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Abstract Healthcare social networks have a significant role in providing con-
nected and personalized healthcare environment with real-time capabilities.
However, building resilient, robust and technology-driven healthcare 5.0 has its
own barriers. Especially, with social media’s high susceptibility to rumors and
fake news, these networks can harm the society. Many researchers have been
investigating the process of information diffusion, and it has been one of the
most intriguing issues in network analysis. Modeling rumor propagation is one
of the prominent researched topics in recent years. Traditional models assume
that rumor propagation happens only in one direction, where only supporters
are supposed to be active whereas, in a real-life situation, both supporters and
deniers of the information operate simultaneously. In this paper, we introduce
a model for the recovery of nodes in a setting where rumor propagation and
rumor control happen simultaneously. We propose the Susceptible-Infected-
Recovered-AntiSpreader (SIRA) model based on the notion of spreading of
epidemics and also its applications to modeling the propagation of rumors and
control of rumor. Our model assumes people have multiple forms of reactions
to rumor, either posting it, deleting it, or announcing the rumor as fake. This
paper also suggests how the model can act as a simulation method to compare
two node centrality algorithms where spreaders chosen from one centrality al-
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gorithm try to spread the rumor, and the anti-spreaders chosen from other
centrality try to dispel the rumor and vice-versa. We simulate the proposed
algorithm on different weighted and unweighted real-world network data-sets
and establish that the experimental results agrees with the proposed model.

Keywords Complex network · Healthcare social networks · Information
diffusion · Node centrality · Rumor Control · Rumor propagation

1 Introduction

The 5.0 revolution in healthcare is eventually digitally transforming society,
plummeting the overload on emergency and critical care, and letting people
to reinforce their resilience and health with a faster response time. The use
of AI, the Internet of Medical Things (IoMT) and social media is offering
number of advantages over traditional analytic and clinical decision-making
techniques. In this view, many Healthcare Social Networks (HSN) are evolving
with the intent to augment patient care and awareness enticing the interest
of clinical professionals and of the whole healthcare industry. Technological
developments and digital platforms foster information diffusion possibilities
to keep people safe, informed and connected. However, the same tools also
expose possible perils of misinformation for patients. As the world combats
with the outrageous and perilous coronavirus, the pandemic has demonstrated
how the spread of misinformation, amplified on social media and other digital
platforms, is proving to be as much a threat jeopardizing measures to control
the pandemic.

Typically, rumors are information pieces that are unreliable, incorrect, and
spread on the network due to limited knowledge of the recipient nodes or wrong
intentions [3,4,5]. Rumors are the unverified spread of societal concerns, is-
sues by different methods, and create misunderstandings between individuals.
Rumors on the internet spread quicker and have a more extensive scope of an
impact than word-of-mouth rumors. These rumors spread by word of mouth
over a small area and in vast geographical regions like a forest fire on social
networks [6], generally with malicious intent. Rumors alter and shape public
opinion adversely affecting human behavior, causing multiple confusions [7]
and instability. Many researchers have been investigating the process of infor-
mation diffusion, and it has been one of the most intriguing issues in network
analysis. Modeling rumor propagation is one of the prominent researched top-
ics in recent years. The SIR [8] model is a traditional model that simulates
information diffusion due to similarity in the field of epidemiology and social
networks. It has been utilized by numerous researchers to model the process of
information diffusion in social networks. A susceptible individual spreads data
when influenced by a spreader and turns into a spreader. After some time, the
spreader quits spreading the data and turns into a recovered node. The trans-
formation parameters β and γ in the process are network characteristics-based
probabilities, and the state transformation of all nodes is equivalent. While the
SIR model serves as an excellent benchmark for information propagation, it
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doesn’t generalize well to rumor propagation. A notable difference arises be-
cause individuals may also be immunizing other nodes regarding the rumor and
preventing them from getting infected. This phenomenon is very different from
actual epidemics modeling because, in an epidemiological setting, it is unlikely
that a large portion of people who recover from the epidemic, make other peo-
ple immune as well. However, in a social network, when a person propagated
fake news intentionally or due to a lack of knowledge and after getting the
truth, other persons can disseminate the fact about the misinformation. This
makes their susceptible neighbors, directly recovered and immune to the ru-
mor. We consider the above recovery aspects of information propagation in our
paper and propose the Susceptible-Infected-Recovered-AntiSpreader (SIRA)
model based on the notion of spreading of epidemics and its applications to
modeling the propagation of rumors and control of rumor. Our model assumes
people have multiple forms of reactions to rumor, either posting it, deleting
it, or announcing the rumor as fake. The contribution of our papers are as
follows:

– We establish mathematical model for the rumor propagation, rumor control
and analyzing its equilibrium parameters and reproduction rate.

– The proposed model introduces the notion of anti-spreaders that immune
its susceptible neighbors from the rumors to minimize the effect of rumors
in the network.

– We consider the case where the information is not a rumor, and the pro-
posed model simplifies to information propagation model for the influence
maximization.

– We discuss the novel approach of directly comparing two different node
centrality algorithms for the selection of spreaders and anti-spreaders. The
spreaders, chosen from one centrality algorithm, try to spread the rumor,
and the others try to dispel the rumor and vice-versa.

The paper organization is as follows. In Section 2, we present some tradi-
tional models used to study rumor propagation and clarify the enhancements
that our model proposes. In Section 3, we describe the proposed SIRA model
of rumor propagation and rumor control with mathematical modeling using
the system of differential equations. This section also explores the analysis
of the proposed model on homogeneous networks, calculation of reproduction
number, and how our model can be simplified to a general information diffu-
sion model as the SEI model followed by the simulation of the model on a toy
network. In Section 4, we discuss the different weighted and unweighted real-
world data-sets used in this work, and we prove the mathematical integrity
of our model for information propagation, rumor propagation, rumor control,
and node centrality algorithm performance comparison on various data-sets
used. Finally, Section 5 concludes the paper.
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2 Related Work

Social networks are complex networks with non-trivial topology and intri-
cate interactions between users. The effective analysis of complex systems is
essential to model and comprehend the method of rumor propagation. The
spreading of rumors on online social networks is very similar to epidemic
spreading. Researchers from various disciplines have extensively studied mod-
els of rumor propagation in complex networks. The majority of the conven-
tional models for investigating information diffusion depend on elementary
models of epidemics, for example, SI (Susceptible Infected), SIS (Susceptible
Infected Susceptible), SIR (Susceptible Infected Recovered) [9,10].

Tripathy et al. [11] claimed that the effect of rumor can be combated
by injecting messages called anti-rumors, just like the rumor process. They
studied two metrics, namely the belief time, which is the duration for which
a person believes the rumor to be true, and point of decline, which is a point
after which the anti-rumor process dominates the rumor process. Huang and
Jin [12] modified the SIR model to prevent the rumor propagation by devising
immunization strategies, namely, the random immunization and the targeted
immunization to the rumor model on small-world networks. Wan et al. [13]
introduced the SIERsEs model, which is an extension of the SIR spreading
model with the addition of the elimination of the rumor process. Zhu and Ma
argue that certain people may not believe in the rumor and do not spread it,
a different state called a hesitant state added to the traditional SIR model
and proposed SHIR model [14]. This model also takes care of the varying
degree of nodes, which commonly happens in online social networks. Indu
and Thampi argue that the spread of rumors in social networks is similar to
the spread of fire in a forest and identified various components to model the
spread of rumors in online social networks [15]. Wang et al. [16] explored the
propagation of rumor using an improved energy model applicable to multi-
layer social networks. The model also introduces negative energy to simulate
the mitigation process of rumors. Zhu et al. [17] recently proposed a SIR like
an epidemic rumor propagation model by employing forced silence function,
time delay, and network topology. Recently, Yang et al.[18] developed an ILSR
rumor propagation model based on the notion of the degree of different nodes
in networks. They introduced a new type of users known as lurkers users
who have heard the rumors, but temporarily not spreading rumors in the
system. Kaur et al. [19] proposed a fake news detection system using multi-
level voting model by exploiting various feature extraction techniques and
machine learning classifiers. Qui et al. [3] introduced the SIR rumor spreading
model with an influence mechanism in social networks, named SIR-IM, by
integrating the number of current spreaders into the spreading probability
and time function.
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3 Proposed Methodology

3.1 SIRA Model description

We propose the Susceptible-Infected-Recovered-AntiSpreader (SIRA) model
for the recovery of nodes in a setting where rumor propagation and rumor
control happen simultaneously. The entire population is divided into four
categories:- Susceptible nodes (S), that are unaware of the rumor, Infected
nodes (I) that are actively spreading the rumor, Recovered nodes (R), that
are not spreading the rumor, and Anti-spreader nodes (A) that are dispelling
the rumor. We consider people have multiple forms of reactions to rumor, ei-
ther posting it, deleting it, or announcing the rumor as fake. We introduce the
notion of anti-spreaders nodes, such nodes that get to know about the irrel-
evance of the information, and the piece of the information is a rumor, tend
to dispel the rumor by announcing the truth. Hence, the Anti-spreaders nodes
are immunizing their susceptible neighbor’s nodes from false information and
play a crucial role in controlling the rumor. As evident from the Fig. 1, solid

Fig. 1: SIRA Model

lines represent direct conversion of a node from one state to another, for ex-
amples S− > A, I− > R. However, the dotted line corresponds to indirect
conversion from one state to other. For example, the conversion from A to
S signifies the indirect effect of anti-spreaders on their susceptible neighbors.
This makes susceptible neighbors transition to the recovered state with the
rate β2 and becomes immune to the fake news. The steps of the algorithm are
as follows:

– Node population starts from certain infected nodes and certain anti-spreader
nodes that spread the rumor or dispel it, and all other nodes are susceptible

– Infected nodes affect their susceptible neighbors and convert them into
infected members that propagate the rumor. This conversion happens with
a probability β1
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– Probability that the infected members recover is at a rate of γ
– Under these conditions recovered nodes can now become anti-spreaders at

the rate of δ
– Nodes that become Anti-spreaders affect β2 fraction of their susceptible

neighbors, converting them directly into recovered state and immune to
the rumor. Due to the influence of Anti-spreaders nodes, some of their
susceptible neighbors can directly go to a recovered state, and they will
not be affected by the rumor.

Also, other than the rate of conversion β1 from S− > I, the nodes in
susceptible state can only transit to an infected state, if they are direct neigh-
bors of an infected node. Similarly, other than the rate of conversion β2 from
S− > R, the susceptible nodes can directly transition into recovered nodes if
they are direct neighbors of anti-spreader nodes.

At the end of simulation when there are no infected nodes i.e., I(t) = 0 and
equilibrium is reached then some nodes can still remain in susceptible state
other then anti-spreaders. It is not like that the final state is anti-spreader,
and all the nodes should be in this state at the end; rather, it depends on the
various conversion rates considered. Also, other than the rate of conversion β1
from S− > I, the nodes in susceptible state can only transit to an infected
state, if they are direct neighbors of an infected node. Similarly, other than
the rate of conversion β2 from S− > R, the susceptible nodes can directly
transition into recovered nodes if they are direct neighbors of anti-spreader
nodes.

3.2 System of differential equations

The population is divided into the 4 states Susceptible S, Anti-Spreaders
A, Infected I and Recovered R and at any time t their sum is 1 as in Eq. No.
1.

S(t) +A(t) + I(t) +R(t) = 1 (1)

As evident from Fig. 1, some recovered nodes may become anti-spreaders at
the rate δ as per the Eq. No. 2. Anti-spreaders are those nodes who know the
ingenuity of the information. The node in the anti-spreader(A) state continues
to be in the same state throughout.

d

dt
A(t) = δR(t) (2)

Recovered nodes increase through multiple methods, either through the direct
recovery of susceptible nodes due to influence of anti-spreaders (edge between
S to R in the Fig. 1) or by direct conversion from infected to recovered (edge
between I to R in the Fig. 1). Some recovered nodes may also become anti-
spreader at the rate δ. The change in recovered nodes is presented in Eq. No.
3.
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d

dt
R(t) = −δR(t) + γI(t) + β2 ∗ k ∗ S(t) ∗A(t) (3)

where k is the average degree of the nodes in the network. Change in infected
nodes, Eq 4, arises from the conversion of susceptible nodes to infected nodes
with the rate β1 and infected nodes go to recovered state with the rate γ.

d

dt
I(t) = −γI(t) + β1 ∗ k ∗ S(t) ∗ I(t) (4)

d

dt
S(t) = −β1 ∗ S(t) ∗ I(t) ∗ k − β2 ∗ S(t) ∗A(t) ∗ k (5)

Initially, all the nodes are assumed susceptible except few seed nodes and
slowly, they decay into infected state with rate β1 and recovered state with rate
β2 as given in the Eq. No. 5. Now Let us solve these equations by substituting
R(t) with 1− S(t)−A(t)− I(t) from Eq. No. 3 and hence getting the system
given by 6, 7, 8.

d

dt
A(t) = δ(1− S(t)−A(t)− I(t)) (6)

d

dt
I(t) = −γI(t) + β1 ∗ k ∗ S(t) ∗ I(t) (7)

d

dt
S(t) = −β1 ∗ S(t) ∗ I(t) ∗ k − β2 ∗ S(t) ∗A(t) ∗ k (8)

3.3 Calculation of reproduction number

The basic reproduction number (R0) is an important parameter in epi-
demics which measures the propagation potential of contagious diseases. The
reproduction number (R0) is an epidemiologic measure used to characterize
the contagiousness or transmissibility of infectious agents. We have applied a
similar concept for the rumor propagation. Since for successful reproduction
of the rumor, we require that initially d

dtI(t) > 0, this produces Eq. No. 9

− γI(t) + β1 ∗ k ∗ S(t) ∗ I(t) > 0 (9)

Thus, giving us Eq. No. 10,

Rt = (β1 ∗ k ∗ S(t)/γ) > 1 (10)

Rt > 1 means that the rumor is active in the system. For the initial spread of
rumor, R0 > 1 and since S(0) ∼= 1 we get Eq. No. 11

R0 = (β1 ∗ k/γ) > 1 (11)

Now, when Rt < 1, there is no rumor in the system. When Rt < 1 then
d
dtI(t) = 0. This implies there is no infected node in the system and hence
there is no rumor in the system.
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3.4 Model Analysis in a homogeneous network

We analyze the proposed SIRA model on a homogeneous network and
prove the validity of the model at the stable equilibrium points. An equilib-
rium point of a dynamic mathematical framework produced by an independent
system of ordinary differential equation (ODEs) is a solution point where the
count of participating entities doesn’t change with time and hence, their rate
of change becomes 0 [31]. In the case of epidemics, the disease-free equilibrium
is asymptotically stable, and the infection asymptotically vanishes. Similarly,
in the case of information propagation, rumor-free stable equilibrium is sta-
ble, and information is no longer being spread, and the network has no active
rumor propagating nodes. We prove the stability of our differential equation
at the equilibrium condition given by Eq. No. 12

d

dt
S(t) = 0,

d

dt
A(t) = 0,

d

dt
I(t) = 0,

d

dt
R(t) = 0 (12)

The Jacobian Method [32] as given by Eq. No. 13. The Jacobian method is a
popular iterative technique used for determining the solutions for the system
of linear equations, which is diagonally dominant.

JE =


−β1 ∗ I ∗ k − β2 ∗A ∗ k −β2 ∗ S ∗ k −β1 ∗ S ∗ k 0

0 0 0 δ
β1 ∗ k ∗ I 0 −γ 0
β2 ∗ k ∗A β2 ∗ S ∗ k γ −δ

 (13)

The equilibrium points exist if I(t) = 0 and under this condition we have
Eq. No. 14

Ei = (S,A, 0, R) (14)

The Jacobian matrix is given by Eq. No. 15:

JE =


−β2 ∗A ∗ k −β2 ∗ S ∗ k −β1 ∗ S ∗ k 0

0 0 0 δ
0 0 −γ 0

β2 ∗ k ∗A β2 ∗ S ∗ k γ −δ

 (15)

We will calculate the eigenvalues of JE as in Eq. No. 16:

JE =

∣∣∣∣∣∣∣∣
−β2 ∗A ∗ k − λ −β2 ∗ S ∗ k −β1 ∗ S ∗ k 0

0 −λ 0 δ
0 0 −γ − λ 0

β2 ∗ k ∗A β2 ∗ S ∗ k γ −δ − λ

∣∣∣∣∣∣∣∣ (16)

Expanding on the third row, we arrive at the following characteristic equa-
tion in Eq. No. 17:

(γ + λ)(λ)(λ2 + (δ − β2kA)λ− β2kδ(A+ S)) (17)
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As evident, (−γ, 0) are eigen values and also the solutions of λ2 + (δ −
β2kA)λ−β2kδ(A+S) which we find and analyze as follows using the Quadratic
Formula:


(λ2 + (δ − β2kA)λ− β2kδ(A+ S))

D = ((δ − β2kA)2 + 4 ∗ β2kδ(A+ S))

∴ δ2 + β2
2k

2A2 − 2δβ2kA+ 4β2δkA+ 4β2δkS
∼= (δ + β2kA)2 + 4 ∗ β2kδS

(18)

.
Here, since, (δ + β2kA)2 ≥ 0 ∵ (x2 > 0,∀x ∈ R) and also S, k, β2, δ ≥ 0, we
have Eq No. 19:

D ≥ 0 (19)

Thus the Eigenvalues are given by Eq. No. 20:

(0,−γ, (−(δ − β2kA)−
√
D)/2, (−(δ − β2kA) +

√
D)/2) (20)

Now, for a stable equilibrium, real eigenvalues must be ≤ 0 and since
γ, δ, β2 > 0 and S, I,R,A ≥ 0, we know that eigenvalues satisfy these proper-
ties in the assumptions of our system for equilibrium. The first eigenvalue is
0 and −γ and −(δ − β2kA)−

√
D)/2 are ≤ 0 as given by Eq. 21.

(−(δ − β2kA) +
√
D)/2 ≤ 0 (21)

Thus rearranging and squaring both sides, we get to Eq. No. 22:

(δ − β2kA)2 ≤ (δ − β2kA)2 + 4β2δkA+ 4β2δkS (22)

Hence, Eq. No. 22 holds true ∀A,S ≥ 0, and at this point, the mathemat-
ical stability of the system is proved quantitatively by finding the eigenvector
related with every eigenvalue. An equilibrium point is hyperbolic if none of
the eigenvalues have zero real part. One of our eigenvalues is zero. Thus the
equilibrium is non-hyperbolic. If all eigenvalues have a negative real part, the
equilibrium is steady, as given by the Lyapunov Stability theorem [33]. As
evident in Eq. No. 20 - 22 that the corresponding eigenvalues are ≤ 0, and the
equilibrium for our model is stable.

3.5 The simplification to information propagation SEI model

When the information is non-rumor, the model can directly be simplified
to an information propagation model that leads to influence maximization
achieved through anti-spreaders.

The roles of the nodes however remain almost the same. Anti-spreaders
are still the carriers of correct information and the recovered nodes, still are
the dormant nodes that know about the information but are not spreading
it. Similarly, susceptible nodes still remain the nodes that are unaware of the
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(a) (b) (c)

Fig. 2: Simplification of the model from SIRA to SEI for non-rumor infor-
mation

information and can likely be turned into recovered nodes by anti-spreaders.
This effect can be seen when we plug in I(t) = 0, d

dtI(t) = 0 into the model (
Eq. 1, 2, 3, and 5) and we get the following system of equations namely, Eq.
No. 23 24, 25, and 26.

S(t) +A(t) +R(t) = 1 (23)

d

dt
A(t) = δR(t) (24)

d

dt
R(t) = −δR(t) + β2 ∗ k ∗ S(t) ∗A(t) (25)

d

dt
S(t) = −β2 ∗ S(t) ∗A(t) ∗ k (26)

For the purpose of an analogy between these states we rename the states for
direct correspondence with the SEI model as follows:

1. Anti-spreader nodes (A) become source spreaders or seed nodes (I)
2. Recovered nodes (R) are renamed as exposed nodes (E)
3. Susceptible nodes remain in the same naming convention (S)

These seed nodes (I) affect β2 fraction of their neighbors, and they convert
into exposed (E). Exposed users can become spreaders of the information with
the rate δ.

Thus, the proposed SIRA model for the rumor propagation and rumor
control simplifies to information spreading SEI [34] model for influence max-
imization. This conversion is depicted in Fig. 2

3.6 Simulation of the proposed model on a toy network

A toy network, as in Fig. 3 is chosen as a simulation network. The most
influential node in the network is chosen as the spreader and β1 = 0.5, β2 =
1, γ = 1, δ = 1 are assumed without loss of generality. Initially, all the nodes,
except the one chosen as the influential node based on Out-Degree, are suscep-
tible, and the given node is in an Infected state. As time progresses, random
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neighbors of this node become infected, and the node recovers. After recovery,
it is dormant, and other nodes continue spreading information. The recovered
node decides to dispel the rumor and makes itself an anti-spreader. This effect
makes all its susceptible neighbors instantly recover. The spreading continues
till all the nodes are either against the rumor or have never heard of the ru-
mor or its dispel. We describe the spread in Fig. 3 as a change-of-state in an
event-driven simulation.
The change of state in an event-driven simulation are as follows:
t1: Node F is infected, chosen because of maximum out-degree, all other nodes
are currently susceptible.
t2: Node F has recovered, and has infected its neighbors with a uniform prob-
ability of β1 = 0.5, thus randomly infecting nodes E and J .
t3: Node F is now an anti-spreader, all the infected nodes recover at the rate
of γ = 1, and their neighbors are infected at the rate β1.
t4: Node F has recovered its susceptible neighbor H at rate β2, all recovered
nodes became anti-spreaders at the rate of δ = 1.
t5: Anti-spreaders are beginning to take more portion of the network. How-
ever, there is still an infection going on in the network.
t6: No neighbors of the current infected nodes are susceptible.
t7: All reachable nodes in the network have seen the information. However,
there is still a node G, which has never heard of the rumor or anti-rumor.
t8: All nodes that saw the rumor or the truth are now anti-spreaders. Other
nodes like G are still susceptible. After the equilibrium point, all nodes will
either end as susceptible, or anti-spreaders and no nodes are spreading the
rumor if the parameters β1, β2, γ, δ are coherent to the reproduction number.

In above toy network simulation in Fig. 3, the value of various probabil-
ities considered are β1 = 0.5, β2 = 1, γ = 1, δ = 1, which are relatively very
high values. The conversion rate from S− > I is 0.5%, i.e., an infected node
can randomly infect 50% of its susceptible neighbors. Similarly, each of the
conversion rate from I− > R, S− > R−, and R− > A is 1. It implies the
probability of conversion from susceptible to recovered, infected to recovered
and, recovered to anti-spreaders is 100%. At the end of the simulation, all
the nodes are in the anti-spreader state except one node in the susceptible
state. The node ‘G’ is non-reachable from all other nodes and hence, it is not
influenced by any nodes during the simulation process and its color remains
unchanged.

4 Result and analysis

In this section, we simulate our proposed methodology and analyze the
different findings related to rumor propagation and rumor control using real-
world various weighted and unweighted networks given in Subsection 4.1. Tab.
1 depicts the brief description used data-sets in this paper. We use the spread-
ing characteristics defined by F (t) giving the count of the susceptible, infected,
anti-spreaders, and recovered nodes as a function of time. Infection scale, i.e.,



12 Akshi Kumar et al.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3: All nodes are initially susceptible and an influential node is chosen
as the spreader with β1 = 0.5, β2 = 1, γ = 1, δ = 1. Here, purple nodes are
susceptible, pink nodes are infected, blue nodes are recovered and green nodes
are anti-spreaders.

F (t), is an important evaluation parameter. When information propagates in
a network then at any time t, F (t) denotes the fraction of nodes in the network
which have received the particular information. A higher value of F (t) indi-
cates that information spreads rapidly in the network. Section 4.2 discusses
the propagation of non-rumors, similar to the traditional SEI information
propagation model, using the proposed SIRA model. Section 4.3 discovers
the role of anti-spreaders in containing the harmful effects of the rumor. In
section 4.4, a novel method for comparison of centralities is proposed. Here,
we compare the recently introduced NCVoteRank [26] centrality algorithm for
unweighted networks and WVoteRank [27] centrality on weighted networks for
finding the initial spreaders. These centrality algorithms are simulated in com-
parison to traditional algorithms, DegreeRank [28] for unweighted networks,
and its weighted version WDegreeRank for weighted networks.
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4.1 Datasets used

Dataset Name Characteristics Description

US Airports
[20]

Weighted, Directed, 1,574 ver-
tices, 28,236 edges

The network of the most crowded trading air-
ports in the United States. An edge is there
between airports, if there is a flight between
them. The weights are the number of seats
available on these flights.

Brightkite [21]
Unweighted, Undirected,
58228 nodes, 214078 edges

Brightkite was a location-based social network.
Users can share their locations by check-ins.

Email-Enron
[22]

Unweighted, Undirected,
36692 nodes, 183831 edges

Nodes of the network are email addresses. If
address A sends one or more email to address
B, the graph contains an undirected edge be-
tween these nodes.

US Powergrid
[23]

Undirected, Weighted, 4941
nodes, 6,594 edges

This network is the high-voltage power grid
in the USA. The nodes are substations, trans-
formers, and generators, and the connections
are voltage power lines.

CA-GrQc [24]
Unweighted, Undirected, 5242
nodes, 14496 edges

Arxiv GR-QC (General Relativity and Quan-
tum Cosmology) research network is from the
research papers and covers scientific referenc-
ing between papers in General Relativity and
Quantum Cosmology category.

p2p-
Gnutella08
[25]

Unweighted, Undirected, 6301
nodes, 20777 edges

This is a Gnutella peer-to-peer file-sharing net-
work dataset collected from 08 August 2002
where a vertex represents host in the network,
and the edge denotes the connection between
the Gnutella hosts.

Table 1: Description of data-sets used

4.2 Information propagation on real-world networks

As highlighted in Section 3.5, the proposed algorithm reduces to a Susceptible-
Exposed-Infected (SEI) model where susceptible nodes remain susceptible
(S), recovered nodes act as exposed (E) nodes, and anti-spreader nodes are the
carrier of the correct information and act as infected (I) nodes. The information
diffuses based on two parameters, namely the rate of infection as β2 and rate
of recovery as δ, leading to a simplified model of information propagation. As
evident, the model has similar characteristics to those of the SEI model with
similar parameters and has expected behavior on the real-world weighted and
unweighted networks, as shown in Fig. 4. We use NCVoteRank centrality [26]
and to identify one top spreader as infected node on the unweighted networks
like Brightkite and Email-Enron. Similarly, we utilize WVoteRank centrality
[27] to identify one top spreader as infected node to start the information
diffusion process on the weighted networks like US-Airports and Powergrid.
Notice that all the graphs behave similarly to the SEI epidemic model. As
evident from Fig. 4(a), the spreader on weighted network US-Airports is able
to infect around 25% (750 nodes of the network receive the information at the
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(a) US-Airports (b) Brightkite

(c) Email-Enron (d) Powergrid

Fig. 4: Information propagation on real-world networks when there is no rumor,
and anti-spreader nodes act as the information carrier. All nodes are initially
susceptible. An influential node is chosen as the spreader using the NCVoteR-
ank method in case of an unweighted network and WVoteRank method in
weighted networks. The results are obtained over 100 independent simulation
of SEI model with β = 0.2, and δ = 0.8

end of the simulation, out of the total population of 3000) of the network. In
Fig. 4(b), the spreader on Brightkite is able to infect around 50% of the net-
work and ended up having a stable equilibrium. In Fig. 4(c), the spreader on
Email-Enron is able to infect more than 50% of the network, notice that the
peak reaches an early timestamp due to high connectivity. On the weighted
PowerGrid network, notice that the change in the numbers is gradual, and
very few nodes eventually become exposed as in Fig. 4(d).
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4.3 Numerical simulations for basic reproduction number and the equilibrium
point

In this section, we discuss the equilibrium characteristics of the proposed
method near the rumor-free equilibrium point, along with endemic equilibrium
characteristics and the role of anti-spreaders nodes to minimize the effect of
rumor on various network datasets. On reaching equilibrium on real-world net-
works, the rumor vanishes in the network only after the complete network has
no more rumor-spreading nodes. The equilibrium is stable, only if the con-
ditions are such that Rt < 1, as given by calculation in Eq. 10. We assume
the values of the parameters β1, β2, and γ based on the reproduction number
and network topology. The value of δ shall indicate how likely an informed
(recovered) node is to dispel the rumor by becoming an anti-spreader. The
value of δ depends on the preference of the given group and the severity of
the information. As evident from Fig. 5(a), the spreaders on weighted network
US-Airports can infect around 35% of the network in the beginning, whereas
around 50% nodes of the network recovers and becomes anti-spreader dur-
ing the simulation and minimizing the spread of the rumor. In Fig. 5(b), the
spreader on Brightkite is able to infect around 15% of the network, and about
20% of the nodes became anti-spreader. Due to the influence of anti-spreaders,
approximately 80% of the nodes remains susceptible means unaffected by the
rumor. Hence, the roles of anti-spreaders nodes become vital to confine the
rumor in the system. In Fig. 5(c), the spreader on Email-Enron is able to
infect about 32% of the network initially, and 43% nodes are anti-spreaders.
It is clear that due to the impact of ant-spreaders about 70% of nodes re-
mains susceptible. On the weighted PowerGrid network, the spreader is able
to infect about 15% of the network initially, and 22% nodes are anti-spreaders,
which enables approximately 70% nodes are susceptible and are unaffected by
the rumor as depicted in Fig. 5(d). Similarly, in the case of GrQc and p2p
Guntella08 networks, as evident from Fig. 5(e) and 5f, respectively, the anti-
spreader nodes are able to control the rumor, and most of the nodes remain
susceptible in the system after reaching the equilibrium.

Here, in case of the results obtained on real-life network datasets in Fig.
5, results are obtained over 100 independent simulation of SIRA model with
the value of various probabilities as β1 = 0.1, β2 = 0.1, γ = 0.2, δ = 0.9. The
probability of conversion from S− > I is 0.1, i.e., an infected node can ran-
domly infect 10% of its susceptible neighbors. The probability of conversion
S− > I is 0.1, i.e., an infected node can randomly infect 10% of its susceptible
neighbors. The probability of conversion from S− > R is 0.1, which implies
due to the influence of anti- spreader nodes, their 10% susceptible neighbors
go directly in recovered state. Similarly, the rate of conversion from infected
state to recovered state is 20%, and the rate of conversion from recovered
state to anti-spreader state is 90%. Hence, in this case, we have performed the
simulation on relatively lower conversion rates as compared to the simulation
performed in the toy network as in Fig. 3. This results in a significant number
of nodes are in the susceptible state apart from in anti-spreader state when the
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(a) US-Airports (b) Brightkite

(c) Email-Enron (d) US-Airports

(e) Brightkite (f) Email-Enron

Fig. 5: The equilibrium characteristics of SIRA model and impact of anti-
spreaders to control the rumor as seen on various used datasets. The results
are obtained over 100 independent simulation of the proposed model with
β1 = 0.1, β2 = 0.1, γ = 0.2, and δ = 0.9
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(a) US-Airports (b) Brightkite

(c) Email-Enron (d) US-Airports

(e) Brightkite (f) Email-Enron

Fig. 6: The endemic equilibrium characteristics of SIRA model observed on
different used datasets. The results are obtained over 100 independent simu-
lation of SIRA model with β1 = 0.4, β2 = 0.01, γ = 0.1, and δ = 0.3
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equilibrium is reached in the system. The increase in the value of the conver-
sion rate, especially β1 for S− > I and β2 for S− > R, results in less number
of susceptible nodes at the end of the simulation when equilibrium is reached.
Also, many real-life networks like US-Airports, Brightkite, and social networks
are sparse networks where many nodes exist with relatively less degree. Here,
degree means the number of direct neighbors or number of friends in social
networks, and some of such nodes may not come in contact with either infected
or anti-spreader nodes in the system and remains in the suseptible state or
unware of the information.

The endemic equilibrium state is the state where the disease or rumor
cannot be totally eradicated but remains in the population [35]. For the disease
or rumor to persist in the population, the anti-spreader class, the susceptible
class, the infectious class, and the recovered class must not be zero at the
equilibrium state, i.e., (S, I,R,A) 6= (0, 0, 0, 0). In this case the equilibrium
is stable, only if the conditions are such that Rt > 1, as given by calculation
in Eq. No. 10. The results obtained in Fig. 6 on the various used datasets
confirms that there exits an endemic equilibrium point and its stability in the
system.

4.4 Spreader and Anti-Spreader seeding: Comparing Centrality algorithms

The proposed SIRA model can compare two different node-centrality al-
gorithms for evaluating the spread and control of information to model the
real-life situation. In the framework, we can change the comparing central-
ity algorithms. Node centrality methods intend to assign some score to each
node of the network based on its significance and different parameters [29,30]
In this case, spreaders are chosen from one centrality algorithm spread the
rumor, and the anti spreaders are chosen from the second algorithm dispel
the rumor and vice-versa. We apply F (t), the infected scale, as a function of
time, as the performance measure for this comparison. We employ the top 10
selected spreaders and top 10 selected anti spreaders using the specified cen-
trality algorithm for performing the comparison study. We intend to develop a
generic framework where any two node centrality can be taken to compare the
performance. In the case of unweighted networks, we consider NCVoteRank
and Degree centrality as the choice of node centrality algorithms. However,
in the case of the weighted networks, WVoteRank and WDegree centrality is
viewed as the choice of node centrality algorithms. During the simulation, due
to a non zero value of δ, the count of anti-spreaders increases, and also newly
became anti-spreaders can immune their neighbors as per the dynamics of the
model.

The obtained results of comparing centrality is depicted in Fig. 7 for var-
ious considered datasets by using the parameters β1 = 0.4, β2 = 0.3, γ =
0.3, δ = 0.5. From the results, it can be inferred that initially, the count of
infected nodes increases due to the influence of selected seed nodes. However,
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(a) US-Airports (b) Brightkite

(c) Email-Enron (d) US-Airports

(e) Brightkite (f) Email-Enron

Fig. 7: The spreading of the information using comparing centrality algorithms
on the various network datasets with NCVoteRank and DegreeRank used on
unweighted networks, and WVoteRank and WDegreeRank on weighted net-
works with parameters values as β1 = 0.4, β2 = 0.3, γ = 0.3, δ = 0.5



20 Akshi Kumar et al.

shortly the initial seed and the converted Anti-Spreader nodes tend to slow
down the conversion of susceptible nodes to the infected node and rapidly de-
crease the count of spreaders by converting them to recovered nodes based on
the parameters considered. PowerGrid network is a weighted network, and we
use WVoteRank centrality and WDegreeRank centrality for the selection of
spreaders and anti-spreaders respectively and vice-versa. WVoteRank as the
choice for spreaders and WDegreeRank as the choice for anti-spreaders can
get 350% more infected users than WDegreeRank as the method for select-
ing spreaders and WVoteRank for the anti-spreaders, as evident in Fig. 7(d).
CA-GrQc is an unweighted network, and hence, NCVoterank and Degreer-
ank are applicable for comparison. NCVoteRank as the choice for spreaders
and DegreeRank as the choice for anti-spreaders is able to get 80% more in-
fected users than DegreeRank as the method for the selection of spreaders
and NCVoteRank for the anti-spreaders, as evident in Fig. 7(e). Hence, we
can conclude that NCVoteRank, on unweighted networks, and WVoteRank,
on weighted networks, act as better node selection algorithms at both the
spreading, and the control of the rumor and fake news as compared to degree
on the unweighted and weighted degree on the weighted networks.

5 Conclusion

The healthcare social networks present potential risks for patients due to
the possible distribution of poor-quality or wrong information. In this paper,
we proposed the SIRA rumor propagation model to investigate the process
of rumor propagation and control in healthcare social networks. We added
a new state to the model called the anti-spreader, that spread the truth, to
prevent the harmful effects of the rumor. Considering the variety in people’s
reactions to rumors, we divided nodes into four categories, namely susceptible,
anti-spreaders, recovered, and infected. We modeled the system of differential
equations mathematically and determined the reproduction number to find the
equilibrium point and also confirmed the consistency of the proposed model on
real-world data-sets. We generalized our model into an information propaga-
tion model similar to the traditional models for modeling information diffusion
to achieve influence maximization. In both weighted and unweighted networks,
we compared two different centrality algorithms, one for choosing the spreaders
and the other for choosing the anti-spreaders and vice-versa and the amount
of information spread. The studies showed that our model is coherent with the
spread of rumors in social network topology, and our proposal gives a great
reference to simulating and controlling the spread of rumors and fake news
on the network. The proposed model is not applicable for heterogeneous net-
works. In the near future, we can extend our model to heterogeneous networks.
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