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Abstract 

 There are vast inter-individual differences in sleep quality in the general 

population – whilst some individuals sleep well with little or no sleep disturbance, 

others experience frequent sleep disturbances, problems which often manifest into 

chronic sleep disorders such as insomnia. The aim of this thesis is to explore factors 

accounting for these observed differences in sleep quality between individuals. Using 

data from a large-scale twin study this thesis uses behavioural genetic techniques to 

investigate genetic and environmental influences on sleep quality in a sample of 1,556 

twins and siblings aged 18-27 years. The first four studies use quantitative genetic 

techniques to investigate 1) associations between components of sleep quality and the 

overlap in the genetic and environmental influences accounting for them; 2) specific 

non-shared environmental influences on global sleep quality; 3) the presence of gene-

environment interplay between sleep quality and dependent negative life events; and 4) 

the association between sleep quality and diurnal preference, and the overlap in their 

aetiological influences. Most importantly, there was substantial genetic overlap between 

individual components of sleep quality (rA mostly ≥.50); sleep quality and diurnal 

preference (rD = .52[95% CI=.37-.70]); and sleep quality and dependent negative life events 

(rD = .63[.45-.83]) – the latter finding providing evidence of gene-environment 

correlation. In general, non-shared environmental overlap was small (rE mostly ≤.40). 

The final study used a candidate gene approach to investigate associations between 

sleep quality and diurnal preference with 5HTTLPR, PER3, and CLOCK 3111 – 

polymorphisms hypothesized to be implicated in sleep and/or the circadian system. An 

association was found between the ‘long’ allele of 5HTTLPR and poor sleep quality (β 

= -.34, p<.01). This thesis utilises the twin method in novel ways in the context of sleep 

research and advances knowledge of the genetic and environmental underpinnings of 

the variation in sleep quality in healthy young adults. 
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Chapter 1: Background 

1.1  Overview  

 This chapter provides a selective review of the current literature on the 

epidemiology and aetiology of sleep quality in the general population and extrapolates 

to clinical populations where appropriate. There are 7 sections of this introductory 

chapter covering a range of topics directly related to the research of this thesis. First, 

epidemiological data are presented along with a discussion of the costs and 

consequences of poor sleep in the general population. Second, associations between 

poor sleep and psychiatric and physical conditions are outlined, and a description of the 

inclusion of sleep as a symptom of numerous disorders outlined in the Diagnostic and 

Statistical Manual of Mental Disorders (Fourth Edition) (DSM-IV: American 

Psychiatric Association, 1994) is provided. Third, evidence for demographic differences 

in sleep quality relating to age and sex is presented. Fourth, objective and subjective 

methods for assessing sleep are described, followed by a discussion of the merits and 

limitations of these methods. Fifth, a review of research investigating aetiological 

influences on sleep quality from both quantitative genetic and molecular genetic studies 

is provided, as well as an examination of specific environmental factors associated with 

sleep quality. Furthermore, the concept of gene-environment interplay is defined and 

discussed in relation to psychiatric disorders in general, with a discussion of the 

possible involvement of gene-environment interplay in sleep. Sixth, associations 

between sleep quality and other aspects of normal sleep are described. Finally, areas in 

which there is a necessity for further research on the aetiological influences on sleep 

quality is described, followed by an outline of the rationale and research questions of 

this thesis. 
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1.2   Introduction 

 Epidemiological data have consistently shown that sleep disturbances are 

common in the general population (Ohayon, 2002). Indeed, there are numerous sleep 

disorders affecting many distinct aspects of sleep. The DSM-IV (American Psychiatric 

Association, 1994) describes 14 primary sleep disorders, categorised into one of two 

categories: parasomnias – which are characterised by atypical behaviours which occur 

during the sleep period, for example sleepwalking; and dyssomnias – which are 

characterised by abnormalities in the timing, duration or quality of sleep, including 

problems such as insomnia (and its subtypes) and circadian rhythm sleep disorders. An 

alternative classification system, the International Classification of Sleep Disorders 

(ICSD-2: American Academy of Sleep Medicine, 2005), provides an even more 

comprehensive list of sleep disorders present in the general population.  

In addition to clinically diagnosed sleep disorders, there is wide variation in 

normal sleep characteristics in the population. Whilst some individuals sleep soundly 

with little or no disturbance from sleep, others may experience poor sleep quality and 

have frequent disturbances. Poor sleep quality (and at the extreme, problems such as 

insomnia) is typically characterised by difficulty initiating or maintaining sleep, early 

morning awakenings, feeling that the sleep period is non-restorative or unrefreshing, 

and is associated with significant impairments in daytime functioning (Buysse, Ancoli-

Israel, Edinger, Lichstein, & Morin, 2006; Ohayon, 2002; Roth, 2007). Numerous 

studies assessing sleep disturbances across the USA, Canada, and Western Europe 

including the UK have repeatedly reported that approximately one third of the general 

population frequently experience at least some insomnia symptoms (for example, see 

Coren, 1994; Karacan, et al., 1976; Leger, Guilleminault, Dreyfus, Delahaye, & 

Paillard, 2000; Morin, LeBlanc, Daley, Gregoire, & Merette, 2006; Morphy, Dunn, 

Lewis, Boardman, & Croft, 2007; Ohayon, Caulet, Priest, & Guilleminault, 1997; 
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Ohayon & Reynolds, 2009; Ohayon, Roberts, Zulley, Smirne, & Priest, 2000; Weyerer 

& Dilling, 1991), and that around 6-10% meet diagnostic criteria for insomnia 

according to the DSM-IV (Ford & Kamerow, 1989; Leger, et al., 2000; Morin, et al., 

2006; Ohayon, Caulet, & Guilleminault, 1997; Ohayon & Reynolds, 2009). Indeed, 

insomnia is considered to be one of the most common health problems in the general 

population (Hublin & Partinen, 2002).  

Given that sleep disturbances are so prevalent in the general population, it is not 

surprising that poor sleep poses a significant public health problem, in terms of financial 

costs and increased use of health care services (Espie, 2002; Leger & Bayon, 2010). A 

1995 survey in the United States estimated that the direct cost of insomnia totalled 

approximately $14 billion per year (Walsh & Engelhardt, 1999). Other studies have also 

indicated the direct costs of sleep disorders worldwide to be substantial (Daley, Morin, 

LeBlanc, Gregoire, & Savard, 2009). These costs are largely due to more frequent 

consultations with healthcare providers, medical examinations and use of medications in 

individuals experiencing sleep disturbances (Daley, Morin, LeBlanc, Gregoire, & 

Savard, 2009; Leger, Guilleminault, Bader, Levy, & Paillard, 2002). In addition to the 

substantial direct costs involved in treating sleep disturbances, poor sleep is also 

associated with significant indirect costs, such as a greater risk of accidents (Daley, 

Morin, LeBlanc, Gregoire, Savard, et al., 2009) including motor vehicle accidents 

(Ohayon & Smirne, 2002; Pizza, et al., 2010), and impaired daytime functioning 

including reduced concentration, impaired work performance and productivity, and 

work absenteeism (Daley, Morin, LeBlanc, Gregoire, & Savard, 2009; Godet-Cayre, et 

al., 2006; Leger, et al., 2002; Linton & Bryngelsson, 2000; Rosekind, et al., 2010).  
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1.3  Comorbidity  

 Poor sleep quality is known to be associated with many behavioural, physical 

and emotional phenotypes. For example, sleep disturbances are more prevalent in 

individuals with psychiatric or chronic physical disorders than in the general population 

(Ancoli-Israel, 2006). Large scale community samples have indicated that sleep 

disturbances are most commonly comorbid with psychiatric disorders such as anxiety 

(including generalised anxiety disorder, phobias, obsessive-compulsive disorder and 

panic disorder), and depression (Ford & Kamerow, 1989; Morin & Ware, 1996; 

Weyerer & Dilling, 1991). In addition sleep disturbances have been found to be 

comorbid with a range of other psychiatric and psychological disorders such as alcohol 

and drug abuse (Ford & Kamerow, 1989), personality and psychotic disorders (Nowell, 

et al., 1997), schizophrenia, and somatisation disorder (Weissman, Greenwald, Nino-

Murcia, & Dement, 1997). As well as being comorbid with other disorders, several 

longitudinal studies have suggested that sleep disturbances may be a risk factor for the 

development of chronic psychiatric disorders, such as depression and anxiety (Breslau, 

Roth, Rosenthal, & Andreski, 1996; Ford & Kamerow, 1989; Gregory, Caspi, et al., 

2005; Gregory, Rijsdijk, Lau, Dahl, & Eley, 2009; Johnson, Roth, & Breslau, 2006; 

Livingston, Blizard, & Mann, 1993; Neckelmann, Mykletun, & Dahl, 2007), panic 

disorder (Weissman, et al., 1997) and alcohol and drug use in adults (Wong, Brower, 

Fitzgerald, & Zucker, 2004; Wong, Brower, Nigg, & Zucker, 2010), as well as 

aggression and attention problems in children (Gregory & O'Connor, 2002). In a US 

study which assessed the presence of sleep and psychiatric complaints at two time 

points, individuals with insomnia at baseline were 40 times more likely to develop a 

new major depression and 6 times more likely to develop an anxiety disorder at follow-

up compared to those without insomnia (Ford & Kamerow, 1989). In a study in the UK, 

the presence of insomnia at baseline was associated with approximately 3 times greater 
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risk of developing depression 12 months later and twice the risk of developing anxiety 

disorder (Morphy, et al., 2007).  

 However, understanding of the causal mechanisms between sleep and 

psychopathology is complicated by the fact that associations are likely to be 

bidirectional (Franzen & Buysse, 2008; Kim, et al., 2009). For example, substantial 

evidence suggests that depressive symptoms are an important risk factor for the 

development and persistence of sleep problems (Patten, Choi, Gillin, & Pierce, 2000; 

Quan, et al., 2005). Another factor complicating the understanding of the causal 

mechanism between sleep and psychopathology is that sleep disturbances are often 

symptoms of, rather than comorbid with, other difficulties. Indeed, the DSM-IV 

describes no less than 19 psychological disorders where difficulties with sleep are listed 

as a symptom or where problems with sleep are a consequence of another underlying 

condition (American Psychiatric Association, 1994), and the ICSD-2 describes over 30 

disorders where insomnia symptoms are also present (American Academy of Sleep 

Medicine, 2005). The question of whether sleep disturbances, in particular insomnia 

symptoms, are considered to warrant a clinical diagnosis in their own right, or whether 

they are simply symptoms of other disorders, has received a great deal of attention in 

the literature (for example, see Harvey, 2001).  

 As well as psychiatric disorders, poor sleep is associated with physical health, 

well-being and mortality. For example, sleep disturbances are associated with physical 

conditions such as hypertension, gastro-esophageal reflux, heart disease, 

hypercholesterolemia, chronic pain and obesity amongst others (Algul, et al., 2009; 

Ohayon, 2009b; Vgontzas, et al., 1998) (although it should be noted that there is 

controversy within the field as to associations between sleep and obesity, see Horne, 

2008); and sleep disturbances are often common symptoms of neurological diseases 

such as Alzheimer’s, Parkinson’s and Huntington’s (Harvey, 2001). In terms of well-
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being, sleep satisfaction is associated with greater well-being (Jean-Louis, Kripke, & 

Ancoli-Israel, 2000), and good sleep quality is associated with life satisfaction (Pilcher, 

Ginter, & Sadowsky, 1997), which may be a presage to good health-related quality of 

life in late adulthood (Driscoll, et al., 2008). Furthermore, poor quantity as well as 

quality of sleep has been shown to have deleterious effects on health. For example, 

short sleep duration is associated with coronary heart disease (Chandola, Ferrie, Perski, 

Akbaraly, & Marmot, 2010), self perceptions of poor general health (Steptoe, Peacey, & 

Wardle, 2006), and two recent meta-analyses have concluded that both long and short 

sleep duration are significant risk factors for type 2 diabetes (Cappuccio, D'Elia, 

Strazzullo, & Miller, 2010a) and all-cause mortality (Cappuccio, D'Elia, Strazzullo, & 

Miller, 2010b).  

 These findings, together with data outlining the economic cost of sleep 

disturbances, highlight the need for a more comprehensive understanding of the causes 

of variation in sleep disturbance observed in the general population. Investigation of the 

genetic and environmental underpinnings of sleep disturbance may have implications 

for the development of treatments or identification of risk factors that may lead to its 

occurrence. 

 

1.4 Demographics 

1.4.1 Age 

 Previous research has consistently demonstrated that sleep-wake patterns 

become more fragmented with age (Bliwise, 1993; Carskadon, Brown, & Dement, 

1982; Miles & Dement, 1980; Park, Matsumoto, Seo, Kang, & Nagashima, 2002). 

Specifically, objective data from laboratory studies have identified changes in sleep 

architecture that occur in older as compared to younger adults, such as lower percentage 
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of slow wave sleep (SWS – stages 3 and 4 of non-REM sleep) and rapid eye movement 

sleep (REM), and a higher percentage of stage 1 and 2 sleep (Buysse, et al., 1991) (for 

more information on the stages of sleep see section 1.5.1). This pattern has also 

emerged when assessing age linearly across the life-course (between ages 20-59 years) 

(Carrier, Monk, Buysse, & Kupfer, 1997) - findings which have more recently been 

confirmed by a meta-analysis of data from 65 studies from 1960-2003 (Ohayon, 

Carskadon, Guilleminault, & Vitiello, 2004). Subjective reports also indicate that, 

compared to younger adults, older adults typically experience poorer sleep quality 

(Buysse, et al., 1991; Hoch, et al., 1997), less time asleep, decreased sleep efficiency, 

more awakenings from sleep (Carrier, et al., 1997), difficulty sleeping (Karacan, et al., 

1976) and an increased incidence of insomnia (Ford & Kamerow, 1989). Results from a 

French community sample showed a linear association between increasing age and 

higher percentage of individuals reporting mild as well as moderate/severe insomnia 

symptoms in several age cohorts ranging from adolescence to late adulthood (Weyerer 

& Dilling, 1991). This finding has also been confirmed by a similar study in the UK 

(Ohayon, 1997), a study of older adults in Hong Kong (Chiu, et al., 1999), and in a 

Turkish sample age was linearly associated with poor sleep quality (Atalay, 2011). In 

addition research suggests that the association between sleep duration and mortality is 

stronger in older as compared to younger adults (Kripke, Simons, Garfinkiel, & 

Hammond, 1979).  

  Contrary to this, other studies suggest that the association between sleep 

disturbance and age is less clear-cut. For example epidemiological data from Leger and 

colleagues (2000) showed that insomnia symptoms increased with age in those aged 

between 25-34 years, but that this association disappeared after 35 years of age. 

Furthermore, in children, it has been found that sleep problems decreased from 

childhood to adolescence (Gregory & O'Connor, 2002). Other reports have failed to find 
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significant associations with age and subjective sleep quality (Carrier, et al., 1997; 

Middelkoop, Smilde-van den Doel, Neven, Kamphuisen, & Springer, 1996), and 

insomnia symptoms (Liljenberg, Almqvist, Hetta, Roos, & Agren, 1988; Sutton, 

Moldofsky, & Badley, 2001). 

 

1.4.2 Sex 

 It is a commonly held view that sleep complaints are more prevalent in females 

than males, and indeed numerous studies report evidence to support this claim (for 

example, see Ford & Kamerow, 1989; Groeger, Zilstra, & Dijk, 2004; Karacan, et al., 

1976; Leger, et al., 2000; Ohayon, 2002; Weyerer & Dilling, 1991). This finding has 

been confirmed in a meta-analysis of 31 studies of insomnia or insomnia type 

symptoms, demonstrating a risk ratio of 1.41 of females experiencing greater symptoms 

compared to males (Zhang & Wing, 2006). Likewise, in a review of 33 studies 

assessing subjective insomnia (including problems such as difficulty initiating sleep, 

difficulty maintaining sleep, and early morning awakening), Lichstein and colleagues 

(2004) noted that 73% of studies reported a greater prevalence of insomnia complaints 

in women (Lichstein, Durrence, Riedel, Taylor, & Bush, 2004). Despite strong evidence 

for a sex difference in insomnia symptoms, studies that have assessed subjectively 

defined sleep quality are somewhat inconsistent. Some studies have found evidence in 

accordance with this finding (Lindberg, et al., 1997; Middelkoop, et al., 1996; van den 

Berg, et al., 2009; Vitiello, Larsen, & Moe, 2004), whilst others have found no evidence 

for significant sex differences in subjectively defined sleep quality (Atalay, 2011; 

Buysse, Hall, et al., 2008; Buysse, Reynolds, Monk, Berman, & Kupfer, 1989; Buysse, 

et al., 1991; Carpenter & Andrykowski, 1998; Sakakibara, et al., 1998). Such 

inconsistency in research investigating sex differences in sleep is also reflected in 

studies using objective measures. For example, one study found that women showed 
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better sleep than men as indicated by several indices of polysomnographically defined 

sleep (such as shorter sleep onset latency, higher sleep efficiency, longer sleep duration) 

(Goel, Kim, & Lao, 2005) (see section 1.5.1 for more information on 

polysomnography). Contrastingly, Buysse and colleagues (2008) demonstrated that 

healthy good sleeping women showed higher power in the theta band compared to men, 

and that women with primary insomnia exhibited higher delta, theta, sigma, beta and 

gamma power compared to men with primary insomnia. It is possible that such 

increased high and low frequency EEG activity reflects a state of hyperarousal, and 

consequently, disturbed sleep. However, Voderholzer and colleagues (2003) found no 

such differences between males and females in polysomnographically defined sleep 

measures (including sleep duration, sleep efficiency, arousal index, percentage of time 

spent awake, and percentage of time in slow wave sleep and REM sleep). Using 

actigraphy to assess sleep (see section 1.5.1 for more information on actigraphy), van 

den Berg and colleagues (2009) demonstrated that women experienced longer sleep 

duration and less fragmented sleep than men, despite subjective reports from the same 

participants demonstrating poorer sleep quality in women. These inconsistencies 

suggest that the differences in sleep of men and women are unclear and that other study 

specific characteristics may be accounting for the observed differences as outlined 

above (for example, age).  

 

 

1.5 Measuring Sleep 

1.5.1 Polysomnography and actigraphy 

 A common method to objectively assess sleep is polysomnography (PSG). PSG 

refers to the collection of physiological variables during sleep. Typically PSG measures 

the neural electroencephalograph (EEG) to assess brain activity, electrooculography 
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(EOG) to measure eye movements, electromyography (EMG) to measure muscle 

activity, and electrocardiography (ECG) to assess heart rhythms. Using PSG, 

Rechtschaffen and Kales (1968) identified and documented 5 distinct stages of sleep 

that exhibit highly specific EEG characteristics. Stage 1 is the beginning of sleep and is 

characterised by high amplitude theta waves (~4-7 Hz) which are slower in frequency 

than alpha waves (~8-13 Hz) (typically observed during relaxed wakefulness). Stage 1 

usually only lasts around 1-7 minutes before the transition to stage 2. Stage 2 is 

characterised by sleep spindles – a sudden increase in wave frequency (~12-14 Hz); and 

k-complexes – a sudden increase in wave amplitude. These phenomena occur 

periodically during stage 2 along with a general decrease in muscle tone. Stages 3 and 4 

are characterised by delta waves (~0-4 Hz) and are often termed ‘deep sleep’ or ‘slow-

wave sleep’ (SWS) (as opposed to the ‘light sleep’ of stages 1 and 2). Stages 3 and 4 are 

differentiated by the percentage of delta waves present – if less than 50% of the waves 

are delta waves, sleep is considered to be stage 3; whereas if more than 50% of the 

waves are delta waves, sleep is considered to be stage 4 (Rechtschaffen & Kales, 1968). 

However, more recently refined methods for scoring sleep combine stages 3 and 4, and 

consider stage 3 to be characterised simply by greater than 20% delta wave activity 

(AASM: American Academy of Sleep Medicine, 2007). The first 4 stages (or first 3 

stages using AASM criteria) can be described as non-REM (NREM) sleep. The final 

stage of sleep, rapid eye movement (REM) sleep, however, is entirely distinct and is 

characterised by EEG patterns analogous to those of the waking state, including alpha 

and beta waves, and is accompanied by rapid darting eye movements and a dramatic 

loss of muscle tone. During the night, an individual will typically move down through 

the sleep stages periodically, with one cycle lasting ~90 minutes. The cycle is repeated 

throughout the night with the exception that stage 1 is replaced with REM, with each 

REM period becoming successively longer throughout the night.  



39 
 

This method of measuring sleep provides information about depth of sleep by 

assessing the transition through the 4 sleep stages (when scored using the AASM 

method; 5 stages when using the method proposed by Rechtschaffen & Kales, 1968), as 

well as information regarding sleep disturbances and movements. From these 

measurements sleep quality can be quantified by the observed fragmentation, 

consolidation, or duration of sleep stage episodes (Franken & Tafti, 2003). Although 

PSG is typically performed in a laboratory, the development of portable PSG devices 

has meant that these measurements can also be assessed in the home environment (see 

Broughton, Fleming, & Fleetham, 1996 for a review).  

Another objective method of measuring sleep is actigraphy. Actigraphy involves 

participants wearing a watch-like device, an actigraph, when they go to bed and 

throughout the day. This device monitors activity and movements in one minute epochs 

during the night to give an indication of sleep duration and arousals (see Sadeh, 2011, 

for a review of the role of actigraphy in sleep medicine). 

 

1.5.2 Sleep diaries and questionnaires 

 Although PSG is often regarded as the “gold standard” method to assess sleep, 

subjective reports of sleep quality are widely used in research, especially in large scale 

studies when objective measures may be too costly and time consuming to carry out. 

Sleep diaries are reliable at providing information regarding sleep-wake patterns over a 

24-hour period (Rogers, Caruso, & Aldrich, 1993), and require the participant to 

describe events preceding the sleep period as well as to describe the sleep period after 

awakening (Monk, et al., 1994). In addition to sleep diaries, questionnaire measures of 

sleep are also widely used in research. The advantage of questionnaires is that they are 

simple and quick to complete, and provide an accurate insight into many aspects of 

sleep over a given time period – making them the most feasible method of obtaining 
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data in very large studies. There are several questionnaire measures that are commonly 

used in sleep research and medicine. For example, daytime sleepiness is commonly 

assessed by the Epworth Sleepiness Scale (ESS: Johns, 1991) and the Sleep-Wake 

Activity Inventory (Rosenthal, Roehrs, & Roth, 1993); and insomnia symptoms are 

often assessed by the Insomnia Severity Index (Bastien, Vallieres, & Morin, 2001; 

Morin, 1993), and have recently begun to be assessed by the Insomnia Symptoms 

Questionnaire (Okun, et al., 2009). An alternative method of assessing insomnia 

symptoms is to ask questions based on the DSM-IV diagnostic criteria for primary 

insomnia. In such instances, individuals are asked, for example, how frequently they (i) 

have difficulty initiating or maintaining sleep, (ii) experience non-restorative sleep, and 

(iii) suffer daytime consequences of poor sleep (see Ohayon, 2002 for a discussion of 

the assessment of insomnia symptoms). However, simply measuring the frequency of 

insomnia symptoms may not necessarily give an indication of the perceived subjective 

quality of one’s sleep. Ohayon and colleagues (1997) have shown that although around 

a third of the population experience some insomnia symptoms, not all of these 

individuals are dissatisfied with their sleep. Indeed, the proposed revisions to the DSM 

(scheduled for publication in 2013, American Psychiatric Association, 2010) have 

included as the primary symptom of ‘Insomnia Disorder’ dissatisfaction with sleep 

quantity or quality. This suggests that perhaps an alternative way to determine sleep 

problems is not to ask about insomnia symptoms such as sleep onset or maintenance 

problems per se, but to more directly assess indices of subjective satisfaction and 

quality of sleep. The most widely used self-report measure to assess subjective sleep 

quality to date is the Pittsburgh Sleep Quality Index (PSQI: Buysse, et al., 1989). The 

PSQI assesses overall sleep quality and disturbances in the past month and taps into 

seven distinct components of sleep quality: subjective sleep quality, sleep latency, sleep 

duration, habitual sleep efficiency, sleep disturbances, use of sleeping medication, and 
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daytime dysfunction. This measure has been used in numerous clinical and non-clinical 

settings, has excellent diagnostic sensitivity in distinguishing good from poor sleepers, 

and is considered one of the best measures for assessing indices of global sleep and 

insomnia symptoms (Buysse, et al., 2006). For further discussion of the psychometric 

properties of the PSQI, see Chapter 3. 

 In addition to assessing specific sleep disturbances and indices of sleep quality, 

there are a number of questionnaires which assess indices of sleep timing and circadian 

rhythmicity. For example, the Sleep Timing Questionnaire (Monk, Buysse, et al., 2003) 

was specifically designed to capture information on sleep timing that would otherwise 

be collected using sleep diaries over a two week period. An alternative measure for 

assessing the timing of sleep is the Munich Chronotype Questionnaire (MCTQ: 

Roenneberg, Wirz-Justice, & Merrow, 2003), which considers the actual timing of sleep 

on work days and free days and number of hours of light exposure. Perhaps a more 

common questionnaire for assessing the preferred timing of sleep-wake schedules, 

however, is the Morningness-Eveningness Questionnaire (MEQ: Horne & Östberg, 

1976). The MEQ assesses individuals’ preference for daytime and nighttime activities 

and hours of peak performance to determine one’s diurnal preference – an indicator of 

circadian rhythmicity (diurnal preference will be discussed at length in Chapter 6). The 

MEQ has been found to correlate well with the MCTQ, particularly with the timing of 

sleep on free compared to work days (Zavada, Gordijn, Beersma, Daan, & Roenneberg, 

2005). 

 

1.5.3 Objective vs. subjective measures 

 The decision of which methods to use to assess sleep largely depends on the 

specific research project proposed. Polysomnographic data would be essential, for 

example, in studies investigating sleep architecture, structure and sleep stage transitions, 



42 
 

however the collection of such data is not always necessary (for example in studies 

assessing subjective sleep quality), and in large scale studies as in the present research 

inclusion of polysomnography is too costly and time-consuming. There are advantages 

and disadvantages to using objective and subjective measures to assess sleep. Objective 

measures such as PSG record an accurate, unbiased description of the entire sleep 

period, provide detailed information on neural activity, and have the ability to 

differentiate sleep disturbances and uncover masked sleep disorders. However, PSG is 

usually carried out in a sleep laboratory and is an invasive procedure in which 

participants are connected to many electrodes throughout the night. Although many 

experimental paradigms typically carry out an “adaptation night”, in which the 

participant is introduced to the laboratory and spends one night there prior to the 

experiment, sleep in the laboratory may not be an accurate description of one’s usual 

sleep-wake patterns in the home environment (Edinger, et al., 1997). Indeed evidence 

suggests that sleep quality and efficiency are significantly better in the home 

environment compared to the laboratory setting (Kingshott & Douglas, 2000). However, 

the use of portable home-based PSG devices has overcome this issue. Nonetheless, 

home-based PSG has a number of caveats, including the fact that the number of EEG 

channels used is restricted, the patient may have technical difficulties with the 

equipment, and the home conditions are difficult to control (Broughton, et al., 1996). 

The recent development of more ecologically valid laboratory settings, however, will 

greatly improve future sleep research assessing sleep in an almost perfect laboratory 

environment. 

With regards actigraphy, despite many advantages to using this method, 

including its validity and reliability and the non-invasive nature of the procedure, one 

disadvantage is that it has a low ability of detecting periods of motionless wakefulness 

which may occur in individuals experiencing difficulties with sleep onset, such as in 
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insomnia (Sadeh, 2011). This is because actigraphy is often limited to measuring 

movement only. In addition to these caveats, objective methods such as PSG or 

actigraphy provide no information as to the potential daytime consequences of a poor 

night’s sleep - a feature which is included in the diagnostic criteria for certain sleep 

disorders (e.g. insomnia, American Psychiatric Association, 1994). Furthermore, a 

paradoxical finding is that some individuals perceive their sleep as poor and experience 

daytime consequences consistent with the presence of a sleep disturbance even in the 

absence of objective laboratory based evidence of a problem (often termed ‘sleep-state 

misperception’) (Edinger & Krystal, 2003; Morin, 2000; Trinder, 1988). Therefore, 

PSG alone would not identify individuals with subjective sleep complaints. With this in 

mind it is not surprising that studies comparing laboratory based methods and self-

reports to assess sleep have consistently shown that subjective sleep complaints do not 

always correlate with polysomnographically defined problems (see Gregory, Cousins, et 

al., 2011 for an example of this phenomenon in adolescents). Generally, individuals 

with insomnia significantly overestimate their sleep onset latency and underestimate the 

quantity and quality of their sleep compared to objective data (Carskadon, et al., 1976; 

Edinger & Fins, 1995; Manconi, et al., 2010) – a pattern which has also been found in 

healthy adults (Baker, Maloney, & Driver, 1999). In contrast to this general finding, one 

study assessing subjective sleep quality by the PSQI found that subjectively defined 

sleep quality correlated well with objective sleep measures in young adults (aged 

between 20-30 years), but did not in older adults (aged 80+ years)  (Buysse, et al., 

1991). Whilst the possible inaccuracy of individuals’ self reports of sleep are a 

disadvantage of the use of subjective measures, these findings suggest that assessing an 

individual’s subjective experience or perception of sleep is an informative method of 

distinguishing good from poor sleepers. However, assessing sleep using multiple 
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measures, both subjective and objective, would be optimum although not always 

feasible.  

 

1.6 The Aetiology of Sleep-Wake Behaviour and Causes of Variation  

 in Sleep in the General Population 

 The regulation of sleep-wake behaviour, including the timing, duration and 

quality of sleep, is generally considered to be the product of two processes: a 

homeostatic and a circadian process (Borbely, 1982, 1998; Daan, Beersma, & Borbely, 

1984). In the homeostatic process sleep propensity, or ‘Process S’, rises during the day 

and decreases during sleep. Sleep propensity is dependent on sleep need, indexed by 

prior sleep and waking. The circadian process, however, maintains 24-hour daily 

rhythms by a self-sustained oscillator located in the suprachiasmatic nuclei of the 

hypothalamus (SCN) which ensures entrainment of biological rhythms to external time-

cues, thus influencing the timing of sleep, independent of the homeostatic process. 

These processes are considered to develop independently and it is likely that many 

genetic and environmental factors are involved (Gregory & Franken, 2009). The trait-

like stability of sleep within individuals and the vast variability of ‘normal’ sleep 

patterns between individuals in the general population further suggests that the variation 

in sleep phenotypes between individuals may be explained by underlying genetic and 

environmental factors.  

 There are several diverse methods to investigate the aetiology of a trait. Animal 

studies using mice or drosophila provide a way of determining a specific gene’s 

function. By inducing mutations in genes (mutagenesis), or breeding strains of ‘knock-

out’ mice in which a certain gene is entirely abolished, researchers can examine 

phenotypic variations that occur due to the genetic manipulation. As an example of 
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research using such methods, Wisor and colleagues (2003) demonstrated a role for the 

serotonin transporter (SERT) gene in REM sleep regulation by observing higher rates of 

REM in SERT knock-out mice compared to wild types. This type of research is a 

‘reverse genetic’ approach in that it assesses associations from genotype to phenotype. 

Although research of this kind gives a direct indication of the possible universal 

function of the genes manipulated, ethical considerations prevent such studies from 

being performed in humans, and so investigation of the role of genetics in sleep is 

accomplished by using natural experiments. Such experiments can be described as 

‘forward genetic’ approaches in that they test associations from phenotype to genotype 

and assess the possible role of genetic influences in explaining individual differences in 

behaviour (see Gregory & Franken, 2009, for a review of genetic approaches used in 

sleep research). In one such forward genetic design, Wu and colleagues (2008) 

examined sleep in drosophila in order to identify mutant genes for short sleep. Wu et al. 

observed that short sleeping flies tended to sleep in short bouts, suggesting that they 

experienced symptoms analogous to sleep maintenance insomnia, and that this 

phenotype mapped onto a novel allele of the dopamine transporter gene.  

 In humans, a useful method to investigate the aetiology of any given trait 

(phenotype) of interest is to use genetically sensitive designs. The occurrence of 

different types of twins (identical/monozygotic [MZ]; and non-identical/dizygotic [DZ]) 

provide the perfect natural experiment and twin studies are one such method for 

investigating the extent to which genetic and environmental influences are important for 

a phenotype or co-occurring phenotypes. Whilst twin studies do not identify specific 

genes associated with traits, knowledge of the possible contribution of genetic 

influences on a trait or co-occurring traits may guide molecular genetic research. 

Although it is beyond the scope of this chapter to discuss these techniques in more 

detail, a brief overview of these techniques and details of key studies from quantitative 
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and molecular genetic studies of sleep are outlined below. Further discussion of both 

quantitative and molecular genetic techniques is provided in Chapter 2. 

 

1.6.1 Quantitative genetics 

 The twin method relies on the genetic relatedness of monozygotic (MZ) twins 

who share 100% of their genetic make-up, and dizygotic (DZ) twins who share on 

average only half of their segregating genes (the same genetic relatedness as full 

siblings) to make assumptions about the aetiology of a trait. By comparing the similarity 

within pairs of MZ twins to the similarity within pairs of DZ twins and full siblings on a 

particular trait of interest (for example scores on a measure of sleep quality measured 

separately between the twins), we can estimate the relative contribution of additive 

genetic, non-additive genetic (dominance), shared environmental and non-shared 

environmental influences on traits using model fitting and regression based analyses 

(see Plomin, DeFries, McClearn, & McGuffin, 2008). Additive genetic influences can 

be described as the cumulative effect, or the ‘adding up’, of genes to influence 

behaviour. Non-additive genetic influences can be described as the interaction of genes 

at a locus. Shared environmental influences are those that are shared between twins 

within a family which act to make family members similar (such as socioeconomic 

status or living near a busy road). Non-shared environmental influences can be 

described as environmental influences unique to each twin/sibling within a family 

which account for their dissimilarity (such as one twin experiencing an accident or 

being involved with deviant peers). Greater similarity within pairs of MZ twins 

compared to DZ twins indicates that genetic influences may be important for a trait. 

Similar MZ/DZ correlations indicate the importance of the shared environment. MZ 

twin correlations less than one indicate a role for the non-shared environment (for 

further discussion of how these sources of variance are calculated, see Chapter 2).  
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 Twin studies have consistently demonstrated that genetic influences are 

important for a variety of sleep phenotypes. Using EEG to assess the sleep of twins, 

several lines of evidence have shown that sleep stages 2 and 4 and delta wave sleep 

have a strong genetic component, whilst REM sleep appears to be largely determined by 

non-genetic factors (Ambrosius, et al., 2008; Linkowski, Kerkhofs, Hauspie, & 

Mendlewicz, 1991; Linkowski, Kerkhofs, Hauspie, Susanne, & Mendlewicz, 1989). 

Furthermore, genetic factors have been implicated in the 24-hour cortisol profile – a 

strong indicator of circadian rhythmicity (Linkowski, et al., 1993). Data from subjective 

reports of sleep from twins have demonstrated that around 30-50% of the variance in 

subjective sleep quality is accounted for by genetic influence (Heath, Kendler, Eaves, & 

Martin, 1990; Partinen, Kaprio, Koskenvuo, Putoken, & Langinvainio, 1983). Similar 

heritability estimates have been found for subjectively defined sleep disturbances, sleep 

onset latency, sleep length, sleep time, daytime napping and sleepiness, parasomnias 

and insomnia symptoms in non-clinical adult populations (Carmelli, Bliwise, Swan, & 

Reed, 2001; Heath, Eaves, Kirk, & Martin, 1998; Heath, et al., 1990; Hublin, Kaprio, 

Partinen, & Koskenvuo, 2001; McCarren, Goldberg, Ramakrishnan, & Fabsitz, 1994; 

Partinen, et al., 1983; Watson, Goldberg, Arguelles, & Buchwald, 2006), and in school-

age children (Gregory, 2008; Gregory, Rijsdijk, & Eley, 2006); as well as indices of 

circadian rhythm phase such as diurnal preference (Hur, Bouchard, & Lykken, 1998; 

Koskenvuo, Hublin, Partinen, Heikkila, & Kaprio, 2007; Vink, Groot, Kerkhof, & 

Boomsma, 2001) (see Chapter 6 for a detailed discussion of diurnal preference). In 

these studies sleep was assessed by questionnaires in which questions about sleep 

usually referred to nights during the past weeks or months, demonstrating the 

heritability of somewhat stable sleep characteristics. However, one study which 

assessed several aspects of subjectively defined sleep by use of a one night sleep diary 

only, showed that there was no familial component to subjective sleep quality 
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(Boomsma, van Someren, Beem, de Geus, & Willemsen, 2008). It is possible that this 

discrepancy between subjective reports of sleep referring to the past weeks or months 

and those referring to the previous night only reflects the night-to-night variability of 

sleep. Indeed, it has been shown that individuals with insomnia often experience 

variable sleep patterns, where several nights of poor sleep may be followed by a night of 

relatively good sleep (Vallières, Ivers, Bastien, Beaulieu-Bonneau, & Morin, 2005; 

Vallières, Ivers, Beaulieu-Bonneau, & Morin, 2011). Thus, results referring to the 

previous night only may not capture the true picture of sleep quality due to such night-

to-night variability. 

 

1.6.2 Molecular genetics 

 Whilst twin studies allow us to determine the relative importance of genetic 

influences compared to non-genetic factors, molecular genetic research enables us to 

identify specific gene variants (polymorphisms) implicated in sleep. There are two main 

methods used in molecular genetics to identify genes associated with any given 

phenotype under study in humans: linkage and association. Typically, linkage refers to 

the process whereby a particular disease/trait is traced back through generations within 

large family pedigrees alongside a particular segment of DNA (deoxyribonucleic acid) 

which is more common in the presence of the disease/trait under study (Plomin, et al., 

2008). A more common linkage approach, however, uses affected sibling pairs rather 

than many generations of large families. The affected sib-pair linkage design is based on 

allele sharing between siblings, i.e. whether affected siblings share 0, 1 or 2 alleles from 

their parents. Using this information it is possible to calculate the probability that a 

marker is linked to a gene which influences a particular disorder or quantitative trait in 

several pairs of affected siblings (Plomin, et al., 2008). Whilst this technique is useful in 

identifying genes associated with monogenic traits (i.e. diseases/traits that are caused 
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entirely by the effects of one gene, for example Huntington disease), the majority of 

complex traits showing wide variation within the population are largely influenced by 

many genes each having a small effect – QTLs (quantitative trait loci) (Plomin, et al., 

2008). Linkage studies are significantly underpowered to detect modest gene effects, 

especially if the marker allele under study is relatively rare in the population and if 

several genes are necessary for the trait (Risch & Merikangas, 1996). Association 

studies, however, have greater power to detect even genes of small effect. Rather than 

focussing on the co-transmission of a particular marker allele and a disease/trait as in 

linkage, association studies compare the frequencies of gene variants in those with and 

without the disease/trait under study (cases and controls), or in the case of quantitative 

traits, high versus low scorers on a particular measure (Plomin, et al., 2008). The 

disadvantage of association studies, however, is that the gene or genes to be studied 

must be tentatively identified as possible candidates for association prior to 

investigation (Risch & Merikangas, 1996).  

In cases where there are no a priori assumptions as to which genes may be 

involved in a phenotype, an increasingly popular method for mapping genotype to 

phenotype involves genome wide association studies (GWAS). Using microarrays 

(small chips that can hold large amounts of DNA), GWAS can genotype the entire 

genome for hundreds of thousands of single nucleotide polymorphisms (SNPs) 

simultaneously (Plomin, et al., 2008). This method may uncover physiological systems 

involved in a phenotype that were previously unknown (Franken & Tafti, 2003). 

However, where candidate genes are known, genotyping single genes may be more 

appropriate and cost-effective. 

 The search for candidate genes influencing sleep has largely focussed on the role 

of serotonin (5-hydroxytryptamine, 5HT) in sleep quality and insomnia and the role of 

clock genes in relation to circadian phenotypes. Serotonin function is a fundamental part 
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of the body’s homeostatic system, driving sleep/wake behaviour (Jouvet, 1972), and 

influences a broad range of physiological functions related to appetite, aggression, 

cognition, endocrine regulation, mood, motor function, sexual behaviour, and pain 

sensitivity (Heninger, 1997; Lucki, 1998). Increased serotonin activity in the dorsal 

raphe nucleus of the brain stem is associated with wakefulness, and it is thought that the 

build up of sleep propensity during the day is partly attributed to these neurons (Adrien, 

1995). Furthermore, 5HT has been associated with sleep stage characteristics. 

Specifically, reducing 5HT2 receptor activity increases slow wave sleep (SWS) and 

slow wave activity (SWA) - implicating these receptors in SWS regulation (Landolt, et 

al., 1999). Additionally, administration of selective serotonin reuptake inhibitors 

(SSRIs) has been shown to increase stages 1 and 2 sleep, and decrease SWS and REM 

sleep, and is associated with poorer sleep quality assessed objectively by PSG 

(Oberndorfer, Saletu-Zyhlarz, & Saletu, 2000). Recently, attention has focussed on the 

transporter region of the 5HT gene – 5HTTLPR (serotonin transporter linked promoter 

region). A common 44 base pair (bp) deletion of 5HTTLPR, which constitutes a ‘short’ 

allele, has repeatedly been associated with anxiety and depression symptoms (for 

example, see Collier, et al., 1996; Lesch, et al., 1996). Although few studies to date 

have investigated the role of 5HTTLPR in sleep, those to date have found associations 

between the ‘short’ allele and primary insomnia (Deuschle, et al., 2010), and poor sleep 

quality in individuals experiencing chronic stress  (Brummett, Krystal, Ashley-Koch, et 

al., 2007). Since the 5HT transporter gene is important for controlling serotonin 

function, polymorphisms of this region may result in sleep disturbances by inhibiting 

the deactivation of serotonin neurons at sleep onset. However, further research is 

required to confirm the role of this polymorphism in sleep quality in the general 

population. The role of 5HTTLPR in relation to sleep will be discussed in greater detail 

in Chapter 7. 
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 In addition to investigating serotonin, molecular genetic research has focussed 

on a group of ‘CLOCK’ genes in relation to sleep and circadian phenotypes which 

includes CLOCK, BMAL1, three Period (PER) genes and two Chryptochrome (CRY) 

genes. These ‘CLOCK’ genes are involved in a feedback loop which controls the 

circadian system (Reppert & Weaver, 2001). The CLOCK and BMAL1 genes are 

positive transcriptional regulators which drive the expression of the negative elements 

of the loop, PER1, 2 and 3, as well as CRY 1 and 2 via their protein products, CLOCK 

and BMAL1 (Wulff, Porcheret, Cussans, & Foster, 2009). Polymorphisms of these 

genes have been associated with numerous sleep phenotypes and disorders. For 

example, variants of CLOCK have been found to be associated with sleep duration in 

two independent general population samples (Allebrandt, et al., 2010). Furthermore, a 

SNP in the 3’ untranslated region (UTR) of CLOCK at position 3111 consisting of a ‘C’ 

to ‘T’ substitution, has been identified whereby the ‘C’ allele is associated with shorter 

sleep duration and delayed sleep onset in bipolar depressed patients (Benedetti, et al., 

2007), reoccurrence of insomnia in depressed patients (Serretti, et al., 2003), and a 

preference for eveningness in the general population (Katzenberg, et al., 1998). The 

PER genes have also been associated with disorders of sleep timing. For example, SNPs 

in both PER1 and PER2 are associated with advanced sleep phase syndrome (ASPS) – a 

disorder characterised by an extreme shift in circadian rhythmicity such that sleep time 

is advanced and wake time occurs in the early hours of the morning (Carpen, von 

Schantz, Smits, Skene, & Archer, 2006; Toh, et al., 2001). Similarly, a length 

polymorphism in PER3 has been associated with delayed sleep phase syndrome (DSPS) 

whereby sleep timing is severely delayed, and extreme diurnal preference – i.e. extreme 

‘morningness’ or ‘eveningness’ (Archer, et al., 2003; Ebisawa, et al., 2001). Further 

discussion of the role of ‘CLOCK’ genes in relation to sleep quality and diurnal 

preference is reserved for Chapter 7.  
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1.6.3 Environmental influences 

 Whilst evidence clearly implicates genetic factors in sleep and sleep disorders, 

results from twin studies reveal that genetics alone cannot explain the entire inter-

individual variability observed in many phenotypes. In addition to estimating the 

importance of genetic factors, twin studies estimate the relative importance of shared 

and non-shared environmental factors on traits or co-occurring traits (see section 1.6.1 

for a definition, and Chapter 2 for more information on how these environmental 

influences are estimated in twin studies). With specific regard to sleep, twin studies in 

adults have estimated that the remaining source of variance in polysomnographically 

defined REM sleep and sleep length, and subjective measures of sleep disturbance, 

insomnia symptoms, daytime sleepiness and sleep quality is due to the non-shared 

environment with no influence of environmental influences shared between twins 

(Ambrosius, et al., 2008; Heath, et al., 1990; Hur, et al., 1998; Koskenvuo, et al., 2007; 

Linkowski, et al., 1991; McCarren, et al., 1994; Vink, et al., 2001; Watson, et al., 2006).  

 Although typically the twin method does not identify specific environmental 

influences affecting a phenotype under study (although it is possible to incorporate 

specific measured environmental effects into more complex models, for example see 

Gregory, Eley, O'Connor, Rijsdijk, & Plomin, 2005), identification of possible 

candidate non-shared environmental factors affecting sleep quality can be achieved by 

looking at research other than quantitative genetics. For example, lifestyle factors such 

as smoking, drinking alcohol and a lack of exercise have been associated with poor 

sleep quality and sleep disturbances (Arber, Bote, & Meadows, 2009; Chiu, et al., 1999; 

Chueh, Yang, Chen, & Chiou, 2009; Hu, Sekine, Gaina, & Kagamimori, 2007; King, 

Oman, Brassington, Bliwise, & Haskell, 1997; Naylor, et al., 2000; Wetter & Young, 

1994). One study found a dose-response relationship between prior smoking and 

increased risk for developing sleep problems in adolescents (Patten, et al., 2000). In 
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addition, the experience of stressful life events and socioeconomic status characteristics, 

including measures such as low household income, low educational attainment, living in 

rented housing and not being in paid employment, have consistently been associated 

with sleep disturbances (Arber, et al., 2009; Grandner, et al., 2010; Lavie, 2001; 

Ohayon, 2002; Sadeh, 1996; Vahtera, et al., 2007). Although these factors may be 

considered to be ‘environmental’ in origin, it is possible that they are, in part, influenced 

by genetic factors – a process termed gene-environment correlation (rGE), which is 

defined in the following section. 

 

1.6.4 Gene-environment interplay 

Although genetic and environmental factors may work independently to some 

extent, extensive research has investigated the interplay between genetic and 

environmental influences on a number of emotional and behavioural traits (Rutter & 

Silberg, 2002). This work has been highly influential with regards to a range of traits 

such as depression (Caspi, et al., 2003; Eley, Sugden, et al., 2004), and anxiety (Silberg, 

Rutter, Neale, & Eaves, 2001), yet research assessing the explicit links between genetic 

and environmental influences focused on sleep is scarce and the research that does exist 

requires replication before firm conclusions can be drawn. Gene-environment interplay 

occurs in two forms: gene-environment correlation (rGE); and gene-environment 

interaction (GxE). These processes are discussed in the following sections and key 

findings in relation to psychological/behavioural phenotypes in general (given the 

dearth of research within this area in relation to sleep), from both quantitative and 

molecular genetic designs, are presented in order to describe these processes within a 

phenotypic context. 
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1.6.4.1  Gene-environment correlation 

 Gene-environment correlation (rGE) is found when genetic effects influence 

exposure to specific environments. As such, it has been suggested that via our genetic 

propensities we to some extent shape and select our environmental experiences (Plomin, 

et al., 2008). Gene-environment correlations occur in three forms: passive, active and 

evocative/reactive. Passive gene-environment correlation refers to the fact that parents 

provide both genes and environments for their offspring. Thus, the environment 

provided will be related to the genetic propensities of the parents and consequently, 

their offspring. Active gene-environment correlation occurs when an individual seeks 

out environments that correspond to their genotype. For example, an individual who has 

a genetic predisposition to eveningness (a tendency to get up late in the day and go to 

bed late at night), may choose a career in which they work in the evening in accordance 

with their diurnal preference. Evocative/reactive gene-environment correlation occurs 

when the behaviours performed by an individual based on their genotype elicit certain 

environmental responses from others (Plomin, DeFries, & Loehlin, 1977). For example, 

a child who cries at night may evoke a different response from a parent compared to a 

child who sleeps soundly and causes no disruption, which may consequently affect the 

family environment.  

A robust finding in the literature from twin studies is that the experience of 

negative life events appears to be in part genetically driven (Bolinskey, Neale, 

Jacobson, Prescott, & Kendler, 2004; Kendler, Neale, Kessler, Heath, & Eaves, 1993; 

Plomin, Pedersen, Lichtenstein, McClearn, & Nesselroade, 1990; Thapar & McGuffin, 

1996). Furthermore, it has been shown that genetic liability to depression and 

alcoholism is associated with significantly increased risk of experiencing stressful life 

events (Kendler & Karkowski-Shuman, 1997). Thus a genetic predisposition to these 

phenotypes influences exposure to high-risk environments. Further research 
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demonstrated evidence of genetic correlations between depression and life events – a 

finding which suggests that the same genes were influencing both the phenotype and the 

environmental risk factor (Lau & Eley, 2008). It is likely that, as in depression, 

genetically driven exposure to life events is associated with genetic liability to sleep 

disturbance. Further discussion of this is provided in Chapter 5.  

Although explicit research on gene-environment correlation in relation to sleep 

is currently non-existent, it has been found that there are genetic effects on caffeine 

consumption (Luciano, Kirk, Heath, & Martin, 2005) - thus there may be evidence here 

of a gene-environment correlation effect whereby an individual with a genetic 

predisposition to sleep disturbance may consume more caffeine to counteract the effects 

of their sleepiness, and so seek out environments where they can drink coffee. In such 

an instance, the same genes may be influencing the tendency to consume caffeine as 

those influencing sleep. Indeed, it has been found that there is overlap in the genes 

influencing coffee-attributed sleep disturbance and sleep disturbance attributed to other 

factors (Luciano, et al., 2007), suggesting that there may be a correlation between the 

genetic factors influencing both sleep and the tendency to seek out caffeine.  

 

1.6.4.2   Gene-environment interaction 

Whilst gene-environment correlation refers to genetically driven exposure to 

environmental experiences, gene-environment interaction refers to genotype dependent 

sensitivity to high risk environments. What this means is that genetic risk for a particular 

phenotype is moderated by the presence of an identified environmental stressor. If the 

genetic propensity to a phenotype is only apparent under certain environmental 

conditions, ignoring concurrent environmental influences may result in incorrectly 

concluding that there is little or no genetic influence on that phenotype (Moffitt, Caspi, 

& Rutter, 2005). Studies estimating GxE thus enable researchers to determine whether 
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genetic risk is modifiable by exposure to specific measured environmental influences. In 

the depression literature, several quantitative genetic studies have independently shown 

that genetic influences on adolescent and adult depression significantly increased in 

those experiencing negative life events (Kendler, Martin, Heath, & Eaves, 1995; Lau & 

Eley, 2008; Silberg, et al., 2001). Thus, negative life events pose as a risk factor for the 

development of depressive symptoms in genetically predisposed individuals. 

Quantitative genetic studies of GxE in relation to sleep quality, however, are currently 

non-existent. 

 In the field of molecular genetics, a finding that has received considerable 

attention in the depression literature is that the ‘short’ allele of the 5HTTLPR gene 

confers risk for psychopathology in the face of environmental adversity (Caspi, et al., 

2003). Although numerous replication attempts of this finding are evident in the 

literature, there is significant controversy within this field and recent meta-analyses 

have provided contradictory results. Two meta-analyses claimed that evidence for the 

interaction between 5HTTLPR genotype and negative life event exposure in depression 

was negligible, due in large part to the studies in question being underpowered 

(Munafo, Durrant, Lewis, & Flint, 2009; Risch, et al., 2009). A more recent meta-

analysis, however, found support for this effect, and the authors suggested that the 

discrepancy between their own and the previous meta-analyses resulted from 

differences in inclusion criteria (Karg, Burmeister, Shedden, & Sen, 2011). 

Furthermore, it has been suggested that inconsistencies between replication attempts 

may be explained by specific sample characteristics and the different methodologies 

employed to determine environmental adversity (Uher & McGuffin, 2008, 2010).  

In terms of molecular genetic research on sleep quality only one study to date 

has investigated the possibility of GxE. In line with previous work in the field of 

depression, Brummett and colleagues (2007) demonstrated that individuals carrying one 
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or two copies of the ‘short’ allele of 5HTTLPR had significantly poorer sleep quality 

assessed by the PSQI than ‘long-long’ homozygotes – with the effect only significant in 

individuals experiencing the chronic stress of caregiving for a parent or spouse with 

dementia. This is evidence of GxE. Although no main effect of genotype on sleep 

quality was found, this study highlights the need to test for interactions with 

environmental risk. Failure to do so may result in incorrectly dismissing the role of a 

particular gene for a given phenotype under investigation if consideration of 

environmental influences is neglected. 

 

1.7 Associations between Components of Sleep 

 Although sleep quality may be considered to be a phenotype in its own right 

research suggests in fact that the construct of sleep quality may encompass several 

different indices of sleep. As previously mentioned (see section 1.5.2), in the 

development of the PSQI Buysse and colleagues (1989) identified seven separate 

‘components’ of sleep quality. Some of these components of sleep quality (albeit 

assessed by a different method) have been shown to co-occur to varying degrees. For 

example, specifically using the PSQI to assess sleep, Cole and colleagues (2006) found 

strong correlations between some but not all components, and suggested that certain 

indices of sleep cluster together more strongly than others. Indeed the authors suggested 

that, rather than measuring one factor of sleep quality, the PSQI in fact measures 3 

separate sleep quality factors. It could be postulated that components that correlate 

strongly stem from similar aetiological influences. For example, it is possible that 

genetic factors may influence sleep latency, which may consequently affect sleep 

duration and quality. Thus, the estimated genetic influence on sleep duration and quality 

may not be due to independent genetic factors, but rather due to their covariance with 
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sleep latency – that is, the same genes influence all three phenotypes. Exploration of the 

overlap in the genetic and environmental influences on the components will determine 

whether they are similar or distinct, aetiologically. Indeed, de Castro (2002) 

investigated whether there were independent genetic effects on several indices of sleep-

wake behaviour and found that they were largely unique. However, the independence of 

the environmental influences on the indices of sleep-wake behaviour was not examined. 

Research is yet to examine the overlap in the aetiological influences on the component 

clusters encompassed by the PSQI. 

 Despite ‘sleep quality’ encompassing different aspects of sleep, sleep quality 

itself has associations with other indices of normal sleep phenotypes, such as diurnal 

preference. Specifically, evening-types experience poorer sleep than morning-types 

(Megdal & Schernhammer, 2007; Ong, Huang, Kuo, & Manber, 2007; Shiihara, et al., 

1998; Vardar, Vardar, Molla, Kaynak, & Ersoz, 2008), suffer from greater daytime 

sleepiness and dysfunction (Vardar, et al., 2008), and display other forms of sleep 

deficit, such as irregular sleep/wake habits (Taillard, Philip, & Bioulac, 1999). Yet the 

factors accounting for these associations are yet to be explored. Further discussion of 

the associations between sleep quality and diurnal preference is reserved for Chapter 6.  

 

1.8  Rationale and Research Questions  

 The overall aim of this thesis is to gain an understanding of genetic and 

environmental influences on variation in sleep quality observed in the general 

population. The research in this thesis uses quantitative and molecular genetic 

techniques to tease apart the genetic and environmental influences on sleep quality in a 

sample of young adult twins and siblings from wave 4 of the G1219 study – a large 

longitudinal population-based twin registry in the UK (for further information, see 

Chapter 2, section 2.10). There are 5 main aims that this thesis addresses:  
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1. To investigate the magnitude of the genetic and environmental influences on the 

components of sleep quality encompassed by the PSQI; 

2. To identify specific non-shared environmental influences on sleep quality;  

3. To determine the presence of statistical gene-environment correlation and 

interaction between sleep quality and negative life events; 

4. To examine phenotypic and aetiologic associations between sleep quality and 

diurnal preference; 

5. To investigate associations between 3 candidate genetic polymorphisms and 

sleep quality and diurnal preference, and measured gene-environment interaction 

with negative life events. 

 

 The first set of research questions relate to the first aim of this thesis. Although 

previous research has highlighted the role of genetic and environmental influences on an 

overall construct of ‘sleep quality’ this thesis aims to extend this by breaking this 

construct down into its constituent components. Furthermore, evidence suggests that the 

extent to which the components of sleep quality co-occur varies between clusters, 

however research has failed to address why certain components cluster together. Are 

there specific influences which are shared between components? Knowledge of the 

overlap in the genetic and environmental influences between phenotypes may be useful 

for identifying individuals at risk for the development of sleep problems, since 

identifying an individual with problems in one aspect of sleep may suggest that an 

individual is genetically sensitive to correlated symptoms. Chapter 3 discusses these 

issues and specifically addresses the following 4 questions. To what extent: 
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(i) do genetic and environmental factors influence global sleep quality measured by 

the PSQI, as well as the distinct components of sleep quality encompassed by 

this measure? 

(ii) are the components of sleep quality measured by the PSQI correlated? 

(iii) is there overlap in the genetic and environmental influences on each of the 

components of sleep quality assessed separately? 

(iv)  do genetic and environmental influences account for the associations between 

components of sleep quality? 

 

The second set of research questions relate to the second aim of this thesis. 

Previous twin studies have highlighted the importance of the non-shared environment in 

sleep quality. However, the classical twin method is unable to determine which specific 

non-shared environmental influences are important for a phenotype. Although previous 

research from fields other than quantitative genetics have demonstrated associations 

between sleep and a range of environmental factors, it is possible that these 

‘environmental’ influences are partly influenced by genetic factors – that is, by gene-

environment correlation. What this means is that these associations between sleep and 

seemingly non-shared environmental influences are explained by familial factors, i.e. 

confounded by the influence of genetics and/or the shared environment. Chapter 4 aims 

to identify specific candidate non-shared environmental influences on sleep quality. 

Using an MZ twin differences design it addresses whether associations with these 

traditionally viewed ‘environmental’ factors have a purely non-shared environmental 

component – that is, whether the associations between sleep and the environment are 

independent of genetic and shared environmental effects. Specifically this chapter 

addresses 2 questions: 
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(i) Are there associations between sleep quality and a range of candidate non-

shared environmental factors? 

(ii) Is there a purely non-shared environmental component to these associations? i.e. 

do these associations remain significant even after controlling for genetic and 

shared environmental factors? 

 

Chapter 5 addresses the third aim of this thesis and investigates the presence of 

statistical gene-environment interplay between sleep quality and negative life events 

given the paucity of research investigating this issue to date. Specifically, it determines 

whether genetic liability to sleep disturbance varies as a function of exposure to 

negative life events, whilst controlling for the possibility of gene-environment 

correlation. To this end, this chapter addresses the following 3 research questions: 

 

(i) Are different types of life events associated with sleep quality differentially? 

(ii) To what extent do genetic and environmental factors influence negative life 

events? 

(iii) Does the presence of negative life events moderate genetic liability to sleep 

disturbance, controlling for gene-environment correlation? 

 

Chapter 6 investigates the association between sleep quality and diurnal 

preference outlined in the fourth aim of this thesis. While there appears to be an 

association between diurnal preference and sleep quality as indicated by previous 

research, what is currently unclear is what accounts for this association. It is of interest 

to determine whether there is similarity in the genetic influences between sleep quality 
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and diurnal preference as such information has the potential to inform molecular genetic 

research in the search for genes influencing different aspects of sleep. If genetic overlap 

between phenotypes is found, genes already known to influence one phenotype may be 

worthy candidates for exploration with regards to other phenotypes with which it is 

associated. If, however, genetic overlap is small, this would imply that unique genes 

should be sought with regards to the phenotypes under study. As such, this chapter 

addresses the following 4 questions: 

(i) To what extent do genetic and environmental factors influence diurnal 

preference? 

(ii) How strong is the association between sleep quality and diurnal preference in 

the G1219 sample, and is this in line with previous reports? 

(iii)  Is there overlap in the genetic and environmental factors influencing sleep 

quality and diurnal preference? 

(iv)  To what extent do genetic and environmental influences account for the 

association between sleep quality and diurnal preference? 

 

The fifth aim of this thesis is addressed in Chapter 7. Given the dearth of 

research investigating specific genetic variations in aspects of subjective sleep quality, 

this section of the thesis takes a candidate gene approach to examine 3 genetic 

polymorphisms (5HTTLPR, PER3 and CLOCK 3111) in relation to sleep quality and 

diurnal preference. Evidence of the overlap in the genetic influences between these 

phenotypes from Chapter 6 directed the search for specific candidate genes that may be 

influential to both of these phenotypes. For example, genes associated with sleep 

quality, such as serotonin, may be worthy candidates for investigation with regard to 

diurnal preference, given the genetic overlap between these phenotypes. As such, these 
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3 genetic polymorphisms were selected because research has previously implicated 

them in either sleep quality or diurnal preference. Furthermore, previous research has 

highlighted the importance of investigating the possibility of gene-environment 

interactions in molecular genetic research (Moffitt, et al., 2005). Accordingly, 

investigation of GxE with negative life events is incorporated into the analyses, given 

the evidence for GxE with this environmental risk factor in other psychiatric disorders, 

and the paucity of research assessing GxE in sleep phenotypes. Although GxE is also 

investigated statistically in Chapter 5, incorporating measured GxE in molecular studies 

is considered to have greater power. In addition, it is useful to investigate the presence 

of gene-gene interactions (epistasis). Previous studies have suggested that the 

interaction of genes may contribute to complex human psychiatric disorders (Murphy, 

et al., 2003), and that investigating combinations of genes may be more informative and 

accurate than investigating single genes in isolation (Pedrazzoli, et al., 2010). However, 

little is known about the possibility of epistatic mechanisms in sleep and the 

polymorphisms under study here. Specifically, Chapter 7 addresses the following 4 

research questions: 

(i) Is there evidence of a main effect of 5HTTLPR, PER3 and/or CLOCK 3111 on 

sleep quality? 

(ii) Is there evidence of a main effect of 5HTTLPR, PER3 and/or CLOCK 3111 on 

diurnal preference? 

(iii) Are there significant interactions between these genetic polymorphisms and 

environmental risk factors for both sleep quality and diurnal preference (GxE)?  

(iv)  Are there significant gene-gene interactions (GxG) on sleep quality and diurnal 

preference? 
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Additionally, throughout this thesis sex differences are examined. Specifically, 

all analyses consider whether there are significant differences between males and 

females in absolute sleep scores, as well as whether the sexes differ in terms of the 

aetiological influences on the phenotypes under study. Although it would also be 

beneficial to examine age differences with regards to both phenotypic and aetiologic 

results, the age spread of participants included in the study was homogeneous, and so 

developmental questions are not addressed in this thesis. As such, all results describe 

the sleep of young adults (aged between 18 and 27 years; 90% of participants aged 18-

22 years). As can been seen from the above aims, the research encompassed in this 

thesis fully utilises the twin design to answer a range of questions regarding the 

aetiology of sleep quality using a variety of quantitative and molecular genetic 

techniques. 
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Chapter 2: Methodology 

2.1 Overview 

 This chapter begins by outlining the basics of quantitative genetic analyses using 

MZ and DZ twins and siblings in order to investigate genetic and environmental 

influences on traits. Following this is a description of the assumptions of the twin 

method, and detailed model-fitting procedures for univariate, multivariate and sex-

limitation models using structural equation modelling. This will be relevant to Chapters 

3, 5 and 6, where basic univariate and multivariate models (in addition to more complex 

models) will be used. This chapter will describe only models that will be relevant 

throughout the thesis. Where more complex models are used detailed information on 

these models is reserved for the appropriate chapter. Accordingly, Chapter 3 will 

describe in detail threshold liability models, which are a reformulation of the univariate 

analyses described in the current chapter for use with categorical data. Chapter 4 will 

describe MZ twin differences analysis, which is a method used to identify purely non-

shared environmental components to associations between the environment and sleep. 

Chapter 5 will describe models of statistical gene-environment interaction in the 

presence of gene-environment correlation. After describing the twin method, the current 

chapter will outline the basics of molecular genetic analysis and genotyping techniques 

which will be relevant to Chapter 7, followed by a description of the sample used 

throughout this thesis.  

 

2.2 Introduction 

 As mentioned previously (see section 1.6.1), classical twin studies rely on the 

differences in genetic relatedness between monozygotic twins, who share 100% of their 

genetic make-up, to dizygotic twins who share on average only 50% of their segregating 
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genes to make inferences about the aetiology of phenotypes. Because the genetic 

relatedness of DZ twins is the same as that of full siblings, quantitative genetic studies 

may also incorporate data from full siblings in order to estimate the relative proportions 

of genetic and environmental influences on phenotypes. Quantitative genetic studies use 

these differences in genetic relatedness to estimate 2 forms of genetic influence: 

additive and non-additive. As described in Chapter 1 (section 1.6.1) additive genetic 

influence can be described as the cumulative effect, or the ‘adding up’, of genes to 

influence behaviour. In pairs of MZ twins, the additive genetic correlation between each 

twin for any trait is assumed to be 1, since they inherit exactly the same genetic 

information from their parents, and so share 100% of their genes. In DZ twins and 

siblings, this is estimated to be 0.5, since they are assumed to share 50% of their 

segregating genes. Non-additive genetic influence, otherwise referred to as 

‘dominance’, describes not the ‘adding up’ of genes, but rather the combination or 

interaction of alleles at a given locus which influence behaviour (this is in contrast to 

epistasis which is the interaction of alleles at different loci). In MZ twins, the 

correlation between twins due to dominance is expected to be 1, since their genetic 

make-up is identical, whereas for DZ twins, this is estimated to be 0.25. This is because 

individuals receive only one of each of a pair of alleles from their parents rather than a 

combination, and so the combination of alleles between parents and offspring are 

entirely different. However, siblings are expected to receive the same combination of 

alleles as each other from their parents one-fourth of the time (Vink, et al., 2001). A 

common way of describing these types of genetic effects is narrow-sense and broad-

sense heritability. Narrow-sense heritability refers to only the proportion of the 

phenotypic variance accounted for by additive genetic factors. Broad-sense heritability, 

however, refers to all of the genetic effects, additive and non-additive, that account for 

the phenotypic variance. 



67 
 

In addition to calculating genetic influences, quantitative genetic studies 

estimate 2 forms of environmental influence: shared and non-shared environmental 

influences. Shared environmental influences are those that act to make family members 

similar. Because environmental influences are unrelated to genetic relatedness, 

correlations between MZ and DZ twins due to the shared environment are the same, and 

are assumed to be 1. This is because the definition of the shared environment is that it is 

entirely shared between the twins. In children an example of the shared environment 

may be diet or attending the same schools, the influences of which are commonly 

shared between siblings. However, in adult twins or siblings who no longer live 

together, shared environmental influences are often negligible for most behavioural 

phenotypes. It is a common theme in behavioural genetic research that the shared 

environment becomes increasingly less important with increasing age, with the 

consequence that genetic influences become more important (McGue, 2008). It is 

proposed that this observation is explained by the fact that, with increasing age, 

individuals have greater control over their environmental experiences – and that the 

experiences they choose are correlated with their genetic propensities (Scarr & 

McCartney, 1983). This effect has been shown to be strongest in the transition from 

adolescence to young adulthood (Bergen, Gardner, & Kendler, 2007). Furthermore, this 

observation may be largely due to the increasing importance of environmental 

experiences that occur outside of the family environment as one gets older (Plomin, et 

al., 2008). Such influences are called the non-shared environment which can be 

described as environmental influences unique to each twin/sibling which account for 

their dissimilarity. Correlations within pairs of MZ and DZ twins for this source of 

variance are expected to be zero. An example of which could be one twin being in a 

motor vehicle accident. 
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2.3 Assumptions and Considerations of Twin Studies 

 Although twin studies reliably provide useful information about the aetiology of 

a trait (or traits) of interest, twin studies rest on several assumptions that, if violated, 

may lead to incorrect estimates of the relative contribution of genetic and environmental 

influences. These assumptions and considerations include assortative mating, zygosity 

determination, equal environments and generalisability. 

 

2.3.1 Assortative mating 

 A fundamental assumption of the twin method is that parental mating in the 

population is random. If this is true, DZ twins will share on average 50% of their 

segregating genes – a central tenet of the twin method. Assortative mating refers to the 

process of non-random mating whereby individuals choose partners similar to 

themselves on particular traits, i.e. for like to marry like (positive assortative mating), or 

for individuals to choose partners dissimilar from themselves, where ‘opposites attract’ 

(negative assortative mating). In such cases, DZ twins would be more (positive 

assortative mating) or less (negative assortative mating) similar than would be expected 

if mating were random. Positive assortative mating has the effect that genotypic 

variance for a particular trait in the population is increased over generations. This means 

that for the particular trait in question, offspring differ from the population mean to a 

greater extent than would occur if mating were random. In family studies, positive 

assortative mating increases correlations between first-degree relatives (parent-

offspring) with the consequence that heritability estimates would be inflated. However, 

in twin studies heritability estimates would be underestimated in the presence of 

assortative mating. This is because correlations between DZ twins would be inflated 

since they have the same genetic relatedness as first-degree relatives, whereas MZ twin 
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correlations would not be affected since they are 100% genetically identical. Thus, the 

differences in correlations between MZ and DZ twins would be reduced, with the 

consequence that heritability estimates would be lowered and estimates of the shared 

environment overestimated (Plomin, et al., 2008).  

 Assortative mating has been found to be present for a number of psychiatric 

difficulties (Maes, et al., 1998). One method to assess the presence of assortative mating 

is to inspect data from parents on the trait of interest and to control for this in genetic 

modelling (Neale & Cardon, 1992). However, its effects in models of heritability and 

gene-environment interaction have been found to be negligible (Loehlin, Harden, & 

Turkheimer, 2009; Maes, et al., 1998) which suggests that although consideration of 

assortative mating is worthy, violations of this assumption are not problematic in twin 

studies in most cases.  

 

2.3.2 Zygosity determination 

 Because the twin method hinges on the differences between MZ and DZ twins, 

correct identification of twin zygosity is essential. One method to determine zygosity is 

to examine DNA markers. If there are any DNA marker differences between twins 

within a pair, they must be DZ twins. If no differences are found, they must be MZ 

twins. Although this is an accurate method of determining zygosity, and has indeed 

been shown to yield around 99% accuracy when assessing just 4 loci (Chen, et al., 

2010), it may be costly and time consuming to collect and analyse DNA for the 

purposes of zygosity assessment in twin studies (which typically analyse phenotypic 

differences and infer from twin correlations information regarding genetics). An 

alternative method to assess zygosity is to ask parents questions about the physical 

similarity of their twins (for example eye or hair colour). The questionnaire method is 
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standard in twin studies and has been shown to have ~95% accuracy in correctly 

determining zygosity when validated against DNA markers (Price, et al., 2000). 

 

2.3.3 Equal environments assumption 

 The equal environments assumption is an important consideration of the twin 

method. It assumes that the shared environments experienced by MZ and DZ twins are 

shared to roughly the same extent between the two different types of twins. Such an 

assumption implies that the only reason why MZ twins are more similar to one another 

than DZ twins is because of their differences in genetic relatedness and not due to them 

experiencing more similar environments. Violations of this assumption would mean that 

estimates of genetic influence on a trait would be artificially inflated (Plomin, et al., 

2008). In children, it has been shown that MZ twins often dress alike, share the same 

friends and (of particular relevance to this thesis) share bedrooms more often than DZ 

twins (Loehlin & Nichols, 1976). However, tests of the equal environments assumption 

for a variety of traits by examining environmental similarity, for example treatment 

similarity, physical similarity, and frequency of contact in adulthood, have concluded 

that the assumption is not violated in such cases (Derks, Dolan, & Boomsma, 2006).  

Another method of testing the equal environments assumption is to examine twins 

mislabelled as MZ or DZ by themselves and others. If indeed MZ twins are treated 

more similarly than DZ twins, DZ twins incorrectly labelled as MZ twins should be 

more similar than expected if the equal environments assumption is violated. Likewise, 

MZ twins incorrectly labelled as DZ twins should be less similar in violations of the 

assumption. Specific tests of this in mislabelled twins, has however provided no 

evidence that perceived zygosity has an influence on similarity in a number of 

psychiatric disorders (Kendler & Gardner, 1998).   
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 A common objection to the equal environments assumption is that it is 

incorrectly believed that MZ twins have more similar prenatal environments than DZ 

twins because they often share the same chorion (sac in the amnion). However, MZ 

twins may in fact experience greater differences prenatally than DZ twins, since each 

twin is in competition with their co-twin for placental nutrients. Evidence for this claim 

can be found from studies demonstrating that MZ twins who share a chorion have lower 

birth weight, higher incidence of morbidity, and are more likely to suffer birth defects 

than dichorionic twins (Adegbite, Castille, Ward, & Bajoria, 2004; Gonzalez, et al., 

2010). If MZ twins do experience less similar environments prenatally, this would have 

the effect that heritability estimates would be underestimated in such instances. 

 

2.3.4 Generalisability 

 A common criticism of twin studies centres on the fact that twins may not be 

representative of the general population. If this is true, then making assumptions about 

members of the general population based on the findings from twin studies may be 

misguided. There are several differences between twins and singletons. Twins are often 

born prematurely, have a much lower birth weight, and are more likely to suffer from 

congenital malformations, obstetric complications and perinatal mortality, than 

singletons (Rutter & Redshaw, 1991). It has also been suggested that the rearing 

environments of twins may differ somewhat from singletons, and that these differences 

may lead to developmental complications, such as delayed language development 

(Rutter & Redshaw, 1991). However, a comparison of twins and non-twins in terms of 

risk for psychiatric symptoms, including insomnia, demonstrated that there were no 

consistent twin-singleton differences in symptomatology (Kendler, et al., 1995), which 

suggests that for such factors twins may well be representative of the general 

population.  
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2.4 Univariate Genetic Analysis 

 At the most fundamental level quantitative genetic analysis uses the intraclass 

correlation coefficient (r) to assess the degree of relationship between two quantitative 

variables when these measurements are organised into groups, i.e. when measured in 

pairs of MZ/DZ twins. The intraclass correlation coefficient differs from the standard 

Pearson correlation coefficient as it is calculated by centring the means and standard 

deviations of scores within each pair of observations pooled by group, rather than 

centring the data for each pair of observations individually (as in the standard Pearson 

correlation).  Accordingly, the intraclass correlation coefficient is defined as: 

 

r =      MSB – MSW                                                       (2.1) 

            MSB + MSW                                                                                            

 

Where MSB is the mean-squares between pairs, and MSW is the mean squares within 

pairs (McGue & Bouchard, 1984). Throughout this thesis, intraclass correlations are 

reported unless otherwise stated. Of note, the magnitude of all correlations reported in 

this thesis are considered according to the criteria set out by Cohen (1988), where a 

correlation of 0.1 is considered small, 0.3 = medium and 0.5 = large.  

Using the intraclass correlation between pairs of MZ and DZ twins and siblings 

on a quantitative trait of interest, univariate genetic models are used to estimate the 

contribution of additive genetic (A), non-additive genetic (D) or shared environmental 

(C), and non-shared environmental (E) (which includes measurement error) components 

of variance on a single (univariate) trait. It is not possible to model both non-additive 

genetic effects and shared environmental effects simultaneously because C and D 

predict different MZ and DZ twin correlation ratios, and the effect of both is 

confounded if examined together (Neale & Cardon, 1992). Thus, these effects are 
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examined in separate models (i.e., either by an ACE or ADE model) as appropriate. The 

sum of these sources of variance equals the total phenotypic variation in the trait (VP): 

                                        VP = A + C + E                                                        (2.2) 

                                                             or 

                                        VP = A + D + E                                                        (2.3) 

 The relative proportions of A, D or C and E are calculated using Falconer’s 

formula (Falconer & MacKay, 1996) which uses the differences in the intraclass 

correlation coefficients (r) between MZ and DZ twins and siblings. For an ACE model, 

similarity between MZ twins (rMZ) for a particular trait is accounted for by genetics 

and shared environment, so that: 

                                                  rMZ = A + C                                                           (2.4) 

Since MZ twins share 100% of their genetic make-up and their shared environment, 

both A and C equal 1. For the similarity in DZ twins (rDZ), genetics and shared 

environment are important, but as DZ twins share only 50% of their segregating genes 

A is estimated to be half, so that: 

                                             rDZ = ½ A + C                                                       (2.5) 

In ADE models, rMZ remains the same since A and D are both expected to be 1, 

however, the calculation for rDZ is amended to reflect the fact that the proportion of the 

same alleles received from parents due to non-additive effects occurs only one-fourth of 

the time between siblings: 

                                                rDZ = ½ A + ¼ D                                                      (2.6) 
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Using these twin correlations it is possible to calculate the relative proportions of 

genetic and environmental influences on a trait. For the ACE model, additive genetic 

influence is calculated as twice the difference in the MZ and DZ twin correlations: 

A = 2(rMZ – rDZ)                                                     (2.7) 

Shared environment is calculated as the difference between the MZ correlation and 

additive genetics: 

C = rMZ – A                                                              (2.8) 

As the only reason MZ twins differ is due to non-shared environmental effects, the 

influence of the non-shared environment is easily calculated as the total phenotypic 

variance minus the MZ correlation: 

    E = 1- rMZ                                                                 (2.9) 

Because these equations use correlations between different types of twins (which are 

standardized covariances), the estimates are standardized so that the total phenotypic 

variance always equals 1. Thus, A, C and E represent relative proportions of variance.  

 It is not possible, however, to calculate the effects of non-additive genetic effects 

in this way. In such instances, more complicated calculations are performed in structural 

equation modelling programmes, described below. The decision as to whether to 

examine an ACE or an ADE model rests on the observed MZ/DZ correlation ratios. If 

the MZ twin correlation is more than double that of the DZ twins, non-additive genetic 

influences may be important for the trait under study.  

It is also important to note that it is likely that the parameter estimates derived 

from formal model fitting procedures (as described below) may not provide exact 

estimates as those calculated by hand using Falconer’s formulae. This is because 
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structural equation modelling uses more information than just the simple correlations, 

and because it requires additional assumptions based on the variances of the raw data. 

 

2.5 Path Diagrams 

 Path diagrams are a method used in twin research to describe genetic analyses 

pictorially. The purpose of path diagrams is to illustrate the resemblance between twins 

and the relationships between different factors in structural equation models, which is 

used to help workout the algebraic formulae. Shown in Figure 2.1 is a standard path 

diagram for a univariately assessed trait (sleep quality) for one twin pair. In path 

analysis, there are several conventions and rules that facilitate interpretation of the 

diagram. Rectangles represent measured variables, circles indicate latent (estimated) 

parameters, single headed arrows indicate causal paths, and double-headed arrows 

represent correlations between variables. With regard to Figure 2.1 ‘sleep quality’ is a 

measured trait and so is depicted by a rectangle. The genetic, shared and non-shared 

environmental variance components, A, C and E, are latent variables as they are 

estimated by the model and so are represented by circles. The downward arrows 

resemble the partial regression coefficients for A, C and E and represent their causal 

relationship with sleep quality. The double-headed arrows represent the standardised 

covariance (correlation) between the latent variables between the two twins. For MZ 

twins, the standardised covariance for additive genetics, A, is 1 as they are genetically 

identical, whereas for DZ twins this is 0.5. The shared environmental standardised 

covariance, C, is 1 for both types of twins. There is no double-headed arrow for the non-

shared environment, E, as this source of variance is not shared between family 

members.  

 In addition to these conventions there are path tracing rules which make it 

possible to calculate the variances for individual variables and the covariances between 
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multiple variables. To calculate the covariance between twin 1’s sleep quality and twin 

2’s sleep quality, a path must be traced from the first variable to the second variable, 

using the following three rules: First, it is possible to move forward along a path, but 

not forward and then backward. Second, each variable may only be passed through 

once, and third only one double-headed arrow may be traced in one path. The product of 

the path tracing is then summed. Thus, the standardised covariance in sleep quality 

between MZ twins can be calculated by summing the following paths: (a1 x 1 x a2) + 

(c1 x 1 x c2), which can also be described as a
2
 + c

2
, or A + C. For DZ twins, the 

standardised covariance in sleep quality is calculated as: (a1 x 0.5 x a2) + (c1 x 1 x c2), 

which can also be described as 0.5a
2
 + c

2
, or 0.5A + C. 

 

 

Note. MZ = Monozygotic; DZ = Dizygotic; Sibs = siblings; A = Additive genetic influence; 

C = Shared environmental influence; E = Non-shared environmental influence; a1, c1, e1 = 

aetiological influences on twin one; a2, c2, e2 = aetiological influences on twin 2. 

e1 c1 a1 a2 e2 c2 

1  

A C E 

Sleep Quality 

Twin 1 

A C E 

Sleep Quality 

Twin 2 

Figure 2.1. Standard path diagram for a univariate ACE model for one twin pair. 

MZ = 1; DZ/Sibs = 0.5 
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2.6 Structural Equation Modelling 

 Although it is possible to calculate the relative proportions of genetic and 

environmental influences on traits using Falconer’s equations, it is advantageous to 

perform more formal model fitting techniques. One advantage of such model fitting is 

that it is possible to determine whether the ACE model is in fact a true representation of 

the underpinnings of a particular trait, or whether an alternative model, i.e. an ADE or 

AE model, is more appropriate. A second advantage is that calculation of confidence 

intervals around the parameter estimates is possible, which gives a direct indication of 

the significance of the variance components. Additionally, it is possible to investigate 

co-occurring traits, sex differences, and models of gene-environment correlation and 

interaction - analyses which will be discussed in sections 2.7, 2.8 and Chapter 5, 

respectively.  

 

2.6.1 Model-fitting information 

 In model-fitting analyses, structural equation models are constructed by 

incorporating certain parameters, for example the variance components, into a model 

which are used to describe the observed twin/sibling data. The observed data takes the 

form of variance-covariance matrices for the different twin/sibling pairs for a particular 

trait. Model-fitting involves estimating different values for the model parameters, which 

will consequently produce different variance-covariance matrices, and aims to 

determine the most parsimonious model, i.e. one that incorporates the fewest 

parameters, that most accurately generates expectations in line with those in the 

observed data (Plomin, et al., 2008). Because of the iterative and computationally 

intensive nature of model fitting, computer software has been designed to compute these 

calculations.  
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 The most widely used statistical package to analyse genetically sensitive data is 

Mx (Neale, 1997), which performs structural equation modelling using maximum-

likelihood estimation, and accounts for the non-independence of twin data. The fit 

statistic provided by Mx for raw data modelling is -2LL (minus twice the log likelihood 

of the observations). The -2LL value, in itself, provides no information on fit, however, 

there are two main indices of fit that are produced by Mx that can be used to determine 

the best-fitting model. The first is the chi-square (χ
2
) goodness-of-fit statistic. This can 

be used to directly test the significance of the differences between two models to 

determine which provides the best approximation of the observed data. The second is 

the Akaike Information Criterion (AIC) which accounts for the number of parameters 

being estimated and goodness-of-fit - thus more parsimonious models are favoured by 

the AIC. AIC is calculated as the change in χ
2 

between two models minus twice the 

change in degrees of freedom: 

 (∆χ
2
 – 2 x ∆df)                                                   (2.10) 

Good fit is indicated by low χ
2 

statistics and low, negative AIC values. 

 

2.6.2 Model-fitting procedures 

 Model-fitting begins by fitting a saturated model to the data which estimates the 

maximum number of parameters required to describe the variance-covariance matrix 

and means of observed variables, and thus provides a perfect fit to the data. Genetic 

models, which typically include the model parameters A, C and E, are then 

approximated to the data. The -2LL of the saturated model is then subtracted from the    

-2LL of the genetic model. As mentioned previously, the -2LL value, in itself, provides 

no information on fit, however the difference between -2LL for the saturated and 

genetic models is χ
2
 distributed, and so provides a relative fit of the data. A non-
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significant difference in fit between the genetic and saturated models indicates that the 

genetic model does not fit the data less well than a saturated model and therefore 

provides a good description of the data. Fit of the model is also tested by observing the 

AIC statistic as outlined above. Alternative models (for example, an ADE model) are 

then approximated to the data, the fit of which is compared again to the saturated model. 

Additionally, it is possible to fit nested models within the genetic models which 

constrain at least one of the estimated parameters (for example, C) to zero. In so doing, 

the parameter in question is dropped from the model in order to determine whether its 

exclusion reduces the fit of the model. Parameters which can be dropped without a 

significant reduction in fit of the model compared to the fuller model are excluded from 

the final model in order to adhere to parsimony. Likelihood-based 95% confidence 

intervals (CIs) on the parameter estimates are then obtained in order to determine their 

precision.  

 

2.7 Multivariate Genetic Analysis 

 In order to answer questions regarding multiple phenotypes simultaneously it is 

necessary to expand the standard univariate genetic model to the multivariate case. In 

univariate analyses we estimate the cross-twin/sibling same-trait correlations in pairs of 

MZ twins, DZ twins and non-twin siblings, separately (e.g. sleep qualitytwin1 and sleep 

qualitytwin2). The difference in similarity between these groups is used to estimate 

genetic and environmental influences upon traits as modelled in the univariate genetic 

analyses. In addition to this however, multivariate analyses also use the within-twin 

cross-trait (e.g. sleep qualitytwin1 and sleep durationtwin1), and the cross-twin cross-trait 

(e.g. sleep qualitytwin1 and sleep durationtwin2) covariances, measured between pairs of 

MZ and DZ twins and non-twin siblings, separately, to assess the aetiological factors 

influencing the relationships between phenotypes. While significant within-twin/sibling 
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cross-trait correlations imply common aetiological influences, the power to distinguish 

between different sources of variance causing the correlation is derived from the cross-

twin/sibling cross-trait correlations. Significant cross-twin/sibling cross-trait 

correlations imply that these common aetiological influences are familial. Whether 

these familial influences are genetic or environmental in origin, is indicated by the 

MZ:DZ/sibling ratio of these correlations. If the association between traits in MZ pairs 

is greater than that of DZ/sibling pairs, additive genetic influences (A) are implied. If, 

however, the MZ pair association is similar to that of the DZ/sibling pairs, shared 

environmental influences (C) are implied. Non-significant cross-twin/sibling cross-trait 

correlations imply that the common aetiological influences on the phenotypes are due to 

the non-shared environment (E), not familial effects. 

 There are several multivariate models that can also be used to formally test the 

aetiological associations between multiple phenotypes, for example, common and 

independent pathways models (Rijsdijk, 2005), cholesky decomposition and correlated 

factors models (Neale & Cardon, 1992). The correlated factors model is mathematically 

equivalent to the Cholesky model, however, it makes no assumptions as to the direction 

of the effects and so is appropriate in studies where there are no a priori hypotheses 

regarding causality (Loehlin, 1996). The decision as to which model to use is dependent 

on the research questions and hypotheses that one wishes to test (or of course all can be 

run to see which fits the data best). The bivariate correlated factors model (which can 

be extended to include several phenotypes if required), not only allows us to answer 

questions about the extent of genetic and environmental influences on each of the 

phenotypes included in the model, but it also allows the influences of one phenotype to 

correlate with those of the other phenotype to inform us about the relationships between 

them. Specifically, it allows us to determine: (i) how well two phenotypes are 

correlated; (ii) the extent to which the genetic and environmental influences on the 
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phenotypes overlap, that is, how similar the variance components are between 

phenotypes; and (iii) to what extent genetic and environmental influences explain the 

phenotypic correlation. Thus, this model provides information as to whether there are 

shared aetiological factors between phenotypes. Figure 2.2 illustrates a bivariate 

correlated factors model for two measured phenotypes: sleep quality and sleep duration. 

This diagram is shown for one twin only. There are three new parameters in this 

diagram, rA, rC and rE. These represent the additive genetic, shared environmental and 

non-shared environmental correlations between the phenotypes. These give an 

indication as to the overlap in these influences, i.e. the extent to which they are the same 

between the phenotypes. For example, an additive genetic correlation of 1 would 

indicate that exactly the same genes are responsible for sleep quality and sleep duration. 

Such knowledge would be useful for identifying specific genes associated with these 

phenotypes, since if a gene is known to be associated with, for example, sleep latency, 

knowledge of the genetic overlap between sleep latency and sleep duration implies that 

the same gene should be sought with regards to sleep duration. An additive genetic 

correlation of zero would indicate that entirely different genes influence the phenotypes. 

The same reasoning can be applied to the shared and non-shared environmental 

components. For example, a non-shared environmental correlation of zero would 

indicate that the environmental influences that make twins within a pair differ on sleep 

latency are entirely independent of those on sleep duration. Using this information (and 

using sleep latency and sleep duration as examples), it is possible to calculate the 

proportion of the phenotypic association accounted for by additive genetic influences, 

as: 

√Asleep latency X rA X √Asleep duration / phenotypic correlation                     (2.11) 
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Note that the square root of the univariate A path (for both phenotypes) is used as, in the 

bivariate case, we only trace up this path once (whereas in the univariate case we would 

trace up and then back down the path – squaring the estimate), thus deriving the 

unsquared estimate. Likewise the proportion of the phenotypic association accounted 

for by shared environmental influences can be calculated as: 

√Csleep latency X rC X √Csleep duration / phenotypic correlation                      (2.12) 

And finally the proportion of the phenotypic association accounted for by the non-

shared environment can be calculated as: 

 √Esleep latency X rE X √Esleep duration / phenotypic correlation                       (2.13) 

   

 

Note. A = Additive genetic influence; C = Shared environmental influence; E = Non-

shared environmental influence; rA = Additive genetic correlation; rC = Shared 

environmental correlation; rE = Non-shared environmental correlation. 

 

Figure 2.2. Path diagram for a bivariate correlated factors model shown for one 

twin only. 
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2.8 Sex-Limitation Models 

 In addition to assessing the aetiological contributions on phenotypes or the co-

occurrence between phenotypes, twin analyses using both male and female twin pairs 

are also able to determine whether there are various types of sex differences. There are 

three different types of sex differences that can be investigated in model-fitting 

analyses: quantitative, qualitative and scalar. Quantitative sex differences refer to the 

extent to which the magnitude of genetic and environmental influences differs between 

males and females. This can be tested by estimating the proportions of genetic and 

environmental influences for males and females separately, and then equating the 

estimates and observing the consequent change in fit of the model. If constraining the 

estimates to be equal between males and females results in a significantly worse fit 

compared to a model in which the estimates are free to vary between the sexes, there is 

evidence of a statistically significant quantitative sex difference. Qualitative sex 

differences refer to aetiological influences on a phenotype differing for males and 

females. It is possible to test, for example, whether the additive genetic influences are 

the same between the sexes, by constraining the additive genetic correlation between 

males and females to be 1 (indicating that exactly the same genes are important for the 

phenotype in males and females alike) and comparing the resulting fit to a model in 

which the correlation is free to vary. If the constrained model results in a significantly 

worse fit, this suggests evidence of qualitative sex differences (that is, that different sets 

of genes are important for males and females), the magnitude of which can be assessed 

by observing the additive genetic correlation between the sexes. Scalar sex differences 

refer to the differences in variance for a phenotype between males and females. This can 

be tested by constraining the parameter estimates to be equal between males and 

females, but allowing a phenotypic variance difference by incorporating a multiplicative 
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scalar to account for proportional differences between the sexes. The fit of this model is 

then compared to simpler, non-scalar models. 

 

2.9  Molecular Genetic Genotyping Techniques 

 Whilst twin studies provide useful information regarding the extent to which 

genes and environments may contribute to a trait or co-occurring traits, and determine 

the degree of overlap in the aetiological factors between phenotypes, they tell us nothing 

about the specific genes that may be important for such phenotypes. In order to answer 

questions related to the specific influence of certain genes it is necessary to perform 

tests of association by analysing segments of DNA and relating differences in specific 

genes to phenotypic differences between individuals. This section begins by describing 

the basics of molecular genetics followed by details of genotyping techniques using 

polymerase chain reaction, and methods of visualisation.  

 

2.9.1 Basics of molecular genetics  

 DNA is a molecule which contains the genetic information required to 

synthesize proteins. DNA molecules are made up of 4 nucleotide bases: adenine (A), 

guanine (G), cytosine (C) and thymine (T). The nucleotides form pairs, the A base with 

T, and the C base with G, so that the double-helix structure of DNA contains two 

strands of nucleotide sequences which are entirely complimentary to one another. Long 

segments or sequences of these nucleotide bases are organised into genes – the basic 

units of heredity. Genes often come in two or more forms, called alleles, which occur at 

a particular locus. We receive one allele of a particular gene from each of our parents, 

and within an individual these alleles may be identical, in which case the gene is said to 

be homozygous, or non-identical and called heterozygous. Small variations (known as 
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polymorphisms) in the structure of the segments of genes made up of the nucleotides 

are often associated with phenotypic variations observed in the population. This is 

because it is likely that different polymorphisms lead to the production of different 

amino acids when the gene is translated into a protein. However, it should be noted that 

it is also likely that phenotypic effects may be associated with non-functional (i.e. non-

protein coding) polymorphic regions of DNA. It is these variations (in both functional 

and non-functional coding regions) that are the focus of molecular genetic association 

studies.  

 There are several different types of polymorphisms, some of which involve just 

one nucleotide and are hence called ‘single nucleotide polymorphisms’ (SNPs). SNPs 

come in various forms: substitution, deletion, and insertion. Substitution refers to the 

change in a sequence of the nucleotides often of a single base (for example an A base 

substituted for a G), whereas deletion refers to the loss of a particular base, and 

insertion to the gain of an additional base, within a sequence. Although sometimes such 

variations have no (or no known as yet) function, some polymorphisms have been found 

to have a functional role. For example, a single base substitution in the CLOCK gene of 

mice reduces transcriptional activity of its protein products resulting in the deletion of 

51 amino acids. This has the consequent effect of lengthening the locomotor activity 

rhythm period in mice homozygous for the mutant CLOCK allele by around 3-4 hours 

(King, Zhao, et al., 1997). Other types of polymorphisms involve structural 

rearrangements such as duplication, length variations, or variable number tandem 

repeats (VNTR) of microsatellites (short tandem repetitive sequences that contain 

between 2-5 nucleotides, and vary in length between individuals (Weir, Anderson, & 

Hepler, 2006)). Duplication refers to the duplication of a specific segment of DNA. 

Length variations, however, occur when particular segments are repeated a variable 

number of times (as such length variations could be considered to be 
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insertions/deletions, where a particular sequence is either missing or added). An 

example of this is the length variation consisting of a ‘short’ or ‘long’ allele in the 

transporter region of the serotonin gene (5HTTLPR) associated with primary insomnia 

(Deuschle, et al., 2010). A variable number tandem repeat however, is when a small 

segment, usually a combination of 2 or more nucleotides, is repeated a variable number 

of times. For example, a VNTR in PER3 contains a 54-nucleotide coding region 

sequence which is repeated either 4 or 5 times, and has been found to be associated with 

diurnal preference (Archer, et al., 2003).  

 

2.9.2. Polymerase chain reaction 

 Identification of genetic variants is usually carried out using polymerase chain 

reaction (PCR) based techniques. PCR is a process whereby small segments of DNA 

(usually around 200-1000 base pairs) are replicated exponentially so that the segments 

are amplified for observation in the laboratory (O'Donovan & Owen, 2002). PCR 

requires several ingredients or reagents. The segment of DNA of interest (the template) 

is first identified, and a pair of primers (synthetic single stranded DNA molecules) are 

chemically synthesized. One primer is identical to the 5’ end of the genomic DNA 

sequence to be replicated, the other to the complimentary strand of DNA. The primers 

act as starting points for DNA replication by isolating the region of interest. In addition 

to the DNA template and primers, PCR requires a mixture of deoxynucleoside 

triphosphates  (dNTPs) – the individual 4 nucleotides that make up DNA, and Taq 

polymerase, an enzyme which synthesizes new strands of DNA.  

  PCR involves heating this mixture in a thermocycler at varying temperatures. 

First, during the denaturation stage, the DNA is heated to around 95°C for roughly 30 

seconds so that the double stranded DNA is split into two single strands. Second, in a 

process called hybridization the mixture is cooled to around 50°C for roughly 30 

http://en.wikipedia.org/wiki/Nucleoside
http://en.wikipedia.org/wiki/Nucleoside
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seconds so that the primers anneal to each of the separate strands of DNA by base 

pairing. Third, the taq polymerase attaches to the primer segments ready for DNA 

synthesis. Fourth, in the extension step the mixture is heated to around 75°C and a 

complimentary strand of DNA to the DNA template is synthesized by the DNA 

polymerase using the dNTPs. This whole process is then repeated numerous times so 

that with each cycle the segment of DNA is replicated exponentially. As a result, the 

PCR product eventually contains millions of segments of the region of interest. This is 

then used to genotype individuals to determine which alleles of a particular gene the 

individual carries.  

 

2.9.3. Agarose gel electrophoresis 

 Genotyping involves measuring the size of the alleles at the region of interest. 

There are several methods to do this, one of which is agarose gel electrophoresis. In this 

process, the PCR products are mixed with a coloured dye and placed in a gel made from 

agar and water and stained with ethidium bromide (a chemical which fluoresces under 

UV light in the presence of DNA). A DNA ladder (a molecule which contains 

fragments of known size) is also placed into the gel alongside the PCR products so that 

the length of the alleles of the samples can later be determined. The gel is then placed in 

a tank containing a buffer solution and subjected to an electric current. As the PCR 

products are negatively charged, the samples will move through the gel towards to the 

positively charged end of the tank. During this process the PCR products separate. 

Shorter fragments travel faster and further through the gel than longer fragments as they 

are smaller and can fit through pores in the agarose more easily. The gel is then placed 

under UV light and photographed in order to visualise the DNA bands. The bands are 

measured by observing how far the fragments have migrated through the gel and 

measuring their position relative to the DNA ladder. In each column, if only one band is 
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present this is an indication that the individual carries two alleles of the same length, 

and is thus homozygous for one of the two possible alleles (i.e. short vs. long) for the 

gene of interest. If two bands are present, the individual carries one of each of the 

possible alleles for the gene of interest and is thus heterozygous. Figure 2.3 displays the 

DNA bands present for a selection of samples genotyped for PER3. 

 

Figure 2.3. Example PER3 gel electrophoresis picture                      

 

Note. On the left is the DNA ladder (HAEIII) with the base pair lengths indicated. The 

genotypes 1-3 are as follows: (1) homozygosity for the 4-repeat allele; (2) 

heterozygosity for the 4- and 5-repeat alleles; and (3) homozygosity for the 5- repeat 

allele. 

 

2.9.4. Taqman allelic discrimination 

 An alternative method to visualise the lengths of DNA fragments is Taqman® 

sequencing. In this method, 2 Taqman® oligonucleotide probes, which are labelled with 

reporter dyes (flurophores) to make them fluoresce, are included in the PCR mixture. 

These bind to the DNA template, and with each cycle of PCR the fluorescence of the 

probes is intensified. After PCR, the PCR products are placed into an Applied 
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Biosystems 7900HT Fast Real-Time PCR machine for allelic discrimination using the 

‘Sequence Detection System 2.0 (SDS)’ software (Applied Biosystems). The machine 

scans the samples and the fluorescence emissions from the dye are collected by a laser. 

The relative contribution of florescence from each sample is analysed and plotted on a 

graph to discriminate the alleles. Low signals from the amplified reaction indicate that 

the fluorescence is that of the unreacted probe. An increase in signal from either one of 

the probes indicates homozygosity for the specific allele attached to the probe. A 

simultaneous increase in signal from both probes indicates heterozygosity (McGuigan 

& Ralston, 2002). An example of the plot used to quantify the signals, and thus 

determine the genotypes of the samples, is presented in Figure 2.4. 

 The decision as to whether to visualise the genotypes by agarose gel 

electrophoresis or by the Taqman® SDS depends on the type of polymorphism under 

investigation. Gel electrophoresis is used predominantly to distinguish sizes of 

microsatellites (short tandem repeats consisting of 2-5 nucleotides), as it is possible to 

distinguish between the length of varying sequences (for example, whether a particular 

nucleotide sequence is repeated 4 (short) or 5 (long) times). The Taqman® SDS is used 

to identify SNPs. However, it is also possible to identify SNPs using gel 

electrophoresis, and this method would be chosen if the marker under investigation 

consisted of a SNP within a microsatellite (as in the case of identifying the A/G SNP 

within the transporter region of the 5HTT- gene, described in Chapter 7). 
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Figure 2.4. Example graph plotted by the Taqman Sequence Detection System for 

allelic discrimination 

       

 

Note. Along the X and Y axis is the fluorescence intensity for the 2 probes and hence the 2 

alleles. The green circles in the central area of the graph show an increase in signal intensity 

from both probes indicating heterozygosity. The red and navy circles show an increase in 

intensity for only one each of the probes, indicating homozygosity for one allele accordingly. 

The crosses indicate samples that could not be detected. 
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2.10  Sample Information 

 The participants in this thesis come from wave 4 of the G1219 and G1219Twins 

longitudinal studies. G1219 initially comprised adolescent offspring of adults from a 

large-scale population-based study (GENESiS) (Sham, et al., 2000). Approximately 

9,000 families were contacted and asked to take part in either G1219 or another study of 

hyperactivity in younger children, of whom a total of 3,600 families (40%) responded to 

at least one of the invitations (see Eley, Liang, et al., 2004 for more details). The 

G1219Twins are a random selection of live twin births born between 1985 and 1988 

identified by the UK Office of National Statistics. Health Authorities and General 

Practitioners then contacted families (N = 4,000), of whom 2,947 families received the 

packs (Lau, Rijsdijk, & Eley, 2006), and 1,381 twin pairs responded (47% of the sample 

that we know received the information, 35% of the entire original sample).  At wave 1 

of data collection (which took place between 1999 and 2002) 3,640 respondents aged 

between 12 and 19 years participated in the study. Informed consent was obtained from 

parents/ guardians of all adolescents under 16 years, and from the adolescents 

themselves when over 16. Ethical approval for different stages of this study has been 

provided by the Research Ethics Committees of the Institute of Psychiatry, South 

London and Maudsley NHS Trust, and Goldsmiths, University of London. At Wave 2, 

data were available from 2,646 individuals (73% of the original sample at Wave 1) 

whilst corresponding figures for Wave 3 were 1,777 adolescents (49% of the original 

sample at Wave 1).  

  At wave 4 (which took place in 2007 and is the focus of this thesis as wave 4 

was the first wave to include information about sleep) participants who had taken part in 

wave 2/ wave 3 were traced primarily by using websites dedicated to providing 

information (e.g. phone numbers and postal addresses) about members of the 

population. We successfully traced 2,550 individuals and sent them a questionnaire 
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booklet. Three reminders were then sent (a duplicate questionnaire was sent out with the 

last reminder in case the former had been misplaced). Participants were also emailed 

and telephoned in order to see whether they planned to take part. A total of 1,556 

individuals were included in the wave 4 dataset (61% of those targeted; 74% of those 

participating at wave 3). 

 Zygosity was established through a questionnaire measure completed by 

mothers at waves 2 and 3, assessing physical similarity between twins (Cohen, Dibble, 

Grawe, & Pollin, 1975). When zygosity was only available from one or other wave, this 

rating was used. If there was disagreement between zygosity rating at the two waves, 

DNA was obtained (N = 26 pairs) before final classifications were made. Questionnaire 

methods have been shown to have around 95% accuracy in correctly determining 

zygosity when validated against DNA markers (Price, et al., 2000). 

  At wave 4, 97.6% of the sample was classified as White British, 61.5% of the 

sample was female, and the mode age was 20 years (range 18-27 years). Following the 

study design the majority of participants were close in age (90% of participants were 

aged 18-22 years), but the inclusion of siblings inevitably created some age-spread. At 

wave 4 the 1,556 individuals came from 896 families: 75 MZ male (65 complete) pairs, 

76 DZ male (53 complete) pairs, 155 MZ female (125 complete) pairs, 138 DZ female 

(111 complete) pairs, 232 DZ opposite sex  (163 complete) pairs, 44 male-male sibling 

(28 complete) pairs, 68 female-female sibling (44 complete) pairs, 89 opposite sex 

sibling (56 complete) pairs. Sibling type was uncertain for a remaining 19 (15 complete) 

pairs.  

  In the whole G1219 sample, levels of parental education were somewhat higher 

(39% educated to A-level or above) than in a large nationally represented sample of 

parents (Meltzer, Gatward, Goodman, & Ford, 2000) where 32% were educated to A-

level or above. G1219 parents were also somewhat more likely to own their own houses 
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(82%) than in the nationally representative sample (68%). To reduce the impact of any 

initial response bias associated with educational level, the sample was re-weighted to 

match the distribution of educational qualifications in a nationally representative sample 

of parents (Meltzer et al., 2000). Effectively, weighting involves assigning lower 

weights to individuals from over-represented categories and higher weights to 

individuals from under-represented categories in the sample relative to the population 

distribution. The weights were created to be family-general, such that in model-fitting 

analyses, the weights did not incur any additional individual-specific effects between 

members of the same family. Additionally, the weight also corrected for the effects of 

additional attrition between waves 1 and 4. To create the response weight, predictors of 

attrition from each wave were first examined. The significant predictors of response 

were sex (girls were more likely to respond), housing tenure (response was more likely 

from families who owned their own houses), and from families with better educated 

mothers. Participating families were then weighted according to the inverse of the 

predicted probability of participation based on these predictor variables. The response 

rate was multiplied by the sampling weight and used in all analyses.  
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Chapter 3: Genetic and Environmental Influences on Different 

Components of Sleep Quality and their Overlap 

 

3.1 Overview 

 This chapter investigates the extent to which genetic and environmental factors 

influence global sleep quality as measured by the Pittsburgh Sleep Quality Index (PSQI: 

Buysse, et al., 1989), as well as the individual components of sleep quality encompassed 

by this measure; the degree to which these components co-occur; and genetic and 

environmental influences on this co-occurrence. Additive genetic influences accounted 

for 40%[.29-.50], and non-shared environmental influences accounted for 60%[.50-.71], of 

the variance in global sleep quality. Genetic influence on the individual components 

ranged from 0-50%. The remaining source of variance was the non-shared environment, 

except for ‘sleep duration’ for which shared environmental influences were important. 

Phenotypic correlations between components ranged from r =.22-.59. Bivariate analyses 

indicated that there was substantial overlap in the genes influencing the individual 

components (9 of 15 correlations were ≥.50), and in general, genetic influence 

accounted for roughly half of the associations between components (over 40% in 11 of 

15 correlations). Non-shared environmental influences were in general less correlated 

across the components (11 of 15 correlations were ≤.40), but owing to their greater 

influence on each variable still accounted for roughly half of each association (over 

40% in 13 of 15 correlations). These results suggest that genetic and non-shared 

environmental factors are most important in explaining individual differences with 

regards to different components of sleep quality, although shared environment may 

influence sleep duration. The pattern of overlap in the genetic and environmental 

influences accounting for the associations between components of sleep quality is 
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consistent with that seen in other areas of developmental psychopathology of general 

genes and specific non-shared environmental influences. 

 

3.2 Introduction 

The term ‘sleep quality’ often refers to a collection of measurements, 

encompassing sleep onset latency, sleep duration, sleep efficiency, and number of 

awakenings, amongst other things. Although sleep quality can be inferred using 

objective measures to record sleep, such as by using measurements of sleep timing, 

duration, depth and number of sleep stage transitions using polysomnography, and from 

indices of rest-activity patterns using actigraphy (Buysse, et al., 2006), sleep quality can 

sufficiently be assessed by self-report. Subjective sleep quality has most widely been 

assessed, in both the general population and in clinical populations, using the PSQI 

(Buysse, et al., 2006). Given the reliance on this measure as an indicator of sleep quality 

in the field of sleep research, the more we know about the construct it claims to 

measure, the better. The PSQI (Buysse, et al., 1989) is a comprehensive self-report 

questionnaire assessing sleep disturbances in the past month, that derives ordinal scores 

for seven clinically relevant domains (components) of sleep: subjective sleep quality, 

sleep latency (the time in minutes taken to fall asleep), sleep duration, habitual sleep 

efficiency (a percentage score derived from sleep duration divided by the total time 

spent in bed), sleep disturbances (such as awakenings from sleep due to poor comfort, 

bad dreams etc.), use of sleeping medication and daytime dysfunction (feeling sleepy 

during the day as a result of a poor night’s sleep). Scores from these separate 

components are combined to derive a global measure of sleep quality. The global score 

from the PSQI is typically used in many research contexts to assess sleep quality. 

However, it is possible that when assessed separately, or combined differently, the 

individual components measure qualitatively distinct aspects of sleep. Indeed, research 
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has demonstrated that certain components overlap to a greater extent than others and 

cluster together to form three distinct factors, tapping into ‘sleep efficiency’ (including 

the components ‘sleep duration’ and ‘habitual sleep efficiency’), ‘perceived sleep 

quality’ (including ‘subjective sleep quality’, ‘sleep latency’ and ‘use of sleeping 

medication’), and ‘daily disturbances’ (including ‘sleep disturbances’ and ‘daytime 

dysfunction’) (Cole, et al., 2006). Using a different measure to assess sleep, de Castro 

(2002) also found that certain components co-occur to varying degrees, with only small 

correlations between sleep duration and number of awakenings, and no association 

between sleep duration and sleep latency. Similar findings in relation to the overlap 

between certain sleep difficulties have been demonstrated in school aged children 

(Gregory, Rijsdijk, & Eley, 2006). However, it is currently unclear why certain 

components cluster together more strongly than others. It is possible that genetic 

factors, in part, account for the differing associations between components.  

Previous twin research, using different measures, has highlighted the importance 

of genes to several of these components of sleep quality. For example, the influence of 

genetic factors on sleep quality, sleep length and sleep disturbance has been found to be 

around 33% to 44% (Heath, et al., 1990; Partinen, et al., 1983). These studies used one 

item to determine sleep quality. Knowledge as to the contribution of genes and 

environments to global sleep quality assessed by the PSQI, as well as the individual 

components encompassing this measure, however, is currently unknown. An 

examination of the relative contribution of genetic and environmental influences on the 

individual components of sleep is beneficial since it adds to this growing body of 

literature on the determinants of sleep quality, and provides a more thorough 

understanding of the specific constructs encompassed by the PSQI.  

Genes are also known to play a role in the co-occurrence between different sleep 

problems (Gregory, 2008; Hublin, et al., 2001), and it is thus possible that genes 
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contribute to the differing associations observed between the components of sleep 

quality measured by the PSQI. However, the extent to which genetic and environmental 

influences account for the apparent associations between components is unclear and 

requires exploration. Bivariate analyses enable us to infer whether these aetiological 

influences are shared between the components, or whether they are distinct - from 

which inferences about their similarity could be made. Indeed, as mentioned previously 

(see Chapter 1, section 1.7) de Castro (2002) investigated several indices of sleep-wake 

behaviour and found that the genetic influences on them were largely unique. It is 

possible that genetic factors contribute to the greater similarity in stronger as compared 

to weaker associations between components. For example, genes may be more 

significant in explaining the association between ‘subjective sleep quality’ and ‘sleep 

latency’ (components which have been shown to cluster strongly), as compared to 

‘sleep disturbances’ and ‘sleep duration’ (components which cluster together less 

strongly). Examining how genetic and environmental influences map onto the clusters 

described above, as well as others, will be informative in terms of gaining an 

understanding of the degree to which these components measure an underlying 

construct of sleep quality, or whether the individual components measure qualitatively 

distinct sleep phenotypes. Substantial genetic overlap between components would 

support the view that these individual components of sleep quality are conceptually 

similar traits, and would provide justification for measuring sleep quality using the 

global score. Moreover, as mentioned in Chapter 1 (section 1.8) finding genetic overlap 

between aspects of sleep may be useful in identifying individuals at risk for the 

development of sleep problems, since identifying an individual with problems in one 

aspect of sleep may suggest that they are genetically sensitive to correlated symptoms. 

Identifying specific genes involved in sleep disturbances could also be facilitated by 

knowledge of the overlap between specific components of sleep quality. However, 



98 
 

dissimilarity in the aetiological associations between components would suggest that 

different biological/environmental mechanisms are at play, and that the components to 

some extent measure widely different indices of sleep. If this is true, future research 

should perhaps consider the possibility that the components of sleep should be 

examined independently. 

Accordingly, this chapter addresses the first set of research questions of this 

thesis, and examines: (i) the extent to which genetic and environmental factors influence 

global sleep quality assessed by the PSQI as well as the individual components of sleep 

quality encompassed by this measure; (ii) the strength of the associations between the 

components of sleep quality measured by the PSQI, with a focus on the clusters 

identified in previous research; (iii) whether there is overlap in the genetic and 

environmental influences on each of the components of sleep quality assessed 

separately; and (iv) the extent to which genetic and environmental influences account 

for the associations between components of sleep quality. 

 

3.3 Method 

3.3.1  Participants 

 The participants for this study were from the G1219 sample, and data was used 

from wave 4, as outlined in Chapter 2 (section 2.10). 

 

3.3.2 Measures 

 Subjective sleep quality was assessed using the PSQI (Buysse, et al., 1989). The 

PSQI contains 18 scored items (and an additional item relating to a bed partner which is 

not used in the calculation of the global score). Items include both open-ended questions 

and fixed-choice questions. The individual 18 items encompassed by the PSQI, and the 

coding methods for each item, are outlined in Table 3.1. Using different algorithms, 
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items are combined to form the 7 separate scales or ‘components’ of sleep: subjective 

sleep quality; sleep latency; sleep duration; habitual sleep efficiency; sleep disturbances; 

use of sleeping medication; and daytime dysfunction. The components are represented 

as ordinal variables coded from 0-3, where 0 indicates ‘no difficulty’, and 3, ‘severe 

difficulty’. The scores of different components can be summed to yield a global score 

with scores ranging from 0 to 21. Higher scores indicate poorer sleep quality. A score   

> 5 indicates a clinically significant sleep problem, and using this cut-off yields around 

90% diagnostic sensitivity at distinguishing ‘good’ from ‘poor’ sleepers (Buysse, et al., 

1989) (however this cut-off is not used in these analyses). The PSQI global score has 

previously demonstrated good psychometric properties, with both internal consistency 

and test-retest reliability in the .8 range (Backhaus, Junghanns, Broocks, Riemann, & 

Hohagen, 2002; Buysse, et al., 1989), and has favourable convergent validity when 

compared to other self-report sleep measures (Backhaus, et al., 2002; Carpenter & 

Andrykowski, 1998). In the present sample the PSQI global score yielded satisfactory 

internal reliability (Cronbach’s alpha (a) = .71).   

 

 

Table 3.1. Items included in Pittsburgh Sleep Quality Index  

1. During the past month, when have you usually gone to bed at night? 

2. During the past month, how long (in minutes) has it usually take you to fall 

asleep each night? 

3. During the past month, when have you usually gotten up in the morning? 

4. During the past month, how many hours of actual sleep did you get at night? 

(this may be different than the number of hours you spend in bed) 

During the past month, how often have you had trouble sleeping because you... 

5. Cannot get to sleep within 30 minutes 
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Table 3.1 (continued). Items included in Pittsburgh Sleep Quality Index 

6. Wake up in the middle of the night or early morning 

7. Have to get up to use the bathroom 

8. Cannot breathe comfortably 

9. Cough or snore loudly 

10. Feel too cold 

11. Feel too hot 

12. Had bad dreams 

13. Have pain 

14. Other reason(s), please describe 

15. During the past month, how would you rate your sleep quality overall? 

16. During the past month, how often have you taken medicine (prescribed or 

“over the counter”) to help you sleep? 

17. During the past month, how often have you had trouble staying awake while 

driving, eating meals, or engaging in social activity? 

18. During the past month, how much of a problem has it been for you to keep up 

enough enthusiasm to get things done? 

Note. Items 1-4 participants are required to indicate specific times/hours/minutes; Items 

5-14, 16 and 17 are coded as 0 = not during the past month; 1 = less than once a week; 2 

= once or twice a week; 3 = three or more times a week; Item 15 is coded as 0 = very 

good; 1 = fairly good; 2 = fairly bad; 3 = very bad; Item 18 is coded as 0 = no problem 

at all; 1 = only a very slight problem; 2 = somewhat of a problem; 3 = a very big 

problem. 

 

 

3.3.3 Statistical analysis 

 Descriptive statistics were performed using the Statistical Package for the Social 

Sciences (SPSS, 2001). Intraclass correlations (to assess global sleep quality), 

polychoric correlations (to assess the categorical sleep components) and genetic model 
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fitting analyses were carried out using Mx (Neale, 1997), as described in section 2.6.1, 

and incorporated the weight variable described in section 2.10 to account for selection 

bias and attrition. 

 

3.3.3.1 Data preparation 

3.3.3.1.1     Age and sex regression 

 Prior to analysis, the PSQI data were regressed for the effects of age and sex. 

Because twins within a pair share a common age and sex (in MZ and DZ same-sex 

pairs) similarity on a trait of interest may be partially due to these factors. In standard 

twin designs assessing quantitative traits it is necessary to correct for these age-sex 

effects as failure to do so can result in overestimation of the twin intraclass correlations 

(McGue & Bouchard, 1984). Age-sex regression is achieved by partialling out the 

effects of age and sex on the variable of interest using linear regression, and using the 

resulting unstandardised residual as the dependent variable (sleep quality). This 

technique is standard in twin model-fitting analyses of quantitative traits.  

 

3.3.3.1.2  Categorical variable coding 

The 7 components were originally coded as 4 category ordinal variables (coded 

0-3). However, in the current sample, examination of the frequency distribution of 

scores indicated that few individuals (ranging from 1.3% to 13.3% of the sample) 

scored at the upper extreme (a score of 3) for the components. Categories of scores 2 

and 3 were therefore collapsed to yield 3 discrete categories ranging from 0-2, where 0 

indicated ‘no difficulty’, 1 = ‘mild difficulty’ and 2 = ‘moderate/severe difficulty’. 
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3.3.3.2   Univariate modelling of global sleep quality 

 In order to assess the extent to which genetic and environmental factors 

influence global sleep quality assessed as a quantitative trait, standard univariate genetic 

analyses as outlined in Chapter 2 (section 2.4) were carried out.  

 

3.3.3.3 Liability threshold modelling 

 It is not possible to model categorical data in genetically sensitive designs in the 

same way as quantitative measures using the methods of quantitative genetic analysis 

outlined in Chapter 2. An approach to modelling categorical data in genetically sensitive 

designs is to use a liability threshold model. Liability threshold modelling is based on 

the assumption that the ordered categories of a variable have an underlying normal 

distribution, and that this liability distribution has threshold values discriminating the 

categories (Neale & Cardon, 1992). In other words, this model assumes that the 

contribution of all of the genetic and environmental influences on the liability of a trait 

sum to an underlying normally distributed liability continuum. In the context of a single 

variable, the thresholds are estimated so that the exact proportion of the distribution 

between thresholds reflects the observed proportions of the sample falling into each 

category. Thus, when a certain threshold of liability is reached, the individual falls into 

the corresponding category. In the present analyses, 2 thresholds were specified for each 

sleep component variable to model the three categories of symptoms, ‘no difficulty’, 

‘mild difficulty’ and ‘moderate/severe difficulty’. Using the proportions of the sample 

falling into each category for each variable, threshold values were calculated as the 

critical z-values (assuming a normal distribution with mean of 0 and standard deviation 

[SD] of 1) on the z-distribution which partition the distribution according to the cell 

frequencies. The first threshold represents the proportion of the sample scoring 0, and so 

is calculated as the z-value representing the corresponding proportion. The second 
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threshold represents the increment between the first z-value and a second z-value, with 

the second z-value placed according to the proportion of cases in the highest category, 

e.g. scoring 2. The critical z-values and threshold values for each sleep component 

variable are presented in Table 3.2.  

 

Table 3.2. Critical z-values estimated from relative cell proportions of data in each 

category for the sleep components 

Sleep Component 

 

Lower z-value  

(1
st
 threshold) 

Upper z-value 

 

Increment  

(2
nd

 threshold) 

1. Subjective Sleep Quality -.93 .70 1.63 

2. Sleep latency -.83 .42 1.25 

3. Sleep Duration .19 1.61 1.42 

4. Habitual Sleep Efficiency .40 1.20 .80 

5. Sleep Disturbances -1.68 .71 2.39 

6. Use of Sleeping Medication 1.44 2.1 .66 

7. Daytime Dysfunction -.72 .96 1.68 

Note. The upper z-value is subtracted from the lower z-value to give the incremental z-score (the 

2
nd

 threshold value). For example, the relative proportions in the categories 0, 1 and 2 for 

subjective sleep quality, were 17.6%, 57.1% and 24.3%, respectively. The z-value partitioning the 

normal distribution at 17.6% is -.93, and the z-value partitioning the upper 24.3% is .70. Thus, the 

difference between these values is 1.63 (the polarity of the value is reversed so that the threshold 

marks the upper tail of the distribution). 

 

In the bivariate case, it is assumed that the joint distribution of such liabilities 

have a multivariate normal distribution from which correlations and thresholds are 

estimated from the relative cell proportions of the data (Neale & Cardon, 1992). Thus, 

in the bivariate case, for each combination of any two sleep component variables there 

would be a contingency table with 9 cells of data, representing the 3 categories for each 

variable.  
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3.3.3.4 Polychoric correlations 

Prior to genetic model fitting, polychoric correlations (rather than intraclass 

correlations) between the underlying liabilities for the traits were estimated by model 

fitting of the MZ, DZ and sibling data. Polychoric correlations estimate the relationship 

between two ordinal variables, assuming that their underlying distributions reflect the 

normal distribution. In univariate analyses (e.g. subjective sleep qualitytwin1 and 

subjective sleep qualitytwin2), the cross-twin/sibling same-trait correlations are estimated 

in pairs of MZ twins, DZ twins and non-twin siblings separately. The difference in 

similarity between these groups is used to estimate genetic and environmental 

influences upon traits as modelled in the univariate genetic analyses. 

To assess the heritability and overlap between the individual components of 

sleep quality, a series of bivariate models were analysed, assessing the phenotypic 

correlations and relative contribution of A, C, and E; and A, D and E, to every 

combination of any two components. Although a multivariate model containing all 

variables simultaneously would have been favourable over conducting numerous 

bivariate models, this was not run because of the computationally intensive integration 

method used. In bivariate analyses, to simplify the interpretation of the data, the 

correlations (measured in pairs of MZ/DZ/sibling pairs separately) are constrained to 

provide: one within-twin/sibling cross-trait correlation (e.g. subjective sleep qualitytwin1 

and
 

sleep latencytwin1: equated between MZ/DZ/sibling groups, as these overall 

estimates would not be expected to differ by zygosity); three cross-twin/sibling same-

trait correlations (e.g. subjective sleep qualitytwin1 and subjective sleep qualitytwin2: one 

each for MZ/DZ/sibling group separately, as the dissimilarity between zygosity groups 

will give an indication of heritability); and three cross-twin/sibling cross-trait 

correlations (e.g. subjective sleep qualitytwin1 and sleep latencytwin2: one each for 

MZ/DZ/sibling group separately, as the dissimilarity between zygosity groups will give 
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an indication of bivariate heritability). The interpretation of the differences in magnitude 

of these correlations is outlined in Chapter 2 (section 2.7). 

 

3.3.3.5 Genetic model fitting 

Maximum-likelihood genetic model fitting estimates the model parameters (A, 

C, D and E) from the observed raw MZ, DZ and sibling data. Model fitting uses the 

differences in MZ and DZ twin/sibling correlations, and rests on the assumption that the 

variance of the liabilities is the sum of the contribution of genetic and environmental 

influences. In the bivariate analyses, the aim is to examine the extent to which the 

correlation between two traits is due to genetic or environmental overlap. 

For the univariate analysis of global sleep quality as well as the threshold 

analyses of the categorical data, models including additive genetic (A), shared 

environmental (C) or non-additive genetic (D), and non-shared environmental (E) 

variance components were examined. As mentioned in Chapter 2 (section 2.4) it is not 

possible to model both shared environmental effects and non-additive genetic effects 

simultaneously as they predict different MZ and DZ twin correlation ratios. These 

effects are examined in separate models, and the best fitting model is selected for 

interpretation. Furthermore, it is possible to examine nested models, where certain 

parameters (e.g. C) are dropped from the model by fixing the parameters to zero, to 

determine whether their exclusion results in a significant worsening of fit. Parameters 

which did not result in a significant worsening of fit when dropped were excluded from 

the models in order to adhere to parsimony. See Chapter 2 (section 2.6.2) for an 

overview of the model fitting procedures.  
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3.3.3.6   Sex differences 

Differences between males in females in terms of their overall PSQI score, as 

well as sex differences in the prevalence of the individual PSQI components were 

tested. In addition, in the genetic analyses, quantitative, qualitative and scalar sex 

differences were tested in the univariate genetic analysis of global sleep quality (for 

further details of these concepts see Chapter 2, section 2.8). In the threshold analyses of 

the individual components, however, only quantitative sex differences were explored 

(this was because there was no evidence for sex differences of any type in the 

investigation of global sleep quality and so further investigation of this was not 

considered warranted. An investigation of quantitative sex differences was undertaken, 

however, to further confirm the lack of effect). Quantitative sex differences were 

explored in the bivariate analyses as is standard practice in analyses of this kind. 

 

3.4 Results 

3.4.1 Descriptive statistics 

The frequencies of scores on the global PSQI are displayed in Figure 3.1. Skew 

was not considered problematic for the global PSQI score (skew = .98, [SE = .09]), and 

so this variable was not transformed for this purpose. Table 3.3 displays means and 

standard deviations of raw scores for global sleep quality split by sex and zygosity. 

There were no significant differences between the sexes on sleep quality (change in fit 

of a model where means and standard deviations between males and females are free to 

vary, compared to a model where this information is equated between the sexes: ∆χ
2
 = 

0.65, ∆df = 2, p=.72). 
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Figure 3.1. Histogram of the frequency of global PSQI scores 

        

                                       

 

 

Table 3.3. Descriptive statistics. Means (standard deviations) of scores for global sleep 

quality 

 Total Males  Females MZ DZ Sibs 

PSQI  5.66 (3.01) 5.58 (3.00) 5.72 (3.01) 5.45 (2.86) 5.74 (3.10) 5.70 (2.93) 

Note. PSQI = Pittsburgh Sleep Quality Index (range = 0-21); Means and standard deviations of 

raw (untransformed) data. Sex differences for means and standard deviations were tested, 
*
 p 

<.01.  
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The frequency of responses, which ranged from 0 (no difficulty) to 2 

(moderate/severe difficulty), for the 7 components of sleep quality is presented in 

Figure 3.2. As expected, different types of sleep phenotypes had widely differing 

prevalences. For ‘sleep quality’, ‘sleep latency’, ‘sleep disturbances’, and ‘daytime 

dysfunction’, the majority of the sample reported having mild difficulties rather than 

none or moderate/severe difficulties. For ‘sleep duration’, ‘habitual sleep efficiency’ 

and ‘use of sleeping medication’, however, the majority of the sample reported no 

difficulties, and fewer than 40% reported mild difficulties. As ‘use of sleeping 

medication’ was reported as ‘no difficulty’ (i.e. participants were not using sleeping 

medications) for the majority of the sample (91.6%), this component was not 

decomposed into genetic and environmental influences as the frequencies in the other 

categories of responses to this variable were too small to be included in further analysis.  

 

 Figure 3.2. Percentage of cases scoring 0, 1, or 2 for each component of the PSQI 

 

Note. Figure taken from Barclay et al. (2010). 
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 There were significant sex differences in the frequencies of cases falling into the 

severity categories for sleep disturbances, χ
2
(2) = 33.98, p<.001. A significantly higher 

proportion of females (31%) reported moderate/severe difficulties in sleep disturbances 

than males (19%). There were no significant differences between males and females in 

the frequencies of cases falling into each of the severity categories for the other sleep 

components.  

 

3.4.2 Phenotypic correlations 

Phenotypic correlations between all components (excluding ‘use of sleeping 

medication’ which was excluded because the majority of participants were not using 

sleeping medications) are presented in Table 3.4. The phenotypic correlations between 

all components ranged from r = .22-.59, the weakest association between ‘habitual 

sleep efficiency’ and ‘daytime dysfunction’ and the strongest between ‘sleep duration’ 

and ‘habitual sleep efficiency’ (which includes sleep duration in its calculation). For the 

three specific clusters outlined by Cole and colleagues (2006) the phenotypic 

correlations were moderate: ‘subjective sleep quality’ and ‘sleep latency’ (r = .58); 

‘sleep duration’ and ‘habitual sleep efficiency’ (r = .59); and ‘sleep disturbances’ and 

‘daytime dysfunction’ (r = .42). Confidence intervals (95%) excluded zero, indicating 

that all phenotypic correlations were significant. 
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Table 3.4. Phenotypic correlations (with 95% confidence intervals) between sleep components 

Sleep 

Component 

1. Subjective 

Sleep Quality 

2. Sleep 

Latency 

3. Sleep 

Duration 

4.Habitual 

Sleep 

Efficiency 

5. Sleep 

Disturbances 

7. Daytime 

Dysfunction 

1. Subjective 

Sleep Quality 

1 

 

     

2. Sleep 

Latency 

.58 

(.53 - .63) 

1     

3. Sleep 

Duration 

.47 

(.41 - .53) 

.31 

(.24 - .37) 

1    

4. Habitual 

Sleep Efficiency 

.47 

(.39 - .52) 

.45 

(.39 - .51) 

.59 

(.53 - .65) 

1   

5. Sleep 

Disturbances 

.48 

(.41 - .54) 

.47 

(.41 - .53) 

.23 

(.15 - .30) 

.33 

(.25 - .41) 

1  

7. Daytime 

Dysfunction 

.43 

(.37 - .49) 

.33 

(.26 - .39) 

.26 

(.19 - .33) 

.22 

(.14 - .29) 

.42 

(.35 - .48) 

1 

Note. All phenotypic correlations were obtained from Mx incorporating a weight to account for selection 

bias and attrition. Component 6 (use of sleeping medication) was excluded from all analyses due to the 

low frequencies in some categories of scores. 

 

 

 

3.4.3 Twin/sibling correlations 

 The cross-twin/sibling within trait correlations are presented in Table 3.5. All 

univariate twin correlations (except for sleep latency and sleep duration) were greater 

for MZ than DZ twins or siblings, (ranging from .22-.52 for MZ, and .03-.28 for DZ 

twins/siblings) suggesting genetic influence on global sleep quality as well as the 

individual components of sleep quality. For ‘global sleep quality’, ‘subjective sleep 

quality’, ‘habitual sleep efficiency’, and ‘daytime dysfunction’ the MZ correlations 

were greater than double the DZ/sibling correlations suggesting that non-additive 

genetic factors may be important for these phenotypes. For ‘sleep latency’ the MZ twin 

correlations were of similar magnitude to the sibling correlations (MZ = .22; siblings = 
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.24). Furthermore, the twin/sibling correlations for ‘sleep duration’ were of similar 

magnitude between all pairs (MZ = .23; DZ = .28; siblings = .26) suggesting that 

genetic influence was not important and that shared environmental influences accounted 

for twin/sibling similarity.  

 

 

Table 3.5. MZ, DZ and sibling cross-twin/sibling within trait correlations (with 95% 

confidence intervals) for sleep components 

Sleep 

Component 

Global 

Sleep 

Quality 

1.Subjective 

Sleep 

Quality 

2. Sleep 

Latency 

3. Sleep 

Duration 

4. Habitual 

Sleep 

Efficiency 

5. Sleep 

Disturbances 

7. Daytime 

Dysfunction 

MZ Twins .41  

(.28 - .52) 

.49 

(.31 - .63) 

.22 

(.03 - .40) 

.23 

(.02 - .42) 

.32 

(.09 - .51) 

.41 

(.24 - .57) 

.52 

(.37 - .65) 

DZ Twins .19  

(.08 - .30) 

.13 

(.00 - .26) 

.08 

(-.06 - .21) 

.28 

(.13 - .41) 

.17 

(.01 - .31) 

.21 

(.03 - .37) 

.16 

(.02 - .30) 

Siblings .13 

(-.05 - .31) 

.16 

(-.08 - .38) 

.24 

(.00 - .45) 

.26 

(-.01 - .49) 

.03 

(-.27 - .33) 

.04 

(-.24 - .31) 

.13 

(-.11 - .35) 

Note. MZ = monozygotic; DZ = dizygotic. All twin correlations were obtained from Mx incorporating a 

weight to account for selection bias and attrition. The model was constrained where appropriate. For 

example, the twin correlations were constrained so that those of the randomly selected twin 1’s were the 

same as the randomly selected twin 2’s. Component 6 (use of sleeping medication) was excluded from 

all analyses due to the low frequencies in some categories of scores. 

 

 

Bivariate cross-twin/sibling cross-trait correlations (e.g. ‘sleep latency’twin 1 and 

‘sleep duration’twin 2) are presented in Table 3.6 for MZ/DZ twins and Table 3.7 for 

siblings. For most pairs of variables (with the exception of ‘sleep duration and habitual 

sleep efficiency’; and ‘habitual sleep efficiency and daytime dysfunction’) cross-

twin/sibling cross-trait correlations were greater for MZ twins (ranging from .05-.33) 

than DZ twins/siblings (ranging from -.03-.23), suggesting genetic influence on these 
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associations. For 5 of these associations, MZ twin correlations were more than double 

the DZ/sibling cross-twin/sibling cross-trait correlations, suggesting that non-additive 

genetic factors may be important. 

 

 

Table 3.6.  MZ and DZ cross-twin cross-trait correlations (with 95% confidence intervals) for 

sleep component scores from bivariate models 

Sleep 

Component   

1. Subjective 

Sleep Quality 

2. Sleep 

Latency 

3. Sleep 

Duration 

4. Habitual 

Sleep 

Efficiency 

5. Sleep 

Disturbances 

7. Daytime 

Dysfunction 

1. Subjective 

Sleep Quality 

/ .20 

(.06 - .33) 

.23 

(.08 - .36) 

.28 

(.13 - .41) 

.31 

(.19 - .43) 

.27 

(.15 - .38) 

2. Sleep    

Latency 

.12 

(.02 - .22) 

/ .05 

(-.10 - .20) 

.18 

(.02 - .32) 

.21 

(.07 - .34) 

.18 

(.06 - .30) 

3. Sleep 

Duration 

.14 

(.03 - .24) 

.02 

(-.08 - .13) 

/ .09 

(-.08 - .25) 

.25 

(.12 - .38) 

.09 

(-.04 - .22) 

4. Habitual 

Sleep Efficiency 

.12 

(.02 - .23) 

.12 

(.01 - .22) 

.11 

(.00 - .23) 

/ .33 

(.19 - .46) 

.10 

(-.04 - .23) 

5. Sleep 

Disturbances 

.02 

(-.09 - .14) 

.19 

(.08 - .30) 

.14 

(.02 - .25) 

.06 

(-.06 - .18) 

/ .17 

(.05 - .29) 

7. Daytime 

Dysfunction 

.09 

(-.02 - .19) 

.09 

(-.01 - .19) 

.07 

(-.03 - .18) 

.10 

(-.01 - .20) 

.04 

(-.07 - .16) 

/ 

Note. Above diagonal: MZ = monozygotic twins. Below diagonal: DZ = dizygotic twins. All cross-twin 

cross-trait correlations were obtained from Mx incorporating a weight to account for selection bias and 

attrition. Component 6 (use of sleeping medication) was excluded from all analyses due to the low 

frequencies in some categories of scores.         
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Table 3.7.  Sibling cross-sibling cross-trait correlations (with 95% confidence intervals) for 

sleep component scores from bivariate models 

Sleep 

Component   

1. Subjective 

Sleep Quality 

2. Sleep 

Latency 

3. Sleep 

Duration 

4. Habitual 

Sleep 

Efficiency 

5. Sleep 

Disturbances 

7. Daytime 

Dysfunction 

1.Subjective 

Sleep Quality 

/      

2. Sleep 

Latency 

.15 

(-.04 - .32) 

/     

3. Sleep 

Duration 

.16 

(-.03 - .34) 

.07 

(-.11 - .24) 

/    

4. Habitual 

Sleep Efficiency 

.10 

(-.10 - .29) 

.05 

(-.15 - .24) 

.16 

(-.07 - .36) 

/   

5.Sleep 

Disturbances 

-.00  

(-.20 - .19) 

.15 

(-.05 - .33) 

-.03 

(-.23 - .17) 

.04 

(-.17 - .26) 

/  

7. Daytime 

Dysfunction 

.08 

(-.10 - .25) 

.07 

(-.10 - .23) 

.03 

(-.16 - .20) 

.09 

(-.11 - .28) 

.23 

(.04 - .42) 

/ 

Note. All cross-sibling cross-trait correlations were obtained from Mx incorporating a weight to account 

for selection bias and attrition. Component 6 (use of sleeping medication) was excluded from all 

analyses due to the low frequencies in some categories of scores.               

 

 

3.4.4 Univariate model fitting analyses 

Univariate genetic model fitting analyses for global sleep quality are presented 

in Table 3.8. The table first displays the fit of the saturated (fully unconstrained) model. 

Subsequently, qualitative, quantitative and scalar sex differences are tested, as are the 

significance of C and D. An ‘AE’ model in which sex differences were equated was 

considered the best-fitting model (i.e. not fitting significantly worse than fuller models 

[i.e. models allowing for sex differences or where C was included]; and as indicated by 

the lowest, negative AIC value). Additive genetic influences accounted for 40%[.29-.50], 

and non-shared environmental influences accounted for 60%[.50-.71], of the variance in 

global sleep quality. 
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Table 3.8. Fit statistics for univariate genetic model fitting analyses of global 

sleep quality  

 Model Fit Fit relative to saturated model 

Model -2LL df ∆χ
2
 ∆df p AIC 

1. Saturated  5705.55 1275     

2. ACE QSD + Qual. SD on A 5725.99 1292 20.44 17 .25 -13.56 

3. ACE QSD + Qual. SD on C 5726.05 1292 20.50 17 .25 -13.50 

4. ADE QSD + Qual. SD on A 5725.96 1292 20.41 17 .25 -13.59 

5. ADE QSD + Qual. SD on D 5725.98 1292 20.43 17 .25 -13.57 

6. ACE QSD 5726.05 1293 20.50 18 .31 -15.50 

7. ADE QSD 5726.08 1293 20.53 18 .30 -15.47 

8. ACE SSD 5729.86 1295 24.31 20 .23 -15.69 

9. ADE SSD 5729.19 1295 23.64 20 .26 -16.36 

10. AE SSD 5729.86 1296 24.31 21 .28 -17.69 

11. DE SSD 5730.91 1296 25.36 21 .23 -16.64 

12. ACE NSD 5729.98 1296 24.43 21 .27 -17.58 

13. ADE NSD 5729.32 1296 23.77 21 .30 -18.24 

*14. AE NSD 5729.98 1297 24.43 22 .33 -19.58 

15. CE NSD 5739.41 1297 33.86 22 .05 -10.14 

16. DE NSD 5731.04 1297 25.49 22 .27 -18.51 

17. E NSD 5774.22 1298 68.67 23 .00 22.67 

Note. * = Best-fitting model; QSD = Quantitative sex differences (magnitude of 

parameter estimates can vary between males and females); Qual. SD = Qualitative sex 

differences on A, C or D (genetic or shared environmental correlation between males and 

females); SSD = Scalar sex differences (variance differences between males and 

females); NSD = no sex differences; -2LL = -2*(log likelihood); df = degrees of freedom; 

∆χ
2 

and ∆df  = change in chi-square statistic and corresponding degrees of freedom 

(computed as the difference in likelihood and df between each model and the saturated 

model); p = probability; AIC – Akaike’s Information Criterion statistic (calculated as ∆χ
2 

– 2∆df). All analyses focus on transformed variables. All estimates were obtained from 

Mx and incorporated a weight to account for initial selection bias and selective attrition. 
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Univariate genetic model fitting analyses for the individual components of sleep 

quality are presented in Table 3.9. The parameter estimates presented are those from the 

best fitting models (those that did not fit significantly worse than saturated models and 

had the lowest AIC values). Shared environmental influences (C) could be dropped 

from all models except for ‘sleep duration’ without resulting in a significant worsening 

of fit to the data, indicating that this source of variance was not significant. Genetic 

influences (additive or non-additive effects accordingly) could not be dropped without 

significantly reducing the fit and so additive or non-additive genetic influences were 

retained in all models (with the exception of ‘sleep duration’), indicating that genetic 

factors were significant for these components. There were no significant differences in 

the magnitude of genetic and environmental influences on the sleep components 

between males and females (indicated by no significant worsening in fit of models in 

which quantitative sex differences were equated compared to models where the 

parameters were free to vary between the sexes [all ∆χ
2 

= p >.05]). All univariate 

models provided an adequate fit to the data, not fitting significantly worse than 

saturated models (∆χ
2 

= p >.05). Genetic influence (both additive and non-additive 

effects) on the components (with the exception of ‘sleep duration’) ranged from 23%-

50%, with the remaining source of variance due to the non-shared environment (ranging 

from 50%-77%). For ‘sleep duration’, shared and non-shared environmental influences 

accounted for the entire variation between individuals. 
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Note. * = best fitting model; -2LL = minus twice the log-likelihood; df = degrees of freedom; ∆χ
2 
= change in -

2LL between the saturated model and the genetic model; ∆df = change in degrees of freedom between the 

saturated model and the genetic model; p = probability; AIC = Akaike’s information criterion (calculated as 

Table 3.9. Fit statistics and parameter estimates from univariate genetic analyses 

 Genetic model 

fit 

Fit relative to saturated 

model 

Parameter estimates from best 

fitting model 

 -2LL df ∆χ
2
 ∆df p AIC A C/D E 

1. Subjective  Sleep 

Quality                      SAT 

ACE 

ADE 

AE 

CE 

*DE 

E 

 

1673.87 

1696.62 

1694.37 

1696.62 

1704.99 

1694.43 

1724.76 

 

1293 

1327 

1327 

1328 

1328 

1328 

1329 

 

 

22.75 

20.5 

22.75 

31.12 

20.56 

50.89 

 

 

34 

34 

35 

35 

35 

36 

 

 

.93 

.97 

.94 

.66 

.78 

.05 

 

 

-45.25 

-47.5 

-47.25 

-38.88 

-49.44 

-21.11 

 

 
/ 

 

 

.50 
(.34 - .63) 

 

 

.50 
(.37 - .66) 

2. Sleep Latency 

SAT 

ACE 

ADE 

*AE 

CE 

DE 

E 

 

1865.25 

1901.68 

1901.70 

1901.70 

1902.51 

1902.65 

1910.72 

 

1271 

1305 

1305 

1306 

1306 

1306 

1307 

 

 

36.43 

36.45 

36.45 

37.26 

37.40 

45.47 

 

 

34 

34 

35 

35 

35 

36 

 

 

.36 

.35 

.40 

.37 

.36 

.13 

 

 

-31.57 

-31.55 

-33.55 

-32.74 

-32.60 

-26.53 

 

 

.23  
(.08 - .37) 

 

 

/ 

 

 

.77  
(.63 - .92) 

3. Sleep Duration 

SAT 

ACE 

ADE 

AE 

*CE 

DE 

E 

 

1340.28 

1358.69 

1362.29 

1362.29 

1358.69 

1368.03 

1380.17 

 

1279 

1313 

1313 

1314 

1314 

1314 

1315 

 

 

18.41 

22.01 

22.01 

18.41 

27.75 

39.89 

 

 

34 

34 

35 

35 

35 

36 

 

 

.99 

.94 

.96 

.99 

.80 

.30 

 

 

-49.59 

-45.99 

-47.99 

-51.59 

-42.25 

-32.11 

 

 

/ 

 

 

.26         
(.15 - .37) 

 

 

.74 
(.63 - .85) 

4. Habitual  Sleep 

Efficiency                 SAT 

ACE 

ADE 

*AE 

CE 

DE 

E 

 

1396.77 

1426.26 

1426.22 

1426.26 

1428.05 

1426.88 

1437.91 

 

1262 

1296 

1296 

1297 

1297 

1297 

1298 

 

 

29.49 

29.45 

29.49 

31.28 

30.11 

41.14 

 

 

34 

34 

35 

35 

35 

36 

 

 

.69 

.69 

.73 

.65 

.70 

.26 

 

 

-38.51 

-38.55 

-40.51 

-38.72 

-39.89 

-30.86 

 

 

.30 
(.13 - .46) 

 

 

/ 

 

 

.70 
(.54 - .87) 

5. Sleep Disturbances 

SAT 

ACE 

ADE 

*AE 

CE 

DE 

E 

 

1034.30 

1064.49 

1064.46 

1064.49 

1068.70 

1064.85 

1087.81 

 

1283 

1317 

1317 

1318 

1318 

1318 

1319 

 

 

30.20 

30.17 

30.20 

34.41 

30.55 

53.51 

 

 

34 

34 

35 

35 

35 

36 

 

 

.65 

.65 

.70 

.50 

.68 

.03 

 

 

-37.80 

-37.83 

-39.80 

-35.59 

-39.45 

-18.49 

 

 

.39 
(.23 - .53) 

 

 

/ 

 

 

.61 
(.47 - .77) 

7. Daytime Dysfunction 

SAT 

ACE 

ADE 

AE 

CE 

*DE 

E 

 

1605.02 

1637.86 

1635.43 

1637.86 

1649.33 

1635.44 

1676.92 

 

1275 

1309 

1309 

1310 

1310 

1310 

1311 

 

 

32.84 

30.41 

32.84 

44.31 

30.42 

71.90 

 

 

34 

34 

35 

35 

35 

36 

 

 

.52 

.64 

.57 

.13 

.69 

.00 

 

 

-35.16 

-37.59 

-37.16 

-25.69 

-39.58 

-0.10 

 

 
/ 

 

 

.53 
(.39 - .65) 

 

 

.47 
(.35 - .61) 
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∆χ
2 
– 2∆df); A = genetic influence; C = shared environmental influence; D = non-additive genetic influence; E 

= non-shared environmental influence. All analyses were obtained from Mx incorporating a weight to account 

for selection bias and attrition. Component 6 (use of sleeping medication) was excluded from all analyses due 

to the low frequencies in some categories of scores.               

 

 

3.4.5 Bivariate model fitting analyses 

Model fitting information from the bivariate genetic models is presented in 

Table 3.10. Most full bivariate model fitting analyses (with the exception of two: the 

association between ‘sleep latency and daytime dysfunction’; and the association 

between ‘habitual sleep efficiency and sleep disturbances’) did not fit significantly 

worse than saturated models (∆χ
2 

= p >.05), and so provided an adequate fit to the data. 

Nested models, in which the influence of the shared environment or non-additive 

genetic influence was fixed to zero, were considered to be the models of best fit (as 

indicated by large, negative AIC values) compared to the full ACE or ADE models for 

all associations except 3 (the associations between ‘sleep latency and sleep duration’; 

‘sleep duration and habitual sleep efficiency’; and ‘habitual sleep efficiency and ‘sleep 

disturbances), indicating that these sources of variance were not significant and could be 

dropped from the models.
1
 For the associations between ‘sleep latency and sleep 

duration’; ‘sleep duration and habitual sleep efficiency’, and ‘habitual sleep efficiency 

and sleep disturbances’, nested models in which additive genetic influence was fixed to 

zero were considered to be the best fitting models, indicating that this source of variance 

could be dropped from these models without significantly worsening their fit. 

 

 

 
                                                           
1
 Of note, ‘DE’ models were not tested in the bivariate analyses in order to simplify the interpretation of the 

numerous models, and because in terms of broad-sense heritability ‘AE’ models incorporate all genetic effects. ‘E’ 

models were not tested in the bivariate analyses as the univariate analyses indicated that these fit significantly poorly 

and so were not considered appropriate here. 
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Table 3.10.  Fit statistics for bivariate genetic model fitting analyses 

 Saturated model 

fit 

Genetic model 

fit 

Fit relative to saturated 

model 

 -2LL df -2LL df ∆χ
2
 ∆

df 
p AIC 

1. Subjective sleep quality & 

 

2. Sleep latency 

ACE 

ADE 

*AE 
CE 

4090.03 2607 4124.34 

4120.24 

4124.34 
4133.50 

2630 

2630 

2633 
2633 

34.31 

30.21 

34.31 
43.47 

23 

23 

26 
26 

.06 

.14 

.13 

.02 

-11.69 

-15.79 

-17.69 
-8.53 

1. Subjective sleep quality & 

 

3. Sleep duration 

ACE 

ADE 

*AE 
CE 

3703.20 2615 3723.91 

3724.12 

3726.97 
3731.52 

2638 

2638 

2641

2641 

20.71

20.92

23.77

28.32 

23 

23 

26 
26 

.60 

.59 

.59 

.34 

-25.29 

-25.08 

-28.23 
-23.68 

1. Subjective sleep quality & 

4. Habitual Sleep Efficiency 

ACE 

ADE 

*AE 
CE 

3781.97 2598 3804.44 

3801.35 

3803.77 
3813.77 

2621 

2621 

2624 
2624 

22.47 

19.38 

21.80 
31.80 

23 

23 

26 
26 

.49 

.68 

.70 

.20 

-23.53 

-26.62 

-30.20 
-20.20 

1. Subjective sleep quality & 

5. Sleep disturbances 

ACE 

ADE 

*AE 
CE 

3408.77 2619 3432.36 

3429.05 

3433.84 
3444.77 

2642 

2642 

2645 
2645 

25.59 

20.28 

26.07 
36.00 

23 

23 

26 
26 

.32 

.62 

.51 

.09 

-20.41 

-25.72 

-26.93 
-16.00 

1. Subjective sleep quality & 

7. Daytime dysfunction 

ACE 

ADE 

*AE 
CE 

3981.54 2611 4015.95 

4012.91 

4015.94 
4034.45 

2634 

2634 

2637 
2637 

34.41 

31.37 

34.40 
52.91 

23 

23 

26 
26 

.06 

.11 

.12 

.00 

-11.59 

-14.63 

-17.60 
.91 

2. Sleep latency &  

3. Sleep duration 

ACE 

ADE 

AE 

*CE 

3998.94 2593 4026.91 

4030.31 

4030.93 

4027.94 

2616 

2616 

2619 

2619 

27.97 

31.37 

31.99 

29.00 

23 

23 

29 

29 

.22 

.11 

.19 

.31 

-18.03 

-14.63 

-20.01 

-23.00 

2. Sleep latency &  

4. Habitual sleep efficiency 

ACE 

ADE 

*AE 
CE 

3977.92 2576 4011.68 

4010.11 

4010.16 
4012.51 

2599 

2599 

2602 
2602 

33.76 

32.19 

32.24 
32.59 

23 

23 

26 
26 

.07 

.10 

.18 

.12 

-12.24 

-13.81 

-19.76 
-17.41 

2. Sleep latency &  

5. Sleep disturbances 

ACE 

ADE 

*AE 
CE 

3611.83 2597 3637.84 

3637.12 

3638.24 
3641.62 

2620 

2620 

2623 
2623 

26.01 

25.29 

26.41 
26.79 

23 

23 

26 
26 

.30 

.33 

.44 

.28 

-19.99 

-20.71 

-25.59 
-22.21 

2. Sleep latency &  

7. Daytime dysfunction 

ACE 

ADE 

*AE 
CE 

4248.34 2589 4288.60 

4285.44 

4288.22 
4300.20 

2612 

2612 

2615 
2615 

40.26 

37.10 

39.88 
51.86 

23 

23 

26 
26 

.01 

.03 

.04 

.00 

-5.74 

-8.90 

-12.12 
-0.14 

3. Sleep duration & 

4. Habitual sleep efficiency 

ACE 

ADE 

AE 

*CE 

3340.02 2584 3350.29 

3353.85 

3354.16 

3353.18 

2607 

2607 

2610 

2610 

10.27 

13.83 

14.14 

13.16 

23 

23 

26 

26 

.99 

.93 

.97 

.98 

-35.73 

-32.17 

-37.86 

-38.84 

3. Sleep duration & 

5. Sleep disturbances 

 

 

 

 

 

ACE 

ADE 

*AE 
CE 

3202.24 2605 3222.09 

3225.43 

3225.63 
3228.07 

2628 

2628 

2631 
2631 

19.85

23.19 

23.39 
25.83 

23 

23 

26 
26 

.65 

.45 

.61 

.47 

-26.15 

-22.81 

-28.61 
-26.17 
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Table 3.10 (continued). Fit Statistics for Bivariate Genetic Model Fitting Analyses 

  Saturated model 

fit 

Genetic model 

fit 

Fit relative to saturated 

model 

  -2LL df -2LL df ∆χ
2
 ∆

df 
p AIC 

3. Sleep duration &  

7. Daytime dysfunction 

ACE 

ADE 

*AE 
CE 

3758.21 2597 3782.80 

3783.64 

3786.36 
3794.26 

2620 

2620 

2623 
2623 

24.59 

25.43 

28.15 
36.05 

23 

23 

26 
26 

.38 

.33 

.35 

.09 

-21.41 

-20.57 

-23.85 
-15.95 

4. Habitual sleep efficiency &  

5. Sleep disturbances 

ACE 

ADE 

AE 

*CE 

3228.45 2588 3313.98 

3314.79 

3316.22 

3323.52 

2611 

2611 

2614 

2614 

85.53 

86.34 

87.77 

95.07 

23 

23 

26 

26 

.00 

.00 

.00 

.00 

39.53 

40.34 

35.77 

43.07 

4. Habitual sleep efficiency &  

7. Daytime dysfunction 

ACE 

ADE 

*AE 
CE 

3832.22 

 

2580 

 

3860.95 

3857.28 

3860.95 
3873.18 

2603 

2603 

2606 
2606 

28.73 

25.06 

28.73 
40.96 

23 

23 

26 
26 

.19 

.35 

.32 

.03 

-17.27 

-20.94 

-23.27 
-11.04 

5.  Sleep disturbances &  

7. Daytime dysfunction 

ACE 

ADE 

*AE 
CE 

3382.27 2601 3411.66 

3408.68 

3411.66 

3426.10 

2624 

2624 

2627 
2627 

29.39 

26.41 

29.39 
43.83 

23 

23 

26 
26 

.17 

.28 

.29 

.02 

-16.61 

-19.59 

-22.61 
-8.17 

Note. * = best fitting model; -2LL = minus twice the log-likelihood; df = degrees of freedom; ∆χ
2 

= 

change in -2LL between the saturated model and the genetic model; ∆df = change in degrees of freedom 

between the saturated model and the genetic model; p = probability; AIC = Akaike’s information criterion 

(calculated as ∆χ
2 

– 2∆df); A = genetic influence; C = shared environmental influence; D = non-additive 

genetic influence; E = non-shared environmental influence. All analyses were obtained from Mx 

incorporating a weight to account for selection bias and attrition. Component 6 (use of sleeping 

medication) was excluded from all analyses due to the low frequencies in some categories of scores.      

 

  

The parameter estimates from the best fitting bivariate genetic models were 

selected for interpretation and are presented in Table 3.11. The top half of the table 

indicates the genetic and environmental correlations on the associations between sleep 

components. For most associations, the bivariate genetic correlations (rA) were of 

moderate to high magnitude (9 of 15 correlations were ≥.50). For example the genetic 

correlation between ‘subjective sleep quality and daytime dysfunction’ was 54%[95% CI’s, .33-

.75], suggesting substantial overlap in the genes influencing one component of sleep and 

those influencing another. For the 3 associations where shared environment was included 
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in the models, there was small to moderate overlap in these influences between 

components (rC = .18, .51 and .70). As compared to the rA, the non-shared environmental 

correlations (rE) were somewhat lower (11 of 15 correlations were ≤.40). For example, the 

non-shared environmental correlation between ‘sleep latency and sleep duration’ was 

34%[.23-.43] suggesting that this source of influence was in general, more component-

specific.  

The bottom half of Table 3.11 indicates the proportion of the phenotypic 

correlations accounted for by A, C, and E. The parameter estimates indicate that genetic 

influences accounted for between 37%-98% of all associations (with the exception of the 3 

associations where CE models provided the best fit). In general, genetic influence 

accounted for roughly half of the associations (accounting for over 40% in 11 of 15 

correlations) indicating that genes were partially responsible for the co-occurrence of any 

two phenotypes in all associations. For example, genes accounted for 59%[.33-.83] of the 

variance in the association between ‘subjective sleep quality and habitual sleep efficiency’. 

For the three associations where genetic influence was excluded from the models, shared 

environment accounted for a small to moderate proportion of covariance (11%, 19% and 

42%). Non-shared environmental influence explained a substantial proportion of 

covariance for the majority of the associations (ranging from 2%-89%; ≥40% in 13 of 15 

correlations).  
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Table 3.11. Parameter estimates (with 95% confidence intervals) from the best fitting 

bivariate genetic models 

 1. Subjective 

Sleep Quality 

2. Sleep 

Latency 

3. Sleep 

Duration 

4. Habitual 

Sleep 

Efficiency 

5. Sleep 

Disturbances 

7. Daytime 

Dysfunction 

1. Subjective 

Sleep Quality 

/ rA     .69 

 (.43 – .97) 

rA    .68  

(.41 – .96) 

rA    .74 

(.45 – 1.00) 

rA    .57 

(.33 –.80) 

rA    .54  

(.33 – .75) 

rE     .54 

 (.41 – .65) 

 

rE     .35  

(.19 – .50) 

rE     .29 

(.12 – .46) 

rE     .42 

(.25 – .56) 

rE    .35  

(.21 – .50) 

2. Sleep 

Latency 

A    .37  

(.18 - .56) 

/ rC    .18 

(-.27 – .55) 

rA    .74  

(.34 – 1.00) 

rA    .82  

(.54 – 1.00) 

rA    .55  

(.25 – .92) 

E    .63  

(.44 – .82) 

rE    .34  

(.23 – .43) 

 

rE    .35 

(.20 – .49) 

rE     .32  

(.16 – .46) 

rE    .23 

(.07 – .38) 

3. Sleep 

Duration 

A    .53  

(.29 – .75) 

C    .11  

(-.14 – .36) 

/ rC    .51  

(.16 – .66) 

rA    .62  

(.32 – .99) 

rA    .27  

(-.01 – .53) 

E    .47 

(.25 – .71) 

E    .89  

(.64 – 1.14) 

 

rE    .62 

(.53 – .71) 

rE    .01 

 (-.12 – .19) 

rE    .26  

(.09 – .43) 

4. Habitual 

Sleep 

Efficiency 

A   .59 

 (.33 – .83) 

A   .43  

(.16 – .68) 

C    .19  

(.04– .25) 

/ rC    .70  

(.35 – 1.00) 

rA    .37  

(.06 – .71) 

E    .41  

(.17 – .67) 

E    .57  

(.32 – .84) 

E    .81 

 (.75 – .95) 

 

rE    .27 

(.15 – .39) 

rE    .12  

(-.06 – .30) 

5. Sleep 

Disturbances 

A    .48  

(.25 – .70) 

A    .54  

(.31 –.77) 

A    .98  

(.51 – 1.58) 

C    .42  

(.20 – .66) 

/ rA    .42  

(.18 – .66) 

E    .52  

(.30 – .75) 

E    .46 

(.23 – .69) 

E    .02 

(-.58 – .49) 

 

E    .58  

(.34– .80) 

 rE    .42  

(.25 – .58) 

7. Daytime 

Dysfunction 

A    .55  

(.31 – .78) 

A    .55  

(.23 – .85) 

A    .41  

(-.02 – .80) 

A    .64  

(.12 – 1.19) 

A    .42  

(.17 – .66) 

/ 

E    .45  

(.22 – .68) 

E    .45  

(.15 – .77) 

E    .59  

(.20 – 1.02) 

E    .36  

(-.19 – .88) 

E    .57  

(.34 – .83) 

 

Note. Above diagonal: Bivariate Correlations rA, rC, rE; Below diagonal: Proportion of phenotypic 

correlation due to A, C and E. All analyses were obtained from Mx incorporating a weight to account for 

selection bias and attrition. Component 6 (use of sleeping medication) was excluded from all analyses due 

to the low frequencies in some categories of scores.          

     

 

3.5  Discussion 

 The aim of this chapter was to address the first set of research questions posed in 

the introduction of this thesis. Specifically, this chapter examines (i) the extent to which 

genes and environments influence global sleep quality as measured by the PSQI as well 

as the individual components of sleep quality encompassed by this measure; (ii) the 
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phenotypic overlap between these components, with a focus on the clusters identified in 

previous research (Cole, et al., 2006); (iii) the extent to which genetic and 

environmental contributions overlap for different combinations of phenotypes; and (iv) 

the magnitude to which genetic and environmental influences contribute to the 

associations between components. The main findings here were that the contribution of 

genetic and environmental influences to the individual components of sleep quality 

varied somewhat between components, and most notably that genetic factors were not 

important for ‘sleep duration’. Furthermore, the individual components of sleep quality 

were significantly associated, but the extent to which genes and environments explained 

these associations differed between clusters. Specific discussion of the phenotypic 

associations, and the genetic and environmental influences on global sleep quality, the 

individual components and the associations between them, is presented below followed 

by an outline of the limitations specific to this study. 

 

3.5.1 Frequencies of sleep disturbances 

 The mean global sleep quality score in the present sample was 5.66 (SD = 3.01). 

Although scores above 5 typically indicate the presence of a clinically significant sleep 

disturbance (Buysse, et al., 1989), this score is in line with previous general population 

samples which have measured sleep quality using the PSQI. For example, in a 

population-based sample of 3403 adults with a mean age of 51 years in Japan, the mean 

PSQI score was 4.9 (Hayashino, et al., 2010);  in a community study of 4173 adults 

aged between 18 and 65 years in Germany the mean PSQI score was 5.01 (Stein, Belik, 

Jacobi, & Sareen, 2008); and in a community sample of 401 adults aged between 18 and 

68 years in the UK the mean PSQI score was 5.44 (Wood, Joseph, Lloyd, & Atkins, 

2009). 
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 Contrary to much of the previous literature (for example, see Ohayon, 2002, for 

a review) there was no evidence for sex differences in global sleep quality. Whilst this 

finding was unexpected, this result conforms with other reports which have not found 

evidence for statistically significant sex differences in global sleep quality score 

measured by the PSQI (Carpenter & Andrykowski, 1998; Driscoll, et al., 2008; 

Valentine, et al., 2009; Valladares, Eljammal, Motivala, Ehlers, & Irwin, 2008). 

However, it should be noted that, when assessing the individual components, there 

appeared to be a greater proportion of females reporting moderate/severe symptoms of 

‘sleep disturbances’ than males. This finding is in line with numerous epidemiological 

studies which report a female bias in terms of the severity of sleep disturbance type 

symptoms (Zhang & Wing, 2006). In particular, Lichstein and colleagues reported a 

significantly greater number of awakenings (analogous to sleep disturbances measured 

here) in females as compared to males (Lichstein, et al., 2004) (although the authors 

note that, whilst significant, the reported sex differences were small). However, the 

authors also reported that females had significantly worse sleep efficiency than males, a 

finding which did not reach statistical significance in the present study. However, it 

should be noted that here the component severity categories were used rather than the 

raw scores from the individual scale items. Thus, utilising the component scores of the 

PSQI may not necessarily be the optimum method of assessing quantitative measures 

such as sleep efficiency.  

 

 

3.5.2 Genetic and environmental influences on global sleep quality and the 

individual components of sleep quality 

 The magnitude of genetic and environmental influences on global sleep 

quality was consistent with previous reports (Heath, et al., 1990; Partinen, et al., 1983) 
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demonstrating that additive genetic influences accounted for a moderate amount of 

variance, with the remaining variance due to the nonshared environment. This finding 

adds to the small body of twin literature on the heritability of global sleep quality, and 

confirms that results using the PSQI to assess sleep quality are almost exactly the same 

as studies assessing sleep quality using a somewhat crude measure. In addition, there 

was no evidence for significant differences between males and females in the 

heritability of global sleep quality (or the individual components). This is contrary to a 

recent twin study in which sleep quality in females was found to be more heritable than 

in males (Paunio, et al., 2009). However, it should be noted that other studies assessing 

the heritability of sleep quality have not generally assessed differences in heritability 

between the sexes. As such, further studies investigating sex differences for sleep 

quality are essential in order to determine whether males and females do differ with 

regards to the magnitude of genetic and environmental influences on this phenotype. 

For the individual components of sleep quality, genetic influences (both additive 

and non-additive effects) were important for the majority of components, although the 

magnitude of genetic influence varied somewhat between them. The estimates presented 

here (genetic influence ranging from 23%-50%) are in accordance with previous twin 

studies focusing on other individual aspects of sleep, such as daytime sleepiness, 

(Carmelli, et al., 2001), sleep quality (Heath, et al., 1990; Partinen, et al., 1983), sleep 

pattern (de Castro, 2002); and sleep latency and disturbance (Heath, et al., 1990). 

Although this study looks at sleep phenotypes in the normal range, these results suggest 

that some individuals may be genetically sensitive to developing problems with sleep. 

The finding reported here that genes did not influence sleep duration (assessed as a 

univariate trait) was unexpected as other studies report a strong genetic influence on 

‘sleep duration’ (Heath, et al., 1990; Partinen, et al., 1983). A possible explanation for 

this discrepancy could be the age of the participants. Sleep patterns and difficulties are 
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affected by age (for example, Carrier, et al., 1997; Gregory & O'Connor, 2002; Jones, et 

al., 2007; Kramer, Kerkhof, & Hofman, 1999), and so it is possible that sleep duration 

may be more variable in young adults than at other ages. For example, Partinen and 

colleagues (1983) dichotomised their sample into those aged 18-24 years and those 25 

years and over. The authors found that genetic influence on ‘sleep duration’ appeared to 

be smaller in those aged 18-24 years compared to those aged 25+ years. As such, it is 

possible that for younger participants, such as those in the present study, genes play a 

less prominent role for this phenotype. In support of this, Gedda and Brenci (1979) 

found that genetic influences were not important for sleep duration in children aged 

between 6-8 years, but of some importance in teenagers (16-18 years). Likewise, 

Gregory and colleagues (2006) found no evidence for genetic influence on child 

reported sleep duration in a small sample of school-aged children. It is thought that this 

occurs due to the greater importance of family-wide environmental experiences present 

in younger individuals. As such, it appears that estimates of genetic influence on sleep 

duration vary as a function of the developmental time period encapsulated by the 

sample. This may also be true in young adulthood. Furthermore, many of our 

participants were studying at university (40%). At university there is potentially social 

pressure to stay out and go to bed late, and the possibility of a less rigid routine 

compared to individuals in full-time work. Thus, a tentative suggestion is that such 

environmental pressures may have attenuated the impact of genes on sleep length. 

Indeed, in the present study, the students – as compared to the non-students went to bed 

significantly later (mean time = 11:56pm, SD = 1 hour 19 minutes vs. mean time = 

11:15pm, SD = 1 hour 21 minutes, respectively; t(1530) = 9.68, p <.001) and slept 

significantly longer (mean time = 7 hours 38 minutes, SD = 8.4 minutes vs. mean time  

= 7 hours 25 minutes, SD = 16.2 minutes, respectively, t(1523) = -3.32, p<.001), 

suggesting that perhaps the non-shared environment was a significant source of 
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influence for these participants. A further possible explanation for our lack of genetic 

influence on sleep duration is that, of all the components of the PSQI, sleep duration is 

likely to be under the most voluntary control. It can be difficult to control sleep latency, 

efficiency, quality, disturbances, etc., but often one can control the amount of sleep one 

gets. Thus, the smaller influence of genes, especially with regards to this age group, 

may reflect the fact that one can voluntarily give in to the social pressures that may be 

much stronger here than in other age groups, and thus the impact of genes may be 

attenuated. 

A point worthy of consideration regards the type of genetic effects observed for 

the individual components of sleep. Additive genetic effects were important for sleep 

latency, habitual sleep efficiency and sleep disturbances, yet non-additive genetic 

effects were important for the subjective sleep quality component and daytime 

dysfunction. These findings provide an insight into the possible genetic mechanisms 

which may be at play. Future research into these mechanisms will reinforce the findings 

presented here. However, it should be highlighted that as these findings are preliminary 

it may be best to interpret the results in terms of ‘broad sense heritability’, combining 

both additive and non-additive effects, as it is not possible to make further speculations 

as to the exact mechanisms at play within this dataset. 

Shared environmental influences were non-existent for global as well as the 

individual components of sleep quality except for sleep duration. This is in line with a 

previous twin study of sleep which has demonstrated that the familial environment 

becomes less influential to sleep-wake behaviour when twins live independently from 

one another (de Castro, 2002). This is also consistent with a substantial amount of other 

behavioural genetic research focusing on other phenotypes, where the contribution of 

the shared environment has been found to often be indistinguishable from zero (Burt, 

2009; Plomin & Daniels, 1987).
 
This is generally thought to occur as individuals have a 
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tendency to seek out novel environments in adulthood, and so the effect of the non-

shared environment is much more substantial.
 
However, shared environmental influence 

was important for ‘sleep duration’, accounting for 26% of the variance in the phenotype. 

This suggests that, even in young adults, family-wide influences are important for 

determining how long one sleeps. For twins living in the same home, it could be 

suggested that shared influences such as living near a noisy road, or having strict rules 

about going to bed and getting up at a set time contribute to this.  

Non-shared environmental influences were important for global as well as the 

individual components of sleep quality assessed here, and explained the majority of 

variance in all cases. Although non-shared environmental influence includes error, this 

finding may suggest that identifying individual-specific environmental influences that 

affect sleep quality may lead to a better understanding of normal sleep habits and, 

potentially, problems. Possible non-shared environmental factors could include early 

childhood adversities and family conflict, which have been found to predict later poor 

sleep quality and insomnia in adulthood (Gregory, Caspi, Moffitt, & Poulton, 2006; 

Koskenvuo, Hublin, Partinen, Paunio, & Koskenvuo, 2010); relationship issues 

(Ohayon, 1996); negative life events (Bernert, Merrill, Braithwaite, Van Orden, & 

Joiner, 2007); or ill health and physical pain which are often associated with poor sleep 

(Ohayon, Caulet, & Guilleminault, 1997).    

 

3.5.3  Phenotypic associations between components of sleep quality 

Associations were found between all components of sleep quality, of varying 

magnitude, suggesting that the components to some extent measure an underlying 

construct of ‘sleep quality’ - supporting the use of the global score of the PSQI. 

Consistent with Cole and colleague’s (2006) findings, the strongest associations were 

between, 1) ‘subjective sleep quality and sleep latency’; and 2) ‘habitual sleep 
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efficiency and sleep duration’, though there was only a moderate association between 

‘sleep disturbances and daytime dysfunction’ (which were also moderately associated 

with ‘subjective sleep quality’). These findings support Cole and colleague’s proposed 

structure of the PSQI, and suggest that overall sleep quality relies on a short sleep onset 

latency, few disturbances, and little daytime dysfunction. However, the far from perfect 

concordance between components suggests some degree of specificity between them. 

The weakest association was found between ‘habitual sleep efficiency and daytime 

dysfunction’. This suggests that less efficient sleep does not necessarily impede daytime 

functioning.   

 

3.5.4 Genetic and environmental influences on the associations between 

components of sleep quality 

The present study aimed to examine why different aspects of sleep quality co-

occur. For most associations, genes were important determinants of the associations 

between components. For example, a large proportion of the association between 

‘habitual sleep efficiency and daytime dysfunction’ was accounted for by genes (despite 

the phenotypic correlation being small, r = .22), and there was substantial overlap in the 

genes influencing the majority of the components. As such, similar genes influenced the 

co-occurrence of these phenotypes. Finding genetic overlap between problems suggests 

that once genes have been found that influence one aspect of sleep, those genes may be 

worthwhile exploring in relation to other aspects of sleep with which it is associated. 

Based on this, genes may be preferentially sought for those factors that show the highest 

genetic overlap. Although specific genes were not identified in this study, possible 

candidate genes could be proposed from previous research (for example, see Brummett, 

Krystal, Ashley-Koch, et al., 2007; Serretti, et al., 2003). 
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 For Cole’s three factors, the influence of genes and degree of overlap was 

variable, suggesting that the grouping of components within these factors occur for 

different reasons. As an example, for the ‘sleep efficiency’ factor (encompassing ‘sleep 

duration’ and ‘habitual sleep efficiency’), genes accounted for 0% of the phenotypic 

correlation between the phenotypes comprising this factor, whereas for the ‘perceived 

sleep quality’ factor (encompassing ‘subjective sleep quality’ and ‘sleep latency’), there 

was substantial overlap in the genetic influences attributable to both phenotypes in this 

association, and overall genes accounted for 37% of the phenotypic correlation. 

Accordingly, the results presented here to some extent support the factor structuring of 

the PSQI proposed by Cole et al., although some associations show genetic specificity. 

 One finding worth further consideration is the association between ‘sleep 

disturbances and sleep duration’. The univariate analysis indicated that genetic 

influence was absent for ‘sleep duration’, however genetic factors explained almost all 

of the association with sleep disturbances. Incorporating variables into a bivariate model 

can alter the univariate estimates on individual traits as estimates consider both 

phenotypes simultaneously. Indeed, the univariate genetic influence on ‘sleep duration’ 

was estimated at .34 in the bivariate model (and the genetic correlation was .62), which 

explains why there was considerable genetic influence on the association with this and 

the other phenotypes. Too much weight should not be placed on this finding as the 

phenotypic correlation between ‘sleep disturbances and sleep duration’ was small. 

 Overall, the finding that the associations between phenotypes were moderate, 

and that the overlap in the genetic influences accounting for most phenotypic 

associations was substantial, suggests that the components of the PSQI may be 

influenced by shared genes. Large genetic associations between different behaviours has 

been reported previously with regards to internalizing problems such as anxiety and 

depression (Middeldorp, Cath, Van Dyck, & Boomsma, 2005),  and it is suggested that 
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‘general genes’ are important for both types of psychopathology (Eley, 1997). Thus, it 

appears that the ‘generalist genes’ hypothesis may be applicable to the components of 

sleep quality assessed here. As such, the data here support the use of the global score of 

the PSQI in studies assessing normative sleep patterns in healthy populations, since it 

appears that the components, stemming from similar genetic factors, may overall 

measure one underlying trait. However, it must also be noted that the shared genetic 

correlations between components, in all cases, were less than unity, suggesting that 

there are, to some extent, unique genetic effects at play between components. 

Environmental factors were also important in explaining the co-occurrence of 

phenotypes. For most associations, shared environmental influences were negligible, the 

main influence being the non-shared environment. Non-shared environmental 

influences, although important for all associations, were of greatest magnitude for the 

association between ‘sleep latency and sleep duration’. It is possible that difficulty 

falling asleep and disruptions from sleep could be influenced by environmental factors, 

such as noise, temperature and disruption from others. There was partial overlap, of 

varying magnitude, in the non-shared environmental influences affecting all 

combinations of phenotypes, suggesting that the environmental influences on the 

individual components of the PSQI were more variable and component specific than 

were genetic influences - which showed much greater similarity across components. 

This, again, follows the pattern often seen in other areas of developmental 

psychopathology, where general genes, but specific environmental influences account 

for the overlap between phenotypes (Eley, 1997). This pattern was reflected in Cole’s 

three factors also, where the influence of the environment, although significant in 

explaining the associations between phenotypes, was much more variable across factors. 

As such, the search for unique environmental influences on the individual aspects of 

sleep may be beneficial in identifying those at risk for poor sleep quality. 
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3.5.5 Possible implications for nosology 

 The findings presented in this chapter may be informative for the area of sleep 

research focussed on the nosology of insomnia and insomnia subtypes. There is much 

debate within the literature as to how to conceptualise insomnia and its possible 

subtypes (Edinger, et al., 1996; Edinger & Krystal, 2003). Some researchers 

conceptualise insomnia subtypes based on the diagnostic criteria for primary insomnia, 

including sleep onset insomnia, sleep maintaining insomnia, and insomnia with early 

morning awakening (Hohagen, et al., 1994). Recent research found moderate 

associations between subtypes categorised in this way, and that the subtypes were 

differentially associated with depression, suggesting that the subtypes were somewhat 

distinct (Yokoyama, et al., 2010). The present results, however, found a high correlation 

between sleep latency and sleep disturbances (which may be considered analogous to 

measuring sleep onset insomnia and sleep maintaining insomnia). There was also 

substantial genetic overlap between these components. Accordingly, the present results, 

genetically speaking, do not support the differentiation of sleep onset insomnia from 

sleep maintaining insomnia, suggesting that they may stem from a similar genetic 

background. In partial accordance with this, Ohayon and Bader (2010), investigated the 

determinant factors of the three main DSM-IV defined insomnia symptoms, difficulty 

initiating sleep, difficulty maintaining sleep, and non-restorative sleep. The authors 

found that difficulty initiating sleep and difficulty maintaining sleep appeared to share 

common predictive factors, whilst non-restorative sleep appeared to have a distinct 

profile. The authors suggest the possibility that the specific symptom, non-restorative 

sleep, may have a unique aetiological profile compared to that of other insomnia 

symptoms. Further research specifically focussed on addressing the aetiological overlap 

between insomnia symptoms and subtypes defined in this way will be useful in terms of 

further validating these distinctions. More recent and comprehensive classification 



132 
 

systems, such as the ICSD-2, divide insomnia into highly specific subtypes, including 

psychophysiological insomnia, idiopathic insomnia, inadequate sleep hygiene, and 

sleep-state misperception, to name a few (American Academy of Sleep Medicine, 

2005). The DSM-IV, however, simply differentiates between primary insomnia, 

insomnia related to another mental disorder or organic factor, and substance induced 

sleep disorder (American Psychiatric Association, 1994). Research aimed at 

investigating the underlying causes of the primary symptoms of each of these subtypes 

will aid in determining the best method for subtyping insomnia. Such research may be 

useful for refining diagnostic criteria for the forthcoming edition of the DSM.  

 In addition to potentially informing the subtyping of insomnia, the present 

results may provide information for subtyping sleep quality. The lowest genetic 

correlations, and hence, the highest degree of aetiological specificity, was between the 

components sleep latency and sleep duration; habitual sleep efficiency and sleep 

disturbances, (where bivariate models excluding genetic effects provided the best fit in 

both cases); and sleep duration and daytime dysfunction. The three highest genetic 

correlations were between ‘subjective sleep quality and habitual sleep efficiency’; ‘sleep 

latency and habitual sleep efficiency’; and ‘sleep latency and sleep disturbances’. 

Accordingly, these results perhaps suggest that sleep quality could be subdivided into 

categories distinguishing between components based on degree of ‘sleep fragmentation’ 

type symptoms (including sleep latency and sleep disturbances), overall sleep quality 

(including subjective sleep quality and habitual sleep efficiency), and considering sleep 

duration and daytime dysfunction as separate entities.  

 

3.5.6 Limitations 

There are a number of limitations relevant to all analyses outlined in this thesis 

that should be considered when interpreting all findings presented. These more general 
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limitations are discussed in detail in Chapter 8 (section 8.3). Here limitations specific to 

the analyses of the present chapter are discussed. The first limitation specific to this 

study regards statistical analyses. Using ordinal data can reduce the power to detect 

genetic and environmental components of variance. Furthermore, the computationally 

intensive integration method used limits the number of variables that can be 

simultaneously analysed. This means that it was unfeasible to combine all component 

sleep scores into one multivariate model, which is favoured over conducting multiple 

bivariate models as it increases power. Additionally, in several of the bivariate 

associations, confidence intervals on the parameters were wide and spanned zero. This 

largely reflects the sample size and consequent power limitations. As such, these 

findings should be considered as preliminary and interpreted accordingly. This 

highlights the need for replications in much larger samples.  

 A second limitation regards the age of the sample. Because the age range of our 

sample was limited to 18-27 years, with 90% of the sample clustering around 18-22 

years of age, we were unable to investigate age differences in relation to the heritability 

of the components of sleep quality. Such an investigation may be valuable since it is 

known that sleep changes with age (Gregory & O'Connor, 2002; Kramer, et al., 1999). 

Further research from this study will be necessary in order to determine whether the 

relative contribution of genes and environments on these components and their overlap 

fluctuates over time. However, the limited age range studied here reduces genetic 

heterogeneity and so provides an accurate description of the relative impact of genes 

and environments on sleep in the age group under study.  

 A third limitation concerns the use of sleeping medications within our sample. 

Although the component ‘use of sleep medication’ was not analysed in its entirety, all 

individuals (including those who claimed to use sleeping medications frequently) were 

included in the analyses of the other components. Although only a small percentage of 
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the sample were using sleeping medications frequently (fewer than 3%), it is possible 

that their inclusion could artificially inflate the non-shared environmental estimates, 

since one twin’s sleep may have differed to their co-twin as a result of one twin using 

medications. However, there was no support for this hypothesis when the analyses were 

re-run after excluding all of those who took sleep medicines (unreported), the results of 

which were substantially similar to those reported. 

    

3.5.7 Conclusion 

 In conclusion, the results from this chapter suggest that there is substantial 

overlap in the genetic influences on the individual components of sleep quality 

encompassed by the PSQI. This points to the conclusion that these components to some 

extent measure an underlying construct of sleep quality, supporting the use of the global 

score. In addition, non-shared environmental influences accounted for the majority of 

variance in both global sleep quality as well as the individual components. Although 

standard twin analyses such as these provide us with no information regarding the 

contribution of specific non-shared environmental influences, alternative twin designs 

have the ability to inform us about the specificity of the non-shared environment. It is to 

this issue that we now turn in Chapter 4.   
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Chapter 4: Non-Shared Environmental Influences on Sleep 

Quality: A Monozygotic-Twin Differences Approach 

 

4.1 Overview 

 Research has consistently demonstrated that environmental influences are 

important for explaining the variability in sleep quality observed in the general 

population. Although there is substantial evidence assessing associations between sleep 

quality and a host of environmental variables, it is possible that their effects are 

mediated by genetic influence. This chapter uses the MZ twin differences design to 

examine whether the associations between a host of candidate ‘environmental’ measures 

and global sleep quality are mediated via genetic influences (or indeed the shared 

environment), or whether there is a purely non-shared environmental effect at play. 

When controlling for genetic and shared environmental effects, within monozygotic 

twin-pair differences in sleep quality were associated with within monozygotic twin-

pair differences in general health for males (β = 1.56, p <.001) and relationship 

satisfaction for females (β = 1.01, p <.05). These results suggest that the associations 

between these variables have a significant non-shared environmental effect. However, 

for the remaining environmental measures assessed, the results suggest that these 

seemingly ‘environmental’ influences are actually in part dependent on genetics and/or 

the shared environment. These findings give insight into how specific environments 

affect sleep and the possible mechanisms behind these associations. 
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4.2 Introduction 

There is now a growing body of evidence for genetic influence on sleep related 

phenotypes (for example, see Gregory & Franken, 2009), a finding which is supported 

by numerous twin studies (e.g. Heath, et al., 1990; Partinen, et al., 1983) including the 

results of Chapter 3, demonstrating that separate components of sleep quality are in part 

influenced by genetic factors. What is particularly interesting about twin studies, 

however, is that they can tell us as much about the environment as they can about 

genetics. Indeed, the aforementioned twin studies highlighted that, in addition to 

genetics, experiences specific to each twin (non-shared environmental influences) 

appear to influence and account for a substantial proportion of variance in sleep quality, 

assessed as a global construct as well as when the individual components are examined 

separately; whereas shared environmental influences by contrast appear to contribute 

little (with the exception of sleep duration). Explicit investigation of these distinct types 

of environmental influence (shared vs. non-shared) is key to understanding the 

mechanisms through which the environment affects behaviour.  

However, standard quantitative genetic analysis, as in Chapter 3, tells us nothing 

about the specific environmental influences at play. One method for examining specific 

non-shared environmental influences on traits is to use only monozygotic (MZ) twins. 

Because MZ twins share 100% of their genetic make-up as well as their shared 

environment, any differences between them must be due to the non-shared environment 

(and measurement error). In standard twin analyses, identifying non-shared 

environmental factors that function independently of genetics and the shared 

environment is complicated by the fact that genetic factors may influence, or interact 

with, the environment (for an overview of gene-environment interplay see Chapter 1, 

section 1.6.4). This hypothesis is confirmed by studies demonstrating that genetic 

factors often influence exposure to certain environmental conditions – a concept termed 
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gene-environment correlation (Plomin, et al., 2008). Thus, many measures traditionally 

thought of as ‘environmental’ are actually in part genetically driven. Indeed, Kendler 

and Baker (2007) demonstrated that a host of environmental measures, including 

stressful life events, parenting, social support, peer interactions and marital quality are 

around 30% heritable. This means that we may select our environments based on our 

genetic predispositions. Furthermore, genes and environments may interact to bring 

about behaviour. Gene-environment interaction may mean that an individual is 

genetically sensitive to a particular trait or disorder, but that symptoms are evident only 

in the presence of an identified environmental stressor (for further discussion, see 

Chapters 1 and 5). Thus, gene-environment correlation and interaction make it difficult 

to identify purely non-shared environmental components that are independent of 

genetics or the shared environment. The MZ twin differences design, however, assesses 

the degree of dissimilarity between MZ twins on a measured environmental variable and 

an outcome variable which allows us to disentangle the interplay between genes and 

environments to determine purely non-shared environmental components contributing 

to the outcome. The MZ twin differences design has been used to determine specific 

non-shared environmental effects for a number of traits, for example behavioural 

development and adolescent depression (Asbury, Dunn, Pike, & Plomin, 2003; Caspi, et 

al., 2004; Liang & Eley, 2005), and is a simple yet powerful method of determining 

twin discrepancy that is independent of genetics and the shared environment (Pike, 

Reiss, Hetherington, & Plomin, 1996). 

Of course in order to determine whether the environment has a purely non-

shared environmental contribution to a phenotype of interest, candidate environmental 

influences must first be selected for investigation. Prior research has implicated a 

number of ‘environmental’ influences on sleep quality that may be worthy candidates 

for analysis. For example, several studies have highlighted the negative effects of 
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stressful life events on sleep quality (Lavie, 2001; Mezick, et al., 2009; Sadeh, 1996; 

Vahtera, et al., 2007). Within the life events literature, a common conceptualisation of 

life events is to categorise them as dependent or independent according to the perceived 

controllability of such events (Brown & Harris, 1978). Dependent negative life events 

can be defined as those that an individual has some degree of control in bringing about 

(examples included in this category are financial or relationship problems). Independent 

negative life events are defined as those not influenced by an individual’s behaviour 

(examples considered in this category include death of a relative or having something 

valuable lost or stolen). Indeed, a variety of negative life events have been associated 

with intra-individual variability in sleep duration and fragmentation (Mezick, et al., 

2009), sleep disturbances (Lavie, 2001), and sleep onset disturbances (Vahtera et al., 

2007). Another study shows a dose-response relationship such that individuals 

experiencing more family conflict experience poorer sleep (Gregory, Caspi, et al., 

2006). Although it is clear that both controllable and uncontrollable events have 

negative consequences on sleep it is possible that these distinct types of negative life 

event are associated with sleep differentially. For example, the feelings of responsibility 

involved in creating dependent negative life events could hinder sleep through the worry 

and cognitive rumination of the negative events to a greater extent than do independent 

negative life events. Indeed heightened cognitive arousal is known to disrupt sleep 

(Harvey, 2002). Other phenotypes, such as depression, have been found to be associated 

differentially with dependent and independent negative life events (Cui & Vaillant, 

1997; Liang & Eley, 2005).  

Other candidates for study include demographic differences and relationships. 

Epidemiological data suggest that sleep difficulties are more prevalent among 

individuals with a low income, low educational attainment, and those unemployed (Ford 

& Kamerow, 1989; Grandner, et al., 2010; Ohayon, 1996, 2009a). They are also more 



140 
 

prevalent in separated/divorced and widowed individuals as compared to married 

couples (Ford & Kamerow, 1989; Grandner, et al., 2010; Hale, 2005). Furthermore, 

marital satisfaction has been found to be associated with fewer sleep disturbances in 

women (Troxel, Buysse, & Hall, 2009) and so it appears that the quality of romantic 

relationships, in addition to relationship status, may be an important determinant of 

sleep. Given the apparent importance of relationships on sleep it may also be important 

to assess the quality of peer relationships and friendships. In children bullying interferes 

with sleep (Williams, Chambers, Logan, & Robinson, 1996), and low connectedness 

with peer groups is associated with subjective insomnia in adolescents (Yen, Ko, Yen, 

& Cheng, 2008). Similarly, in adults workplace bullying is associated with sleep 

disturbances (Lallukka, Rahkonen, & Lahelma, 2010; Neidhammer, David, Degioanni, 

Drummond, & Philip, 2009). Accordingly, investigation of friendships appears 

warranted. Additionally, the depression literature shows that affiliation with deviant 

peers is associated with increased depressive symptoms (Fergusson, Wanner, Vitaro, 

Horwood, & Swain-Campbell, 2003). This relationship is in part mediated by the 

increase in deviant behaviours that occurs in individuals affiliating with deviant peers. 

Research from our team has demonstrated that sleep problems are associated not only 

with depression (Gregory, Buysse, et al., 2011), but also with deviant behaviours 

(Barclay, Eley, Maughan, Rowe, & Gregory, 2010). Because of these associations it is 

worth considering whether peer groups and affiliations with deviant peers also influence 

sleep quality. A final candidate for study is general health. Poor sleep is associated with 

poor general health (for example, see Briones, et al., 1996; Finn, Young, Palta, & 

Fryback, 1998; Gangswisch, et al., 2010), and so it is possible that differences in health 

are associated with differences in sleep between twins. In addition, consideration of 

possible sex effects is also worthy of investigation. Although the results of Chapter 3 

found no evidence for significant sex differences in global sleep quality, sleep is 
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typically known to differ between males and females (Ohayon, 2002). As such it is 

possible that not only does sleep itself differ between the sexes, but that the influences 

that affect sleep are also sex dependent (in the standard twin design it is not possible to 

investigate qualitative sex differences in the non-shared environment as these influences 

are unique to each individual and so it does not make theoretical sense to equate them). 

Although the extant literature demonstrates that numerous traditionally viewed 

‘environmental’ factors are associated with sleep, as previously discussed many have 

been shown to be under genetic influence (Kendler & Baker, 2007). Thus, whether these 

associations are also influenced by a purely non-shared environmental component (in 

addition to the proportion explained by genetics) is in question. Investigating this issue 

will shed light on the mechanisms by which these factors are associated with poor sleep. 

Accordingly, in this study the MZ twin differences design was used to address the 

second set of research questions of this thesis. Specifically, it investigates (i) whether 

there are significant associations between sleep quality and a range of candidate non-

shared environmental factors (including negative life events, [dependent and 

independent], demographic characteristics, aspects of relationships [both romantic and 

with peers] and general health); and (ii) whether there is a purely non-shared 

environmental component to these associations (i.e. do these associations remain 

significant even after controlling for genetic and shared environmental factors). 

Furthermore, differences between males and females were tested in order to determine 

whether the effects were sex-specific. Sleep quality in the present study (and indeed 

throughout the remainder of this thesis) was assessed using the global score. 

Examination of the global score is perhaps the most accurate conceptualisation of ‘sleep 

quality’, given that this is the PSQIs most common usage, and because the significant 

phenotypic correlations between components in Chapter 3 suggested that these 

components were to some extent measuring one underlying construct.  
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4.3 Method 

4.3.1 Participants 

Data from all complete monozygotic (MZ) twin pairs (n=190 complete pairs) 

from Wave 4 of the G1219Twins study were used in analyses (Mean age=19.8 years 

[SD=1.26], range=18-22 years; 65.8% female). 

 

4.3.2 Measures 

4.3.2.1   Sleep quality 

 Sleep quality was assessed by the global score of the Pittsburgh Sleep Quality 

Index – described in Chapter 3 (section 3.3.2). In the sample used in this study, the 

PSQI global score yielded satisfactory internal reliability (Cronbach’s alpha (a) = .70).   

 

4.3.2.2  Dependent and independent negative life events 

Negative life events were assessed using items from the ‘List of Threatening 

Experiences’ (Brugha, Bebbington, Tennant, & Hurry, 1985), and the ‘Coddington 

Stressful Life Events Scale’ (Coddington, 1984). Participants were required to respond 

to these checklists by indicating whether or not they had experienced a particular 

negative life event in the last year. Twenty one items were summed to give a score of 

total life events, which were further subdivided into 13 items assessing dependent 

negative life events (e.g. break up of a steady relationship) and 8 items assessing 

independent negative life events (e.g. death of a parent). Dependent and independent 

negative life events were classified according to whether it is likely that their occurrence 

is the consequence of an individual’s behaviour as suggested by Brown and Harris 

(1978). This distinction between life events has been used in previous studies (Silberg, 
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et al., 2001)  as well as another paper from the G1219 study (Liang & Eley, 2005). The 

items included in these scales are outlined in Table 4.1. 

 

Table 4.1. Items included in the dependent and independent negative life events scales taken 

from the ‘List of Threatening Experiences’ and the ‘Coddington Stressful Life Events Scale’ 

Dependent Negative Life Event Scale 

1. Separation due to marital difficulties 

2. Serious problem with a close friend, neighbour or relative 

3. Problems with police or court appearance 

4. Unemployed or seeking work for more than one month 

5. Suspension/expulsion from college or university 

6. Have become involved in drugs 

7. Had a major financial crisis 

8. Break up of a steady relationship 

9. Failed end of year exams 

10. Start of a new problem between you and your parents 

11. Been sacked from a job 

12. Been invited by a friend to break the law 

13. Have failed to achieve something you really want 

Independent Negative Life Events Scale 

1. Been in hospital with a serious illness or injury 

2. A parent hospitalized for a serious illness or injury 

3. Death of a second degree relative (e.g. grandparent) 

4. A sibling hospitalized for a serious illness or injury 

5. Death of a parent 

6. Had something valuable lost or stolen 

7. Death of a sibling 

8. Death of a close friend 
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4.3.2.3  Education 

 Educational achievement was assessed by one question asking participants their 

highest UK qualification (ranging from none, GCSE, GNVQ, AS level, A level, BTEC, 

HND, degree). Higher scores indicated a higher level of education attained.  

 

4.3.2.4  Employment 

 Participants were initially asked to indicate their employment status according to 

one of the following categories: unemployed, full-time student, employed full-time, 

part-time student/work, on gap year, on government benefit, or full-time parent. 

However, a large proportion of the sample (93.9%) fell into either the ‘employed full-

time’ (48.4%) or ‘full-time student’ (45.5%) category, with only a few participants 

unemployed (n=13) or full-time parents (n=7). No participants fell into the remaining 

categories. As such employment status was re-categorised as ‘employed full-time’ vs. 

‘full-time student’ as the number of cases in the other categories were considered too 

small and so were coded as missing for this analysis. 

 

4.3.2.5   Relationship status 

Participants were initially asked to indicate their relationship status according to 

one of the following categories: married, living with partner, engaged, living with 

partner and engaged, going steady, casual or single. Although typically previous 

research has assessed relationship status with a wider scope (e.g. divorced, widowed, 

etc. Ohayon, 2002) the participants in the present study were relatively young (aged 

between 18 and 22 years) and so only one was married and none were 

divorced/widowed. As such it was not possible to distinguish between these categories. 

As a large proportion of the sample fell into either the ‘going steady’ (33.2%) or ‘ 
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single’ (48.2%) category, relationship status was finally categorised as those who were 

‘single’ vs. ‘those in a romantic relationship’ (49.7%) at the time of assessment.  

 

4.3.2.6  Relationship satisfaction and cohesion 

Relationship satisfaction and cohesion were assessed by items included in the 

subscales of the Dyadic Adjustment Scale (Spanier, 1976). The satisfaction subscale 

comprised 6 items tapping into aspects of the relationship such as happiness, and the 

cohesion subscale by 5 items assessing the extent to which the participant and their 

partner engage in activities together. The items included in these scales are outlined in 

Table 4.2. Participants were asked to respond to statements on 5 or 6 point scales, as 

outlined in Table 4.2. Generally, lower scores indicate better satisfaction and cohesion. 

These scales are widely used and have been found to have satisfactory validity and 

reliability (Spanier, 1976; Spanier & Thompson, 1982). In the present sample 

Cronbach’s a = .77 and .67, for relationship satisfaction and cohesion, respectively. 

 

Table 4.2. Items included in the relationship satisfaction and cohesion subscales of the 

‘Dyadic Adjustment Scale’ 

Relationship Satisfaction  

1. How happy are you in your relationship?  

How often would you say that the following occurs...?  

2. You think that, in general, things between you and your partner are going well? 

3. You and your partner get on each other’s nerves? 

4. You are your partner have an argument? 

5. You regret you started the relationship? 

6. You and your partner discuss or consider divorce, separation, or ending your 

relationship? 
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Table 4.2 (continued). Items included in the relationship satisfaction and cohesion 

subscales of the ‘Dyadic Adjustment Scale’ 

Relationship Cohesion 

How often would you say the following events occur between you and your partner...?  

1. Have a stimulating exchange of ideas 

2. Laugh together 

3. Calmly discuss something 

4. Work together on a project 

5. Do you and your partner engage in any outside interests together?  

Note. Relationship Satisfaction: Question 1 is coded as 0 = extremely unhappy; 1 = fairly 

unhappy; 2 = a little unhappy; 3 = happy; 4 = very happy; 5 = extremely happy; 6 = perfect. 

Questions 2-3 are coded as 1 = all the time; 2 = most of the time; 3 = more often than not; 4 = 

occasionally; 5 = rarely/never. Relationship Cohesion: Questions 1-4 are coded as 1 = daily; 2 = 

weekly; 3 = monthly; 4 = rarely; 5 = never. Question 5 is coded as 0 = none of them; 1 = very few 

of them; 2 = some of them; 3 = most of them; 4 = all of them). 

 

4.3.2.7   Closest friendship quality 

 The quality of closest same-sex friendship was assessed by 21 items from the 

Network of Social Relationships Inventory (Furman, 1986). This measure comprised 7 

3-item subscales tapping into a range of qualities of best friendships (e.g. affection, 

companionship, instrumental aid, intimacy/disclosure, nurturance, reliable alliance and 

support). Participants were asked to respond to questions such as, “How much do you 

talk about everything with this person?” with responses ranging from ‘little/none’, 

‘somewhat’, ‘very much’, ‘extremely’, and ‘the most’. Responses to all questions were 

combined to generate an overall mean measure of closest same-sex friendship quality. 

Higher scores indicate better quality of friendship. The individual scales have 

demonstrated good psychometric properties (Furman, 1986), and the global score in the 
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present sample demonstrated excellent internal reliability (a = .93). The items included 

in this scale are outlined in Table 4.3.  

 

Table 4.3. Items included in the closest same-sex friendship scale from the ‘Network 

of Social Relationships Inventory’  

1. How much of your free time do you spend with this person? 

2. How much does this person teach you how to do things that you don’t know? 

3. How much do you talk about everything with this person? 

4. How much do you help this person with things she/he can’t do by her/himself? 

5. How much does this person like or love you? 

6. How sure are you that this relationship will last no matter what? 

7. How often do you turn to this person for support with personal problems? 

8. How much do you play around and have fun with this person? 

9. How much does this person help you figure out or fix things? 

10. How much do you share your secrets and private feelings with this person? 

11. How much do you protect and look out for this person? 

12. How much does this person really care about you? 

13. How sure are you that your relationship will last in spite of fights? 

14. How often do you depend on this person for help, advice, or sympathy? 

15. How often do you go places and do enjoyable things with this person? 

16. How often does this person help you when you need to get something done? 

17. How much do you talk to this person about things that you don’t want others to know? 

18. How much do you take care of this person? 

19. How much does this person have a strong feeling of affection (loving /liking) toward you? 

20. How sure are you that your relationship will continue in the years to come? 

21. When you are feeling down or upset, how often do you depend on this person to cheer 

things up? 

Note. Items are coded as 1 = little/none; 2 = somewhat; 3 = very much; 4 = extremely; 5 = the 

most. 
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4.3.2.8   Friendship quality 

 Friendship quality was measured by 5 items included in the Edinburgh Study of 

Youth Transitions and Crime (ESYTC) (Smith & McVie, 2003) and assessed “How 

often do your friends, (i) support you when you need them; (ii) fall out with you; (iii) 

put you down in front of others; (iv) make you feel confident; and (v) put pressure on 

you to do things you don’t want to.” Responses ranged from 1 = most days; 2 = at least 

once a week; 3 = less than once a week; and 4 = hardly ever/never. Scores from these 

items were combined (and where necessary responses were reversed) to provide a total 

score on friendship quality. Higher overall scores indicated poorer friendships. In the 

present sample a = .44. 

 

4.3.2.9   Deviant peers/ Affiliation with deviant peers 

The presence of deviant peers was assessed by asking participants whether their 

friends engaged in a number of deviant behaviours, including alcohol, tobacco or 

cannabis use, and whether they truanted or broke the law, as outlined by Fergusson and 

colleagues (2003). Responses were coded as 0 = none; 1 = one or two; 2 = some; 3 = 

most/all. Deviant peer affiliation was assessed by 3 items asking “How likely is it that 

you would still stay with your friends if they were getting you in trouble (i) with your 

family; (ii) at work/college; (iii) with the police?” as outlined in the ESYTC (Smith & 

McVie, 2003). Responses were coded as 1 = very likely; 2 = fairly likely; 3 = not very 

likely; 4 = not at all likely. Higher scores on both measures indicate greater problems.  
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4.3.2.10   General health 

General health was assessed by one item assessing subjective general health 

using the question, “In general, how good would you say your health is now?” with 

responses on a 5-point scale ranging from 1 = Excellent to 5 = Poor, as outlined by 

Ware and Sherbourne (1992). General health has reliably been measured in this way in 

numerous studies, for example see (Troxel, et al., 2009). 

 

4.3.3 Statistical analyses 

4.3.3.1  Twin difference measure 

In each pair of MZ twins, one twin was randomly assigned as ‘Twin 1’ and the 

co-twin as ‘Twin 2’. A relative difference score was then calculated for sleep quality as 

well as each of the environmental measures by subtracting Twin 1’s score on each 

measure from that of Twin 2’s score on each corresponding measure. Because 

monozygotic twins share 100% of their genetic material as well as 100% of their shared 

environment, any differences between them must be accounted for by the non-shared 

environment (including measurement error). Thus, the MZ twin difference measure 

provides an unbiased estimate of twin discrepancy due to the non-shared environment 

(including measurement error) (Rovine, 1994). 

 

4.3.3.2   Analyses in the monozygotic twin differences design 

First, descriptive statistics and correlations between the environmental measures 

and sleep quality were calculated in SPSS. Second, a series of univariate linear 

regression analyses were run in STATA (Stata, 2002), to assess the contribution of each 

of the absolute environmental measures on absolute sleep quality scores. Third, a series 
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of univariate linear regression analyses were run using MZ twin difference scores for 

each of the environmental measures to predict MZ differences in sleep quality. The MZ 

differences analysis, using a measure of twin discrepancy, thus controls for the effects 

of genetics and the shared environment. All regression analyses were run separately for 

males and females in order to determine whether the effects were sex specific. The 

regression analyses also considered effects of age as well as clustering within the 

sample due to the inclusion of MZ twins, and thus non-independence of observations, 

by using the Robust(cluster) command in STATA.  

 

4.4 Results 

Descriptive statistics including MZ twin pair correlations are presented in Table 

4.4. There were no significant sex differences in sleep quality (t(366) = 1.15, p=.25). 

The distribution of the MZ twin difference scores for sleep quality is shown in Figure 

4.1. The mean of the MZ difference scores generally approximate zero since the random 

assignment of twins ensures that cases where twin 1 scores higher than twin 2 are 

cancelled out by cases in which twin 2 scores higher than twin 1. What is important is 

the distribution of these scores. Clustering around zero demonstrates similarity between 

twins whereas deviations from zero demonstrate the presence of differential sleep 

quality due to the non-shared environment (Liang & Eley, 2005). 
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Figure 4.1. Histogram of the distribution of MZ difference scores on sleep 

quality 

 

 

            Note. Figure taken from Barclay et al. (in press) 
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Table 4.4. Means, standard deviations (SD), and monozygotic (MZ) twin  

correlations for all study variables  

 No. of 

pairs 

Mean SD MZ correlation 

Sleep Quality 180 5.48 2.86 .40** 

Dependent Negative Life Events 185 1.17 1.46 .40** 

Independent Negative Life Events 186 .60 .89 .52** 

Education 185 5.02 1.66 .44** 

Employment 171 .49 .50 .52** 

Relationship /Single 183 .51 .50 .34** 

Relationship Satisfaction                                  65 9.35 3.29 .05 

Relationship Cohesion 64 9.26 2.89 .32* 

Closest Friendship Quality                                 182 67.17 17.02 .26** 

Friendship Quality 186 7.28 2.02 .26** 

Deviant Peers - EYSTC 186 5.52 2.44 .35** 

Deviant Peer Affiliations  186 5.15 2.67 .65** 

Health 188 2.20 0.93 .34** 

Note. *p<.05, **p<.01. 

 

 

Table 4.5 displays the phenotypic correlations (Pearson’s) between all study 

variables. The largest associations with sleep quality were with general health and 

dependent negative life events (r = .40 and .35, respectively). The results of the multiple 

univariate linear regression analyses are shown in Table 4.6 for the total sample as well 

as for males and females separately. Column ‘a’ shows the results on absolute sleep 

quality scores. For males, the beta weights (β) were generally smaller for many of the 
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environmental measures, and there were fewer significant associations between the 

environmental measures and absolute sleep quality score, than for females. This 

suggests that a greater range of environmental factors are associated with sleep 

disturbance in females. Dependent negative life events, deviant peers and general health 

were correlates of sleep quality for both sexes. In addition, however, relationship 

satisfaction as well as friendship qualities were among the strongest correlates of sleep 

quality in females.  

Column ‘b’ shows the results of the MZ differences analyses, which control for 

the influence of both genetic and shared environmental effects, using twin difference 

scores on the environmental measures to correlate with twin differences in sleep quality. 

In these analyses only general health remained significantly associated with sleep in 

males, and only relationship satisfaction in females. Thus, greater disparity in general 

health and relationship satisfaction for males and females respectively, is associated 

with increased differences in sleep quality between twins within a pair. These 

associations are entirely due to the non-shared environment and not due to genetic/ 

shared environmental factors. This is also indicated by the smaller β values for these 

variables in the analysis without controlling for genetic and shared environmental 

factors, compared with when these factors are controlled.  

 



154 
 

 Note. *p<.05, **p<.01. Sleep quality: higher scores = poorer sleep quality; Dep./Ind. Neg. Life Events: higher scores =  more life events experienced; Relationship satisfaction/ cohesion: 

higher scores = less satisfaction/cohesion; Closest friendship quality: higher scores = better friendship quality; Friendship quality: higher scores = more problems with friends; Deviant 

peers: higher scores = friends behave more deviantly; Deviant peer affiliations: higher scores = greater affiliation with deviant peers; Education: higher scores = higher level of achievement. 

Two variables were not included in the correlational analyses as they are binary variables: Employment status coded as 0 = in employment, 1 = full-time student (Mean PSQI scores = 

5.28[SD = 2.85]; and 5.61[SD = 2.80], respectively, t(347) = -1.12, p=.26); and Relationship status coded as 0 = single, and 1 = in a relationship (Mean PSQI scores = 5.45[SD = 2.75]; and 

5.49[SD = 2.89], respectively, t(361) = -.12, p=.90). 

Table 4.5. Pearson’s correlations between study variables 

 Sleep 

Quality 

Dep. Neg. 

Life Events 

 

Ind. Neg. 

Life Events 

 

Education 

 

 

Relationship Friendships Deviancy Health 

 
Satisfaction Cohesion Closest 

Friendship 

Friendship 

Quality 
Deviant 

Peers 

Affiliations 

Sleep Quality 1           

Dep. Neg. Life Events  .35** 1          

Ind. Neg. Life Events  .12* .27** 1         

Education .00 .02 -.06 1        

Relationship Satisfaction .19** .15* .12 -.08 1       

Relationship Cohesion .18** .13 -.07 -.03 .37** 1      

Closest Friendship Quality -.18** -.02 .08 .03 -.15* -.27** 1     

Friendship Quality .19** .15** -.02 -.02 .07 .11 -.40** 1    

Deviant Peers  .19** .33** .06 -.08 .15* .23** .17** .01** 1   

Deviant Peer Affiliations .03 .11* -.03 -.07 .13 .14* -.05 .14** .23** 1  

Health .40** .40** .20** -.01 .09 .17* -.13* .10 .19** .00 1 



155 
 

Table 4.6. Univariate linear regression analyses predicting (a) absolute sleep quality 

scores and (b) MZ difference scores to control for genetic vulnerability and shared 

environment, from the environmental measures  

 (a) Absolute measures analysis (b) MZ difference analysis 

 R
2 

β t R
2 

β t 

Dep. Negative Life Events  

     Total 

     Males 

     Females 

 

.13 

.13 

.15 

 

1.02 

1.18 

.96 

 

5.99** 

3.20** 

5.24*** 

 

.01 

.01 

.02 

 

.37 

.26 

.37 

 

1.59 

.48 

1.49 

Ind. Negative Life Events 

     Total 

     Males 

     Females  

 

.02 

.04 

.03 

 

.36 

.28 

.42 

 

1.74 

.77 

2.10* 

 

.00 

.01 

.01 

 

.13 

-.17 

.20 

 

.68 

-.30 

1.25 

Education 

     Total 

     Males 

     Females 

 

.00 

.03 

.01 

 

-.01 

-.01 

-.04 

 

-.05 

-.06 

-.20 

 

.00 

.01 

.00 

 

.09 

.16 

.03 

 

.38 

.41 

.09 

Employment status  

     Total 

     Males 

     Females 

 

.01 

.07 

01 

 

.17 

.65 

-.10 

 

1.02 

2.39* 

-.52 

 

.01 

.05 

.01 

 

.25 

.71 

-.02 

 

.92 

1.32 

-.06 

Relationship/single 

     Total 

     Males 

     Females 

 

.00 

.03 

.01 

 

.04 

-.17 

.18 

 

.22 

-.61 

.99 

 

.00 

.02 

.01 

 

-.15 

-.37 

.04 

 

-.61 

-1.09 

.12 

Relationship Satisfaction 

     Total 

     Males 

     Females 

 

 

.04 

.01 

.08 

 

.58 

.16 

.91 

 

2.79** 

.52 

3.88*** 

 

.06 

.05 

.14 

 

.59 

-.08 

1.01 

 

1.14 

-.08 

2.40* 
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Note. MZ = monozygotic. *p<.05, **p<.01, ***p<.001. 

 

Table 4.6 (continued). Univariate linear regression analyses predicting (a) absolute sleep 

quality scores and (b) MZ difference scores to control for genetic vulnerability and 

shared environment, from the environmental measures  

 (a) Absolute measures analysis (b) MZ difference analysis 

 R
2 

β t R
2 

β t 

Relationship Cohesion 

     Total 

     Males 

     Females 

 

.03 

.06 

.03 

 

.51 

.61 

.46 

 

2.32* 

1.47 

1.82 

 

.03 

.05 

.04 

 

.21 

.08 

.16 

 

.43 

.06 

.29 

Best Friendship Quality 

     Total 

     Males 

     Females 

 

.03 

.04 

.05 

 

-.51 

-.34 

-.58 

 

-2.95* 

-1.15 

-2.86** 

 

.01 

.01 

.03 

 

-.34 

-.17 

-.42 

 

-1.45 

-.35 

-1.60 

Friendship Quality 

     Total 

     Males 

     Females 

 

.04 

.06 

.04 

 

.55 

.50 

.55 

 

2.75** 

1.67 

2.25* 

 

.02 

.05 

.01 

 

.39 

.62 

.23 

 

1.56 

1.45 

.81 

Deviant Peers  

     Total 

     Males 

     Females 

 

.03 

.06 

.04 

 

.53 

.48 

.62 

 

3.02** 

2.01* 

2.66** 

 

.00 

.01 

.01 

 

.10 

-.02 

.06 

 

.44 

-.04 

.22 

Deviant Peer Affiliations 

     Total 

     Males 

     Females 

 

.00 

.03 

.01 

 

.04 

.11 

-.04 

 

.25 

.38 

-.19 

 

.00 

.02 

.01 

 

.05 

.26 

-.07 

 

.18 

.65 

-.26 

Health 

     Total 

     Males 

     Females 

 

.17 

.16 

.19 

 

1.17 

1.15 

1.16 

 

7.13** 

4.17*** 

5.79*** 

 

.06 

.20 

.02 

 

.80 

1.56 

.34 

 

3.55** 

4.65*** 

1.37 
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4.5 Discussion 

The aim of this chapter was to address the second set of research questions 

posed in the introduction of this thesis. Specifically, the present study assessed (i) the 

associations between sleep quality and a range of candidate non-shared environmental 

factors; and (ii) whether there is a purely non-shared environmental component to these 

associations, i.e. whether these associations remain significant even after controlling for 

genetic and shared environmental factors. In order to achieve the second aim, the MZ 

twin differences design was used. When genetic and shared environmental factors were 

controlled, general health was significantly associated with sleep quality in males, 

whilst in females relationship satisfaction was significant. These findings suggest that it 

is the non-shared aspects of these environmental influences that are associated with 

sleep quality. All other environmental measures investigated did not remain 

significantly associated with sleep quality when genetic and shared environmental 

factors were controlled, which suggests that their associations with sleep quality are in 

part dependent on genetics and/or the shared environment. This study is to the authors’ 

knowledge the first investigation of purely non-shared environmental components to the 

associations between the environment and sleep quality. Although a number of twin 

studies (including the results of Chapter 3) investigating the relative contribution of 

genetic and environmental influences on subjective sleep quality have shown that a 

large proportion of the variance is accounted for by the non-shared environment (see 

Heath, et al., 1990; Partinen, et al., 1983), the present analyses allow us to examine 

specific non-shared environmental influences. By selecting candidate environmental 

influences known to be associated with sleep quality, the results of this chapter allow us 

to further understand the possible mechanisms by which these associations occur. 

Further discussion of the main findings of this study is presented below, followed by an 

outline of the limitations specific to this study. 
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4.5.1  Associations between sleep and the environment 

The majority of the environmental measures included in the present study (with 

the exception of deviant peer affiliations and education) were significantly associated 

with sleep quality. However, when assessing these associations independently by sex, it 

appears that some of these associations are sex-specific. For females, there appears to be 

greater associations and a wider range of environmental factors associated with sleep 

quality than males. Previous studies have demonstrated that sleep problems are more 

prevalent in women (Ohayon, 1997, 2005), and this could be in part due to the larger 

body of correlates of sleep disturbance in women as demonstrated here. One of the 

strongest associations with sleep quality for both males and females in the present study 

was with dependent negative life events. This concurs with previous research which has 

demonstrated the negative effects of stressful or negative life events on sleep (Lavie, 

2001; Mezick, et al., 2009; Sadeh, 1996; Vahtera, et al., 2007). The finding that the 

association between sleep and life events was greater for dependent as compared to 

independent life events confirms the hypothesis that different types of life event are 

associated with sleep differentially. Although the cross-sectional nature of the current 

analyses meant that it was not possible to delineate cause and effect, one tentative 

explanation could be that feelings of responsibility involved in creating dependent 

negative life events could hinder sleep through the worry and cognitive rumination of 

the negative events to a greater extent than do independent negative life events. It is 

possible that an individual will ruminate more over a dependent negative life event, 

thinking of the ways in which the event could have been avoided, than independent life 

events for which they have no control.  

However, the converse may also be true – that experiencing poor sleep quality 

leads one to experience more dependent negative life events. It is possible that 

experiencing poor sleep quality disrupts executive functioning in the prefrontal cortex 
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which consequently interferes with decision making and influences the experience of 

dependent negative life events. For example, induced sleep deprivation studies have 

demonstrated that daytime sleepiness disrupts executive functioning and consequently, 

decision making processes (Killgore, Balkin, & Wesensten, 2006); is associated with 

impaired cognitive and motor speed and higher cognitive abilities (Goel, Rao, Durmer, 

& Dinges, 2009); increases the risk of human-error related accidents (Dinges, 1995); 

and experimentally restricted sleep time affects behavioural alertness (Dinges & Rogers, 

2005). It is possible that the stronger association between poor sleep quality and 

dependent negative life events as compared to independent negative life events reflects 

the fact that impaired sleep has consequences for cognitive functioning and decision 

making – processes involved in all of one’s dependent experiences. 

It is possible that the relationship between dependent negative life events and 

sleep may be accounted for by gene-environment correlation. That is, genetic factors on 

sleep quality may, either directly or via intermediate variables, influence exposure to 

negative life events. For example, a genetic predisposition to poor sleep quality may 

indirectly influence exposure to negative life events if an individual’s behaviour is 

adversely affected by the consequences of a poor night’s sleep. The present study lends 

some support for the possible presence of gene-environment correlation by showing 

that, when genetic and shared environmental factors are controlled, dependent negative 

life events no longer influence sleep quality. Explicit examination of the presence of 

gene-environment correlation (whilst accounting for the shared environment) is 

necessary before the presence of gene-environment correlation can be confirmed. This 

is because, as the MZ differences design is unable to tease apart the influence of 

genetics and the shared environment (as they are both entirely shared between MZ 

twins), there remains the possibility that the shared environment mediates the 

association between the non-shared environment and sleep quality. The following 
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chapter (Chapter 5) addresses this issue by explicitly investigating the presence of gene-

environment correlation between negative life events and sleep quality in a 

sophisticated gene-environment interaction model.  

Gene-environment correlation is also a possibility for the remaining 

environmental measures assessed here (with the exception of general health and 

relationship satisfaction), where associations with sleep quality reduced to non-

significance when genetic and shared environmental factors were controlled. This 

means that influences that we would traditionally consider ‘environmental’ are in fact 

not working in a non-shared environmental way, but in part depend on genetics and/or 

the shared environment. This highlights the possible importance of our genetic and/or 

shared environment in selecting our unique environmental experiences.  

 

4.5.2 Specific non-shared environmental influence: Health 

Poorer general health was significantly associated with poorer sleep quality for 

both males and females. This is not surprising given that extensive research has linked 

sleep to a number of health problems (for example, see Briones, et al., 1996; Finn, et al., 

1998; Gangswisch, et al., 2010; Roth, 2007) and given the comorbidity between sleep 

disturbance and psychiatric disorders (Ford & Kamerow, 1989; Morin & Ware, 1996). 

What is interesting here, however, is that the mechanism of action between sleep and 

health appears to differ between men and women. When controlling for genetic factors 

and the effects of the shared environment, general health only remained a significant 

correlate of sleep quality in males, acting as a purely non-shared environmental factor. 

Thus it appears for males that health outcomes that are independent of genetic and 

shared environmental effects are associated with sleep disturbance. This could shed 

light on the specific types of health problems associated with sleep, by identifying those 
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that are not linked to underlying heredity or shared environment. A plausible candidate 

is that of health problems resulting from accidents. Accidents are a common cause of 

morbidity and mortality especially in males within this age group and are not 

genetically determined (Barker, Power, & Roberts, 1996; Blum & Nelson-Mmari, 2004) 

(although it is possible that some individuals may be genetically prone to experience 

more accidents than others, i.e. through greater risk taking behaviour). Although it is 

likely that health problems that are in part genetically determined also influence sleep 

disturbance in males, the effect size in the MZ differences analysis is somewhat higher 

than in the absolute measures analysis, which may indicate that genetic effects on the 

association between health and sleep in males are minimal. For females, however, it 

appears that the types of health problems associated with sleep may be those linked to 

genetic effects, and may work either directly or via genetically influenced mediators. 

That is, the association between sleep and health for females may be accounted for by 

gene-environment correlation. 

 

4.5.3 Specific non-shared environmental influence: Relationship satisfaction 

 Poor relationship satisfaction was significantly associated with poor sleep 

quality in females. This finding fits well with other studies which have shown that 

women reporting greater marital satisfaction experienced fewer sleep disturbances than 

those less maritally happy (Troxel, et al., 2009). Of critical importance to the present 

study is specific consideration of the non-shared aspect of the environment. The 

differences in relationship satisfaction between twins within a pair were associated with 

twin discrepancy in sleep quality. If we interpret this finding as evidence of a purely 

non-shared environmental component to the association between relationship 

satisfaction and sleep quality, this could be explained by the fact that a large amount of 
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satisfaction in romantic relationships is dependent on the behaviour of the partner as 

well as the individual, something which may be considered independent of one’s 

genetic or shared environmental background. I acknowledge, however, the possibility 

that twins’ genetic make-up may have some influence on their partner selection (see 

Rushton & Bons, 2005). One line of work investigating sleep and relationships suggests 

that we should consider the ‘social context’ of sleep (Troxel, Robles, Hall, & Buysse, 

2007). That is, since the majority of adults typically share a bed with their partner, we 

should consider sleep as a dyadic process. It is possible that sleep disturbance in one 

individual increases the risk of sleep problems in their partner. Indeed it has been found 

that women living with snorers report more insomnia symptoms than women living 

with non-snorers (Ulfberg, Carter, Talback, & Edling, 2000), and that such disturbances 

from sleep are associated with greater marital dissatisfaction and divorce (Cartwright & 

Knight, 1987). 

 Furthermore, it has been hypothesized that sleep is a vulnerable state and that 

optimal conditions for sleep occur when one can sufficiently down-regulate vigilance 

and alertness – a process that requires one to feel safe and secure both emotionally and 

physically (Troxel, et al., 2007). It has been suggested that, from an evolutionary 

perspective, women may rely on their larger, more dominant male partner to provide 

safety and protection. Thus, it is plausible that if a couple are experiencing relationship 

difficulties, the woman may not experience the safety and security necessary for optimal 

sleep (Troxel, 2010). Evolutionarily this may seem plausible, however, it may be just as 

likely that males require such feelings of safety and security emotionally for optimum 

sleep. Although these theories are compelling in the older samples typically studied in 

research on sleep and relationships, the fact that we found similar trends in our younger 

sample (only a few of whom were living with partners at the time of the study [n=24]) 

suggests that it is not only the immediate, proximal closeness of a relationship that 
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affects sleep, but that other aspects of relationships outside of the bedroom are also 

important. Women are more sensitive to negative aspects of their relationships than 

men, spend more time thinking about events in their relationships, and become more 

upset from arguments (Kiecolt-Glaser & Newton, 2001). Thus, it is possible that women 

consequently ruminate over their relationship issues, to the extent that this rumination 

disrupts their sleep. Indeed, excessive cognitive activity and affective load are poor 

conditions for sleep (Espie & Wicklow, 2001), which may partially explain the gender 

differences so consistently evident in relation to sleep disturbance, and also the sex-

dependent effect of relationships found here.  Of course it is also possible that poor 

sleep adversely affects relationships. Evidence suggests that sleep deprivation has 

adverse effects on interpersonal and emotional responsiveness (Kahn-Greene, Lipizzi, 

Conrad, Kamimori, & Killgore, 2006), which may directly affect the way in which one 

interacts with their partner.  

 

4.5.4 Limitations 

There are a number of limitations specific to this study that require consideration 

when interpreting these findings. First regards the use of self-report data, which may be 

affected by recall and rater bias (for a more comprehensive discussion of the use of self-

report measures generally, see Chapter 8, section 8.3.3). Most relevant to the present 

study, the twin difference scores may be affected by reporter effects if one twin has a 

tendency to respond more optimistically than their co-twin. However, the responses to 

the different measures showed some degree of specificity, indicated by the less than 

perfect correlations between them, suggesting that reporter effects were not cause for 

concern. A second limitation regards the use of the negative life event measure and the 

possibility of floor effects. As this measure is simply a checklist of events, it is likely 

that the sample, being relatively young, had not experienced many of the events. Indeed, 
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the average number of events experienced for both dependent and independent negative 

life events was only around 1. It is possible that even greater associations with poor 

sleep quality would emerge in individuals experiencing a greater number of events. An 

additional consideration regarding the life events measure is the temporal disparity 

between this measure (which assesses number of events experienced in the past year) 

and the PSQI (which assesses sleep quality in the past month). It would thus be useful to 

determine whether the duration since the event affects sleep differentially. It is likely 

that concurrent life events or those occurring in the past month have a greater influence 

on sleep in the past month than do events which occurred 12 months prior. A third 

limitation regards the low reliability of the scale from the Edinburgh Study of Youth 

Transitions and Crime (ESYTC) to assess friendship quality. This is likely due to the 

small number of items included in the measure. Accordingly, the results from this 

measure should be interpreted with caution and further research should perhaps consider 

an alternative scale to measure friendship quality. A fourth limitation centres on the fact 

that the sample largely consisted of females (65.8%), and so where our results are 

significant for females but not males may be a reflection of the smaller sample size and 

consequent reduction in power for males as compared to females, rather than being 

evidence of a true sex effect. Replications of the current findings in larger samples are 

warranted before we can confidently draw conclusions as to the possibility of sex-

dependent effects. An additional consideration related to the sample is that the 

participants were recruited from a population sample rather than a clinical sample of 

individuals with a clinically diagnosable sleep disorder. As such the findings should be 

interpreted in terms of poor sleep quality in the normal range rather than extrapolating 

the current findings to clinical sleep disorders. Further studies investigating specific 

non-shared environmental influences on insomnia are necessary to determine whether 

the effects found here can justifiably be extrapolated (if indeed insomnia can be 
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considered the extreme of poor sleep quality). A fifth limitation is that even though the 

MZ twin difference measure allows us to determine the contribution of the non-shared 

environment independent of genetics and shared environmental influences, this 

component of variance inevitably includes measurement error, and so this should be 

taken into consideration when interpreting the current findings. Finally, as it was only 

possible to use a cross-sectional design (due to there only being one wave of data on 

sleep) it was not possible to determine the direction of effects. Whilst it is likely that the 

associations between sleep and the environment are bi-directional, further research 

using longitudinal designs is necessary to specifically address this issue (further 

discussion of this issue is reserved for Chapter 8, section 8.6.2). 

Regardless of these limitations and the direction of the associations between 

sleep and the environment the results of this chapter suggest that genetic influences may 

be implicated in a wide range of seemingly ‘environmental’ variables (with the 

exception of general health and relationship satisfaction). These findings may give 

insight into the mechanisms by which genes and environments affect sleep, and 

suggests that their influences may not be independent. It would be essential for future 

research to explicitly investigate whether the association between these environmental 

variables and sleep quality are indeed accounted for by gene-environment correlation 

(and not obscured by the effects of the shared environment), in order to further 

determine their mechanism of action. It is to this issue that we now turn in Chapter 5, 

which focuses on gene-environment interplay in relation to the association between 

dependent negative life events and sleep quality. Additionally, it would be beneficial for 

research to incorporate a longitudinal element to the investigation of sleep and the 

environment to gain an understanding of the direction of these associations, and to help 

us to further understand the variability in sleep observed in the population.  
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Chapter 5: Dependent Negative Life Events and Sleep Quality: 

An Examination of Gene-Environment Interplay 

 

5.1  Overview 

Negative life events are associated with sleep disturbances. Assessing the 

mechanisms by which these associations occur is important for understanding the 

aetiology of sleep problems. Substantial research suggests that genetic factors partially 

influence negative life events – a finding suggestive of gene-environment correlation. 

Furthermore, negative life events have been found to significantly interact with genetic 

influences to bring about a host of psychological and behavioural phenotypes. This 

chapter specifically explores gene-environment interplay in the associations between 

dependent and independent negative life events and sleep quality. Poor sleep quality 

was more strongly associated with dependent as compared to independent negative life 

events (r = .34 and .15, respectively), consistent with the findings from Chapter 4. 

Dependent negative life events were found to be partially heritable with genetic 

influence accounting for 40% of the variance. There was substantial overlap in the 

genetic influences on the association between dependent negative life events and poor 

sleep quality (rD = .63[.45-.83]), suggesting gene-environment correlation, whereas 

environmental overlap was small (rE = .11[-.02-.25]). Genetic influences accounted for a 

large proportion of the association (81%[.58-1.04]) with the remaining co-variance due to 

non-shared environment (19%[-.04-.42]). Finally, genetic liability to sleep quality was not 

moderated by dependent negative life events, although there was a non-significant trend 

for dependent negative life events to moderate non-shared environmental influences 

unique to sleep quality. These findings suggest that genetic and environmental effects 

on sleep quality are not necessarily distinct but to some extent work in concert.  
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5.2 Introduction 

Chapter 4 examined associations between a host of environmental measures and 

sleep quality. One of the main findings from this study was that associations between 

many seemingly ‘environmental’ variables and sleep quality were in fact dependent on 

genetics and/or the shared environment. This was indicated by the finding that, when 

the effects of genetics and the shared environment were partialled out, the associations 

between many environmental variables and sleep quality were reduced to non-

significance. Although the MZ differences design allows us to tease apart the effects of 

the non-shared environment from genetics and the shared environment, the distinction 

between the latter two influences is obscured as these influences are both entirely shared 

between MZ twins. In order to determine whether the associations between sleep and 

the environment are indeed accounted for by gene-environment correlation, or shared 

environmental correlation, an explicit test of gene-environment interplay on the 

variance components of sleep quality is necessary.  

Given that the association between sleep quality and dependent negative life 

events was one of the largest of all associations between sleep and the environmental 

variables investigated in Chapter 4, and given that extensive research has highlighted 

the importance of investigating the role of stressful or negative life events in the 

occurrence of numerous sleep problems (Brummett, Krystal, Ashley-Koch, et al., 2007; 

Gregory, Caspi, et al., 2006; Heath, et al., 1998; Sadeh, 1996; Sadeh, Keinan, & Daon, 

2004), this chapter focuses on explicitly testing the presence of gene-environment 

interplay, including both gene-environment correlation and interaction, between sleep 

quality and dependent negative life events. Furthermore, the association between 

independent negative life events and sleep quality is investigated in order to determine 

whether the finding of a smaller association as compared to dependent negative life 

events is confirmed in a larger sample than tested in Chapter 4 (where only MZ twins 
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were used). Understanding more about gene-environment interplay with regards to the 

associations between these distinct types of negative life events and sleep quality is 

important because it may provide an insight into the possible mechanisms acting 

between sleep and the environment.  

 

5.2.1 Gene-environment correlation 

As described in Chapter 1 (section 1.6.4.1) and Chapter 4 (section 4.2) certain 

environmental influences, such as dependent negative life events, show some degree of 

genetic influence (Bolinskey, et al., 2004; Federenko, et al., 2006; Kendler, et al., 1993; 

Plomin, et al., 1990; Thapar & McGuffin, 1996), which suggests rGE. Given the 

associations between sleep and negative life events it is possible that the genes 

influencing poor sleep quality also influence exposure to high risk environments. 

Analysing genetic liability to both sleep disturbance and the environmental stressors 

associated with sleep disturbance allows the detection of rGE. Finding overlap in the 

genetic influences attributable to these traits provides useful information about their 

aetiology. Specifically, here it would suggest that environmental risk factors for poor 

sleep quality are, in part, genetically driven by the same genes as those influencing sleep 

quality.  

 

5.2.2 Gene-environment interaction 

In addition to the possibility of gene-environment correlation, as described in 

Chapter 1 (section 1.6.4.2) recent genetic research has highlighted the importance of 

assessing the interaction between genes and environments in understanding the 

occurrence of traits (for example, see Moffitt, et al., 2005; Rutter, Moffitt, & Caspi, 

2006). Gene-environment interaction (GxE) can be described as the moderation of 
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genetic risk in the presence of an identified environmental stressor (see Chapter 1, 

section 1.6.4.2 for further detail). Finding that the magnitude of genetic influence varies 

as a function of a measured environmental variable may guide molecular genetic 

research aimed at identifying specific genes involved in the trait under study (as 

candidate genes could be preferentially investigated in individuals in high-risk 

environments). Despite a growth of research assessing GxE for a number of 

psychological and behavioural traits, there is a dearth of research focussing on GxE in 

relation to sleep quality. Furthermore, quantitative genetic studies of GxE in relation to 

sleep quality are non-existent. In a molecular genetic analysis, one study to date found 

that a polymorphism of the serotonin gene (5HTTLPR) is associated with poor sleep 

quality, but specifically only in individuals experiencing chronic stress  - conceptualised 

in the study as caregiving (Brummett, Krystal, Ashley-Koch, et al., 2007). What is 

unclear, however, is whether exposure to other negative life events has a modifying 

effect on the genetic and environmental factors influencing sleep. Negative life events 

have been identified as significant environmental stressors which modify genetic risk 

for a number of psychological problems, such as depression and anxiety (Caspi, et al., 

2003; Lau & Eley, 2008; Lau, Gregory, Goldwin, Pine, & Eley, 2007; Silberg, et al., 

1999; Silberg, et al., 2001) and externalising behaviours (Button, Lau, Maughan, & 

Eley, 2008). Whether such environmental stressors as negative life events have a similar 

effect on sleep quality, over and above a gene-environment correlation effect, is in 

question.  

 

5.2.3 GxE in the presence of rGE 

 In order to fully understand the mechanisms by which genetic and 

environmental factors influence poor sleep quality it is necessary to simultaneously 
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consider gene-environment correlation and interaction. This is because it is possible that 

a GxE effect may be falsely identified in the presence of rGE (Purcell, 2002). For 

example, observing a greater genetic effect on sleep quality in those experiencing 

greater environmental risk is consistent with GxE, yet such a pattern could simply 

reflect rGE – that individuals with a high risk genotype will be more prevalent in high 

risk environments (Rutter & Silberg, 2002). As such, joint examination of these effects 

is necessary to correctly discriminate between correlation and interaction. 

 

5.2.4 Aims 

Accordingly, this chapter addresses the third set of research questions of this 

thesis, and examines: (i) the phenotypic associations between dependent and 

independent negative life events and sleep quality, in order to ascertain whether those 

life events under which one has some control (dependent) are more strongly associated 

with sleep problems than those under which one has no control (independent); (ii) the 

extent to which genes and environments account for individual variation in dependent 

negative life events; (iii) the degree of overlap in the genetic and environmental 

influences accounting for the association between dependent negative life events and 

sleep quality, to provide support for rGE; and (iv) the extent to which genetic and/ or 

environmental influences on sleep quality are moderated by increasing exposure to 

dependent negative life events. As it is likely that the association between dependent 

negative life events and sleep quality will be partially explained by shared genes, the 

final model assessed GxE in the presence of rGE to control for the possibility that an 

interaction effect could be spuriously detected as a result of gene-environment 

correlation (Purcell, 2002). 
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5.3 Method 

5.3.1 Participants 

The participants for this study were from the G1219 sample, and data was used 

from wave 4, as outlined in Chapter 2 (section 2.10). 

 

5.3.2 Measures 

 Sleep quality was assessed by the PSQI global score, as outlined in Chapter 3 

(section 3.3.2). Dependent and independent negative life events were assessed by the 

‘List of Threatening Experiences’ (Brugha, et al., 1985), and the ‘Coddington Stressful 

Life Events Scale’ (Coddington, 1984), as outlined in Chapter 4 (section 4.3.2.2). 

 

5.3.3 Statistical analyses 

First, the degree of associations between dependent and independent negative 

life events and sleep quality were assessed using intraclass correlations. Second, 

univariate genetic models (as described in Chapter 2, section 2.4) were run to determine 

the extent to which genetic and environmental influences accounted for the variation in 

dependent negative life events. Third, a bivariate correlated factors models as described 

in section 2.7 (which allow the influences on one trait [e.g. additive genetic] to correlate 

with those on another trait) were run in order to determine the degree of overlap in these 

sources of influence between dependent negative life events and sleep quality; and the 

extent to which genetic and environmental influences accounted for the association 

between them. This enables us to assess whether genetic and environmental influences 

are shared between dependent negative life events and sleep quality – which would 

suggest the presence of rGE. Note that an analysis of independent negative life events 

and sleep quality was not performed as the phenotypic correlation was considered too 
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small (r = .15) to be decomposed meaningfully into genetic and environmental 

influences. Finally, models of gene-environment interaction in the presence of gene-

environment correlation between measures were run (more detail is provided below in 

section 5.3.3.2). In all genetic model fitting analyses, where appropriate (i.e. indicated 

by the pattern of twin correlations), additive (A) as well as non-additive (D) genetic 

effects were tested. Furthermore, quantitative, qualitative and scalar sex differences 

were tested in the univariate analyses (as described in section 2.8). 

 All analyses were carried out using Mx (Neale, 1997), as described in Chapter 

2, section 2.6.1, and incorporated the weight variable described in section 2.10 to 

account for selection bias and attrition. Furthermore, prior to analysis the data were 

regressed for the effects of age and sex as described in Chapter 3, section 3.3.3.1.1. 

 

5.3.3.1  Genetic model-fitting 

 In all genetic models (univariate, bivariate, gene-environment interaction) the 

effects of additive genetic (A), shared environmental (C) or non-additive genetic (D), 

and non-shared environmental (E) variance components were examined. Furthermore, 

nested models (where certain parameters [e.g. C] were dropped) were run in order to 

determine the significance of the variance components (as described in section 2.6.2). 

The exception here are the moderating terms which, when successively dropped, often 

cause model instability. The most parsimonious genetic models, and those which 

resulted in the best fit compared to the saturated models (as indicated by the AIC value 

and a non-significant decrement in fit compared to fuller models), were selected for 

interpretation.  
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5.3.3.2  Models of GxE in the presence of rGE 

Models of gene-environment interaction in the presence of gene-environment 

correlation were run as joint examination of these effects is necessary to correctly 

discriminate between correlation and interaction (Purcell, 2002). This model 

incorporates the moderator variable (i.e. dependent negative life events) as a measured 

trait alongside sleep quality to assess the extent to which the overlap in the genetic and 

environmental influences between the variables is moderated by dependent negative life 

events. 

The model is based on a Cholesky decomposition (see Neale & Cardon, 1992) in 

which the variance/covariance structure of the two traits (dependent negative life events 

and sleep quality) is partitioned into genetic (e.g. D) and environmental influences (e.g. 

E) that are unique to sleep quality (e.g. Du, Eu) and those that are common to both sleep 

quality and dependent negative life events (e.g. Dc, Ec) (note that only D and E were 

included in this model as the results of the bivariate correlated factors model suggested 

this to be the best-fitting model, and so the model is described in terms of these 

parameters). Dependent negative life events, however, are entered in the model twice: 

as a dependent variable as described above, and as a moderator in which levels will 

influence the effect of each of the variance component paths (d and e) expressed as beta 

coefficients (ßyM and ßzM) (of note, the moderator is standardized so that it is possible 

to interpret changes in the variance components as standard deviations from the mean of 

the moderator variable). The moderator effects are further partitioned into those unique 

to sleep quality (ßyuM and ßzuM), and those common to dependent negative life events 

and sleep quality (ßycM and ßzcM). The variance components independent of moderator 

level are: du, eu, dc and ec. The linear function (dc + ßycM) explicitly models the genetic 

overlap between the traits, as well as the interaction of the moderator on this overlap, 

allowing for the analysis of G×E in the presence of rGE. The linear function (du + ßyuM) 
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models the ‘unique-to-sleep’ genetic variance, as well as the interaction of the 

moderator on this effect (see Figure 5.1). Significance of the moderating terms is 

assessed by 95% confidence intervals (CI). The significance of the moderating term on 

the common genetic path (dc + ßycM) indicates that genetic effects are involved in both 

correlation and interaction with the moderator. Significance of the moderating term on 

the unique genetic path (du + ßyuM) indicates that different genetic factors are involved 

in correlation with the moderator and interaction with it. The same logic can be applied 

to the other variance components (i.e. E).  

Using the following equations and the parameter estimates derived from the full 

DE GxE in the presence of rGE model it is possible to calculate the changes in variance 

components as a function of the moderator. For example, at zero standard deviations 

from the moderator (i.e. at the mean of the moderator), non-additive genetics is 

calculated as: 

d =     (du + dc)                                                            (5.1)  

                                                

In order to calculate values of d at increasing (or decreasing) levels of the moderator, 

ßyM is added accordingly. For example, at one standard deviation from the mean of the 

moderator: 

d =     (du + dc) ± ßyM                                                     (5.2)                                                 

 

where ßyM includes both the common (ßycM) and unique (ßyuM) moderating terms; and 

where ± is used to denote whether the moderator is added (at increasing levels of the 

moderator) or subtracted (at decreasing levels of the moderator). At further increasing 

(or decreasing) levels of the moderator, ßyM is multiplied according to how many 

standard deviations it is from the mean. For example, at 2 standard deviations from the 

mean of the moderator: 
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d =     (du + dc) ± 2*(ßyM)                                                     (5.3)    

 

and so on. The same logic can be applied to the variance components and corresponding 

moderating terms for the non-shared environment. The resulting unstandardised 

variance components at different levels of the moderator can then be plotted on a graph 

to visually inspect the gene-environment interaction.  

Of note, it is also possible to plot changes in variance components at varying 

levels of the moderator as proportions (thus standardised values) of the total phenotypic 

variance. First, the total standardised variance (Var(T)) is calculated as: 

 

Var(T) = (d + ßyM)
2 

+ (e + ßzM)
2
                                          (5.4)      

 

where d and e are calculated as (du + dc) and (eu + ec), respectively; and ßyM and ßzM 

include both the common and unique moderating terms. The proportion of d can then be 

calculated as follows:                

d =     (d + ßyM)
2 

                                                     (5.5)  

Var(T) 

and the proportion of e as: 

e =     (e + ßzM)
2 

                                                     (5.6)  

Var(T) 

 

where ßyM and ßzM are multiplied in accordance with how many standard deviations 

they are from the mean. However, it is advised that the unstandardised estimates are 

interpreted, as presentation of the standardized estimates can be misleading (Purcell, 

2002).  
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Figure 5.1. GxE interaction in the presence of gene-environment correlation. 

 

 

Note. Figure adapted from Barclay et al. (2011). D =  Additive genetic influence; and E = 

Non-shared environmental influence on sleep quality expressed as a linear function of the 

moderator by the inclusion of the coefficient terms for the variance components unique to 

sleep quality (du + βyuM and eu + βzuM) and those shared with dependent negative life 

events (dc + βycM and ec + βzcM). Figure is shown for one twin only.  

 

 

 

5.4 Results 

5.4.1 Descriptives 

 Table 5.1 displays means and standard deviations of raw scores for dependent 

and independent negative life events (descriptive statistics for global sleep quality is 

presented in Chapter 3, Table 3.3). There were significant sex differences in the means 

and standard deviations of dependent negative life events (change in fit of a model in 

which differences between the sexes were equated compared to a model where these 

estimates were free to vary between males and females: ∆χ
2 

= 13.40, ∆df = 2, p<.01), 

with males reporting significantly more life events than females; and in the standard 

deviations of independent negative life events (∆χ
2 

= 13.71, ∆df = 1,  p<.01), where 

there was significantly more variability in males. Of note, while the differences in 

number of negative life events experienced between the sexes were significant, the 

du + βyuM

Dependent Negative 

Life Events

Sleep Quality

D ED E

eu + βzuM

dc + βycM

ec+ βzcM
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effect sizes were small (d =.18 and d =.07 for dependent and independent negative life 

events, respectively). It is therefore unwise to place too much emphasis on this 

difference.  

 

Table 5.1. Descriptive statistics. Means (standard deviations) of scores for dependent 

and independent negative life events  

 Total Males  Females MZ DZ Sibs 

DLE 1.22 (1.54) 1.39* (1.61)* 1.11* (1.48)* 1.18 (1.47) 1.22 (1.53) 1.29 (1.65) 

ILE .60 (.86) .63 (.93)* .57 (.80)* .61 (.87) .63 (.89) .50 (.73) 

Note. DLE = Dependent Negative Life Events (range = 0-13); ILE = Independent Negative Life 

Events (range = 0-8). Means and standard deviations of raw (untransformed) data. Sex 

differences for means and standard deviations were tested, 
*
 p <.01.  

 

 

5.4.2 Phenotypic and twin correlations 

 The phenotypic correlations (presented in Table 5.2) indicated that experiencing 

more dependent and independent negative life events was significantly associated with 

poorer sleep quality. This effect was significantly stronger for dependent negative life 

events compared to independent negative life events (p<.05). The cross-twin within-trait 

correlations suggest that genetic influences are more important for dependent as 

opposed to independent negative life events. The cross-twin cross-trait correlations for 

MZ twins were more than double that of the corresponding DZ and sibling correlations 

for both the association between dependent negative life events and sleep quality, and 

independent negative life events and sleep quality, suggesting a role for non-additive 

genetic influences in explaining the associations between traits. However, as the 

phenotypic association between independent negative life events and sleep quality was 
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small (r=.15) power to decompose the association into genetic and environmental 

influences was limited and so further analysis of this association was not undertaken. 

 

Table 5.2. Phenotypic correlations for monozygotic twins (MZ), dizygotic twins (DZ) 

and siblings (Sibs) (with 95% confidence intervals) 

     DLE-DLE      ILE-ILE     PSQI-DLE      PSQI-ILE 

Within Twins /  .34 

(.29 - .39) 

.15 

(.09 - .20) 

Cross Twins 

MZ .40 

(.27 - .51) 

.49 

(.37 - .59) 

.28 

(.19 - .36) 

.10 

(.01 - .19) 

DZ .12 

(.01 - .23) 

.30 

(.20 - .40) 

.05 

(-.03 - .14) 

.04 

(-.03 - .12) 

Sibs .08 

(-.10 - .25) 

.30 

(.11 - .46) 

.10 

(-.04 - .23) 

.02 

(-.11 - .14) 

Note. PSQI = Pittsburgh Sleep Quality Index; DLE = Dependent Negative Life Events; ILE = 

Independent Negative Life Events. The model was constrained where appropriate. For 

example, the twin correlations were constrained so that those of the randomly selected twin 1’s 

were the same as the randomly selected twin 2’s. All analyses were run on transformed (i.e. 

age and sex regressed) data and include a weight variable to account for initial selection bias 

and attrition. 

 

 

5.4.3 Univariate genetic analysis of dependent negative life events 

 Fit statistics for the univariate genetic models of dependent negative life events 

are shown in Table 5.3. The table first displays the fit of the saturated (fully 

unconstrained) model. Subsequently, qualitative, quantitative and scalar sex differences 

are tested, as are the significance of C and D. A ‘DE’ model in which sex differences 

were equated was considered the best-fitting model as indicated by the value of AIC 

(note that although model 12 [DE model allowing for scalar sex differences] had the 

lowest AIC value, there was no significant decrement in model fit when dropping the 
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scalar term in model 17: ∆χ
2 

= 3.25, ∆df = 1, p=.07, and so being more parsimonious, 

model 17 was selected for interpretation). Non-additive genetic influence accounted for 

43%[.31-.53], and non-shared environmental influence accounted for 57%[.47-.69] of the 

variance in dependent negative life events. 

 

 

5.4.4 Bivariate genetic analysis 

Fit statistics from the bivariate correlated factors models are provided in Table 

5.4. Note that because ‘CE’ and ‘E’ models did not provide a good fit to the data in the 

univariate models for sleep quality and dependent negative life events, these models 

were not tested in the bivariate analysis. Furthermore, as there was no evidence for 

qualitative or scalar sex differences in the univariate analyses, these were also not tested 

in the bivariate genetic analyses. Although there was also no evidence for quantitative 

sex differences in the univariate analyses, it is standard practice to explore such effects 

in bivariate models. Accordingly, an exploratory investigation of this was tested in the 

bivariate analysis as it is possible that there may be differences between the sexes in the 

magnitude to which genetic and environmental influences account for the association 

between phenotypes. 

 The model providing the best fit according to the AIC value was a ‘DE’ model 

in which all sex differences were equated (model 9). In this model there was moderate 

overlap in the additive genetic influences between sleep quality and dependent negative 

life events (rD = .63[.45-.83]). This is evidence for rGE. Overlap in the non-shared 

environmental influences, however, was small and non-significant (rE = .11[-.02-.25]). 

Furthermore, genetic influences accounted for a substantial proportion of the co-

variance between the traits (81%[.58-1.04]), with the remaining 19%[-.04-.42] attributable to 

the non-shared environment.  
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Table 5.3. Fit statistics for univariate genetic model fitting analyses of dependent 

negative life events 

 Model Fit Fit relative to saturated model 

Model -2LL df ∆χ
2
 ∆df p AIC 

1. Saturated  5770.09 1282     

2. ACE QSD + Qual. SD on A 5805.70 1299 35.60 17 .01 1.60 

3. ACE QSD + Qual. SD on C 5807.30 1299 37.21 17 .00 3.21 

4. ADE QSD + Qual. SD on A 5804.15 1299 34.06 17 .01 .06 

5. ADE QSD + Qual. SD on D 5804.15 1299 34.06 17 .01 .06 

6. ACE QSD 5807.30 1300 37.21 18 .00 1.21 

7. ADE QSD 5804.24 1300 34.14 18 .01 -1.86 

8. ACE SSD 5810.56 1302 40.47 20 .00 .47 

9. ADE SSD 5807.57 1302 37.48 20 .01 -2.52 

10. AE SSD 5810.56 1303 40.47 21 .01 -1.53 

11. CE SSD 5821.34 1303 51.25 21 .00 9.25 

12. DE SSD 5807.60 1303 37.51 21 .01 -4.49 

13. ACE NSD 5814.06 1303 43.96 21 .00 1.96 

14. ADE NSD 5810.83 1303 40.74 21 .01 -1.26 

15. AE NSD 5814.06 1304 43.96 22 .00 -.04 

16. CE NSD 5825.01 1304 54.92 22 .00 10.92 

*17. DE NSD 5810.86 1304 40.76 22 .01 -3.24 

18. E NSD 5848.67 1305 78.57 23 .00 32.57 

Note. * = Best-fitting model; QSD = Quantitative sex differences (magnitude of parameter 

estimates can vary between males and females); Qual. SD = Qualitative sex differences on A, C or 

D (genetic or shared environmental correlation between males and females); SSD = Scalar sex 

differences (variance differences between males and females); NSD = no sex differences; -2LL = -

2*(log likelihood); df = degrees of freedom; ∆χ
2 

and ∆df  = change in chi-square statistic and 

corresponding degrees of freedom (computed as the difference in likelihood and df between each 

model and the saturated model); p = probability; AIC – Akaike’s Information Criterion statistic 

(calculated as χ
2 

– 2∆df). All analyses focus on transformed variables. All estimates were obtained 

from Mx and incorporated a weight to account for initial selection bias and selective attrition. 
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Table 5.4. Fit statistics for bivariate correlated factors models for sleep quality 

and dependent negative life events 

 Model Fit Fit relative to saturated model 

Model -2LL df ∆χ
2
 ∆df p AIC 

1. Saturated  12125.75 2525     

2. ACE SD 12218.82 2590 93.07 65 .01 -36.93 

3. ADE SD 12214.06 2590 88.31 65 .03 -41.69 

4.  AE SD 12222.95 2595 97.20 70 .02 -42.80 

5. DE SD 12218.76 2595 93.01 70 .03 -46.99 

6. ACE NSD 12229.00 2596 103.25 71 .05 -38.75 

7. ADE NSD 12223.92 2596 98.17 71 .02 -43.83 

8. AE NSD 12229.00 2599 103.254 74 .01 -44.75 

*9. DE NSD 12226.64 2599 100.891 74 .02 -47.11 

Note. * = Best-fitting model; SD = magnitude of parameter estimates can vary between 

males and females; NSD = no sex differences; Scalar = variances can vary between 

males and females; -2LL = -2*(log likelihood); df = degrees of freedom; ∆χ
2 
and ∆df  = 

change in chi-square statistic and corresponding degrees of freedom (computed as the 

difference in likelihood and df between each model and the saturated model; p = 

probability; AIC – Akaike’s Information Criterion statistic (calculated as ∆χ
2 

– 2∆df). 

All analyses focus on transformed variables. All estimates were obtained from Mx and 

incorporated a weight to account for initial selection bias and selective attrition. 

 

 

5.4.5 Models of GxE in the presence of rGE 

Interactions between variance components (D and E were tested as these 

components best described the data in the bivariate correlated factors models) and 

dependent negative life events were examined in the presence of genetic correlations 

between the moderator and sleep quality. Although successively dropping the 
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moderating terms from the model often results in model instability, it is possible to do 

this to give an indication of the significance of these parameters. The parameter 

estimates from the full and nested models of GxE in the presence of rGE are presented 

in Table 5.5. The 95% confidence intervals around the moderating terms in the full 

model showed all moderating terms to be non-significant, however, dropping all these 

terms from the ‘DE’ model resulted in a significant worsening of fit (model 7: ∆χ
2
 =  

22.74, ∆df = 4, p<.001). The moderating term on the non-shared environmental 

influences unique to sleep quality (ßzu) seems to carry most of this effect, since dropping 

this term only resulted in a near significant worsening of fit (model 5: ∆χ
2
 =  3.26, ∆df = 

1, p =.07), whereas independently dropping the other moderating terms did not (all p’s 

>.05). This suggests possible evidence for an environment-environment interaction 

(ExE), meaning that the environmental influences contributing to rGE and GxE may be 

distinct (however, given that the non-shared environmental path was not significant in 

the model including all moderating terms this finding should be interpreted with 

caution). Using the equations described in section 5.3.3.2, the parameter estimates from 

the fullest model (model 1) were used to calculate changes in the unstandardised 

variance components across levels of the moderator. These values are presented in 

Table 5.6. The resulting changes in the unstandardised variance components are plotted 

in Figure 5.2. For example, at 3 standard deviations from the mean number of 

dependent negative life events, d is calculated as:  

 

(1.40 + 1.46) + 3*(-.26 + .21) = 2.71                                     (5.7)  
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Table 5.5. Model fitting information and parameter estimates (with 95% confidence 

intervals) for the moderating terms from the models of GxE in the presence of rGE 

 Parameter Estimates for Moderating terms Fit Compared to Full DE 

Model 

Model  ßxcM ßxuM ßzcM ßzuM -2LL(df) ∆χ
2
 (∆df)     p 

1. Full DE                                           -.26 

(-.56 - .06) 

.21 

(-.24 - .60) 

.09 

(-.19 - .34) 

.25 

(-.02 - .51) 

8434.26 

(2393) 

  

2. Drop ßycM / .13 

(-.31 - .51) 

-.09 

(-.26 - .06) 

.23  

(-.03 - .48) 

8436.86 

(2394) 

2.60 (1) .11 

3. Drop ßyuM -.23 

(-.53 - .09) 

/ .05  

(-.21 - .31) 

.35 

(.18 - .52) 

8435.16 

(2394) 

.90 (1) .34 

4. Drop ßzcM -.18 

(-.37 - .01) 

.17 

(-.27 - .55) 

/ .25 

-.02 - .51) 

8434.67 

(2394) 

.41 (1) .52 

5. Drop ßzuM -.24 

(-.54 - .08) 

.46 

(.23 - .73) 

.09 

(-.17 - .33) 

/ 8437.52 

(2394) 

3.26 (1) 

 

.07 

6. Drop  ßycM,  

ßyuM,  ßzcM 

/ / / .30 

(.16 - .46) 

8439.60 

(2396) 

4.80 (3) .19 

7. Drop all 

moderator terms 

/ / / / 8457.00 

(2397) 

22.74 (4) .00 

Note. ßycM, ßyuM, ßzcM, and ßzcM represent the moderating terms on the common non-additive 

genetic, unique non-additive genetic, common non-shared environmental, and unique non-shared 

environmental paths, respectively. -2LL = -2*(log likelihood); df = degrees of freedom; ∆χ
2 

and 

∆df  = change in chi-square statistic and corresponding degrees of freedom; p = probability. 
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Table 5.6. An E x E interaction: Non-additive genetic and nonshared 

environmental variance on sleep quality tabulated against different values of the 

moderating variable (dependent negative life events) 

Standard deviation from 

mean of moderator 

d e
 

-3 3.01 1.53 

-2 2.96 1.87 

-1 2.91 2.21 

0 2.86 2.55 

1 2.81 2.86 

2 2.76 3.23 

3 2.71 3.57 

Note. d = unstandardised non-additive genetic variance; e unstandardised non-shared 

environmental variance. Unstandardised parameter values for variance components and 

moderator terms taken from the full ‘DE’ model are dc = 1.40;  du = 1.46;  ec = .32; eu = 

2.23 and ßyc = -.26;  ßyu = .21;  ßzc = .09; ßzu = .25. The moderator (dependent negative life 

events) is standardised with a mean = 0 and standard deviation 1. 
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Figure 5.2. Plot of total unstandardised variance components for sleep 

quality across levels of standardised dependent negative life events. 

            

 

 

 

5.5 Discussion 

The aim of this chapter was to address the third aim of this thesis – to examine 

the presence of statistical gene-environment interplay between sleep quality and 

negative life events. There were several noteworthy findings from the present study. 

First, the association between dependent negative life events and sleep quality was 

greater than that between independent negative life events and sleep quality, suggesting 

that different types of negative life events influence sleep differentially. This is in 

accordance with the findings from Chapter 4, but confirms this in a much larger sample 

(i.e. using MZ and DZ twins as well as siblings). Second, consistent with previous 

findings (for example, Bolinskey, et al., 2004; Federenko, et al., 2006; Kendler, et al., 
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1993; Plomin, et al., 1990; Thapar & McGuffin, 1996), dependent negative life events 

were significantly influenced by genetic factors with no evidence for the shared 

environment. This latter finding clarifies the results of Chapter 4 by allowing us to tease 

apart the effects of genetics and the shared environment, and rule out the possibility of 

shared environment-environment correlation. Thus, the relationship between negative 

life events and sleep appears to depend to some extent on genetic variability. Third, 

there was substantial overlap in the genes influencing poor sleep quality and those 

influencing dependent negative life events, confirming the presence of gene-

environment correlation. Finally, it was found that dependent negative life events did 

not moderate genetic liability to sleep quality. These findings are discussed in more 

detail below followed by a discussion of the limitations specific to this study. 

 

5.5.1 Genetic influences on dependent negative life events and the association 

with sleep quality 

It has been suggested that genetic factors could account for the trait-like stability 

of differential neuro-behavioural responding to sleep restriction (Banks & Dinges, 

2007). In the context of the present study, this would suggest that the daytime 

consequences of a poor night’s sleep may be genetically influenced. This is consistent 

with the finding presented here that dependent negative life events were partially 

influenced by genetic factors with no evidence of the shared environment. What is 

interesting here is that, in the bivariate analyses, the genetic factors influencing sleep 

quality were substantially shared with those influencing dependent negative life events. 

This suggests that one’s genotype (i.e. a predisposition to poor sleep quality) increases 

exposure to high risk environments – evidence of rGE. Although this may suggest a 

direct pathway from genotype to experience, it is possible that the pathway by which 
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this gene-environment correlation takes effect is mediated by intermediate variables. 

For example, sleep disturbances are known to be associated with mood disorders such 

as anxiety and depression (Ford & Kamerow, 1989; Morin & Ware, 1996) - both of 

which are known to be associated with the experience of negative life events (Kendler 

& Karkowski-Shuman, 1997; Lau & Eley, 2008; Silberg, et al., 1999; Silberg, et al., 

2001). Furthermore, results from other studies, including a paper from the G1219 study, 

have found that the associations between sleep, anxiety and depression are partially 

explained by shared genes (Gregory, Buysse, et al., 2011; Gregory, Rijsdijk, Dahl, 

McGuffin, & Eley, 2006). Thus, it is possible that rather than via a direct pathway, the 

genes that influence sleep are shared with those influencing anxiety and depression 

which, by their own nature, influence exposure to negative life events. Further 

exploration of the links between sleep and psychopathology is necessary to understand 

the mechanisms by which these variables are associated with negative life events, and 

longitudinal designs will enable us to determine the direction of the pathway between 

sleep and dependent negative life events. 

 

5.5.2 Moderating effect of dependent negative life events on the genetic and 

environmental influences on sleep quality 

 There was no support for moderation of genetic effects on sleep quality by 

dependent negative life events. However, there was some evidence that non-shared 

environmental influences on sleep quality may be moderated by exposure to dependent 

negative life events. This would suggest that as one experiences more dependent 

negative life events, the non-shared environmental factors unique to sleep quality may 

increase in importance. In relative terms, this would indicate that genetic influences on 

sleep quality become less important at greater levels of negative life events. It is 
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possible that as one experiences more dependent negative life events, one may sleep 

poorly through the worry and anxiety caused by the events – which may act as a non-

shared environmental factor. However, too much weight should not be placed on this 

finding as when using a more conservative approach (interpreting the full model) the 

effect fell short of significance. Although the findings suggest that genetic factors on 

sleep quality in the normal range are not influenced by the experience of negative life 

events, this may not be the case in extreme populations. Indeed, the frequency of cases 

scoring high on the extremes of negative life events was very low, and so a significant 

gene-environment interaction may not have been detected for this reason. As such, 

power to detect an interaction based on this variable alone was limited. Replicating this 

study in a selected group of poor sleepers and those with more extreme scores on 

negative life events will provide a more thorough test of the presence of gene-

environment interaction in this context.  

 

5.5.3 Limitations 

 There are several limitations specific to this study, the first regarding 

measurement. Self-report measures were used to assess both negative life events and 

sleep quality (as the issue regarding measurement of sleep quality is relevant to other 

chapters in this thesis, discussion of this limitation is reserved for Chapter 8, section 

8.3.3). Self-report measures may be criticised on the grounds that they may not be 

reliable (relying on the subjective response and recall of the participant). Furthermore, it 

has been suggested that such self-reports of environmental measures may be measuring 

the individuals perception of the factor rather than the factor itself (Vinkhuyzen, van der 

Sluis, de Geus, Boomsma, & Posthuma, 2010). Kendler and Baker (2007) assessed the 

heritability of various environmental measures and found that estimates varied 
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according to rating method (e.g. self-report, external rater, videotape observation). 

However, the large-scale nature of the present study meant that obtaining more in depth 

measures of life events was not feasible. Despite this, the checklist nature of the 

negative life events measure meant that the respondents of this measure were less likely 

to suffer recall bias, since participants were simply required to indicate the presence or 

absence of a given event, and so the issue regarding the objectiveness of these ratings 

should not be cause for concern. 

Another issue is that the distinction between dependent and independent 

negative life events was determined by considering the ‘controllability’ of the events. It 

is possible that the controllability could be perceived differently in individual cases. For 

example, the item ‘death of a parent’ was categorised as an independent, uncontrollable, 

event. In certain situations it is possible that an individual may feel partly responsible 

for such events (e.g. by causing stress to his/ her parents), and so the distinction 

between dependent vs. independent may be individual specific. Although a caveat of the 

present study, this method of assessment of dependent/ independent life events is 

standard and well accepted in the life event and depression literature (Brown & Harris, 

1978; Cui & Vaillant, 1997; Rice, Harold, & Thapar, 2003; Silberg, et al., 2001; 

Williamson, Birmaher, Anderson, Alshabbout, & Ryan, 1995), and has been used in 

previous papers from the G1219 study (Lau & Eley, 2008; Liang & Eley, 2005). An 

additional consideration is that the distinction between dependent and independent 

negative life events based on the ‘controllability’ of the items may be confounded by 

the severity of the items included in the scales. For example, some items included in the 

‘independent’ life events scale appear to be more severe than ‘dependent’ life events. To 

address this issue, 6 independent researchers were recruited and asked to rate the 

severity of the items included in both scales on a 7-point scale (1 = not very severe, to 7 

= very severe) to determine whether there were systematic differences between them in 
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terms of severity. Although both measures contain items that are very severe and others 

that are less severe, the results suggested that there were systematic differences between 

the scales in terms of severity (dependent negative life events, average rating = 4.71, SD 

= .97; independent negative life events, average rating = 5.89, SD = .58, t = -2.57, p = 

.03). However, the severity of the items are not likely to explain the stronger 

associations between sleep and dependent as compared to independent life events (as 

the less severe scale – i.e. the dependent life events, showed particularly strong 

associations with sleep, perhaps contrary to what would be expected).    

Overall, the present study suggests that the genetic and environmental influences 

on sleep quality are not entirely distinct, but work in concert via shared genes and 

intermediate variables. This should be considered in future research on the 

environmental origins of poor sleep quality. Further studies assessing gene-environment 

interaction and correlation between sleep quality and negative life events using 

measured genes will be essential in order to draw firm conclusions as to the 

presence/absence of this effect.  
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Chapter 6: Genetic and Environmental Influences on the 

Association between Sleep Quality and Diurnal Preference 

 

6.1 Overview 

One of the fundamental aims of this chapter is to understand how sleep quality is 

related to circadian rhythmicity. There are robust associations between sleep quality and 

intrinsic properties of the circadian system, yet little is known about what accounts for 

these associations. It is possible that a host of genetic and environmental influences 

work in concert to bring about these associations. Understanding the extent to which the 

genetic and environmental influences on sleep quality and diurnal preference (a marker 

of circadian rhythmicity) overlap will be informative in terms of identifying possible 

candidate genes involved in both phenotypes. The results from the present study 

indicated that a preference for eveningness was associated with poorer sleep quality (r = 

.27[.22-.32]), and that this association was largely accounted for by genetic factors (D = 

96%[.69-1.23]). Most importantly, there was substantial overlap in the genetic factors 

influencing sleep quality and diurnal preference (rD = .52[.37-.70]); whereas overlap in the 

non-shared environmental factors between phenotypes was negligible (rE = .02[-.11-.16]). 

The substantial overlap in the genetic influences between these phenotypes suggests that 

in order to identify candidate genes likely to be associated with sleep quality, 

researchers should focus on those that are implicated in diurnal preference, and vice-

versa.   
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6.2 Introduction 

Previous chapters have looked at the proportion of genetic and environmental 

influences on sleep quality; the specificity of the non-shared environment; as well as 

looking at the interplay between latent genetic and environmental factors on sleep 

quality. However, perhaps most important in the study of the aetiology of sleep quality 

is to identify the specific genes involved. In order to maximise the search for candidate 

genes associated with a trait, it is first of importance to use quantitative genetic designs 

to determine the possibility of shared genes between phenotypes. Bivariate quantitative 

genetic designs allow us to determine the degree of overlap in the genetic influences 

between two traits. If there is substantial genetic overlap between traits, genes already 

known to be associated with one phenotype may be worthy candidates for study in 

relation to other phenotypes with which it is associated. Minimal genetic overlap 

between phenotypes, however, would suggest that unique genes should be sought in 

relation to the phenotypes under study. Thus, by examining phenotypes which are 

theoretically related to the main phenotype under study, and using the knowledge of the 

genes associated with other phenotypes, it is possible to make inferences about possible 

candidate genes likely to be involved in the trait of interest. In light of this, this chapter 

investigates the relationship between sleep quality and another aspect of sleep which 

shows great inter-individual variability in the general population – diurnal preference. 

 

6.2.1 Diurnal preference and its relationship to the circadian system and the 

regulation of sleep-wake behaviour  

The regulation of sleep-wake behaviour is considered to be the product of two 

processes: the endogenous control of circadian rhythmicity and homeostatic regulation 

(Borbely, 1982; Borbely & Achermann, 1999; Daan, et al., 1984; Dijk & Lockley, 

2002). The endogenous period of the circadian pacemaker is tightly constrained 
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between individuals, governed by many biological, psychological and environmental 

factors; however, circadian preferences and the entrainment of sleep-wakefulness to 

circadian rhythms show greater inter-individual variability (Kerkhof, 1985). Diurnal 

preference, otherwise termed ‘chronotype’, is considered to be the self-report analogue 

of circadian rhythm phase, and is often used as an indicator of these biological 

processes. Diurnal preference refers to an individual’s preferred timing of sleep-wake 

activity and is measured on a continuum between two extremes from morningness to 

eveningness. ‘Morning-types’ so-called ‘larks’, find it easy to arise in the morning, 

function best at this time, and fall asleep easily during early evening. ‘Evening-types’, 

on the other hand, so-called ‘owls’, find it hard to get up early, are at their peak during 

late evening, and go to bed late, often in the early hours of the morning. Advanced and 

Delayed Sleep Phase Disorders (ASPD and DSPD, respectively) represent extremes of 

morning- and evening-type orientations (American Academy of Sleep Medicine, 2005), 

and are characterized by difficulty maintaining socially-normal sleep-wake hours even 

in the face of adverse social and occupational consequences. The majority of individuals 

in the general population (around 60-70%) lie around the midpoint of this continuum, 

reflecting an ‘intermediate-type’ morningness-eveningness disposition (Chelminski, 

Ferraro, Pertros, & Plaud, 1997; Natale & Cicogna, 2002).  

A great deal of research has demonstrated that endogenous circadian rhythms 

differ between morning- and evening-types (Kerkhof & Van Dongen, 1996). Typically, 

the circadian rhythms of evening-types are phase delayed compared to morning-types, 

exhibiting later acrophases (peak times) in the daily fluctuations of many physiological 

variables, including core body temperature, heart rate, blood pressure, hormone 

secretion, and plasma melatonin secretion (Baehr, Revelle, & Eastman, 2000; Bailey & 

Heitkemper, 2001; Duffy, Dijk, Hall, & Czeisler, 1999; Taillard, Sanchez, Lemoine, & 

Mouret, 1990; Uusitalo, Ahonen, Gorski, Tuomisto, & Turjanmaa, 1988). Whatever the 
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likely mechanisms involved, it is these physiological differences in chronobiological 

phase that are thought to account for the observed differences in the preferred timing of 

sleep-wake activity in morning- and evening-types (Duffy, et al., 1999), and it is likely 

that genetic influences contribute to these processes. 

 

6.2.2  Associations between diurnal preference, personality and sleep 

In addition to investigating the physiological differences between morning- and 

evening-types, previous studies have investigated the personality dimensions and 

behavioural traits associated with circadian typology. Broadly speaking, in terms of the 

‘Big Five’ personality factors (Costa & McCrae, 1992) a preference for morningness 

shows positive associations with agreeableness and conscientiousness, whereas a 

preference for eveningness shows positive associations with neuroticism and 

extraversion (as well as the subcomponent, impulsivity) (see Cavallera & Guidici, 2008 

for a review; and Larsen, 1985; Randler, 2008b; Tonetti, Fabbri, & Natale, 2009). In 

one study conscientiousness appeared to be the single most important predictor of 

diurnal preference (Hogben, Ellis, Archer, & von Schantz, 2007). These personality 

dimensions have also been associated with sleep quality: conscientiousness being 

associated with good sleep quality and neuroticism with poor sleep quality (Gray & 

Watson, 2002). Behaviourally, evening-types compared to other chronotypes have more 

irregular daily lifestyle habits (Monk, Buysse, Potts, DeGrazia, & Kupfer, 2004); 

consume more psychoactive substances such as caffeine, alcohol and nicotine (Adan, 

1994; Ishihara, et al., 1985); experience greater psychological distress, behavioural and 

emotional problems, in particular depression (Cavallera & Guidici, 2008; Chelminski, 

Ferraro, Pertros, & Plaud, 1999; Drennan, Klauber, Kiripke, & Goyette, 1991; Gaspar-

Barba, et al., 2009; Hidalgo, et al., 2009; Lange & Randler, 2011); have lower self-

control and elevated levels of procrastination (Digdon & Howell, 2008); have lower 
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overall satisfaction with life (Randler, 2008a); and hold dysfunctional beliefs about 

sleep (Ong, et al., 2007). Some of these difficulties have previously been associated 

with poor sleep quality, for example having an irregular lifestyle (Monk, Reynolds, 

Buysse, DeGrazia, & Kupfer, 2003); consuming alcohol and caffeine and smoking (see 

Ohayon, 2002 for a review); experiencing anxiety and depression (Gregory, Buysse, et 

al., 2011; Gregory, Rijsdijk, Dahl, et al., 2006); dissatisfaction with life (Paunio, et al., 

2009), and holding dysfunctional beliefs about sleep (Edinger, Wohlgemuth, Radtke, 

Marsh, & Quillian, 2001; Gregory & O'Connor, 2002). It is possible that, since both 

diurnal preference and sleep quality have similar correlates, there may be more explicit 

links between them.  

Perhaps more direct evidence for the associations between sleep quality and 

diurnal preference comes from noting that evening-types suffer from greater daytime 

sleepiness and dysfunction (Hidalgo, de Souza, Zanette, & Nunes, 2003; Vardar, et al., 

2008), experience poorer sleep than morning-types (Megdal & Schernhammer, 2007; 

Ong, et al., 2007; Schnieder, et al., 2011; Selvi, et al., 2010; Shiihara, et al., 1998; 

Vardar, et al., 2008), are less alert after waking (Baehr, et al., 2000), and display other 

forms of sleep deficit, such as irregular sleep/wake habits (Giannotti, Cortesi, 

Sebastiani, & Ottaviano, 2002; Ishihara, Miyasita, Inugami, Fukuda, & Miyata, 1987; 

Taillard, et al., 1999). Furthermore, a relationship has been reported between the timing 

of an individual’s biological clock and some types of chronic insomnia (Lack & Wright, 

2007). When sleep is attempted at a time incongruent with one’s biological clock, 

difficulties such as decreased total sleep time, impaired daytime functioning, cognitive 

impairment, fatigue, difficulty falling asleep, early morning awakenings, and chronic 

insomnia may arise - which may be seen not only in ASPD and DSPD, but also in 

conditions such as Shift Work Sleep Disorder (American Academy of Sleep Medicine, 

2005). While there appears to be an association between sleep quality and diurnal 
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preference, what is currently unclear is what accounts for this association. One 

possibility is that shared genes are important in accounting for the association between 

these phenotypes.  

 

6.2.3 Genetic and environmental influences on diurnal preference 

Twin studies have determined that the timing of an individual’s preferred sleep-

wake cycle is to some extent under genetic control, accounting for roughly half of the 

variability in the phenotype (Drennan, Selby, Kripke, Kelsoe, & Gillin, 1992; Hur, et 

al., 1998; Koskenvuo, et al., 2007; Vink, et al., 2001); and numerous studies have 

investigated the molecular genetic basis for these inter-individual differences in the 

phase position of the biological ‘clock’ (Archer, et al., 2003; Archer, Viola, 

Kyriakopoulou, von Schantz, & Dijk, 2008; Carpen, Archer, Skene, Smits, & von 

Schantz, 2005; Carpen, et al., 2006; Dijk & Lockley, 2002; Katzenberg, et al., 1998; 

Lee, Paik, Kang, Lim, & Kim, 2007). Specifically, polymorphisms of ‘clock’ genes 

such as CLOCK and those of the PERIOD gene family have repeatedly been 

investigated in relation to circadian timing and preferences (more detailed information 

is reserved for Chapter 7). Furthermore, results of numerous studies, as well as those 

presented earlier in this thesis, provide substantial evidence for the influence of genetics 

on sleep quality (see Chapter 3 for further details). Given the well established 

relationship between sleep quality and diurnal preference it is worthwhile examining the 

extent to which genetic and environmental influences account for this association. Such 

an investigation may be useful in understanding why differences between chronotypes 

may be associated with sleep problems. Finding genetic/environmental overlap in the 

genes/environments influencing sleep quality and diurnal preference would suggest that 

once we have found genetic/environmental influences associated with one phenotype, 

the same genes/environments may be worth exploring as to their role in other 
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phenotypes with which it is associated - thus aiding the search for candidate genes 

underlying sleep disturbance.   

 

6.2.4 Aims 

Accordingly, this study addresses the fourth set of research questions outlined in 

Chapter 1 of this thesis, and investigates: (i) the extent to which genetic and 

environmental factors influence diurnal preference; (ii) the strength of the association 

between sleep quality and diurnal preference; (iii) the extent to which the genetic and 

environmental influences on diurnal preference overlap with those influencing sleep 

quality; and (iv) the extent to which the association between sleep quality and diurnal 

preference is accounted for by genetic and environmental influences. 

 

6.3 Method 

6.3.1 Participants 

The participants for this study were from the G1219 sample, and data was used 

from wave 4, as outlined in Chapter 2 (section 2.10). 

 

6.3.2 Measures 

 Sleep quality was assessed by the PSQI global score, as outlined in Chapter 3 

(section 3.3.2). Diurnal preference was assessed by the Morningness-Eveningness 

Questionnaire (MEQ: Horne & Östberg, 1976), one of the most widely used measures 

for assessing diurnal preference. The MEQ was chosen over other instruments of 

circadian timing, such as the MCTQ (Roenneberg, et al., 2003), because the study 

aimed to investigate how individual preference for sleep-wake activity was influenced 

by genes and the environment, rather than determining the extent that actual sleep 

timing was influenced by these factors (as it is likely that actual bed-times are 
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influenced by the environment, the current investigation centred on whether preference 

for sleep timing is modified by these factors). The MEQ is a 19-item self-report 

questionnaire that assesses individual preference in the timing of daytime activities, 

sleeping habits, hours of peak performance, and times of ‘feeling best’ and maximum 

alertness. The items included in the MEQ, and the scoring methods for each item, are 

outlined in Table 6.1. The scores to each of the items are summed to give a total score 

on the morningness-eveningness dimension ranging from 16-86. Higher scores indicate 

greater ‘morningness’ and lower scores indicate greater ‘eveningness’. However, for the 

present analyses the total MEQ scale was reversed so that a higher score indicated 

greater eveningness. This procedure was employed so that it was possible to decompose 

a positive correlation for ease of interpretation for the reader. The MEQ has previously 

been shown to have excellent psychometric properties with favourable content validity 

(Horne & Östberg, 1976) and an internal reliability coefficient (Cronbach’s alpha, a) of 

.82 (Smith, Reilly, & Midkiff, 1989). In the present sample Cronbach’s a = .76. 

 

 

Table 6.1. Items included in the ‘Morningness-Eveningness Questionnaire’ 

1. Considering your own “feeling-best” rhythm, at what time would you get up if you were 

entirely free to plan your day? 

1 = 11am-12pm 2 = 9:45-10:59am; 3 = 7:45-9:44am 4 = 6:30-7:44am 5 = 5-6:29am 

 

2. Considering your own “feeling-best” rhythm, at what time would you go to bed if you were 

entirely free to plan your evening? 

1 = 1:45-3am 2 = 12:30-1:44am 3 = 10:15pm-

12:29am 

 

4 = 9-10:14pm 5 = 8-8:59pm 

3. If there is a specific time at which you have to get up in the morning, to what extent are you 

dependent on being woken up by an alarm clock? 

1 = very dependent 2 = fairly dependent 3 = slightly dependent 4 = not at all dependent 

 

4. Assuming adequate environmental conditions, how easy do you find getting up in the 

mornings? 

1 = not at all easy 2 = not very easy 3 = fairly easy 4 = very easy 
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Table 6.1 (continued). Items included in the ‘Morningness-Eveningness Questionnaire’ 

 

5. How alert do you feel during the first half-hour after having woken in the mornings? 

1 = not at all alert 2 = slightly alert 3 = fairly alert 4 = very alert 

 

6. How is your appetite during the first half-hour after having woken in the mornings? 

1 = very poor 2 = fairly poor 4 = fairly good 4 = very good 

 

7. During the first half-hour after having woken in the morning, how tired do you feel? 

1 = very tired 2 = fairly tired 3 = fairly refreshed 4 = very refreshed 

 

8. When you have no commitments the next day, at what time do you go to bed compared to your 

usual bedtime? 

1 = > 2 hours later 2 = 1-2 hours later 3 = < 1 hour later 4 = Seldom/never later 

 

9. You have decided to engage in some physical exercise. A friend suggests that you do this one 

hour twice a week and the best time for him is between 7am-8am. Bearing in mind nothing else 

but your own “feeling-best” rhythm, how do you think you would perform? 

1 = would find it very 

difficult 

2 = would find it 

difficult 

3 = would be on 

reasonable form 

4 = would be on good 

form 

 

10. At what time in the evening do you feel tired and as a result in need of sleep? 

1 = 2-3am 2 = 12:45-1:59am 3 = 11:30pm-

12:44am 

 

4 = 9-10:15pm 5 = 8-9pm 

 

11. You wish to be at your peak performance for a test which you know is going to be mentally 

exhausting and lasting for two hours. You are entirely free to plan your day and considering 

only your own “feeling-best” rhythm which one of the four testing times would you choose? 

0 = 7-9pm 2 = 3-5pm 4 = 11am-1pm 6 = 8am-10am 

 

 

12. If you went to bed at 11pm at what level of tiredness would you be? 

0 = not at all tired 2 = a little tired 3 = fairly tired 5 = very tired 

 

13. For some reason you have gone to bed several hours later than usual, but there is no need to get 

up at any particular time the next morning. Which one of the following events are you most 

likely to experience? 

1 = will not wake up 

until later than usual 

2 = will wake up at 

usual time but will fall 

asleep again 

3 = will wake up at 

usual time and will 

dose thereafter 

4 = will wake up at the 

usual time and will not 

fall asleep 

 

14. One night you have to remain awake between 4am-6am in order to carry out a night watch. 

You have no commitments the next day. Which one of the following alternatives would suit 

you best? 

1 = would not go to 

bed until watch was 

over 

2 = would take a nap 

before and sleep after 

3 = Would take a good 

sleep before and nap 

after 

 

 

 

 

4 = would take all sleep 

before watch 
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Table 6.1 (continued). Items included in the ‘Morningness-Eveningness Questionnaire’ 

 

15. You have to do two hours of hard physical work. You are entirely free to plan your day and 

considering only your “feeling-best” rhythm which one of the following would you choose? 

1 = 7-9pm 2 = 3-5pm 3 = 11-1am 4 = 8-10am 

 

16. You have decided to engage in hard physical exercise. A friend suggests that you do this for 

one hour twice a week and the best time for him is between 10pm-11pm. Bearing in mind 

nothing else but you own “feeling-best” rhythm how well do you think you would perform? 

1 = would be on good 

form 

2 = would be on 

reasonable form 

3 = would find it 

difficult 

4 = would find it very 

difficult 

 

 

17. Suppose that you can choose your own work hours. Assume that you worked a five hour day 

(including breaks) and that your job was interesting and paid by results. Which five consecutive 

hours would you select? 

1 = 5pm-3am 2 = 2-4pm 3 = 9am-1pm 4 = 8-9pm 5 = 4-8pm 

 

18. At what time of the day do you think that you reach your “feeling-best” peak? 

1 = 10pm-4am 2 = 5-9pm 3 = 10am-4pm 4 = 8-9am 5 = 5-7am 

 

19. One hears about “morning” and “evening” types of people. Which one of these types do you 

consider yourself to be? 

0 = Definitely 

“evening” type 

2 = rather more an 

“evening” than a 

“morning” type 

4 = rather more a 

“morning” than an 

“evening” type 

6 = definitely a 

“morning” type 

 

 

In order to determine whether diurnal preference was associated with actual 

behaviour, scores on the MEQ were examined in relation to reported bed and arising 

times (these measures were taken from the PSQI and are typically used to calculate 

sleep duration). There was a significant association between diurnal preference (MEQ 

total score) and actual bedtimes, (r = .50, p<.01), indicating that greater eveningness 

preference was associated with going to bed later, and that greater morningness 

preference was associated with going to bed earlier. There was also a significant 

association between diurnal preference and getting-up time (r = .42, p<.01) indicating 

that greater eveningness was associated with later getting-up time, and greater 

morningness with earlier getting-up time. Of note it should be considered that actual 
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bedtimes and getting-up times may be influenced by many factors other than diurnal 

preference, such as school and work obligations (hence, the reason why a perfect 

correlation was not expected). 

 

6.3.3 Statistical Analyses  

 First the degree of association between sleep quality and diurnal preference was 

assessed using intraclass correlations. Second, a series of univariate genetic models (as 

described in section 2.4) on MEQ were run in order to determine the extent to which 

genetic and environmental influences accounted for the variation in diurnal preference. 

Third, a bivariate correlated factors model (as described in section 2.7) was run in order 

to determine the extent to which the aetiological influences on diurnal preference 

overlapped with those on sleep quality; and the extent to which the association between 

sleep quality and diurnal preference was accounted for by genetic and environmental 

influences. In the univariate analysis quantitative, qualitative and scalar sex differences 

were tested (as described in section 2.8); whereas in the bivariate analyses only 

quantitative sex differences were tested, as is standard practice. 

All analyses were carried out using Mx (Neale, 1997), as described in section 

2.6.1, and incorporated the weight variable described in section 2.10 to account for 

selection bias and attrition. Furthermore, prior to analysis the data were regressed for 

the effects of age and sex as described in Chapter 3, section 3.3.3.1.1. 

 

6.3.4.1  Genetic model-fitting 

As in previous chapters, in all genetic models the effects of additive genetic (A), 

shared environmental (C) or non-additive genetic (D), and non-shared environmental 

(E) variance components were examined. Furthermore, nested models (where certain 

parameters [e.g. C] were dropped) were run in order to determine the significance of the 
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variance components (as described in section 2.6.2). The most parsimonious genetic 

models, and those which resulted in the best fit compared to the saturated models (as 

indicated by the AIC value and a non-significant decrement in fit compared to fuller 

models), were selected for interpretation.  

 

 

6.4 Results 

6.4.1 Descriptives 

  The frequencies of scores on the MEQ are displayed in Figure 6.1. Skew was 

not considered problematic for MEQ (MEQ skew = -.17, [SE = .09]), and so the 

variable was not transformed for this purpose. Table 6.2 displays the means and 

standard deviations of raw scores on the morningness-eveningness questionnaire split 

by sex and zygosity (descriptive statistics for global sleep quality is presented in 

Chapter 3, Table 3.3). There were significant sex differences in diurnal preference (fit of 

model incorporating sex differences compared to fully constrained model: ∆χ
2
 = 29.61, 

∆df = 2, p<.01), with males reporting slightly greater eveningness.  

 

 

 

Table 6.2. Descriptive statistics. Means (standard deviations) of scores for dependent 

and independent negative life events  

 Total Males  Females MZ DZ Sibs 

MEQ 53.46 

(8.13) 

54.88  

(8.38)* 

52.42 

 (7.78)* 

51.77 

(7.67) 

54.10 

(8.20) 

53.64 

(8.20) 

Note. MEQ = Morningness-Eveningness Questionnaire (reversed so that higher scores indicate 

greater eveningness). Means and standard deviations of raw (untransformed) data. Sex differences 

for means and standard deviations were tested, 
*
 p<.01.  
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Figure 6.1. Histogram of the frequency of total MEQ scores 

 

                      

           

 

 

6.4.2 Phenotypic and twin correlations 

 Phenotypic and twin correlations are presented in Table 6.3. There was a 

significant phenotypic correlation between sleep quality and diurnal preference (r = 

.27), suggesting that greater eveningness preference is associated with poorer sleep 

quality (and conversely that greater morningness preference is associated with better 

sleep quality). The cross-twin within-trait correlations on diurnal preference suggest that 

non-additive genetic influences may be important (as indicated by the MZ correlations 

being more than twice that of the DZ and sibling correlations). Likewise, the cross-twin 

cross-trait correlations (e.g., the correlation between diurnal preference in twin 1 and 
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sleep quality in twin 2) suggest that non-additive genetic influences may be important 

for explaining the association between sleep quality and diurnal preference. 

 

 

Table 6.3. Phenotypic correlations for monozygotic twins (MZ), dizygotic twins 

(DZ) and siblings (Sibs) (with 95% confidence intervals) 

                MEQ-MEQ               PSQI-MEQ 

Within Twins                                               / .27 

(.22 - .32) 

Cross Twins 

MZ .50  

(.39 - .60) 

.25 

(.16 - .33) 

DZ .10  

(.00 - .21) 

.04 

(-.04 - .12) 

Sibs .17  

(.00 - .34) 

.05 

(-.08 - .18) 

Note. PSQI = Pittsburgh Sleep Quality Index; MEQ = Morningness-Eveningness 

Questionnaire; MZ = monozygotic; DZ = dizygotic. All twin correlations were obtained 

from Mx incorporating a weight to account for selection bias and attrition. The model was 

constrained where appropriate. For example, the twin correlations were constrained so 

that those of the randomly selected twin 1’s were the same as the randomly selected twin 

2’s. All analyses were run on transformed (i.e. age and sex regressed) data and include a 

weight variable to account for initial selection bias and attrition. 

 

 

6.4.3 Univariate genetic analysis of diurnal preference 

Fit statistics for the univariate genetic models of diurnal preference are shown in 

Table 6.4. The table first displays the fit of the saturated (fully unconstrained) model. 

Subsequently, qualitative, quantitative and scalar sex differences are tested, as are the 

significance of C and D. The best-fitting model was a ‘DE’ model which allowed for 

scalar sex differences (note that the scalar could not be dropped from the model as 

doing so resulted in a significant decrement in fit: fit of model 11 compared to model 
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16: ∆χ
2
 = 4.64, ∆df = 1, p=.03). Accordingly, male variance was estimated as 9% 

greater than the female variance. Non-additive genetic influences accounted for 53%[.19-

.61] and non-shared environmental influences accounted for 47%[.39-.58] of the variance in 

diurnal preference.  

 

 

6.4.4 Bivariate genetic analysis 

 Fit statistics from the bivariate correlated factors models are provided in Table 

6.5. Note that because ‘CE’ and ‘E’ models did not provide a good fit to the data in the 

univariate models for sleep quality and diurnal preference, these models were not tested 

in the bivariate analysis. Furthermore, as there was no evidence for qualitative or scalar 

sex differences (except for diurnal preference) in the univariate analyses for both traits, 

these were also not tested in the bivariate genetic analyses. A ‘DE’ model in which sex 

differences were equated (model 9) provided the best-fit to the data. From this model 

there was substantial overlap in the non-additive genetic influences between sleep 

quality and diurnal preference (rD = .52[.37-.70]). There was negligible overlap in the non-

shared environmental influences between these phenotypes (rE = .02[-.11-.16]). The 

proportion of the phenotypic correlation accounted for by non-additive genetic and non-

shared environmental influences was also estimated in this model. Overall, non-additive 

genetic influence accounted for 96%[.69-1.23] of the phenotypic association between sleep 

quality and diurnal preference; and non-shared environmental influence accounted for 

the remaining 4%[-.23-.31] of the covariance. 
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Table 6.4. Fit statistics for univariate genetic model fitting analyses of diurnal preference 

 Model Fit Fit relative to saturated model 

Model -2LL df ∆χ
2
 ∆df p AIC 

1. Saturated  8380.523 1295     

2. ACE QSD + Qual. SD on A 8396.616 1312 16.09 17 .52 -17.91 

3. ACE QSD + Qual. SD on C 8399.468 1312 18.95 17 .33 -15.06 

4. ADE QSD + Qual. SD on A 8392.893 1312 12.37 17 .78 -21.63 

5. ADE QSD + Qual. SD on D 8392.864 1312 12.34 17 .78 -21.66 

6. ACE QSD 8399.468 1313 18.95 18 .40 -17.06 

7. ADE QSD 8392.893 1313 12.37 18 .83 -23.63 

8. ACE SSD 8402.337 1315 21.81 20 .35 -18.19 

9. ADE SSD 8393.844 1315 13.32 20 .86 -26.68 

10. AE SSD 8402.337 1316 21.81 21 .41 -20.19 

*11. DE SSD 8393.844 1316 13.32 21 .90 -28.68 

12. ACE NSD 8407.421 1316 26.90 21 .17 -15.10 

13. ADE NSD 8398.478 1316 17.96 21 .65 -24.05 

14. AE NSD 8407.421 1317 26.90 22 .22 -17.10 

15. CE NSD 8428.186 1317 47.66 22 .00 3.66 

16. DE NSD 8398.478 1317 17.96 22 .71 -26.05 

17. E NSD 8460.512 1318 79.99 23 .00 33.99 

Note. * = Best-fitting model; QSD = Quantitative sex differences (magnitude of parameter 

estimates can vary between males and females); Qual. SD = Qualitative sex differences on A, C or 

D (genetic or shared environmental correlation between males and females); SSD = Scalar sex 

differences (variance differences between males and females); NSD = no sex differences; -2LL = -

2*(log likelihood); df = degrees of freedom; ∆χ
2 

and ∆df  = change in chi-square statistic and 

corresponding degrees of freedom (computed as the difference in likelihood and df between each 

model and the saturated model); p = probability; AIC – Akaike’s Information Criterion statistic 

(calculated as ∆χ
2 
– 2∆df). All analyses focus on transformed variables. All estimates were obtained 

from Mx and incorporated a weight to account for initial selection bias and selective attrition. 
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Table 6.5. Fit statistics for bivariate correlated factors models for sleep quality 

and diurnal preference  

 Model Fit Fit relative to saturated model 

Model -2LL df ∆χ
2
 ∆df p AIC 

1. Saturated  17698.226 2538     

2. ACE SD 17754.508 2603 56.28 65 .77 -73.72 

3. ADE SD 17746.001 2603 47.78 65 .95 -82.23 

4. AE SD 17764.788 2608 66.56 70 .59 -73.44 

5. DE SD 17757.196 2608 58.97 70 .82 -81.03 

6. ACE NSD 17770.576 2609 72.35 71 .43 -69.65 

7. ADE NSD 17759.407 2609 61.18 71 .79 -80.82 

8.  AE NSD 17770.576 2612 72.35 74 .53 -75.65 

*9. DE NSD 17761.940 2612 63.71 74 .80 -84.29 

Note. * = Best-fitting model; SD = magnitude of parameter estimates can vary between 

males and females; NSD = no sex differences; -2LL = -2*(log likelihood); df = degrees 

of freedom; ∆χ
2 

and ∆df  = change in chi-square statistic and corresponding degrees of 

freedom (computed as the difference in likelihood and df between each model and the 

saturated model); p = probability; AIC – Akaike’s Information Criterion statistic 

(calculated as ∆χ
2 

– 2∆df). All analyses focus on transformed variables. All estimates 

were obtained from Mx and incorporated a weight to account for initial selection bias 

and selective attrition. 

 

6.5 Discussion 

The principal aim of the present study was examine the extent to which the 

genetic and environmental influences on diurnal preference overlapped with those 

influencing sleep quality; and the extent to which these aetiological influences 

accounted for the association between the phenotypes. The main findings of this chapter 

are discussed below followed by an outline of the limitations specific to this chapter. 
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6.5.1   Distribution of diurnal preference scores 

The overall mean diurnal preference score in the present study was as expected, 

reflecting an intermediate ‘morningness-eveningness’ disposition (note that this scale 

has been reversed – which should be taken into consideration when comparing this 

score with scores from other papers using the MEQ). This is in line with previous 

research which has suggested that the majority of individuals in the general adult 

population score somewhere around the midpoint on the morningness-eveningness 

continuum (Chelminski, et al., 1997; Horne & Östberg, 1976). In a study by Caci and 

colleagues (2009) which included 426 young adults aged between 17 and 46 years 

(Mean = 23 years; SD = 4.48 years), the average morningness-eveningness score was 

around 49 – almost identical to that of the present sample (mean score in present sample 

= 53 [reversed]; equating to a score of 49 [un-reversed]).  Furthermore, Hogben and 

colleagues (2007) observed a mean score of 47 in a sample of 617 young adults aged 

between 18 and 39 years (mean age = 25 years; SD = 5.5 years).  

Whilst the average score in the present sample appears to be in line with other 

research of young adults, a substantial amount of research has indicated that diurnal 

preference changes with age, and so the mean score in other age groups may be 

somewhat different. Several lines of evidence suggest a quadratic relationship between 

morningness-eveningness and age. For example, it is commonly observed that whilst 

children are often ‘morning’ oriented (Werner, LeBurgeois, Geiger, & Jenni, 2009), 

between the period of pre-adolescence to late adolescence individuals become more 

‘evening’ oriented with a peak at around age 20 years (Gau & Soong, 2003; Hur, et al., 

1998; Kerkhof, 1985; Kim, Dueker, Hasher, & Goldstein, 2002; Park, et al., 2002; 

Russo, Bruni, Lucidi, Ferri, & Violani, 2007; Shinkoda, Matsumoto, Park, & 

Nagashima, 2000). Yet beyond adolescence, it is typically observed that individuals 

become more ‘morning’ oriented throughout the lifespan (Carrier, et al., 1997; Kramer, 
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et al., 1999; Paine, Gander, & Travier, 2006; Park, et al., 2002; Robilliard, et al., 2002; 

Roenneberg, et al., 2007; Taillard, et al., 1999; Tonetti, Fabbri, & Natale, 2008). It 

appears that biological factors may account for the transition to eveningness from 

childhood to adolescence, with little influence of psychosocial factors (Carskadon, 

Vieira, & Acebo, 1993). Furthermore, the shift towards morningness from adolescence 

through adulthood is suggested to occur due to changes in the endocrine system, in 

particular the changes in the sexual hormone milieu during puberty and, in older 

women, the menopause (Randler & Bausback, 2010; Roenneberg, et al., 2007). 

Investigation of a specific gene (PER3) on diurnal preference has also indicated 

differential effects by age (Jones, et al., 2007). The robust evidence for an association 

between diurnal preference and age suggests that the investigation of the aetiological 

underpinnings of diurnal preference should consider the possibility that results may 

differ as a function of age. Since the participants in the present sample were all young 

adults (clustering around the age of 20 years), it was not possible to investigate the 

possibility of age-effects on diurnal preference, and so extrapolation of the present 

results should be confined to the age group under study. 

In addition to age-related changes in diurnal preference, it is known that diurnal 

preference differs between males and females. Typically, women are more morning-

oriented than men (Adan & Natale, 2002; Robilliard, et al., 2002; Vink, et al., 2001), 

which is in line with the findings presented in this chapter. However, other studies find 

no such differences between the sexes in terms of morningness-eveningness score (Caci, 

et al., 2009; Paine, et al., 2006). It has been suggested that, physiologically, females 

experience an advance in the acrophase (peak time) of the circadian rhythm of around 1 

hour as compared to males (Tankova, Adan, & Buela-Casal, 1994), and it is perhaps 

likely that this small objective difference between the sexes is not captured by all 

subjective measures. However the inconsistencies in the results suggest the need to 
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further investigate reasons for these differences between studies in terms of the 

presence/absence of a true sex effect.  

In addition to the observed sex differences in absolute morningness-eveningness 

score in the present sample, the results of the genetic model fitting analysis indicated the 

presence of differences in the variability of morningness-eveningness score between the 

sexes, such that male’s scores varied to a greater extent than did female’s. This finding 

suggests that diurnal preference may be a more variable trait for males than females. 

Reasons for this possible variability between males yet stability between females should 

be investigated in future research. It is possible that this is due to the perhaps more 

varied lifestyles of males, whereas the lifestyles of females may be more similar, 

especially for those bringing up young families where sleep-wake routines may be more 

constrained by school and work start time.  

 

6.5.2    Univariate genetic analysis of diurnal preference 

Around half of the variance in diurnal preference was attributable to non-

additive genetic effects and half to non-shared environmental effects. This is consistent 

with other studies of diurnal-type, where genes (in terms of broad-sense heritability) 

were found to account for between 44-54% of the total variability in the phenotype, 

with the remaining source of variance accounted for by non-shared environmental 

factors (like the majority of studies reported here, shared-environmental influences were 

absent) (Hur, 2007; Hur, et al., 1998; Koskenvuo, et al., 2007; Vink, et al., 2001). The 

finding that both genes and environments are significant contributors to diurnal 

preference is no surprise given the abundance of research supporting a role for both 

endogenous factors and exogenous ‘zeitgebers’ (environmental time cues) in the 

functioning of the circadian system. It is likely that there is an interaction between these 

processes, such that endogenous factors are first synchronised by exogenous zeitgebers 
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which then go on to activate the circadian clock. The biological underpinnings of the 

human circadian clock are well established (see Roenneberg & Merrow, 2003, for a 

review). The core components of the ‘clock’ reside in the suprachiasmatic nucleus 

(SCN) of the anterior hypothalamus, which coordinates the cellular clocks of all organs 

and tissues throughout the body. At the subcellular level the oscillations of the circadian 

clock are dependent upon the activity of ‘clock genes’ in a reciprocal system whereby 

some genes control positive elements (BMAL1 and CLOCK) – which drive transcription 

of clock genes; whilst others control negative elements (Dunlap, 1999; Reppert & 

Weaver, 2001). These negative elements (including PER1, PER2, PER3, CRY1 and 

CRY2 genes) control a component of a transcriptional feedback loop in which their 

expression is periodically suppressed by their protein products, providing negative auto-

feedback to the circadian clock (Bae, et al., 2001; Dunlap, 1999; Reppert & Weaver, 

2001; Wulff, et al., 2009). Like all genes, there is much variation in the clock genes and 

it is these genetic variations that partially account for the inter-individual differences 

observed in sleep timing (Roenneberg, et al., 2007). Further discussion of this topic is 

reserved for Chapter 7. 

 With regards to the environment, it is plausible that the timing of sleep, and 

hence an individual’s preference for sleep-wake activity, may be influenced by work, 

social and family commitments - which to some extent dictate their sleeping schedules. 

Indeed, such social demands, in particular employment and having children, have a 

significant modifying effect on the natural predisposition to morningness or 

eveningness (Adan, 1992; Leonhard & Randler, 2009; Mecacci & Zani, 1983; Monk, 

2005; Paine, et al., 2006; Tankova, et al., 1994). These external pressures may thus 

influence the development of a preference for timing activities and sleep patterns in 

accordance with them. Conversely, it may be that individuals with a particular 

chronotype select environments that compliment their sleep-wake activity preferences. 
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For example, night-shift workers are characteristically ‘evening’ oriented (Tankova, et 

al., 1994). Accordingly, night-shift workers may choose work which coincides with 

their biological clock. It is believed that their adaptability to night work is in part due to 

their natural circadian phase position (Tankova, et al., 1994).  

Whilst it is likely that social and work constraints play a part in influencing 

sleep-wake activity, it is also likely that the observed circadian rhythm phase 

differences between morning- and evening-types occur as a result of differential 

exposure to environmental factors, or zeitgebers such as exposure to light - which is 

considered to be a primary synchronizer of the circadian clock (Duffy & Wright, 2005). 

The daily variation of light and darkness is a predominant zeitgeber influencing 

circadian rhythmicity and preferences for sleep-wake activity. The light-dark cycle is 

perhaps the most important external zeitgeber as it influences the timing and daily 

fluctuations of all other environmental cues (such as noise and silence, heat and cold) 

(Roenneberg, et al., 2007; Tankova, et al., 1994). Indeed, the amount of exposure to and 

the intensity of light is important for the entrainment of the circadian clock (Duffy & 

Wright, 2005). Evening-types are exposed to less morning light and more evening light, 

whilst the converse is true for morning-types. This consequently results in the relatively 

late sleep schedules in evening-types (Goulet, Mongrain, Desrosiers, Paquet, & 

Dumont, 2007). Accordingly, the altered position of evening-types’ circadian phase 

may dampen the effects of other external zeitgebers (such as light) that would usually 

influence ‘normal’ sleep timing (Monk, 1990). Thus, it is appears that a host of 

interacting biological, environmental, and psychosocial factors are involved in diurnal 

preference. 
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6.5.3 Associations between sleep quality and diurnal preference 

The current analyses demonstrate that a preference for eveningness is associated 

with poor sleep quality, which is consistent with previous reports (Hogben, et al., 2007; 

Koskenvuo, et al., 2007; Megdal & Schernhammer, 2007; Shiihara, et al., 1998; Vardar, 

et al., 2008). It is possible that the association between sleep quality and diurnal 

preference is related to intrinsic properties of the circadian system. As briefly mentioned 

above, the phase position of the endogenous circadian oscillator of evening-types is 

delayed compared to that of morning-types (Kerkhof & Van Dongen, 1996). As a result 

of this phase shift the core body temperature minimum in evening-types occurs much 

later in the night-time period than morning-types (Baehr, et al., 2000). As such, 

evening-types sleep on an earlier part of their temperature cycle, and their temperature 

nadir occurs closer to waking compared to morning-types, i.e., the phase angle between 

sleep and wake-time is smaller in evening-types (Baehr, et al., 2000; Waterhouse, et al., 

2001). Subjective alertness is lowest near the temperature minimum (Boivin & James, 

2002; Dijk, Duffy, & Czeisler, 1992), and since evening-types awaken closer to the time 

of this nadir this may account for their feeling less alert upon awakening. It is also 

possible that the difficulty awakening of evening-types leads them to infer that they 

have slept poorly. Of course, it is also possible that evening-types actually sleep shorter 

overall, given a preference for later self-selected bedtimes in combination with earlier 

than desired wake-times constrained by school or occupational demands (of note, there 

was a small but significant association between diurnal preference and sleep duration [r 

= .08, p<.05], indicating that evening-types slept for a shorter duration than morning-

types).  

Extrapolating the association between eveningness and poor sleep quality to 

extreme chronotypes, it may seem plausible that in individuals with circadian rhythm 

sleep disorders such as DSPD (characterized by extreme eveningness), the quality of 
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sleep would be poor. Individuals with DSPD experience severe sleep onset insomnia 

and find it hard to sleep prior to around 2am-6am (American Academy of Sleep 

Medicine, 2005). Yet despite this, the habitual sleep period is often good after sleep 

onset, and such individuals experience normal sleep duration and few sleep disturbances 

when free to choose their sleep schedule. The discrepancy between individuals with 

DSPD being extremely evening oriented yet experiencing overall good sleep quality 

may arise because of the intrinsic phase of the circadian rhythm in DSPD. Dijk and 

Czeisler (1994) found that a good, consolidated 8 hour sleep was only possible when 

sleep was initiated 6-8 hours prior to the temperature nadir. Timing one’s sleep at times 

incongruent to one’s biological clock resulted in sleep deficits and impaired sleep 

quality. Yet it is suggested that the endogenous phase position of the biological clock in 

individuals with DSPD is delayed so that their peak time of arousal and lowest 

temperature phase occur extremely later than usual (Dijk & Lockley, 2002). Therefore, 

despite sleeping later, the timing of their sleep is congruent with their biological rhythm. 

Attempting sleep at times such as 2-6am in individuals with DSPD corresponds with 

their temperature nadir, and thus results in a good sleep providing they are able to sleep 

for a long duration in the morning - allowing their temperature to rise before awakening. 

However, truly ad lib sleep schedules are difficult to attain in the real world, and this 

system becomes disrupted when such individuals are not free to plan their sleep-wake 

schedule according to their circadian phase (due to social and work constraints or 

societal norms). This can be seen in Shift Work Sleep Disorder, whereby sleep quality 

is disrupted when individuals habitually attempt sleep during the daytime (American 

Academy of Sleep Medicine, 2005). This demonstrates the importance of timing sleep 

at times congruent with one’s chronotype. Empirical research examining sleep quality 

in individuals with ASPD and DSPD would be beneficial to refine existing diagnostic 
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criteria and our understanding of sleep quality-diurnality associations in extreme 

chronotypes. 

 

6.5.4 Genetic influences on the association between sleep quality and diurnal 

preference 

The most interesting and novel finding presented in this chapter is that the 

association between sleep quality and diurnal preference was almost entirely explained 

by genetic influences, and there was substantial overlap in the genes influencing both 

phenotypes. This suggests that the genes associated with greater eveningness preference 

are also associated with increased sleep disturbance. This is informative for future 

research into sleep quality and diurnal preference, since it suggests that genes already 

known to be associated with one phenotype should be considered as possible candidates 

for exploration with regards to the other. Extensive research has indicated that 

polymorphisms of the CLOCK 3111 T/C gene influence eveningness and sleep timing 

(Katzenberg, et al., 1998), and polymorphisms of PER1, PER2, and PER3 influence 

extreme circadian preference (Archer, et al., 2003; Carpen, et al., 2005; Carpen, et al., 

2006); whereas polymorphisms of both the CLOCK 3111 T/C gene and the transporter 

region of the  serotonin gene (5HTTLPR) have been related to sleep quality (Brummett, 

Krystal, Ashley-Koch, et al., 2007; Deuschle, et al., 2010; Serretti, et al., 2003). In the 

search for genes common to both phenotypes, it has been found that homozygosity for 

the 5-repeat allele in the PER3 variable number tandem repeat polymorphism is 

associated with both morning preference (Archer, et al., 2003; Ellis, von Schantz, Jones, 

& Archer, 2009; Jones, et al., 2007) and increased sleep pressure (i.e. shorter sleep 

latency, more theta and alpha activity in wake and REM sleep, more slow wave activity 

in non-REM sleep, and more slow wave sleep (Viola, et al., 2007)), indicative of good 

sleep quality. Accordingly, it may be beneficial to investigate the role of these genes in 
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both sleep quality and diurnal preference. Yet since genetic overlap was not absolute 

(i.e. 52% genetic overlap between the phenotypes) it is likely that there are, to some 

extent, different genes influencing these phenotypes – thus, unique genes should also be 

explored in relation to both sleep quality and diurnal preference. 

 

6.5.5 Environmental influences on the association between sleep quality and 

diurnal preference 

Environmental influences accounted for only a small proportion of the 

association between phenotypes, and overlap between environmental influences was 

negligible. This finding suggests that largely unique environmental factors influence 

sleep quality and diurnal preference. This finding is somewhat intuitive since it is 

unlikely that environmental factors known to disrupt sleep, for instance living near a 

busy road (Kageyama, et al., 2011), experiencing family conflict (Gregory, Caspi, et al., 

2006), and as found in previous chapters of this thesis, experiencing negative life 

events, relationship dissatisfaction, and poor general health, would have an impact on 

preference for sleep timing. As discussed above, environmental factors which may be 

more likely to influence diurnal preference may be related to work and social 

commitments, as well as factors related to the light-dark cycle. The lack of 

environmental overlap further substantiates the importance of genetic factors in 

explaining the association between sleep quality and diurnal preference. 

 

6.5.6 Limitations  

 The main limitation specific to this study regards the age of the present sample. 

As a plethora of research points to the possibility that diurnal preference, as well as the 

influence of specific genes on diurnal preference, changes with age, it is essential for 

future research to investigate the association between sleep quality and diurnal 
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preference across the lifespan. Since evidence suggests that sleep problems increase at 

times of significant hormonal change, such as during puberty (Knutson, 2005) and in 

women, the menopause (Kravitz, et al., 2003), it is possible that the association between 

diurnal preference and age is in part due to associations with hormonally influenced 

sleep disturbance. Investigation of the specificity of the associations between sleep 

phenotypes and age will determine firstly whether the effects of age on diurnal 

preference are independent of concurrent associations with sleep quality; and secondly, 

whether hormonal fluctuations meditate the age-diurnality relationship. 

 

 

6.5.7 Conclusion 

In conclusion, this chapter determined that a preference for eveningness is 

associated with poor sleep quality and that this association is largely under genetic 

control. Furthermore, the substantial overlap in the genetic influences between 

phenotypes suggests that the search for candidate genes influencing sleep quality should 

initially focus on investigating genes for which there is already evidence of an 

association with diurnal preference. Likewise, the search for candidate genes 

influencing diurnal preference should focus on those already known to be associated 

with sleep quality. Worthy candidates for study in relation to both sleep quality and 

diurnal preference are therefore likely to be polymorphisms of CLOCK and those of the 

PER gene family; as well as polymorphisms of serotonin genes, in particular the 

transporter region of 5HT (5HTTLPR). Further exploration of specific genotypes 

influencing these phenotypes will aid in the progression to understanding the 

complexities of sleep and the circadian system - a topic which is addressed in the 

following chapter. 
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Chapter 7: A candidate gene study of sleep quality and diurnal 

preference: Associations with 5HTTLPR, PER3 VNTR and 

CLOCK 3111 and interactions with negative life events 

 

7.1 Overview 

Chapter 6 determined that there was substantial overlap in the genetic influences 

accounting for diurnal preference and sleep quality. Accordingly, these results tell us 

that in order to identify genes associated with sleep quality it may be worthwhile 

investigating genes already known to be associated with diurnal preference, as these are 

likely to also influence sleep quality, given the genetic overlap between these 

phenotypes. The present study investigates associations between sleep quality and 

diurnal preference and three functional polymorphisms: 5HTTLPR, PERIOD3 VNTR 

and CLOCK 3111. Furthermore, gene-environment interaction was tested in order to 

determine whether associations between genotypes and sleep phenotypes were 

moderated by negative life events. There was a significant main effect of 5HTTLPR on 

sleep quality, such that the ‘long-long’ homozygotes conferred greater risk for sleep 

disturbances (β = -.34, p<.01). No evidence was found for an association between PER3 

VNTR and CLOCK 3111 and both sleep quality and diurnal preference; and no 

significant gene-environment interaction with negative life events. The main effect of 

the ‘long’ 5HTTLPR allele contradicts previous research, suggesting that perhaps the 

effects of this gene are heterogeneous in different populations. Failure to replicate 

previous research in relation to PER3 VNTR and CLOCK 3111 concurs with previous 

research suggesting that the effects of these genes are small and may be related to 

population composition. 
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7.2 Introduction 

  The search for candidate genes influencing sleep has largely focussed on the 

role of serotonin in sleep quality (Brummett, Krystal, Ashley-Koch, et al., 2007), and 

the role of clock genes in relation to circadian phenotypes, including diurnal preference 

(for a review see Wulff, et al., 2009). Given the evidence of substantial overlap in the 

genetic influences accounting for sleep quality and diurnal preference from Chapter 6, it 

appears logical to investigate known variants of both serotonin and clock genes in 

relation to both phenotypes. Accordingly, this chapter investigates the association 

between three polymorphisms and both sleep quality and diurnal preference: a length 

polymorphism in the serotonin transporter (5HTTLPR) (including an A/G single 

nucleotide polymorphism (SNP) within the transporter linked polymorphic region 

[LPR]); a variable number tandem repeat (VNTR) in PER3; and a SNP in CLOCK in 

the 3’ untranslated region (UTR) at position 3111 (CLOCK 3111). These three genetic 

polymorphisms were selected because they have received considerable attention in the 

literature in relation to sleep phenotypes in recent years. 

 

7.2.1 5HTTLPR 

Serotonin (5HT) is a neurotransmitter, released by the raphe nuclei in the central 

and peripheral nervous systems, which modulates cognition, mood, emotion, motor 

function and appetite (Adrien, 2002; Cools, Roberts, & Robbins, 2008; Portas, Bjorvatn, 

& Ursin, 2000; Ursin, 2002), and forms a fundamental part of the body’s homeostatic 

system, driving sleep/wake behaviour (Jouvet, 1972). Serotonergic neurons are thought 

to be most active during wakefulness, contribute to the build up of sleep propensity, and 

deactivate in the transition from wake to sleep onset (Landolt, et al., 1999). The 

serotonin transporter gene (SLC6A4, [solute carrier family 6, member 4]) controls the 

entire serotonergic system, maintaining the homeostasis of 5HT in the brain by 
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mediating the removal and recycling of serotonin after neuronal activation (Murphy, 

Lerner, Rudnick, & Lesch, 2004). SLC6A4 is composed of 14 exons spanning ~31 kb 

(kilobases) located on chromosome 17q11.2 (Lesch, et al., 1994; Murphy, et al., 2004; 

Nakamura, Ueno, Sano, & Tanabe, 2000). Several polymorphisms of SLC6A4 have 

previously been identified, most notably a functional polymorphism in the SLC6A4 

gene-linked polymorphic region (5HTTLPR), consisting of a 44bp (base pair) 

insertion/deletion located on the 5-flanking arm ~1 kb upstream of the 5HTT gene 

transcription initiation site, which either contains 14- (short, ‘S’) or 16- (long, ‘L’) 

repeat elements (Heils, et al., 1996; Lesch, et al., 1996). The ‘short’ variant of the 

polymorphism is associated with reduced transcriptional efficiency of the 5HTT gene, 

leading to decreased serotonin uptake activity and thus increased availability of 

serotonin at the synapse (Lesch, et al., 1996; Nakamura, et al., 2000). Recent 

investigations have shown that the 5HTTLPR polymorphism itself contains an A/G SNP 

(rs25531), located approximately 10bp from the original insertion/deletion (Hu, et al., 

2005; Wendland, Martin, Kruse, Lesch, & Murphy, 2006). The presence of a ‘G’ SNP 

on the ‘long’ allele reduces the expression of the gene, rendering it functionally 

equivalent to the ‘short’ allele (Wendland, et al., 2006). Thus, an LG/LG genotype will 

function as an S/S homozygote, whereas an LA/LG will function as an S/L heterozygote. 

The presence of a ‘G’ allele on the short allele, however, does not alter its function.  

The ‘short’ allele has repeatedly been associated with anxiety, neuroticism and 

depression traits (for example, see Collier, et al., 1996; Lesch, et al., 1996), however, a 

substantial amount of research on this polymorphism to date has focussed on its 

interaction with environmental factors to influence behaviour. Gene-environment 

interaction (GxE) exists when genetic vulnerability to a trait increases sensitivity to 

environmental stressors (i.e. genetic vulnerability is modified under certain 

environmental conditions). With regards 5HTTLPR, numerous studies report that the 
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association between the ‘short’ allele and psychopathology is moderated by the 

experience of environmental adversity. For example, the ‘short’ allele has been 

associated with greater symptoms of depression and suicidal tendencies in individuals 

experiencing negative life events or environmental risk (Caspi, et al., 2003; Eley, 

Sugden, et al., 2004). However, there is significant controversy within this field, with 

three recent meta-analyses providing contradictory results (see section 1.6.4.2 for 

further details of these studies). 

Despite this surge of interest in 5HTTLPR, few studies to date have investigated 

the role of 5HTTLPR in sleep quality or diurnal preference. The only investigations of 

5HTTLPR in relation to sleep quality (to the author’s knowledge) have shown that the 

‘short’ allele is associated with primary insomnia (Deuschle, et al., 2010), and interacts 

with the stress of caregiving to bring about poor sleep quality (Brummett, Krystal, 

Ashley-Koch, et al., 2007). In relation to diurnal preference, there is evidence to suggest 

that serotonin activity is related to circadian rhythm regulation, and indeed one of the 

densest networks of serotonergic nerve endings in the brain is located in the 

suprachiasmatic nucleus – the area central to the regulation of circadian rhythms (Ursin, 

2002). Although little, if any, research has investigated the role of serotonin specifically 

in diurnal preference, one study examined the differences in platelet 5HT content, 5-

hydroxyindolacetic acid (5HIAA – a serotonin metabolite) content, and the distribution 

of 5HTTLPR genotypes, between daytime workers and rotating shift workers 

(Sookoian, et al., 2007). The authors found that both platelet 5HT and 5HIAA content 

were significantly reduced; and that the ‘short’ allele of the 5HTTLPR polymorphism 

was significantly more prevalent in rotating shift workers compared to daytime workers. 

Since night-shift workers are more typically ‘evening’ oriented (Tankova, et al., 1994), 

it may be possible to extrapolate from this latter finding to suggest that the ‘short’ allele 

of the 5HTTLPR polymorphism may be associated with a preference for eveningness.  
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Given the dearth of research assessing the role of the 5HTTLPR polymorphism 

in sleep quality, replication is paramount, and extending this to an investigation of 

diurnal preference is warranted given the lack of investigation to date. Furthermore, no 

studies to the authors’ knowledge have investigated 5HTTLPR and sleep with 

consideration of the functional A/G SNP within the LPR, and so investigation of this is 

essential. 

  

7.2.2 PER3 VNTR 

 The PERIOD (PER) gene family regulates the oscillations of the circadian clock 

in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus (Reppert & Weaver, 

2001). The PER3 gene, located on chromosome 1p36.23, is a component of the negative 

transcriptional feedback loop in which the gene’s expression is periodically suppressed 

by its protein products (CLOCK and BMAL1), providing auto-feedback to the circadian 

clock (Bae, et al., 2001; Dunlap, 1999; Reppert & Weaver, 2001; Wulff, et al., 2009). 

PER3 has been identified as a more robust marker of circadian oscillations compared to 

BMAL1 and PER2 (Archer, et al., 2008). PER3 has two common variants of coding 

region VNTR in exon 18, characterised by a long allele consisting of 5-repeated 54bp of 

the coding sequence and a shorter allele consisting of 4-repeats (Ebisawa, et al., 2001). 

The 5-repeat allele has been associated with extreme morningness preference (Archer, 

et al., 2003; Ellis, et al., 2009; Jones, et al., 2007; Pereira, et al., 2005); decreased 

cognitive performance following sleep loss (Groeger, et al., 2008; Viola, et al., 2007); 

and increased sleep pressure - indicated by shorter sleep latency, more theta and alpha 

activity in wake and rapid eye movement (REM) sleep, and more slow wave activity in 

non-REM sleep (Viola, et al., 2007). Thus, it appears that the 5-repeat allele exerts an 

influence over indices of sleep intensity and quality as well as circadian timing.  

Conversely, the 4-repeat allele has been associated with extreme evening preference and 
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delayed sleep phase syndrome (DSPS) (Archer, et al., 2003). However, it should be 

noted that results are inconsistent and in a Brazilian population the 5-repeat allele was 

found to be associated with DSPS (Pereira, et al., 2005). The present study aims to 

replicate previous research showing an association between extreme diurnal preference 

and PER3, and investigates this in the normal range as well as in the extremes (i.e. by 

selecting the 10%
2
 of subjects scoring the highest and lowest on the sleep measures) and 

to extend this to an investigation of sleep quality given the scarcity of research 

explicitly assessing the latter association.  

 

7.2.3 CLOCK 3111 T/C 

 CLOCK forms part of the positive regulator of the circadian system, and acts 

as a transcriptional regulator that drives the expression of negative elements (PER1, 2 

and 3, and CRY1 and 2) of the feedback loop (Wulff, et al., 2009). A recent study found 

that variants of the CLOCK gene, located on chromosome 4q12, are associated with 

sleep duration (Allebrandt, et al., 2010). Furthermore, a SNP in the 3’ UTR of CLOCK 

at position 3111, consisting of a ‘C’ to ‘T’ nucleotide substitution (rs1801260), has been 

associated with several sleep phenotypes relevant to both sleep quality (in the context of 

mood disorders) and diurnal preference. Specifically, the ‘C’ allele is associated with 

shorter sleep duration and delayed sleep onset in bipolar depressed patients (Benedetti, 

et al., 2007); reoccurrence of insomnia in depressed patients (Serretti, et al., 2003); and 

a preference for eveningness in the general population in the USA (Katzenberg, et al., 

1998) and Japan (Mishima, Tozawa, Satoh, Saitoh, & Mishima, 2005). However, there 

have also been non-replications of the latter finding (Johansson, et al., 2003; Pedrazzoli, 

et al., 2007; Robilliard, et al., 2002; Voinescu, Thome, & Orasan, 2009), suggesting the 

                                                           
2
 The study by Archer et al., (2003) selected the 7% of individuals scoring high and low on the MEQ. Here, the 10% 

extreme cases were selected in order to maximise power. However, 7% and 15% extremes were also tested and the 

results were substantially similar to those presented. 
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need to further investigate this polymorphism in order to gain a clearer picture of the 

presence/absence of an effect. No studies to the author’s knowledge, however, have 

investigated the relationship between CLOCK 3111 and sleep quality in a general 

population sample. 

 

7.2.4 Gene-environment interaction (GxE) 

 Given that recent genetic research has highlighted the importance of 

investigating the possibility of GxE (Moffitt, et al., 2005), GxE was also explored in the 

present study (in addition to examining the main effects of these genetic polymorphisms 

on sleep). Ignoring the possibility of GxE may lead to incorrect conclusions about the 

importance of genes if their effects only manifest in particular environments. In the 

present study self-reported negative life events was selected as a candidate 

environmental measure to include in the analyses, since the experience of negative life 

events has previously been found to moderate genetic liability to psychopathology 

(Caspi, et al., 2003), and is known to be associated with sleep difficulties, evidenced by 

the results of Chapter 5 of this thesis, as well as numerous empirical papers (Gregory, 

Caspi, et al., 2006; Lavie, 2001; Mezick, et al., 2009; Sadeh, 1996; Vahtera, et al., 

2007). Although the results of Chapter 5 found no evidence for statistical gene-

environment interaction between negative life events and sleep quality, investigation of 

measured gene-environment interaction is warranted as including measured genotypes 

increases statistical power (this is because in statistical gene-environment interaction 

analyses the measure of genetic influence is estimated from the pattern of cross-twin 

correlations on a particular phenotype, rather than objectively specifying genotype). 

Evidence for variability in sleep between individuals exposed to similar levels of 

negative life events would suggest that there may be individual variability in genetic 

susceptibility to sleep disturbance. Conversely, variability in sleep between individuals 
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with the same genotype but differing in their exposure to negative life events would 

suggest the presence of GxE processes. 

 

7.2.5 Gene-gene interaction (GxG) 

 As well as working in an additive manner, genes are known to interact to 

influence behaviour – a process known as epistasis. Gene-gene interactions are known 

to be associated with numerous disorders (Murphy, et al., 2004). For example, Sookoian 

and colleagues recently reported an interaction between 5HTTLPR and a haplotype of 

the CLOCK gene on risk for a number of symptoms related to metabolic syndrome in a 

sample of shift workers (Sookoian, Gianotti, Burgueno, & Pirola, 2010). Furthermore, 

Pedrazzoli and colleagues found that a specific combination of four CLOCK genes 

(PER2, PER3, CLOCK 3111 and BMAL1) was a strong marker of chronotype 

(Pedrazzoli, et al., 2010). Accordingly, in addition to investigating gene-environment 

interactions, gene-gene interactions between all permutations of the 3 genetic 

polymorphisms were also investigated in the present study.  

 

7.3 Method 

7.3.1 DNA collection and extraction 

During previous waves of data collection (waves 1 to 3), cheek swab kits, 

containing 10 cotton wool buds, a 15ml tube containing a storage buffer, and a pre-paid 

return envelope, were posted to all study participants in order to collect DNA. DNA was 

provided by some but not all participants at previous waves, and so individuals 

participating at wave 4 who had not yet provided DNA were sent a cheek swab kit. Two 

postal reminders were sent in order to maximise the response rate. Cheek swabs are 

used to collect DNA from buccal cavity cells simply by rubbing the cotton-buds around 

the inside of the mouth. Cheek swabs were then placed in the tube containing storage 
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buffer and mailed back to the laboratory. To extract DNA from the tubes several steps 

were necessary as outlined by Freeman and colleagues (1997). First, the DNA was 

released by the activation of proteinase K by incubating the samples at around 65°C for 

2 hours. Second, the tubes were centrifuged at 1000rpm to recover all of the liquid for 5 

minutes. Third, using a Biomex-FX robotic-liquid handler the DNA was purified, and 

then centrifuged so that any debris was removed. Fourth, the DNA supernatant was 

manually decanted, and finally re-suspended in water by the robot. The DNA samples 

were then tested for degradation and purity by spectrophotometry and gel 

electrophoresis, and any impure or degraded samples were excluded. The genomic 

DNA samples were then diluted with Te buffer (10mM Tris.HCl, pH 8.0 and 1mM 

EDTA, pH 8.0) using the robotic-liquid handler to give a universal final volume of 

100µl and final concentration of 25ng/µl, or 10ng/µl for samples that had lower original 

concentrations. 

 

7.3.2 Participants 

DNA from buccal swabs was collected from a total of 1,237 of the G1219 

sample from all waves, of which 947 were wave 4 respondents (61% of those targeted at 

this wave; mean age = 20.3 years [SD=1.77], age range 18-27 years; 61.8% female). 

Only those participants who participated in wave 4 were included in the present 

analyses as this was the first wave to include information on sleep. 

 

7.3.3 Measures 

 Sleep quality was assessed by the PSQI global score, as outlined in Chapter 3 

(section 3.3.2). Diurnal preference was assessed by the MEQ as outlined in Chapter 6 

(section 6.3.2). The PSQI and MEQ were analysed in the full range as in previous 

chapters of this thesis, however, in addition to using the continuous scales, the PSQI and 
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MEQ scores were also dichotomized to represent individuals scoring in the top and 

bottom 10% extremes on these scales in order to examine the extreme good and poor 

sleepers, and extreme morning- and evening-types in the sample, respectively (see 

section 7.3.5 for further details). This was done in order to directly replicate the study 

by Archer and colleagues (2003), which assessed the effect of PER3 on extreme diurnal 

preference. In the present study, the effects of all genes on sleep quality and diurnal 

preference were assessed both in the full range and in the extreme. Dependent and 

independent negative life events were assessed by items from the ‘List of Threatening 

Experiences’ (Brugha, et al., 1985), and the ‘Coddington Stressful Life Events Scale’ 

(Coddington, 1984), as outlined in Chapter 4 (section 4.3.2.2). The number of negative 

life events experienced were categorised in order to investigate the influence of 

experiencing zero compared to any number of negative life events.  

  

7.3.4 Genotyping 

7.3.4.1   5HTTLPR 

A multiplex polymerase chain reaction (PCR) procedure, as outlined by 

Wendland et al. (2006), was performed to simultaneously genotype 5HTTLPR as well 

as the A/G SNP within the LPR. The PCR assays consisted of 25ng (1µl) genomic 

DNA, 10µl PCR master mix (2X: HotStarTaq DNA polymerase, 6nM MgCl2 buffer 

[pH8.7], dNTP mix [5mM of dATP, dCTP, dGTP and dTTP]: Qiagen), 6.4µl H2O and 

.4µl/200nM concentration oligonucleotide primers (MWG, London; outlined in Table 

7.1) in a final volume of 20µl per reaction. The PCR procedure was followed by double 

restriction endonuclease digestions using HpaII and BccI, which identifies the A/G SNP 

within the LPR. The alleles were categorised as ‘long’ (L) or ‘short’ (S) as outlined by 

(Lesch, et al., 1996). The A/G SNP within the LPR allows the distinction between SA, 

LA and LG alleles. As the LG allele behaves equivalently to the S allele (Hu, et al., 
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2006), tri-allelic genotypes were re-categorised into a bi-allelic model according to their 

expression as follows: LGLG and SLG were categorised as SS; SLA and LGLA as SL; and 

LALA as LL. The genotypes were visualised by gel electrophoresis as outlined in 

Chapter 2 (section 2.9.3). 

 

7.3.4.2   PER3 VNTR 

A standard PCR procedure was carried out using 50ng (2 µl) genomic DNA, 10x 

PCR buffer IV (750mM Tris.HCl, pH 8.8; 200mM [NH4]2SO4: ABgene), 40mM 

MgCl
2
,
 
.25µl dNTP mix (25µl/100mM concentration of dATP, dCTP, dGTP and dTTP), 

.2µl Taq polymerase (5 units/µl, ABI Amplitaq, Applied Biosystems), 5.7µl H
2
O, and 

.25µl/20µM concentration oligonucleotide primers (SIGMA, Dorset; Table 7.1) in a 

final volume of 10µl per reaction. Alleles were categorised as 4- or 5- repeat sequences 

as in previous reports (Archer, et al., 2003). The genotypes were visualised by gel 

electrophoresis as outlined in Chapter 2 (section 2.9.3). 

 

7.3.4.3   CLOCK 3111T/C 

 A standard PCR procedure for use with the Taqman sequence detection system 

(SDS) was carried out using 25ng (1 µl) genomic DNA, 2.5µl 2x ABsolute QPCR ROX 

Mix (ABgene, UK), .375µl H
2
O, and .125µl/20µM concentration oligonucleotide 

primer and probe mix (ABgene, UK; see Table 7.1) in a final volume of 5µl per 

reaction. Alleles were categorised as either containing the ‘T’ or ‘C’ SNP. The 

genotypes were visualised using the Taqman allelic discrimination system, as outlined 

in Chapter 2 (section 2.9.4). Primer sequences and PCR conditions for all genes are 

outlined in Table 7.1. 
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7.3.5 Data preparation 

In order to examine the genotypic frequencies between extreme good vs. poor 

sleeper groups, and the morning- vs. evening-type groups, in addition to considering 

scores on the PSQI and the MEQ in the full range, dichotomous variables were created 

prior to analysis. The frequency distributions of scores on the PSQI and MEQ were 

examined, and individuals scoring in the extreme top and bottom 10% of the 

distributions were categorised as good- vs. poor sleepers, and morning- vs. evening-

types, respectively. For the PSQI, individuals scoring ≤ 2.33 were categorised as 

extreme good sleepers, and those scoring ≥ 10 as extreme poor sleepers. For the MEQ, 

individuals scoring ≤ 37.5 were categorised as extreme evening-types, and those scoring 

≥ 59 were categorised as extreme morning-types. (Of note, extreme variables were also 

created cutting off the top and bottom 7% and 15% of the distributions. Analyses were 

substantially similar to those examining the 10% extremes, and so only results from the 

analyses examining the 10% extremes are presented). The dependent and independent 

negative life event variables were also dichotomised to indicate whether an individual 

had experienced 0 or 1+ life events. This was considered the most appropriate method 

of assessing life events, given that the majority of individuals had experienced either 

none or 1 (mean = 1.22; SD = 1.54, see Table 5.1). 

 

7.3.6  Statistical Analyses 

7.3.6.1   Analyses of the full range of scores 

All statistical analyses were performed in STATA (Stata, 2002). First, 

differences in mean scores on measures of sleep quality and diurnal preference were 

assessed between the sexes using t-tests. Second, linear regression analyses were 

conducted to assess main effects of genotype on the sleep measures. Third, models were 

run which included main effects of genotype, negative life events (dependent and 
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independent, separately), and interaction terms between genotype X negative life 

events. Fourth, three-way and two-way gene-gene interactions on the sleep measures 

were tested by creating interaction terms between each combination of genes. In all 

regression analyses age and sex were first entered into the models, followed by main 

effects of genotype, main effects of dependent/independent negative life events, 

followed finally by the GxE and GxG interaction terms as appropriate. All analyses 

were run on the total sample as well as by males and females separately in order to 

investigate possible sex differences (in these analyses sex was not included in the 

regression models). Because the sample included individuals from the same families, all 

of the statistical analyses were conservatively corrected for the non-independence of the 

twin/sibling observations using the ‘robust’ cluster command in STATA, as is standard 

in analyses of this type (see Rogers, 1993; Williams, 2000, for more information). The 

weight variable as described in Chapter 2 (section 2.10) was incorporated into the 

regression analyses in order to account for initial selection bias and attrition between 

waves 1-4. Of note, incorporating the weight variable resulted in substantially similar 

results to un-weighted analyses. 

 

7.3.6.2   Analyses of categorical variables 

 Chi-squares were calculated in order to assess main effects of genotype on the 

frequencies of cases categorised as extreme good vs. poor sleepers and extreme 

morning- vs. evening-types. Additionally, chi-squares were calculated to assess whether 

there were main effects of each allele (rather than bi-allelic genotypes) on the good vs. 

poor sleeper groups and morning- vs. evening-type groups. 
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Table 7.1. Protocol for genotyping 5HTTLPR (A/G), PER3 VNTR and CLOCK 3111 

Gene Primer Sequences PCR conditions ( o 
= degrees Celsius) Product separation 

5HTTLPR (A/G) F: 5' TCCTCCGCTTTGGCGCCTCTTCC 3' 

R: 5' TGGGGGTTGCAGGGGAGATCCTG 3' 

Initial PCR 

95
o
 – 15 minutes 

94
o
 – 30 seconds 

63.4
o
 – 90 seconds        repeat 35x cycles 

72
o
 – 60 seconds 

72
o
 – 10 minutes 

 

Restriction 

enzyme digestion 

37
o
 – 6 hours 

 

3.5% Agarose gel 

electrophoresis stained 

with ethidium bromide 

PER3 VNTR F: 5' CAAAATTTTATGACACTACCAGAATGGCTGAC 3' 

 

R: 5' AACCTTGTACTTCCACATCAGTGCCTGG 3' 

94
o
– 2 minutes 

 

94
o 
– 30 seconds 

69
o
 – 30 seconds           repeat 40x cycles 

72
o 
– 45 seconds 

72
o 
– 2 minutes      

2% Agarose gel 

electrophoresis stained 

with ethidium bromide 

CLOCK 3111 

 

F: 5′-AGCCAGCAGGAGGTGATCATA-3′ 

R: 5′-CAGGCACCTAAAACACTGTCAGA-3′ 

Probe VIC-5′-ACTGGCTATGCCCC-3′ 

Probe FAM-5′-CTGGCTGTGCCCC-3′ 

50
o
 – 2 minutes 

95
o
 – 15 minutes 

95
o
 – 15 seconds 

                                     repeat 40x cycles 

60
o
 – 60 seconds 

72
o
 – 2 minutes 

TaqMan ABI 7900HT 

Sequence Detection 

System; Allelic 

Discrimination 

Program (Applied 

Biosystems) 
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7.4 Results 

7.4.1 Descriptives 

Table 7.2 displays the genotype frequencies for the total sample (note that 

although 947 wave 4 participants were genotyped, the actual number of successful 

genotypes obtained was slightly less than 947 due to insufficient DNA. Actual numbers 

of successful genotypes obtained for each of the genes are indicated in Table 7.2). The 

frequencies of genotypes conformed to Hardy-Weinberg equilibrium (5HTTLPR: χ
2 

= 

.07, p = .79; 5HTTLPR (A/G): χ
2
 =.80, p = .37; PER3: χ

2
 = 2.82, p =.09; CLOCK: χ

2
 = 

2.51, p =.11).  

 

Table 7.2. Genotype frequencies (% in parenthesis) 

Marker Genotype Frequencies 

5HTTLPR  LL 

SL 

SS 

Total n 

273 (32.1%) 

414 (48.7%) 

163 (19.2%) 

850 

5HTTLPR (A/G) LL 

SL 

SS 

Total n 

208 (24.5%) 

438 (51.5%) 

204 (24%) 

850 

PER3 VNTR 4/4 

4/5 

5/5 

Total n 

395 (45.6%) 

364 (42%) 

108 (12.5%) 

867 

CLOCK 3111 TT 

TC 

CC 

Total n 

510 (55.1%) 

341 (36.9%) 

74 (8%) 

925 

Note. 5HTTLPR = bi-allelic genotypes based on the standard classification; 

5HTTLPR (A/G) = tri-allelic genotypes which considered the A/G SNP within the 

LPR, categorised into a bi-allelic model as follows: LGLG and SLG genotypes were 

re-categorised as SS; SLA and LGLA as SL; and LALA as LL. 
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In the total genotyped sample there were significant sex differences in 

morningness-eveningness (mean = 47.08 [SD = 8.50]; and 49.37 [7.96], for males and 

females respectively, t(940) = -4.16, p <.001), indicating that females were more 

morning-oriented than males. There were no sex differences in sleep quality (mean = 

5.59 [2.96] and 6.00 [3.17], for males and females respectively, t(924) = -1.94, p =.05). 

Table 7.3 displays the mean sleep quality and diurnal preference scores by genotype for 

the total sample as well as for males and females separately.  

 

7.4.2 Linear Regression Results 

The linear regression analyses demonstrated that there was a significant main 

effect of 5HTTLPR genotype (both the standard classification as well as when 

considering the A/G SNP within the LPR) on mean sleep quality score (for example, 

5HTTLPR (A/G): β = -.34, p =.005), indicating that LL homozygotes had significantly 

higher mean sleep quality scores (for example, 5HTTLPR (A/G) mean = 6.35, SD = 

3.36) (indicative of poorer sleep quality) than carriers of at least one S allele (for 

example, 5HTTLPR (A/G) mean = 5.67, SD = 2.96; effect size d = .22) (see Table 7.4 

for a summary of the linear regression results). This result remained significant after 

correcting the p-value for multiple testing (p = .05/8 = .006). When assessing males and 

females separately the effect of 5HTTLPR genotype (both the standard classification as 

well as when considering the A/G SNP within the LPR) on sleep quality was significant 

only in males (for example, 5HTTLPR (A/G): β = -.60, p =.003, d = .40). There were no 

significant main effects of 5HTTLPR genotype on mean diurnal preference score. 

Furthermore, there were no significant main effects of PER3 or CLOCK on sleep 

quality or diurnal preference, both in the full sample and when males and females were 

assessed separately; and no significant interactions between all genotypes and 

dependent/independent negative life events on sleep quality or diurnal preference.  
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Table 7.3. Mean PSQI and MEQ scores (SD in parenthesis) by genotype  

 Mean Score 

 Pittsburgh Sleep Quality Index Morningness-Eveningness Questionnaire
 

Marker Genotype Total Males Females Total Males Females 

5HTTLPR  LL 

SL 

SS 

Total n 

 

6.27 (3.28) 

5.69 (3.07) 

5.47 (2.61) 

830 

6.23 (3.13) 

5.48 (2.98) 

5.14 (2.71) 

323 

6.29 (3.36) 

5.84 (3.12) 

5.72 (2.52) 

507 

48.40 (8.68) 

48.37 (8.01) 

48.52 (8.23) 

847 

48.18 (8.50) 

46.62 (8.27) 

46.71 (8.78) 

326 

48.52 (8.79) 

49.53 (7.62) 

49.86 (7.58) 

521 

5HTTLPR 

(A/G) 

LL 

SL 

SS 

Total n 

 

6.35 (3.36) 

5.76 (3.10) 

5.47 (2.60) 

830 

6.59 (3.33) 

5.43 (2.89) 

5.21 (2.75) 

323 

6.23 (3.38) 

5.98 (3.22) 

5.67 (2.47) 

507 

48.14 (8.47) 

48.65 (8.23) 

48.17 (8.15) 

847 

47.34 (8.82) 

47.46 (8.17) 

46.13 (8.71) 

326 

48.56 (8.28) 

49.40 (8.20) 

49.67 (7.40) 

521 

PER3 

VNTR 

4/4 

4/5 

5/5 

Total n 

 

5.88 (3.09) 

5.88 (3.14) 

5.97 (3.12) 

848 

5.61 (2.94) 

5.68 (3.18) 

5.92 (2.94) 

322 

6.05 (3.18) 

6.00 (3.13) 

6.01 (3.27) 

526 

48.42 (8.13) 

48.75 (8.16) 

48.35 (9.19) 

864 

47.44 (8.42) 

47.07 (8.49) 

47.38 (9.08) 

325 

49.03 (7.89) 

49.69 (7.84) 

49.01 (9.28) 

539 

CLOCK 

3111 

TT 

TC 

CC 

Total n 

5.86 (3.23) 

5.86 (2.93) 

5.88 (3.01) 

905 

5.71 (3.19) 

5.45 (2.64) 

5.69 (2.68) 

350 

5.96 (3.26) 

6.09 (3.06) 

6.02 (3.25) 

555 

48.53 (8.22) 

48.56 (8.10) 

47.64 (8.99) 

921 

46.96 (8.79) 

47.14 (8.11) 

47.30 (7.79) 

352 

49.57 (7.67) 

49.32 (8.01) 

47.91 (9.90) 

569 

Note. PSQI = Pittsburgh Sleep Quality Index; MEQ = Morningness-Eveningness Questionnaire; n = total 

number of participants successfully genotyped that also provided complete data on PSQI/MEQ. 
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The results of the linear regression analyses investigating the presence of gene-

gene interactions on the sleep measures are presented in Table 7.5. There was a 

significant gene-gene interaction between 5HTTLPR and PER3 on sleep quality, 

however, this result reduced to non-significance when correcting the p-value for 

multiple comparisons (p = .05/14 = .004). All other gene-gene interactions were non-

significant. 

 

7.4.3 Chi-square analyses of extreme PSQI and MEQ scores 

 The chi-square analyses of main effects of genotype on the frequencies of cases 

in the extreme good vs. poor sleepers, and the extreme morning- vs. evening-types are 

presented in Table 7.6. There were significant differences between the 5HTTLPR 

genotypes (both the standard classification as well as when considering the A/G SNP 

within the LPR) and the frequencies of good vs. poor sleepers. When assessing the 

frequency distributions for the good vs. poor sleeper groups by allele frequency (rather 

than genotype), there were significantly more poor sleepers carrying at least one ‘L’ 

allele than there were good sleepers (χ
2 

(1) = 9.68, p<.001; and χ
2 

(1) = 8.94, p<.01 for 

the standard classification and A/G SNP, respectively). There were no main effects of 

5HTTLPR genotype on the extreme diurnal preference groups. Furthermore, there were 

no significant differences in the frequencies of cases categorised as good vs. poor 

sleepers or morning- vs. evening-types in genotype or allele frequency for any other 

genes. 
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Note. All regression analyses included the weight variable analyses to account for attrition between waves 1-4. Significance of the results were tested: ** = p <.01 

after correction for multiple comparisons; † = p <.05, which reduced to non-significance when correcting for multiple comparisons. 

Table 7.4. Standardised regression coefficients β(SE) from linear regression analyses for main effects of genotype on sleep quality and diurnal 

preference and interactions with dependent (dep.) and independent (ind.) negative life events  

Marker Sleep Quality Diurnal Preference   

Main Effects Genotype X dep. life 

events interaction 

Genotype X ind. life 

events interaction 

Main Effects Genotype X dep. life 

events interaction 

Genotype X ind. life 

events interaction 

5HTTLPR                   (SS vs. SL, vs. LL) 

                                         (LL vs. SL, SS) 

                                         (SS vs. SL, LL) 

-.30 (0.11)** 

-.34 (0.12)** 

-0.18 (.11) 

-0.15 (0.34) 

0.09 (0.24) 

-0.20 (0.17) 

-0.64 (0.34) 

-0.50 (0.24) 

-0.14 (0.16) 

-0.01 (0.34) 

0.04 (0.32) 

-0.05 (0.34) 

0.31 (1.01) 

0.51 (0.68) 

-0.14 (0.53) 

0.02 (0.97) 

0.13 (0.66) 

-0.09 (0.45) 

5HTTLPR (A/G)        (SS vs. SL, vs. LL) 

                                         (LL vs. SL, SS) 

                                         (SS vs. SL, LL) 

-0.32 (0.11)** 

-0.34 (0.12)** 

-0.07 (0.10) 

-0.21 (0.36)
 

0.04 (0.26) 

-0.19 (0.18) 

-0.77 (0.36)† 
 

-0.58 (0.26)† 

-0.20 (0.16) 

-0.05 (0.34) 

0.18 (0.33) 

-0.26 (0.33) 

0.67 (1.07)
 

0.40 (0.76) 

0.26 (0.54) 

0.24 (1.04)
 

0.12 (0.74) 

0.11 (0.47) 

PER3  VNTR             (4/4 vs. 4/5 vs. 5/5) 

                                        (4/4 vs. 4/5, 5/5) 

                                        (5/5 vs. 4/5, 4/4)
 

0.07 (0.11) 

0.08 (0.11) 

-0.03 (0.11) 

0.19 (0.30)
 

0.20 (0.21) 

0.05 (0.31) 

-0.76 (0.33)† 

-0.39 (0.21) 

0.63 (0.33)
 
 

-0.03 (0.34) 

0.06 (0.31) 

0.14 (0.36)
 

-1.00 (0.89)
 

-0.63 (0.55) 

0.75 (1.03) 

0.13 (0.96)
 

0.08 (0.55) 

-0.13 (1.05)
 

CLOCK 3111          (T/T vs. C/T vs. C/C) 

                                    (T/T vs. C/T, C/C)                       

                                    (C/C vs. C/T, T/T)
 

0.00 (0.12) 

-0.01 (0.12) 

-0.03 (0.13) 

-0.21 (0.29)
 

-0.16 (0.19) 

0.04 (0.35) 

-0.04 (0.29)
 

-0.05 (0.18) 

-0.10 (0.36) 

-0.29 (0.32) 

-0.20 (0.30) 

0.32 (0.34) 

0.69 (0.82) 

0.45 (0.50) 

-0.40 (1.16) 

0.51 (0.83) 

0.52 (0.48) 

0.60 (1.20) 
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Table 7.5. Standardised regression coefficients β(SE) from linear regression analyses 

of gene-gene interactions on sleep quality and diurnal preference 

Marker Sleep Quality Diurnal Preference 

5HTTLPR x PER3 x CLOCK -.26 (.30) .76 (.82) 

5HTTLPR (A/G) x PER3 x CLOCK -.20 (.31) .87 (.86) 

5HTTLPR x PER3 -.80 (.40) † .47 (1.29) 

5HTTLPR  x CLOCK .45 (.41) .71 (1.27) 

5HTTLPR (A/G) x PER3 -.66 (.41) .16 (1.37) 

5HTTLPR (A/G) x CLOCK .54 (.43) 1.07 (1.34) 

PER3 x CLOCK -.06 (.36) -.10 (1.15) 

Note. All regression analyses included the weight variable analyses to account for attrition 

between waves 1-4. Significance of the results were tested: † = p <.05, which reduced to non-

significance when correcting for multiple comparisons. 

 

Table 7.6. Genotypic frequencies for the extreme sleep quality and diurnal preference 

groups and chi-square analyses 

 Sleep Quality Groups  

Marker Genotype Good Sleepers (%) Poor Sleepers (%) Total (%) χ
2 

5HTTLPR  LL 

SL 

SS 

Total n 

18 (20.9%) 

53 (61.6%) 

15 (17.4%) 

86  

54 (47.4%) 

45 (39.5%) 

15 (13.1%) 

114 

72 (36%) 

98 (49%) 

30 (15%) 

200 

 

 

 

15.03 (2) p = .00 

5HTTLPR 

(A/G) 

LL 

SL 

SS 

Total n 

11 (12.8%) 

57 (66.3%) 

18 (20.9%) 

86 

43 (37.7%) 

53 (46.5%) 

18 (15.8%) 

114 

54 (27%) 

110 (55%) 

36 (18%) 

200 

 

 

 

15.49 (2) p = .00 

PER3 VNTR 4/4 

4/5 

5/5 

Total n 

37 (44.6%) 

35 (42.2%) 

11 (13.2%) 

83 

57 (47.5%) 

51 (42.5%) 

12 (10%) 

120 

94 (46.3%) 

86 (42.4%) 

23 (11.3%) 

203 

 

 

 

.55 (2), p = .76 

CLOCK 3111 TT 

TC 

CC 

Total n 

 

51 (57.3%) 

31 (34.8%) 

7 (7.9%) 

89 

75 (59.5%) 

42 (33.3%) 

9 (7.1%) 

126 

126 (58.6%) 

73 (34%) 

16 (7.4%) 

215 

 

 

 

.12 (2)  p = .94 
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Table 7.6 (continued). Genotypic frequencies for the extreme sleep quality and diurnal 

preference groups and chi-square analyses 

  Morningness-Eveningness Groups  

Marker Genotype Morning Types (%) Evening Types 

(%) 

Total (%) χ
2
 

5HTTLPR  LL 

SL 

SS 

Total n 

 

36 (35.6%) 

44 (43.6%) 

21 (20.8%) 

101 

29 (29.6%) 

50 (51%) 

19 (19.4%) 

98 

65 (32.7%) 

94 (47.2%) 

40 (20.1%) 

199 

 

 

 

1.19 (2) p = .56 

5HTTLPR 

(A/G) 

LL 

SL 

SS 

Total n 

 

23 (22.8%) 

55 (54.4%) 

23 (22.8%) 

101 

22 (22.4%) 

51 (52%) 

25 (25.6%) 

98 

45 (22.6%) 

106 (53.3%) 

48 (24.1%) 

199 

 

 

 

.21 (2) p = .90 

PER3 VNTR 4/4 

4/5 

5/5 

Total n 

 

48 (44.9%) 

44 (41.1%) 

15 (14%) 

107 

41 (42.3%) 

41 (42.3%) 

15 (15.4%) 

97 

89 (43.6%) 

85 (41.7%) 

30 (14.7%) 

204 

 

 

 

.17(2), p = .92 

CLOCK 3111 TT 

TC 

CC 

Total n 

67 (59.8%) 

34 (30.4%) 

11 (9.8%) 

112 

57 (53.8%) 

36 (33.9%) 

13 (12.3%) 

106 

124 (56.9%) 

70 (32.1%) 

24 (11%) 

218 

 

 

 

.87 (2) p = .65 

 

 

7.5 Discussion 

The aim of the present study was to investigate associations between 

5HTTLPR, PER3 VNTR and CLOCK 3111 polymorphisms and both sleep quality and 

diurnal preference. There was evidence for a main effect of the 5HTTLPR ‘long’ allele 

on poor sleep quality in males. There was no evidence however for associations 

between 5HTTLPR and diurnal preference. Additionally there were no associations 

between PER3 VNTR or CLOCK 3111 and sleep quality or diurnal preference; no 
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interactions between any of the genotypes and negative life events on sleep; and no 

significant gene-gene interactions.  

 

7.5.1 The role of the 5HTTLPR ‘long’ allele and poor sleep quality 

To the author’s knowledge, this is the first study to report an association 

between the 5HTTLPR ‘long’ allele and poor sleep quality in the general population. 

Of relevance to this, however, one study investigating the role of 5HTTLPR in relation 

to the modulating effects of anti-depressant medication on motor response activity,  

demonstrated that ‘long-long’ homozygotes displayed significantly increased night-

time motor activity compared to carriers of at least one ‘short’ allele (Putzhammer, et 

al., 2005). Although the study by Putzhammer and colleagues (2005) did not assess 

sleep quality, increased night-time motor activity is often observed in poor sleepers 

(Lemke, Puhl, & Broderick, 1999), and so it may be plausible to interpret Putzhammer 

and colleagues’ (2005) finding as demonstrating a possible role for the LL genotype in 

poor sleep.  

However, the finding that the ‘long’ allele confers greater risk for sleep 

problems is contrary to two recent studies explicitly investigating associations 

between 5HTTLPR and sleep. One study found that the ‘short’ allele was associated 

with poor sleep quality in chronic stress (Brummett, Krystal, Ashley-Koch, et al., 

2007); and furthermore the ‘short’ allele was significantly more prevalent in 

individuals with primary insomnia than controls in another study (Deuschle, et al., 

2010). The present finding may reflect the possibility that the effect of 5HTTLPR in 

the general population differs to individuals under chronic stress or with clinically 

diagnosed primary insomnia. Thus, the ‘short’ allele may only confer greater risk for 

sleep disturbance in extreme populations. Within the field of psychiatry, despite the 

more commonly held view that the ‘short’ allele confers greater risk for problems (for 
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example, Caspi, et al., 2003), a number of studies report an association with the ‘long’ 

allele and difficulties such as anxiety, depression and alcohol misuse (Baune, et al., 

2008; Chipman, et al., 2007; Chorbov, et al., 2007; Gillespie, Whitfield, Williams, 

Heath, & Martin, 2005; Laucht, et al., 2009). Thus, as in mood disorders, it is possible 

that the effects of 5HTTLPR on sleep is heterogeneous. Furthermore, since the finding 

in the present sample only remained significant in males when assessing males and 

females separately, it is possible that the effect of 5HTTLPR on sleep is sex-

dependent. 

Additionally, we cannot ignore the possibility that interaction with stress may 

underlie associations with the ‘short’ allele and sleep quality. Although there was no 

evidence for an interaction between 5HTTLPR and negative life events, it may be that 

only concurrent stress rather than distal life events moderate the association between 

5HTTLPR and sleep quality. Indeed, studies have demonstrated that the effect of 

stressful life events on mood (including depression) shows a temporal relationship – 

being strongest around one month after a stressful event occurring, and diminishing 

with time (Uher & McGuffin, 2008). However, this temporal relationship appears to 

fluctuate depending on the particular stressful event in question. Given the dearth of 

research investigating environmental moderation of 5HTTLPR on sleep quality, 

further investigation of gene-environment interaction, considering the possibility of a 

temporal relationship, is essential in this context.  

 

 

7.5.2 No association between PER3 VNTR and sleep 

With regard to PER3 there was no evidence for an association with sleep 

quality, and the present study did not replicate a previously reported finding that the 5-

repeat allele is more frequent in extreme morning-types. This is somewhat surprising 
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given the numerous replications of the association between the 5-repeat allele and 

morning preference reported in the literature (Archer, et al., 2003; Ellis, et al., 2009; 

Jones, et al., 2007; Pereira, et al., 2005). Previous findings such as those reported by 

Archer and colleagues (2003) assessed the effect of PER3 in selected extreme 

morning and evening types. In the present study, there was no evidence of an effect of 

PER3 in the extremes or in the full range. The extremes analysis in the present study 

had a larger sample size than that of Archer et al., (2003), with ~68% power to 

replicate the effect. Although the sample size in the present study may appear to be 

satisfactory to detect a small effect (e.g. Φ = .18, in the paper by Archer et al., 2003), 

it is possible that failure to replicate the effect in the extremes was simply due to a 

lack of power given that power was less than 100%. In studies with small effect sizes 

non-replications are inevitable (Gorroochurn, Hodge, Heiman, Durner, & Greenberg, 

2007). In line with our findings, however, preliminary results from a small Romanian 

sample reported no effect of PER3 VNTR on sleep quality or diurnal preference 

(Voinescu, Coogan, & Thome, 2010). These results highlight the need for further 

investigation of factors influencing the association between diurnal preference and 

PER3 in large samples both in the full range as well as in extreme morning/evening 

types. 

 

7.5.3 No association between CLOCK 3111 and sleep 

With regards to CLOCK 3111, there was no evidence for main effects of 

genotype on sleep quality or diurnal preference. The literature on CLOCK 3111 and 

sleep quality to date has focussed on clinical samples of depressed and bipolar patients 

(Benedetti, et al., 2007; Serretti, et al., 2003) and suggests that the ‘C’ allele is 

associated with greater sleep difficulties. The lack of association found here suggests 

that the effects of CLOCK 3111 on sleep quality may be specific to mood disorders 
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and not present in the general population. For diurnal preference, one study suggests 

that the ‘C’ allele is associated with a tendency towards eveningness and the ‘T’ allele 

with morningness in a general population sample (Katzenberg, et al., 1998). Although 

the larger sample used in the present study meant that there was sufficient power to 

replicate this effect (~80% to detect an effect size of d = .30, as reported by 

Katzenberg et al 1998), the present results do not support the hypothesis that CLOCK 

3111 is associated with diurnal preference. In accordance with these findings other 

studies also found no evidence for this association (Johansson, et al., 2003; Pedrazzoli, 

et al., 2007; Robilliard, et al., 2002; Serretti, et al., 2010; Voinescu, et al., 2009). 

Despite this we should not rule out the possibility that CLOCK 3111 does contribute 

to the phenotypes under study, but should highlight that its effects may be too small to 

identify within the present sample. Furthermore, recent evidence points to the 

possibility that the association between CLOCK 3111 and diurnal preference may be 

dependent on its interaction with other clock genes (Pedrazzoli, et al., 2010). 

 

7.5.4 Alternative explanations for the present results and study limitations 

There are several alternative possible explanations for the present 

contradictory/null results which concern features specific to the study. First, a large 

proportion of the sample comprised university students (41.9%). It is possible that at 

university there is a tendency to stay up and get up late regardless of one’s biological 

chronotype due to the lack of a fixed routine. Thus, biological effects may be masked 

by environmental social pressures in these participants. However, the analyses were 

also run after excluding university students and, while the sample size became 

particularly small, results mirrored those presented.  

Second, the participants were younger than those participating in previous 

studies assessing 5HTTLPR and sleep quality (mean age of 20 years in the present 
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sample; 45.7 years for cases and 54.6 years controls in the study reported by Deuschle 

et al (2010); and 60.9 years for caregivers and 55.8 years for controls in the study 

reported by Brummett et al (2007a)); those investigating PER3 and diurnal preference 

(mean age of 35, 40, 24 and 25 years reported by Archer et al., 2003; Ellis et al., 2009; 

Jones et al., 2007; and Pereira et al., 2005, respectively); and those investigating 

CLOCK 3111 (mean age of 45 and 47 years reported by Benedetti et al., 2007, and 

Serretti et al., 2003, respectively). Indeed,  sleep quality and diurnal preference are 

known to change with age (Carrier, Monk, Reynolds, Buysse, & Kupfer, 1999; 

Carskadon, et al., 1982; Kramer, et al., 1999), as is the effect of PER3 on diurnal 

preference (Jones, et al., 2007). Thus, differences between studies in the age of 

participants could explain the mixed results, and it is possible that the effects of these 

genetic polymorphisms on sleep are age-dependent. (Of note, as age was entered into 

each of the regression models, the effect of age on the present results was statistically 

accounted for).  

Third, a related point is that if the associations between genes and sleep are 

dependent on a gene-environment interaction effect with negative life events (most 

plausibly in the case of sleep quality), it is possible that the relatively young 

participants in the present study had not experienced the necessary and sufficient 

number of events for the interaction to emerge. Indeed, of the participants included in 

the present sample around half had experienced no dependent or independent negative 

life events (with the average being around 1, see Chapter 5, Table 5.1). Furthermore, 

the present analyses only considered the possibility of gene-environment interaction 

by assessing the contribution of negative life events to the associations between the 

genotypes and sleep. A wider scope of environmental measures should be investigated 

to fully determine the presence/absence of gene-environment interaction for the 

genotypes and phenotypes under study. 
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Fourth, it is possible that being a twin masks the associations between these 

genes and sleep. For example, it is conceivable that twins discordant in their diurnal 

preferences alter their sleep patterns in accordance with their co-twin. Thus, an 

evening-type twin whose co-twin prefers to go to bed early may disrupt the sleeping 

schedule of their co-twin, to the extent that the co-twin alters their diurnal preference 

(although it is noteworthy that the means and variances of twins compared to non-twin 

siblings in the sample were not significantly different, and the non-independence of 

the data in the analyses was statistically controlled, so the use of twins here should not 

be cause for concern).  

Fifth, an additional consideration is that the majority of participants completed 

the questionnaire between March and September. It is possible that our participants 

had a greater preference for eveningness compared to other studies given the longer 

daylight hours at this time of year. Indeed, it has been suggested that seasonal 

variations are associated with changes in the neuroendocrine system, which may 

influence circadian rhythmicity (Wehr, 1998). Although there were no significant 

differences in mean sleep quality or diurnal preference score for those completing the 

questionnaire in different months, our sample’s overall mean diurnal preference score 

was slightly lower (indicating a greater overall trend towards eveningness) than those 

reported in other studies (Archer, et al., 2003; Jones, et al., 2007). Although these 

explanations are plausible, it is possible that our contradictory findings are the result 

of a random sampling effect, and thus a lack of power. This highlights the necessity of 

replication in larger samples before firm conclusions can be drawn. Furthermore, 

specific characteristics of this study may account for the observed results and should 

be explored in further studies, and consideration of the limitations of the analyses in 

this thesis in general is important to this end.  
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Chapter 8: General Discussion 

 

8.1 Overview 

 This chapter begins by summarising the results of this thesis. The limitations 

which are relevant to numerous chapters within this thesis are then outlined. A 

discussion of how the research findings of this thesis contribute to the current 

literature and our understanding of the aetiology of the sleep quality is then presented. 

Finally, possible avenues for areas of further research are offered followed by the 

overall conclusions of this thesis. 

 

8.2 Summary of Results 

 The overall aim of this thesis was to exploit the twin design to provide a 

detailed account of the aetiology of sleep quality in young adults. Chapters 3-6 have 

taken advantage of the twin design in different ways (for example, using univariate 

and multivariate genetic models; liability threshold models; MZ differences analyses; 

models of rGE and GxE) in order to fully utilise the rich and detailed dataset. Chapter 

7 has taken these analyses a step further by examining the effects of measured genes 

on sleep quality and diurnal preference. 

 

8.2.1 Genetic and environmental influences on global sleep quality and the 

overlap in the individual components of sleep quality 

Chapter 3 provided a basis for the remainder of the PhD by assessing the 

extent to which genetic and environmental influences contribute to the variation in 

global sleep quality. Furthermore, it assessed the relative contribution of these sources 

of variance and their overlap in the underlying liability of the severity of disturbances 
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in individual components of sleep quality. The aim was to determine whether the 

underlying contribution of genetic influences would support the use of the global 

score or whether, genetically speaking, the individual components measure distinct 

constructs in their own right.  

The relative proportions of genetic and environmental influences on global 

sleep quality, as well as the majority of the individual components, was in line with 

previous studies – with genetic influences accounting for around half of the observed 

variability in the phenotypes with the remainder due to the non-shared environment. 

However, this was not true for sleep duration - where there was no evidence for 

genetics. This was a somewhat surprising finding, but one that can be explained in 

large part due to sample specific characteristics (such as the age and possible lifestyle 

of the participants). Evidence of strong correlations between components suggested 

that these components do indeed measure an underlying construct of ‘sleep quality’. 

The substantial genetic correlations between components provided further support that 

the components, stemming from similar biological mechanisms, measure aspects of 

the same trait – justifying the use of the global score for the remainder of the analyses 

in this thesis.  

 

8.2.2 Specific non-shared environmental influences on sleep quality 

Chapter 4 sought to further understand the role of the non-shared environment 

on sleep quality, given that the previous chapter identified the non-shared environment 

as a significant source of influence. This study was the first to use the MZ twin 

differences approach to investigate specific non-shared environmental influences on 

sleep. Because of the known phenomenon that genetic influences can to some extent 

contribute to what we would usually consider to be ‘environmental’ experiences (a 

process known as gene-environment correlation), the MZ twin differences design 
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allows us to tease apart the effects of genes and environments to reveal effects that are 

purely environmental in origin (that is, free from gene-environment correlation). By 

examining the associations between a range of ‘environmental’ influences and sleep 

quality, this chapter determined that only relationship satisfaction in females, and 

general health in males had a purely non-shared environmental effect on sleep – that 

is, that the effects of all other variables (most importantly dependent negative life 

events) were intertwined with genetic effects. This latter point is perhaps the most 

important in the context of this thesis as this study has provided a novel way of 

indentifying gene-environment correlation.  

 

8.2.3 Dependent negative life events and sleep quality: an investigation of 

gene-environment interplay 

 Given that Chapter 4 indentified a possible gene-environment correlation 

effect on dependent negative life events, and that associations between dependent 

negative life events and sleep quality were perhaps the strongest of all the 

‘environmental’ variables investigated, Chapter 5 aimed to formally test the presence 

of rGE. In addition, Chapter 5 investigated the possibility of GxE given that an 

abundance of research over the past decade has found significant interactions between 

negative life events, genetic susceptibility and psychopathology. This was the first 

study to exploit the twin method in such a way as to investigate GxE in the presence 

of rGE in the context of sleep. The results confirmed those of Chapter 4, providing 

evidence for rGE between dependent negative life events and sleep quality – a finding 

which suggests that there may be similarities in the genetic influences affecting both 

sleep and the possibility of experiencing a negative life event. Mechanisms through 

which this may occur include the possibility that poor sleep interferes with later 

executive functioning, leading one to influence their own negative experiences 
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through limited cognitive resources. Further investigation of the consequent effects of 

poor sleep on the probability of experiencing negative life events is warranted in order 

to support this hypothesis. Of course, the converse is also likely to be true – that 

genetic susceptibility to experiencing negative life events consequently disrupts sleep. 

There was no evidence, however, for GxE. Despite this, it is possible that GxE exists 

in the context of sleep, but that a wider range of ‘environmental’ stressors should be 

investigated in order to observe this effect. 

 

8.2.4 Associations between sleep quality and diurnal preference  

 The previous two chapters focussed on unravelling the effects of the 

environment on sleep quality. Chapters 6 and 7, however, turned the focus to genetics. 

Before delving into the vast amount of DNA and aimlessly hunting for associations 

between sleep and polymorphic regions, one way to begin the search for genetic 

variants responsible for the variation in sleep quality is to assess other phenotypes that 

we already have knowledge of to provide clues as to where we should focus our 

investigation. Accordingly, Chapter 6 assessed the association between sleep quality 

and diurnal preference – another sleep phenotype which shows considerable variation 

between individuals in the general population which is known to have significant 

associations with sleep quality. Like previous research, poor sleep quality was 

associated with a greater preference for eveningness. Most importantly, the 

association between sleep quality and diurnal preference was largely accounted for by 

genetic influences, and there was substantial genetic overlap between these 

phenotypes. This finding is particularly important as it suggests that the genes 

influencing sleep quality are shared with those influencing diurnal preference. 

Accordingly, these results suggest that it may be worthwhile to investigate 
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polymorphisms known to be associated with diurnal preference in relation to sleep 

quality (and vice versa) – providing us with a basis upon which to begin our search for 

the genetic determinants of poor sleep. 

 

8.2.5 Associations between 5HTTLPR, PER3 and CLOCK 3111 and sleep 

quality and diurnal preference 

 Chapter 7 drew upon the results of Chapter 6 to investigate associations 

between genetic polymorphisms known to be associated with diurnal preference 

(PER3 and CLOCK 3111) in relation to sleep quality; and to further provide support 

for the role of 5HTTLPR in relation to both phenotypes given that this polymorphism 

has received considerable attention with regards sleep over recent years. Furthermore, 

this chapter aimed to determine whether the genetic effects on sleep were moderated 

by the experience of dependent negative life events – a test of measured GxE. The 

only significant effect between any gene and phenotype was between 5HTTLPR and 

sleep quality – homozygosity for the longer allele conferring greater risk for sleep 

disturbance. Although this finding is contrary to much of the published literature, it is 

possible that sample specific characteristics accounted for the observed direction of 

effects. Accordingly, replication in larger and more varied samples is warranted 

before conclusions as to the effects of 5HTTLPR on sleep can confidently be drawn. 

 

8.3 Limitations 

 Limitations which are specific to individual chapters are addressed in the 

appropriate chapters. Limitations which are relevant to the overall thesis more 

generally are discussed here. 
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8.3.1 Twin Studies 

  Perhaps one of the most important considerations of this thesis centres on the 

fact that the sample used consisted of a population of twins (see Chapter 2, section 2.3 

for an outline of the assumptions of the twin method). Although twin studies such as 

G1219 provide a perfect opportunity to examine the relative contribution of genetic 

and environmental influences, twin studies have been criticised on the grounds that 

twins may be unrepresentative of non-twins, and so extrapolation of the results of this 

thesis to the general population may be questioned (see Plomin, et al., 2008). Indeed, 

there are several ways in which this may be of concern for the present study. For 

example, it is possible that twins share a bedroom, and so the sleep of one twin may 

be disturbed by their co-twin. In terms of the timing of sleep, it is possible that twins 

sharing a bedroom go to bed and get up at similar times to their co-twin. Thus, a true 

indication of their preferences for sleep-wake activity may be masked by the fact that 

their sleep schedules are partly influenced by the sleeping schedules of their co-twin. 

However, it is likely that the twins in the present study, being between the ages of 18 

and 27, were not in fact sharing a bedroom with their co-twin. Although around half 

of all twins included in the study were living at home with their parents as well as 

their co-twin, it is possible that they did not share a bedroom (unfortunately data on 

bedroom sharing was not available). However, it is particularly noteworthy that one 

study investigating the comparability between twins’ and non-twins’ psychiatric 

symptoms found that such individuals did not appear to differ on measures of 

insomnia and other psychiatric symptoms (Kendler, et al., 1995). Furthermore, in all 

analyses (both quantitative genetic analyses as well as the molecular genetic analyses) 

the non-independence of the twin data (i.e. twins and siblings were from the same 

family) was statistically controlled, mitigating this limitation as a cause for concern. 
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A related point regarding the use of twins is that of sibling interaction. Sibling 

interaction describes a process of social interaction whereby one twin’s behaviour 

influences that of their co-twin. These effects can take two forms: cooperative (in 

which twins imitate each other’s behaviour) and competitive (in which twins actively 

behave differently to their co-twin) (Boomsma, 2005). In the twin design, the presence 

of cooperative sibling interaction would artificially inflate the genetic correlations 

between MZ and DZ twins such that correlations are similar for both types of twins. 

Such a pattern would usually be indicative of shared environmental effects, and so it is 

possible that this effect will be misinterpreted as the shared environment rather than as 

a sibling interaction. In the context of the present study, although it is possible that the 

sleeping habits of one twin influenced the sleeping habits of the co-twin (thus 

indicating the presence of a cooperative sibling interaction effect), this should not be 

of cause for concern here as the general patterns of twin correlations between MZ and 

DZ twins did not indicate the presence of shared environment, and so this could not 

have been incorrectly defined in the place of a sibling interaction effect. Competitive 

sibling interaction, on the other hand, would create a larger discrepancy in the genetic 

correlations between MZ and DZ twins – leading to a pattern of twin correlations 

typically indicative of genetic non-additivity (also known as dominance). The 

presence of sibling interaction effects can be assessed by examining the variance/ co-

variance structures for MZ/DZ twins. If these are somewhat similar between the two 

types of twins, the presence of a sibling interaction effect is unlikely. This was the 

case for the results of the present study, and so a sibling interaction effect was not 

incorporated in the formal genetic model fitting analyses. Furthermore, the power to 

distinguish between competitive sibling interaction and genetic non-additivity requires 

sample sizes much greater than that of the present sample (Reitveld, Posthuma, Dolan, 

& Boomsma, 2003). However, this point is worthy of consideration for future studies 
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assessing sleep as the presence of such effects can lead to the incorrect interpretation 

of the patterns of twin correlations – and hence the relative importance of genetic and 

environmental influences.  

A final consideration of the present sample concerns the inclusion of non-twin 

siblings in the analyses. As twins are exactly the same age whereas siblings inevitably 

differ in age, it could be argued that siblings experience more divergent environments 

than twins. As such treating them similarly to DZ twins (for example, the equations 

inputted into the structural equation models were statistically identical for DZ twins 

and siblings, and so the calculation of their respective parameter estimates was 

identical) may be inappropriate. However, although it could be argued that treating 

DZ twins and siblings identically may be problematic, it is worth noting that the 

sibling correlations were generally of similar magnitude to the DZ twin correlations in 

most analyses. Accordingly, it can be concluded that siblings and DZ twins in the 

present study were not qualitatively different for the phenotypes under investigation. 

Furthermore, in all genetic model fitting analyses, data were regressed for age and sex 

and so any age effects were partialled out prior to modelling. 

 

8.3.2 Sample characteristics 

8.3.2.1 Age 

 The participants in the present study were between the ages of 18 and 27 years, 

clustering around 20 years, which limits extrapolation of the current findings to young 

adults only. Sleep is known to change with age (see Chapter 1, section 1.4.1; Chapter 

6, section 6.5.1; and Chapter 7, section 7.5.4 for further details) and so the findings 

reported here may only be applicable to the age group under study. Although it is well 

established that sleep changes with age, it is also likely that the factors accounting for 

the observed variability in sleep changes with age. For example, in the present sample 
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there was no evidence for a role of the shared environment in sleep quality, whereas it 

has previously been found that in children aged between 3-4 years old, the shared 

environment accounted for around 70% of the variance in sleep disturbance (Gregory, 

Eley, O'Connor, & Plomin, 2004). However, as stated in Chapter 3 (section 3.5.4) as 

the age of the participants in the present sample was homogenous, it was not possible 

to investigate the change in heritability as a function of age.  

It is also likely that age moderates the aetiological influences on diurnal 

preference. Indeed, preliminary reports have found that the contribution of the non-

shared environment on diurnal preference decreases as a function of age in a sample 

of adult twins aged between 18 and 93 years from the University of Washington Twin 

Registry (Barclay, Watson, Golberg, & Buchwald, in preparation). It is suggested that 

as one ages, the decrease in importance of the non-shared environment is driven by 

the decline in social, work and family responsibilities as one ages, allowing the 

endogenous circadian rhythm to re-emerge. Further to this, it has also been shown that 

the effects of specific genetic polymorphisms on diurnal preference are age-

dependent, being stronger in specific age cohorts as compared to others (Jones, et al., 

2007). It is likely that the effects of other genes show a similar effect, the strength of 

the associations varying across the lifespan. This highlights the importance of 

confining the findings to the population under investigation.  

 

8.3.2.2 Sex 

Typically, women experience poorer sleep quality than men, as indicated by 

the increased prevalence of insomnia symptoms in women as compared to men in 

numerous populations worldwide (for example, see Ohayon, 2002). Indeed, a meta-

analysis compiled data from over 30 studies of insomnia and concluded that females 

exhibit a predisposition for sleep disturbance (Zhang & Wing, 2006). Contrary to 



257 
 

much of the previous literature, however, there were no sex differences in sleep 

quality in the present study. As mentioned in Chapter 3 (section 3.5.1) whilst this 

finding was unexpected, this result conforms with other reports which have not found 

evidence for statistically significant sex differences in global sleep quality score 

measured by the PSQI (Carpenter & Andrykowski, 1998; Driscoll, et al., 2008; 

Valentine, et al., 2009; Valladares, et al., 2008). It is possible that the observed sex 

difference in insomnia symptoms is less prominent in subjectively defined sleep 

quality. Further investigation of the presence/absence of a true sex effect on sleep 

quality is required before firm conclusions can be drawn.   

 

8.3.2.3 Ethnicity 

 The vast majority of the present sample considered their ethnicity as White 

British which limits extrapolation of the research findings to populations of other 

ethnic origin. This point is particularly worthy of consideration since Pereira and 

colleagues (2005) investigated the association between PER3 VNTR and diurnal 

preference in a Brazilian population and found that the frequency of the 5-repeat allele 

was significantly greater in DSPS patients compared to controls - a finding which is in 

direct contrast to the finding by Archer and colleagues (2003) for whom the 4-repeat 

allele was significantly more prevalent in DSPS patients. It is suggested that one 

possible explanation for these contradictory findings is the ethnic background of the 

samples under investigation - the Brazilian population of Pereira et al. (2005) 

comprising individuals of European/ Portuguese/ Indian/ African/ and Asian ethnic 

backgrounds, as compared to the predominantly European population of Archer et 

al.’s (2003) study. An alternative explanation is that the latitude, and consequently the 

differences in day length and climate, of the two study populations explained the 

discrepant results. It is possible that these latitude differences affect circadian rhythm 
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entrainment and sleep-wake behaviour. Since the participants in the present study 

were recruited from a UK based twin registry, the present findings remain limited to 

individuals in the Northern hemisphere, with a predominantly White British ethnic 

background. 

 

8.3.2.4 Attrition 

 In large longitudinal datasets such as G1219 attrition is unavoidable. 

Participants were contacted on several occasions during each wave of data collection 

to ensure that data was obtained from as many participants as possible, however, by 

Wave 4 the sample had decreased by over 50% of the original G1219Twins sample. In 

order to control for the effects of sample attrition from Wave 1 through to Wave 4 a 

response weight variable was created and used in all analyses (see Chapter 2, section 

2.10 for details on the weight used in analyses). It is worth noting that all analyses 

were re-run without the weight variable and results substantially mirrored those 

presented in this thesis, and so should not be cause for concern with regards the 

interpretation of the findings of this thesis.  

 

8.3.2.5 Non-clinical sample 

 Although the participants used in this study were not drawn from a clinical 

population, the focus of this study was to understand more about the factors which 

account for the observed variation in ‘normal’ sleep patterns in the general population, 

rather than with regard to sleep ‘problems’. It is possible, however, that symptoms of 

sleep disorders, such as insomnia, lie on a quantitative dimension within the normal 

population, with individuals suffering from more chronic and pervasive problems 

being at the upper extreme of this continuum. Accordingly, it may be that processes 

which are important in determining normal sleep patterns may be applicable to clinical 
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sleep disorders. Thus, insomnia may be considered the extreme of poor sleep quality, 

and DSPS/ASPS the extremes of diurnal preference. Indeed, epidemiological studies 

have demonstrated that around one third of the adult population frequently experience 

at least one insomnia symptom making the case that these symptoms are prevalent in 

the general population (Ohayon, 2002). Of course it should also be acknowledged that 

although the sample were not from a selected ‘clinical’ group, the mean PSQI score 

was greater than the suggested clinical cut-off for a clinically relevant sleep problem 

(score >5) as suggested by Buysse and colleagues (1989). It seems unlikely that the 

present sample had a high prevalence of sleep disorders, and so the present results 

suggest the possibility that the clinical cut-off should be refined.  

 

8.3.3 Self-report measures 

 A fundamental limitation of the present study is the reliance on self-report 

measures to determine sleep quality and diurnal preference. One particular 

consideration is that subjective reports may be sensitive to cognitive and perceptual 

biases. As suggested by Gerhman and colleagues (2011) ‘bad’ nights of sleep may be 

particularly salient and consequently lead an individual to retrospectively judge their 

sleep as poor regardless of the fact that they may also have experienced a number of 

‘good’ nights sleep during the same period. Additionally, Gerhman notes that 

subjective measures of sleep may suffer from the inherent problem of asking 

participants to report on a state of “...reduced consciousness and awareness”, and 

furthermore, subjective reports may be influenced by other factors such as current 

mood state. These biases may challenge the reliability of such measures. Of course, 

objective measures of sleep would be useful additions in order to better characterise 

the phenotypes under study, yet, the large-scale nature of the study meant that 

obtaining objective measures of sleep such as actigraphy or polysomnography was not 
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possible. Indeed others have reported that objective measures such as EEG are not 

suitable for large-scale studies (Liu, et al., 2000; Ohayon, et al., 2000). However, the 

PSQI and MEQ are among the best available methods for assessing subjectively 

defined sleep. They are widely used measures and good psychometric properties 

(including internal reliability and validity) of both are well established (Anderson, 

Petros, Beckwith, Mitchell, & Fritz, 1991; Backhaus, et al., 2002; Buysse, et al., 1989; 

Chelminski, et al., 1997; Smith, et al., 1989).  

 

8.4 Contribution to the literature on sleep quality 

8.4.1 Behavioural genetic work on sleep quality 

 The research in this thesis capitalises on the twin design and uses novel 

approaches to investigate the factors contributing to the variability in sleep quality in 

the general population. Since the first twin study investigating the heritability of sleep 

quality in 1983 (Partinen, et al., 1983), research aimed at understanding more about 

sleep has flourished. To date there are over a hundred papers investigating the 

heritability of sleep phenotypes worldwide. However, the present study is the only one 

to the author’s knowledge to answer a range of questions regarding the aetiology of 

sleep quality using the twin design. Furthermore, it is the only study (to the author’s 

knowledge) specifically focussed on the critical period between late adolescence and 

early adulthood. Accordingly, this study has replicated findings from other study 

populations (such as those focussing on adulthood across the lifespan) providing 

further support for the notion that genetic and non-shared environmental influences 

account for why some people sleep well whilst others sleep poorly. 
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8.4.2 Environmental and sociological determinants of sleep quality 

 In addition to contributing to the behavioural genetic literature on sleep 

quality, this thesis adds to the growing body of literature on the environmental and 

sociological determinants of sleep quality. Numerous studies have investigated 

societal risk factors for sleep disturbance, including low socioeconomic status, 

ethnicity, income, occupational status, educational attainment, and marital status to 

name a few (Grandner, et al., 2010; Ohayon, 2002; Patel, Grandner, Xie, Branas, & 

Gooneratne, 2010). In the present study, however, environmental risk factors were 

examined that had not been previously explored explicitly in relation to sleep quality 

(such as friendships, relationship satisfaction, the distinction between dependent and 

independent negative life events). Furthermore, the finding of significant rGE effects 

on the environmental variables associated with sleep provides an insight into the 

mechanisms by which the environment affects sleep. Accordingly, future studies 

should aim to unravel the determinants of the associations between sleep and the 

environment as the majority of the results from this thesis point to the fact that genes 

and environments, whilst important individually, also work in concert to bring about 

behaviour.  

 

8.4.3 Molecular genetic determinants of sleep quality 

Additionally, the results from this thesis add to the body of literature on the 

molecular genetic determinants of sleep quality. Although molecular genetic studies 

are increasing in number, few studies to date have investigated the role of 5HTTLPR, 

PER3 VNTR and CLOCK 3111 on sleep quality, and those that have required 

replication. The present research did not confirm previous findings, however this in 

itself is an important finding and brings up numerous questions as to why previous 

results were not supported in the present research. The null findings in relation to 
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PER3 and CLOCK 3111 suggest that these effects may perhaps be limited to specific 

populations (for example in mood disorders), may be chance effects, may be too small 

to replicate even in samples as large as G1219, or may be dependent on interactions 

with other genetic polymorphisms. 

In the case of 5HTTLPR, the contradictory finding presented here suggests that 

the association between this polymorphism and sleep quality is not as clear-cut as it 

may first seem. It is possible that the direction of its effect is dependent on the 

population under investigation (for example, confined to clinical sleep disorders, or to 

individuals experiencing chronic stress) or that it interacts with other, as yet 

unidentified, environmental stressors. Thus, it appears that the effects of 5HTTLPR on 

sleep are diverse and require thorough investigation. Furthermore, it appears that a re-

consideration of the role of serotonin in sleep is warranted, as the current theory – that 

since increased serotonin function is associated with wakefulness (for example, see 

Ursin, 2002, for a review), sleep is disrupted by higher levels of serotonin at critical 

brain regions - needs to be revisited in light of the present findings. This is because the 

longer allele, which results in greater re-uptake of serotonin at the receptor sites and 

consequently decreases levels of serotonin relative to the effects of the short allele, 

constituted a risk factor for poor sleep – contrary to the current known mechanism of 

action. It would be particularly useful to confirm whether long-long homozygotes in 

the present study do indeed have altered levels of brain serotonin during sleep 

compared to short allele carriers, to confirm whether the allelic effects are due to 

differential modulation of absolute amounts of serotonin activity.  

However, it appears that understanding of the effects of serotonin on sleep is 

complicated for two reasons: First, it is possible that the effects of serotonin on sleep 

are in part dependent on its interaction with other brain neurotransmitters (such as 

noradrenaline and acetylcholine), since the onset of sleep is reliant on the complex 
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interaction of many inhibitory and excitatory processes  (Portas, et al., 2000). Second, 

it is likely that serotonin has differential effects on sleep dependent on its localization 

within the serotonergic system. Indeed administration of selective serotonin re-uptake 

inhibitors (SSRI’s) in cats has been found to have both sleep promoting and sleep 

incompatible effects and it is suggested that the observed effects may be due to 

regional differences in reuptake (Sommerfelt & Ursin, 1991). With this in mind 

investigation simply of the overall effect of serotonin on sleep may not be appropriate, 

but rather a finer examination of the role of increased/decreased serotonin in specific 

brain regions throughout the sleep-wake cycle may shed greater light on this complex 

process. 

 

8.5 Implications of the current research 

 The implications of the research stemming from this thesis are threefold, 

impacting on scientific theory, clinical practice and the development of future 

research. In terms of scientific theory, the results of this thesis have increased our 

understanding of the factors accounting for variation in sleep-wake behaviour in 

healthy young adults. Furthermore, this thesis has substantiated how we conceptualise 

‘sleep quality’. The finding that the genetic influences on the individual components 

of sleep to a large extent overlapped, suggests that we can consider these different 

aspects of sleep as stemming from similar biological mechanisms. Not only this, but 

the results of this thesis have suggested that, in a similar manner, the determinants of 

sleep quality and diurnal preference are largely the same genetically, but vastly 

distinct, environmentally. The unexpected finding regarding the importance of the 

‘long’ allele of 5HTTLPR as a risk factor for sleep disturbance suggests the possibility 

of an alternative mechanism of action between serotonin and sleep to the well 
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established links between the ‘short’ allele and sleep disturbance, which should be 

explored further. 

 The finding that although sleep quality is substantially influenced by genetic 

factors, environmental influences are just as important is likely to be informative for 

the development of treatment and intervention programmes for sleep disturbances. 

Informing individuals of the benefits of controlling their environment (such as by 

maintaining good sleep hygiene, reducing exposure to high risk environments), is 

likely to have positive effects on their sleep. In addition, educating individuals about 

their own biological rhythms, understanding when their optimum times are for sleep-

wake behaviour and informing them of the risks of sleeping at times incongruent with 

their internal biological clock, may have positive effects on their sleep and lifestyle. 

Furthermore, controlling lifestyle factors (such as work and social commitments) will 

also aid in the maintenance of a regular internal clock which is likely to have positive 

consequences for sleep, behaviour and psychological functioning.   

 The present findings may also be informative for clinicians, especially those 

refining diagnostic criteria for sleep-wake disorders in the next edition of the DSM in 

2013. Several changes are proposed to the diagnostic criteria for Insomnia Disorder 

(previously termed ‘Primary Insomnia’), with the inclusion of the criteria that “...the 

predominant complaint is dissatisfaction with sleep quantity or quality...” (American 

Psychiatric Association, 2010), whereas in the previous edition, the DSM described 

the predominant complaint as “...difficulty initiating or maintaining sleep, or non-

restorative sleep, for at least one month” (American Psychiatric Association, 1994). 

The research presented in this thesis, focussing on understanding the aetiology of 

variation in subjective sleep quality, therefore provides information of relevance to the 

predominant clinical feature of insomnia disorder as diagnosed by DSM-V criteria.  
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8.6 Directions for future research 

 Despite answering numerous questions related to the understanding of the 

aetiology of sleep quality, the present research has yielded just as many new 

questions. The points below detail possible avenues to explore with the aim to 

understanding more about the aetiology of sleep. These are just some of the questions 

that this research has generated – it is likely that there are many more that will emerge 

as research into this area continues. 

 

 

8.6.1 Extrapolation to other study populations 

 Focussing on a homogeneous age group is a strength of the present study 

allowing us to understand more about sleep in young adulthood. However, it is likely 

that a different pattern of results would emerge in different age groups. Accordingly, 

future research should aim at replicating the current findings across the lifespan: from 

infancy to childhood; childhood to adolescence; adolescence to adulthood; young to 

mid-adulthood; and mid-to late adulthood. Each of these milestones is associated with 

significant changes biologically, cognitively and socially, making it unequivocal that 

behaviour, and thus sleep, will change alongside them. It appears that the heritability 

of sleep is likely to change with age, but there are additional questions to be answered. 

For example, are there specific environmental influences that have a greater effect on 

sleep at certain points in life? Are gene-environment correlation effects sustained 

across the lifespan or do genetic effects on ‘environmental’ variables change with 

age? Are there significant 3-way Gene X Environment X Age interaction effects – 

whereby a gene-environment interaction effect is only exhibited in particular age 

groups?  
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 Just as with age, where possible, future research should aim to replicate the 

current findings in clinical samples. This will allow us to determine whether the 

effects found here in relation to sleep quality and diurnal preference can be 

extrapolated to insomnia and circadian rhythm sleep disorders such as ASPS and 

DSPS. This will enable us to determine whether sleep quality is a quantitative 

dimension which has insomnia at its extreme. For example, it will be useful to 

investigate whether the same biological, physiological, sociological and cognitive 

determinants are important in both the normal range of sleep disturbances as well as in 

clinical cases, but are exacerbated in the extreme (i.e. insomnia).  

Not only should the present results be examined in populations of individuals 

with clinical sleep disorders, but they should also be investigated in individuals with 

psychopathology. Since clinical problems such as anxiety and depression are so often 

comorbid with sleep disturbances (for example, see Morin & Ware, 1996), research 

should examine whether the genetic and environmental effects on sleep are the same 

in such individuals as compared to individuals with isolated sleep disturbances. This 

will be important in understanding whether comorbid sleep disturbances which are 

often seen as a symptom of the psychopathology rather than a diagnosis in their own 

right, stem from the same factors as those observed in the general population, or 

whether such sleep disturbances are qualitatively distinct, aetiologically.  

However, it should be noted that there are numerous difficulties associated 

with recruiting clinical participants, the main one being that the possibility of 

obtaining a large twin sample comprising clinical participants is highly unlikely. 

Accordingly, designing alternative experimental designs to the twin design will be 

necessary in order to address these questions in clinical samples.  
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8.6.2 Stability, change, and direction of effects 

Large samples of twins studied at multiple time points will afford us the 

opportunity to examine the stability of sleep overtime, as well as longitudinal 

associations between sleep and the environment, allowing us to ask questions 

regarding the direction of effects. For example, do sleep disturbances persist from 

young adulthood to mid-adulthood? If so, what accounts for this stability? Such data 

will allow us to determine whether the genetic and environmental effects on sleep are 

stable across time, or whether there are new factors which come into play at different 

time points. In relation to associations between sleep quality and diurnal preference, 

does having an evening-type personality, or factors associated with an evening-type 

personality (such as consuming alcohol, interacting with friends late at night) lead one 

to sleep poorly, or does the fact that an individual sleeps poorly mean that they delay 

going to bed? Furthermore, is this effect genetically or environmentally mediated? In 

relation to associations between sleep and the environment, do negative life events 

lead to poor sleep, or is the converse true? It is likely that both explanations are true, 

but what determines this? Answering such questions may be important for theoretical 

models of sleep disturbance, allowing us to understand whether the experience of poor 

sleep itself is instrumental in influencing our behaviour and environmental 

experiences.  

 

8.6.3 Molecular genetic methods 

 Given the likelihood that many genes of small effect are responsible for sleep-

wake behaviour it is no surprise that the search for genes influencing sleep has been 

slow. Replication of the present results, both the negative and positive findings, is 

essential in order to further substantiate the claims made here.  
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8.6.3.1   Serotonin 

 The somewhat surprising finding that the longer allele of the 5HTTLPR gene 

was associated with poorer sleep quality brings up numerous questions worthy of 

clarification. First, is this a robust finding? Since this is the only study to date 

investigating the role of 5HTTLPR in relation to sleep quality in a sample of healthy 

individuals, this finding should be considered as preliminary. Further studies are 

required before we can begin to answer this question. Second, if this finding is robust, 

how can it be explained? Seeing as the consequences of this finding being true is 

somewhat at odds with the current literature on the role of serotonin in sleep and 

wakefulness, further in vivo experiments explicitly focussed on the effects of 

increased/decreased serotonin in primary brain centres for sleep-wake activity (such as 

the SCN, as an example) would provide useful insights into the plausibility of this 

finding. Third, is it possible that other 5HT related polymorphisms exhibit a similar 

effect – i.e. leading to decreases in brain serotonin in individuals experiencing sleep 

disturbances? Such an investigation would highlight whether this effect is specific to 

the transporter gene, or whether it is true of genes across the entire serotonergic 

system more generally. 

 

 

8.6.3.2   Other genes 

In order to find clues as to where to search for other candidate genes 

contributing to sleep quality, future research should use the approach of Chapter 6 to 

look at associations between sleep quality and other phenotypes. For example, 

research from G1219 has identified significant genetic correlations between sleep 

quality and externalising behaviours (such as aggressive behaviours and rule breaking 

behaviours: Barclay, Eley, Maughan, et al., 2010). Thus, we should perhaps focus our 
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search for genes implicated in sleep quality on those known to be associated with 

externalising behaviours. One possible candidate for further investigation is the 

monoamine oxidase-A (MAO-A) gene. Low levels of brain MAO-A activity has been 

associated with higher levels of self-reported aggression symptoms in healthy adult 

males (Alia-Klein, et al., 2008). MAO-A degrades the monoamine neurotransmitters 

serotonin, norepinephrine and dopamine. Accordingly, low levels of brain MAO-A 

result in excess levels of these neurotransmitters (Alia-Klein, et al., 2008). Thus, it can 

be seen how this may have an effect on sleep quality, given the possibility that 

increased levels of serotonin may lead to sleep disturbance due to its role in 

wakefulness (see Jouvet, 1999, for a discussion of this hypothesis). Indeed a 

polymorphism of the MAO-A gene, which results in less transcriptional efficiency of 

the gene and consequently increased levels of these monoamine neurotransmitters, 

has been associated with poor sleep quality in a small sample of males (the large 

majority of whom were caring for a relative with dementia) (Brummett, Krystal, 

Siegler, et al., 2007). Replication of this finding in much larger, more typical study 

populations is required before we can draw firm conclusions as to the effects of MAO-

A on sleep. If this finding is robust, however, it posits the possibility that 

polymorphisms of norepinephrine and dopamine genes should also be targets for 

study in relation to sleep, given the effects of MAO-A on levels of these 

neurotransmitters. This is just one example of how behavioural genetic research can 

further refine our search for genes associated with sleep quality. Considerably more 

research assessing the relationship between sleep and numerous behavioural traits is 

likely in the coming years given the increasing number of, and wealth of data included 

in twin studies across the globe (including large twin studies in the UK, Sweden, 

Finland, and the USA to name but a few). This is likely to suggest avenues for further 

research not previously explored. 
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 An additional molecular genetic method which is likely to yield positive 

results in mapping genotype to phenotype is genome-wide association studies 

(GWAS). To date there are only a handful of GWAS focussed on sleep phenotypes. 

One such study identified a couple of circadian clock genes as potential mediators of 

bedtime and sleepiness (NPSR1 and PDE4D) (Gottlieb, O'Connor, & Wilk, 2007).  A 

recent genome-wide scan of genes associated with insomnia has yielded evidence for 

a role of genes previously associated with bipolar disorder and schizophrenia (Ban, 

Kim, Seo, Kang, & Choi, 2011). Owing to their increasing availability and ever 

decreasing costs it is possible that we will see more and more of these studies in the 

coming years. Such studies are likely to lead to the exponential growth of knowledge 

of the genes involved in sleep. This progress is further facilitated by the better ways of 

accurately characterising sleep (such as PSG and actigraphy).  

 

8.6.3.3   Endophenotypes 

An alternative way to maximise the chances of successfully identifying genetic 

polymorphisms associated with poor sleep is to study endophenotypes. An 

endophenotype can be described as a “...measurable component unseen by the unaided 

eye along the pathway between disease and distal genotype...” (Gottesman & Gould, 

2003, pg 636). Accordingly, an endophenotype may be a particular characteristic 

which is consistently reported to be evident in the phenotype/disorder under study, but 

which is not typically observed as an overt symptom of the phenotype/disorder. To 

qualify as a potential endophenotype, a quantitative trait must satisfy 4 criteria: first, it 

must be heritable; second, it must reliably be associated with the phenotype/disorder 

under investigation; third, it must be state-dependent (that is, it must manifest 

regardless of whether the phenotype/disorder under investigation is present); and 

fourth, it must co-segregate with the phenotype/disorder under investigation 
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(Gottesman & Gould, 2003). Certain characteristics of REM sleep, such as an increase 

of REM density and a decrease of REM sleep latency, have been suggested to be 

endophenotypes of depression (Gottesmann & Gottesman, 2007). Yet what may be 

considered endophenotypes of sleep disturbances? A recent report from The 

Netherlands has found disturbed intracortical excitability during waking in insomnia 

patients using Transcranial Magnetic Stimulation (TMS) compared to controls. 

Surprisingly, this excitability did not recover after treatment of the insomnia, showing 

that such activation was a stable trait regardless of the exhibition of insomnia 

symptoms, suggesting that this pattern of brain activation may be an endophenotype 

(van der Werf, et al., 2010). Accordingly this study demonstrates that this trait 

satisfies at least two of the criteria for classification as an endophenotype (association 

with insomnia; state-dependency). The authors suggest that genotyping the 

endophenotype may lead to fruitful insights into possible genetic variants associated 

with the broader insomnia phenotype given that this particular pattern of excitability 

appears to be a highly heritable trait (Pellicciari, et al., 2009). Accordingly, further 

research should aim at indentifying other possible endophenotypes of sleep as well as 

sleep disorders such as insomnia, with the hope that doing so will facilitate further 

progress in identifying genes responsible for such disorders. 

 

8.6.4 The environment 

 The present study has focussed on a few very specific environmental measures 

in association with sleep, largely due to the availability of the data within the G1219 

study. It is likely that there are many more to be explored given the almost infinite 

number of situations that we as individuals are exposed to in our everyday lives. 

Significant gene-environment interaction effects may emerge in studies examining a 

broader scope of environmental measures than encompassed here.  For example, in the 
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study by Brummett and colleagues (2007a), the effect of 5HTTLPR on sleep quality 

was moderated by the experience of caring for a relative with dementia. Indeed there 

are an abundance of environmental influences which may affect sleep, and the present 

study has touched upon just a few. 

Future studies should also aim to provide more objective methods of 

measuring the environment. It is possible that self-reports of the environment are 

affected by one’s subjective interpretation of their perception of the environment 

rather than the objective state of that environment (Kendler & Baker, 2007). This in 

itself could be considered as a completely distinct way of conceptualising the 

environment (i.e. the perception of the experience rather than the exposure). For 

example, an individual may interpret a particular life event as negative (e.g. moving 

house) which may be seen positively by others. Thus, by measuring environmental 

variables by more objective means (such as direct observation) may shed light onto 

whether the measurement of the environment is confounded by the interpretation that 

the participant imposes upon it.  

Furthermore, much of the research on sleep and indeed on other phenotypes 

has focussed on environmental ‘risk factors’ for problems, but what about the 

possibility that there are environmental measures that promote positive outcomes? Do 

positive life events facilitate sleep? For example, does marriage serve as a protective 

factor against sleep difficulties? It is likely that happily married couples lead more 

stable, structured lives, and adhere to good sleep hygiene practices compared to single 

individuals who may have more of a tendency to go out with friends at night. Indeed, 

in adults lifestyle regularity has been found to be a protective factor for good sleep 

(Monk, Reynolds, et al., 2003), so it can be seen here how such an effect may occur. It 

is rare in epidemiological research to identify correlates of positive behaviours, but 
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perhaps such investigations will prove to be just as insightful as those aiming to 

identify factors associated with problems.  

 

8.6.5 Conclusions 

The G1219 study has provided the unprecedented opportunity to use 

quantitative and molecular genetic techniques to progress knowledge regarding the 

aetiology of sleep quality in young adulthood. Through so doing the results of this 

thesis have underscored the importance of genetics, but just as importantly, the 

environment, and the known reality that these influences work in concert to influence 

sleep. Although this research has addressed the specificity of these influences on 

sleep, future research should draw upon these techniques to further advance the 

knowledgebase regarding the specific genetic and environmental factors involved. It 

may be considered that the era of quantitative genetics is coming to an end, with the 

emergence of high-throughput molecular genetic techniques, and the ever decreasing 

costs of full genome sequencing. However, the results of this thesis affirm that the 

work of quantitative geneticists is not likely to disappear any time soon, given that 

twin studies can be used in numerous ways to answer complex questions regarding 

nature and nurture, and the fascinating ways in which these effects intertwine to 

influence every aspect of our being. Further exploration of the ways in which 

behavioural genetic methods can be exploited will aid in the progression to 

understanding the complexities of sleep and the circadian system. The future of sleep 

research is exciting, and new discoveries are being made everyday – even as we sleep. 
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