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Abstract

Hate speech detection remains a significant challenge due to the nuanced and context-
dependent nature of hateful language. Traditional classifiers, trained on specialized corpora,
often struggle to accurately identify subtle or manipulated hate speech. This paper explores
the potential of utilizing large language models (LLMs) to address these limitations. By
leveraging their extensive training on diverse texts, LLMs demonstrate a superior ability to
understand context, which is crucial for effective hate speech detection. We conduct a com-
prehensive evaluation of various LLMs on both binary and multi-label hate speech datasets
to assess their performance. Our findings aim to clarify the extent to which LLMs can
enhance hate speech classification accuracy, particularly in complex and challenging cases.

Keywords: hate speech detection; large language models (LLMs); context understanding;
binary hate speech datasets; multi-label hate speech datasets; classification accuracy

1. Introduction

Hate speech (HS) can be defined as content that expresses or incites harm toward an
individual or a group of people based on one or more of their personal characteristics, such
as gender, race, religion, sexuality, etc. Hate speech detection is critical for protecting online
users from abuse and for enabling service providers to offer a safe and trusted environment
for their users. It is a challenging task in the domain of Natural Language Processing
(NLP) to accurately distinguish between hate and non-hate text, as hateful content has
significant implications for the moderation of online content and the prevention of harm.
Traditionally, HS classifiers have been trained on specialized corpora, often leading to
models that demonstrate high performance within the constraints of their training data.
However, these dedicated HS classifiers frequently struggle to understand contextual
information when processing hateful/abusive content. For example, the fictitious sentence
“I hate seeing children being upset about their race” requires HS classifiers to understand
the context in which the terms “hate” and “children” are used. The sentence does not
convey hate toward any children, despite containing the term “hate” and expressing that
the speaker hates seeing children in a certain state, as children are not targeted explicitly or
implicitly. Furthermore, manipulated hate speech refers to content intentionally altered to
evade detection by traditional classifiers, such as through misspellings, coded language,
or emojis. For example, users may replace letters with numbers (e.g., ‘fr33 sp33ch’ for ‘free
speech’) to bypass keyword-based filters, as observed in studies such as [1]. Without a
deep grasp of the nuanced contexts in which language is used, these models are prone to
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misclassifications, especially in cases where hate speech is subtle, implicit, or manipulated
to evade detection.

In contrast, large language models (LLMs) have been trained on vast amounts of
diverse text, equipping them with a more comprehensive understanding of language. This
extensive training allows LLMs to capture complex relationships between words and to
recognize context in ways that are not as straightforward for models trained solely on
HS-specific data. The ability of LLMs to “understand” the context makes them promising
candidates to improve the accuracy of HS classification.

In this paper, we provide a systematic evaluation of four commonly used LLMs for HS
classification, using eight widely used hate speech datasets. We examine the effectiveness
of those LLMs in both binary and multi-label HS classification tasks. Our study aims to
evaluate the ability of LLMs to improve hate speech detection, with a particular focus on
instances where context significantly influences classification outcomes.

The remainder of this paper is organized as follows. Section 2 provides a compre-
hensive review of relevant prior work in this domain. Section 3 presents the evaluation
methodology and experimental design employed in this study. Section 4 discusses the
experimental results and provides a detailed analysis of the findings. Section 5 examines
the limitations of the current study and their potential implications. Section 6 addresses
practical deployment considerations and operational requirements for real-world imple-
mentation. Section 7 outlines promising directions for future research, and Section 8
concludes this paper with a summary of key contributions and implications.

2. Related Works

The problem of HS detection has garnered significant attention within the NLP com-
munity, leading to the development of various methodologies and approaches. Early
efforts in this domain predominantly relied on traditional machine learning techniques,
such as Support Vector Machines (SVMs) and logistic regression, trained on manually
curated hate speech datasets. These approaches often utilized handcrafted features, such
as word n-grams, sentiment analysis, and lexicon-based methods [2], to identify hate
speech in online content. However, while they were effective to some extent, these models
struggled with generalization, particularly when exposed to variations in language use or
context manipulation.

The emergence of deep learning techniques marked a significant shift in hate speech de-
tection. Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs)
were leveraged to automatically learn features from text data, leading to improvements
in model performance. Notably, the use of Long Short-Term Memory (LSTM) networks
allowed models to better capture sequential dependencies in text, aiding in the identifica-
tion of more complex patterns indicative of hate speech [3]. However, these models still
faced limitations, particularly in understanding the broader context of statements, which is
crucial for accurately detecting nuanced or implicit hate speech.

More recent work has explored the use of transformer-based models, such as Bidirec-
tional Encoder Representations from Transformers (BERT), for hate speech detection [4].
BERT, with its bidirectional attention mechanism, allows for a deeper understanding of
context by considering both the left and right contexts of a given word. This approach has
shown promise in improving the detection of subtle forms of hate speech and reducing
false positives. However, while BERT and similar models have demonstrated strong per-
formance, they are still constrained by the domain-specific nature of the training data and
may not fully generalize to diverse or manipulated content.

The advent of LLMs like Generative Pre-trained Transformer 3 (GPT-3) and similar
models has opened new avenues for hate speech detection. These models, trained on
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extensive and diverse datasets, possess a broader understanding of language and con-
text, enabling them to potentially outperform traditional and even transformer-based HS
classifiers. Recent research has begun to explore the application of LLMs in hate speech
detection, with initial findings suggesting that these models can capture complex linguistic
nuances and reduce misclassifications of non-hateful content.

Using LLMs has several advantages for hate speech detection, as shown in a recent
study by Plaza-del Arco et al. [5], which explores the potential of zero-shot learning for HS
detection. The researchers investigated the effectiveness of this approach for hate speech
detection in three languages with limited labeled datasets. By experimenting with various
LLMs across eight benchmark datasets, they revealed the critical role of prompt selection
in determining LLM performance. Their findings suggest that prompting, especially when
using state-of-the-art LLMs, can achieve performance on par with or even exceeding that of
fine-tuned models. This approach offers a promising alternative for hate speech detection
in under-resourced languages, underscoring the importance of both prompt design and
model choice in enhancing detection accuracy.

The effectiveness of LLMs in detecting offensive and harmful online behavior, par-
ticularly sexist and hateful content, was studied in [6]. They examined various LLMs,
including zero-shot, few-shot, and fine-tuning approaches, to assess their ability to identify
hate speech without model training. They reported that LLMs can successfully detect hate
speech, with the encoder—-decoder model achieving the highest performance. Specifically,
the Zephyr model [7] scored 86.811% on the Explainable Detection of Online Sexism (EDOS)
test set and 57.453% on the Multilingual Detection of Hate Speech Against Immigrants and
Women in Twitter (HatEval) test set, surpassing the previous best results on the HatEval
leader-board. However, their study also highlighted challenges in contextual learning, par-
ticularly in distinguishing between different types of hate speech and figurative language,
and noted that the fine-tuned approach may lead to a higher rate of false positives.

The work by Saha et al. [8] investigated the performance of various LLMs in zero-
shot settings for the task of counter-speech generation, a critical area in combating hate
speech online. They focused on four prominent LLMs—GPT-2, DialoGPT, ChatGPT V3.5,
and FlanT5—making it the first comprehensive analysis of these LLMs’ effectiveness in this
context without fine-tuning. For GPT-2 and DialoGPT, they further examined the effect of
model size (small, medium, and large) on performance. Additionally, they proposed three
different prompting strategies to generate various types of counter-speech and evaluated
their impact on model performance. Their findings revealed that while generation quality
improved by 17% for two datasets, there was a 25% increase in toxicity with larger models.
GPT-2 and FlanT5 produced higher-quality counter-speech but exhibited greater toxicity
compared to DialoGPT. Notably, ChatGPT consistently outperformed the other models
across all metrics. The proposed prompting strategies significantly enhanced counter-
speech generation across all models, highlighting their importance in this task.

Nirmal et al.’s study [9] addressed the critical need for interpretable hate speech
detection methods on social media platforms, where users often exploit anonymity to
spread offensive content. While existing detection methods largely operate as black-box
models with little transparency, the authors proposed a novel approach that leverages
state-of-the-art LLMs to extract interpretive features, or rationales, from input text. These
rationales are then used for training a baseline hate speech classifier, ensuring that the
model remains interpretable by design. The proposed framework effectively integrates
the advanced textual understanding capabilities of LLMs with the discriminative power
of modern hate speech classifiers, resulting in a system that is both accurate and trans-
parent. Comprehensive evaluations on multiple English-language social media datasets
demonstrated the effectiveness of LLM-extracted rationales and showed that the model’s
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performance was largely retained even after incorporating interpretability. This approach
offers a promising direction for creating more transparent and explainable hate speech
detection systems.

In summary, while significant progress has been made in the development of hate
speech classifiers, the challenge of accurately detecting hate speech in varied and context-
dependent scenarios persists. Moreover, current HS classifiers lack comprehensive evalua-
tions of LLMs specifically in the context of hate speech classification, particularly across
different types of hate speech datasets (e.g., binary vs. multi-class). This paper contributes
to the growing body of literature by evaluating the performance of publicly available LLMs
in hate speech classification, comparing their effectiveness across different datasets and
classification tasks. By doing so, we aim to advance the understanding of how LLMs can
be leveraged to address the limitations of current hate speech detection methods.

3. Methodology

Our methodology involved several key steps: (i) selecting and pre-processing datasets,
(ii) selecting the most open-access LLMs, (iii) designing and conducting experiments for
binary and multi-class classification, and (iv) assessing the performance of the LLMs.

3.1. Dataset Selection and Preparation

To comprehensively evaluate the performance of LLMs in hate speech classification,
we utilized several commonly used HS datasets that cover both binary and multi-class
classification tasks. The datasets used in this study are presented in Table 1.

Table 1. Datasets used for binary classification.

Dataset Ref. Dataset Size
Suryawanish [10] 743
Salminen [11] 3222
Davidson [12] 2860

Gibert [13] 10,944
Waseem [14] 10,458

Qian [15] 27,546
Vidgen [16] 8186

For the binary HS classification task, we selected widely used HS datasets from the
literature, in which most examples are labeled as either “hate” or “not-hate”. These datasets
encompass diverse forms of hate speech across different contexts. For the multi-class
datasets, we considered only the “hate” and “not-hate” classes. For example, the Vidgen
dataset [16] originally contained more nuanced classifications. The objective of this bina-
rization task was to ensure that the datasets contained consistent labels and were thus
comparable. The label binarization process was as follows:

¢  Fine-grained HS labels (such as “racist” or “sexiest”) were consolidated into broader
categories. Content labeled with any form of HS was reclassified under the general label
“hate”, and those labeled “neutral” or “not-hateful” were converted to “not-hate”.

*  Ambiguous labels were removed by excluding any content with unclear categorization,
such as “abusive”, since such content may not necessarily be considered hateful.

e Content labeled “neutral”, “not-hate”, or “not abusive” was reclassified as “not-hate”.

For the multi-class HS classification task, we utilized two datasets: Vidgen [16] and
Kennedy [17]. In these datasets, each instance is assigned a label corresponding to different
categories of hate speech, such as targeting an affiliation or identity. The different classes
are shown in Table 2.
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Table 2. Multi-class datasets and their different classes.
Dataset Hate Speech Classes Ref.
Vidgen Affiliation, Person, Identity [16]
Kennedy Race, Religion, Origin, Gender, Sexuality, Age, Disability [17]

3.2. LLM Selection and Rationale

The explosive growth of large language models has created a complex landscape of
competing architectures, training approaches, and optimization techniques, each tailored
to distinct computational challenges and application needs.

3.2.1. LLM Selection

In this paper, we analyze four commonly used instruction-tuned language models that
exemplify different strategies for optimizing the critical trade-offs between performance,
computational efficiency, and task specialization. The tested models are as follows:

*  Meta-Llama-3-8B-Instruct.Q4_0 (Meta) [18]: This model is part of the Meta-Llama
series, designed to excel in instruction-following tasks. With 8 billion parameters,
it has been fine-tuned on diverse instructional data, making it well-suited for tasks
requiring nuanced understanding and contextual interpretation.

¢ Phi-3-Mini-4k-instruct.Q4_0 (Phi) [19]: This model is a smaller yet efficient member of
the Phi series, with 3 billion parameters. Despite its size, it is designed for instruction-
based tasks and is optimized for quick inference, making it an effective choice for
scenarios where computational resources are limited.

*  Nous-Hermes-2-Mistral-7B-DPO.Q4_0 (Hermes) [20]: This model, part of the Nous-
Hermes series, incorporates the Mistral architecture and has 7 billion parameters. It
has been fine-tuned with a focus on dialogue and contextual understanding, which
are crucial for accurately identifying hate speech in conversational contexts.

e WizardLM-13B-v1.2.Q4_0 (WizardLM) [21]: This is a large 13-billion-parameter model
from the WizardLM series, designed to perform well on a variety of NLP tasks,
including text generation and comprehension. Its architecture is optimized for both
speed and accuracy, providing a balance of performance and resource efficiency.

These models span a range of parameter counts from 3.8 billion to 13 billion, em-
ploy varying context window sizes from 4K to 32K tokens, and utilize distinct training
paradigms, including direct preference optimization (DPO), instruction-following enhance-
ment, and compact efficiency optimization. All models examined in this comparison utilize
Q4_0 quantization, making them suitable for deployment in resource-constrained envi-
ronments while maintaining competitive performance. A comparison of the models is
presented in Table 3.

Table 3. Comparison of large language models.

Characteristic Llama-3-8B Phi-3-Mini-4k Hermes-2-Mistral-7B Wizard LM-13B
Base Model Llama 3 Phi-3 Mistral-7B Llama 2
Parameters 8B 3.8B 7B 13B
Quantization Q4.0 Q4.0 Q4.0 Q4.0
Context Length 8192 4096 32,768 4096
Developer Meta Microsoft Nous Research WizardLM Team
Training Focus General Instruct ~ Compact Efficiency DPO Fine-Tuning Instruction-Following
Specialization Balanced Mobile/Edge Conversational Complex Reasoning
Memory Usage Medium Low Medium High

Performance High Good High Very High
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3.2.2. LLM Selection Rationale

Given the novel nature of applying LLMs specifically to hate speech detection, es-
tablished benchmarks for model performance in this domain are currently limited. This
necessitates a strategic approach to model selection based on architectural diversity, prac-
tical deployment considerations, and proven performance across related NLP tasks. Our
comparative study employs four distinct LLMs: Llama-3-8B, Phi-3-Mini-4k, Hermes-2-
Mistral-7B, and WizardLM-13B. To ensure a comprehensive evaluation while maintaining
practical relevance, the selection was guided by several key criteria.

Architectural Diversity: The selected models showcase a range of modern trans-
former architectures. Llama 3 and WizardLM are based on the Llama architecture, known
for its efficiency and strong performance. In contrast, Hermes-2 is built upon the Mistral
architecture, which notably employs Grouped-Query Attention (GQA) to accelerate infer-
ence speed. Phi-3 represents a distinct architectural design from Microsoft, optimized to
balance performance and computational cost. This diversity allows for an examination of
how different architectural choices impact downstream task performance and efficiency.

Parameter Scale Coverage: Our selection spans a practical range of model sizes,
crucial for understanding the trade-offs between performance and resource requirements.
At the smaller end, we include Phi-3-Mini-4k with approximately 3.8 billion parameters.
The 7 to 8 billion parameter range is represented by Hermes-2-Mistral-7B and Llama-3-8B,
reflecting a popular balance for many applications. At the higher end, WizardLM-13B,
with its 13 billion parameters, allows us to investigate the benefits of a larger model size on
more complex reasoning and generation tasks.

Edge-Device Compatibility: A key motivation for this study is the increasing need
for capable models that can operate in resource-constrained environments. Models like
Phi-3-Mini-4k and Llama-3-8B are specifically designed with a smaller memory and com-
putational footprint, making them strong candidates for deployment on edge devices such
as mobile phones and laptops. The inclusion of the 7B models also allows for an evaluation
of the upper limits of what is currently feasible on high-end edge hardware.

Training Specializations: The chosen models exhibit varied training and fine-tuning
methodologies, which influence their capabilities. Llama-3-8B is a base model pre-trained
on a massive and diverse dataset. In contrast, Hermes-2-Mistral-7B has been fine-tuned on
a large, curated dataset of open-source conversational data, enhancing its performance in
dialogue and instruction-following. WizardLM-13B employs an innovative "Evol-Instruct"
method, where instruction data is automatically generated and progressively complexified
to improve the model’s ability to follow intricate commands. Phi-3-Mini-4k was trained on
a heavily filtered, "textbook-quality" dataset, aiming to achieve high performance with a
smaller model size.

Context Length Variation: The ability to process long sequences of text is a critical
differentiator for modern LLMs. Our selection includes models with different context
window sizes to assess this capability. Phi-3-Mini-4k has a default 4096-token context
length. Both Llama-3-8B and Hermes-2-Mistral-7B (based on the original Mistral-7B)
feature a standard 8192-token context window. While WizardLM-13B was initially based
on a model with a shorter context, its more recent versions have been adapted for longer
contexts, providing another point of comparison. This variation is essential for evaluating
performance on tasks requiring the assimilation of extensive information.

LLM Quantization: All large language models used in this study were quantized
using the Q4_0 format from the GGUF framework. This decision was based on a pragmatic
trade-off between maintaining high model fidelity and ensuring computational feasibility.
The Q4_0 quantization level reduces the model’s memory footprint by approximately 75%
compared to its native FP16 precision, enabling comprehensive experimentation across
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multiple models and datasets on consumer-grade and standard research GPUs (e.g., with
16-24 GB of VRAM). This strategy is widely adopted, as it typically preserves the vast
majority of a model’s performance on downstream tasks while making the experimental
setup more accessible and reproducible for the broader research community [22]. More
aggressive quantization schemes were avoided due to the higher risk of performance
degradation on a nuanced task such as hate speech classification.

3.3. Experimental Design

To evaluate the performance of LLMs in hate speech detection, we designed experi-
ments for both binary and multi-class classification tasks. For the binary classification task,
the LLMs were prompted as follows:

“Write 1 if the text is hate speech and 0 if it is not. Do not include any comments; your
response must be either 0 or 1. Only provide the numeric value. The text is:”

For the multi-class classification task, the LLMs were provided with a more detailed
prompt to classify the text into specific categories of hate speech.
The prompt for the Vidgen dataset [16] was as follows:

“Please respond with only a single numeric value based on the following criteria:
0 if the text is not hate speech,

1 if it is hate speech targeting an affiliation,

2 if it is hate speech targeting a person,

3 if it is hate speech targeting an identity,

Only provide the numeric value.

The text is:”

The prompt for the Kennedy dataset [17] was as follows:

“Please respond with only a single numeric value based on the following criteria:
0 if the text is not hate speech,

1 if it is hate speech targeting race,

2 if it is hate speech targeting religion,

3 if it is hate speech targeting origin,

4 if it is hate speech targeting gender,

5 if it is hate speech targeting sexuality,

6 if it is hate speech targeting age,

7 if it is hate speech targeting disability. Only provide the numeric value.

The text is:”

The classification tasks were conducted by instructing various LLMs to predict the
labels of entries in multiple datasets. The experimental process is detailed in Algorithm 1.
A critical step in this pipeline is the parsing and validation of the models” responses.
To ensure a robust evaluation, we implemented a strict two-stage process. First, to prevent
the models from generating extraneous text beyond the desired label, the max_new_tokens
parameter was set to 1 during inference. Second, a validation script analyzed the single-
token response, 7;;, to confirm it was a digit corresponding to a valid class label. If the
output was a valid digit, it was recorded as the predicted label, p;;. In cases where the
output was non-numeric or otherwise invalid, the prediction was conservatively counted
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as an incorrect classification. This final, validated prediction was then compared against
the ground-truth label to compute the performance metrics.

Algorithm 1: Hate speech detection methodology
Input: Datasets D = D1, D;,..., Dy, LLMs L =14,Ly,...,Ly
Output: Accuracy results for each LLM on each dataset
for dataset D; € D do
for text instance t € D; do
for LLML; € Ldo
| Preprocess text if necessary
end
Create prompt for LLM L;
Send prompt to LLM L; and obtain response 7;;
Parse and validate r;; to get predicted label p;;
end
end
Calculate overall performance for LLM L; on dataset D;

The algorithm systematically processed each sentence in the datasets, constructed the
appropriate prompt for the given LLM, and recorded the model’s response. This response
was then used to compute the accuracy of each model’s predictions. The dataset labels
served as the ground truth.

4. Classification Results and Analysis
4.1. Binary Classification

Table 4 presents a comparison of the classification performance of four models—Phi,
Meta, WizardLM, and Hermes—using standard metrics: Cohen’s Kappa, accuracy, F1 score
(micro, macro, and weighted), recall, and precision. The results reveal varying levels of
effectiveness across datasets, highlighting which models consistently outperformed others
and which models struggled to deliver reliable classifications. This comparison provides
critical insights into the models’ strengths and weaknesses.

Table 4. Performance metrics of large language models on the binary classification task.

Dataset Model Kappa Acc. Micro F1 Macro F1 Witd. F1 Recall Prec.
Phi 0.6622 0.8311 0.8311 0.8301 0.8301 0.8311 0.8395

Davison Meta 0.7385 0.8692 0.8692 0.8688 0.8688 0.8692 0.8747
aviso WizardLM ~0.0518 0.4741 0.4741 0.4741 0.4741 0.4741 0.4741
Hermes 0.7790 0.8895 0.8895 0.8895 0.8895 0.8895 0.8895

Phi 0.5163 0.7582 0.7582 0.7487 0.7487 0.7582 0.8039

Salmenin Meta 0.6725 0.8363 0.8363 0.8362 0.8362 0.8363 0.8364
WizardLM 0.0221 05111 0.5111 0.4876 0.4876 0.5111 0.5136

Hermes 0.5431 0.7716 0.7716 0.7634 0.7634 0.7716 0.8148

Phi 0.1617 0.5809 0.5809 0.5159 0.5159 0.5809 0.6746

Survawanicn | Met 0.2904 0.6452 0.6452 0.6324 0.6324 0.6452 0.6687
y WizardLM 0.2178 0.6089 0.6089 0.6088 0.6088 0.6089 0.6091
Hermes 0.2112 0.6056 0.6056 0.5688 0.5688 0.6056 0.6603

Phi 0.3591 0.6795 0.6795 0.6588 0.6588 0.6795 0.7373

Cibert Meta 0.5630 0.7815 0.7815 0.7812 0.7812 0.7815 0.7829
WizardLM ~0.0056 0.4972 0.4972 0.4967 0.4967 0.4972 0.4972

Hermes 0.4941 0.7470 0.7470 0.7419 0.7419 0.7470 0.7684
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Table 4. Cont.

Dataset Model Kappa Acc. Micro F1 Macro F1 Witd. F1 Recall Prec.
Phi 0.0873 0.5436 0.5436 0.4677 0.4677 0.5436 0.6016

Waseem Meta 0.3695 0.6847 0.6847 0.6696 0.6696 0.6847 0.7261
WizardLM —0.0650 0.4675 0.4675 0.4654 0.4654 0.4675 0.4670
Hermes 0.1749 0.5875 0.5875 0.5240 0.5240 0.5875 0.6872
Phi 0.4302 0.7151 0.7151 0.7064 0.7064 0.7151 0.7438
Qian Meta 0.5967 0.7983 0.7983 0.7982 0.7982 0.7983 0.7992
WizardLM 0.0503 0.5251 0.5251 0.5163 0.5163 0.5251 0.5271
Hermes 0.4911 0.7455 0.7455 0.7396 0.7396 0.7455 0.7702
Phi 0.2448 0.6224 0.6224 0.5880 0.5880 0.6224 0.6838
Videen Meta 0.4283 0.7142 0.7142 0.7093 0.7093 0.7142 0.7294
8¢ WizardLM 0.0259 0.5130 0.5130 0.5025 0.5025 0.5130 0.5141
Hermes 0.2800 0.6400 0.6400 0.6067 0.6067 0.6400 0.7118

Note: Acc. = accuracy; Prec. = precision; Wtd. F1 = weighted F1. Bold values indicate the best performance on
each dataset.

Table 5 summarizes the average performance of the LLMs across the datasets used
in this study. Figure 1 further illustrates the distribution of these metrics, highlighting the
variability and comparative performance of each model across the different datasets.

Table 5. Average model performance across all datasets.

Metric Phi Meta WizardLM Hermes
Kappa 0.35165 0.52269 0.02769 0.42477
Accuracy 0.67583 0.76134 0.51385 0.71239
Micro F1 0.67583 0.76134 0.51385 0.71239
Macro F1 0.64508 0.75654 0.50734 0.69057
Weighted F1 0.64508 0.75654 0.50734 0.69057
Recall 0.67583 0.76134 0.51385 0.71239
Precision 0.72635 0.77391 0.51459 0.75746

Performance of Each Model Across All Datasets

0.9
0.8
90.7
]
o
(2]
0.6 I Accuracy
I F1_micro
I F1_macro
Il F1_weighted
0.5 Il Recall
I Precision
Phi Meta Wizardim Hermes

model

Figure 1. Performance of each model across all datasets, highlighting both the mean (represented by
a white square) and median performance.

The results indicate that the Meta model [18] outperformed the other models across
most of the tested datasets and evaluation metrics. It achieved the highest average accuracy
(0.76134), micro F1 (0.76134), and macro F1 (0.75654), indicating that it is not only reliable
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in correctly classifying the data but also balanced in its ability to handle both majority
and minority classes effectively. Furthermore, its high precision (0.77391) suggests that it
made fewer false-positive errors compared to the other models. This performance might be
attributed to the model’s architecture or training strategies that are particularly well suited
for binary classification tasks across diverse datasets. The confusion matrices for the Meta
model are presented in Figure 2; 0 represents “not-hate” and 1 represents “hate”. It appears
the model confused “not-hate” with “hate” in five out of seven datasets.

Confusion Matrix for Meta on Davison Confusion Matrix for Meta on Salmenin Confusion Matrix for Meta on Suryawanish
25
1200
225
° 1157 273 1000 ° 51 200
175
— 800 — —
T ] T
] ] ]
ket ko S 150
< < <

- 600

- 400 -

-200

1 0 1 0
Predicted Predicted Predicted

Confusion Matrix for Meta on Gibert Confusion Matrix for Meta on Waseem Confusion Matrix for Meta on Qian

2250
1000 2000
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800 1500
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Figure 2. Confusion matrices of the Meta model.

The Hermes model [20] also performed competitively, particularly in terms of recall
(0.71239) and precision (0.75746). The model’s recall indicates that it has a strong ability
to correctly identify positive instances, which is critical in applications where missing
a positive case has a high cost. However, its slightly lower Kappa (0.42477) compared
to Meta suggests tha