstrated good convergence (Table S5) and revealed a credible interaction between both variables. A

negative estimate (-1.06, 95% CrI: [-2.13, -0.01]) indicated that punishment, compared to reward, reduced

variability following poor outcomes as PA levels increased (Figure 2F). This effect was most pronounced for

high PA individuals, where poor outcomes did not elicit increased variability under punishment (95% CrI

overlapping zero). No other effects were observed (Table S5).

Thus, controlling for behavioural autocorrelations, our analysis provided consistent evidence that reinforce -

ment-driven motor variability underpins learning biases in skilled performers as a function of PA. Moreover,

high-PA individuals exhibited the most contrasting responses to reward and punishment, with preserved

motor variability regulation under reward but blunted responses under punishment.

Control analyses defining low and high scores based on relative trial-to-trial score changes confirmed that

motor variability regulation was primarily driven by poor outcomes below the median of the score distribu -

tion (Supplementary  Materials).  Notably,  these  low  scores  were  distributed  across  the  entire  session

rather than concentrated in earlier trials (Supplementary Materials), ruling out confounds from early-ses-

sion effects.

Generative model dissociating reinforcement-sensitive and autocorrelated behaviour in motor variability

The previous results suggest that keystroke dynamics were influenced by reinforcement-driven changes in

motor variability, alongside slower autocorrelations in performance. Similar patterns have been observed in

humans and non-human primates39, as well as rodents36. In such settings, a control strategy involves coun-

teracting autocorrelations—which reduce reward rates—by increasing variability to explore and identify re -

inforced solutions34,38,39,74,75.

To investigate whether this control strategy underlies the learning biases associated with PA, we employed

a reinforcement-sensitive Gaussian process39 (RSGP; Methods). The RSGP models behavioural time series by

incorporating long-term autocorrelations and short-term reinforcement effects on motor variability via two

kernels (Figure 3A). Each kernel is defined by two hyperparameters: a characteristic length-scale (l),  indi-

cating the length of trial-to-trial dependencies, and an output scale (σ²), quantifying the magnitude of vari -

ability attributed to that process. In this framework, σ2
RS  reflects the latent contribution of short-term, rein-

forcement-sensitive processes to motor variability, while σ2
SE (squared exponential kernel) reflects variabil-

ity due to longer-term autocorrelations.

In line with ref.39, we used the trial-wise signed error (en)—the difference between the produced and target

keystroke velocity vectors—as the variable predicted by the RSGP at trial n (Figure 3B; Methods; Eq. 2), as-

suming a zero mean Gaussian process. Observed motor variability was quantified as the standard deviation

of the error distribution, σ(en), and assessed in relation to the error on the previous trial, en-1 .

Simulations confirmed reliable recovery of model parameters ( lSE, lRS, σ
2

SE, σ
2

RS; Table S6) and generated pre-

dictive distributions of en per trial, based on reward history and prior error en-1, characterised by the mean
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μ(en) and standard deviation σ(en). The simulations revealed a U-shaped relationship between en-1 and σ(en),

while μ(en) increased linearly with en-1, consistent with previous findings39 (Figure 3C). 

Fitting the RSGP to empirical data revealed that the autocorrelation kernel (KSE) had a significantly longer

length-scale (lSE = 12.31 [1.5]) and larger output scale (σ2
SE =  4.05 [0.2]) than the reinforcement-sensitive

kernel (KRS; Methods; lRS  = 2.80 [0.3]; σ2
RS  = 2.75 [0.1]; PFDR = 0.0002; Δdep = 0.80, CI = [0.73, 0.88] for l, Δdep =

0.76, CI = [0.60, 0.79] for σ2). Thus, autocorrelation effects spanned ~12 trials, while reinforcement effects

decayed after ~3 trials. Bayesian regression modelling (log-normal family) demonstrated a credible negative

effect of PA category on σ2
RS (log scale: -0.17, 95% CrI = [-0.29, -0.06]), indicating that the latent contribution

of reinforcement-sensitive variability to en decreased with increasing PA, regardless of reinforcement type.

No credible effects were observed for σ2
SE (Supplementary Materials; Figure 3D).

Simulating en from individual parameter estimates replicated the empirical U-shaped relationship between

σ(en) and  en-1 and the linear increase in  μ(en)  with en-1 (Figure 3E). This  supports that motor variability in-

creased more after trials with lower scores (greater en-1 ).  To link these results to Figure 2E, we transformed

en-1 into positive values,|en-1|, and modelled the nonlinear relationship between σ(en) and |en-1|. An expo-

nential Bayesian regression model (σ(en) =  b1 exp(b2 |en-1|)) best explained the data (LOO-CV;  Figure 3F;

Supplementary Materials), with non-zero posterior estimates for both b1 and b2. A credible interaction be-

tween PA category and reinforcement condition on b2 (-0.03, 95% CrI = [-0.07, -0.01]) indicated that higher

PA dampened the exponential growth of  σ(en) under punishment compared to reward (Figure 3G), sug-

gesting reduced sensitivity of observed motor variability to prior error under punishment for higher PA.

Electroencephalography markers underlie learning biases and motor variability regulation

Having established that heightened PA levels in skilled pianists are associated with increased motor vari -

ability following poor outcomes under reward, but a blunted modulation under punishment, we next exam-

ined the neural processes underlying these behavioural effects across the theta and beta bands. We as-

sessed frequency-domain amplitude changes related to processing graded feedback and regulating motor

variability in keystroke dynamics using validated linear convolution models for oscillatory responses76. The

frequency-domain  general  linear  model  (GLM)  included  parametric  regressors  for  trial-wise  unsigned

changes in feedback scores and the scalar variable ΔVn denoting changes in keystroke dynamics from the

current to the next trial68. A discrete regressor was included for feedback onset (see Methods). Alternative

GLM models using different score representations (absolute graded scores, signed score differences) were

discarded due to regressor collinearity, which risked model misspecification (Methods).

Theta-band activity significantly increased more following punishment than reward feedback (Figure 4A;

PFWER = 0.021, cluster-based permutation test; Figure 4B; N = 39), consistent with previous work47,49. This ef-

fect emerged between 0.2–0.45 s in frontocentral electrodes. Beyond this feedback-related response, theta

activity parametrically tracked unsigned score changes but in opposite directions for reward and punish -

ment: it increased with greater score changes under reward but decreased under punishment, with a sig-

nificant between-condition difference (PFWER  = 0.010; 0.2–1 s;  Figure 4C). This effect was observed in left

frontocentral and right centroparietal electrodes (Figure 4D). Additionally, theta amplitude reflected up-

coming motor  adjustments  in  a  reinforcement-dependent  manner:  it  increased  with  greater  dynamics

changes ΔVn  in the next trial under reward but decreased under punishment, with a significant difference

between conditions (PFWER = 0.009; 0.2–0.9 s; Figure 4E), spanning midline frontal and left central electrodes

(Figure 4F).
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Next, Bayesian linear models revealed a credible PA × reinforcement interaction on theta modulation with

unsigned changes in graded scores. As PA increased, theta amplitude in the relevant spatiotemporal cluster

became more pronounced under reward but was increasingly suppressed under punishment (posterior es-

timate: –2.17, 95% CrI [–4.04, –0.34];  Figure 4G).  Similarly, theta activity related to upcoming changes in

keystroke dynamics was modulated by PA interacting with reinforcement: as PA increased, theta was atten -

uated under punishment but became more elevated under reward (posterior estimate: –2.58, 95% CrI [–

4.12, –1.07]; Figure 4H).

Dissociating the influence of reward and punishment on categorical and continuous motor decision-mak-

ing

Experiment 3 examined whether the interaction effects of PA and reinforcement condition on learning

rates and motor variability observed in Experiment 1 stemmed from their influence on participants’ cate-

gorical decisions—such as switching between dynamics contours (e.g., U-shape) after reinforcement— or on

refining keystroke velocity within the same contour. Additionally, although skilled pianists exhibit high con-

sistency in timing and velocity across renditions77,78, we investigated whether individual differences in mo-

tor noise, potentially modulated by PA, contributed to the observed results79,80 .

To address these questions, a new cohort of highly trained pianists (N = 36) completed a modified task with

separate baseline and reinforcement learning phases. At baseline, participants played two new melodies

with either constant or varying dynamics, each across 25 trials (Figure S10). These conditions, respectively,

allowed us to evaluate unintended variability, reflecting motor noise, and  total variability, encompassing

both intended (exploratory variability) and unintended (motor noise) components80 (Methods).

During  reinforcement  learning,  participants  learned  the  hidden  dynamics  of  the  melodies  (Figure  1)

through reward (0–100) and punishment (–100 to 0) feedback over 100 trials per condition ( Figure 5A).

Each trial began with categorical action selection, where participants used piano keys (C2–F2, left hand) to

choose one of four displayed dynamics contours, including the unknown correct one. Their choice repre-

sented both their predicted categorical solution and the contour they would perform (Figure 5B). They then

played the melody, refining the intensity of their dynamics within the chosen contour (Figure 5C). This task

thus involved a reduced action space. Pianists used reinforcement feedback to adjust both their categorical

and continuous decision-making to approach the hidden target dynamics.

We hypothesised that if reward and punishment differentially influenced categorical decisions based on PA

levels, this would manifest in the rate of switching between contour options.  Conversely, the interaction

effect could modulate the refinement of keystroke dynamics within the same contour, reflecting decision-

making along a continuous scale. Learning biases might also arise from the combined effects of both cate-

gorical and continuous decision-making.

Pianists with higher PA scores achieve more consistent keystroke velocity under instruction

At baseline, unintended variability, measured by the coefficient of variation in keystroke velocity across tri -

als, (CVun, mean: 0.0628 [SEM: 0.004]), was negatively associated with PA scores (Spearman ρ = -0.43, 95%

CI: [-0.67, -0.10], PFDR = 0.010, BF10 = 6.73, indicating substantial evidence for a correlation; Figure S11). This

suggests that pianists  with higher PA scores were better at  maintaining consistent keystroke dynamics

across trials when instructed, reflecting reduced motor noise. Conversely, intended variability (total – unin -
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tended) showed a negligible correlation with PA (Spearman ρ = -0.04, 95% CrI: [-0.34, 0.28], PFDR = 0.828,

BF10 = 0.389, anecdotal evidence for the null hypothesis; CV in:  0.1762 [0.001]).

PA and reinforcement condition do not modulate switch rates in categorical decisions.

During reinforcement learning, participants  selected the correct dynamics contour 64.03 (0.05)% of the

time. Bayesian regression analysis of the switch rate in categorical decisions revealed no modulation by

reinforcement  condition,  PA  levels,  or  their  interaction  (Supplementary  Materials).  Thus,  categorical

decisions regarding the successful dynamics contour were not biased by reinforcement type, nor were they

influenced by PA or its interaction with reinforcement.

Learning biases reflect the combined effect of categorical and continuous motor decision-making

Bayesian multilevel modelling of scores from the 64% of trials in which participants selected and played the

correct contour revealed no consistent interaction between PA category and reinforcement condition on

marginal trends (Figure S12). No credible fixed effects of PA were observed either. However, refinement of

keystroke dynamics within the correct contour approached the target dynamics faster under reward than

punishment (marginal trend difference: 0.00204, 95%-HDI [0.00117, 0.0029]).

Since decision-making along a continuous scale within a fixed contour category did not account for the PA ×

reinforcement interaction effects on learning biases in performers, the remaining analyses focused on the

full dataset. As in Experiments 1 and 2, model M6 was the best fit (LOO-CV; Table S7), confirming good con-

vergence and robust predictive accuracy (Figure S13). The model showed a credible effect of trial on in-

creasing average scores (equivalent to a gain of 19 points over 100 trials) and their precision, indicating

greater consistency (Figure 5DE). 

Marginal effects analysis supported that reward increased learning speed more than punishment (0.00121,

95% HDI [0.000525, 0.00187]). A trial x PA x condition interaction was also observed, while PA alone did not

influence slopes (Supplementary Materials).

Further analysis of the three-way interaction revealed that, contrary to Experiments 1 and 2, learning was

faster for reward than punishment at low to medium-high PA levels, with median trend differences de-

creasing across PA categories (Figure 5FG): low: 8.53 × 10-4 (95% HDI [5.85, 11.13] × 10-4); medium: 6.03 ×

10-4 ([3.69, 5.36] × 10-4); medium-high: 3.26 × 10-4 ([0.873, 8.33] × 10-4). For the highest PA category, the ef-

fect reversed, showing faster learning to avoid punishment (-5.72 [-8.19, -3.22] × 10 -4). No consistent inter-

action effects on marginal medians were observed (Figure S14).

Collectively, the findings in Experiment 3 suggest that learning biases arose from the combined effects of

categorical  and continuous motor  decision-making,  rather  than either  component  alone.  These effects

were also better explained by somatic than cognitive components of PA (Supplementary Materials; Figure

S15). The results remain robust even when accounting for potential modulatory effects of individual base-

line levels of intended and unintended variability, neither of which exhibited credible effects on scores in

this task (Supplementary Materials). 

Reinforcement-driven use of motor variability accounts for learning biases in Experiment 3

In Experiment 3 we observed that pianists with higher PA levels learned faster to minimise losses, while

those with lower PA levels learned faster to maximise gains—a reversal of the interaction effects observed
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in Experiments 1 and 2. Based on this, we predicted a similar interaction would modulate the causal rela -

tionship between motor variability and performance.

Before testing this prediction, we validated that performance outcomes had a causal influence on motor

variability in this task. Statistical matching analysis (Figure 6A-D) revealed that low scores, compared to

high scores, increased motor variability over the subsequent three trials (PFDR = 0.006; Δdep = 0.71, CI = [0.62,

0.85]; Figure 6D). An additional convergent finding was that larger deviations from target velocity patterns

(observing lower scores) were followed by greater reinforcement-related variability (Figure 6E).

Complementing these findings, a Bayesian Gaussian linear model of VarDiff—changes in variability in key-

stroke velocity (ΔVn) post-low minus high scores—identified a credible interaction between PA category and

reinforcement condition (26.31, 95% CrI: [11.34, 40.11]; Figure 6F). For higher PA levels and under punish-

ment relative to reward, the  relative change in motor variability following low-outcome trials increased.

The effect of punishment on the causal influence of outcomes on motor variability changes consistently in -

creased across PA categories, with the largest effects observed in high PA. By contrast, posterior estimates

of VarDiff under reward conditions overlapped with zero, indicating no credible effects.

Reinforcement-sensitive  Gaussian  Process  accounts  for  increased variability  use  under  punishment  in

higher PA

Fitting the RSGP to the time series of signed errors (en) in Experiment 3 replicated a key finding from Experi-

ment 1: slow autocorrelations span ~11 trials, while reinforcement effects are shorter-lived (~3 trials). In

addition, the characteristic length of the autocorrelations kernel was significantly greater than that of the

reward-sensitive kernel (PFDR = 0.0002;  lSE = 11.21 [1.3]; lRS  = 2.88 [0.4]; Δdep = 0.83, CI = [0.74, 0.90]), and its

variance scale larger (PFDR = 0.0004; σ2
SE =  4.66 [0.4]; σ2

RS  = 2.94 [0.2]; Δdep = 0.70, CI = [0.58, 0.78]).

Additionally, Bayesian regression modelling revealed a credible positive effect of PA on σ2
RS, increasing the

output scale of the reinforcement-sensitive process with higher PA levels ( log scale: 0.16, 95% CrI = [0.03,

0.28]; Figure 7A). Models including reinforcement condition or its interaction with PA performed relatively

worse (Supplementary Materials).  No effects were observed on σ2
SE. As in Experiment 1, simulations of the

predictive distribution of en using individual participant parameters (lSE, lRS, σ2
SE, and σ2

RS) reproduced the

U-shaped relationship between en-1 and σ(en), and the linear increase of μ(en) with en-1 (Figure 7B).

Last, the association between motor variability,  σ(en), and the unsigned error in the previous trial, |en-1|,

was better captured by an exponential model, as in Experiment 1 (Supplementary Materials; Figure 7C).

Posterior estimates for the exponential coefficients were positive: b1 = 1.18 (95% CrI = [0.85, 1.50]) and b2 =

0.26 (95% CrI = [0.10, 0.46]). A credible interaction between PA and reinforcement condition modulated b2,

increasing with PA category and under punishment relative to reward, with a posterior estimate of 0.06

(95% CrI = [0.01, 0.19]; Figure 7D).

These findings indicate that higher PA enhanced the exponential growth rate of  σ(en)  under punishment

compared to reward, reflecting increased sensitivity to larger errors (lower scores) from the previous trial

and greater behavioural adaptation through increased variability.

Discussion
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Across  three  experiments,  we  investigated  learning  biases  from  reward  and  punishment  in  skilled

performers as a function of PA. Using tasks designed to preserve key features of skilled performance, we

examined reinforcement learning in highly trained pianists. Contrary to our hypothesis, in Experiment 1,

pianists with heightened PA levels learned faster from reward, while those with lower PA relied more on

punishment feedback. This interaction was explained by the regulation of motor variability in keystroke

dynamics—the  variable  tied  to  reinforcement—where  variability  increased  following  lower  feedback

scores. A second, independent experiment replicated these findings. 

At the neural level, changes in EEG theta (4–7 Hz) oscillations during feedback processing  paralleled the

effects of PA on reinforcement learning in Experiment 1. Theta activity encoded unsigned differences in

graded feedback and signalled upcoming motor variability regulation, showing greater amplitude changes

under reward—consistent with the direction of the learning biases.

In a final experiment, we reduced the action space by presenting participants with four potential dynamics

contour solutions, allowing us to assess categorical and continuous motor decision-making. Learning biases

were not explained by either decision-making component alone but rather by their combined effect. The

reduced action space was associated with lower task uncertainty, as participants had increased information

about the hidden target solution81. Notably, in this setting, the interaction between PA and reinforcement

condition reversed. These patterns were driven by the causal effect of outcomes on motor variability, with

higher-PA individuals showing greater adaptation to poor outcomes through increased variability under

punishment. These findings collectively suggest that skilled performers with higher predisposition to PA

learn  faster  from  punishment  in  low-uncertainty  environments  but  increasingly  rely  on  reward  as

uncertainty escalates.

The results align with prior work showing that reinforcement learning is modulated by anxiety, both in

clinical and subclinical populations17,22-24,26,82(but see refs83,84). Trait anxiety has been associated with faster

learning in volatile environments and improved inference of hidden states during information-seeking26,,82.

By contrast, state anxiety is associated with reduced learning24,26 (but see ref85), reflecting overly precise

beliefs about action-outcome contingencies and attenuated belief updating24,27. When directly comparing

reward  and  punishment,  mood  and  anxiety  disorders  exhibit  elevated  punishment  learning  rates,

potentially reinforcing negative affective biases17,18. 

While Experiments 1 and 2 did not link higher PA to negative learning biases, they align with evidence that

anxiety subcomponents differentially  affect learning from reward and punishment.  Somatic anxiety has

been associated with increased safety learning, while cognitive anxiety enhances threat learning 21.  Our

findings indicate that faster reward learning at higher PA levels was better explained by somatic PA—that

is, a predisposition to heightened physiological responses to an impending performance, akin to a physical

threat.

In Experiment 3,  somatic anxiety again better explained learning biases,  but in the opposite direction:

higher PA was associated with faster learning from punishment. This likely reflects the reduced action space

and task  uncertainty.  These findings  extend evidence  on how anxiety  dimensions  influence learning 21,

suggesting  that  PA—particularly  its  somatic  component—enhances  reward  learning  under  high  task

uncertainty  but  shifts  toward punishment  learning  when uncertainty  is  low.  Given  that  intolerance of

uncertainty (IU) is a hallmark of anxiety15,86, this shift may reflect an adaptation to perceived uncertainty.

We propose that higher-PA individuals perceive highly uncertain contexts—Experiments 1–2—as aversive,

increasing their reliance on reward to navigate uncertainty and achieve their performance goal.
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The  observed  learning  biases  were  partly  explained  by  the  effects  of  PA  and  reinforcement  on  the

regulation  of  motor  variability.  Across  tasks,  keystroke  velocity  was  actively  modulated  by  recent

reinforcement history,  increasing when outcomes were low—consistent with evidence that low-reward

rates trigger behavioural adjustments27,35,80,87. However, establishing a causal link between reinforcement

and motor variability is challenging, as motor performance exhibits persistent correlated variation across

trials40,69,70,72,73, which can inflate estimates of motor variability regulation36.

To address these biases, we isolated trials where surrounding reinforcement values—and thus performance

—were  comparable  across  low-  and  high-score  conditions.  In  Experiment  1,  higher  PA  levels  were

associated  with  greater  motor  variability  regulation  under  reward,  but  blunted  regulation  under

punishment.  The  reverse  pattern  in  Experiment  3  confirmed  that  learning  biases  aligned  with  motor

variability regulation in the expected direction.

Further analysis using a validated generative model39 confirmed that motor variability, quantified as the

standard  deviation  of  a  complementary  variable—error  (the  deviation  between  produced  and  target

dynamics)—was regulated by reinforcement integration over 3–4 trials, while autocorrelations persisted

across  11–12  trials,  aligning  with  prior  findings39.  Crucially,  the  latent  contribution  of  reinforcement-

sensitive variability (σRS²) decreased with PA in Experiment 1 but increased in Experiment 3. These results

confirm that reinforcement-sensitive scaling of motor variability,  likely reflecting exploratory variability,

varied with PA, aligning with the punishment-minus-reward difference observed in the marginal trends.

Tentatively,  these results suggest that punishment may exert  more salient or consistent effects on the

reinforcement-sensitive scaling of motor variability.

Moreover,  error  deviations  in  keystroke  dynamics  led  to  increased  error  variability  in  the  next  trial,

following an exponential function. The sensitivity of this growth was modulated by the interaction of PA

and reinforcement condition, with the expected directional patterns across experiments. These findings

extend the statistical matching analysis, confirming that PA influenced whether individuals relied more on

graded reward or punishment feedback when adjusting performance trial by trial. 

Notably,  the  learning  biases  were  not  explained  by  baseline  levels  of  intended  or  unintended  motor

variability, despite an observed association between higher PA levels and reduced baseline motor noise.

This supports the idea that reinforcement-dependent adaptation in skilled performance settings depends

on the contextual modulation of variability sources rather than individual baseline levels.

Our findings extend research on anxiety-related exploration from discrete decisions to continuous action

spaces.  While  trait/cognitive  anxiety  may  enhance  directed  exploration  for  information  seeking,

state/somatic anxiety may diminish it88–90. In continuous spaces, reinforcement learning (RL) approaches to

the exploration-exploitation dilemma propose uncertainty-aware critics to guide exploration 91—particularly

relevant to anxiety, where IU and misestimation of uncertainty are central features15,86. Deep RL offers an

alternative92, using added noise to network weights to facilitate exploration akin to random exploration

strategies.  Future  work  should  examine  whether  uncertainty-aware  or  deep  RL  mechanisms  underlie

learning biases in anxiety, particularly in continuous action spaces.

Reward and punishment learning were dissociated in the amplitude of  theta-band oscillations.  Using a

linear convolution model76, we assessed trial-by-trial modulation of time–frequency EEG responses by each

explanatory regressor while controlling for the others. Theta activity increased 0.2–0.5 s post-feedback at a
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small  midfrontal  cluster  in  response to punishment  relative to  reward,  consistent  with  prior  work47,49;

however, this effect was unrelated to learning performance. 

Instead, a distinct theta pattern scaled parametrically with unsigned feedback changes in a reinforcement-

dependent  manner.  During  reward processing,  greater  left frontocentral  and right centroparietal  theta

emerged with increasing PA, with dampened effects under punishment at  0.2–1 s.  Concurrently,  theta

amplitude  in  left  central  and  midline  frontal  sites  at  0.2–0.9  s  predicted  upcoming  keystroke  velocity

changes,  increasing  under  reward  and  decreasing  under  punishment.  This  spatiotemporal  dissociation

mirrored the behavioural  and computational learning biases,  reflecting an interaction between PA and

reinforcement.

These  findings  converge  with  evidence  that  midfrontal  theta  encodes  unsigned  prediction  errors  and

signals the need for behavioural adjustments. Our findings further align with a proposed role for theta in

configuring  prefrontal  control  networks47,49,  and  with  elevated  frontal-midline  theta  in  high-anxiety

individuals, particularly following performance errors requiring adaptation51. Theta has also been shown to

synchronise prefrontal and motor regions during decision-making51, potentially guiding action execution; in

our  task,  this  may  underlie  the  motor  adjustment  effect  extending  to  contralateral  sensorimotor

electrodes.

We did not model trial-wise prediction errors (PE) and cannot directly map unsigned score changes to PEs

within RL or Bayesian frameworks. This may account for the absence of beta-band effects in our GLM,

despite  evidence  linking  feedback-related  beta  suppression  to  updating  motor  predictions 42,45,46,93—a

process dysregulated in anxiety27. This highlights the need for models capturing hidden-state inference via

PEs in continuous action spaces to clarify the role of beta in PA-related performance updating. 

To further elucidate the neural circuitry, source analysis is needed to identify whether ACC and PFC activity

underlies  the  observed  theta  effects,  given  their  roles  in  behavioural  control52,94 and  learning  under

uncertainty14—including  via  modulation  of  midline-frontal  theta51,52—and  their  consistent  functional

alterations in  anxiety12,56. The striatum, through its role in reward PE encoding and renforcement-based

motor learning58,60, other basal ganglia nuclei and thalamus, implicated in motor variability regulation39,59

should also be examined to dissociate cortical and subcortical contributions to PA-related learning biases. A

key hypothesis for future work is that interactions between PFC, ACC, and motor circuits modulate learning

biases  in  skilled  performers,  and  may  be  altered  in  high-stakes  contexts  that  trigger  PA,  potentially

contributing to performance breakdowns.

While the inclusion of multiple experiments in expert performers strengthens the robustness and validity of

our findings, the focus on pianists limits generalisability to other expert populations. Future studies should

examine  whether  similar  effects  emerge  in  other  high-performance  domains  where  PA  is  prevalent.

Additionally, while we assessed learning biases as a function of trait predisposition to PA, it is crucial to

investigate how these biases manifest under experimentally induced PA, particularly in relation to different

forms of uncertainty. Given that self-efficacy—an individual’s belief in their ability to meet performance

demands—is a key determinant of achievement in skilled performance6,95,96,  future research on PA should

incorporate  this  factor,  alongside  IU  metrics,  to  better  understand  contributions  to  learning  biases  in

performers.

In sum, our findings demonstrate that predisposition to PA in skilled individuals modulates learning from

reward and punishment in a context-dependent manner. As uncertainty increases, faster learning shifts

from punishment to reward, driven by the active regulation of motor variability and modulation of theta-
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band activity. These findings offer important insights into how trait PA shapes learning biases and identify

mechanisms relevant to understanding how high-stakes settings that induce PA may further impair expert

performance.

Materials and Methods
Experiment 1. Differential learning from reward and punishment in skilled performers as a function of

performance anxiety

Demographics.  Forty-two participants  were recruited for  this  study,  aiming for  a sample size  of  40 to

achieve the desired power level (simulation-based Bayesian power analysis:  Supplementary Materials).

One participant was excluded for not adhering to the task procedure. The final sample (N = 41, 23 females,

18 males; age range: 18–66, M = 29.2, SEM = 2; 32 self-reported right-handed, 8 left-handed) comprised pi-

anists with at least six years of formal piano training, with proficiency in sight-reading sheet music, ad-

vanced musical technique, and an understanding of music dynamics. On average participants had 19.16

(SEM 2.0) years of training and performance, and were currently playing an average of 11.95 (SEM 1.9)

hours per week. 

Participants did not have a history of neurological or psychiatric conditions and were not currently taking

medication for anxiety or depression. Due to faulty EEG recording in one participant, the EEG analysis sam -

ple consisted of 40 participants (23 females, 17 males).

All participants gave written informed consent, and the study protocol was approved by the local  ethics

committee at the Department of Psychology, Goldsmiths, University of London. Participants were compen -

sated with £35, with the possibility of increasing this sum up to £45 depending on their task performance.

Recruitment was predominantly conducted using flyers on university campuses around London in addition

to online posts in local music groups.

The Kenny music performance anxiety (K-MPAI) inventory evaluates cognitive, behavioural, and physiologi -

cal components commonly associated with MPA and other anxiety disorders97, demonstrating high consis-

tency across cultures and various musician populations98. It consists of 40 items rated on a 7-point Likert

scale (0 "strongly disagree" to 6 "strongly agree"). Scores range from 0 to 240, with values above 160 con -

sidered above average.  Previous factor analysis of  the K-MPAI in professional musicians identified sub-

scores associated with proximal somatic anxiety and negative cognitions, which we used to assess the dis-

sociation between somatic and cognitive dimensions of PA on learning in our study99. We also administered

the trait subscale of the Spielberger State-Trait Anxiety Inventory (STAI Form Y-2100; Spielberger, 1983), as-

sessing more generalised anxiety (See  Supplementary Materials).  Participants completed the question-

naires at the beginning and end of the session, respectively.

Procedure. Upon arrival, participants were seated at a digital piano (Yamaha Digital Piano P-255, London,

United)  positioned in  front  of  a  screen and were given time to familiarise  themselves  with  two short

melodies for the right hand, Melody 1 and Melody 2 (Figure 1A). Pianists were instructed to use the prede-

termined finger-to-note mapping indicated on the score sheet and to memorise the melodies. Following a

self-paced familiarisation phase, participants practised the two melodies at a tempo of 120 bpm using the

digital piano's metronome, for approximately 5 minutes (range 3-10 min).  The metronome was initially

used to facilitate melody learning at a consistent tempo, minimising temporal variability across partici -

pants; however, no metronome clicks were present during the main task. After the practice session, partici -

pants were fitted with EEG recording equipment for 30-45 minutes. Before the experimental phase, we
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checked that participants could play both melodies from memory with the instructed fingering (five consec -

utive error-free melody renditions) at the recommended tempo. See Figure 1B.

The main task consisted of playing the two melodies with the aim of discovering their hidden target dynam -

ics, encoded as a specific pattern of keystroke velocity values for each melody. We chose melody dynamics

as the target variable because the rendition of dynamics can vary widely among performers, introducing a

degree of ambiguity in how they are executed during musical performances. The specific target dynamics

deviated from the melodies’ conventional phrasing, ensuring that the intended solution was not the most

natural choice for a pianist. Pianists were informed that the target dynamics would differ from those ex -

pected based on their musical training and were encouraged to explore different dynamics guided by the

feedback scores. They were visually presented with examples of potential target dynamics for the melodies,

illustrating prototypical contours (e.g., crescendo, diminuendo, or mixed shapes) to convey that hidden tar-

get solutions could be approximated through simple parametric forms (Figure S1).

Participants completed 100 trials per reinforcement condition, each associated with one melody, split into

two blocks of 50 trials. After each trial, they received graded performance feedback in the form of a numer -

ical score (Figure 1B), reflecting the difference between the target MIDI keystroke velocity and their own

keystroke velocity patterns. MIDI velocity corresponds to key press intensity or loudness. Trial scores were

computed using an exponential decay function applied to the square root of the summed absolute velocity

differences between the participant’s MIDI keystrokes and the target dynamics, adjusted to a predeter-

mined scale (0-100 for reward and -100 to 0 for punishment conditions) based on pilot data and simula-

tions. MIDI velocity values ranged from 0–127, and the digital piano volume was set to a medium level for

consistency across sessions.

In the reward condition, scores were displayed as monetary gains (0–100), with 100 indicating that the per -

formed dynamics were identical to the target dynamics, and a maximum total reward of £5. In the punish-

ment condition, scores were presented as losses from an initial £5, ranging from -100 to 0, with 0 indicating

target dynamics. The scoring formula was identical for both conditions, but in the punishment condition,

100 was subtracted from the trialwise score. Pianists were instructed to either maximise gains (reward rein -

forcement) or minimise losses (punishment reinforcement). To ensure consistency, the researcher followed

a scripted protocol when delivering instructions.

Trials containing any pitch errors were classified as incorrect, and participants were informed that such er -

rors would result in the lowest possible score. Trained pianists have demonstrated proficiency in correctly

detecting pitch errors in their performances, as evidenced by early error-detection neural signatures 101,102.

Consequently, in our task, we assumed that pianists would correctly attribute the lowest feedback scores to

error trials and not use them to update their beliefs about the hidden dynamics. Accordingly, incorrect tri -

als were excluded from the analyses (6.98 [SEM 0.74]% for reward and 7.24 [0.85] % for punishment condi -

tions, respecively; rates were similar between reinforcement conditions, P = 0.7662, BF10 = 0.1768, provid-

ing substantial evidence for the null hypothesis).

Trials were initiated by the participant hitting a designated key with their left index finger. The melody

score was briefly displayed on the screen at the start of the trial and disappeared when a visual cue re -

placed it on the screen, signalling the start of the performance. Participants had 7 seconds to play the

melody (Figure 1B). After each trial, the feedback was delivered to the participant on the screen in the form
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of a score and was presented for 2 seconds. The task was run using Visual Basic, and additional parallel port

and MIDI libraries. The order of presentation of the melodies and their mapping to reward and punishment

feedback was pseudorandomised and counterbalanced across participants.

Stimulus materials.  Melody 1 and Melody 2 (Figure 1A) were composed specifically for this study. These

two short melodies, in a 4/4 time signature, consist of a pattern of 8 quavers repeated twice over 2 bars. To

facilitate the task, the dynamic solution was repeated twice per melody—once for the first 8 notes and

once for the other 8 notes. Participants were explicitly informed about this. The melodies were designed

with the following criteria in mind: (i) they were to be played with the right hand only; (ii) their perfor -

mance would not present technical challenges and would require minimal shifts in hand or finger position-

ing to reduce movement artifacts affecting EEG recordings; (iii) the melodies were to be atonal; (iv) they

would be presented to the participants with no dynamics indicated (Figure 1A); (v) the melody’s hidden tar-

get dynamics would not be a trained musician’s initial guess (Figure S1), necessitating exploration of dy-

namics to infer the solution (Figure 1C). The target dynamics (Figure 1A,C) disrupted the traditional beat

structure of the 4/4 time signature, whereby the first and third beat are strong, and the second and fourth

are weak. Crescendos, decrescendos and accents that were included as part of the melodies’ target dynam-

ics furthermore clashed with the natural flow and direction of the melody. 

EEG, ECG, and MIDI Recording.  EEG and ECG signals were recorded using a 64-channel EEG system (Ac-

tiveTwo, BioSemi Inc.), following the extended international 10–20 system, placed in an electromagnetically

shielded room. During the recording, the data were high-pass filtered at 0.1 Hz. Vertical and horizontal eye

movements (EOG) were monitored by electrodes placed above and below the right eye and at the outer

canthi of both eyes, respectively. Additional external electrodes were placed on both left and right mas -

toids to serve as initial references upon importing the data into the analysis software (data were subse -

quently re-referenced to a common average reference, see below). The ECG was recorded using two exter-

nal channels with a bipolar ECG lead II configuration: the negative electrode was placed on the chest below

the right collarbone, and the positive electrode was placed on the left leg above the hip bone. The sampling

frequency was 512 Hz. 

As in our previous EEG studies with trained pianists101,103, participants were instructed to minimise upper

body and head movements during trial performance and outcome processing, focusing movement solely

on their fingers. This was facilitated by our stimulus material, which was designed to avoid shifts in hand or

finger positioning, thereby reducing movement artifacts. Participants were informed that they could briefly

move between trials if needed, and that they could initiate the next trial at their own pace.

Performance was recorded as MIDI files using the software Visual Basic and a standard MIDI sequencer pro -

gram on a PC with Windows XP software (compatible with Visual Basic and the MIDI sequencer libraries we

used). To run the behavioural paradigm and record the MIDI data, we used a modified version of the cus -

tom-written code in Visual Basic that was employed in similar paradigms in our previous studies27,103. This

program was also used to send synchronisation signals in the form of transistor–transistor logic (TTL) pulses

—corresponding with onsets of visual stimuli, key presses, and feedback scores—to the EEG/ECG acquisi-

tion PC.

Bayesian analysis workflow of performance data.  Beta regression models were implemented in R (version

4.3.2), using the brms package (version 2.21.0104,105). Beta regression is a distributional regression designed

for bounded values between 0 and 1 and can be parametrised by the mean (μ) and precision (ϕ)—similar to

the inverse variance in a normal distribution. In our study, these parameters describe the distribution of ob-
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served scores. To fit the beta regression model, reward scores ranging from 0 to 100 were transformed to

the 0–1 interval by dividing by 100. Punishment scores were first shifted by adding 100 and then also di -

vided by 100. The mean μ represents the central tendency of the scores, while the precision ϕ indicates

the spread of the scores around this mean. Critically, the observed score distribution naturally avoided the

extremes of 0 and 1—a requirement for beta regression. Error trials (which received non-informative scores

of 0 in the rescaled 0–1 interval) were excluded from analyses, as described in the Analysis of Motor Vari-

ability subsection.

To build and evaluate these models, we followed the principled Bayesian workflow proposed by 61,106,107. This

workflow  typically  consists  of  the  following  steps:  (1)  model  building,  including  model  and  prior

specification, and prior predictive checks; (2) learning or conditioning the model on observed data, which

includes  convergence  diagnostics;  (3)  evaluating  the  model  fit  and  the  implications  of  the  resulting

posterior, which includes model checking (posterior predictive checking) and validation.

Initially,  for  model  building,  we  started  with  a  minimal  model  M1,  designed  to  capture  the  main

phenomenon of interest106. In our study, this included the main fixed effects of reinforcement condition and

trial, and their interaction, on the observed scores. We defined priors on the coefficients and performed

several checks to assess the adequacy of the model.

The  default  priors  in  brms  (and  rstan)  are  intended  to  be  weakly  informative,  providing  moderate

regularisation and facilitating stable computation. However, when additional information is available, the

selection of  more informative priors is  encouraged. Such information could include findings from prior

research or domain expertise. Based on previous work on positive/negative feedback learning in decision-

making tasks17,21, we defined our prior regressor coefficients for M1 to include: a positive effect of trial

progression on μ, denoting improvements over trials; a positive interaction effect between reinforcement

condition and trial, accounting for an expected faster learning with punishment than reward reinforcement

across trials; no effect of punishment relative to reward reinforcement on μ at baseline. The prior on the

intercept for μ was set at 0.2 on the log-odds scale, corresponding to an initial score of 0.55 (transforming

log-odds to probability using plogis(); or 55 on the participants’ observed scale). 

Priors were Gaussian distributions centred at the chosen values (see  Supplementary Materials),  with a

standard deviation,  σ, that was consistent across parameters (σ = 0.01), except for the intercept, which

included a largerσ to align with its larger scale (σ = 0.1). This model also included priors for precision, ϕ,

defined as Gaussian distributions centred at 0 (σ = 0.01), except for the intercept, which was centred at 2.5

(σ = 1) to allow for dispersion of scores at baseline, and for trial, which had a small positive prior mean, as

we  expected  the  precision  of  the  beta  distribution  to  increase  across  trials,  reflecting  participants

performing more consistently close to the target solution.

We  next  conducted  prior  predictive  checks to  assess  the  consequences  of  our  model  and  the  priors,

checking they are consistent with our domain expertise106,107. This step consists of drawing values from the

prior distributions, and simulating hypothetical data using the model—without incorporating any empirical

data. This can be done in brms by setting  sample_prior = “only” when running the model. We selected

minimum,  maximum,  and  mean  score  values  as  summary  statistics  to  visualise  the  prior  predictive

distribution.  The  distributions  for  these  statistics  under  the  Beta  regression  model  M1 were  within  a

suitable and plausible range (See  Figure S4),  validating our choice of  M1 for subsequent data analysis

without further modifications.
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We constructed models of increasing complexity (Models M2-6, Table S1), which included random effects

of subjects on the intercept (M2) and, additionally, on the slope (M3). The most complex model included a

three-way interaction between condition, trial, and PA, in addition to variation by subjects on the intercept

and slope (M6). 

Following recommendations by Bürkner and Charpentier (2020)108 on using ordinal regressors in Bayesian

regression models, to assess PA effects, we included a monotonic function for PA categories: levels 1, 2, 3,

4, denoting low to high PA values. This allows for modelling potential nonlinear monotonic effects of  PA

categories on our dependent variable, scores. The quartile boundaries that split the PA scores into four

partitions  were 70,  107,  and 125 (range in  our  sample  18-169;  with  values  within  80–120 considered

average in the musician population). The T-STAI ranged 20-65, median 40, where the reference median

norm for Spielberger trait values is 35, and values above 45 are considered very high as they are commonly

observed in clinical anxiety cases109. See further details in Supplementary Materials. 

In models M3 and M6, for the random effects structure, we included a prior on the correlation between

trial-specific  effects  and  subject-specific  intercepts.  Specifically,  we  used  an  LKJ  prior  with  a  shape

parameter of 2 for the correlation (class = "cor"), which promotes moderate correlations but allows for

flexibility.  The remaining parameters, related to  monotonic effects of PA,  were set to default priors. We

checked the prior predictive distribution in each model, similarly to M1, which confirmed their adequacy110.

Models were estimated using 5,000 Monte Carlo Markov Chain (MCMC) samples across 4 chains, totalling

20,000, with the first  1,000 per chain being discarded as warm-up (total  of  16,000 posterior samples).

Model comparison was performed employing the leave-one-out cross-validation of the posterior log-likeli-

hood (LOO-CV) with Pareto-smoothed importance sampling65. The best model was the one associated with

the highest  expected log point-wise predictive density (ELPD). Moreover,  we verified that the absolute

mean difference in ELPD (elpd_diff) between the two best-fitting models was at least 4 and larger than

twice the standard error of the difference (2se_diff). If elpd_diff was smaller than 2se_diff, our criterion was

to select the more parsimonious model.

For the best model, we assessed chain convergence using Gelman-Rubin statistics111,112 (R-hat < 1.01). As an

additional convergence diagnostic tool, we evaluated the effective sample size (ESS), which estimates the

number of independent samples from the posterior distribution and should exceed 400 for four parallel

chains, as recommended by Vehtari et al. (2021)112. The ESS was typically above 10,000 in our models. We

additionally conducted posterior predictive checks to diagnose potential model misfit61. During this step,

parameters drawn from the posterior distribution were used to simulate datasets for comparison against

the empirical data.

In the winning model, we present the posterior distributions of the most relevant parameters, including

posterior point estimates and their corresponding 95% credible intervals (CrI). Full details of all population-

level estimates are provided in the corresponding tables in Supplementary Materials, alongside R-hat val-

ues. A 95% CrI for the difference between two grouping levels (for instance, between reinforcement condi -

tions, among anxiety levels, or across interactions such as condition*anxiety) that does not encompass zero

is interpreted as indicating a credible difference.

To address our central question, whether learning rates (slope) are modulated differently for reward or

punishment reinforcement as a function of PA, we used R function emtrends (package emmeans, version
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1.10.1) to identify marginal effects on the slope considering the three way interaction between condition,

trial, and PA category (`mo(anxiety_order)` in R). For linear models, function emtrends estimates the mean

change in the DV for a unit change in a continuous predictor variable (e.g. trials), adjusted for other predic-

tor variables in the model.  For non-linear models such as  Bayesian beta regressions,   emtrends  provides

effects on the  median point estimate for slope effects. The marginal effects were transformed from the

logit scale, provided by emtrends(),  to the response/percentage point scale by adding the regrid = "re-

sponse" argument.

Complementing the marginal trends analysis, we estimated marginal medians in scores using the emmeans

function (for simple/main effects) of the emmeans package (Supplementary Materials).

Bayesian multilevel modelling analysis of Experiment 2 used the same models and priors. 

Analysis of Motor Variability.  Given that the velocity vector comprises 16 values (8 values x 2), we inte-

grated this multidimensional information into a scalar variable representing trial-by-trial changes in the ve -

locity pattern using the following formula (see e.g. Banca et al 202368):

(1)

The expectation operator  𝔼[ ] denotes the average across the 16 keystroke positions per trial. Here,  ⋅ ΔVn

represents the normalised sum of absolute differences in keystroke velocity between consecutive trials (n-1

and n) across all 16 positions in the melody.  Vn denotes the velocity vector at trial n. ΔVn thus captures the

scalar magnitude of change in the multidimensional velocity vector from one trial to the next (Figure 1C).

Variability  was assessed using  the variance of  ΔVn   values  across  running windows of  five trials,  as  in

Dhawale et al. (2019)36. 

To  determine  whether  participants  increased  variability  following  poor  outcomes  relative  to  good

ones35,36,68,  we analysed motor variability  separately for low and high scores (Figure 2A).  Low and high

scores were defined using a median split for each participant and melody.

Behavioural performance, including errors in timing, press angles, and endpoint reaching, exhibits medium-

to long-range (persistent) correlated variation extending across hundreds of events 40,69–73. These previously

documented autocorrelations, spanning from ten to several hundred events, can be interpreted as slow

memory drifts that contribute to performance fluctuations. However, such autocorrelations confound the

assessment of causal relationships between variability and performance36.

Accordingly, to mitigate the overestimation of motor variability arising from temporal correlations in behav-

iour36,39,73, we performed a statistical matching analysis36. This approach involved identifying (‘matching’) tri-

als with low and high performance outcomes—termed conditioned trials—that were preceded and fol -

lowed  by  similar  reinforcement  values  across  score  conditions  (Figure  2C).  This  previously  validated

method36 effectively isolates reinforcement-driven changes in exploratory behaviour from autocorrelation

effects, thereby providing a more accurate estimate of the causal influence of reinforcement on subse -

quent motor variability.

The matching analysis was applied separately for each melody. We then averaged the task-relevant vari -

ability in ΔVn following conditioned trials across melodies, contrasting it between low and high score condi -
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tions using paired permutation tests (5,000 permutations). The results demonstrated significantly higher

motor variability following low scores compared to high scores at positions +1 to +3 after the conditioned

trial (see Results, Figure 2D).

Importantly,  our analysis  was carefully  designed to prevent incorrect trials from contaminating or con -

founding the results. Trials with performance errors received the lowest reinforcement feedback (0 for re -

ward, -100 for punishment), which did not provide information about the target dynamics. Consequently,

such error trials were recorded as NaN (MATLAB) in the variability analysis. Any running window of five val-

ues that included a performance error was assigned a NaN variance value, ensuring it did not influence the

analysis of specific reinforcement-driven variability changes. 

To investigate whether learning biases towards reward or punishment were influenced by variations in the

causal relationship between reinforcement and motor variability across PA levels, we specifically employed

a Bayesian Gaussian linear model. This model included fixed effects of PA category, reinforcement condi -

tion, and their interaction to analyse changes in task-relevant variability (VarDiff). Specifically, we examined

VarDiff values from the first three positions following conditioned trials, as these positions exhibited signifi -

cant variability differences in our statistical matching analysis (Figure 2D). See further details in Supplemen-

tary Materials.

Generative model of behaviour: reinforcement-sensitive Gaussian Process. We employed a reinforcement-

sensitive Gaussian Process (RSGP) model to characterise trial-wise variability in keystroke velocity errors as

a function of reinforcement history. This generative model extends the reward-sensitive Gaussian Process

framework developed by Wang et al. (2020)39 for analysing variability in reinforcement-based motor tasks.

Gaussian Processes are probabilistic models that infer continuous functions from noisy observations by

defining a prior distribution over functions, with dependencies between samples (here trials) captured by a

covariance function113,114.  The RSGP uses a composite kernel, combining a  standard squared exponential

kernel (KSE) to model slow autocorrelations in behaviour with a reinforcement-sensitive kernel (KRS), which

modulates  trial-wise  covariance  as  a  function  of  reinforcement  scores.  Specifically,  KRS is a  squared

exponential  kernel  with  zero  covariance  for  unrewarded  (here  low  outcome)  trials.  This  formulation

ensures  that only rewarded (high outcome) trials  contribute  to  KRS,  tightening behavioural  coupling  to

recent successes and enabling increases in observed motor variability following unsuccessful  trials. The

RSGP also includes a noise term with an identity matrix scaled by σ2
0 (Figure 3A; Supplementary Materials

).

The RSGP was fitted to trial-wise error values (en), defined as the expectation of the difference between the

produced (Vn) and target (T) keystroke velocity vectors, averaged across the 16 keystroke positions for each

melody rendition:

(2)

We use lowercase en  to distinguish this signed error metric from the error metric illustrated in Figure 2E,

which is based on the norm of vector differences and is always positive. The model estimated the variance

and  mean  of  en  on  each  trial  based  on  prior  values  and  reinforcement  history.  The  kernels  were
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parametrised by characteristic length scales (lSE and lRS) and output scales (σ2
SE, σ

2
RS), which were inferred via

Bayesian inference114.

Following Wang et al. (2020)39, we validated the model through simulations, testing its ability to recover

known  hyperparameters  (Supplementary  Materials).  When  fitting  the  model  to  empirical  data,  we

estimated lSE, lRS, σ
2

SE, σ
2

RS separately in each participant and condition to capture individual differences. We

used Matlab code for RSGP simulation and model fitting from ref.39 (https://github.com/wangjing0/RSGP).

To examine the effects of PA and reinforcement condition on model parameters, we implemented Bayesian

regression models with fixed effects. Model selection was based on leave-one-out cross-validation (LOO-

CV), and parameter credibility was assessed using posterior predictive checks.

See further details in Supplementary Methods.

EEG preprocessing and analysis. EEG preprocessing was done in MATLAB R2020b using the toolboxes 

EEGLAB115 and FieldTrip116. EEGLAB was used to import the files and filter the data, applying a 50 Hz notch 

filter to remove the power line noise. Data were downsampled to 250 Hz.

For the Independent Component Analysis (ICA), we applied a high-pass filter at 1 Hz to improve ICA decom-

position117. The data were then segmented into epochs from -2 to 2 seconds locked to the outcome trigger,

thereby minimising the presence of any potential movement artifacts that could emerge between trials.

During trial  performance and outcome processing, participants had been instructed to minimise move-

ments. ICA was run in FieldTrip, using the runICA algorithm118, which combines the Infomax algorithm119

with the natural gradient learning rule120. After IC decomposition, we applied the resulting ICA weights to

the 0.1 Hz-filtered version of the epoched data, as recommended by the EEGLAB developers. Artifacts re -

lated to eye blinks, eye movements (saccades), and cardiac artifacts, if present, were removed (3.7 on aver-

age, range 2-5).

Manual inspection of the epochs was then performed to remove any remaining artifactual epochs, such as

those affected by muscle artifacts (reflected in high-frequency fluctuations121). This resulted in a total of

78.6 (SEM 3) and 71.3 (SEM 3) clean epochs left for the analysis of the punishment and reward conditions,

respectively. In cases where a channel was faulty throughout the epoch inspection, interpolation was used

to replace this channel with the average signals from neighbouring channels. This happened with 1-3 cha n-

nels from 5 participants. One EEG dataset was excluded due to large muscle artifacts during the feedback

presentation interval, leaving N = 39 datasets for analysis.

To model neural EEG responses to feedback scores and motor variability, we used linear convolution mod-

els for oscillatory responses76. This approach extends the classical general linear model (GLM) from fMRI

analysis to time-frequency (TF) data and has been widely applied in EEG and MEG research 122,123. It enables

trial-by-trial assessment of TF response modulation by a specific explanatory regressor while controlling for

the effects of other included regressors .

In all convolution analyses, each discrete and parametric regressor was convolved with a 20th-order Fourier

basis set (40 basis functions: 20 sines and 20 cosines). This configuration enabled the GLM to resolve TF re -

sponse modulations up to ~8.7 Hz (20 cycles/2.3 s; ~115 ms). The discrete regressor was modelled by con-

volving this chosen basis set of functions with delta functions encoding the timing of the feedback events,

commonly referred to as stimulus input.
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We considered three alternative GLM models, each incorporating three regressors: (i) a discrete regressor

marking outcome feedback onset, (ii) a parametric regressor representing keystroke velocity changes from

the current to the next trial (scalar variable ΔVn), and (iii) a parametric regressor capturing graded scores.

The three models differed in how scores were represented: (1) graded scores (scaled 0–1 for both reward

and punishment conditions), (2) unsigned score differences from the previous to the current trial, or (3)

signed score differences from the previous to the current trial. The difference-score models allowed us to

assess neural activity related to score changes while simultaneously estimating neural representations of

upcoming motor adjustments. In contrast, the graded score model assessed neural encoding of the current

score and neural activity anticipating future keystroke adjustments.

To  ensure  GLM  model  robustness  and  avoid  misspecification,  we  first  assessed  collinearity  between

regressors. Graded scores were highly correlated with upcoming motor variability (Pearson R: –0.1 to –0.8,

significant  in  N  =  36  participants  after  FDR  correction).  Similarly,  moderate  collinearity was  observed

between signed score differences and ΔVn (R: –0.2 to –0.45, significant in N = 18). However, unsigned score

changes showed minimal correlation with  ΔVn (only N = 2 for punishment and N = 6 for reward showed

significant associations after FDR correction, R: 0.2 to 0.5). Based on these findings, we selecte d unsigned

score change as the optimal regressor to pair with  ΔVn in our convolution model, alongside the discrete

regressor for feedback onset. 

The selected GLM was applied to concatenated epochs spanning -0.5 to 1.5 s around the feedback event,

using Morlet wavelets for time-frequency (TF) analysis in 4–30Hz, thus covering the theta, alpha and beta

ranges.  We conducted this  analysis  using  SPM12 software (http://www.fil.ion.ucl.ac.uk/spm/),  adapting

original code by ref.122, as used in26,124.

Statistical  analysis  of  sensor-level time-frequency images used cluster-based permutation testing in the

FieldTrip Toolbox116,125 (1000 permutations).  We averaged TF activity across frequency bins within each

band (theta, alpha, beta). Temporal intervals of interest for statistical analyses were selected based on pre -

vious research27,47,48,124: 0.2–1.5 s for parametric regressors, 0.1–0.6 s for the feedback onset regressor. We

controlled the family-wise error rate (FWER) at 0.05 (two-sided tests, effects considered if PFWER < 0.025). 

Statistical analysis. Complementing the Bayesian multilevel and non-nested models in our study, when 

assessing within-subject differences in a variable (e.g., variability estimates between trials of low and high 

scores), we implemented paired sign permutation tests with 5,000 permutations. In those cases, we 

additionally provided a non-parametric effect size estimator, the probability of superiority for dependent 

samples (Δdep), which is the proportion of all paired comparisons in which the values for condition B are 

larger than for condition A126. 95% confidence intervals (CI) for Δdep were estimated with bootstrap 

methods127. To control for multiple comparisons arising from, for example, different permutation tests 

conducted on neighbouring trials or across several interrelated variables, we implemented the adaptive 

false discovery rate control at level  q  = 0.05.

Experiment 2. Replication study.

Demographics.  A sample of 18 pianists (15 females, 3 males; 17 self-reported right-handed; age range: 18–

28, mean age = 21.1, SEM = 0.8) completed the same experimental task as in Experiment 1. Participants un-

dertook the task, which was programmed in Python, at the Sony Computer Science Laboratory (Tokyo), us-
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ing a KAWAI VPC1 digital piano with keystroke velocity in range 0–127. The same inclusion and exclusion

criteria pertaining to Experiment 1 were applied for this experiment. 

Written informed consent was obtained from all participants, and the study protocol was approved by the

local ethics committee at Sony Corporate, Tokyo. Participants received a monetary remuneration for their

participation. They received a fixed amount of 3000 JPY, which could increase by an additional sum of 4000

JPY (2000 JPY for reward, 2000 JPY for punishment conditions) depending on their task performance.

As in Experiment 1, to assess trait aspects of PA, we used the Japanese version of the Kenny MPA Inven -

tory, and the trait subscale of the STAI-Y2. 

Bayesian Data Analysis. Analysisis of the evolution of scores over time as a function of PA and reinforce-

ment condition was performed exactly as in Experiment 1. The PA scores in this sample were split into four

partitions through the quartile boundary values 114, 131, and 144 (range 84–180; T-STAI scores ranged 39–

55).

Experiment 3. Reinforcement effects on categorical and continuous motor decision-making in skilled per-

formers.

This experiment employed a modified version of the paradigm used in Experiments 1 and 2, designed to

isolate categorical decision-making from decisions made on a continuous scale in skilled pianists.

Participants. Thirty-six pianists (N= 36, 31 females, 5 males; age range: 19-54, M= 25.83, SD=1.3; all self-re-

ported right-handed) were recruited for this experiment. They had not completed Experiment 2 and were

naive to the task setting (Sony CSL, Tokyo). As in Experiments 1 and 2, the inclusion criterion for partici -

pants was having a minimum of six years of formal piano training. The exclusion criteria included (i) having

a history of neurological or psychiatric conditions, and (ii) currently taking medication for anxiety or depres-

sion.

All participants provided written informed consent, and the study protocol received approval from the local

ethics committee at Sony CSL, Tokyo. Participants were compensated with 3000 JPY, with the possibility of

increasing this sum up to 4000 JPY depending on their task performance. Consistent with Experiments 1

and 2, PA levels were assessed using the Japanese version of the K-MPAI questionnaire, and the trait sub-

scale of the STAI-Y2 was also administered. Participants completed the questionnaires at the start and end

of the session, respectively. 

Paradigm and procedure. The paradigm comprised a baseline variability assessment phase and a reinforce-

ment learning phase. 

Baseline variability assessment phase: This phase consisted of two blocks, each comprising 25 trials where

participants were assessed on intended and unintended variability of keystroke velocity while performing

two simple melodies (Melody 3 and 4, both in a 4/4 time signature, consisting of a pattern of 8 quavers re-

peated twice over 2 bars. Figure S10). Initially, participants familiarised themselves with these melodies for

5 minutes to be able to play them from memory. For Melody 3, pianists were instructed to maintain consis -

tent keystroke dynamics across 25 trials, which allowed us to measure unintended variability. They chose

the dynamic contour freely for this melody, but had to produce it consistently across trials. For Melody 4,

they were instructed to vary dynamics intentionally across the 25 trials, allowing us to assess intended vari -

ability. The order of variability conditions was pseudorandomised and counterbalanced across participants.
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Reinforcement learning phase: In this phase, participants learned the hidden dynamics of the same two

melodies used in Experiments 1–2 through reward (0–100) and punishment (–100 to 0) feedback, as in the

earlier experiments, but with additional action selection requirements (Figure 5AB; Figure 1A). Participants

first familiarised themselves with these melodies, in a 4/4 time signature, consisting of a pattern of 8 qua-

vers repeated twice over 2 bars (16 notes in total; Figure 5A). Each trial began with participants selecting

from four dynamic contour options, representing different keystroke velocity patterns. Trials started with a

grey screen featuring a central plus sign, transitioning to a selection screen where participants had a 3-sec-

ond window to choose a dynamic contour using designated piano keys (C2: option 1, D2: option 2, E2: op -

tion 3, F2: option 4). The chosen contour represented their prediction for the overall shape or pattern of

dynamics (e.g., U-shape, inverted U-shape, etc.) they believed matched the hidden target. Failing to choose

within this time resulted in a non-valid trial. After selection, participants were instructed to perform the

melody with their chosen dynamics contour within approximately 8 seconds. Although participants had to

align their keystroke dynamics with the chosen contour, they were instructed to use the reinforcement

scores to gradually refine their performance and converge on the hidden target solution.  Reward or punish-

ment feedback scores were then presented on the screen for 2 seconds. The trial ended with a red ellipse

signaling completion. 

The target dynamics selected for each melody in this phase differed from those in Experiments 1 and 2,

based on two criteria: (i) the hidden target dynamics for each melody matched one of the patterns and its

inverted counterpart, as shown to participants at the start of each trial (patterns 1 and 2 for Melodies 1 and

2, respectively; Figure 5AB); and (ii) as in Experiments 1 and 2, the correct dynamics would not align with

the pianists’ natural choice based on their musical training. Crucially, while participants could infer the cor -

rect contour over a few trials, they still needed to use reinforcement (reward or punishment) to refine their

performance and maximise scores by approaching the target solution. For example, a pianist could infer

that pattern 1 was correct for Melody 1, but they would then need to determine whether, for instance, a

sequence of keystroke values [60 55 50 45 65 70 75 80] (repeated twice) or [70 67 64 61 76 79 82 85] (re -

peated twice) more closely matched the target solution.

Analysis of baseline variability. Variability in the task-relevant dimension, keystroke velocity, was assessed

using the coefficient of variation (CV) of the 25-trial distribution of keystroke velocity values. This index was

first calculated for each of the 16 keystrokes of the melody and then averaged across all positions. We sep-

arately measured unintended variability (CVun), representing motor noise, and intended variability (CV in), in-

tegrating motor noise and exploratory variability.

Bayesian Performance analysis in Experiment 3.  Following the analysis of categorical decisions using the

switch rate, we used Bayesian multilevel Beta regression models to assess learning across the 64% of trials

where participants chose the correct categorical dynamics contour. In addition, we conducted this analysis

using the total dataset, including trials where participants chose an alternative contour. In both cases, the

models were built as in Experiments 1 and 2. We retained the original priors from Experiment 1 rather than

updating them based on the posterior estimates. This decision was driven by our task modifications in Ex -

periment 3, which could render the previous posterior estimates less applicable. The initial priors, validated

by prior predictive checks  (Figure S4),  provided a suitable starting point under the altered experimental

conditions. The quartile values of PA scores in this sample were 114 (Q1), 131 (median), and 144 (Q3), with

a range of 85 to 182. The trait STAI values ranged from 32 to 62.
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Analysis of motor variability and RSGP modelling.  In Experiment 3, the analysis of reinforcement-driven

modulation of motor variability was conducted similarly as for Experiment 1. In addition, the same RSGP

modelling approach and analysis as described for Experiment 1 was implemented.

Data availability
Behavioural  and  EEG  data  are be  publicly  available  at  the  Open Science  Framework  (OSF)  repository,

https://osf.io/w7y5k/.  Analysis  code  to  reproduce  the  main  analyses  is publicly  available  at  OSF,

https://osf.io/w7y5k/.
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Figures

Figure 1 | Task and Performance Analysis for Experiment 1. A. Participants (N = 41 skilled pianists) played

two right-hand piano melodies on a digital keyboard, adjusting their keystroke dynamics (intensity of key

press) to uncover a hidden target dynamics pattern.  Beneath the musical scores, the flow of the target

dynamics is represented in musical notation, with  p denoting  piano,  f forte, and  mf mezzo-forte.  B.  Trial

timeline. Each trial yielded graded reinforcement feedback in the form of reward (0–100) or punishment (–
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100–0) scores, separately in each reinforcement condition. Feedback was a function of the proximity of

performed dynamics to the hidden target.  C.  Example of melody dynamics performed by one participant

(graded blue to green for trials 1 to 100), with target dynamics denoted by the bold black line.  D.  Score

progression across trials in the group, representing mean with 66% and 95% confidence intervals for the

reward  (purple)  and punishment  (orange)  conditions.  E.  Bayesian  multilevel  beta  regression  modelling

revealed a credible positive effect of trial progression on score (posterior median slope = 0.00441; 95%

credible interval [0.00243, 0.00651]; log-odds scale), reflecting learning to approach the target dynamics.

F–G. Marginal trends. A three-way interaction between reinforcement condition, trial, and trait levels of

performance  anxiety  (PA)  showed  a  credible  dissociation:  lower-PA  participants  learned  faster  under

punishment than reward  (reward minus punishment  median  slope estimate:  -4.81 x 10-4,  95% highest

density  interval,  HDI  [-6.60,  -3.04]  x  10-4).  By contrast,  medium-high and higher-PA individuals  showed

steeper learning under reward (median slope difference: 6.83 [5.06, 8.61] x 10 -4 and 8.52 [6.14, 11.42] x 10 -

4, respectively).  Coloured circles denote median estimates, and shaded intervals indicate 95%  HDI of the

posterior distribution of median trends for reward and punishment conditions, as well as for the contrast in

panel G (reward minus punishment difference estimates).
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Figure  2  |  Reinforcement-related  modulation  of  motor  variability  in  Experiment  1.  A.  Histogram  of

reinforcement scores (in one example participant and condition) illustrating the median split used to define

low and high score conditions.  B.  Time course of task-relevant motor variability surrounding high (dark

blue) and low (light blue) score trials (relative to median split), aligned to the conditioned trial at position 0.

Motor variability was assessed using the variance of ΔVn  values across running windows of five trials, where

ΔVn represents the normalised sum of absolute differences in keystroke velocity at each of the 16 positions

in a melody between consecutive trials (n–1 to n). Variability was significantly higher following low scores

compared to high scores at positions +1 to +3 (N = 41;  paired permutation test;  PFDR = 0.001, significant

effects denoted by the horizontal bar at the bottom). Large coloured dots indicate means, with error bars

denoting ± SEM. C. Statistical matching analysis: we selected trials of low and high scores (median split) that

were  preceded and  followed by  similar  reinforcement  values  (and  thus  performance).  The  black  dots

represent the mean performance score difference (SEM) at each trial.  D.  Using trials obtained from the

matching analysis (black), we found that motor variability was significantly greater at lags +1 to +3 following

conditioned trials (position 0) associated with low compared to high scores (PFDR = 0.0038; dots represent

mean, and bars SEM). The difference in uncorrected (all  trials)  motor variability between low and high

scores, not accounting for performance autocorrelations, as shown in panel B, is depicted in blue. E.  Larger

deviations from target velocity patterns—measured as the norm of vector differences and represented as

unsigned error En-1—were followed by greater subsequent reinforcement-related variability,  σ(En). In our

task, larger deviations were associated with lower scores.  F.  The difference in motor variability following

poor versus good outcomes, labelled  VarDiff in the main text and obtained from the matching analysis

trials,   was modulated by the interaction between PA categorical level  and reinforcement condition.  A

negative estimate (-1.06, 95% CrI: [-2.13, -0.01]) indicated that punishment, compared to reward, reduced

variability  following  poor  outcomes  as  PA  levels  increased.  Coloured  dots  represent  posterior  point

estimates (reward in purple, and punishment in orange) and bars denote 95% CrI.
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Figure 3  | Reinforcement-sensitive Gaussian process  dissociates the effects of autocorrelations and the

short-term influences of reinforcement on motor variability in Experiment 1.  A. Correlation structures of

the  squared  exponential  (KSE),  reinforcement-sensitive  (KRS),  and  combined  reinforcement-sensitive

Gaussian process (KRSGP) kernels used to model the time series of deviations between  the produced and

target keystroke velocity vectors, the trial-wise signed error en.  B. Simulated trial-wise errors (en) under KSE,

KRS, and the combined KRSGP. Black dots indicate trials associated with low scores (median split), while blue

dots  correspond  to  high-score  trials.  C.  Simulations  from  the  generative  RSGP  model  reproduce  key

empirical  patterns  from  previous  work39.  Left:  standard  deviation  of  error  (σ(en))  shows  a  U-shaped

dependence on the error on the previous trial (en-1). Right: mean error (μ(en)) increases linearly with  en-1.

Coloured lines (dots) reflect the number of samples used in the simulations.  D.  Left: distribution of  σ2
RS

estimates across participants, split by reinforcement condition (orange for punishment, purple for reward).

Right:  Bayesian  regression  (log-normal  family)  revealed  that  σ2
RS declined with  increasing  performance

anxiety (PA) category (posterior estimate in log scale: -0.17, 95% CrI = [-0.29, -0.06]). This implies that the

latent contribution of reinforcement-sensitive variability  to en decreased  as PA increased.  E.  RSGP fit to

empirical data replicates simulation results from C:  σ(en) (left) and μ(en) (right) as functions of  en-1.  Mean

and SEM are shown; however, SEM values are very small and not visually noticeable.  F. Left: Exponential fit

(line, 95% CrI shaded) to the relationship between σ(en) and |en-1|. Right: posterior predictive distribution of

σ(en), with individual posterior draws (light  green) and empirical data (dark  green).  G.  Illustration of the

interaction  between  PA  category  and  reinforcement  condition  on  parameter  b₂  in  the  exponential

relationship between σ(en) and |en-1|. Posterior estimate: b2  (-0.03, 95% CrI = [-0.07, -0.01]). This revealed

that  the exponential  growth in  observed motor variability  was attenuated under  punishment  (orange)

relative to reward (purple) as PA levels  increased (arrow),  suggesting reduced sensitivity to prior error

under

punishment.
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Figure 4 | Theta activity is modulated by unsigned score differences and the amount of upcoming motor

adjustments in a reinforcement-dependent manner.  A.  Time course of feedback-locked theta amplitude

(4–7 Hz)  in  response to outcome onset  (reward,  magenta;  punishment,  green),  showing greater  theta

power  following  punishment  than  reward  between  0.2–0.45  s.  Shaded regions  denote  ±1  SEM;  black

horizontal bars indicate significant cluster intervals (N = 39; cluster-based permutation test, PFWER  = 0.021,

FWER-corrected).  B. Topographic map of the difference (punishment – reward) in theta amplitude during

the significant time window in panel A, showing a frontocentral  distribution (N = 39).  C. Theta activity

parametrically tracked unsigned changes in feedback scores (labelled |Δ graded score|), increasing under

reward and decreasing under punishment. A significant condition difference was observed within 0.2–1 s

(PFWER  =  0.010).  D.  Topography  of  the  effect  in  panel  C,  with  condition  differences  localised  to  left

frontocentral  and  right  centroparietal  electrodes.  E.  Theta  amplitude  as  a  function  of  the  amount  of

upcoming changes in keystroke dynamics (ΔVⁿ), showing increased amplitude under reward and decreased

amplitude under punishment between 0.2–0.9 s  (PFWER = 0.009).  F.  Spatial distribution of the condition

difference in panel E, peaking in midline frontal and left central regions.  G.  Bayesian regression analysis.

Posterior estimates of theta amplitude, averaged over the significant spatiotemporal cluster identified in C,

revealed a credible interaction between PA category and reinforcement condition in relation to unsigned

score changes: with increasing PA, theta increased under reward but was suppressed under punishment

(posterior estimate: –2.17, 95% CrI [–4.04, –0.34]). H. Same as G, but for theta activity related to upcoming

motor adjustments (ΔVn). Theta amplitude, averaged over the significant cluster identified in F, also showed

a PA × reinforcement interaction: as PA increased, theta decreased under punishment but increased under

reward  (posterior  estimate:  –2.58,  95%  CrI  [–4.12,  –1.07]).  Dots  represent  posterior  means,  and  bars

denote 95% highest density intervals.
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Figure 5 | Task and Performance Analysis for Experiment 3. A. Right-hand melodies for the reinforcement-

based performance task (same as in Experiments 1 and 2), each associated with a different hidden target

pattern of keystroke velocity values, indicated in musical notation beneath the musical score. B. At the start

of each trial, participants selected one of four displayed dynamics contours using left-hand piano keys (C2–

F2), indicating both their categorical prediction of the correct contour and the one to be executed. The

correct contour was 2 for Melody 1 and 1 for Melody 2. C. Example performance data from one participant

across  trials  1–100,  showing  keystroke  velocity  profiles  for  each  melody  (graded  from  blue  to  green)

overlaid  on the correct  target dynamics (bold  black line).  D.  Mean feedback scores  over  trials  for  the

reward (purple) and punishment (orange) conditions, with 66% and 95% confidence intervals. The sample

consisted of N = 36 skilled pianists. E. The posterior estimate of the overall trial effect on scores revealed a

credible learning effect (slope = 0.00963, 95% CrI [0.00737, 0.01202], log-odds scale). F–G. Marginal trends.

A  credible  three-way  interaction  between  trait  performance  anxiety  (PA)  categorical  level,  trial,  and
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reinforcement condition was observed. Contrary to Experiments 1–2, reward sped up learning more than

punishment at low and medium PA levels.  Median slope differences (reward – punishment) decreased

across PA categories: low: 8.53 × 10⁻⁴ (HDI [5.85, 11.13] × 10⁻⁴); medium: 6.03 × 10⁻⁴ ([3.69, 5.36] × 10⁻⁴);

medium-high:  3.26  ×  10⁻⁴  ([0.873,  8.33]  ×  10⁻⁴).  At  the  highest  PA  level,  learning  was  faster  under

punishment (–5.72 × 10⁻⁴, [–8.19, –3.22] × 10⁻⁴).

Figure  6  |  Reinforcement-related  modulation  of  motor  variability  in  Experiment  3.  A.  Histogram  of

reinforcement scores (example participant) with median split used to define low and high score conditions.

B. Time course of motor variability (ΔVn) surrounding relatively high (dark blue) and low (light blue) score

trials, aligned to the conditioned trial at position 0. Variability was greater following low scores at positions

+1 to +3 (N = 36; paired permutation test;  PFDR = 0.001; significant cluster denoted by the black bar).  C.

Statistical matching analysis: trials of low and high scores (median split) were matched for surrounding

reinforcement values. Black dots indicate mean performance score difference (± SEM) at each time point.

D. Using matched trials, motor variability was significantly greater following low- than high-score trials at

lags +1 to +3 (PFDR = 0.006).  Uncorrected differences from all  trials  (as in panel  B) are shown in blue.

E.  Larger deviations from target dynamics (unsigned error  En-1) were associated with greater subsequent
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reinforcement-related  variability,  σ(En),  replicating  the  relationship  found  in  Experiment  1.

F.  Bayesian linear  modelling  of  VarDiff (post-low minus high score variability)  showed a credible  PA ×

reinforcement  condition  interaction  (posterior  estimate  =  26.31,  95%  CrI  [11.34,  40.11]).  Under

punishment,  the reinforcement-driven increase in motor variability became larger as PA levels increased,

whereas under reward, posterior estimates overlapped with zero. Dots represent posterior means, bars

denote 95% credible intervals.

Figure  7  |  Reinforcement-sensitive  Gaussian  process  accounts  for  increased  motor  variability  under

punishment in higher performance anxiety. A. Left: distribution of  σ2
RS estimates across participants by

reinforcement  condition (orange:  punishment;  purple:  reward).  Variable  σ2
RS is the output scale of  the

reinforcement-sensitive kernel, which captures short-term variability that is modulated by reinforcement.

Right: σ2
RS increased with PA category, reflecting greater contribution of reinforcement-sensitive processes

to variability in individuals with higher PA levels. Estimates are in the log scale. B. RSGP fit to empirical data

replicates simulation results: σ(en) shows a U-shaped dependence on en-1 (left), and μ(en)  increases linearly

with en-1(right). Mean and SEM are shown; SEM values are very small and not visible. C. Left: exponential fit

(line  with  95%  CrI  shading)  to  the  relationship  between  σ(en) and  |en-1|.  Right:  posterior  predictive

distribution of σ(en) values (light green lines: individual posterior draws; dark green line: empirical density).

D. Illustration of the interaction between PA category and reinforcement condition on the exponential

growth parameter b₂. Under punishment (orange), the growth in σ(en) with |en-1| was amplified in higher

PA individuals relative to reward (purple), indicating increased error sensitivity and behavioural adaptation

through variability. Posterior estimate: b₂ = 0.06, 95% CrI [0.01, 0.19]
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